Integrated Approach To Design And Analysis Of Systems
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1993-01-01
Object-oriented fault-tree representation unifies evaluation of reliability and diagnosis of faults. Programming/fault tree described more fully in "Object-Oriented Algorithm For Evaluation Of Fault Trees" (ARC-12731). Augmented fault tree object contains more information than fault tree object used in quantitative analysis of reliability. Additional information needed to diagnose faults in system represented by fault tree.
Object-Oriented Algorithm For Evaluation Of Fault Trees
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1992-01-01
Algorithm for direct evaluation of fault trees incorporates techniques of object-oriented programming. Reduces number of calls needed to solve trees with repeated events. Provides significantly improved software environment for such computations as quantitative analyses of safety and reliability of complicated systems of equipment (e.g., spacecraft or factories).
Technology transfer by means of fault tree synthesis
NASA Astrophysics Data System (ADS)
Batzias, Dimitris F.
2012-12-01
Since Fault Tree Analysis (FTA) attempts to model and analyze failure processes of engineering, it forms a common technique for good industrial practice. On the contrary, fault tree synthesis (FTS) refers to the methodology of constructing complex trees either from dentritic modules built ad hoc or from fault tress already used and stored in a Knowledge Base. In both cases, technology transfer takes place in a quasi-inductive mode, from partial to holistic knowledge. In this work, an algorithmic procedure, including 9 activity steps and 3 decision nodes is developed for performing effectively this transfer when the fault under investigation occurs within one of the latter stages of an industrial procedure with several stages in series. The main parts of the algorithmic procedure are: (i) the construction of a local fault tree within the corresponding production stage, where the fault has been detected, (ii) the formation of an interface made of input faults that might occur upstream, (iii) the fuzzy (to count for uncertainty) multicriteria ranking of these faults according to their significance, and (iv) the synthesis of an extended fault tree based on the construction of part (i) and on the local fault tree of the first-ranked fault in part (iii). An implementation is presented, referring to 'uneven sealing of Al anodic film', thus proving the functionality of the developed methodology.
Direct evaluation of fault trees using object-oriented programming techniques
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1989-01-01
Object-oriented programming techniques are used in an algorithm for the direct evaluation of fault trees. The algorithm combines a simple bottom-up procedure for trees without repeated events with a top-down recursive procedure for trees with repeated events. The object-oriented approach results in a dynamic modularization of the tree at each step in the reduction process. The algorithm reduces the number of recursive calls required to solve trees with repeated events and calculates intermediate results as well as the solution of the top event. The intermediate results can be reused if part of the tree is modified. An example is presented in which the results of the algorithm implemented with conventional techniques are compared to those of the object-oriented approach.
A fast bottom-up algorithm for computing the cut sets of noncoherent fault trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corynen, G.C.
1987-11-01
An efficient procedure for finding the cut sets of large fault trees has been developed. Designed to address coherent or noncoherent systems, dependent events, shared or common-cause events, the method - called SHORTCUT - is based on a fast algorithm for transforming a noncoherent tree into a quasi-coherent tree (COHERE), and on a new algorithm for reducing cut sets (SUBSET). To assure sufficient clarity and precision, the procedure is discussed in the language of simple sets, which is also developed in this report. Although the new method has not yet been fully implemented on the computer, we report theoretical worst-casemore » estimates of its computational complexity. 12 refs., 10 figs.« less
A diagnosis system using object-oriented fault tree models
NASA Technical Reports Server (NTRS)
Iverson, David L.; Patterson-Hine, F. A.
1990-01-01
Spaceborne computing systems must provide reliable, continuous operation for extended periods. Due to weight, power, and volume constraints, these systems must manage resources very effectively. A fault diagnosis algorithm is described which enables fast and flexible diagnoses in the dynamic distributed computing environments planned for future space missions. The algorithm uses a knowledge base that is easily changed and updated to reflect current system status. Augmented fault trees represented in an object-oriented form provide deep system knowledge that is easy to access and revise as a system changes. Given such a fault tree, a set of failure events that have occurred, and a set of failure events that have not occurred, this diagnosis system uses forward and backward chaining to propagate causal and temporal information about other failure events in the system being diagnosed. Once the system has established temporal and causal constraints, it reasons backward from heuristically selected failure events to find a set of basic failure events which are a likely cause of the occurrence of the top failure event in the fault tree. The diagnosis system has been implemented in common LISP using Flavors.
Object-oriented fault tree models applied to system diagnosis
NASA Technical Reports Server (NTRS)
Iverson, David L.; Patterson-Hine, F. A.
1990-01-01
When a diagnosis system is used in a dynamic environment, such as the distributed computer system planned for use on Space Station Freedom, it must execute quickly and its knowledge base must be easily updated. Representing system knowledge as object-oriented augmented fault trees provides both features. The diagnosis system described here is based on the failure cause identification process of the diagnostic system described by Narayanan and Viswanadham. Their system has been enhanced in this implementation by replacing the knowledge base of if-then rules with an object-oriented fault tree representation. This allows the system to perform its task much faster and facilitates dynamic updating of the knowledge base in a changing diagnosis environment. Accessing the information contained in the objects is more efficient than performing a lookup operation on an indexed rule base. Additionally, the object-oriented fault trees can be easily updated to represent current system status. This paper describes the fault tree representation, the diagnosis algorithm extensions, and an example application of this system. Comparisons are made between the object-oriented fault tree knowledge structure solution and one implementation of a rule-based solution. Plans for future work on this system are also discussed.
EDNA: Expert fault digraph analysis using CLIPS
NASA Technical Reports Server (NTRS)
Dixit, Vishweshwar V.
1990-01-01
Traditionally fault models are represented by trees. Recently, digraph models have been proposed (Sack). Digraph models closely imitate the real system dependencies and hence are easy to develop, validate and maintain. However, they can also contain directed cycles and analysis algorithms are hard to find. Available algorithms tend to be complicated and slow. On the other hand, the tree analysis (VGRH, Tayl) is well understood and rooted in vast research effort and analytical techniques. The tree analysis algorithms are sophisticated and orders of magnitude faster. Transformation of a digraph (cyclic) into trees (CLP, LP) is a viable approach to blend the advantages of the representations. Neither the digraphs nor the trees provide the ability to handle heuristic knowledge. An expert system, to capture the engineering knowledge, is essential. We propose an approach here, namely, expert network analysis. We combine the digraph representation and tree algorithms. The models are augmented by probabilistic and heuristic knowledge. CLIPS, an expert system shell from NASA-JSC will be used to develop a tool. The technique provides the ability to handle probabilities and heuristic knowledge. Mixed analysis, some nodes with probabilities, is possible. The tool provides graphics interface for input, query, and update. With the combined approach it is expected to be a valuable tool in the design process as well in the capture of final design knowledge.
Khan, F I; Abbasi, S A
2000-07-10
Fault tree analysis (FTA) is based on constructing a hypothetical tree of base events (initiating events) branching into numerous other sub-events, propagating the fault and eventually leading to the top event (accident). It has been a powerful technique used traditionally in identifying hazards in nuclear installations and power industries. As the systematic articulation of the fault tree is associated with assigning probabilities to each fault, the exercise is also sometimes called probabilistic risk assessment. But powerful as this technique is, it is also very cumbersome and costly, limiting its area of application. We have developed a new algorithm based on analytical simulation (named as AS-II), which makes the application of FTA simpler, quicker, and cheaper; thus opening up the possibility of its wider use in risk assessment in chemical process industries. Based on the methodology we have developed a computer-automated tool. The details are presented in this paper.
Redundancy management for efficient fault recovery in NASA's distributed computing system
NASA Technical Reports Server (NTRS)
Malek, Miroslaw; Pandya, Mihir; Yau, Kitty
1991-01-01
The management of redundancy in computer systems was studied and guidelines were provided for the development of NASA's fault-tolerant distributed systems. Fault recovery and reconfiguration mechanisms were examined. A theoretical foundation was laid for redundancy management by efficient reconfiguration methods and algorithmic diversity. Algorithms were developed to optimize the resources for embedding of computational graphs of tasks in the system architecture and reconfiguration of these tasks after a failure has occurred. The computational structure represented by a path and the complete binary tree was considered and the mesh and hypercube architectures were targeted for their embeddings. The innovative concept of Hybrid Algorithm Technique was introduced. This new technique provides a mechanism for obtaining fault tolerance while exhibiting improved performance.
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung (Inventor); Fang, Wai-Chi (Inventor); Curlander, John C. (Inventor)
1995-01-01
A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array.
Experimental evaluation of the certification-trail method
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.; Itoh, Mamoru; Smith, Warren W.; Kay, Jonathan S.
1993-01-01
Certification trails are a recently introduced and promising approach to fault-detection and fault-tolerance. A comprehensive attempt to assess experimentally the performance and overall value of the method is reported. The method is applied to algorithms for the following problems: huffman tree, shortest path, minimum spanning tree, sorting, and convex hull. Our results reveal many cases in which an approach using certification-trails allows for significantly faster overall program execution time than a basic time redundancy-approach. Algorithms for the answer-validation problem for abstract data types were also examined. This kind of problem provides a basis for applying the certification-trail method to wide classes of algorithms. Answer-validation solutions for two types of priority queues were implemented and analyzed. In both cases, the algorithm which performs answer-validation is substantially faster than the original algorithm for computing the answer. Next, a probabilistic model and analysis which enables comparison between the certification-trail method and the time-redundancy approach were presented. The analysis reveals some substantial and sometimes surprising advantages for ther certification-trail method. Finally, the work our group performed on the design and implementation of fault injection testbeds for experimental analysis of the certification trail technique is discussed. This work employs two distinct methodologies, software fault injection (modification of instruction, data, and stack segments of programs on a Sun Sparcstation ELC and on an IBM 386 PC) and hardware fault injection (control, address, and data lines of a Motorola MC68000-based target system pulsed at logical zero/one values). Our results indicate the viability of the certification trail technique. It is also believed that the tools developed provide a solid base for additional exploration.
Fault trees for decision making in systems analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Howard E.
1975-10-09
The application of fault tree analysis (FTA) to system safety and reliability is presented within the framework of system safety analysis. The concepts and techniques involved in manual and automated fault tree construction are described and their differences noted. The theory of mathematical reliability pertinent to FTA is presented with emphasis on engineering applications. An outline of the quantitative reliability techniques of the Reactor Safety Study is given. Concepts of probabilistic importance are presented within the fault tree framework and applied to the areas of system design, diagnosis and simulation. The computer code IMPORTANCE ranks basic events and cut setsmore » according to a sensitivity analysis. A useful feature of the IMPORTANCE code is that it can accept relative failure data as input. The output of the IMPORTANCE code can assist an analyst in finding weaknesses in system design and operation, suggest the most optimal course of system upgrade, and determine the optimal location of sensors within a system. A general simulation model of system failure in terms of fault tree logic is described. The model is intended for efficient diagnosis of the causes of system failure in the event of a system breakdown. It can also be used to assist an operator in making decisions under a time constraint regarding the future course of operations. The model is well suited for computer implementation. New results incorporated in the simulation model include an algorithm to generate repair checklists on the basis of fault tree logic and a one-step-ahead optimization procedure that minimizes the expected time to diagnose system failure.« less
Chen, Gang; Song, Yongduan; Lewis, Frank L
2016-05-03
This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.
Sequential Test Strategies for Multiple Fault Isolation
NASA Technical Reports Server (NTRS)
Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.
1997-01-01
In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.
Fault diagnosis of helical gearbox using acoustic signal and wavelets
NASA Astrophysics Data System (ADS)
Pranesh, SK; Abraham, Siju; Sugumaran, V.; Amarnath, M.
2017-05-01
The efficient transmission of power in machines is needed and gears are an appropriate choice. Faults in gears result in loss of energy and money. The monitoring and fault diagnosis are done by analysis of the acoustic and vibrational signals which are generally considered to be unwanted by products. This study proposes the usage of machine learning algorithm for condition monitoring of a helical gearbox by using the sound signals produced by the gearbox. Artificial faults were created and subsequently signals were captured by a microphone. An extensive study using different wavelet transformations for feature extraction from the acoustic signals was done, followed by waveletselection and feature selection using J48 decision tree and feature classification was performed using K star algorithm. Classification accuracy of 100% was obtained in the study
Joshuva, A; Sugumaran, V
2017-03-01
Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS
NASA Technical Reports Server (NTRS)
Iverson, D. L.
1994-01-01
Fault tree and digraph models are frequently used for system failure analysis. Both types of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Each model has its advantages. While digraphs can be derived in a fairly straightforward manner from system schematics and knowledge about component failure modes and system design, fault tree structure allows for fast processing using efficient techniques developed for tree data structures. The similarities between digraphs and fault trees permits the information encoded in the digraph to be translated into a logically equivalent fault tree. The DG TO FT translation tool will automatically translate digraph models, including those with loops or cycles, into fault tree models that have the same minimum cut set solutions as the input digraph. This tool could be useful, for example, if some parts of a system have been modeled using digraphs and others using fault trees. The digraphs could be translated and incorporated into the fault trees, allowing them to be analyzed using a number of powerful fault tree processing codes, such as cut set and quantitative solution codes. A cut set for a given node is a group of failure events that will cause the failure of the node. A minimum cut set for a node is any cut set that, if any of the failures in the set were to be removed, the occurrence of the other failures in the set will not cause the failure of the event represented by the node. Cut sets calculations can be used to find dependencies, weak links, and vital system components whose failures would cause serious systems failure. The DG TO FT translation system reads in a digraph with each node listed as a separate object in the input file. The user specifies a terminal node for the digraph that will be used as the top node of the resulting fault tree. A fault tree basic event node representing the failure of that digraph node is created and becomes a child of the terminal root node. A subtree is created for each of the inputs to the digraph terminal node and the root of those subtrees are added as children of the top node of the fault tree. Every node in the digraph upstream of the terminal node will be visited and converted. During the conversion process, the algorithm keeps track of the path from the digraph terminal node to the current digraph node. If a node is visited twice, then the program has found a cycle in the digraph. This cycle is broken by finding the minimal cut sets of the twice visited digraph node and forming those cut sets into subtrees. Another implementation of the algorithm resolves loops by building a subtree based on the digraph minimal cut sets calculation. It does not reduce the subtree to minimal cut set form. This second implementation produces larger fault trees, but runs much faster than the version using minimal cut sets since it does not spend time reducing the subtrees to minimal cut sets. The fault trees produced by DG TO FT will contain OR gates, AND gates, Basic Event nodes, and NOP gates. The results of a translation can be output as a text object description of the fault tree similar to the text digraph input format. The translator can also output a LISP language formatted file and an augmented LISP file which can be used by the FTDS (ARC-13019) diagnosis system, available from COSMIC, which performs diagnostic reasoning using the fault tree as a knowledge base. DG TO FT is written in C-language to be machine independent. It has been successfully implemented on a Sun running SunOS, a DECstation running ULTRIX, a Macintosh running System 7, and a DEC VAX running VMS. The RAM requirement varies with the size of the models. DG TO FT is available in UNIX tar format on a .25 inch streaming magnetic tape cartridge (standard distribution) or on a 3.5 inch diskette. It is also available on a 3.5 inch Macintosh format diskette or on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. Sample input and sample output are provided on the distribution medium. An electronic copy of the documentation in Macintosh Microsoft Word format is provided on the distribution medium. DG TO FT was developed in 1992. Sun, and SunOS are trademarks of Sun Microsystems, Inc. DECstation, ULTRIX, VAX, and VMS are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories. Macintosh is a registered trademark of Apple Computer, Inc. System 7 is a trademark of Apple Computers Inc. Microsoft Word is a trademark of Microsoft Corporation.
Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan
2014-03-01
Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. © 2013 ISA Published by ISA All rights reserved.
Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine
NASA Technical Reports Server (NTRS)
Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.
2009-01-01
The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.
Online Performance-Improvement Algorithms
1994-08-01
fault rate as the request sequence length approaches infinity. Their algorithms are based on an innovative use of the classical Ziv - Lempel [85] data ...Report CS-TR-348-91. [85] J. Ziv and A. Lempel . Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory, 24:530-53`, 1978. 94...Deferred Data Structuring Recall that our incremental multi-trip algorithm spreads the building of the fence-tree over several trips in order to
Certification trails for data structures
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Masson, Gerald M.
1993-01-01
Certification trails are a recently introduced and promising approach to fault detection and fault tolerance. The applicability of the certification trail technique is significantly generalized. Previously, certification trails had to be customized to each algorithm application; trails appropriate to wide classes of algorithms were developed. These certification trails are based on common data-structure operations such as those carried out using these sets of operations such as those carried out using balanced binary trees and heaps. Any algorithms using these sets of operations can therefore employ the certification trail method to achieve software fault tolerance. To exemplify the scope of the generalization of the certification trail technique provided, constructions of trails for abstract data types such as priority queues and union-find structures are given. These trails are applicable to any data-structure implementation of the abstract data type. It is also shown that these ideals lead naturally to monitors for data-structure operations.
Method and system for dynamic probabilistic risk assessment
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)
2013-01-01
The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.
[The Application of the Fault Tree Analysis Method in Medical Equipment Maintenance].
Liu, Hongbin
2015-11-01
In this paper, the traditional fault tree analysis method is presented, detailed instructions for its application characteristics in medical instrument maintenance is made. It is made significant changes when the traditional fault tree analysis method is introduced into the medical instrument maintenance: gave up the logic symbolic, logic analysis and calculation, gave up its complicated programs, and only keep its image and practical fault tree diagram, and the fault tree diagram there are also differences: the fault tree is no longer a logical tree but the thinking tree in troubleshooting, the definition of the fault tree's nodes is different, the composition of the fault tree's branches is also different.
NASA Technical Reports Server (NTRS)
Lee, Charles; Alena, Richard L.; Robinson, Peter
2004-01-01
We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.
Support vector machines-based fault diagnosis for turbo-pump rotor
NASA Astrophysics Data System (ADS)
Yuan, Sheng-Fa; Chu, Fu-Lei
2006-05-01
Most artificial intelligence methods used in fault diagnosis are based on empirical risk minimisation principle and have poor generalisation when fault samples are few. Support vector machines (SVM) is a new general machine-learning tool based on structural risk minimisation principle that exhibits good generalisation even when fault samples are few. Fault diagnosis based on SVM is discussed. Since basic SVM is originally designed for two-class classification, while most of fault diagnosis problems are multi-class cases, a new multi-class classification of SVM named 'one to others' algorithm is presented to solve the multi-class recognition problems. It is a binary tree classifier composed of several two-class classifiers organised by fault priority, which is simple, and has little repeated training amount, and the rate of training and recognition is expedited. The effectiveness of the method is verified by the application to the fault diagnosis for turbo pump rotor.
NASA Astrophysics Data System (ADS)
Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas
2016-02-01
In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.
Automatic translation of digraph to fault-tree models
NASA Technical Reports Server (NTRS)
Iverson, David L.
1992-01-01
The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Boerschlein, David P.
1993-01-01
Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.
Application Research of Fault Tree Analysis in Grid Communication System Corrective Maintenance
NASA Astrophysics Data System (ADS)
Wang, Jian; Yang, Zhenwei; Kang, Mei
2018-01-01
This paper attempts to apply the fault tree analysis method to the corrective maintenance field of grid communication system. Through the establishment of the fault tree model of typical system and the engineering experience, the fault tree analysis theory is used to analyze the fault tree model, which contains the field of structural function, probability importance and so on. The results show that the fault tree analysis can realize fast positioning and well repairing of the system. Meanwhile, it finds that the analysis method of fault tree has some guiding significance to the reliability researching and upgrading f the system.
Naive Bayes Bearing Fault Diagnosis Based on Enhanced Independence of Data
Zhang, Nannan; Wu, Lifeng; Yang, Jing; Guan, Yong
2018-01-01
The bearing is the key component of rotating machinery, and its performance directly determines the reliability and safety of the system. Data-based bearing fault diagnosis has become a research hotspot. Naive Bayes (NB), which is based on independent presumption, is widely used in fault diagnosis. However, the bearing data are not completely independent, which reduces the performance of NB algorithms. In order to solve this problem, we propose a NB bearing fault diagnosis method based on enhanced independence of data. The method deals with data vector from two aspects: the attribute feature and the sample dimension. After processing, the classification limitation of NB is reduced by the independence hypothesis. First, we extract the statistical characteristics of the original signal of the bearings effectively. Then, the Decision Tree algorithm is used to select the important features of the time domain signal, and the low correlation features is selected. Next, the Selective Support Vector Machine (SSVM) is used to prune the dimension data and remove redundant vectors. Finally, we use NB to diagnose the fault with the low correlation data. The experimental results show that the independent enhancement of data is effective for bearing fault diagnosis. PMID:29401730
Fault Tree in the Trenches, A Success Story
NASA Technical Reports Server (NTRS)
Long, R. Allen; Goodson, Amanda (Technical Monitor)
2000-01-01
Getting caught up in the explanation of Fault Tree Analysis (FTA) minutiae is easy. In fact, most FTA literature tends to address FTA concepts and methodology. Yet there seems to be few articles addressing actual design changes resulting from the successful application of fault tree analysis. This paper demonstrates how fault tree analysis was used to identify and solve a potentially catastrophic mechanical problem at a rocket motor manufacturer. While developing the fault tree given in this example, the analyst was told by several organizations that the piece of equipment in question had been evaluated by several committees and organizations, and that the analyst was wasting his time. The fault tree/cutset analysis resulted in a joint-redesign of the control system by the tool engineering group and the fault tree analyst, as well as bragging rights for the analyst. (That the fault tree found problems where other engineering reviews had failed was not lost on the other engineering groups.) Even more interesting was that this was the analyst's first fault tree which further demonstrates how effective fault tree analysis can be in guiding (i.e., forcing) the analyst to take a methodical approach in evaluating complex systems.
CUTSETS - MINIMAL CUT SET CALCULATION FOR DIGRAPH AND FAULT TREE RELIABILITY MODELS
NASA Technical Reports Server (NTRS)
Iverson, D. L.
1994-01-01
Fault tree and digraph models are frequently used for system failure analysis. Both type of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Fault trees must have a tree structure and do not allow cycles or loops in the graph. Digraphs allow any pattern of interconnection between loops in the graphs. A common operation performed on digraph and fault tree models is the calculation of minimal cut sets. A cut set is a set of basic failures that could cause a given target failure event to occur. A minimal cut set for a target event node in a fault tree or digraph is any cut set for the node with the property that if any one of the failures in the set is removed, the occurrence of the other failures in the set will not cause the target failure event. CUTSETS will identify all the minimal cut sets for a given node. The CUTSETS package contains programs that solve for minimal cut sets of fault trees and digraphs using object-oriented programming techniques. These cut set codes can be used to solve graph models for reliability analysis and identify potential single point failures in a modeled system. The fault tree minimal cut set code reads in a fault tree model input file with each node listed in a text format. In the input file the user specifies a top node of the fault tree and a maximum cut set size to be calculated. CUTSETS will find minimal sets of basic events which would cause the failure at the output of a given fault tree gate. The program can find all the minimal cut sets of a node, or minimal cut sets up to a specified size. The algorithm performs a recursive top down parse of the fault tree, starting at the specified top node, and combines the cut sets of each child node into sets of basic event failures that would cause the failure event at the output of that gate. Minimal cut set solutions can be found for all nodes in the fault tree or just for the top node. The digraph cut set code uses the same techniques as the fault tree cut set code, except it includes all upstream digraph nodes in the cut sets for a given node and checks for cycles in the digraph during the solution process. CUTSETS solves for specified nodes and will not automatically solve for all upstream digraph nodes. The cut sets will be output as a text file. CUTSETS includes a utility program that will convert the popular COD format digraph model description files into text input files suitable for use with the CUTSETS programs. FEAT (MSC-21873) and FIRM (MSC-21860) available from COSMIC are examples of programs that produce COD format digraph model description files that may be converted for use with the CUTSETS programs. CUTSETS is written in C-language to be machine independent. It has been successfully implemented on a Sun running SunOS, a DECstation running ULTRIX, a Macintosh running System 7, and a DEC VAX running VMS. The RAM requirement varies with the size of the models. CUTSETS is available in UNIX tar format on a .25 inch streaming magnetic tape cartridge (standard distribution) or on a 3.5 inch diskette. It is also available on a 3.5 inch Macintosh format diskette or on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. Sample input and sample output are provided on the distribution medium. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution medium. Sun and SunOS are trademarks of Sun Microsystems, Inc. DEC, DeCstation, ULTRIX, VAX, and VMS are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories. Macintosh is a registered trademark of Apple Computer, Inc.
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Martensen, Anna L.
1992-01-01
FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.
Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.
Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726
Tutorial: Advanced fault tree applications using HARP
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.
1993-01-01
Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.
Experimental evaluation of certification trails using abstract data type validation
NASA Technical Reports Server (NTRS)
Wilson, Dwight S.; Sullivan, Gregory F.; Masson, Gerald M.
1993-01-01
Certification trails are a recently introduced and promising approach to fault-detection and fault-tolerance. Recent experimental work reveals many cases in which a certification-trail approach allows for significantly faster program execution time than a basic time-redundancy approach. Algorithms for answer-validation of abstract data types allow a certification trail approach to be used for a wide variety of problems. An attempt to assess the performance of algorithms utilizing certification trails on abstract data types is reported. Specifically, this method was applied to the following problems: heapsort, Hullman tree, shortest path, and skyline. Previous results used certification trails specific to a particular problem and implementation. The approach allows certification trails to be localized to 'data structure modules,' making the use of this technique transparent to the user of such modules.
Faults Discovery By Using Mined Data
NASA Technical Reports Server (NTRS)
Lee, Charles
2005-01-01
Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.
Fault trees and sequence dependencies
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta; Boyd, Mark A.; Bavuso, Salvatore J.
1990-01-01
One of the frequently cited shortcomings of fault-tree models, their inability to model so-called sequence dependencies, is discussed. Several sources of such sequence dependencies are discussed, and new fault-tree gates to capture this behavior are defined. These complex behaviors can be included in present fault-tree models because they utilize a Markov solution. The utility of the new gates is demonstrated by presenting several models of the fault-tolerant parallel processor, which include both hot and cold spares.
McElroy, Lisa M; Khorzad, Rebeca; Rowe, Theresa A; Abecassis, Zachary A; Apley, Daniel W; Barnard, Cynthia; Holl, Jane L
The purpose of this study was to use fault tree analysis to evaluate the adequacy of quality reporting programs in identifying root causes of postoperative bloodstream infection (BSI). A systematic review of the literature was used to construct a fault tree to evaluate 3 postoperative BSI reporting programs: National Surgical Quality Improvement Program (NSQIP), Centers for Medicare and Medicaid Services (CMS), and The Joint Commission (JC). The literature review revealed 699 eligible publications, 90 of which were used to create the fault tree containing 105 faults. A total of 14 identified faults are currently mandated for reporting to NSQIP, 5 to CMS, and 3 to JC; 2 or more programs require 4 identified faults. The fault tree identifies numerous contributing faults to postoperative BSI and reveals substantial variation in the requirements and ability of national quality data reporting programs to capture these potential faults. Efforts to prevent postoperative BSI require more comprehensive data collection to identify the root causes and develop high-reliability improvement strategies.
A dynamic fault tree model of a propulsion system
NASA Technical Reports Server (NTRS)
Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila
2006-01-01
We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.
NASA Astrophysics Data System (ADS)
Chen, Chunfeng; Liu, Hua; Fan, Ge
2005-02-01
In this paper we consider the problem of designing a network of optical cross-connects(OXCs) to provide end-to-end lightpath services to label switched routers (LSRs). Like some previous work, we select the number of OXCs as our objective. Compared with the previous studies, we take into account the fault-tolerant characteristic of logical topology. First of all, using a Prufer number randomly generated, we generate a tree. By adding some edges to the tree, we can obtain a physical topology which consists of a certain number of OXCs and fiber links connecting OXCs. It is notable that we for the first time limit the number of layers of the tree produced according to the method mentioned above. Then we design the logical topologies based on the physical topologies mentioned above. In principle, we will select the shortest path in addition to some consideration on the load balancing of links and the limitation owing to the SRLG. Notably, we implement the routing algorithm for the nodes in increasing order of the degree of the nodes. With regarding to the problem of the wavelength assignment, we adopt the heuristic algorithm of the graph coloring commonly used. It is clear our problem is computationally intractable especially when the scale of the network is large. We adopt the taboo search algorithm to find the near optimal solution to our objective. We present numerical results for up to 1000 LSRs and for a wide range of system parameters such as the number of wavelengths supported by each fiber link and traffic. The results indicate that it is possible to build large-scale optical networks with rich connectivity in a cost-effective manner, using relatively few but properly dimensioned OXCs.
Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing
2017-01-14
In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.
Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing
2017-01-01
In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT. PMID:28098822
Reliability computation using fault tree analysis
NASA Technical Reports Server (NTRS)
Chelson, P. O.
1971-01-01
A method is presented for calculating event probabilities from an arbitrary fault tree. The method includes an analytical derivation of the system equation and is not a simulation program. The method can handle systems that incorporate standby redundancy and it uses conditional probabilities for computing fault trees where the same basic failure appears in more than one fault path.
Object-oriented fault tree evaluation program for quantitative analyses
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1988-01-01
Object-oriented programming can be combined with fault free techniques to give a significantly improved environment for evaluating the safety and reliability of large complex systems for space missions. Deep knowledge about system components and interactions, available from reliability studies and other sources, can be described using objects that make up a knowledge base. This knowledge base can be interrogated throughout the design process, during system testing, and during operation, and can be easily modified to reflect design changes in order to maintain a consistent information source. An object-oriented environment for reliability assessment has been developed on a Texas Instrument (TI) Explorer LISP workstation. The program, which directly evaluates system fault trees, utilizes the object-oriented extension to LISP called Flavors that is available on the Explorer. The object representation of a fault tree facilitates the storage and retrieval of information associated with each event in the tree, including tree structural information and intermediate results obtained during the tree reduction process. Reliability data associated with each basic event are stored in the fault tree objects. The object-oriented environment on the Explorer also includes a graphical tree editor which was modified to display and edit the fault trees.
NASA Technical Reports Server (NTRS)
Martensen, Anna L.; Butler, Ricky W.
1987-01-01
The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.
The Fault Tree Compiler (FTC): Program and mathematics
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Martensen, Anna L.
1989-01-01
The Fault Tree Compiler Program is a new reliability tool used to predict the top-event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, AND m OF n gates. The high-level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precisely (within the limits of double precision floating point arithmetic) within a user specified number of digits accuracy. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Equipment Corporation (DEC) VAX computer with the VMS operation system.
Systems Theoretic Process Analysis Applied to an Offshore Supply Vessel Dynamic Positioning System
2016-06-01
additional safety issues that were either not identified or inadequately mitigated through the use of Fault Tree Analysis and Failure Modes and...Techniques ...................................................................................................... 15 1.3.1. Fault Tree Analysis...49 3.2. Fault Tree Analysis Comparison
An overview of the phase-modular fault tree approach to phased mission system analysis
NASA Technical Reports Server (NTRS)
Meshkat, L.; Xing, L.; Donohue, S. K.; Ou, Y.
2003-01-01
We look at how fault tree analysis (FTA), a primary means of performing reliability analysis of PMS, can meet this challenge in this paper by presenting an overview of the modular approach to solving fault trees that represent PMS.
Try Fault Tree Analysis, a Step-by-Step Way to Improve Organization Development.
ERIC Educational Resources Information Center
Spitzer, Dean
1980-01-01
Fault Tree Analysis, a systems safety engineering technology used to analyze organizational systems, is described. Explains the use of logic gates to represent the relationship between failure events, qualitative analysis, quantitative analysis, and effective use of Fault Tree Analysis. (CT)
Fault Tree Analysis: A Research Tool for Educational Planning. Technical Report No. 1.
ERIC Educational Resources Information Center
Alameda County School Dept., Hayward, CA. PACE Center.
This ESEA Title III report describes fault tree analysis and assesses its applicability to education. Fault tree analysis is an operations research tool which is designed to increase the probability of success in any system by analyzing the most likely modes of failure that could occur. A graphic portrayal, which has the form of a tree, is…
Review: Evaluation of Foot-and-Mouth Disease Control Using Fault Tree Analysis.
Isoda, N; Kadohira, M; Sekiguchi, S; Schuppers, M; Stärk, K D C
2015-06-01
An outbreak of foot-and-mouth disease (FMD) causes huge economic losses and animal welfare problems. Although much can be learnt from past FMD outbreaks, several countries are not satisfied with their degree of contingency planning and aiming at more assurance that their control measures will be effective. The purpose of the present article was to develop a generic fault tree framework for the control of an FMD outbreak as a basis for systematic improvement and refinement of control activities and general preparedness. Fault trees are typically used in engineering to document pathways that can lead to an undesired event, that is, ineffective FMD control. The fault tree method allows risk managers to identify immature parts of the control system and to analyse the events or steps that will most probably delay rapid and effective disease control during a real outbreak. The present developed fault tree is generic and can be tailored to fit the specific needs of countries. For instance, the specific fault tree for the 2001 FMD outbreak in the UK was refined based on control weaknesses discussed in peer-reviewed articles. Furthermore, the specific fault tree based on the 2001 outbreak was applied to the subsequent FMD outbreak in 2007 to assess the refinement of control measures following the earlier, major outbreak. The FMD fault tree can assist risk managers to develop more refined and adequate control activities against FMD outbreaks and to find optimum strategies for rapid control. Further application using the current tree will be one of the basic measures for FMD control worldwide. © 2013 Blackwell Verlag GmbH.
The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability.
Kumar, Mohit; Yadav, Shiv Prasad
2012-07-01
In this paper, a new approach of intuitionistic fuzzy fault-tree analysis is proposed to evaluate system reliability and to find the most critical system component that affects the system reliability. Here weakest t-norm based intuitionistic fuzzy fault tree analysis is presented to calculate fault interval of system components from integrating expert's knowledge and experience in terms of providing the possibility of failure of bottom events. It applies fault-tree analysis, α-cut of intuitionistic fuzzy set and T(ω) (the weakest t-norm) based arithmetic operations on triangular intuitionistic fuzzy sets to obtain fault interval and reliability interval of the system. This paper also modifies Tanaka et al.'s fuzzy fault-tree definition. In numerical verification, a malfunction of weapon system "automatic gun" is presented as a numerical example. The result of the proposed method is compared with the listing approaches of reliability analysis methods. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Software For Fault-Tree Diagnosis Of A System
NASA Technical Reports Server (NTRS)
Iverson, Dave; Patterson-Hine, Ann; Liao, Jack
1993-01-01
Fault Tree Diagnosis System (FTDS) computer program is automated-diagnostic-system program identifying likely causes of specified failure on basis of information represented in system-reliability mathematical models known as fault trees. Is modified implementation of failure-cause-identification phase of Narayanan's and Viswanadham's methodology for acquisition of knowledge and reasoning in analyzing failures of systems. Knowledge base of if/then rules replaced with object-oriented fault-tree representation. Enhancement yields more-efficient identification of causes of failures and enables dynamic updating of knowledge base. Written in C language, C++, and Common LISP.
Fault tree models for fault tolerant hypercube multiprocessors
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Tuazon, Jezus O.
1991-01-01
Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.
Monotone Boolean approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulme, B.L.
1982-12-01
This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application formore » the analysis of noncoherent fault trees and event tree sequences.« less
Comparative analysis of techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Hitt, E. F.; Bridgman, M. S.; Robinson, A. C.
1981-01-01
Performability analysis is a technique developed for evaluating the effectiveness of fault-tolerant computing systems in multiphase missions. Performability was evaluated for its accuracy, practical usefulness, and relative cost. The evaluation was performed by applying performability and the fault tree method to a set of sample problems ranging from simple to moderately complex. The problems involved as many as five outcomes, two to five mission phases, permanent faults, and some functional dependencies. Transient faults and software errors were not considered. A different analyst was responsible for each technique. Significantly more time and effort were required to learn performability analysis than the fault tree method. Performability is inherently as accurate as fault tree analysis. For the sample problems, fault trees were more practical and less time consuming to apply, while performability required less ingenuity and was more checkable. Performability offers some advantages for evaluating very complex problems.
Product Support Manager Guidebook
2011-04-01
package is being developed using supportability analysis concepts such as Failure Mode, Effects and Criticality Analysis (FMECA), Fault Tree Analysis ( FTA ...Analysis (LORA) Condition Based Maintenance + (CBM+) Fault Tree Analysis ( FTA ) Failure Mode, Effects, and Criticality Analysis (FMECA) Maintenance Task...Reporting and Corrective Action System (FRACAS), Fault Tree Analysis ( FTA ), Level of Repair Analysis (LORA), Maintenance Task Analysis (MTA
MIRAP, microcomputer reliability analysis program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jehee, J.N.T.
1989-01-01
A program for a microcomputer is outlined that can determine minimal cut sets from a specified fault tree logic. The speed and memory limitations of the microcomputers on which the program is implemented (Atari ST and IBM) are addressed by reducing the fault tree's size and by storing the cut set data on disk. Extensive well proven fault tree restructuring techniques, such as the identification of sibling events and of independent gate events, reduces the fault tree's size but does not alter its logic. New methods are used for the Boolean reduction of the fault tree logic. Special criteria formore » combining events in the 'AND' and 'OR' logic avoid the creation of many subsuming cut sets which all would cancel out due to existing cut sets. Figures and tables illustrates these methods. 4 refs., 5 tabs.« less
The FTA Method And A Possibility Of Its Application In The Area Of Road Freight Transport
NASA Astrophysics Data System (ADS)
Poliaková, Adela
2015-06-01
The Fault Tree process utilizes logic diagrams to portray and analyse potentially hazardous events. Three basic symbols (logic gates) are adequate for diagramming any fault tree. However, additional recently developed symbols can be used to reduce the time and effort required for analysis. A fault tree is a graphical representation of the relationship between certain specific events and the ultimate undesired event (2). This paper deals to method of Fault Tree Analysis basic description and provides a practical view on possibility of application by quality improvement in road freight transport company.
Fault Tree Analysis: Its Implications for Use in Education.
ERIC Educational Resources Information Center
Barker, Bruce O.
This study introduces the concept of Fault Tree Analysis as a systems tool and examines the implications of Fault Tree Analysis (FTA) as a technique for isolating failure modes in educational systems. A definition of FTA and discussion of its history, as it relates to education, are provided. The step by step process for implementation and use of…
Preventing medical errors by designing benign failures.
Grout, John R
2003-07-01
One way to successfully reduce medical errors is to design health care systems that are more resistant to the tendencies of human beings to err. One interdisciplinary approach entails creating design changes, mitigating human errors, and making human error irrelevant to outcomes. This approach is intended to facilitate the creation of benign failures, which have been called mistake-proofing devices and forcing functions elsewhere. USING FAULT TREES TO DESIGN FORCING FUNCTIONS: A fault tree is a graphical tool used to understand the relationships that either directly cause or contribute to the cause of a particular failure. A careful analysis of a fault tree enables the analyst to anticipate how the process will behave after the change. EXAMPLE OF AN APPLICATION: A scenario in which a patient is scalded while bathing can serve as an example of how multiple fault trees can be used to design forcing functions. The first fault tree shows the undesirable event--patient scalded while bathing. The second fault tree has a benign event--no water. Adding a scald valve changes the outcome from the undesirable event ("patient scalded while bathing") to the benign event ("no water") Analysis of fault trees does not ensure or guarantee that changes necessary to eliminate error actually occur. Most mistake-proofing is used to prevent simple errors and to create well-defended processes, but complex errors can also result. The utilization of mistake-proofing or forcing functions can be thought of as changing the logic of a process. Errors that formerly caused undesirable failures can be converted into the causes of benign failures. The use of fault trees can provide a variety of insights into the design of forcing functions that will improve patient safety.
Fault Tree Analysis Application for Safety and Reliability
NASA Technical Reports Server (NTRS)
Wallace, Dolores R.
2003-01-01
Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.
NASA Astrophysics Data System (ADS)
Polverino, Pierpaolo; Pianese, Cesare; Sorrentino, Marco; Marra, Dario
2015-04-01
The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative effects of the simulated faults on the affected variables.
Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM
NASA Astrophysics Data System (ADS)
Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin
2013-07-01
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
ERIC Educational Resources Information Center
Barker, Bruce O.; Petersen, Paul D.
This paper explores the fault-tree analysis approach to isolating failure modes within a system. Fault tree investigates potentially undesirable events and then looks for failures in sequence that would lead to their occurring. Relationships among these events are symbolized by AND or OR logic gates, AND used when single events must coexist to…
Evidential Networks for Fault Tree Analysis with Imprecise Knowledge
NASA Astrophysics Data System (ADS)
Yang, Jianping; Huang, Hong-Zhong; Liu, Yu; Li, Yan-Feng
2012-06-01
Fault tree analysis (FTA), as one of the powerful tools in reliability engineering, has been widely used to enhance system quality attributes. In most fault tree analyses, precise values are adopted to represent the probabilities of occurrence of those events. Due to the lack of sufficient data or imprecision of existing data at the early stage of product design, it is often difficult to accurately estimate the failure rates of individual events or the probabilities of occurrence of the events. Therefore, such imprecision and uncertainty need to be taken into account in reliability analysis. In this paper, the evidential networks (EN) are employed to quantify and propagate the aforementioned uncertainty and imprecision in fault tree analysis. The detailed conversion processes of some logic gates to EN are described in fault tree (FT). The figures of the logic gates and the converted equivalent EN, together with the associated truth tables and the conditional belief mass tables, are also presented in this work. The new epistemic importance is proposed to describe the effect of ignorance degree of event. The fault tree of an aircraft engine damaged by oil filter plugs is presented to demonstrate the proposed method.
Probabilistic fault tree analysis of a radiation treatment system.
Ekaette, Edidiong; Lee, Robert C; Cooke, David L; Iftody, Sandra; Craighead, Peter
2007-12-01
Inappropriate administration of radiation for cancer treatment can result in severe consequences such as premature death or appreciably impaired quality of life. There has been little study of vulnerable treatment process components and their contribution to the risk of radiation treatment (RT). In this article, we describe the application of probabilistic fault tree methods to assess the probability of radiation misadministration to patients at a large cancer treatment center. We conducted a systematic analysis of the RT process that identified four process domains: Assessment, Preparation, Treatment, and Follow-up. For the Preparation domain, we analyzed possible incident scenarios via fault trees. For each task, we also identified existing quality control measures. To populate the fault trees we used subjective probabilities from experts and compared results with incident report data. Both the fault tree and the incident report analysis revealed simulation tasks to be most prone to incidents, and the treatment prescription task to be least prone to incidents. The probability of a Preparation domain incident was estimated to be in the range of 0.1-0.7% based on incident reports, which is comparable to the mean value of 0.4% from the fault tree analysis using probabilities from the expert elicitation exercise. In conclusion, an analysis of part of the RT system using a fault tree populated with subjective probabilities from experts was useful in identifying vulnerable components of the system, and provided quantitative data for risk management.
NASA Astrophysics Data System (ADS)
Li, Yongbo; Xu, Minqiang; Wang, Rixin; Huang, Wenhu
2016-01-01
This paper presents a new rolling bearing fault diagnosis method based on local mean decomposition (LMD), improved multiscale fuzzy entropy (IMFE), Laplacian score (LS) and improved support vector machine based binary tree (ISVM-BT). When the fault occurs in rolling bearings, the measured vibration signal is a multi-component amplitude-modulated and frequency-modulated (AM-FM) signal. LMD, a new self-adaptive time-frequency analysis method can decompose any complicated signal into a series of product functions (PFs), each of which is exactly a mono-component AM-FM signal. Hence, LMD is introduced to preprocess the vibration signal. Furthermore, IMFE that is designed to avoid the inaccurate estimation of fuzzy entropy can be utilized to quantify the complexity and self-similarity of time series for a range of scales based on fuzzy entropy. Besides, the LS approach is introduced to refine the fault features by sorting the scale factors. Subsequently, the obtained features are fed into the multi-fault classifier ISVM-BT to automatically fulfill the fault pattern identifications. The experimental results validate the effectiveness of the methodology and demonstrate that proposed algorithm can be applied to recognize the different categories and severities of rolling bearings.
Reconfigurable tree architectures using subtree oriented fault tolerance
NASA Technical Reports Server (NTRS)
Lowrie, Matthew B.
1987-01-01
An approach to the design of reconfigurable tree architecture is presented in which spare processors are allocated at the leaves. The approach is unique in that spares are associated with subtrees and sharing of spares between these subtrees can occur. The Subtree Oriented Fault Tolerance (SOFT) approach is more reliable than previous approaches capable of tolerating link and switch failures for both single chip and multichip tree implementations while reducing redundancy in terms of both spare processors and links. VLSI layout is 0(n) for binary trees and is directly extensible to N-ary trees and fault tolerance through performance degradation.
Secure Embedded System Design Methodologies for Military Cryptographic Systems
2016-03-31
Fault- Tree Analysis (FTA); Built-In Self-Test (BIST) Introduction Secure access-control systems restrict operations to authorized users via methods...failures in the individual software/processor elements, the question of exactly how unlikely is difficult to answer. Fault- Tree Analysis (FTA) has a...Collins of Sandia National Laboratories for years of sharing his extensive knowledge of Fail-Safe Design Assurance and Fault- Tree Analysis
Rymer, M.J.
2000-01-01
The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earthquake was on a newly recognized fault, the East Wide Canyon fault, near the southwestern edge of the Little San Bernardino Mountains. Slip associated with the Landers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely developed as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (<3 m thick) veneer of alluvium in contrast to earlier documented triggered slip events in this region, all in the deep basins of the Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right-lateral; only locally was there a minor (~1 mm) vertical component of slip. Measured dextral displacement values ranged from 1 to 20 mm, with the largest amounts found in the Mecca Hills where large slip values have been measured following past triggered-slip events.
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.; Bolster, Diogo; Sanchez-Vila, Xavier; Nowak, Wolfgang
2011-05-01
Assessing health risk in hydrological systems is an interdisciplinary field. It relies on the expertise in the fields of hydrology and public health and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties and variabilities present in hydrological, physiological, and human behavioral parameters. Despite significant theoretical advancements in stochastic hydrology, there is still a dire need to further propagate these concepts to practical problems and to society in general. Following a recent line of work, we use fault trees to address the task of probabilistic risk analysis and to support related decision and management problems. Fault trees allow us to decompose the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural divide and conquer approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance, and stage of analysis. Three differences are highlighted in this paper when compared to previous works: (1) The fault tree proposed here accounts for the uncertainty in both hydrological and health components, (2) system failure within the fault tree is defined in terms of risk being above a threshold value, whereas previous studies that used fault trees used auxiliary events such as exceedance of critical concentration levels, and (3) we introduce a new form of stochastic fault tree that allows us to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.
NETRA: A parallel architecture for integrated vision systems. 1: Architecture and organization
NASA Technical Reports Server (NTRS)
Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing for a high level application (such as object recognition). A model of computation is presented for parallel processing for an IVS. Using the model, desired features and capabilities of a parallel architecture suitable for IVSs are derived. Then a multiprocessor architecture (called NETRA) is presented. This architecture is highly flexible without the use of complex interconnection schemes. The topology of NETRA is recursively defined and hence is easily scalable from small to large systems. Homogeneity of NETRA permits fault tolerance and graceful degradation under faults. It is a recursively defined tree-type hierarchical architecture where each of the leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then general schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their communication requirements for parallel processing. An extensive analysis of inter-cluster communication strategies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.
Planning effectiveness may grow on fault trees.
Chow, C W; Haddad, K; Mannino, B
1991-10-01
The first step of a strategic planning process--identifying and analyzing threats and opportunities--requires subjective judgments. By using an analytical tool known as a fault tree, healthcare administrators can reduce the unreliability of subjective decision making by creating a logical structure for problem solving and decision making. A case study of 11 healthcare administrators showed that an analysis technique called prospective hindsight can add to a fault tree's ability to improve a strategic planning process.
NASA Astrophysics Data System (ADS)
Batzias, Dimitris F.
2012-12-01
Fault Tree Analysis (FTA) can be used for technology transfer when the relevant problem (called 'top even' in FTA) is solved in a technology centre and the results are diffused to interested parties (usually Small Medium Enterprises - SMEs) that have not the proper equipment and the required know-how to solve the problem by their own. Nevertheless, there is a significant drawback in this procedure: the information usually provided by the SMEs to the technology centre, about production conditions and corresponding quality characteristics of the product, and (sometimes) the relevant expertise in the Knowledge Base of this centre may be inadequate to form a complete fault tree. Since such cases are quite frequent in practice, we have developed a methodology for transforming incomplete fault tree to Ishikawa diagram, which is more flexible and less strict in establishing causal chains, because it uses a surface phenomenological level with a limited number of categories of faults. On the other hand, such an Ishikawa diagram can be extended to simulate a fault tree as relevant knowledge increases. An implementation of this transformation, referring to anodization of aluminium, is presented.
A systematic risk management approach employed on the CloudSat project
NASA Technical Reports Server (NTRS)
Basilio, R. R.; Plourde, K. S.; Lam, T.
2000-01-01
The CloudSat Project has developed a simplified approach for fault tree analysis and probabilistic risk assessment. A system-level fault tree has been constructed to identify credible fault scenarios and failure modes leading up to a potential failure to meet the nominal mission success criteria.
Reliability and availability evaluation of Wireless Sensor Networks for industrial applications.
Silva, Ivanovitch; Guedes, Luiz Affonso; Portugal, Paulo; Vasques, Francisco
2012-01-01
Wireless Sensor Networks (WSN) currently represent the best candidate to be adopted as the communication solution for the last mile connection in process control and monitoring applications in industrial environments. Most of these applications have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Among the different type of faults that can lead to a system failure, permanent faults on network devices have a major impact. They can hamper communications over long periods of time and consequently disturb, or even disable, control algorithms. The lack of a structured approach enabling the evaluation of permanent faults, prevents system designers to optimize decisions that minimize these occurrences. In this work we propose a methodology based on an automatic generation of a fault tree to evaluate the reliability and availability of Wireless Sensor Networks, when permanent faults occur on network devices. The proposal supports any topology, different levels of redundancy, network reconfigurations, criticality of devices and arbitrary failure conditions. The proposed methodology is particularly suitable for the design and validation of Wireless Sensor Networks when trying to optimize its reliability and availability requirements.
Reliability and Availability Evaluation of Wireless Sensor Networks for Industrial Applications
Silva, Ivanovitch; Guedes, Luiz Affonso; Portugal, Paulo; Vasques, Francisco
2012-01-01
Wireless Sensor Networks (WSN) currently represent the best candidate to be adopted as the communication solution for the last mile connection in process control and monitoring applications in industrial environments. Most of these applications have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Among the different type of faults that can lead to a system failure, permanent faults on network devices have a major impact. They can hamper communications over long periods of time and consequently disturb, or even disable, control algorithms. The lack of a structured approach enabling the evaluation of permanent faults, prevents system designers to optimize decisions that minimize these occurrences. In this work we propose a methodology based on an automatic generation of a fault tree to evaluate the reliability and availability of Wireless Sensor Networks, when permanent faults occur on network devices. The proposal supports any topology, different levels of redundancy, network reconfigurations, criticality of devices and arbitrary failure conditions. The proposed methodology is particularly suitable for the design and validation of Wireless Sensor Networks when trying to optimize its reliability and availability requirements. PMID:22368497
Fault Tree Analysis: A Bibliography
NASA Technical Reports Server (NTRS)
2000-01-01
Fault tree analysis is a top-down approach to the identification of process hazards. It is as one of the best methods for systematically identifying an graphically displaying the many ways some things can go wrong. This bibliography references 266 documents in the NASA STI Database that contain the major concepts. fault tree analysis, risk an probability theory, in the basic index or major subject terms. An abstract is included with most citations, followed by the applicable subject terms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrack, A.G.
The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses tomore » calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).« less
Graphical fault tree analysis for fatal falls in the construction industry.
Chi, Chia-Fen; Lin, Syuan-Zih; Dewi, Ratna Sari
2014-11-01
The current study applied a fault tree analysis to represent the causal relationships among events and causes that contributed to fatal falls in the construction industry. Four hundred and eleven work-related fatalities in the Taiwanese construction industry were analyzed in terms of age, gender, experience, falling site, falling height, company size, and the causes for each fatality. Given that most fatal accidents involve multiple events, the current study coded up to a maximum of three causes for each fall fatality. After the Boolean algebra and minimal cut set analyses, accident causes associated with each falling site can be presented as a fault tree to provide an overview of the basic causes, which could trigger fall fatalities in the construction industry. Graphical icons were designed for each falling site along with the associated accident causes to illustrate the fault tree in a graphical manner. A graphical fault tree can improve inter-disciplinary discussion of risk management and the communication of accident causation to first line supervisors. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Log-Scaling Fault Tolerant Agreement Algorithm for a Fault Tolerant MPI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hursey, Joshua J; Naughton, III, Thomas J; Vallee, Geoffroy R
The lack of fault tolerance is becoming a limiting factor for application scalability in HPC systems. The MPI does not provide standardized fault tolerance interfaces and semantics. The MPI Forum's Fault Tolerance Working Group is proposing a collective fault tolerant agreement algorithm for the next MPI standard. Such algorithms play a central role in many fault tolerant applications. This paper combines a log-scaling two-phase commit agreement algorithm with a reduction operation to provide the necessary functionality for the new collective without any additional messages. Error handling mechanisms are described that preserve the fault tolerance properties while maintaining overall scalability.
Fault Tree Analysis for an Inspection Robot in a Nuclear Power Plant
NASA Astrophysics Data System (ADS)
Ferguson, Thomas A.; Lu, Lixuan
2017-09-01
The life extension of current nuclear reactors has led to an increasing demand on inspection and maintenance of critical reactor components that are too expensive to replace. To reduce the exposure dosage to workers, robotics have become an attractive alternative as a preventative safety tool in nuclear power plants. It is crucial to understand the reliability of these robots in order to increase the veracity and confidence of their results. This study presents the Fault Tree (FT) analysis to a coolant outlet piper snake-arm inspection robot in a nuclear power plant. Fault trees were constructed for a qualitative analysis to determine the reliability of the robot. Insight on the applicability of fault tree methods for inspection robotics in the nuclear industry is gained through this investigation.
Interim reliability evaluation program, Browns Ferry fault trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, M.E.
1981-01-01
An abbreviated fault tree method is used to evaluate and model Browns Ferry systems in the Interim Reliability Evaluation programs, simplifying the recording and displaying of events, yet maintaining the system of identifying faults. The level of investigation is not changed. The analytical thought process inherent in the conventional method is not compromised. But the abbreviated method takes less time, and the fault modes are much more visible.
Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Dixon, Barnali
2016-01-01
Groundwater is considered one of the most valuable fresh water resources. The main objective of this study was to produce groundwater spring potential maps in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran, using three machine learning models: boosted regression tree (BRT), classification and regression tree (CART), and random forest (RF). Thirteen hydrological-geological-physiographical (HGP) factors that influence locations of springs were considered in this research. These factors include slope degree, slope aspect, altitude, topographic wetness index (TWI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Subsequently, groundwater spring potential was modeled and mapped using CART, RF, and BRT algorithms. The predicted results from the three models were validated using the receiver operating characteristics curve (ROC). From 864 springs identified, 605 (≈70 %) locations were used for the spring potential mapping, while the remaining 259 (≈30 %) springs were used for the model validation. The area under the curve (AUC) for the BRT model was calculated as 0.8103 and for CART and RF the AUC were 0.7870 and 0.7119, respectively. Therefore, it was concluded that the BRT model produced the best prediction results while predicting locations of springs followed by CART and RF models, respectively. Geospatially integrated BRT, CART, and RF methods proved to be useful in generating the spring potential map (SPM) with reasonable accuracy.
NASA Technical Reports Server (NTRS)
English, Thomas
2005-01-01
A standard tool of reliability analysis used at NASA-JSC is the event tree. An event tree is simply a probability tree, with the probabilities determining the next step through the tree specified at each node. The nodal probabilities are determined by a reliability study of the physical system at work for a particular node. The reliability study performed at a node is typically referred to as a fault tree analysis, with the potential of a fault tree existing.for each node on the event tree. When examining an event tree it is obvious why the event tree/fault tree approach has been adopted. Typical event trees are quite complex in nature, and the event tree/fault tree approach provides a systematic and organized approach to reliability analysis. The purpose of this study was two fold. Firstly, we wanted to explore the possibility that a semi-Markov process can create dependencies between sojourn times (the times it takes to transition from one state to the next) that can decrease the uncertainty when estimating time to failures. Using a generalized semi-Markov model, we studied a four element reliability model and were able to demonstrate such sojourn time dependencies. Secondly, we wanted to study the use of semi-Markov processes to introduce a time variable into the event tree diagrams that are commonly developed in PRA (Probabilistic Risk Assessment) analyses. Event tree end states which change with time are more representative of failure scenarios than are the usual static probability-derived end states.
Structural system reliability calculation using a probabilistic fault tree analysis method
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.
1992-01-01
The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.
Fault Location Based on Synchronized Measurements: A Comprehensive Survey
Al-Mohammed, A. H.; Abido, M. A.
2014-01-01
This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs), when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research. PMID:24701191
Using Fault Trees to Advance Understanding of Diagnostic Errors.
Rogith, Deevakar; Iyengar, M Sriram; Singh, Hardeep
2017-11-01
Diagnostic errors annually affect at least 5% of adults in the outpatient setting in the United States. Formal analytic techniques are only infrequently used to understand them, in part because of the complexity of diagnostic processes and clinical work flows involved. In this article, diagnostic errors were modeled using fault tree analysis (FTA), a form of root cause analysis that has been successfully used in other high-complexity, high-risk contexts. How factors contributing to diagnostic errors can be systematically modeled by FTA to inform error understanding and error prevention is demonstrated. A team of three experts reviewed 10 published cases of diagnostic error and constructed fault trees. The fault trees were modeled according to currently available conceptual frameworks characterizing diagnostic error. The 10 trees were then synthesized into a single fault tree to identify common contributing factors and pathways leading to diagnostic error. FTA is a visual, structured, deductive approach that depicts the temporal sequence of events and their interactions in a formal logical hierarchy. The visual FTA enables easier understanding of causative processes and cognitive and system factors, as well as rapid identification of common pathways and interactions in a unified fashion. In addition, it enables calculation of empirical estimates for causative pathways. Thus, fault trees might provide a useful framework for both quantitative and qualitative analysis of diagnostic errors. Future directions include establishing validity and reliability by modeling a wider range of error cases, conducting quantitative evaluations, and undertaking deeper exploration of other FTA capabilities. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
Locating hardware faults in a data communications network of a parallel computer
Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.
2010-01-12
Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.
A formally verified algorithm for interactive consistency under a hybrid fault model
NASA Technical Reports Server (NTRS)
Lincoln, Patrick; Rushby, John
1993-01-01
Consistent distribution of single-source data to replicated computing channels is a fundamental problem in fault-tolerant system design. The 'Oral Messages' (OM) algorithm solves this problem of Interactive Consistency (Byzantine Agreement) assuming that all faults are worst-cass. Thambidurai and Park introduced a 'hybrid' fault model that distinguished three fault modes: asymmetric (Byzantine), symmetric, and benign; they also exhibited, along with an informal 'proof of correctness', a modified version of OM. Unfortunately, their algorithm is flawed. The discipline of mechanically checked formal verification eventually enabled us to develop a correct algorithm for Interactive Consistency under the hybrid fault model. This algorithm withstands $a$ asymmetric, $s$ symmetric, and $b$ benign faults simultaneously, using $m+1$ rounds, provided $n is greater than 2a + 2s + b + m$, and $m\\geg a$. We present this algorithm, discuss its subtle points, and describe its formal specification and verification in PVS. We argue that formal verification systems such as PVS are now sufficiently effective that their application to fault-tolerance algorithms should be considered routine.
Machine Learning of Fault Friction
NASA Astrophysics Data System (ADS)
Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.
2017-12-01
We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025: Earthquake source: from the laboratory to the fieldHulbert, C., Characterizing slow slip applying machine learning (2017), AGU Fall Meeting Session S019: Slow slip, Tectonic Tremor, and the Brittle-to-Ductile Transition Zone: What mechanisms control the diversity of slow and fast earthquakes?
Achieving Agreement in Three Rounds With Bounded-Byzantine Faults
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2015-01-01
A three-round algorithm is presented that guarantees agreement in a system of K (nodes) greater than or equal to 3F (faults) +1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport et al. and is scalable with respect to the number of nodes in the system and applies equally to the traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.
Model-Based Fault Tolerant Control
NASA Technical Reports Server (NTRS)
Kumar, Aditya; Viassolo, Daniel
2008-01-01
The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.
Reliability database development for use with an object-oriented fault tree evaluation program
NASA Technical Reports Server (NTRS)
Heger, A. Sharif; Harringtton, Robert J.; Koen, Billy V.; Patterson-Hine, F. Ann
1989-01-01
A description is given of the development of a fault-tree analysis method using object-oriented programming. In addition, the authors discuss the programs that have been developed or are under development to connect a fault-tree analysis routine to a reliability database. To assess the performance of the routines, a relational database simulating one of the nuclear power industry databases has been constructed. For a realistic assessment of the results of this project, the use of one of existing nuclear power reliability databases is planned.
Fault diagnosis of power transformer based on fault-tree analysis (FTA)
NASA Astrophysics Data System (ADS)
Wang, Yongliang; Li, Xiaoqiang; Ma, Jianwei; Li, SuoYu
2017-05-01
Power transformers is an important equipment in power plants and substations, power distribution transmission link is made an important hub of power systems. Its performance directly affects the quality and health of the power system reliability and stability. This paper summarizes the five parts according to the fault type power transformers, then from the time dimension divided into three stages of power transformer fault, use DGA routine analysis and infrared diagnostics criterion set power transformer running state, finally, according to the needs of power transformer fault diagnosis, by the general to the section by stepwise refinement of dendritic tree constructed power transformer fault
Achieving Agreement in Three Rounds with Bounded-Byzantine Faults
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar, R.
2017-01-01
A three-round algorithm is presented that guarantees agreement in a system of K greater than or equal to 3F+1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport, Shostak, and Pease and is scalable with respect to the number of nodes in the system and applies equally to traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.
Fire safety in transit systems fault tree analysis
DOT National Transportation Integrated Search
1981-09-01
Fire safety countermeasures applicable to transit vehicles are identified and evaluated. This document contains fault trees which illustrate the sequences of events which may lead to a transit-fire related casualty. A description of the basis for the...
System Analysis by Mapping a Fault-tree into a Bayesian-network
NASA Astrophysics Data System (ADS)
Sheng, B.; Deng, C.; Wang, Y. H.; Tang, L. H.
2018-05-01
In view of the limitations of fault tree analysis in reliability assessment, Bayesian Network (BN) has been studied as an alternative technology. After a brief introduction to the method for mapping a Fault Tree (FT) into an equivalent BN, equations used to calculate the structure importance degree, the probability importance degree and the critical importance degree are presented. Furthermore, the correctness of these equations is proved mathematically. Combining with an aircraft landing gear’s FT, an equivalent BN is developed and analysed. The results show that richer and more accurate information have been achieved through the BN method than the FT, which demonstrates that the BN is a superior technique in both reliability assessment and fault diagnosis.
Survivable algorithms and redundancy management in NASA's distributed computing systems
NASA Technical Reports Server (NTRS)
Malek, Miroslaw
1992-01-01
The design of survivable algorithms requires a solid foundation for executing them. While hardware techniques for fault-tolerant computing are relatively well understood, fault-tolerant operating systems, as well as fault-tolerant applications (survivable algorithms), are, by contrast, little understood, and much more work in this field is required. We outline some of our work that contributes to the foundation of ultrareliable operating systems and fault-tolerant algorithm design. We introduce our consensus-based framework for fault-tolerant system design. This is followed by a description of a hierarchical partitioning method for efficient consensus. A scheduler for redundancy management is introduced, and application-specific fault tolerance is described. We give an overview of our hybrid algorithm technique, which is an alternative to the formal approach given.
An Application of the Geo-Semantic Micro-services in Seamless Data-Model Integration
NASA Astrophysics Data System (ADS)
Jiang, P.; Elag, M.; Kumar, P.; Liu, R.; Hu, Y.; Marini, L.; Peckham, S. D.; Hsu, L.
2016-12-01
We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025: Earthquake source: from the laboratory to the fieldHulbert, C., Characterizing slow slip applying machine learning (2017), AGU Fall Meeting Session S019: Slow slip, Tectonic Tremor, and the Brittle-to-Ductile Transition Zone: What mechanisms control the diversity of slow and fast earthquakes?
Reset Tree-Based Optical Fault Detection
Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon
2013-01-01
In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267
Fault tree applications within the safety program of Idaho Nuclear Corporation
NASA Technical Reports Server (NTRS)
Vesely, W. E.
1971-01-01
Computerized fault tree analyses are used to obtain both qualitative and quantitative information about the safety and reliability of an electrical control system that shuts the reactor down when certain safety criteria are exceeded, in the design of a nuclear plant protection system, and in an investigation of a backup emergency system for reactor shutdown. The fault tree yields the modes by which the system failure or accident will occur, the most critical failure or accident causing areas, detailed failure probabilities, and the response of safety or reliability to design modifications and maintenance schemes.
Lognormal Approximations of Fault Tree Uncertainty Distributions.
El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P
2018-01-26
Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.
Fault Tree Analysis as a Planning and Management Tool: A Case Study
ERIC Educational Resources Information Center
Witkin, Belle Ruth
1977-01-01
Fault Tree Analysis is an operations research technique used to analyse the most probable modes of failure in a system, in order to redesign or monitor the system more closely in order to increase its likelihood of success. (Author)
NASA Astrophysics Data System (ADS)
Rodak, C. M.; McHugh, R.; Wei, X.
2016-12-01
The development and combination of horizontal drilling and hydraulic fracturing has unlocked unconventional hydrocarbon reserves around the globe. These advances have triggered a number of concerns regarding aquifer contamination and over-exploitation, leading to scientific studies investigating potential risks posed by directional hydraulic fracturing activities. These studies, balanced with potential economic benefits of energy production, are a crucial source of information for communities considering the development of unconventional reservoirs. However, probabilistic quantification of the overall risk posed by hydraulic fracturing at the system level are rare. Here we present the concept of fault tree analysis to determine the overall probability of groundwater contamination or over-exploitation, broadly referred to as the probability of failure. The potential utility of fault tree analysis for the quantification and communication of risks is approached with a general application. However, the fault tree design is robust and can handle various combinations of regional-specific data pertaining to relevant spatial scales, geological conditions, and industry practices where available. All available data are grouped into quantity and quality-based impacts and sub-divided based on the stage of the hydraulic fracturing process in which the data is relevant as described by the USEPA. Each stage is broken down into the unique basic events required for failure; for example, to quantify the risk of an on-site spill we must consider the likelihood, magnitude, composition, and subsurface transport of the spill. The structure of the fault tree described above can be used to render a highly complex system of variables into a straightforward equation for risk calculation based on Boolean logic. This project shows the utility of fault tree analysis for the visual communication of the potential risks of hydraulic fracturing activities on groundwater resources.
Fault Identification by Unsupervised Learning Algorithm
NASA Astrophysics Data System (ADS)
Nandan, S.; Mannu, U.
2012-12-01
Contemporary fault identification techniques predominantly rely on the surface expression of the fault. This biased observation is inadequate to yield detailed fault structures in areas with surface cover like cities deserts vegetation etc and the changes in fault patterns with depth. Furthermore it is difficult to estimate faults structure which do not generate any surface rupture. Many disastrous events have been attributed to these blind faults. Faults and earthquakes are very closely related as earthquakes occur on faults and faults grow by accumulation of coseismic rupture. For a better seismic risk evaluation it is imperative to recognize and map these faults. We implement a novel approach to identify seismically active fault planes from three dimensional hypocenter distribution by making use of unsupervised learning algorithms. We employ K-means clustering algorithm and Expectation Maximization (EM) algorithm modified to identify planar structures in spatial distribution of hypocenter after filtering out isolated events. We examine difference in the faults reconstructed by deterministic assignment in K- means and probabilistic assignment in EM algorithm. The method is conceptually identical to methodologies developed by Ouillion et al (2008, 2010) and has been extensively tested on synthetic data. We determined the sensitivity of the methodology to uncertainties in hypocenter location, density of clustering and cross cutting fault structures. The method has been applied to datasets from two contrasting regions. While Kumaon Himalaya is a convergent plate boundary, Koyna-Warna lies in middle of the Indian Plate but has a history of triggered seismicity. The reconstructed faults were validated by examining the fault orientation of mapped faults and the focal mechanism of these events determined through waveform inversion. The reconstructed faults could be used to solve the fault plane ambiguity in focal mechanism determination and constrain the fault orientations for finite source inversions. The faults produced by the method exhibited good correlation with the fault planes obtained by focal mechanism solutions and previously mapped faults.
Algorithm-Based Fault Tolerance Integrated with Replication
NASA Technical Reports Server (NTRS)
Some, Raphael; Rennels, David
2008-01-01
In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.
Fault Tree Analysis: An Emerging Methodology for Instructional Science.
ERIC Educational Resources Information Center
Wood, R. Kent; And Others
1979-01-01
Describes Fault Tree Analysis, a tool for systems analysis which attempts to identify possible modes of failure in systems to increase the probability of success. The article defines the technique and presents the steps of FTA construction, focusing on its application to education. (RAO)
Qualitative Event-Based Diagnosis: Case Study on the Second International Diagnostic Competition
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Roychoudhury, Indranil
2010-01-01
We describe a diagnosis algorithm entered into the Second International Diagnostic Competition. We focus on the first diagnostic problem of the industrial track of the competition in which a diagnosis algorithm must detect, isolate, and identify faults in an electrical power distribution testbed and provide corresponding recovery recommendations. The diagnosis algorithm embodies a model-based approach, centered around qualitative event-based fault isolation. Faults produce deviations in measured values from model-predicted values. The sequence of these deviations is matched to those predicted by the model in order to isolate faults. We augment this approach with model-based fault identification, which determines fault parameters and helps to further isolate faults. We describe the diagnosis approach, provide diagnosis results from running the algorithm on provided example scenarios, and discuss the issues faced, and lessons learned, from implementing the approach
Program listing for fault tree analysis of JPL technical report 32-1542
NASA Technical Reports Server (NTRS)
Chelson, P. O.
1971-01-01
The computer program listing for the MAIN program and those subroutines unique to the fault tree analysis are described. Some subroutines are used for analyzing the reliability block diagram. The program is written in FORTRAN 5 and is running on a UNIVAC 1108.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Danny H; Elwood Jr, Robert H
2011-01-01
Analysis of the material protection, control, and accountability (MPC&A) system is necessary to understand the limits and vulnerabilities of the system to internal threats. A self-appraisal helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. The material control and accountability (MC&A) system effectiveness tool (MSET) fault tree was developed to depict the failure of the MPC&A system as a result of poor practices and random failures in the MC&A system. It can also be employed as a basis for assessing deliberate threats against a facility. MSET uses faultmore » tree analysis, which is a top-down approach to examining system failure. The analysis starts with identifying a potential undesirable event called a 'top event' and then determining the ways it can occur (e.g., 'Fail To Maintain Nuclear Materials Under The Purview Of The MC&A System'). The analysis proceeds by determining how the top event can be caused by individual or combined lower level faults or failures. These faults, which are the causes of the top event, are 'connected' through logic gates. The MSET model uses AND-gates and OR-gates and propagates the effect of event failure using Boolean algebra. To enable the fault tree analysis calculations, the basic events in the fault tree are populated with probability risk values derived by conversion of questionnaire data to numeric values. The basic events are treated as independent variables. This assumption affects the Boolean algebraic calculations used to calculate results. All the necessary calculations are built into the fault tree codes, but it is often useful to estimate the probabilities manually as a check on code functioning. The probability of failure of a given basic event is the probability that the basic event primary question fails to meet the performance metric for that question. The failure probability is related to how well the facility performs the task identified in that basic event over time (not just one performance or exercise). Fault tree calculations provide a failure probability for the top event in the fault tree. The basic fault tree calculations establish a baseline relative risk value for the system. This probability depicts relative risk, not absolute risk. Subsequent calculations are made to evaluate the change in relative risk that would occur if system performance is improved or degraded. During the development effort of MSET, the fault tree analysis program used was SAPHIRE. SAPHIRE is an acronym for 'Systems Analysis Programs for Hands-on Integrated Reliability Evaluations.' Version 1 of the SAPHIRE code was sponsored by the Nuclear Regulatory Commission in 1987 as an innovative way to draw, edit, and analyze graphical fault trees primarily for safe operation of nuclear power reactors. When the fault tree calculations are performed, the fault tree analysis program will produce several reports that can be used to analyze the MPC&A system. SAPHIRE produces reports showing risk importance factors for all basic events in the operational MC&A system. The risk importance information is used to examine the potential impacts when performance of certain basic events increases or decreases. The initial results produced by the SAPHIRE program are considered relative risk values. None of the results can be interpreted as absolute risk values since the basic event probability values represent estimates of risk associated with the performance of MPC&A tasks throughout the material balance area (MBA). The RRR for a basic event represents the decrease in total system risk that would result from improvement of that one event to a perfect performance level. Improvement of the basic event with the greatest RRR value produces a greater decrease in total system risk than improvement of any other basic event. Basic events with the greatest potential for system risk reduction are assigned performance improvement values, and new fault tree calculations show the improvement in total system risk. The operational impact or cost-effectiveness from implementing the performance improvements can then be evaluated. The improvements being evaluated can be system performance improvements, or they can be potential, or actual, upgrades to the system. The RIR for a basic event represents the increase in total system risk that would result from failure of that one event. Failure of the basic event with the greatest RIR value produces a greater increase in total system risk than failure of any other basic event. Basic events with the greatest potential for system risk increase are assigned failure performance values, and new fault tree calculations show the increase in total system risk. This evaluation shows the importance of preventing performance degradation of the basic events. SAPHIRE identifies combinations of basic events where concurrent failure of the events results in failure of the top event.« less
What does fault tolerant Deep Learning need from MPI?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amatya, Vinay C.; Vishnu, Abhinav; Siegel, Charles M.
Deep Learning (DL) algorithms have become the {\\em de facto} Machine Learning (ML) algorithm for large scale data analysis. DL algorithms are computationally expensive -- even distributed DL implementations which use MPI require days of training (model learning) time on commonly studied datasets. Long running DL applications become susceptible to faults -- requiring development of a fault tolerant system infrastructure, in addition to fault tolerant DL algorithms. This raises an important question: {\\em What is needed from MPI for designing fault tolerant DL implementations?} In this paper, we address this problem for permanent faults. We motivate the need for amore » fault tolerant MPI specification by an in-depth consideration of recent innovations in DL algorithms and their properties, which drive the need for specific fault tolerance features. We present an in-depth discussion on the suitability of different parallelism types (model, data and hybrid); a need (or lack thereof) for check-pointing of any critical data structures; and most importantly, consideration for several fault tolerance proposals (user-level fault mitigation (ULFM), Reinit) in MPI and their applicability to fault tolerant DL implementations. We leverage a distributed memory implementation of Caffe, currently available under the Machine Learning Toolkit for Extreme Scale (MaTEx). We implement our approaches by extending MaTEx-Caffe for using ULFM-based implementation. Our evaluation using the ImageNet dataset and AlexNet neural network topology demonstrates the effectiveness of the proposed fault tolerant DL implementation using OpenMPI based ULFM.« less
NASA Astrophysics Data System (ADS)
Guns, K. A.; Bennett, R. A.; Blisniuk, K.
2017-12-01
To better evaluate the distribution and transfer of strain and slip along the Southern San Andreas Fault (SSAF) zone in the northern Coachella valley in southern California, we integrate geological and geodetic observations to test whether strain is being transferred away from the SSAF system towards the Eastern California Shear Zone through microblock rotation of the Eastern Transverse Ranges (ETR). The faults of the ETR consist of five east-west trending left lateral strike slip faults that have measured cumulative offsets of up to 20 km and as low as 1 km. Present kinematic and block models present a variety of slip rate estimates, from as low as zero to as high as 7 mm/yr, suggesting a gap in our understanding of what role these faults play in the larger system. To determine whether present-day block rotation along these faults is contributing to strain transfer in the region, we are applying 10Be surface exposure dating methods to observed offset channel and alluvial fan deposits in order to estimate fault slip rates along two faults in the ETR. We present observations of offset geomorphic landforms using field mapping and LiDAR data at three sites along the Blue Cut Fault and one site along the Smoke Tree Wash Fault in Joshua Tree National Park which indicate recent Quaternary fault activity. Initial results of site mapping and clast count analyses reveal at least three stages of offset, including potential Holocene offsets, for one site along the Blue Cut Fault, while preliminary 10Be geochronology is in progress. This geologic slip rate data, combined with our new geodetic surface velocity field derived from updated campaign-based GPS measurements within Joshua Tree National Park will allow us to construct a suite of elastic fault block models to elucidate rates of strain transfer away from the SSAF and how that strain transfer may be affecting the length of the interseismic period along the SSAF.
FAULT TREE ANALYSIS FOR EXPOSURE TO REFRIGERANTS USED FOR AUTOMOTIVE AIR CONDITIONING IN THE U.S.
A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servic...
A Fault Tree Approach to Analysis of Organizational Communication Systems.
ERIC Educational Resources Information Center
Witkin, Belle Ruth; Stephens, Kent G.
Fault Tree Analysis (FTA) is a method of examing communication in an organization by focusing on: (1) the complex interrelationships in human systems, particularly in communication systems; (2) interactions across subsystems and system boundaries; and (3) the need to select and "prioritize" channels which will eliminate noise in the…
Applying fault tree analysis to the prevention of wrong-site surgery.
Abecassis, Zachary A; McElroy, Lisa M; Patel, Ronak M; Khorzad, Rebeca; Carroll, Charles; Mehrotra, Sanjay
2015-01-01
Wrong-site surgery (WSS) is a rare event that occurs to hundreds of patients each year. Despite national implementation of the Universal Protocol over the past decade, development of effective interventions remains a challenge. We performed a systematic review of the literature reporting root causes of WSS and used the results to perform a fault tree analysis to assess the reliability of the system in preventing WSS and identifying high-priority targets for interventions aimed at reducing WSS. Process components where a single error could result in WSS were labeled with OR gates; process aspects reinforced by verification were labeled with AND gates. The overall redundancy of the system was evaluated based on prevalence of AND gates and OR gates. In total, 37 studies described risk factors for WSS. The fault tree contains 35 faults, most of which fall into five main categories. Despite the Universal Protocol mandating patient verification, surgical site signing, and a brief time-out, a large proportion of the process relies on human transcription and verification. Fault tree analysis provides a standardized perspective of errors or faults within the system of surgical scheduling and site confirmation. It can be adapted by institutions or specialties to lead to more targeted interventions to increase redundancy and reliability within the preoperative process. Copyright © 2015 Elsevier Inc. All rights reserved.
Ho, Kevin I-J; Leung, Chi-Sing; Sum, John
2010-06-01
In the last two decades, many online fault/noise injection algorithms have been developed to attain a fault tolerant neural network. However, not much theoretical works related to their convergence and objective functions have been reported. This paper studies six common fault/noise-injection-based online learning algorithms for radial basis function (RBF) networks, namely 1) injecting additive input noise, 2) injecting additive/multiplicative weight noise, 3) injecting multiplicative node noise, 4) injecting multiweight fault (random disconnection of weights), 5) injecting multinode fault during training, and 6) weight decay with injecting multinode fault. Based on the Gladyshev theorem, we show that the convergence of these six online algorithms is almost sure. Moreover, their true objective functions being minimized are derived. For injecting additive input noise during training, the objective function is identical to that of the Tikhonov regularizer approach. For injecting additive/multiplicative weight noise during training, the objective function is the simple mean square training error. Thus, injecting additive/multiplicative weight noise during training cannot improve the fault tolerance of an RBF network. Similar to injective additive input noise, the objective functions of other fault/noise-injection-based online algorithms contain a mean square error term and a specialized regularization term.
NASA Astrophysics Data System (ADS)
Yang, Wen-Xian
2006-05-01
Available machine fault diagnostic methods show unsatisfactory performances on both on-line and intelligent analyses because their operations involve intensive calculations and are labour intensive. Aiming at improving this situation, this paper describes the development of an intelligent approach by using the Genetic Programming (abbreviated as GP) method. Attributed to the simple calculation of the mathematical model being constructed, different kinds of machine faults may be diagnosed correctly and quickly. Moreover, human input is significantly reduced in the process of fault diagnosis. The effectiveness of the proposed strategy is validated by an illustrative example, in which three kinds of valve states inherent in a six-cylinders/four-stroke cycle diesel engine, i.e. normal condition, valve-tappet clearance and gas leakage faults, are identified. In the example, 22 mathematical functions have been specially designed and 8 easily obtained signal features are used to construct the diagnostic model. Different from existing GPs, the diagnostic tree used in the algorithm is constructed in an intelligent way by applying a power-weight coefficient to each feature. The power-weight coefficients vary adaptively between 0 and 1 during the evolutionary process. Moreover, different evolutionary strategies are employed, respectively for selecting the diagnostic features and functions, so that the mathematical functions are sufficiently utilized and in the meantime, the repeated use of signal features may be fully avoided. The experimental results are illustrated diagrammatically in the following sections.
Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.
2016-03-02
We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.
A Fault Tree Approach to Needs Assessment -- An Overview.
ERIC Educational Resources Information Center
Stephens, Kent G.
A "failsafe" technology is presented based on a new unified theory of needs assessment. Basically the paper discusses fault tree analysis as a technique for enhancing the probability of success in any system by analyzing the most likely modes of failure that could occur and then suggesting high priority avoidance strategies for those…
Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Xu, Pingru; Qian, Yu
2016-05-01
Recently, China has frequently experienced large-scale, severe and persistent haze pollution due to surging urbanization and industrialization and a rapid growth in the number of motor vehicles and energy consumption. The vehicle emission due to the consumption of a large number of fossil fuels is no doubt a critical factor of the haze pollution. This work is focused on the causation mechanism of haze pollution related to the vehicle emission for Guangzhou city by employing the Fault Tree Analysis (FTA) method for the first time. With the establishment of the fault tree system of "Haze weather-Vehicle exhausts explosive emission", all of the important risk factors are discussed and identified by using this deductive FTA method. The qualitative and quantitative assessments of the fault tree system are carried out based on the structure, probability and critical importance degree analysis of the risk factors. The study may provide a new simple and effective tool/strategy for the causation mechanism analysis and risk management of haze pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fault Tolerant Frequent Pattern Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shohdy, Sameh; Vishnu, Abhinav; Agrawal, Gagan
FP-Growth algorithm is a Frequent Pattern Mining (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivotal to consider fault tolerant FP-Growth, which can address the increasing fault rates in large scale systems. In this work, we propose a novel parallel, algorithm-level fault-tolerant FP-Growth algorithm. We leverage algorithmic properties and MPI advanced features to guarantee an O(1) space complexity, achieved by using the dataset memory space itself for checkpointing. We also propose a recovery algorithm that can use in-memory and disk-based checkpointing,more » though in many cases the recovery can be completed without any disk access, and incurring no memory overhead for checkpointing. We evaluate our FT algorithm on a large scale InfiniBand cluster with several large datasets using up to 2K cores. Our evaluation demonstrates excellent efficiency for checkpointing and recovery in comparison to the disk-based approach. We have also observed 20x average speed-up in comparison to Spark, establishing that a well designed algorithm can easily outperform a solution based on a general fault-tolerant programming model.« less
Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults.
Wang, Tao; Xie, Wenfang; Zhang, Youmin
2012-05-01
In this paper, two sliding mode control algorithms are developed for nonlinear systems with both modeling uncertainties and actuator faults. The first algorithm is developed under an assumption that the uncertainty bounds are known. Different design parameters are utilized to deal with modeling uncertainties and actuator faults, respectively. The second algorithm is an adaptive version of the first one, which is developed to accommodate uncertainties and faults without utilizing exact bounds information. The stability of the overall control systems is proved by using a Lyapunov function. The effectiveness of the developed algorithms have been verified on a nonlinear longitudinal model of Boeing 747-100/200. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
An integrated approach to system design, reliability, and diagnosis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1990-01-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
An integrated approach to system design, reliability, and diagnosis
NASA Astrophysics Data System (ADS)
Patterson-Hine, F. A.; Iverson, David L.
1990-12-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
NASA Astrophysics Data System (ADS)
Sanchez-Vila, X.; de Barros, F.; Bolster, D.; Nowak, W.
2010-12-01
Assessing the potential risk of hydro(geo)logical supply systems to human population is an interdisciplinary field. It relies on the expertise in fields as distant as hydrogeology, medicine, or anthropology, and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties in hydrological, physiological and human behavioral parameters. We propose the use of fault trees to address the task of probabilistic risk analysis (PRA) and to support related management decisions. Fault trees allow decomposing the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural “Divide and Conquer” approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance and stage of analysis. The separation in modules allows for a true inter- and multi-disciplinary approach. This presentation highlights the three novel features of our work: (1) we define failure in terms of risk being above a threshold value, whereas previous studies used auxiliary events such as exceedance of critical concentration levels, (2) we plot an integrated fault tree that handles uncertainty in both hydrological and health components in a unified way, and (3) we introduce a new form of stochastic fault tree that allows to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.
A fuzzy decision tree for fault classification.
Zio, Enrico; Baraldi, Piero; Popescu, Irina C
2008-02-01
In plant accident management, the control room operators are required to identify the causes of the accident, based on the different patterns of evolution of the monitored process variables thereby developing. This task is often quite challenging, given the large number of process parameters monitored and the intense emotional states under which it is performed. To aid the operators, various techniques of fault classification have been engineered. An important requirement for their practical application is the physical interpretability of the relationships among the process variables underpinning the fault classification. In this view, the present work propounds a fuzzy approach to fault classification, which relies on fuzzy if-then rules inferred from the clustering of available preclassified signal data, which are then organized in a logical and transparent decision tree structure. The advantages offered by the proposed approach are precisely that a transparent fault classification model is mined out of the signal data and that the underlying physical relationships among the process variables are easily interpretable as linguistic if-then rules that can be explicitly visualized in the decision tree structure. The approach is applied to a case study regarding the classification of simulated faults in the feedwater system of a boiling water reactor.
Toushmalani, Reza
2013-01-01
The purpose of this study was to compare the performance of two methods for gravity inversion of a fault. First method [Particle swarm optimization (PSO)] is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. Second method [The Levenberg-Marquardt algorithm (LM)] is an approximation to the Newton method used also for training ANNs. In this paper first we discussed the gravity field of a fault, then describes the algorithms of PSO and LM And presents application of Levenberg-Marquardt algorithm, and a particle swarm algorithm in solving inverse problem of a fault. Most importantly the parameters for the algorithms are given for the individual tests. Inverse solution reveals that fault model parameters are agree quite well with the known results. A more agreement has been found between the predicted model anomaly and the observed gravity anomaly in PSO method rather than LM method.
Zhang, Zhe; Kong, Xiangping; Yin, Xianggen; Yang, Zengli; Wang, Lijun
2014-01-01
In order to solve the problems of the existing wide-area backup protection (WABP) algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S) evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance. PMID:25050399
A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.
Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto
2017-09-29
The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.
FTC - THE FAULT-TREE COMPILER (SUN VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
FTC, the Fault-Tree Compiler program, is a tool used to calculate the top-event probability for a fault-tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. The high-level input language is easy to understand and use. In addition, the program supports a hierarchical fault tree definition feature which simplifies the tree-description process and reduces execution time. A rigorous error bound is derived for the solution technique. This bound enables the program to supply an answer precisely (within the limits of double precision floating point arithmetic) at a user-specified number of digits accuracy. The program also facilitates sensitivity analysis with respect to any specified parameter of the fault tree such as a component failure rate or a specific event probability by allowing the user to vary one failure rate or the failure probability over a range of values and plot the results. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. FTC was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The program is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The TEMPLATE graphics library is required to obtain graphical output. The standard distribution medium for the VMS version of FTC (LAR-14586) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of FTC (LAR-14922) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. FTC was developed in 1989 and last updated in 1992. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories. SunOS is a trademark of Sun Microsystems, Inc.
FTC - THE FAULT-TREE COMPILER (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
FTC, the Fault-Tree Compiler program, is a tool used to calculate the top-event probability for a fault-tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. The high-level input language is easy to understand and use. In addition, the program supports a hierarchical fault tree definition feature which simplifies the tree-description process and reduces execution time. A rigorous error bound is derived for the solution technique. This bound enables the program to supply an answer precisely (within the limits of double precision floating point arithmetic) at a user-specified number of digits accuracy. The program also facilitates sensitivity analysis with respect to any specified parameter of the fault tree such as a component failure rate or a specific event probability by allowing the user to vary one failure rate or the failure probability over a range of values and plot the results. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. FTC was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The program is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The TEMPLATE graphics library is required to obtain graphical output. The standard distribution medium for the VMS version of FTC (LAR-14586) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of FTC (LAR-14922) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. FTC was developed in 1989 and last updated in 1992. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories. SunOS is a trademark of Sun Microsystems, Inc.
SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; James Knudsen
As part of a series of papers on the topic of advance probabilistic methods, a benchmark phased-mission problem has been suggested. This problem consists of modeling a space mission using an ion propulsion system, where the mission consists of seven mission phases. The mission requires that the propulsion operate for several phases, where the configuration changes as a function of phase. The ion propulsion system itself consists of five thruster assemblies and a single propellant supply, where each thruster assembly has one propulsion power unit and two ion engines. In this paper, we evaluate the probability of mission failure usingmore » the conventional methodology of event tree/fault tree analysis. The event tree and fault trees are developed and analyzed using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). While the benchmark problem is nominally a "dynamic" problem, in our analysis the mission phases are modeled in a single event tree to show the progression from one phase to the next. The propulsion system is modeled in fault trees to account for the operation; or in this case, the failure of the system. Specifically, the propulsion system is decomposed into each of the five thruster assemblies and fed into the appropriate N-out-of-M gate to evaluate mission failure. A separate fault tree for the propulsion system is developed to account for the different success criteria of each mission phase. Common-cause failure modeling is treated using traditional (i.e., parametrically) methods. As part of this paper, we discuss the overall results in addition to the positive and negative aspects of modeling dynamic situations with non-dynamic modeling techniques. One insight from the use of this conventional method for analyzing the benchmark problem is that it requires significant manual manipulation to the fault trees and how they are linked into the event tree. The conventional method also requires editing the resultant cut sets to obtain the correct results. While conventional methods may be used to evaluate a dynamic system like that in the benchmark, the level of effort required may preclude its use on real-world problems.« less
Comparing Different Fault Identification Algorithms in Distributed Power System
NASA Astrophysics Data System (ADS)
Alkaabi, Salim
A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.
A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis
NASA Astrophysics Data System (ADS)
Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang
2016-09-01
A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.
A Fault Tree Approach to Analysis of Behavioral Systems: An Overview.
ERIC Educational Resources Information Center
Stephens, Kent G.
Developed at Brigham Young University, Fault Tree Analysis (FTA) is a technique for enhancing the probability of success in any system by analyzing the most likely modes of failure that could occur. It provides a logical, step-by-step description of possible failure events within a system and their interaction--the combinations of potential…
NASA Technical Reports Server (NTRS)
Russell, B. Don
1989-01-01
This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.
The engine fuel system fault analysis
NASA Astrophysics Data System (ADS)
Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei
2017-05-01
For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.
An Ontology for Identifying Cyber Intrusion Induced Faults in Process Control Systems
NASA Astrophysics Data System (ADS)
Hieb, Jeffrey; Graham, James; Guan, Jian
This paper presents an ontological framework that permits formal representations of process control systems, including elements of the process being controlled and the control system itself. A fault diagnosis algorithm based on the ontological model is also presented. The algorithm can identify traditional process elements as well as control system elements (e.g., IP network and SCADA protocol) as fault sources. When these elements are identified as a likely fault source, the possibility exists that the process fault is induced by a cyber intrusion. A laboratory-scale distillation column is used to illustrate the model and the algorithm. Coupled with a well-defined statistical process model, this fault diagnosis approach provides cyber security enhanced fault diagnosis information to plant operators and can help identify that a cyber attack is underway before a major process failure is experienced.
A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.
Hu, Di; Sarosh, Ali; Dong, Yun-Feng
2012-03-01
Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications
NASA Technical Reports Server (NTRS)
Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco
2015-01-01
This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.
Fault tree analysis: NiH2 aerospace cells for LEO mission
NASA Technical Reports Server (NTRS)
Klein, Glenn C.; Rash, Donald E., Jr.
1992-01-01
The Fault Tree Analysis (FTA) is one of several reliability analyses or assessments applied to battery cells to be utilized in typical Electric Power Subsystems for spacecraft in low Earth orbit missions. FTA is generally the process of reviewing and analytically examining a system or equipment in such a way as to emphasize the lower level fault occurrences which directly or indirectly contribute to the major fault or top level event. This qualitative FTA addresses the potential of occurrence for five specific top level events: hydrogen leakage through either discrete leakage paths or through pressure vessel rupture; and four distinct modes of performance degradation - high charge voltage, suppressed discharge voltage, loss of capacity, and high pressure.
Modular techniques for dynamic fault-tree analysis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Dugan, Joanne B.
1992-01-01
It is noted that current approaches used to assess the dependability of complex systems such as Space Station Freedom and the Air Traffic Control System are incapable of handling the size and complexity of these highly integrated designs. A novel technique for modeling such systems which is built upon current techniques in Markov theory and combinatorial analysis is described. It enables the development of a hierarchical representation of system behavior which is more flexible than either technique alone. A solution strategy which is based on an object-oriented approach to model representation and evaluation is discussed. The technique is virtually transparent to the user since the fault tree models can be built graphically and the objects defined automatically. The tree modularization procedure allows the two model types, Markov and combinatoric, to coexist and does not require that the entire fault tree be translated to a Markov chain for evaluation. This effectively reduces the size of the Markov chain required and enables solutions with less truncation, making analysis of longer mission times possible. Using the fault-tolerant parallel processor as an example, a model is built and solved for a specific mission scenario and the solution approach is illustrated in detail.
A Fault Recognition System for Gearboxes of Wind Turbines
NASA Astrophysics Data System (ADS)
Yang, Zhiling; Huang, Haiyue; Yin, Zidong
2017-12-01
Costs of maintenance and loss of power generation caused by the faults of wind turbines gearboxes are the main components of operation costs for a wind farm. Therefore, the technology of condition monitoring and fault recognition for wind turbines gearboxes is becoming a hot topic. A condition monitoring and fault recognition system (CMFRS) is presented for CBM of wind turbines gearboxes in this paper. The vibration signals from acceleration sensors at different locations of gearbox and the data from supervisory control and data acquisition (SCADA) system are collected to CMFRS. Then the feature extraction and optimization algorithm is applied to these operational data. Furthermore, to recognize the fault of gearboxes, the GSO-LSSVR algorithm is proposed, combining the least squares support vector regression machine (LSSVR) with the Glowworm Swarm Optimization (GSO) algorithm. Finally, the results show that the fault recognition system used in this paper has a high rate for identifying three states of wind turbines’ gears; besides, the combination of date features can affect the identifying rate and the selection optimization algorithm presented in this paper can get a pretty good date feature subset for the fault recognition.
Jeon, Namju; Lee, Hyeongcheol
2016-12-12
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.
Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System
NASA Technical Reports Server (NTRS)
Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.
2006-01-01
The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.
Application of composite dictionary multi-atom matching in gear fault diagnosis.
Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng
2011-01-01
The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.
Soft error evaluation and vulnerability analysis in Xilinx Zynq-7010 system-on chip
NASA Astrophysics Data System (ADS)
Du, Xuecheng; He, Chaohui; Liu, Shuhuan; Zhang, Yao; Li, Yonghong; Xiong, Ceng; Tan, Pengkang
2016-09-01
Radiation-induced soft errors are an increasingly important threat to the reliability of modern electronic systems. In order to evaluate system-on chip's reliability and soft error, the fault tree analysis method was used in this work. The system fault tree was constructed based on Xilinx Zynq-7010 All Programmable SoC. Moreover, the soft error rates of different components in Zynq-7010 SoC were tested by americium-241 alpha radiation source. Furthermore, some parameters that used to evaluate the system's reliability and safety were calculated using Isograph Reliability Workbench 11.0, such as failure rate, unavailability and mean time to failure (MTTF). According to fault tree analysis for system-on chip, the critical blocks and system reliability were evaluated through the qualitative and quantitative analysis.
Learning from examples - Generation and evaluation of decision trees for software resource analysis
NASA Technical Reports Server (NTRS)
Selby, Richard W.; Porter, Adam A.
1988-01-01
A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Rong, Mingzhe; Qiu, Juan; Liu, Dingxin; Su, Biao; Wu, Yi
A new type of algorithm for predicting the mechanical faults of a vacuum circuit breaker (VCB) based on an artificial neural network (ANN) is proposed in this paper. There are two types of mechanical faults in a VCB: operation mechanism faults and tripping circuit faults. An angle displacement sensor is used to measure the main axle angle displacement which reflects the displacement of the moving contact, to obtain the state of the operation mechanism in the VCB, while a Hall current sensor is used to measure the trip coil current, which reflects the operation state of the tripping circuit. Then an ANN prediction algorithm based on a sliding time window is proposed in this paper and successfully used to predict mechanical faults in a VCB. The research results in this paper provide a theoretical basis for the realization of online monitoring and fault diagnosis of a VCB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Howard; Braun, James E.
This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Howard; Braun, James E.
2015-12-31
This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less
Negative Selection Algorithm for Aircraft Fault Detection
NASA Technical Reports Server (NTRS)
Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.
2004-01-01
We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.
Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-06-01
Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.
Decision tree and PCA-based fault diagnosis of rotating machinery
NASA Astrophysics Data System (ADS)
Sun, Weixiang; Chen, Jin; Li, Jiaqing
2007-04-01
After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN.
Fault-tolerant processing system
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L. (Inventor)
1996-01-01
A fault-tolerant, fiber optic interconnect, or backplane, which serves as a via for data transfer between modules. Fault tolerance algorithms are embedded in the backplane by dividing the backplane into a read bus and a write bus and placing a redundancy management unit (RMU) between the read bus and the write bus so that all data transmitted by the write bus is subjected to the fault tolerance algorithms before the data is passed for distribution to the read bus. The RMU provides both backplane control and fault tolerance.
Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon
2017-07-25
Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.
NASA Astrophysics Data System (ADS)
Pei, Yangwen; Paton, Douglas A.; Wu, Kongyou; Xie, Liujuan
2017-08-01
The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, Northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, 'dragging structures', thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults' intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio.
Jeon, Namju; Lee, Hyeongcheol
2016-01-01
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431
Recursive algorithms for phylogenetic tree counting.
Gavryushkina, Alexandra; Welch, David; Drummond, Alexei J
2013-10-28
In Bayesian phylogenetic inference we are interested in distributions over a space of trees. The number of trees in a tree space is an important characteristic of the space and is useful for specifying prior distributions. When all samples come from the same time point and no prior information available on divergence times, the tree counting problem is easy. However, when fossil evidence is used in the inference to constrain the tree or data are sampled serially, new tree spaces arise and counting the number of trees is more difficult. We describe an algorithm that is polynomial in the number of sampled individuals for counting of resolutions of a constraint tree assuming that the number of constraints is fixed. We generalise this algorithm to counting resolutions of a fully ranked constraint tree. We describe a quadratic algorithm for counting the number of possible fully ranked trees on n sampled individuals. We introduce a new type of tree, called a fully ranked tree with sampled ancestors, and describe a cubic time algorithm for counting the number of such trees on n sampled individuals. These algorithms should be employed for Bayesian Markov chain Monte Carlo inference when fossil data are included or data are serially sampled.
NASA Astrophysics Data System (ADS)
Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.
2015-12-01
The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.
SDIA: A dynamic situation driven information fusion algorithm for cloud environment
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Tong; Wang, Jian
2017-09-01
Information fusion is an important issue in information integration domain. In order to form an extensive information fusion technology under the complex and diverse situations, a new information fusion algorithm is proposed. Firstly, a fuzzy evaluation model of tag utility was proposed that can be used to count the tag entropy. Secondly, a ubiquitous situation tag tree model is proposed to define multidimensional structure of information situation. Thirdly, the similarity matching between the situation models is classified into three types: the tree inclusion, the tree embedding, and the tree compatibility. Next, in order to reduce the time complexity of the tree compatible matching algorithm, a fast and ordered tree matching algorithm is proposed based on the node entropy, which is used to support the information fusion by ubiquitous situation. Since the algorithm revolve from the graph theory of disordered tree matching algorithm, it can improve the information fusion present recall rate and precision rate in the situation. The information fusion algorithm is compared with the star and the random tree matching algorithm, and the difference between the three algorithms is analyzed in the view of isomorphism, which proves the innovation and applicability of the algorithm.
Fault tree analysis for system modeling in case of intentional EMI
NASA Astrophysics Data System (ADS)
Genender, E.; Mleczko, M.; Döring, O.; Garbe, H.; Potthast, S.
2011-08-01
The complexity of modern systems on the one hand and the rising threat of intentional electromagnetic interference (IEMI) on the other hand increase the necessity for systematical risk analysis. Most of the problems can not be treated deterministically since slight changes in the configuration (source, position, polarization, ...) can dramatically change the outcome of an event. For that purpose, methods known from probabilistic risk analysis can be applied. One of the most common approaches is the fault tree analysis (FTA). The FTA is used to determine the system failure probability and also the main contributors to its failure. In this paper the fault tree analysis is introduced and a possible application of that method is shown using a small computer network as an example. The constraints of this methods are explained and conclusions for further research are drawn.
NASA Astrophysics Data System (ADS)
Akinci, A.; Pace, B.
2017-12-01
In this study, we discuss the seismic hazard variability of peak ground acceleration (PGA) at 475 years return period in the Southern Apennines of Italy. The uncertainty and parametric sensitivity are presented to quantify the impact of the several fault parameters on ground motion predictions for 10% exceedance in 50-year hazard. A time-independent PSHA model is constructed based on the long-term recurrence behavior of seismogenic faults adopting the characteristic earthquake model for those sources capable of rupturing the entire fault segment with a single maximum magnitude. The fault-based source model uses the dimensions and slip rates of mapped fault to develop magnitude-frequency estimates for characteristic earthquakes. Variability of the selected fault parameter is given with a truncated normal random variable distribution presented by standard deviation about a mean value. A Monte Carlo approach, based on the random balanced sampling by logic tree, is used in order to capture the uncertainty in seismic hazard calculations. For generating both uncertainty and sensitivity maps, we perform 200 simulations for each of the fault parameters. The results are synthesized both in frequency-magnitude distribution of modeled faults as well as the different maps: the overall uncertainty maps provide a confidence interval for the PGA values and the parameter uncertainty maps determine the sensitivity of hazard assessment to variability of every logic tree branch. These branches of logic tree, analyzed through the Monte Carlo approach, are maximum magnitudes, fault length, fault width, fault dip and slip rates. The overall variability of these parameters is determined by varying them simultaneously in the hazard calculations while the sensitivity of each parameter to overall variability is determined varying each of the fault parameters while fixing others. However, in this study we do not investigate the sensitivity of mean hazard results to the consideration of different GMPEs. Distribution of possible seismic hazard results is illustrated by 95% confidence factor map, which indicates the dispersion about mean value, and coefficient of variation map, which shows percent variability. The results of our study clearly illustrate the influence of active fault parameters to probabilistic seismic hazard maps.
An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.
Yang, Yifei; Tan, Minjia; Dai, Yuewei
2017-01-01
A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments.
A data structure and algorithm for fault diagnosis
NASA Technical Reports Server (NTRS)
Bosworth, Edward L., Jr.
1987-01-01
Results of preliminary research on the design of a knowledge based fault diagnosis system for use with on-orbit spacecraft such as the Hubble Space Telescope are presented. A candidate data structure and associated search algorithm from which the knowledge based system can evolve is discussed. This algorithmic approach will then be examined in view of its inability to diagnose certain common faults. From that critique, a design for the corresponding knowledge based system will be given.
Wu, Yufeng
2012-03-01
Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.
Li, Jia; Wang, Deming; Huang, Zonghou
2017-01-01
Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents. PMID:28793348
Shi, Lei; Shuai, Jian; Xu, Kui
2014-08-15
Fire and explosion accidents of steel oil storage tanks (FEASOST) occur occasionally during the petroleum and chemical industry production and storage processes and often have devastating impact on lives, the environment and property. To contribute towards the development of a quantitative approach for assessing the occurrence probability of FEASOST, a fault tree of FEASOST is constructed that identifies various potential causes. Traditional fault tree analysis (FTA) can achieve quantitative evaluation if the failure data of all of the basic events (BEs) are available, which is almost impossible due to the lack of detailed data, as well as other uncertainties. This paper makes an attempt to perform FTA of FEASOST by a hybrid application between an expert elicitation based improved analysis hierarchy process (AHP) and fuzzy set theory, and the occurrence possibility of FEASOST is estimated for an oil depot in China. A comparison between statistical data and calculated data using fuzzy fault tree analysis (FFTA) based on traditional and improved AHP is also made. Sensitivity and importance analysis has been performed to identify the most crucial BEs leading to FEASOST that will provide insights into how managers should focus effective mitigation. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Hetang; Li, Jia; Wang, Deming; Huang, Zonghou
2017-01-01
Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents.
NASA Astrophysics Data System (ADS)
Kamer, Yavor; Ouillon, Guy; Sornette, Didier; Wössner, Jochen
2014-05-01
We present applications of a new clustering method for fault network reconstruction based on the spatial distribution of seismicity. Unlike common approaches that start from the simplest large scale and gradually increase the complexity trying to explain the small scales, our method uses a bottom-up approach, by an initial sampling of the small scales and then reducing the complexity. The new approach also exploits the location uncertainty associated with each event in order to obtain a more accurate representation of the spatial probability distribution of the seismicity. For a given dataset, we first construct an agglomerative hierarchical cluster (AHC) tree based on Ward's minimum variance linkage. Such a tree starts out with one cluster and progressively branches out into an increasing number of clusters. To atomize the structure into its constitutive protoclusters, we initialize a Gaussian Mixture Modeling (GMM) at a given level of the hierarchical clustering tree. We then let the GMM converge using an Expectation Maximization (EM) algorithm. The kernels that become ill defined (less than 4 points) at the end of the EM are discarded. By incrementing the number of initialization clusters (by atomizing at increasingly populated levels of the AHC tree) and repeating the procedure above, we are able to determine the maximum number of Gaussian kernels the structure can hold. The kernels in this configuration constitute our protoclusters. In this setting, merging of any pair will lessen the likelihood (calculated over the pdf of the kernels) but in turn will reduce the model's complexity. The information loss/gain of any possible merging can thus be quantified based on the Minimum Description Length (MDL) principle. Similar to an inter-distance matrix, where the matrix element di,j gives the distance between points i and j, we can construct a MDL gain/loss matrix where mi,j gives the information gain/loss resulting from the merging of kernels i and j. Based on this matrix, merging events resulting in MDL gain are performed in descending order until no gainful merging is possible anymore. We envision that the results of this study could lead to a better understanding of the complex interactions within the Californian fault system and hopefully use the acquired insights for earthquake forecasting.
Fault-tolerant clock synchronization in distributed systems
NASA Technical Reports Server (NTRS)
Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.
1990-01-01
Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.
Fault detection and isolation for complex system
NASA Astrophysics Data System (ADS)
Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi
2017-07-01
Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.
Salehifar, Mehdi; Moreno-Equilaz, Manuel
2016-01-01
Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Graphical workstation capability for reliability modeling
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.
1992-01-01
In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.
Fault tree analysis for urban flooding.
ten Veldhuis, J A E; Clemens, F H L R; van Gelder, P H A J M
2009-01-01
Traditional methods to evaluate flood risk generally focus on heavy storm events as the principal cause of flooding. Conversely, fault tree analysis is a technique that aims at modelling all potential causes of flooding. It quantifies both overall flood probability and relative contributions of individual causes of flooding. This paper presents a fault model for urban flooding and an application to the case of Haarlem, a city of 147,000 inhabitants. Data from a complaint register, rainfall gauges and hydrodynamic model calculations are used to quantify probabilities of basic events in the fault tree. This results in a flood probability of 0.78/week for Haarlem. It is shown that gully pot blockages contribute to 79% of flood incidents, whereas storm events contribute only 5%. This implies that for this case more efficient gully pot cleaning is a more effective strategy to reduce flood probability than enlarging drainage system capacity. Whether this is also the most cost-effective strategy can only be decided after risk assessment has been complemented with a quantification of consequences of both types of events. To do this will be the next step in this study.
A survey of provably correct fault-tolerant clock synchronization techniques
NASA Technical Reports Server (NTRS)
Butler, Ricky W.
1988-01-01
Six provably correct fault-tolerant clock synchronization algorithms are examined. These algorithms are all presented in the same notation to permit easier comprehension and comparison. The advantages and disadvantages of the different techniques are examined and issues related to the implementation of these algorithms are discussed. The paper argues for the use of such algorithms in life-critical applications.
Finding Frequent Closed Itemsets in Sliding Window in Linear Time
NASA Astrophysics Data System (ADS)
Chen, Junbo; Zhou, Bo; Chen, Lu; Wang, Xinyu; Ding, Yiqun
One of the most well-studied problems in data mining is computing the collection of frequent itemsets in large transactional databases. Since the introduction of the famous Apriori algorithm [14], many others have been proposed to find the frequent itemsets. Among such algorithms, the approach of mining closed itemsets has raised much interest in data mining community. The algorithms taking this approach include TITANIC [8], CLOSET+[6], DCI-Closed [4], FCI-Stream [3], GC-Tree [15], TGC-Tree [16] etc. Among these algorithms, FCI-Stream, GC-Tree and TGC-Tree are online algorithms work under sliding window environments. By the performance evaluation in [16], GC-Tree [15] is the fastest one. In this paper, an improved algorithm based on GC-Tree is proposed, the computational complexity of which is proved to be a linear combination of the average transaction size and the average closed itemset size. The algorithm is based on the essential theorem presented in Sect. 4.2. Empirically, the new algorithm is several orders of magnitude faster than the state of art algorithm, GC-Tree.
Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2007-01-01
This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.
NASA Astrophysics Data System (ADS)
Koji, Yusuke; Kitamura, Yoshinobu; Kato, Yoshikiyo; Tsutsui, Yoshio; Mizoguchi, Riichiro
In conceptual design, it is important to develop functional structures which reflect the rich experience in the knowledge from previous design failures. Especially, if a designer learns possible abnormal behaviors from a previous design failure, he or she can add an additional function which prevents such abnormal behaviors and faults. To do this, it is a crucial issue to share such knowledge about possible faulty phenomena and how to cope with them. In fact, a part of such knowledge is described in FMEA (Failure Mode and Effect Analysis) sheets, function structure models for systematic design and fault trees for FTA (Fault Tree Analysis).
Failure analysis of energy storage spring in automobile composite brake chamber
NASA Astrophysics Data System (ADS)
Luo, Zai; Wei, Qing; Hu, Xiaofeng
2015-02-01
This paper set energy storage spring of parking brake cavity, part of automobile composite brake chamber, as the research object. And constructed the fault tree model of energy storage spring which caused parking brake failure based on the fault tree analysis method. Next, the parking brake failure model of energy storage spring was established by analyzing the working principle of composite brake chamber. Finally, the data of working load and the push rod stroke measured by comprehensive test-bed valve was used to validate the failure model above. The experimental result shows that the failure model can distinguish whether the energy storage spring is faulted.
Comparison of fault-related folding algorithms to restore a fold-and-thrust-belt
NASA Astrophysics Data System (ADS)
Brandes, Christian; Tanner, David
2017-04-01
Fault-related folding means the contemporaneous evolution of folds as a consequence of fault movement. It is a common deformation process in the upper crust that occurs worldwide in accretionary wedges, fold-and-thrust belts, and intra-plate settings, in either strike-slip, compressional, or extensional regimes. Over the last 30 years different algorithms have been developed to simulate the kinematic evolution of fault-related folds. All these models of fault-related folding include similar simplifications and limitations and use the same kinematic behaviour throughout the model (Brandes & Tanner, 2014). We used a natural example of fault-related folding from the Limón fold-and-thrust belt in eastern Costa Rica to test two different algorithms and to compare the resulting geometries. A thrust fault and its hanging-wall anticline were restored using both the trishear method (Allmendinger, 1998; Zehnder & Allmendinger, 2000) and the fault-parallel flow approach (Ziesch et al. 2014); both methods are widely used in academia and industry. The resulting hanging-wall folds above the thrust fault are restored in substantially different fashions. This is largely a function of the propagation-to-slip ratio of the thrust, which controls the geometry of the related anticline. Understanding the controlling factors for anticline evolution is important for the evaluation of potential hydrocarbon reservoirs and the characterization of fault processes. References: Allmendinger, R.W., 1998. Inverse and forward numerical modeling of trishear fault propagation folds. Tectonics, 17, 640-656. Brandes, C., Tanner, D.C. 2014. Fault-related folding: a review of kinematic models and their application. Earth Science Reviews, 138, 352-370. Zehnder, A.T., Allmendinger, R.W., 2000. Velocity field for the trishear model. Journal of Structural Geology, 22, 1009-1014. Ziesch, J., Tanner, D.C., Krawczyk, C.M. 2014. Strain associated with the fault-parallel flow algorithm during kinematic fault displacement. Mathematical Geosciences, 46(1), 59-73.
Electromagnetic Compatibility (EMC) in Microelectronics.
1983-02-01
Fault Tree Analysis", System Saftey Symposium, June 8-9, 1965, Seattle: The Boeing Company . 12. Fussell, J.B., "Fault Tree Analysis-Concepts and...procedure for assessing EMC in microelectronics and for applying DD, 1473 EOiTO OP I, NOV6 IS OESOL.ETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS...CRITERIA 2.1 Background 2 2.2 The Probabilistic Nature of EMC 2 2.3 The Probabilistic Approach 5 2.4 The Compatibility Factor 6 3 APPLYING PROBABILISTIC
A graphical language for reliability model generation
NASA Technical Reports Server (NTRS)
Howell, Sandra V.; Bavuso, Salvatore J.; Haley, Pamela J.
1990-01-01
A graphical interface capability of the hybrid automated reliability predictor (HARP) is described. The graphics-oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault tree gates, including sequence dependency gates, or by a Markov chain. With this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the Graphical Kernel System (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing.
Is the Multigrid Method Fault Tolerant? The Two-Grid Case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, Mark; Glusa, Christian
2016-06-30
The predicted reduced resiliency of next-generation high performance computers means that it will become necessary to take into account the effects of randomly occurring faults on numerical methods. Further, in the event of a hard fault occurring, a decision has to be made as to what remedial action should be taken in order to resume the execution of the algorithm. The action that is chosen can have a dramatic effect on the performance and characteristics of the scheme. Ideally, the resulting algorithm should be subjected to the same kind of mathematical analysis that was applied to the original, deterministic variant.more » The purpose of this work is to provide an analysis of the behaviour of the multigrid algorithm in the presence of faults. Multigrid is arguably the method of choice for the solution of large-scale linear algebra problems arising from discretization of partial differential equations and it is of considerable importance to anticipate its behaviour on an exascale machine. The analysis of resilience of algorithms is in its infancy and the current work is perhaps the first to provide a mathematical model for faults and analyse the behaviour of a state-of-the-art algorithm under the model. It is shown that the Two Grid Method fails to be resilient to faults. Attention is then turned to identifying the minimal necessary remedial action required to restore the rate of convergence to that enjoyed by the ideal fault-free method.« less
2016-01-01
Motivation: Gene tree represents the evolutionary history of gene lineages that originate from multiple related populations. Under the multispecies coalescent model, lineages may coalesce outside the species (population) boundary. Given a species tree (with branch lengths), the gene tree probability is the probability of observing a specific gene tree topology under the multispecies coalescent model. There are two existing algorithms for computing the exact gene tree probability. The first algorithm is due to Degnan and Salter, where they enumerate all the so-called coalescent histories for the given species tree and the gene tree topology. Their algorithm runs in exponential time in the number of gene lineages in general. The second algorithm is the STELLS algorithm (2012), which is usually faster but also runs in exponential time in almost all the cases. Results: In this article, we present a new algorithm, called CompactCH, for computing the exact gene tree probability. This new algorithm is based on the notion of compact coalescent histories: multiple coalescent histories are represented by a single compact coalescent history. The key advantage of our new algorithm is that it runs in polynomial time in the number of gene lineages if the number of populations is fixed to be a constant. The new algorithm is more efficient than the STELLS algorithm both in theory and in practice when the number of populations is small and there are multiple gene lineages from each population. As an application, we show that CompactCH can be applied in the inference of population tree (i.e. the population divergence history) from population haplotypes. Simulation results show that the CompactCH algorithm enables efficient and accurate inference of population trees with much more haplotypes than a previous approach. Availability: The CompactCH algorithm is implemented in the STELLS software package, which is available for download at http://www.engr.uconn.edu/ywu/STELLS.html. Contact: ywu@engr.uconn.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implementedmore » and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.« less
NASA Astrophysics Data System (ADS)
Kodali, Anuradha
In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a facility, respectively. The set-covering matrix encapsulates the relationship among the rows (tests or demand points) and columns (faults or locations) of the system at each time. By relaxing the coupling constraints using Lagrange multipliers, the DSC problem can be decoupled into independent subproblems, one for each column. Each subproblem is solved using the Viterbi decoding algorithm, and a primal feasible solution is constructed by modifying the Viterbi solutions via a heuristic. The proposed Viterbi-Lagrangian relaxation algorithm (VLRA) provides a measure of suboptimality via an approximate duality gap. As a major practical extension of the above problem, we also consider the problem of diagnosing faults with delayed test outcomes, termed delay-dynamic set-covering (DDSC), and experiment with real-world problems that exhibit masking faults. Also, we present simulation results on OR-library datasets (set-covering formulations are predominantly validated on these matrices in the literature), posed as facility location problems. Finally, we implement these algorithms to solve problems in aerospace and automotive applications. Firstly, we address the diagnostic ambiguity problem in aerospace and automotive applications by developing a dynamic fusion framework that includes dynamic multiple fault diagnosis algorithms. This improves the correct fault isolation rate, while minimizing the false alarm rates, by considering multiple faults instead of the traditional data-driven techniques based on single fault (class)-single epoch (static) assumption. The dynamic fusion problem is formulated as a maximum a posteriori decision problem of inferring the fault sequence based on uncertain outcomes of multiple binary classifiers over time. The fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using error correcting output codes (ECOC), thereby solving the concomitant binary classification problems; the second step fuses the outcomes of multiple binary classifiers over time using a sliding window or block dynamic fusion method that exploits temporal data correlations over time. We solve this NP-hard optimization problem via a Lagrangian relaxation (variational) technique. The third step optimizes the classifier parameters, viz., probabilities of detection and false alarm, using a genetic algorithm. The proposed algorithm is demonstrated by computing the diagnostic performance metrics on a twin-spool commercial jet engine, an automotive engine, and UCI datasets (problems with high classification error are specifically chosen for experimentation). We show that the primal-dual optimization framework performed consistently better than any traditional fusion technique, even when it is forced to give a single fault decision across a range of classification problems. Secondly, we implement the inference algorithms to diagnose faults in vehicle systems that are controlled by a network of electronic control units (ECUs). The faults, originating from various interactions and especially between hardware and software, are particularly challenging to address. Our basic strategy is to divide the fault universe of such cyber-physical systems in a hierarchical manner, and monitor the critical variables/signals that have impact at different levels of interactions. The proposed diagnostic strategy is validated on an electrical power generation and storage system (EPGS) controlled by two ECUs in an environment with CANoe/MATLAB co-simulation. Eleven faults are injected with the failures originating in actuator hardware, sensor, controller hardware and software components. Diagnostic matrix is established to represent the relationship between the faults and the test outcomes (also known as fault signatures) via simulations. The results show that the proposed diagnostic strategy is effective in addressing the interaction-caused faults.
Finding Minimum-Power Broadcast Trees for Wireless Networks
NASA Technical Reports Server (NTRS)
Arabshahi, Payman; Gray, Andrew; Das, Arindam; El-Sharkawi, Mohamed; Marks, Robert, II
2004-01-01
Some algorithms have been devised for use in a method of constructing tree graphs that represent connections among the nodes of a wireless communication network. These algorithms provide for determining the viability of any given candidate connection tree and for generating an initial set of viable trees that can be used in any of a variety of search algorithms (e.g., a genetic algorithm) to find a tree that enables the network to broadcast from a source node to all other nodes while consuming the minimum amount of total power. The method yields solutions better than those of a prior algorithm known as the broadcast incremental power algorithm, albeit at a slightly greater computational cost.
NASA Astrophysics Data System (ADS)
Wu, Jianing; Yan, Shaoze; Xie, Liyang
2011-12-01
To address the impact of solar array anomalies, it is important to perform analysis of the solar array reliability. This paper establishes the fault tree analysis (FTA) and fuzzy reasoning Petri net (FRPN) models of a solar array mechanical system and analyzes reliability to find mechanisms of the solar array fault. The index final truth degree (FTD) and cosine matching function (CMF) are employed to resolve the issue of how to evaluate the importance and influence of different faults. So an improvement reliability analysis method is developed by means of the sorting of FTD and CMF. An example is analyzed using the proposed method. The analysis results show that harsh thermal environment and impact caused by particles in space are the most vital causes of the solar array fault. Furthermore, other fault modes and the corresponding improvement methods are discussed. The results reported in this paper could be useful for the spacecraft designers, particularly, in the process of redesigning the solar array and scheduling its reliability growth plan.
Seera, Manjeevan; Lim, Chee Peng; Ishak, Dahaman; Singh, Harapajan
2012-01-01
In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.
Algorithm-Based Fault Tolerance for Numerical Subroutines
NASA Technical Reports Server (NTRS)
Tumon, Michael; Granat, Robert; Lou, John
2007-01-01
A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2008-01-01
The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.
Machine-checked proofs of the design and implementation of a fault-tolerant circuit
NASA Technical Reports Server (NTRS)
Bevier, William R.; Young, William D.
1990-01-01
A formally verified implementation of the 'oral messages' algorithm of Pease, Shostak, and Lamport is described. An abstract implementation of the algorithm is verified to achieve interactive consistency in the presence of faults. This abstract characterization is then mapped down to a hardware level implementation which inherits the fault-tolerant characteristics of the abstract version. All steps in the proof were checked with the Boyer-Moore theorem prover. A significant results is the demonstration of a fault-tolerant device that is formally specified and whose implementation is proved correct with respect to this specification. A significant simplifying assumption is that the redundant processors behave synchronously. A mechanically checked proof that the oral messages algorithm is 'optimal' in the sense that no algorithm which achieves agreement via similar message passing can tolerate a larger proportion of faulty processor is also described.
SFTP: A Secure and Fault-Tolerant Paradigm against Blackhole Attack in MANET
NASA Astrophysics Data System (ADS)
KumarRout, Jitendra; Kumar Bhoi, Sourav; Kumar Panda, Sanjaya
2013-02-01
Security issues in MANET are a challenging task nowadays. MANETs are vulnerable to passive attacks and active attacks because of a limited number of resources and lack of centralized authority. Blackhole attack is an attack in network layer which degrade the network performance by dropping the packets. In this paper, we have proposed a Secure Fault-Tolerant Paradigm (SFTP) which checks the Blackhole attack in the network. The three phases used in SFTP algorithm are designing of coverage area to find the area of coverage, Network Connection algorithm to design a fault-tolerant model and Route Discovery algorithm to discover the route and data delivery from source to destination. SFTP gives better network performance by making the network fault free.
Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit
NASA Astrophysics Data System (ADS)
Rong, R. W.; Ming, T. F.
2017-12-01
In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Ning; Gombos, Gergely; Mousavi, Mirrasoul J.
A new fault location algorithm for two-end series-compensated double-circuit transmission lines utilizing unsynchronized two-terminal current phasors and local voltage phasors is presented in this paper. The distributed parameter line model is adopted to take into account the shunt capacitance of the lines. The mutual coupling between the parallel lines in the zero-sequence network is also considered. The boundary conditions under different fault types are used to derive the fault location formulation. The developed algorithm directly uses the local voltage phasors on the line side of series compensation (SC) and metal oxide varistor (MOV). However, when potential transformers are not installedmore » on the line side of SC and MOVs for the local terminal, these measurements can be calculated from the local terminal bus voltage and currents by estimating the voltages across the SC and MOVs. MATLAB SimPowerSystems is used to generate cases under diverse fault conditions to evaluating accuracy. The simulation results show that the proposed algorithm is qualified for practical implementation.« less
NASA Astrophysics Data System (ADS)
Srivastava, D. C.
2016-12-01
A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observationsDeepak C. Srivastava, Prithvi Thakur and Pravin K. GuptaDepartment of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, India. Abstract Paleostress estimation from a group of heterogeneous fault-slip observations entails first the classification of the observations into homogeneous fault sets and then a separate inversion of each homogeneous set. This study combines these two issues into a nonlinear inverse problem and proposes a heuristic search method that inverts the heterogeneous fault-slip observations. The method estimates different paleostress states in a group of heterogeneous fault-slip observations and classifies it into homogeneous sets as a byproduct. It uses the genetic algorithm operators, elitism, selection, encoding, crossover and mutation. These processes translate into a guided search that finds successively fitter solutions and operate iteratively until the termination criteria is met and the globally fittest stress tensors are obtained. We explain the basic steps of the algorithm on a working example and demonstrate validity of the method on several synthetic and a natural group of heterogeneous fault-slip observations. The method is independent of any user-defined bias or any entrapment of solution in a local optimum. It succeeds even in the difficult situations where other classification methods are found to fail.
Polynomial-Time Algorithms for Building a Consensus MUL-Tree
Cui, Yun; Jansson, Jesper
2012-01-01
Abstract A multi-labeled phylogenetic tree, or MUL-tree, is a generalization of a phylogenetic tree that allows each leaf label to be used many times. MUL-trees have applications in biogeography, the study of host–parasite cospeciation, gene evolution studies, and computer science. Here, we consider the problem of inferring a consensus MUL-tree that summarizes a given set of conflicting MUL-trees, and present the first polynomial-time algorithms for solving it. In particular, we give a straightforward, fast algorithm for building a strict consensus MUL-tree for any input set of MUL-trees with identical leaf label multisets, as well as a polynomial-time algorithm for building a majority rule consensus MUL-tree for the special case where every leaf label occurs at most twice. We also show that, although it is NP-hard to find a majority rule consensus MUL-tree in general, the variant that we call the singular majority rule consensus MUL-tree can be constructed efficiently whenever it exists. PMID:22963134
Polynomial-time algorithms for building a consensus MUL-tree.
Cui, Yun; Jansson, Jesper; Sung, Wing-Kin
2012-09-01
A multi-labeled phylogenetic tree, or MUL-tree, is a generalization of a phylogenetic tree that allows each leaf label to be used many times. MUL-trees have applications in biogeography, the study of host-parasite cospeciation, gene evolution studies, and computer science. Here, we consider the problem of inferring a consensus MUL-tree that summarizes a given set of conflicting MUL-trees, and present the first polynomial-time algorithms for solving it. In particular, we give a straightforward, fast algorithm for building a strict consensus MUL-tree for any input set of MUL-trees with identical leaf label multisets, as well as a polynomial-time algorithm for building a majority rule consensus MUL-tree for the special case where every leaf label occurs at most twice. We also show that, although it is NP-hard to find a majority rule consensus MUL-tree in general, the variant that we call the singular majority rule consensus MUL-tree can be constructed efficiently whenever it exists.
Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.
Huson, Daniel H; Linz, Simone
2018-01-01
A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.
Wang, Jie-sheng; Li, Shu-xia; Gao, Jie
2014-01-01
For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.
NASA Astrophysics Data System (ADS)
Volkov, D.
2017-12-01
We introduce an algorithm for the simultaneous reconstruction of faults and slip fields on those faults. We define a regularized functional to be minimized for the reconstruction. We prove that the minimum of that functional converges to the unique solution of the related fault inverse problem. Due to inherent uncertainties in measurements, rather than seeking a deterministic solution to the fault inverse problem, we consider a Bayesian approach. The advantage of such an approach is that we obtain a way of quantifying uncertainties as part of our final answer. On the downside, this Bayesian approach leads to a very large computation. To contend with the size of this computation we developed an algorithm for the numerical solution to the stochastic minimization problem which can be easily implemented on a parallel multi-core platform and we discuss techniques to save on computational time. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data was recorded during a slow slip event in Guerrero, Mexico.
Fault-Tolerant Algorithms for Connectivity Restoration in Wireless Sensor Networks.
Zeng, Yali; Xu, Li; Chen, Zhide
2015-12-22
As wireless sensor network (WSN) is often deployed in a hostile environment, nodes in the networks are prone to large-scale failures, resulting in the network not working normally. In this case, an effective restoration scheme is needed to restore the faulty network timely. Most of existing restoration schemes consider more about the number of deployed nodes or fault tolerance alone, but fail to take into account the fact that network coverage and topology quality are also important to a network. To address this issue, we present two algorithms named Full 2-Connectivity Restoration Algorithm (F2CRA) and Partial 3-Connectivity Restoration Algorithm (P3CRA), which restore a faulty WSN in different aspects. F2CRA constructs the fan-shaped topology structure to reduce the number of deployed nodes, while P3CRA constructs the dual-ring topology structure to improve the fault tolerance of the network. F2CRA is suitable when the restoration cost is given the priority, and P3CRA is suitable when the network quality is considered first. Compared with other algorithms, these two algorithms ensure that the network has stronger fault-tolerant function, larger coverage area and better balanced load after the restoration.
The P-Mesh: A Commodity-based Scalable Network Architecture for Clusters
NASA Technical Reports Server (NTRS)
Nitzberg, Bill; Kuszmaul, Chris; Stockdale, Ian; Becker, Jeff; Jiang, John; Wong, Parkson; Tweten, David (Technical Monitor)
1998-01-01
We designed a new network architecture, the P-Mesh which combines the scalability and fault resilience of a torus with the performance of a switch. We compare the scalability, performance, and cost of the hub, switch, torus, tree, and P-Mesh architectures. The latter three are capable of scaling to thousands of nodes, however, the torus has severe performance limitations with that many processors. The tree and P-Mesh have similar latency, bandwidth, and bisection bandwidth, but the P-Mesh outperforms the switch architecture (a lower bound for tree performance) on 16-node NAB Parallel Benchmark tests by up to 23%, and costs 40% less. Further, the P-Mesh has better fault resilience characteristics. The P-Mesh architecture trades increased management overhead for lower cost, and is a good bridging technology while the price of tree uplinks is expensive.
NASA Astrophysics Data System (ADS)
Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare
2017-07-01
The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.
Fault Detection of Aircraft System with Random Forest Algorithm and Similarity Measure
Park, Wookje; Jung, Sikhang
2014-01-01
Research on fault detection algorithm was developed with the similarity measure and random forest algorithm. The organized algorithm was applied to unmanned aircraft vehicle (UAV) that was readied by us. Similarity measure was designed by the help of distance information, and its usefulness was also verified by proof. Fault decision was carried out by calculation of weighted similarity measure. Twelve available coefficients among healthy and faulty status data group were used to determine the decision. Similarity measure weighting was done and obtained through random forest algorithm (RFA); RF provides data priority. In order to get a fast response of decision, a limited number of coefficients was also considered. Relation of detection rate and amount of feature data were analyzed and illustrated. By repeated trial of similarity calculation, useful data amount was obtained. PMID:25057508
Case study: Optimizing fault model input parameters using bio-inspired algorithms
NASA Astrophysics Data System (ADS)
Plucar, Jan; Grunt, Onřej; Zelinka, Ivan
2017-07-01
We present a case study that demonstrates a bio-inspired approach in the process of finding optimal parameters for GSM fault model. This model is constructed using Petri Nets approach it represents dynamic model of GSM network environment in the suburban areas of Ostrava city (Czech Republic). We have been faced with a task of finding optimal parameters for an application that requires high amount of data transfers between the application itself and secure servers located in datacenter. In order to find the optimal set of parameters we employ bio-inspired algorithms such as Differential Evolution (DE) or Self Organizing Migrating Algorithm (SOMA). In this paper we present use of these algorithms, compare results and judge their performance in fault probability mitigation.
The 1992 Landers earthquake sequence; seismological observations
Egill Hauksson,; Jones, Lucile M.; Hutton, Kate; Eberhart-Phillips, Donna
1993-01-01
The (MW6.1, 7.3, 6.2) 1992 Landers earthquakes began on April 23 with the MW6.1 1992 Joshua Tree preshock and form the most substantial earthquake sequence to occur in California in the last 40 years. This sequence ruptured almost 100 km of both surficial and concealed faults and caused aftershocks over an area 100 km wide by 180 km long. The faulting was predominantly strike slip and three main events in the sequence had unilateral rupture to the north away from the San Andreas fault. The MW6.1 Joshua Tree preshock at 33°N58′ and 116°W19′ on 0451 UT April 23 was preceded by a tightly clustered foreshock sequence (M≤4.6) beginning 2 hours before the mainshock and followed by a large aftershock sequence with more than 6000 aftershocks. The aftershocks extended along a northerly trend from about 10 km north of the San Andreas fault, northwest of Indio, to the east-striking Pinto Mountain fault. The Mw7.3 Landers mainshock occurred at 34°N13′ and 116°W26′ at 1158 UT, June 28, 1992, and was preceded for 12 hours by 25 small M≤3 earthquakes at the mainshock epicenter. The distribution of more than 20,000 aftershocks, analyzed in this study, and short-period focal mechanisms illuminate a complex sequence of faulting. The aftershocks extend 60 km to the north of the mainshock epicenter along a system of at least five different surficial faults, and 40 km to the south, crossing the Pinto Mountain fault through the Joshua Tree aftershock zone towards the San Andreas fault near Indio. The rupture initiated in the depth range of 3–6 km, similar to previous M∼5 earthquakes in the region, although the maximum depth of aftershocks is about 15 km. The mainshock focal mechanism showed right-lateral strike-slip faulting with a strike of N10°W on an almost vertical fault. The rupture formed an arclike zone well defined by both surficial faulting and aftershocks, with more westerly faulting to the north. This change in strike is accomplished by jumping across dilational jogs connecting surficial faults with strikes rotated progressively to the west. A 20-km-long linear cluster of aftershocks occurred 10–20 km north of Barstow, or 30–40 km north of the end of the mainshock rupture. The most prominent off-fault aftershock cluster occurred 30 km to the west of the Landers mainshock. The largest aftershock was within this cluster, the Mw6.2 Big Bear aftershock occurring at 34°N10′ and 116°W49′ at 1505 UT June 28. It exhibited left-lateral strike-slip faulting on a northeast striking and steeply dipping plane. The Big Bear aftershocks form a linear trend extending 20 km to the northeast with a scattered distribution to the north. The Landers mainshock occurred near the southernmost extent of the Eastern California Shear Zone, an 80-km-wide, more than 400-km-long zone of deformation. This zone extends into the Death Valley region and accommodates about 10 to 20% of the plate motion between the Pacific and North American plates. The Joshua Tree preshock, its aftershocks, and Landers aftershocks form a previously missing link that connects the Eastern California Shear Zone to the southern San Andreas fault.
Trust index based fault tolerant multiple event localization algorithm for WSNs.
Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue
2011-01-01
This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms.
Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs
Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue
2011-01-01
This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms. PMID:22163972
Layered clustering multi-fault diagnosis for hydraulic piston pump
NASA Astrophysics Data System (ADS)
Du, Jun; Wang, Shaoping; Zhang, Haiyan
2013-04-01
Efficient diagnosis is very important for improving reliability and performance of aircraft hydraulic piston pump, and it is one of the key technologies in prognostic and health management system. In practice, due to harsh working environment and heavy working loads, multiple faults of an aircraft hydraulic pump may occur simultaneously after long time operations. However, most existing diagnosis methods can only distinguish pump faults that occur individually. Therefore, new method needs to be developed to realize effective diagnosis of simultaneous multiple faults on aircraft hydraulic pump. In this paper, a new method based on the layered clustering algorithm is proposed to diagnose multiple faults of an aircraft hydraulic pump that occur simultaneously. The intensive failure mechanism analyses of the five main types of faults are carried out, and based on these analyses the optimal combination and layout of diagnostic sensors is attained. The three layered diagnosis reasoning engine is designed according to the faults' risk priority number and the characteristics of different fault feature extraction methods. The most serious failures are first distinguished with the individual signal processing. To the desultory faults, i.e., swash plate eccentricity and incremental clearance increases between piston and slipper, the clustering diagnosis algorithm based on the statistical average relative power difference (ARPD) is proposed. By effectively enhancing the fault features of these two faults, the ARPDs calculated from vibration signals are employed to complete the hypothesis testing. The ARPDs of the different faults follow different probability distributions. Compared with the classical fast Fourier transform-based spectrum diagnosis method, the experimental results demonstrate that the proposed algorithm can diagnose the multiple faults, which occur synchronously, with higher precision and reliability.
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement
Hao, Yansong; Song, Liuyang; Tang, Gang; Yuan, Hongfang
2018-01-01
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency. PMID:29597280
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement.
Ren, Bangyue; Hao, Yansong; Wang, Huaqing; Song, Liuyang; Tang, Gang; Yuan, Hongfang
2018-03-28
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency.
Wang, Xueyi
2012-02-08
The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.
Decision tree and ensemble learning algorithms with their applications in bioinformatics.
Che, Dongsheng; Liu, Qi; Rasheed, Khaled; Tao, Xiuping
2011-01-01
Machine learning approaches have wide applications in bioinformatics, and decision tree is one of the successful approaches applied in this field. In this chapter, we briefly review decision tree and related ensemble algorithms and show the successful applications of such approaches on solving biological problems. We hope that by learning the algorithms of decision trees and ensemble classifiers, biologists can get the basic ideas of how machine learning algorithms work. On the other hand, by being exposed to the applications of decision trees and ensemble algorithms in bioinformatics, computer scientists can get better ideas of which bioinformatics topics they may work on in their future research directions. We aim to provide a platform to bridge the gap between biologists and computer scientists.
Fault-tolerant dynamic task graph scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal
2014-11-16
In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space andmore » time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.« less
Reliability analysis of the solar array based on Fault Tree Analysis
NASA Astrophysics Data System (ADS)
Jianing, Wu; Shaoze, Yan
2011-07-01
The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.
Fault Modeling of Extreme Scale Applications Using Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnu, Abhinav; Dam, Hubertus van; Tallent, Nathan R.
Faults are commonplace in large scale systems. These systems experience a variety of faults such as transient, permanent and intermittent. Multi-bit faults are typically not corrected by the hardware resulting in an error. Here, this paper attempts to answer an important question: Given a multi-bit fault in main memory, will it result in an application error — and hence a recovery algorithm should be invoked — or can it be safely ignored? We propose an application fault modeling methodology to answer this question. Given a fault signature (a set of attributes comprising of system and application state), we use machinemore » learning to create a model which predicts whether a multibit permanent/transient main memory fault will likely result in error. We present the design elements such as the fault injection methodology for covering important data structures, the application and system attributes which should be used for learning the model, the supervised learning algorithms (and potentially ensembles), and important metrics. Lastly, we use three applications — NWChem, LULESH and SVM — as examples for demonstrating the effectiveness of the proposed fault modeling methodology.« less
Fault Modeling of Extreme Scale Applications Using Machine Learning
Vishnu, Abhinav; Dam, Hubertus van; Tallent, Nathan R.; ...
2016-05-01
Faults are commonplace in large scale systems. These systems experience a variety of faults such as transient, permanent and intermittent. Multi-bit faults are typically not corrected by the hardware resulting in an error. Here, this paper attempts to answer an important question: Given a multi-bit fault in main memory, will it result in an application error — and hence a recovery algorithm should be invoked — or can it be safely ignored? We propose an application fault modeling methodology to answer this question. Given a fault signature (a set of attributes comprising of system and application state), we use machinemore » learning to create a model which predicts whether a multibit permanent/transient main memory fault will likely result in error. We present the design elements such as the fault injection methodology for covering important data structures, the application and system attributes which should be used for learning the model, the supervised learning algorithms (and potentially ensembles), and important metrics. Lastly, we use three applications — NWChem, LULESH and SVM — as examples for demonstrating the effectiveness of the proposed fault modeling methodology.« less
Fault tree safety analysis of a large Li/SOCl(sub)2 spacecraft battery
NASA Technical Reports Server (NTRS)
Uy, O. Manuel; Maurer, R. H.
1987-01-01
The results of the safety fault tree analysis on the eight module, 576 F cell Li/SOCl2 battery on the spacecraft and in the integration and test environment prior to launch on the ground are presented. The analysis showed that with the right combination of blocking diodes, electrical fuses, thermal fuses, thermal switches, cell balance, cell vents, and battery module vents the probability of a single cell or a 72 cell module exploding can be reduced to .000001, essentially the probability due to explosion for unexplained reasons.
A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.
Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F
2018-03-01
Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.
A Regularizer Approach for RBF Networks Under the Concurrent Weight Failure Situation.
Leung, Chi-Sing; Wan, Wai Yan; Feng, Ruibin
2017-06-01
Many existing results on fault-tolerant algorithms focus on the single fault source situation, where a trained network is affected by one kind of weight failure. In fact, a trained network may be affected by multiple kinds of weight failure. This paper first studies how the open weight fault and the multiplicative weight noise degrade the performance of radial basis function (RBF) networks. Afterward, we define the objective function for training fault-tolerant RBF networks. Based on the objective function, we then develop two learning algorithms, one batch mode and one online mode. Besides, the convergent conditions of our online algorithm are investigated. Finally, we develop a formula to estimate the test set error of faulty networks trained from our approach. This formula helps us to optimize some tuning parameters, such as RBF width.
Zhang, Yao; Tang, Shengjing; Guo, Jie
2017-11-01
In this paper, a novel adaptive-gain fast super-twisting (AGFST) sliding mode attitude control synthesis is carried out for a reusable launch vehicle subject to actuator faults and unknown disturbances. According to the fast nonsingular terminal sliding mode surface (FNTSMS) and adaptive-gain fast super-twisting algorithm, an adaptive fault tolerant control law for the attitude stabilization is derived to protect against the actuator faults and unknown uncertainties. Firstly, a second-order nonlinear control-oriented model for the RLV is established by feedback linearization method. And on the basis a fast nonsingular terminal sliding mode (FNTSM) manifold is designed, which provides fast finite-time global convergence and avoids singularity problem as well as chattering phenomenon. Based on the merits of the standard super-twisting (ST) algorithm and fast reaching law with adaption, a novel adaptive-gain fast super-twisting (AGFST) algorithm is proposed for the finite-time fault tolerant attitude control problem of the RLV without any knowledge of the bounds of uncertainties and actuator faults. The important feature of the AGFST algorithm includes non-overestimating the values of the control gains and faster convergence speed than the standard ST algorithm. A formal proof of the finite-time stability of the closed-loop system is derived using the Lyapunov function technique. An estimation of the convergence time and accurate expression of convergence region are also provided. Finally, simulations are presented to illustrate the effectiveness and superiority of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A comparative study of sensor fault diagnosis methods based on observer for ECAS system
NASA Astrophysics Data System (ADS)
Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli
2017-03-01
The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.
cost and benefits optimization model for fault-tolerant aircraft electronic systems
NASA Technical Reports Server (NTRS)
1983-01-01
The factors involved in economic assessment of fault tolerant systems (FTS) and fault tolerant flight control systems (FTFCS) are discussed. Algorithms for optimization and economic analysis of FTFCS are documented.
Fault tolerant control of multivariable processes using auto-tuning PID controller.
Yu, Ding-Li; Chang, T K; Yu, Ding-Wen
2005-02-01
Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.
An uncertainty-based distributed fault detection mechanism for wireless sensor networks.
Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong
2014-04-25
Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio.
Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zappala, D.; Tavner, P.; Crabtree, C.
2013-01-01
Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data representmore » one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.« less
Bayes Forest: a data-intensive generator of morphological tree clones
Järvenpää, Marko; Åkerblom, Markku; Raumonen, Pasi; Kaasalainen, Mikko
2017-01-01
Abstract Detailed and realistic tree form generators have numerous applications in ecology and forestry. For example, the varying morphology of trees contributes differently to formation of landscapes, natural habitats of species, and eco-physiological characteristics of the biosphere. Here, we present an algorithm for generating morphological tree “clones” based on the detailed reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth model with simple stochastic rules. The algorithm is designed to produce tree forms, i.e., morphological clones, similar (and not identical) in respect to tree-level structure, but varying in fine-scale structural detail. Although we opted for certain choices in our algorithm, individual parts may vary depending on the application, making it a general adaptable pipeline. Namely, we showed that a specific multipurpose procedural stochastic growth model can be algorithmically adjusted to produce the morphological clones replicated from the target experimentally measured tree. For this, we developed a statistical measure of similarity (structural distance) between any given pair of trees, which allows for the comprehensive comparing of the tree morphologies by means of empirical distributions describing the geometrical and topological features of a tree. Finally, we developed a programmable interface to manipulate data required by the algorithm. Our algorithm can be used in a variety of applications for exploration of the morphological potential of the growth models (both theoretical and experimental), arising in all sectors of plant science research. PMID:29020742
A computational framework for prime implicants identification in noncoherent dynamic systems.
Di Maio, Francesco; Baronchelli, Samuele; Zio, Enrico
2015-01-01
Dynamic reliability methods aim at complementing the capability of traditional static approaches (e.g., event trees [ETs] and fault trees [FTs]) by accounting for the system dynamic behavior and its interactions with the system state transition process. For this, the system dynamics is here described by a time-dependent model that includes the dependencies with the stochastic transition events. In this article, we present a novel computational framework for dynamic reliability analysis whose objectives are i) accounting for discrete stochastic transition events and ii) identifying the prime implicants (PIs) of the dynamic system. The framework entails adopting a multiple-valued logic (MVL) to consider stochastic transitions at discretized times. Then, PIs are originally identified by a differential evolution (DE) algorithm that looks for the optimal MVL solution of a covering problem formulated for MVL accident scenarios. For testing the feasibility of the framework, a dynamic noncoherent system composed of five components that can fail at discretized times has been analyzed, showing the applicability of the framework to practical cases. © 2014 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Maillard, Philippe; Gomes, Marília F.
2016-06-01
This article presents an original algorithm created to detect and count trees in orchards using very high resolution images. The algorithm is based on an adaptation of the "template matching" image processing approach, in which the template is based on a "geometricaloptical" model created from a series of parameters, such as illumination angles, maximum and ambient radiance, and tree size specifications. The algorithm is tested on four images from different regions of the world and different crop types. These images all have < 1 meter spatial resolution and were downloaded from the GoogleEarth application. Results show that the algorithm is very efficient at detecting and counting trees as long as their spectral and spatial characteristics are relatively constant. For walnut, mango and orange trees, the overall accuracy was clearly above 90%. However, the overall success rate for apple trees fell under 75%. It appears that the openness of the apple tree crown is most probably responsible for this poorer result. The algorithm is fully explained with a step-by-step description. At this stage, the algorithm still requires quite a bit of user interaction. The automatic determination of most of the required parameters is under development.
Uniform California earthquake rupture forecast, version 3 (UCERF3): the time-independent model
Field, Edward H.; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David D.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin R.; Page, Morgan T.; Parsons, Thomas; Powers, Peter M.; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua; ,
2013-01-01
In this report we present the time-independent component of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes in California. The primary achievements have been to relax fault segmentation assumptions and to include multifault ruptures, both limitations of the previous model (UCERF2). The rates of all earthquakes are solved for simultaneously, and from a broader range of data, using a system-level "grand inversion" that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (for example, magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1,440 alternative logic tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (fault slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M≥5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on faults previously excluded because of lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual faults. UCERF3 is still an approximation of the system, however, and the range of models is limited (for example, constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of M6.5–7 earthquake rates and also includes types of multifault ruptures seen in nature. Although UCERF3 fits the data better than UCERF2 overall, there may be areas that warrant further site-specific investigation. Supporting products may be of general interest, and we list key assumptions and avenues for future model improvements.
A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389
NASA Astrophysics Data System (ADS)
LI, Y.; Yang, S. H.
2017-05-01
The Antarctica astronomical telescopes work chronically on the top of the unattended South Pole, and they have only one chance to maintain every year. Due to the complexity of the optical, mechanical, and electrical systems, the telescopes are hard to be maintained and need multi-tasker expedition teams, which means an excessive awareness is essential for the reliability of the Antarctica telescopes. Based on the fault mechanism and fault mode of the main-axis control system for the equatorial Antarctica astronomical telescope AST3-3 (Antarctic Schmidt Telescopes 3-3), the method of fault tree analysis is introduced in this article, and we obtains the importance degree of the top event from the importance degree of the bottom event structure. From the above results, the hidden problems and weak links can be effectively found out, which will indicate the direction for promoting the stability of the system and optimizing the design of the system.
Li, Dan; Hu, Xiaoguang
2017-03-01
Because of the high availability requirements from weapon equipment, an in-depth study has been conducted on the real-time fault-tolerance of the widely applied Compact PCI (CPCI) bus measurement and control system. A redundancy design method that uses heartbeat detection to connect the primary and alternate devices has been developed. To address the low successful execution rate and relatively large waste of time slices in the primary version of the task software, an improved algorithm for real-time fault-tolerant scheduling is proposed based on the Basic Checking available time Elimination idle time (BCE) algorithm, applying a single-neuron self-adaptive proportion sum differential (PSD) controller. The experimental validation results indicate that this system has excellent redundancy and fault-tolerance, and the newly developed method can effectively improve the system availability. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fault tree analysis of most common rolling bearing tribological failures
NASA Astrophysics Data System (ADS)
Vencl, Aleksandar; Gašić, Vlada; Stojanović, Blaža
2017-02-01
Wear as a tribological process has a major influence on the reliability and life of rolling bearings. Field examinations of bearing failures due to wear indicate possible causes and point to the necessary measurements for wear reduction or elimination. Wear itself is a very complex process initiated by the action of different mechanisms, and can be manifested by different wear types which are often related. However, the dominant type of wear can be approximately determined. The paper presents the classification of most common bearing damages according to the dominant wear type, i.e. abrasive wear, adhesive wear, surface fatigue wear, erosive wear, fretting wear and corrosive wear. The wear types are correlated with the terms used in ISO 15243 standard. Each wear type is illustrated with an appropriate photograph, and for each wear type, appropriate description of causes and manifestations is presented. Possible causes of rolling bearing failure are used for the fault tree analysis (FTA). It was performed to determine the root causes for bearing failures. The constructed fault tree diagram for rolling bearing failure can be useful tool for maintenance engineers.
Renjith, V R; Madhu, G; Nayagam, V Lakshmana Gomathi; Bhasi, A B
2010-11-15
The hazards associated with major accident hazard (MAH) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identification and quantification of these hazards related to chemical industries. Fault tree analysis (FTA) is an established technique in hazard identification. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. This paper outlines the estimation of the probability of release of chlorine from storage and filling facility of chlor-alkali industry using FTA. An attempt has also been made to arrive at the probability of chlorine release using expert elicitation and proven fuzzy logic technique for Indian conditions. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two-dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor involved in expert elicitation. Copyright © 2010 Elsevier B.V. All rights reserved.
Pruning Rogue Taxa Improves Phylogenetic Accuracy: An Efficient Algorithm and Webservice
Aberer, Andre J.; Krompass, Denis; Stamatakis, Alexandros
2013-01-01
Abstract The presence of rogue taxa (rogues) in a set of trees can frequently have a negative impact on the results of a bootstrap analysis (e.g., the overall support in consensus trees). We introduce an efficient graph-based algorithm for rogue taxon identification as well as an interactive webservice implementing this algorithm. Compared with our previous method, the new algorithm is up to 4 orders of magnitude faster, while returning qualitatively identical results. Because of this significant improvement in scalability, the new algorithm can now identify substantially more complex and compute-intensive rogue taxon constellations. On a large and diverse collection of real-world data sets, we show that our method yields better supported reduced/pruned consensus trees than any competing rogue taxon identification method. Using the parallel version of our open-source code, we successfully identified rogue taxa in a set of 100 trees with 116 334 taxa each. For simulated data sets, we show that when removing/pruning rogue taxa with our method from a tree set, we consistently obtain bootstrap consensus trees as well as maximum-likelihood trees that are topologically closer to the respective true trees. PMID:22962004
Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice.
Aberer, Andre J; Krompass, Denis; Stamatakis, Alexandros
2013-01-01
The presence of rogue taxa (rogues) in a set of trees can frequently have a negative impact on the results of a bootstrap analysis (e.g., the overall support in consensus trees). We introduce an efficient graph-based algorithm for rogue taxon identification as well as an interactive webservice implementing this algorithm. Compared with our previous method, the new algorithm is up to 4 orders of magnitude faster, while returning qualitatively identical results. Because of this significant improvement in scalability, the new algorithm can now identify substantially more complex and compute-intensive rogue taxon constellations. On a large and diverse collection of real-world data sets, we show that our method yields better supported reduced/pruned consensus trees than any competing rogue taxon identification method. Using the parallel version of our open-source code, we successfully identified rogue taxa in a set of 100 trees with 116 334 taxa each. For simulated data sets, we show that when removing/pruning rogue taxa with our method from a tree set, we consistently obtain bootstrap consensus trees as well as maximum-likelihood trees that are topologically closer to the respective true trees.
Concurrent computation of attribute filters on shared memory parallel machines.
Wilkinson, Michael H F; Gao, Hui; Hesselink, Wim H; Jonker, Jan-Eppo; Meijster, Arnold
2008-10-01
Morphological attribute filters have not previously been parallelized, mainly because they are both global and non-separable. We propose a parallel algorithm that achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings and thickenings, based on Salembier's Max-Trees and Min-trees. The image or volume is first partitioned in multiple slices. We then compute the Max-trees of each slice using any sequential Max-Tree algorithm. Subsequently, the Max-trees of the slices can be merged to obtain the Max-tree of the image. A C-implementation yielded good speed-ups on both a 16-processor MIPS 14000 parallel machine, and a dual-core Opteron-based machine. It is shown that the speed-up of the parallel algorithm is a direct measure of the gain with respect to the sequential algorithm used. Furthermore, the concurrent algorithm shows a speed gain of up to 72 percent on a single-core processor, due to reduced cache thrashing.
Wang, Tianyang; Chu, Fulei; Han, Qinkai
2017-03-01
Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
An Uncertainty-Based Distributed Fault Detection Mechanism for Wireless Sensor Networks
Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong
2014-01-01
Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio. PMID:24776937
NASA Astrophysics Data System (ADS)
Zhang, W.; Jia, M. P.
2018-06-01
When incipient fault appear in the rolling bearing, the fault feature is too small and easily submerged in the strong background noise. In this paper, wavelet total variation denoising based on kurtosis (Kurt-WATV) is studied, which can extract the incipient fault feature of the rolling bearing more effectively. The proposed algorithm contains main steps: a) establish a sparse diagnosis model, b) represent periodic impulses based on the redundant wavelet dictionary, c) solve the joint optimization problem by alternating direction method of multipliers (ADMM), d) obtain the reconstructed signal using kurtosis value as criterion and then select optimal wavelet subbands. This paper uses overcomplete rational-dilation wavelet transform (ORDWT) as a dictionary, and adjusts the control parameters to achieve the concentration in the time-frequency plane. Incipient fault of rolling bearing is used as an example, and the result shows that the effectiveness and superiority of the proposed Kurt- WATV bearing fault diagnosis algorithm.
Development and validation of techniques for improving software dependability
NASA Technical Reports Server (NTRS)
Knight, John C.
1992-01-01
A collection of document abstracts are presented on the topic of improving software dependability through NASA grant NAG-1-1123. Specific topics include: modeling of error detection; software inspection; test cases; Magnetic Stereotaxis System safety specifications and fault trees; and injection of synthetic faults into software.
Trade Studies of Space Launch Architectures using Modular Probabilistic Risk Analysis
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Go, Susie
2006-01-01
A top-down risk assessment in the early phases of space exploration architecture development can provide understanding and intuition of the potential risks associated with new designs and technologies. In this approach, risk analysts draw from their past experience and the heritage of similar existing systems as a source for reliability data. This top-down approach captures the complex interactions of the risk driving parts of the integrated system without requiring detailed knowledge of the parts themselves, which is often unavailable in the early design stages. Traditional probabilistic risk analysis (PRA) technologies, however, suffer several drawbacks that limit their timely application to complex technology development programs. The most restrictive of these is a dependence on static planning scenarios, expressed through fault and event trees. Fault trees incorporating comprehensive mission scenarios are routinely constructed for complex space systems, and several commercial software products are available for evaluating fault statistics. These static representations cannot capture the dynamic behavior of system failures without substantial modification of the initial tree. Consequently, the development of dynamic models using fault tree analysis has been an active area of research in recent years. This paper discusses the implementation and demonstration of dynamic, modular scenario modeling for integration of subsystem fault evaluation modules using the Space Architecture Failure Evaluation (SAFE) tool. SAFE is a C++ code that was originally developed to support NASA s Space Launch Initiative. It provides a flexible framework for system architecture definition and trade studies. SAFE supports extensible modeling of dynamic, time-dependent risk drivers of the system and functions at the level of fidelity for which design and failure data exists. The approach is scalable, allowing inclusion of additional information as detailed data becomes available. The tool performs a Monte Carlo analysis to provide statistical estimates. Example results of an architecture system reliability study are summarized for an exploration system concept using heritage data from liquid-fueled expendable Saturn V/Apollo launch vehicles.
Phylogenetic search through partial tree mixing
2012-01-01
Background Recent advances in sequencing technology have created large data sets upon which phylogenetic inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on tens of thousands of species in a reasonable amount of time through several innovative search techniques. Results When compared to popular phylogenetic search algorithms, better trees are found much more quickly for large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/psoda Conclusions The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the overall optimal phylogenetic solution. PMID:23320449
NASA Astrophysics Data System (ADS)
Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Murray, J. R.
2016-12-01
Finite-fault source algorithms can greatly benefit earthquake early warning (EEW) systems. Estimates of finite-fault parameters provide spatial information, which can significantly improve real-time shaking calculations and help with disaster response. In this project, we have focused on integrating a finite-fault seismic-geodetic algorithm into the West Coast ShakeAlert framework. The seismic part is FinDer 2, a C++ version of the algorithm developed by Böse et al. (2012). It interpolates peak ground accelerations and calculates the best fault length and strike from template matching. The geodetic part is a C++ version of BEFORES, the algorithm developed by Minson et al. (2014) that uses a Bayesian methodology to search for the most probable slip distribution on a fault of unknown orientation. Ultimately, these two will be used together where FinDer generates a Bayesian prior for BEFORES via the methodology of Minson et al. (2015), and the joint solution will generate estimates of finite-fault extent, strike, dip, best slip distribution, and magnitude. We have created C++ versions of both FinDer and BEFORES using open source libraries and have developed a C++ Application Protocol Interface (API) for them both. Their APIs allow FinDer and BEFORES to contribute to the ShakeAlert system via an open source messaging system, ActiveMQ. FinDer has been receiving real-time data, detecting earthquakes, and reporting messages on the development system for several months. We are also testing FinDer extensively with Earthworm tankplayer files. BEFORES has been tested with ActiveMQ messaging in the ShakeAlert framework, and works off a FinDer trigger. We are finishing the FinDer-BEFORES connections in this framework, and testing this system via seismic-geodetic tankplayer files. This will include actual and simulated data.
Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Stephen; Heaney, Michael; Jin, Xin
Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Stephen; Heaney, Michael; Jin, Xin
Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less
Survey of critical failure events in on-chip interconnect by fault tree analysis
NASA Astrophysics Data System (ADS)
Yokogawa, Shinji; Kunii, Kyousuke
2018-07-01
In this paper, a framework based on reliability physics is proposed for adopting fault tree analysis (FTA) to the on-chip interconnect system of a semiconductor. By integrating expert knowledge and experience regarding the possibilities of failure on basic events, critical issues of on-chip interconnect reliability will be evaluated by FTA. In particular, FTA is used to identify the minimal cut sets with high risk priority. Critical events affecting the on-chip interconnect reliability are identified and discussed from the viewpoint of long-term reliability assessment. The moisture impact is evaluated as an external event.
Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine
2009-03-05
In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.
Soft-Fault Detection Technologies Developed for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.
2004-01-01
The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.
Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng
2017-07-12
As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.
A seismic fault recognition method based on ant colony optimization
NASA Astrophysics Data System (ADS)
Chen, Lei; Xiao, Chuangbai; Li, Xueliang; Wang, Zhenli; Huo, Shoudong
2018-05-01
Fault recognition is an important section in seismic interpretation and there are many methods for this technology, but no one can recognize fault exactly enough. For this problem, we proposed a new fault recognition method based on ant colony optimization which can locate fault precisely and extract fault from the seismic section. Firstly, seismic horizons are extracted by the connected component labeling algorithm; secondly, the fault location are decided according to the horizontal endpoints of each horizon; thirdly, the whole seismic section is divided into several rectangular blocks and the top and bottom endpoints of each rectangular block are considered as the nest and food respectively for the ant colony optimization algorithm. Besides that, the positive section is taken as an actual three dimensional terrain by using the seismic amplitude as a height. After that, the optimal route from nest to food calculated by the ant colony in each block is judged as a fault. Finally, extensive comparative tests were performed on the real seismic data. Availability and advancement of the proposed method were validated by the experimental results.
Framework for a space shuttle main engine health monitoring system
NASA Technical Reports Server (NTRS)
Hawman, Michael W.; Galinaitis, William S.; Tulpule, Sharayu; Mattedi, Anita K.; Kamenetz, Jeffrey
1990-01-01
A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available.
Fuzzy α-minimum spanning tree problem: definition and solutions
NASA Astrophysics Data System (ADS)
Zhou, Jian; Chen, Lu; Wang, Ke; Yang, Fan
2016-04-01
In this paper, the minimum spanning tree problem is investigated on the graph with fuzzy edge weights. The notion of fuzzy ? -minimum spanning tree is presented based on the credibility measure, and then the solutions of the fuzzy ? -minimum spanning tree problem are discussed under different assumptions. First, we respectively, assume that all the edge weights are triangular fuzzy numbers and trapezoidal fuzzy numbers and prove that the fuzzy ? -minimum spanning tree problem can be transformed to a classical problem on a crisp graph in these two cases, which can be solved by classical algorithms such as the Kruskal algorithm and the Prim algorithm in polynomial time. Subsequently, as for the case that the edge weights are general fuzzy numbers, a fuzzy simulation-based genetic algorithm using Prüfer number representation is designed for solving the fuzzy ? -minimum spanning tree problem. Some numerical examples are also provided for illustrating the effectiveness of the proposed solutions.
Stolzer, Maureen; Lai, Han; Xu, Minli; Sathaye, Deepa; Vernot, Benjamin; Durand, Dannie
2012-09-15
Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile non-binary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung. mstolzer@andrew.cmu.edu.
Analysis of a hardware and software fault tolerant processor for critical applications
NASA Technical Reports Server (NTRS)
Dugan, Joanne B.
1993-01-01
Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.
Sum, John Pui-Fai; Leung, Chi-Sing; Ho, Kevin I-J
2012-02-01
Improving fault tolerance of a neural network has been studied for more than two decades. Various training algorithms have been proposed in sequel. The on-line node fault injection-based algorithm is one of these algorithms, in which hidden nodes randomly output zeros during training. While the idea is simple, theoretical analyses on this algorithm are far from complete. This paper presents its objective function and the convergence proof. We consider three cases for multilayer perceptrons (MLPs). They are: (1) MLPs with single linear output node; (2) MLPs with multiple linear output nodes; and (3) MLPs with single sigmoid output node. For the convergence proof, we show that the algorithm converges with probability one. For the objective function, we show that the corresponding objective functions of cases (1) and (2) are of the same form. They both consist of a mean square errors term, a regularizer term, and a weight decay term. For case (3), the objective function is slight different from that of cases (1) and (2). With the objective functions derived, we can compare the similarities and differences among various algorithms and various cases.
Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding
Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping
2015-01-01
Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771
Determining preventability of pediatric readmissions using fault tree analysis.
Jonas, Jennifer A; Devon, Erin Pete; Ronan, Jeanine C; Ng, Sonia C; Owusu-McKenzie, Jacqueline Y; Strausbaugh, Janet T; Fieldston, Evan S; Hart, Jessica K
2016-05-01
Previous studies attempting to distinguish preventable from nonpreventable readmissions reported challenges in completing reviews efficiently and consistently. (1) Examine the efficiency and reliability of a Web-based fault tree tool designed to guide physicians through chart reviews to a determination about preventability. (2) Investigate root causes of general pediatrics readmissions and identify the percent that are preventable. General pediatricians from The Children's Hospital of Philadelphia used a Web-based fault tree tool to classify root causes of all general pediatrics 15-day readmissions in 2014. The tool guided reviewers through a logical progression of questions, which resulted in 1 of 18 root causes of readmission, 8 of which were considered potentially preventable. Twenty percent of cases were cross-checked to measure inter-rater reliability. Of the 7252 discharges, 248 were readmitted, for an all-cause general pediatrics 15-day readmission rate of 3.4%. Of those readmissions, 15 (6.0%) were deemed potentially preventable, corresponding to 0.2% of total discharges. The most common cause of potentially preventable readmissions was premature discharge. For the 50 cross-checked cases, both reviews resulted in the same root cause for 44 (86%) of files (κ = 0.79; 95% confidence interval: 0.60-0.98). Completing 1 review using the tool took approximately 20 minutes. The Web-based fault tree tool helped physicians to identify root causes of hospital readmissions and classify them as either preventable or not preventable in an efficient and consistent way. It also confirmed that only a small percentage of general pediatrics 15-day readmissions are potentially preventable. Journal of Hospital Medicine 2016;11:329-335. © 2016 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Zhiwen; Miao, Qiang; Wang, Lei
2018-07-01
Condition monitoring and fault diagnosis of rolling element bearings are significant to guarantee the reliability and functionality of a mechanical system, production efficiency, and plant safety. However, this is almost invariably a formidable challenge because the fault features are often buried by strong background noises and other unstable interference components. To satisfactorily extract the bearing fault features, a whale optimization algorithm (WOA)-optimized orthogonal matching pursuit (OMP) with a combined time-frequency atom dictionary is proposed in this paper. Firstly, a combined time-frequency atom dictionary whose atom is a combination of Fourier dictionary atom and impact time-frequency dictionary atom is designed according to the properties of bearing fault vibration signal. Furthermore, to improve the efficiency and accuracy of signal sparse representation, the WOA is introduced into the OMP algorithm to optimize the atom parameters for best approximating the original signal with the dictionary atoms. The proposed method is validated through analyzing the bearing fault simulation signal and the real vibration signals collected from an experimental bearing and a wheelset bearing of high-speed trains. The comparisons with the respect to the state of the art in the field are illustrated in detail, which highlight the advantages of the proposed method.
Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati
2010-12-20
Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.
Risk Analysis of Return Support Material on Gas Compressor Platform Project
NASA Astrophysics Data System (ADS)
Silvianita; Aulia, B. U.; Khakim, M. L. N.; Rosyid, Daniel M.
2017-07-01
On a fixed platforms project are not only carried out by a contractor, but two or more contractors. Cooperation in the construction of fixed platforms is often not according to plan, it is caused by several factors. It takes a good synergy between the contractor to avoid miss communication may cause problems on the project. For the example is about support material (sea fastening, skid shoe and shipping support) used in the process of sending a jacket structure to operation place often does not return to the contractor. It needs a systematic method to overcome the problem of support material. This paper analyses the causes and effects of GAS Compressor Platform that support material is not return, using Fault Tree Analysis (FTA) and Event Tree Analysis (ETA). From fault tree analysis, the probability of top event is 0.7783. From event tree analysis diagram, the contractors lose Rp.350.000.000, - to Rp.10.000.000.000, -.
Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis
NASA Astrophysics Data System (ADS)
Kumar, Ranjan; Ghosh, Achyuta Krishna
2017-04-01
Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.
NASA Astrophysics Data System (ADS)
Le, Zichun; Suo, Kaihua; Fu, Minglei; Jiang, Ling; Dong, Wen
2012-03-01
In order to minimize the average end to end delay for data transporting in hybrid wireless optical broadband access network, a novel routing algorithm named MSTMCF (minimum spanning tree and minimum cost flow) is devised. The routing problem is described as a minimum spanning tree and minimum cost flow model and corresponding algorithm procedures are given. To verify the effectiveness of MSTMCF algorithm, extensively simulations based on OWNS have been done under different types of traffic source.
NASA Astrophysics Data System (ADS)
Li, Yongbo; Li, Guoyan; Yang, Yuantao; Liang, Xihui; Xu, Minqiang
2018-05-01
The fault diagnosis of planetary gearboxes is crucial to reduce the maintenance costs and economic losses. This paper proposes a novel fault diagnosis method based on adaptive multi-scale morphological filter (AMMF) and modified hierarchical permutation entropy (MHPE) to identify the different health conditions of planetary gearboxes. In this method, AMMF is firstly adopted to remove the fault-unrelated components and enhance the fault characteristics. Second, MHPE is utilized to extract the fault features from the denoised vibration signals. Third, Laplacian score (LS) approach is employed to refine the fault features. In the end, the obtained features are fed into the binary tree support vector machine (BT-SVM) to accomplish the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault categories of planetary gearboxes.
Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed
2016-07-01
Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Exact solutions for species tree inference from discordant gene trees.
Chang, Wen-Chieh; Górecki, Paweł; Eulenstein, Oliver
2013-10-01
Phylogenetic analysis has to overcome the grant challenge of inferring accurate species trees from evolutionary histories of gene families (gene trees) that are discordant with the species tree along whose branches they have evolved. Two well studied approaches to cope with this challenge are to solve either biologically informed gene tree parsimony (GTP) problems under gene duplication, gene loss, and deep coalescence, or the classic RF supertree problem that does not rely on any biological model. Despite the potential of these problems to infer credible species trees, they are NP-hard. Therefore, these problems are addressed by heuristics that typically lack any provable accuracy and precision. We describe fast dynamic programming algorithms that solve the GTP problems and the RF supertree problem exactly, and demonstrate that our algorithms can solve instances with data sets consisting of as many as 22 taxa. Extensions of our algorithms can also report the number of all optimal species trees, as well as the trees themselves. To better asses the quality of the resulting species trees that best fit the given gene trees, we also compute the worst case species trees, their numbers, and optimization score for each of the computational problems. Finally, we demonstrate the performance of our exact algorithms using empirical and simulated data sets, and analyze the quality of heuristic solutions for the studied problems by contrasting them with our exact solutions.
2013-05-01
specifics of the correlation will be explored followed by discussion of new paradigms— the ordered event list (OEL) and the decision tree — that result from...4.2.1 Brief Overview of the Decision Tree Paradigm ................................................15 4.2.2 OEL Explained...6 Figure 3. A depiction of a notional fault/activation tree . ................................................................7
NASA Astrophysics Data System (ADS)
Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.
2013-12-01
Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can be paired with infrastructure overlays, allowing emergency response teams to identify sites that may have been exposed to damage. The faults will also be incorporated into a database for future integration into fault models and earthquake simulations, improving future earthquake hazard assessment. As new faults are mapped, they will further understanding of the complex fault systems and earthquake hazards within the seismically dynamic state of California.
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.
2016-08-01
As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.
Liu, Chang; Wang, Guofeng; Xie, Qinglu; Zhang, Yanchao
2014-01-01
Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM) and a differential evolution (DE) algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM) classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately. PMID:24936949
Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks
NASA Astrophysics Data System (ADS)
Luo, Hongbin; Li, Lemin; Yu, Hongfang
2006-12-01
Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.
Monitoring of Microseismicity with ArrayTechniques in the Peach Tree Valley Region
NASA Astrophysics Data System (ADS)
Garcia-Reyes, J. L.; Clayton, R. W.
2016-12-01
This study is focused on the analysis of microseismicity along the San Andreas Fault in the PeachTree Valley region. This zone is part of the transition zone between the locked portion to the south (Parkfield, CA) and the creeping section to the north (Jovilet, et al., JGR, 2014). The data for the study comes from a 2-week deployment of 116 Zland nodes in a cross-shaped configuration along (8.2 km) and across (9 km) the Fault. We analyze the distribution of microseismicity using a 3D backprojection technique, and we explore the use of Hidden Markov Models to identify different patterns of microseismicity (Hammer et al., GJI, 2013). The goal of the study is to relate the style of seismicity to the mechanical state of the Fault. The results show the evolution of seismic activity as well as at least two different patterns of seismic signals.
[Impact of water pollution risk in water transfer project based on fault tree analysis].
Liu, Jian-Chang; Zhang, Wei; Wang, Li-Min; Li, Dai-Qing; Fan, Xiu-Ying; Deng, Hong-Bing
2009-09-15
The methods to assess water pollution risk for medium water transfer are gradually being explored. The event-nature-proportion method was developed to evaluate the probability of the single event. Fault tree analysis on the basis of calculation on single event was employed to evaluate the extent of whole water pollution risk for the channel water body. The result indicates, that the risk of pollutants from towns and villages along the line of water transfer project to the channel water body is at high level with the probability of 0.373, which will increase pollution to the channel water body at the rate of 64.53 mg/L COD, 4.57 mg/L NH4(+) -N and 0.066 mg/L volatilization hydroxybenzene, respectively. The measurement of fault probability on the basis of proportion method is proved to be useful in assessing water pollution risk under much uncertainty.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.
Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto
2012-11-21
This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data
2012-01-01
Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000
NASA Technical Reports Server (NTRS)
Buntine, Wray
1991-01-01
Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.
Viewpoint on ISA TR84.0.02--simplified methods and fault tree analysis.
Summers, A E
2000-01-01
ANSI/ISA-S84.01-1996 and IEC 61508 require the establishment of a safety integrity level for any safety instrumented system or safety related system used to mitigate risk. Each stage of design, operation, maintenance, and testing is judged against this safety integrity level. Quantitative techniques can be used to verify whether the safety integrity level is met. ISA-dTR84.0.02 is a technical report under development by ISA, which discusses how to apply quantitative analysis techniques to safety instrumented systems. This paper discusses two of those techniques: (1) Simplified equations and (2) Fault tree analysis.
TH-EF-BRC-03: Fault Tree Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomadsen, B.
2016-06-15
This Hands-on Workshop will be focused on providing participants with experience with the principal tools of TG 100 and hence start to build both competence and confidence in the use of risk-based quality management techniques. The three principal tools forming the basis of TG 100’s risk analysis: Process mapping, Failure-Modes and Effects Analysis and fault-tree analysis will be introduced with a 5 minute refresher presentation and each presentation will be followed by a 30 minute small group exercise. An exercise on developing QM from the risk analysis follows. During the exercise periods, participants will apply the principles in 2 differentmore » clinical scenarios. At the conclusion of each exercise there will be ample time for participants to discuss with each other and the faculty their experience and any challenges encountered. Learning Objectives: To review the principles of Process Mapping, Failure Modes and Effects Analysis and Fault Tree Analysis. To gain familiarity with these three techniques in a small group setting. To share and discuss experiences with the three techniques with faculty and participants. Director, TreatSafely, LLC. Director, Center for the Assessment of Radiological Sciences. Occasional Consultant to the IAEA and Varian.« less
Estimating earthquake-induced failure probability and downtime of critical facilities.
Porter, Keith; Ramer, Kyle
2012-01-01
Fault trees have long been used to estimate failure risk in earthquakes, especially for nuclear power plants (NPPs). One interesting application is that one can assess and manage the probability that two facilities - a primary and backup - would be simultaneously rendered inoperative in a single earthquake. Another is that one can calculate the probabilistic time required to restore a facility to functionality, and the probability that, during any given planning period, the facility would be rendered inoperative for any specified duration. A large new peer-reviewed library of component damageability and repair-time data for the first time enables fault trees to be used to calculate the seismic risk of operational failure and downtime for a wide variety of buildings other than NPPs. With the new library, seismic risk of both the failure probability and probabilistic downtime can be assessed and managed, considering the facility's unique combination of structural and non-structural components, their seismic installation conditions, and the other systems on which the facility relies. An example is offered of real computer data centres operated by a California utility. The fault trees were created and tested in collaboration with utility operators, and the failure probability and downtime results validated in several ways.
Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Qian, Yu
2016-02-15
Haze weather has become a serious environmental pollution problem which occurs in many Chinese cities. One of the most critical factors for the formation of haze weather is the exhausts of coal combustion, thus it is meaningful to figure out the causation mechanism between urban haze and the exhausts of coal combustion. Based on above considerations, the fault tree analysis (FAT) approach was employed for the causation mechanism of urban haze in Beijing by considering the risk events related with the exhausts of coal combustion for the first time. Using this approach, firstly the fault tree of the urban haze causation system connecting with coal combustion exhausts was established; consequently the risk events were discussed and identified; then, the minimal cut sets were successfully determined using Boolean algebra; finally, the structure, probability and critical importance degree analysis of the risk events were completed for the qualitative and quantitative assessment. The study results proved that the FTA was an effective and simple tool for the causation mechanism analysis and risk management of urban haze in China. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo
2017-03-01
Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.
Intermittent/transient faults in digital systems
NASA Technical Reports Server (NTRS)
Masson, G. M.; Glazer, R. E.
1982-01-01
Containment set techniques are applied to 8085 microprocessor controllers so as to transform a typical control system into a slightly modified version, shown to be crashproof: after the departure of the intermittent/transient fault, return to one proper control algorithm is assured, assuming no permanent faults occur.
Application of fault factor method to fault detection and diagnosis for space shuttle main engine
NASA Astrophysics Data System (ADS)
Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye
2016-09-01
This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.
Analysis on Behaviour of Wavelet Coefficient during Fault Occurrence in Transformer
NASA Astrophysics Data System (ADS)
Sreewirote, Bancha; Ngaopitakkul, Atthapol
2018-03-01
The protection system for transformer has play significant role in avoiding severe damage to equipment when disturbance occur and ensure overall system reliability. One of the methodology that widely used in protection scheme and algorithm is discrete wavelet transform. However, characteristic of coefficient under fault condition must be analyzed to ensure its effectiveness. So, this paper proposed study and analysis on wavelet coefficient characteristic when fault occur in transformer in both high- and low-frequency component from discrete wavelet transform. The effect of internal and external fault on wavelet coefficient of both fault and normal phase has been taken into consideration. The fault signal has been simulate using transmission connected to transformer experimental setup on laboratory level that modelled after actual system. The result in term of wavelet coefficient shown a clearly differentiate between wavelet characteristic in both high and low frequency component that can be used to further design and improve detection and classification algorithm that based on discrete wavelet transform methodology in the future.
Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health
NASA Technical Reports Server (NTRS)
2004-01-01
Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate expected sensor values for targeted fault scenarios. Taken together, this information provides an efficient condensation of the engineering experience and engine flow physics needed for sensor selection. The systematic sensor selection strategy is composed of three primary algorithms. The core of the selection process is a genetic algorithm that iteratively improves a defined quality measure of selected sensor suites. A merit algorithm is employed to compute the quality measure for each test sensor suite presented by the selection process. The quality measure is based on the fidelity of fault detection and the level of fault source discrimination provided by the test sensor suite. An inverse engine model, whose function is to derive hardware performance parameters from sensor data, is an integral part of the merit algorithm. The final component is a statistical evaluation algorithm that characterizes the impact of interference effects, such as control-induced sensor variation and sensor noise, on the probability of fault detection and isolation for optimal and near-optimal sensor suites.
Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.
2017-12-01
GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.
NASA Astrophysics Data System (ADS)
Hiemer, S.; Woessner, J.; Basili, R.; Danciu, L.; Giardini, D.; Wiemer, S.
2014-08-01
We present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg-Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project `Seismic HAzard haRmonization in Europe' (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE's area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model's forecasting skill against the ASM and find a statistically significant better performance for testing periods of 10-20 yr. The testing results suggest that our model is a viable candidate model to serve for long-term forecasting on timescales of years to decades for the European region.
A new approach to enhance the performance of decision tree for classifying gene expression data.
Hassan, Md; Kotagiri, Ramamohanarao
2013-12-20
Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.
An algorithm to diagnose ball bearing faults in servomotors running arbitrary motion profiles
NASA Astrophysics Data System (ADS)
Cocconcelli, Marco; Bassi, Luca; Secchi, Cristian; Fantuzzi, Cesare; Rubini, Riccardo
2012-02-01
This paper describes a procedure to extend the scope of classical methods to detect ball bearing faults (based on envelope analysis and fault frequencies identification) beyond their usual area of application. The objective of this procedure is to allow condition-based monitoring of such bearings in servomotor applications, where typically the motor in its normal mode of operation has to follow a non-constant angular velocity profile that may contain motion inversions. After describing and analyzing the algorithm from a theoretical point of view, experimental results obtained on a real industrial application are presented and commented.
Analysis of the Westland Data Set
NASA Technical Reports Server (NTRS)
Wen, Fang; Willett, Peter; Deb, Somnath
2001-01-01
The "Westland" set of empirical accelerometer helicopter data with seeded and labeled faults is analyzed with the aim of condition monitoring. The autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; and it has also been found that augmentation of these by harmonic and other parameters call improve classification significantly. Several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior oil training data and is thus able to quantify probability of error in all exact manner, such that features may be discarded or coarsened appropriately.
Li, Jingchao; Cao, Yunpeng; Ying, Yulong; Li, Shuying
2016-01-01
Bearing failure is one of the dominant causes of failure and breakdowns in rotating machinery, leading to huge economic loss. Aiming at the nonstationary and nonlinear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a novel rolling element bearing fault diagnosis method based on multifractal theory and gray relation theory was proposed in the paper. Firstly, a generalized multifractal dimension algorithm was developed to extract the characteristic vectors of fault features from the bearing vibration signals, which can offer more meaningful and distinguishing information reflecting different bearing health status in comparison with conventional single fractal dimension. After feature extraction by multifractal dimensions, an adaptive gray relation algorithm was applied to implement an automated bearing fault pattern recognition. The experimental results show that the proposed method can identify various bearing fault types as well as severities effectively and accurately. PMID:28036329
Sensor fault diagnosis of aero-engine based on divided flight status.
Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu
2017-11-01
Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Simon, Dan; Simon, Donald L.
2009-01-01
Given a system which can fail in 1 or n different ways, a fault detection and isolation (FDI) algorithm uses sensor data in order to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, which i ndicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper we perform FDI using sums of squares of sensor residuals (SSRs). We assume that the sensor residuals are Gaussian, which gives the SSRs a chi-squared distribution. We then generate analytic lower and upper bounds on the confusion matrix elements. This allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bound s are verified with simulated aircraft engine data.
Li, Shaobo; Liu, Guokai; Tang, Xianghong; Lu, Jianguang; Hu, Jianjun
2017-07-28
Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster-Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions.
Sensor fault diagnosis of aero-engine based on divided flight status
NASA Astrophysics Data System (ADS)
Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu
2017-11-01
Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.
Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang
2017-11-01
This paper investigates the fault-tolerant time-varying formation control problems for high-order linear multi-agent systems in the presence of actuator failures. Firstly, a fully distributed formation control protocol is presented to compensate for the influences of both bias fault and loss of effectiveness fault. Using the adaptive online updating strategies, no global knowledge about the communication topology is required and the bounds of actuator failures can be unknown. Then an algorithm is proposed to determine the control parameters of the fault-tolerant formation protocol, where the time-varying formation feasible conditions and an approach to expand the feasible formation set are given. Furthermore, the stability of the proposed algorithm is proven based on the Lyapunov-like theory. Finally, two simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Li, Jingchao; Cao, Yunpeng; Ying, Yulong; Li, Shuying
2016-01-01
Bearing failure is one of the dominant causes of failure and breakdowns in rotating machinery, leading to huge economic loss. Aiming at the nonstationary and nonlinear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a novel rolling element bearing fault diagnosis method based on multifractal theory and gray relation theory was proposed in the paper. Firstly, a generalized multifractal dimension algorithm was developed to extract the characteristic vectors of fault features from the bearing vibration signals, which can offer more meaningful and distinguishing information reflecting different bearing health status in comparison with conventional single fractal dimension. After feature extraction by multifractal dimensions, an adaptive gray relation algorithm was applied to implement an automated bearing fault pattern recognition. The experimental results show that the proposed method can identify various bearing fault types as well as severities effectively and accurately.
Li, Shaobo; Liu, Guokai; Tang, Xianghong; Lu, Jianguang
2017-01-01
Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster–Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions. PMID:28788099
NASA Astrophysics Data System (ADS)
Li, Shuanghong; Cao, Hongliang; Yang, Yupu
2018-02-01
Fault diagnosis is a key process for the reliability and safety of solid oxide fuel cell (SOFC) systems. However, it is difficult to rapidly and accurately identify faults for complicated SOFC systems, especially when simultaneous faults appear. In this research, a data-driven Multi-Label (ML) pattern identification approach is proposed to address the simultaneous fault diagnosis of SOFC systems. The framework of the simultaneous-fault diagnosis primarily includes two components: feature extraction and ML-SVM classifier. The simultaneous-fault diagnosis approach can be trained to diagnose simultaneous SOFC faults, such as fuel leakage, air leakage in different positions in the SOFC system, by just using simple training data sets consisting only single fault and not demanding simultaneous faults data. The experimental result shows the proposed framework can diagnose the simultaneous SOFC system faults with high accuracy requiring small number training data and low computational burden. In addition, Fault Inference Tree Analysis (FITA) is employed to identify the correlations among possible faults and their corresponding symptoms at the system component level.
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Haeussler, P. J.; Seitz, G. G.; Dawson, T. E.; Stenner, H. D.; Matmon, A.; Crone, A. J.; Personius, S.; Burns, P. B.; Cadena, A.; Thoms, E.
2005-12-01
Developing accurate rupture histories of long, high-slip-rate strike-slip faults is is especially challenging where recurrence is relatively short (hundreds of years), adjacent segments may fail within decades of each other, and uncertainties in dating can be as large as, or larger than, the time between events. The Denali Fault system (DFS) is the major active structure of interior Alaska, but received little study since pioneering fault investigations in the early 1970s. Until the summer of 2003 essentially no data existed on the timing or spatial distribution of past ruptures on the DFS. This changed with the occurrence of the M7.9 2002 Denali fault earthquake, which has been a catalyst for present paleoseismic investigations. It provided a well-constrained rupture length and slip distribution. Strike-slip faulting occurred along 290 km of the Denali and Totschunda faults, leaving unruptured ?140km of the eastern Denali fault, ?180 km of the western Denali fault, and ?70 km of the eastern Totschunda fault. The DFS presents us with a blank canvas on which to fill a chronology of past earthquakes using modern paleoseismic techniques. Aware of correlation issues with potentially closely-timed earthquakes we have a) investigated 11 paleoseismic sites that allow a variety of dating techniques, b) measured paleo offsets, which provide insight into magnitude and rupture length of past events, at 18 locations, and c) developed late Pleistocene and Holocene slip rates using exposure age dating to constrain long-term fault behavior models. We are in the process of: 1) radiocarbon-dating peats involved in faulting and liquefaction, and especially short-lived forest floor vegetation that includes outer rings of trees, spruce needles, and blueberry leaves killed and buried during paleoearthquakes; 2) supporting development of a 700-900 year tree-ring time-series for precise dating of trees used in event timing; 3) employing Pb 210 for constraining the youngest ruptures in sag ponds on the eastern and western Denali fault; and 4) using volcanic ashes in trenches for dating and correlation. Initial results are: 1) Large earthquakes occurred along the 2002 rupture section 350-700 yrb02 (2-sigma, calendar-corrected, years before 2002) with offsets about the same as 2002. The Denali penultimate rupture appears younger (350-570 yrb02) than the Totschunda (580-700 yrb02); 2) The western Denali fault is geomorphically fresh, its MRE likely occurred within the past 250 years, the penultimate event occurred 570-680 yrb02, and slip in each event was 4m; 3) The eastern Denali MRE post-dates peat dated at 550-680 yrb02, is younger than the penultimate Totschunda event, and could be part of the penultimate Denali fault rupture or a separate earthquake; 4) A 120-km section of the Denali fault between tNenana glacier and the Delta River may be a zone of overlap for large events and/or capable of producing smaller earthquakes; its western part has fresh scarps with small (1m) offsets. 2004/2005 field observations show there are longer datable records, with 4-5 events recorded in trenches on the eastern Denali fault and the west end of the 2002 rupture, 2-3 events on the western part of the fault in Denali National Park, and 3-4 events on the Totschunda fault. These and extensive datable material provide the basis to define the paleoseismic history of DFS earthquake ruptures through multiple and complete earthquake cycles.
Enumerating Substituted Benzene Isomers of Tree-Like Chemical Graphs.
Li, Jinghui; Nagamochi, Hiroshi; Akutsu, Tatsuya
2018-01-01
Enumeration of chemical structures is useful for drug design, which is one of the main targets of computational biology and bioinformatics. A chemical graph with no other cycles than benzene rings is called tree-like, and becomes a tree possibly with multiple edges if we contract each benzene ring into a single virtual atom of valence 6. All tree-like chemical graphs with a given tree representation are called the substituted benzene isomers of . When we replace each virtual atom in with a benzene ring to obtain a substituted benzene isomer, distinct isomers of are caused by the difference in arrangements of atom groups around a benzene ring. In this paper, we propose an efficient algorithm that enumerates all substituted benzene isomers of a given tree representation . Our algorithm first counts the number of all the isomers of the tree representation by a dynamic programming method. To enumerate all the isomers, for each , our algorithm then generates the th isomer by backtracking the counting phase of the dynamic programming. We also implemented our algorithm for computational experiments.
NASA Astrophysics Data System (ADS)
Nakatani, Naoki; Chan, Garnet Kin-Lic
2013-04-01
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
Michael J. Falkowski; Alistair M.S. Smith; Paul E. Gessler; Andrew T. Hudak; Lee A. Vierling; Jeffrey S. Evans
2008-01-01
Individual tree detection algorithms can provide accurate measurements of individual tree locations, crown diameters (from aerial photography and light detection and ranging (lidar) data), and tree heights (from lidar data). However, to be useful for forest management goals relating to timber harvest, carbon accounting, and ecological processes, there is a need to...
Distance-Based Phylogenetic Methods Around a Polytomy.
Davidson, Ruth; Sullivant, Seth
2014-01-01
Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.
Application of an Integrated Assessment Model to the Kevin Dome site, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Minh; Zhang, Ye; Carey, James William
The objectives of the Integrated Assessment Model is to enable the Fault Swarm algorithm in the National Risk Assessment Partnership, ensure faults are working in the NRAP-IAM tool, calculate hypothetical fault leakage in NRAP-IAM, and compare leakage rates to Eclipse simulations.
Parallel and fault-tolerant algorithms for hypercube multiprocessors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aykanat, C.
1988-01-01
Several techniques for increasing the performance of parallel algorithms on distributed-memory message-passing multi-processor systems are investigated. These techniques are effectively implemented for the parallelization of the Scaled Conjugate Gradient (SCG) algorithm on a hypercube connected message-passing multi-processor. Significant performance improvement is achieved by using these techniques. The SCG algorithm is used for the solution phase of an FE modeling system. Almost linear speed-up is achieved, and it is shown that hypercube topology is scalable for an FE class of problem. The SCG algorithm is also shown to be suitable for vectorization, and near supercomputer performance is achieved on a vectormore » hypercube multiprocessor by exploiting both parallelization and vectorization. Fault-tolerance issues for the parallel SCG algorithm and for the hypercube topology are also addressed.« less
Test Generation Algorithm for Fault Detection of Analog Circuits Based on Extreme Learning Machine
Zhou, Jingyu; Tian, Shulin; Yang, Chenglin; Ren, Xuelong
2014-01-01
This paper proposes a novel test generation algorithm based on extreme learning machine (ELM), and such algorithm is cost-effective and low-risk for analog device under test (DUT). This method uses test patterns derived from the test generation algorithm to stimulate DUT, and then samples output responses of the DUT for fault classification and detection. The novel ELM-based test generation algorithm proposed in this paper contains mainly three aspects of innovation. Firstly, this algorithm saves time efficiently by classifying response space with ELM. Secondly, this algorithm can avoid reduced test precision efficiently in case of reduction of the number of impulse-response samples. Thirdly, a new process of test signal generator and a test structure in test generation algorithm are presented, and both of them are very simple. Finally, the abovementioned improvement and functioning are confirmed in experiments. PMID:25610458
NASA Astrophysics Data System (ADS)
Hu, Bingbing; Li, Bing
2016-02-01
It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.
Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines
NASA Astrophysics Data System (ADS)
Moghadas, Amin
2011-12-01
A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.
Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines
Moghadas, Amin A.; Shadaram, Mehdi
2010-01-01
In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.
Locating hardware faults in a parallel computer
Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.
2010-04-13
Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.
NASA Astrophysics Data System (ADS)
Jegadeeshwaran, R.; Sugumaran, V.
2015-02-01
Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.
Image compression using quad-tree coding with morphological dilation
NASA Astrophysics Data System (ADS)
Wu, Jiaji; Jiang, Weiwei; Jiao, Licheng; Wang, Lei
2007-11-01
In this paper, we propose a new algorithm which integrates morphological dilation operation to quad-tree coding, the purpose of doing this is to compensate each other's drawback by using quad-tree coding and morphological dilation operation respectively. New algorithm can not only quickly find the seed significant coefficient of dilation but also break the limit of block boundary of quad-tree coding. We also make a full use of both within-subband and cross-subband correlation to avoid the expensive cost of representing insignificant coefficients. Experimental results show that our algorithm outperforms SPECK and SPIHT. Without using any arithmetic coding, our algorithm can achieve good performance with low computational cost and it's more suitable to mobile devices or scenarios with a strict real-time requirement.
Decision tree methods: applications for classification and prediction.
Song, Yan-Yan; Lu, Ying
2015-04-25
Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.
Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing
2015-01-01
In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.
Greedy algorithms in disordered systems
NASA Astrophysics Data System (ADS)
Duxbury, P. M.; Dobrin, R.
1999-08-01
We discuss search, minimal path and minimal spanning tree algorithms and their applications to disordered systems. Greedy algorithms solve these problems exactly, and are related to extremal dynamics in physics. Minimal cost path (Dijkstra) and minimal cost spanning tree (Prim) algorithms provide extremal dynamics for a polymer in a random medium (the KPZ universality class) and invasion percolation (without trapping) respectively.
Immunity-Based Aircraft Fault Detection System
NASA Technical Reports Server (NTRS)
Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.
2004-01-01
In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.
NASA Astrophysics Data System (ADS)
Gangsar, Purushottam; Tiwari, Rajiv
2017-09-01
This paper presents an investigation of vibration and current monitoring for effective fault prediction in induction motor (IM) by using multiclass support vector machine (MSVM) algorithms. Failures of IM may occur due to propagation of a mechanical or electrical fault. Hence, for timely detection of these faults, the vibration as well as current signals was acquired after multiple experiments of varying speeds and external torques from an experimental test rig. Here, total ten different fault conditions that frequently encountered in IM (four mechanical fault, five electrical fault conditions and one no defect condition) have been considered. In the case of stator winding fault, and phase unbalance and single phasing fault, different level of severity were also considered for the prediction. In this study, the identification has been performed of the mechanical and electrical faults, individually and collectively. Fault predictions have been performed using vibration signal alone, current signal alone and vibration-current signal concurrently. The one-versus-one MSVM has been trained at various operating conditions of IM using the radial basis function (RBF) kernel and tested for same conditions, which gives the result in the form of percentage fault prediction. The prediction performance is investigated for the wide range of RBF kernel parameter, i.e. gamma, and selected the best result for one optimal value of gamma for each case. Fault predictions has been performed and investigated for the wide range of operational speeds of the IM as well as external torques on the IM.
Wang, Haibin; Zha, Daifeng; Li, Peng; Xie, Huicheng; Mao, Lili
2017-01-01
Stockwell transform(ST) time-frequency representation(ST-TFR) is a time frequency analysis method which combines short time Fourier transform with wavelet transform, and ST time frequency filtering(ST-TFF) method which takes advantage of time-frequency localized spectra can separate the signals from Gaussian noise. The ST-TFR and ST-TFF methods are used to analyze the fault signals, which is reasonable and effective in general Gaussian noise cases. However, it is proved that the mechanical bearing fault signal belongs to Alpha(α) stable distribution process(1 < α < 2) in this paper, even the noise also is α stable distribution in some special cases. The performance of ST-TFR method will degrade under α stable distribution noise environment, following the ST-TFF method fail. Hence, a new fractional lower order ST time frequency representation(FLOST-TFR) method employing fractional lower order moment and ST and inverse FLOST(IFLOST) are proposed in this paper. A new FLOST time frequency filtering(FLOST-TFF) algorithm based on FLOST-TFR method and IFLOST is also proposed, whose simplified method is presented in this paper. The discrete implementation of FLOST-TFF algorithm is deduced, and relevant steps are summarized. Simulation results demonstrate that FLOST-TFR algorithm is obviously better than the existing ST-TFR algorithm under α stable distribution noise, which can work better under Gaussian noise environment, and is robust. The FLOST-TFF method can effectively filter out α stable distribution noise, and restore the original signal. The performance of FLOST-TFF algorithm is better than the ST-TFF method, employing which mixed MSEs are smaller when α and generalized signal noise ratio(GSNR) change. Finally, the FLOST-TFR and FLOST-TFF methods are applied to analyze the outer race fault signal and extract their fault features under α stable distribution noise, where excellent performances can be shown. PMID:28406916
Applications and Benefits for Big Data Sets Using Tree Distances and The T-SNE Algorithm
2016-03-01
BENEFITS FOR BIG DATA SETS USING TREE DISTANCES AND THE T-SNE ALGORITHM by Suyoung Lee March 2016 Thesis Advisor: Samuel E. Buttrey...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE APPLICATIONS AND BENEFITS FOR BIG DATA SETS USING TREE DISTANCES AND THE T-SNE...this work we use tree distance computed using Buttrey’s treeClust package in R, as discussed by Buttrey and Whitaker in 2015, to process mixed data
Model authoring system for fail safe analysis
NASA Technical Reports Server (NTRS)
Sikora, Scott E.
1990-01-01
The Model Authoring System is a prototype software application for generating fault tree analyses and failure mode and effects analyses for circuit designs. Utilizing established artificial intelligence and expert system techniques, the circuits are modeled as a frame-based knowledge base in an expert system shell, which allows the use of object oriented programming and an inference engine. The behavior of the circuit is then captured through IF-THEN rules, which then are searched to generate either a graphical fault tree analysis or failure modes and effects analysis. Sophisticated authoring techniques allow the circuit to be easily modeled, permit its behavior to be quickly defined, and provide abstraction features to deal with complexity.
A quantitative analysis of the F18 flight control system
NASA Technical Reports Server (NTRS)
Doyle, Stacy A.; Dugan, Joanne B.; Patterson-Hine, Ann
1993-01-01
This paper presents an informal quantitative analysis of the F18 flight control system (FCS). The analysis technique combines a coverage model with a fault tree model. To demonstrate the method's extensive capabilities, we replace the fault tree with a digraph model of the F18 FCS, the only model available to us. The substitution shows that while digraphs have primarily been used for qualitative analysis, they can also be used for quantitative analysis. Based on our assumptions and the particular failure rates assigned to the F18 FCS components, we show that coverage does have a significant effect on the system's reliability and thus it is important to include coverage in the reliability analysis.
Sharifahmadian, Ershad
2006-01-01
The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.
Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning
NASA Astrophysics Data System (ADS)
Rouet-Leduc, B.; Hulbert, C.; Ren, C. X.; Bolton, D. C.; Marone, C.; Johnson, P. A.
2017-12-01
Fault friction controls nearly all aspects of fault rupture, yet it is only possible to measure in the laboratory. Here we describe laboratory experiments where acoustic emissions are recorded from the fault. We find that by applying a machine learning approach known as "extreme gradient boosting trees" to the continuous acoustical signal, the fault friction can be directly inferred, showing that instantaneous characteristics of the acoustic signal are a fingerprint of the frictional state. This machine learning-based inference leads to a simple law that links the acoustic signal to the friction state, and holds for every stress cycle the laboratory fault goes through. The approach does not use any other measured parameter than instantaneous statistics of the acoustic signal. This finding may have importance for inferring frictional characteristics from seismic waves in Earth where fault friction cannot be measured.
The Design of a Fault-Tolerant COTS-Based Bus Architecture for Space Applications
NASA Technical Reports Server (NTRS)
Chau, Savio N.; Alkalai, Leon; Tai, Ann T.
2000-01-01
The high-performance, scalability and miniaturization requirements together with the power, mass and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in the X2000 avionics system architecture for deep-space missions. In this paper, we report our experiences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture. While the COTS standard IEEE 1394 adequately supports power management, high performance and scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the difficulties, we derive a "stack-tree" topology that not only complies with the IEEE 1394 standard but also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource redundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to support the fault-tolerant bus architecture.
NASA Astrophysics Data System (ADS)
Khawaja, Taimoor Saleem
A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.
A survey of an introduction to fault diagnosis algorithms
NASA Technical Reports Server (NTRS)
Mathur, F. P.
1972-01-01
This report surveys the field of diagnosis and introduces some of the key algorithms and heuristics currently in use. Fault diagnosis is an important and a rapidly growing discipline. This is important in the design of self-repairable computers because the present diagnosis resolution of its fault-tolerant computer is limited to a functional unit or processor. Better resolution is necessary before failed units can become partially reuseable. The approach that holds the greatest promise is that of resident microdiagnostics; however, that presupposes a microprogrammable architecture for the computer being self-diagnosed. The presentation is tutorial and contains examples. An extensive bibliography of some 220 entries is included.
On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-01-01
Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.
2018-01-01
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230
Illias, Hazlee Azil; Zhao Liang, Wee
2018-01-01
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.
Rare itemsets mining algorithm based on RP-Tree and spark framework
NASA Astrophysics Data System (ADS)
Liu, Sainan; Pan, Haoan
2018-05-01
For the issues of the rare itemsets mining in big data, this paper proposed a rare itemsets mining algorithm based on RP-Tree and Spark framework. Firstly, it arranged the data vertically according to the transaction identifier, in order to solve the defects of scan the entire data set, the vertical datasets are divided into frequent vertical datasets and rare vertical datasets. Then, it adopted the RP-Tree algorithm to construct the frequent pattern tree that contains rare items and generate rare 1-itemsets. After that, it calculated the support of the itemsets by scanning the two vertical data sets, finally, it used the iterative process to generate rare itemsets. The experimental show that the algorithm can effectively excavate rare itemsets and have great superiority in execution time.
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin
2017-11-01
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
Intelligent Fault Diagnosis of HVCB with Feature Space Optimization-Based Random Forest
Ma, Suliang; Wu, Jianwen; Wang, Yuhao; Jia, Bowen; Jiang, Yuan
2018-01-01
Mechanical faults of high-voltage circuit breakers (HVCBs) always happen over long-term operation, so extracting the fault features and identifying the fault type have become a key issue for ensuring the security and reliability of power supply. Based on wavelet packet decomposition technology and random forest algorithm, an effective identification system was developed in this paper. First, compared with the incomplete description of Shannon entropy, the wavelet packet time-frequency energy rate (WTFER) was adopted as the input vector for the classifier model in the feature selection procedure. Then, a random forest classifier was used to diagnose the HVCB fault, assess the importance of the feature variable and optimize the feature space. Finally, the approach was verified based on actual HVCB vibration signals by considering six typical fault classes. The comparative experiment results show that the classification accuracy of the proposed method with the origin feature space reached 93.33% and reached up to 95.56% with optimized input feature vector of classifier. This indicates that feature optimization procedure is successful, and the proposed diagnosis algorithm has higher efficiency and robustness than traditional methods. PMID:29659548
NASA Astrophysics Data System (ADS)
Jiang, Li; Shi, Tielin; Xuan, Jianping
2012-05-01
Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.
Yi, Qu; Zhan-ming, Li; Er-chao, Li
2012-11-01
A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera.
Nguyen, Thuy Tuong; Slaughter, David C; Hanson, Bradley D; Barber, Andrew; Freitas, Amy; Robles, Daniel; Whelan, Erin
2015-07-28
This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images.
Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera
Nguyen, Thuy Tuong; Slaughter, David C.; Hanson, Bradley D.; Barber, Andrew; Freitas, Amy; Robles, Daniel; Whelan, Erin
2015-01-01
This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images. PMID:26225982
Idris, Hajara; Junaidu, Sahalu B.; Adewumi, Aderemi O.
2017-01-01
The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user’s Quality of Service (QoS) requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO) algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user’s QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time. PMID:28545075
NASA Astrophysics Data System (ADS)
Kim, D.; Youn, J.; Kim, C.
2017-08-01
As a malfunctioning PV (Photovoltaic) cell has a higher temperature than adjacent normal cells, we can detect it easily with a thermal infrared sensor. However, it will be a time-consuming way to inspect large-scale PV power plants by a hand-held thermal infrared sensor. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule based on the mean intensity and standard deviation range was developed to detect defective PV modules from individual array automatically. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97 % or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule.
Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone
Hough, S.E.; Ben-Zion, Y.; Leary, P.
1994-01-01
Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.
Probability and possibility-based representations of uncertainty in fault tree analysis.
Flage, Roger; Baraldi, Piero; Zio, Enrico; Aven, Terje
2013-01-01
Expert knowledge is an important source of input to risk analysis. In practice, experts might be reluctant to characterize their knowledge and the related (epistemic) uncertainty using precise probabilities. The theory of possibility allows for imprecision in probability assignments. The associated possibilistic representation of epistemic uncertainty can be combined with, and transformed into, a probabilistic representation; in this article, we show this with reference to a simple fault tree analysis. We apply an integrated (hybrid) probabilistic-possibilistic computational framework for the joint propagation of the epistemic uncertainty on the values of the (limiting relative frequency) probabilities of the basic events of the fault tree, and we use possibility-probability (probability-possibility) transformations for propagating the epistemic uncertainty within purely probabilistic and possibilistic settings. The results of the different approaches (hybrid, probabilistic, and possibilistic) are compared with respect to the representation of uncertainty about the top event (limiting relative frequency) probability. Both the rationale underpinning the approaches and the computational efforts they require are critically examined. We conclude that the approaches relevant in a given setting depend on the purpose of the risk analysis, and that further research is required to make the possibilistic approaches operational in a risk analysis context. © 2012 Society for Risk Analysis.
Scalable and fault tolerant orthogonalization based on randomized distributed data aggregation
Gansterer, Wilfried N.; Niederbrucker, Gerhard; Straková, Hana; Schulze Grotthoff, Stefan
2013-01-01
The construction of distributed algorithms for matrix computations built on top of distributed data aggregation algorithms with randomized communication schedules is investigated. For this purpose, a new aggregation algorithm for summing or averaging distributed values, the push-flow algorithm, is developed, which achieves superior resilience properties with respect to failures compared to existing aggregation methods. It is illustrated that on a hypercube topology it asymptotically requires the same number of iterations as the optimal all-to-all reduction operation and that it scales well with the number of nodes. Orthogonalization is studied as a prototypical matrix computation task. A new fault tolerant distributed orthogonalization method rdmGS, which can produce accurate results even in the presence of node failures, is built on top of distributed data aggregation algorithms. PMID:24748902
Khadke, Piyush; Patne, Nita; Singh, Arvind; Shinde, Gulab
2016-01-01
In this article, a novel and accurate scheme for fault detection, classification and fault distance estimation for a fixed series compensated transmission line is proposed. The proposed scheme is based on artificial neural network (ANN) and metal oxide varistor (MOV) energy, employing Levenberg-Marquardt training algorithm. The novelty of this scheme is the use of MOV energy signals of fixed series capacitors (FSC) as input to train the ANN. Such approach has never been used in any earlier fault analysis algorithms in the last few decades. Proposed scheme uses only single end measurement energy signals of MOV in all the 3 phases over one cycle duration from the occurrence of a fault. Thereafter, these MOV energy signals are fed as input to ANN for fault distance estimation. Feasibility and reliability of the proposed scheme have been evaluated for all ten types of fault in test power system model at different fault inception angles over numerous fault locations. Real transmission system parameters of 3-phase 400 kV Wardha-Aurangabad transmission line (400 km) with 40 % FSC at Power Grid Wardha Substation, India is considered for this research. Extensive simulation experiments show that the proposed scheme provides quite accurate results which demonstrate complete protection scheme with high accuracy, simplicity and robustness.
Automatic Fault Characterization via Abnormality-Enhanced Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronevetsky, G; Laguna, I; de Supinski, B R
Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less
Continuous Glucose Monitoring Enables the Detection of Losses in Infusion Set Actuation (LISAs)
Howsmon, Daniel P.; Cameron, Faye; Baysal, Nihat; Ly, Trang T.; Forlenza, Gregory P.; Maahs, David M.; Buckingham, Bruce A.; Hahn, Juergen; Bequette, B. Wayne
2017-01-01
Reliable continuous glucose monitoring (CGM) enables a variety of advanced technology for the treatment of type 1 diabetes. In addition to artificial pancreas algorithms that use CGM to automate continuous subcutaneous insulin infusion (CSII), CGM can also inform fault detection algorithms that alert patients to problems in CGM or CSII. Losses in infusion set actuation (LISAs) can adversely affect clinical outcomes, resulting in hyperglycemia due to impaired insulin delivery. Prolonged hyperglycemia may lead to diabetic ketoacidosis—a serious metabolic complication in type 1 diabetes. Therefore, an algorithm for the detection of LISAs based on CGM and CSII signals was developed to improve patient safety. The LISA detection algorithm is trained retrospectively on data from 62 infusion set insertions from 20 patients. The algorithm collects glucose and insulin data, and computes relevant fault metrics over two different sliding windows; an alarm sounds when these fault metrics are exceeded. With the chosen algorithm parameters, the LISA detection strategy achieved a sensitivity of 71.8% and issued 0.28 false positives per day on the training data. Validation on two independent data sets confirmed that similar performance is seen on data that was not used for training. The developed algorithm is able to effectively alert patients to possible infusion set failures in open-loop scenarios, with limited evidence of its extension to closed-loop scenarios. PMID:28098839
Continuous Glucose Monitoring Enables the Detection of Losses in Infusion Set Actuation (LISAs).
Howsmon, Daniel P; Cameron, Faye; Baysal, Nihat; Ly, Trang T; Forlenza, Gregory P; Maahs, David M; Buckingham, Bruce A; Hahn, Juergen; Bequette, B Wayne
2017-01-15
Reliable continuous glucose monitoring (CGM) enables a variety of advanced technology for the treatment of type 1 diabetes. In addition to artificial pancreas algorithms that use CGM to automate continuous subcutaneous insulin infusion (CSII), CGM can also inform fault detection algorithms that alert patients to problems in CGM or CSII. Losses in infusion set actuation (LISAs) can adversely affect clinical outcomes, resulting in hyperglycemia due to impaired insulin delivery. Prolonged hyperglycemia may lead to diabetic ketoacidosis-a serious metabolic complication in type 1 diabetes. Therefore, an algorithm for the detection of LISAs based on CGM and CSII signals was developed to improve patient safety. The LISA detection algorithm is trained retrospectively on data from 62 infusion set insertions from 20 patients. The algorithm collects glucose and insulin data, and computes relevant fault metrics over two different sliding windows; an alarm sounds when these fault metrics are exceeded. With the chosen algorithm parameters, the LISA detection strategy achieved a sensitivity of 71.8% and issued 0.28 false positives per day on the training data. Validation on two independent data sets confirmed that similar performance is seen on data that was not used for training. The developed algorithm is able to effectively alert patients to possible infusion set failures in open-loop scenarios, with limited evidence of its extension to closed-loop scenarios.
Fault Tree Based Diagnosis with Optimal Test Sequencing for Field Service Engineers
NASA Technical Reports Server (NTRS)
Iverson, David L.; George, Laurence L.; Patterson-Hine, F. A.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
When field service engineers go to customer sites to service equipment, they want to diagnose and repair failures quickly and cost effectively. Symptoms exhibited by failed equipment frequently suggest several possible causes which require different approaches to diagnosis. This can lead the engineer to follow several fruitless paths in the diagnostic process before they find the actual failure. To assist in this situation, we have developed the Fault Tree Diagnosis and Optimal Test Sequence (FTDOTS) software system that performs automated diagnosis and ranks diagnostic hypotheses based on failure probability and the time or cost required to isolate and repair each failure. FTDOTS first finds a set of possible failures that explain exhibited symptoms by using a fault tree reliability model as a diagnostic knowledge to rank the hypothesized failures based on how likely they are and how long it would take or how much it would cost to isolate and repair them. This ordering suggests an optimal sequence for the field service engineer to investigate the hypothesized failures in order to minimize the time or cost required to accomplish the repair task. Previously, field service personnel would arrive at the customer site and choose which components to investigate based on past experience and service manuals. Using FTDOTS running on a portable computer, they can now enter a set of symptoms and get a list of possible failures ordered in an optimal test sequence to help them in their decisions. If facilities are available, the field engineer can connect the portable computer to the malfunctioning device for automated data gathering. FTDOTS is currently being applied to field service of medical test equipment. The techniques are flexible enough to use for many different types of devices. If a fault tree model of the equipment and information about component failure probabilities and isolation times or costs are available, a diagnostic knowledge base for that device can be developed easily.
Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees
Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng
2015-01-01
In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
MacDonald Iii, Angus W; Zick, Jennifer L; Chafee, Matthew V; Netoff, Theoden I
2015-01-01
The grand challenges of schizophrenia research are linking the causes of the disorder to its symptoms and finding ways to overcome those symptoms. We argue that the field will be unable to address these challenges within psychiatry's standard neo-Kraepelinian (DSM) perspective. At the same time the current corrective, based in molecular genetics and cognitive neuroscience, is also likely to flounder due to its neglect for psychiatry's syndromal structure. We suggest adopting a new approach long used in reliability engineering, which also serves as a synthesis of these approaches. This approach, known as fault tree analysis, can be combined with extant neuroscientific data collection and computational modeling efforts to uncover the causal structures underlying the cognitive and affective failures in people with schizophrenia as well as other complex psychiatric phenomena. By making explicit how causes combine from basic faults to downstream failures, this approach makes affordances for: (1) causes that are neither necessary nor sufficient in and of themselves; (2) within-diagnosis heterogeneity; and (3) between diagnosis co-morbidity.
A Novel Arc Fault Detector for Early Detection of Electrical Fires
Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang
2016-01-01
Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618
Optical fiber-fault surveillance for passive optical networks in S-band operation window
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chi, Sien
2005-07-01
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
Optical fiber-fault surveillance for passive optical networks in S-band operation window.
Yeh, Chien-Hung; Chi, Sien
2005-07-11
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
Sun, Weifang; Yao, Bin; Zeng, Nianyin; He, Yuchao; Cao, Xincheng; He, Wangpeng
2017-01-01
As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault’s characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault’s characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal’s features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear’s weak fault features. PMID:28773148
Faster Bit-Parallel Algorithms for Unordered Pseudo-tree Matching and Tree Homeomorphism
NASA Astrophysics Data System (ADS)
Kaneta, Yusaku; Arimura, Hiroki
In this paper, we consider the unordered pseudo-tree matching problem, which is a problem of, given two unordered labeled trees P and T, finding all occurrences of P in T via such many-one embeddings that preserve node labels and parent-child relationship. This problem is closely related to tree pattern matching problem for XPath queries with child axis only. If m > w , we present an efficient algorithm that solves the problem in O(nm log(w)/w) time using O(hm/w + mlog(w)/w) space and O(m log(w)) preprocessing on a unit-cost arithmetic RAM model with addition, where m is the number of nodes in P, n is the number of nodes in T, h is the height of T, and w is the word length. We also discuss a modification of our algorithm for the unordered tree homeomorphism problem, which corresponds to a tree pattern matching problem for XPath queries with descendant axis only.
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydn; Pothen, Alex
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
Azad, Ariful; Buluc, Aydn; Pothen, Alex
2016-03-24
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
A new algorithm to construct phylogenetic networks from trees.
Wang, J
2014-03-06
Developing appropriate methods for constructing phylogenetic networks from tree sets is an important problem, and much research is currently being undertaken in this area. BIMLR is an algorithm that constructs phylogenetic networks from tree sets. The algorithm can construct a much simpler network than other available methods. Here, we introduce an improved version of the BIMLR algorithm, QuickCass. QuickCass changes the selection strategy of the labels of leaves below the reticulate nodes, i.e., the nodes with an indegree of at least 2 in BIMLR. We show that QuickCass can construct simpler phylogenetic networks than BIMLR. Furthermore, we show that QuickCass is a polynomial-time algorithm when the output network that is constructed by QuickCass is binary.
Efficient algorithms for a class of partitioning problems
NASA Technical Reports Server (NTRS)
Iqbal, M. Ashraf; Bokhari, Shahid H.
1990-01-01
The problem of optimally partitioning the modules of chain- or tree-like tasks over chain-structured or host-satellite multiple computer systems is addressed. This important class of problems includes many signal processing and industrial control applications. Prior research has resulted in a succession of faster exact and approximate algorithms for these problems. Polynomial exact and approximate algorithms are described for this class that are better than any of the previously reported algorithms. The approach is based on a preprocessing step that condenses the given chain or tree structured task into a monotonic chain or tree. The partitioning of this monotonic take can then be carried out using fast search techniques.
Method and apparatus for fault tolerance
NASA Technical Reports Server (NTRS)
Masson, Gerald M. (Inventor); Sullivan, Gregory F. (Inventor)
1993-01-01
A method and apparatus for achieving fault tolerance in a computer system having at least a first central processing unit and a second central processing unit. The method comprises the steps of first executing a first algorithm in the first central processing unit on input which produces a first output as well as a certification trail. Next, executing a second algorithm in the second central processing unit on the input and on at least a portion of the certification trail which produces a second output. The second algorithm has a faster execution time than the first algorithm for a given input. Then, comparing the first and second outputs such that an error result is produced if the first and second outputs are not the same. The step of executing a first algorithm and the step of executing a second algorithm preferably takes place over essentially the same time period.
NASA Astrophysics Data System (ADS)
Console, R.; Vannoli, P.; Carluccio, R.
2016-12-01
The application of a physics-based earthquake simulation algorithm to the central Apennines region, where the 24 August 2016 Amatrice earthquake occurred, allowed the compilation of a synthetic seismic catalog lasting 100 ky, and containing more than 500,000 M ≥ 4.0 events, without the limitations that real catalogs suffer in terms of completeness, homogeneity and time duration. The algorithm on which this simulator is based is constrained by several physical elements as: (a) an average slip rate for every single fault in the investigated fault systems, (b) the process of rupture growth and termination, leading to a self-organized earthquake magnitude distribution, and (c) interaction between earthquake sources, including small magnitude events. Events nucleated in one fault are allowed to expand into neighboring faults, even belonging to a different fault system, if they are separated by less than a given maximum distance. The seismogenic model upon which we applied the simulator code, was derived from the DISS 3.2.0 database (http://diss.rm.ingv.it/diss/), selecting all the fault systems that are recognized in the central Apennines region, for a total of 24 fault systems. The application of our simulation algorithm provides typical features in time, space and magnitude behavior of the seismicity, which are comparable with those of real observations. These features include long-term periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the linear Gutenberg-Richter distribution in the moderate and higher magnitude range. The statistical distribution of earthquakes with M ≥ 6.0 on single faults exhibits a fairly clear pseudo-periodic behavior, with a coefficient of variation Cv of the order of 0.3-0.6. We found in our synthetic catalog a clear trend of long-term acceleration of seismic activity preceding M ≥ 6.0 earthquakes and quiescence following those earthquakes. Lastly, as an example of a possible use of synthetic catalogs, an attenuation law was applied to all the events reported in the synthetic catalog for the production of maps showing the exceedence probability of given values of peak acceleration (PGA) on the territory under investigation. The application of a physics-based earthquake simulation algorithm to the central Apennines region, where the 24 August 2016 Amatrice earthquake occurred, allowed the compilation of a synthetic seismic catalog lasting 100 ky, and containing more than 500,000 M ≥ 4.0 events, without the limitations that real catalogs suffer in terms of completeness, homogeneity and time duration. The algorithm on which this simulator is based is constrained by several physical elements as: (a) an average slip rate for every single fault in the investigated fault systems, (b) the process of rupture growth and termination, leading to a self-organized earthquake magnitude distribution, and (c) interaction between earthquake sources, including small magnitude events. Events nucleated in one fault are allowed to expand into neighboring faults, even belonging to a different fault system, if they are separated by less than a given maximum distance. The seismogenic model upon which we applied the simulator code, was derived from the DISS 3.2.0 database (http://diss.rm.ingv.it/diss/), selecting all the fault systems that are recognized in the central Apennines region, for a total of 24 fault systems. The application of our simulation algorithm provides typical features in time, space and magnitude behavior of the seismicity, which are comparable with those of real observations. These features include long-term periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the linear Gutenberg-Richter distribution in the moderate and higher magnitude range. The statistical distribution of earthquakes with M ≥ 6.0 on single faults exhibits a fairly clear pseudo-periodic behavior, with a coefficient of variation Cv of the order of 0.3-0.6. We found in our synthetic catalog a clear trend of long-term acceleration of seismic activity preceding M ≥ 6.0 earthquakes and quiescence following those earthquakes. Lastly, as an example of a possible use of synthetic catalogs, an attenuation law was applied to all the events reported in the synthetic catalog for the production of maps showing the exceedence probability of given values of peak acceleration (PGA) on the territory under investigation.
Reconciliation of Gene and Species Trees
Rusin, L. Y.; Lyubetskaya, E. V.; Gorbunov, K. Y.; Lyubetsky, V. A.
2014-01-01
The first part of the paper briefly overviews the problem of gene and species trees reconciliation with the focus on defining and algorithmic construction of the evolutionary scenario. Basic ideas are discussed for the aspects of mapping definitions, costs of the mapping and evolutionary scenario, imposing time scales on a scenario, incorporating horizontal gene transfers, binarization and reconciliation of polytomous trees, and construction of species trees and scenarios. The review does not intend to cover the vast diversity of literature published on these subjects. Instead, the authors strived to overview the problem of the evolutionary scenario as a central concept in many areas of evolutionary research. The second part provides detailed mathematical proofs for the solutions of two problems: (i) inferring a gene evolution along a species tree accounting for various types of evolutionary events and (ii) trees reconciliation into a single species tree when only gene duplications and losses are allowed. All proposed algorithms have a cubic time complexity and are mathematically proved to find exact solutions. Solving algorithms for problem (ii) can be naturally extended to incorporate horizontal transfers, other evolutionary events, and time scales on the species tree. PMID:24800245
Long-Term Pavement Performance Automated Faulting Measurement
DOT National Transportation Integrated Search
2015-02-01
This study focused on identifying transverse joint locations on jointed plain concrete pavements using an automated joint detection algorithm and computing faulting at these locations using Long-Term Pavement Performance (LTPP) Program profile data c...
GIGA: a simple, efficient algorithm for gene tree inference in the genomic age
2010-01-01
Background Phylogenetic relationships between genes are not only of theoretical interest: they enable us to learn about human genes through the experimental work on their relatives in numerous model organisms from bacteria to fruit flies and mice. Yet the most commonly used computational algorithms for reconstructing gene trees can be inaccurate for numerous reasons, both algorithmic and biological. Additional information beyond gene sequence data has been shown to improve the accuracy of reconstructions, though at great computational cost. Results We describe a simple, fast algorithm for inferring gene phylogenies, which makes use of information that was not available prior to the genomic age: namely, a reliable species tree spanning much of the tree of life, and knowledge of the complete complement of genes in a species' genome. The algorithm, called GIGA, constructs trees agglomeratively from a distance matrix representation of sequences, using simple rules to incorporate this genomic age information. GIGA makes use of a novel conceptualization of gene trees as being composed of orthologous subtrees (containing only speciation events), which are joined by other evolutionary events such as gene duplication or horizontal gene transfer. An important innovation in GIGA is that, at every step in the agglomeration process, the tree is interpreted/reinterpreted in terms of the evolutionary events that created it. Remarkably, GIGA performs well even when using a very simple distance metric (pairwise sequence differences) and no distance averaging over clades during the tree construction process. Conclusions GIGA is efficient, allowing phylogenetic reconstruction of very large gene families and determination of orthologs on a large scale. It is exceptionally robust to adding more gene sequences, opening up the possibility of creating stable identifiers for referring to not only extant genes, but also their common ancestors. We compared trees produced by GIGA to those in the TreeFam database, and they were very similar in general, with most differences likely due to poor alignment quality. However, some remaining differences are algorithmic, and can be explained by the fact that GIGA tends to put a larger emphasis on minimizing gene duplication and deletion events. PMID:20534164
GIGA: a simple, efficient algorithm for gene tree inference in the genomic age.
Thomas, Paul D
2010-06-09
Phylogenetic relationships between genes are not only of theoretical interest: they enable us to learn about human genes through the experimental work on their relatives in numerous model organisms from bacteria to fruit flies and mice. Yet the most commonly used computational algorithms for reconstructing gene trees can be inaccurate for numerous reasons, both algorithmic and biological. Additional information beyond gene sequence data has been shown to improve the accuracy of reconstructions, though at great computational cost. We describe a simple, fast algorithm for inferring gene phylogenies, which makes use of information that was not available prior to the genomic age: namely, a reliable species tree spanning much of the tree of life, and knowledge of the complete complement of genes in a species' genome. The algorithm, called GIGA, constructs trees agglomeratively from a distance matrix representation of sequences, using simple rules to incorporate this genomic age information. GIGA makes use of a novel conceptualization of gene trees as being composed of orthologous subtrees (containing only speciation events), which are joined by other evolutionary events such as gene duplication or horizontal gene transfer. An important innovation in GIGA is that, at every step in the agglomeration process, the tree is interpreted/reinterpreted in terms of the evolutionary events that created it. Remarkably, GIGA performs well even when using a very simple distance metric (pairwise sequence differences) and no distance averaging over clades during the tree construction process. GIGA is efficient, allowing phylogenetic reconstruction of very large gene families and determination of orthologs on a large scale. It is exceptionally robust to adding more gene sequences, opening up the possibility of creating stable identifiers for referring to not only extant genes, but also their common ancestors. We compared trees produced by GIGA to those in the TreeFam database, and they were very similar in general, with most differences likely due to poor alignment quality. However, some remaining differences are algorithmic, and can be explained by the fact that GIGA tends to put a larger emphasis on minimizing gene duplication and deletion events.
Analysis of landslide hazard area in Ludian earthquake based on Random Forests
NASA Astrophysics Data System (ADS)
Xie, J.-C.; Liu, R.; Li, H.-W.; Lai, Z.-L.
2015-04-01
With the development of machine learning theory, more and more algorithms are evaluated for seismic landslides. After the Ludian earthquake, the research team combine with the special geological structure in Ludian area and the seismic filed exploration results, selecting SLOPE(PODU); River distance(HL); Fault distance(DC); Seismic Intensity(LD) and Digital Elevation Model(DEM), the normalized difference vegetation index(NDVI) which based on remote sensing images as evaluation factors. But the relationships among these factors are fuzzy, there also exists heavy noise and high-dimensional, we introduce the random forest algorithm to tolerate these difficulties and get the evaluation result of Ludian landslide areas, in order to verify the accuracy of the result, using the ROC graphs for the result evaluation standard, AUC covers an area of 0.918, meanwhile, the random forest's generalization error rate decreases with the increase of the classification tree to the ideal 0.08 by using Out Of Bag(OOB) Estimation. Studying the final landslides inversion results, paper comes to a statistical conclusion that near 80% of the whole landslides and dilapidations are in areas with high susceptibility and moderate susceptibility, showing the forecast results are reasonable and adopted.
NASA Astrophysics Data System (ADS)
Chartier, Thomas; Scotti, Oona; Boiselet, Aurelien; Lyon-Caen, Hélène
2016-04-01
Including faults in probabilistic seismic hazard assessment tends to increase the degree of uncertainty in the results due to the intrinsically uncertain nature of the fault data. This is especially the case in the low to moderate seismicity regions of Europe, where slow slipping faults are difficult to characterize. In order to better understand the key parameters that control the uncertainty in the fault-related hazard computations, we propose to build an analytic tool that provides a clear link between the different components of the fault-related hazard computations and their impact on the results. This will allow identifying the important parameters that need to be better constrained in order to reduce the resulting uncertainty in hazard and also provide a more hazard-oriented strategy for collecting relevant fault parameters in the field. The tool will be illustrated through the example of the West Corinth rifts fault-models. Recent work performed in the gulf has shown the complexity of the normal faulting system that is accommodating the extensional deformation of the rift. A logic-tree approach is proposed to account for this complexity and the multiplicity of scientifically defendable interpretations. At the nodes of the logic tree, different options that could be considered at each step of the fault-related seismic hazard will be considered. The first nodes represent the uncertainty in the geometries of the faults and their slip rates, which can derive from different data and methodologies. The subsequent node explores, for a given geometry/slip rate of faults, different earthquake rupture scenarios that may occur in the complex network of faults. The idea is to allow the possibility of several faults segments to break together in a single rupture scenario. To build these multiple-fault-segment scenarios, two approaches are considered: one based on simple rules (i.e. minimum distance between faults) and a second one that relies on physically-based simulations. The following nodes represents for each rupture scenario different rupture forecast models (i.e; characteristic or Gutenberg-Richter) and for a given rupture forecast, two probability models commonly used in seismic hazard assessment: poissonian or time-dependent. The final node represents an exhaustive set of ground motion prediction equations chosen in order to be compatible with the region. Finally, the expected probability of exceeding a given ground motion level is computed at each sites. Results will be discussed for a few specific localities of the West Corinth Gulf.
Single-phase power distribution system power flow and fault analysis
NASA Technical Reports Server (NTRS)
Halpin, S. M.; Grigsby, L. L.
1992-01-01
Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.
Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems
Du, Zhimin; Domanski, Piotr A.; Payne, W. Vance
2016-01-01
The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms. PMID:26929732
Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems.
Du, Zhimin; Domanski, Piotr A; Payne, W Vance
2016-04-05
The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms.
Identification of significant intrinsic mode functions for the diagnosis of induction motor fault.
Cho, Sangjin; Shahriar, Md Rifat; Chong, Uipil
2014-08-01
For the analysis of non-stationary signals generated by a non-linear process like fault of an induction motor, empirical mode decomposition (EMD) is the best choice as it decomposes the signal into its natural oscillatory modes known as intrinsic mode functions (IMFs). However, some of these oscillatory modes obtained from a fault signal are not significant as they do not bear any fault signature and can cause misclassification of the fault instance. To solve this issue, a novel IMF selection algorithm is proposed in this work.
Field, Edward; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David A.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin; Page, Morgan T.; Parsons, Thomas E.; Powers, Peter; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua
2015-01-01
The 2014 Working Group on California Earthquake Probabilities (WGCEP 2014) presents time-dependent earthquake probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3). Building on the UCERF3 time-independent model, published previously, renewal models are utilized to represent elastic-rebound-implied probabilities. A new methodology has been developed that solves applicability issues in the previous approach for un-segmented models. The new methodology also supports magnitude-dependent aperiodicity and accounts for the historic open interval on faults that lack a date-of-last-event constraint. Epistemic uncertainties are represented with a logic tree, producing 5,760 different forecasts. Results for a variety of evaluation metrics are presented, including logic-tree sensitivity analyses and comparisons to the previous model (UCERF2). For 30-year M≥6.7 probabilities, the most significant changes from UCERF2 are a threefold increase on the Calaveras fault and a threefold decrease on the San Jacinto fault. Such changes are due mostly to differences in the time-independent models (e.g., fault slip rates), with relaxation of segmentation and inclusion of multi-fault ruptures being particularly influential. In fact, some UCERF2 faults were simply too long to produce M 6.7 sized events given the segmentation assumptions in that study. Probability model differences are also influential, with the implied gains (relative to a Poisson model) being generally higher in UCERF3. Accounting for the historic open interval is one reason. Another is an effective 27% increase in the total elastic-rebound-model weight. The exact factors influencing differences between UCERF2 and UCERF3, as well as the relative importance of logic-tree branches, vary throughout the region, and depend on the evaluation metric of interest. For example, M≥6.7 probabilities may not be a good proxy for other hazard or loss measures. This sensitivity, coupled with the approximate nature of the model and known limitations, means the applicability of UCERF3 should be evaluated on a case-by-case basis.
ASCS online fault detection and isolation based on an improved MPCA
NASA Astrophysics Data System (ADS)
Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan
2014-09-01
Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.
Research on criticality analysis method of CNC machine tools components under fault rate correlation
NASA Astrophysics Data System (ADS)
Gui-xiang, Shen; Xian-zhuo, Zhao; Zhang, Ying-zhi; Chen-yu, Han
2018-02-01
In order to determine the key components of CNC machine tools under fault rate correlation, a system component criticality analysis method is proposed. Based on the fault mechanism analysis, the component fault relation is determined, and the adjacency matrix is introduced to describe it. Then, the fault structure relation is hierarchical by using the interpretive structure model (ISM). Assuming that the impact of the fault obeys the Markov process, the fault association matrix is described and transformed, and the Pagerank algorithm is used to determine the relative influence values, combined component fault rate under time correlation can obtain comprehensive fault rate. Based on the fault mode frequency and fault influence, the criticality of the components under the fault rate correlation is determined, and the key components are determined to provide the correct basis for equationting the reliability assurance measures. Finally, taking machining centers as an example, the effectiveness of the method is verified.
Uncertainty evaluation of a regional real-time system for rain-induced landslides
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Stanley, Thomas; Yatheendradas, Soni
2015-04-01
A new prototype regional model and evaluation framework has been developed over Central America and the Caribbean region using satellite-based information including precipitation estimates, modeled soil moisture, topography, soils, as well as regionally available datasets such as road networks and distance to fault zones. The algorithm framework incorporates three static variables: a susceptibility map; a 24-hr rainfall triggering threshold; and an antecedent soil moisture variable threshold, which have been calibrated using historic landslide events. The thresholds are regionally heterogeneous and are based on the percentile distribution of the rainfall or antecedent moisture time series. A simple decision tree algorithm framework integrates all three variables with the rainfall and soil moisture time series and generates a landslide nowcast in real-time based on the previous 24 hours over this region. This system has been evaluated using several available landslide inventories over the Central America and Caribbean region. Spatiotemporal uncertainty and evaluation metrics of the model are presented here based on available landslides reports. This work also presents a probabilistic representation of potential landslide activity over the region which can be used to further refine and improve the real-time landslide hazard assessment system as well as better identify and characterize the uncertainties inherent in this type of regional approach. The landslide algorithm provides a flexible framework to improve hazard estimation and reduce uncertainty at any spatial and temporal scale.
iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.
Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades
2014-01-01
Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.
Design for dependability: A simulation-based approach. Ph.D. Thesis, 1993
NASA Technical Reports Server (NTRS)
Goswami, Kumar K.
1994-01-01
This research addresses issues in simulation-based system level dependability analysis of fault-tolerant computer systems. The issues and difficulties of providing a general simulation-based approach for system level analysis are discussed and a methodology that address and tackle these issues is presented. The proposed methodology is designed to permit the study of a wide variety of architectures under various fault conditions. It permits detailed functional modeling of architectural features such as sparing policies, repair schemes, routing algorithms as well as other fault-tolerant mechanisms, and it allows the execution of actual application software. One key benefit of this approach is that the behavior of a system under faults does not have to be pre-defined as it is normally done. Instead, a system can be simulated in detail and injected with faults to determine its failure modes. The thesis describes how object-oriented design is used to incorporate this methodology into a general purpose design and fault injection package called DEPEND. A software model is presented that uses abstractions of application programs to study the behavior and effect of software on hardware faults in the early design stage when actual code is not available. Finally, an acceleration technique that combines hierarchical simulation, time acceleration algorithms and hybrid simulation to reduce simulation time is introduced.
Performance analysis of a dual-tree algorithm for computing spatial distance histograms
Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni
2011-01-01
Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753
Using recurrence plot analysis for software execution interpretation and fault detection
NASA Astrophysics Data System (ADS)
Mosdorf, M.
2015-09-01
This paper shows a method targeted at software execution interpretation and fault detection using recurrence plot analysis. In in the proposed approach recurrence plot analysis is applied to software execution trace that contains executed assembly instructions. Results of this analysis are subject to further processing with PCA (Principal Component Analysis) method that simplifies number coefficients used for software execution classification. This method was used for the analysis of five algorithms: Bubble Sort, Quick Sort, Median Filter, FIR, SHA-1. Results show that some of the collected traces could be easily assigned to particular algorithms (logs from Bubble Sort and FIR algorithms) while others are more difficult to distinguish.
Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.
Baste, Julien; Paul, Christophe; Sau, Ignasi; Scornavacca, Celine
2017-04-01
In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree-a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes-called the "species tree." One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping-but not identical-sets of labels, is called "supertree." In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time [Formula: see text], where n is the total size of the input.
Electric machine differential for vehicle traction control and stability control
NASA Astrophysics Data System (ADS)
Kuruppu, Sandun Shivantha
Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in guaranteeing reliable operation of a complex system such as an EMD. The research presented here emphasize on implementation of a 4kW electric machine differential, a novel single open phase fault diagnostic scheme, an implementation of a real time slip optimization algorithm and an electric machine differential based yaw stability improvement study. The proposed d-q current signature based SPO fault diagnostic algorithm detects the fault within one electrical cycle. The EMD based extremum seeking slip optimization algorithm reduces stopping distance by 30% compared to hydraulic braking based ABS.
An algorithm to count the number of repeated patient data entries with B tree.
Okada, M; Okada, M
1985-04-01
An algorithm to obtain the number of different values that appear a specified number of times in a given data field of a given data file is presented. Basically, a well-known B-tree structure is employed in this study. Some modifications were made to the basic B-tree algorithm. The first step of the modifications is to allow a data item whose values are not necessary distinct from one record to another to be used as a primary key. When a key value is inserted, the number of previous appearances is counted. At the end of all the insertions, the number of key values which are unique in the tree, the number of key values which appear twice, three times, and so forth are obtained. This algorithm is especially powerful for a large size file in disk storage.
Wavelet tree structure based speckle noise removal for optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Xin; Liu, Xuan; Liu, Yang
2018-02-01
We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.
Using trees to compute approximate solutions to ordinary differential equations exactly
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
A survey of fault diagnosis technology
NASA Technical Reports Server (NTRS)
Riedesel, Joel
1989-01-01
Existing techniques and methodologies for fault diagnosis are surveyed. The techniques run the gamut from theoretical artificial intelligence work to conventional software engineering applications. They are shown to define a spectrum of implementation alternatives where tradeoffs determine their position on the spectrum. Various tradeoffs include execution time limitations and memory requirements of the algorithms as well as their effectiveness in addressing the fault diagnosis problem.
Learning in the model space for cognitive fault diagnosis.
Chen, Huanhuan; Tino, Peter; Rodan, Ali; Yao, Xin
2014-01-01
The emergence of large sensor networks has facilitated the collection of large amounts of real-time data to monitor and control complex engineering systems. However, in many cases the collected data may be incomplete or inconsistent, while the underlying environment may be time-varying or unformulated. In this paper, we develop an innovative cognitive fault diagnosis framework that tackles the above challenges. This framework investigates fault diagnosis in the model space instead of the signal space. Learning in the model space is implemented by fitting a series of models using a series of signal segments selected with a sliding window. By investigating the learning techniques in the fitted model space, faulty models can be discriminated from healthy models using a one-class learning algorithm. The framework enables us to construct a fault library when unknown faults occur, which can be regarded as cognitive fault isolation. This paper also theoretically investigates how to measure the pairwise distance between two models in the model space and incorporates the model distance into the learning algorithm in the model space. The results on three benchmark applications and one simulated model for the Barcelona water distribution network confirm the effectiveness of the proposed framework.
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1993-01-01
A critical function in a fault-tolerant computer architecture is the synchronization of the redundant computing elements. The synchronization algorithm must include safeguards to ensure that failed components do not corrupt the behavior of good clocks. Reasoning about fault-tolerant clock synchronization is difficult because of the possibility of subtle interactions involving failed components. Therefore, mechanical proof systems are used to ensure that the verification of the synchronization system is correct. In 1987, Schneider presented a general proof of correctness for several fault-tolerant clock synchronization algorithms. Subsequently, Shankar verified Schneider's proof by using the mechanical proof system EHDM. This proof ensures that any system satisfying its underlying assumptions will provide Byzantine fault-tolerant clock synchronization. The utility of Shankar's mechanization of Schneider's theory for the verification of clock synchronization systems is explored. Some limitations of Shankar's mechanically verified theory were encountered. With minor modifications to the theory, a mechanically checked proof is provided that removes these limitations. The revised theory also allows for proven recovery from transient faults. Use of the revised theory is illustrated with the verification of an abstract design of a clock synchronization system.
NASA Astrophysics Data System (ADS)
Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen
2017-08-01
This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.
NASA Technical Reports Server (NTRS)
Liu, Kuojuey Ray
1990-01-01
Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.
Jothi, R; Mohanty, Sraban Kumar; Ojha, Aparajita
2016-04-01
Gene expression data clustering is an important biological process in DNA microarray analysis. Although there have been many clustering algorithms for gene expression analysis, finding a suitable and effective clustering algorithm is always a challenging problem due to the heterogeneous nature of gene profiles. Minimum Spanning Tree (MST) based clustering algorithms have been successfully employed to detect clusters of varying shapes and sizes. This paper proposes a novel clustering algorithm using Eigenanalysis on Minimum Spanning Tree based neighborhood graph (E-MST). As MST of a set of points reflects the similarity of the points with their neighborhood, the proposed algorithm employs a similarity graph obtained from k(') rounds of MST (k(')-MST neighborhood graph). By studying the spectral properties of the similarity matrix obtained from k(')-MST graph, the proposed algorithm achieves improved clustering results. We demonstrate the efficacy of the proposed algorithm on 12 gene expression datasets. Experimental results show that the proposed algorithm performs better than the standard clustering algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improved quantum backtracking algorithms using effective resistance estimates
NASA Astrophysics Data System (ADS)
Jarret, Michael; Wan, Kianna
2018-02-01
We investigate quantum backtracking algorithms of the type introduced by Montanaro (Montanaro, arXiv:1509.02374). These algorithms explore trees of unknown structure and in certain settings exponentially outperform their classical counterparts. Some of the previous work focused on obtaining a quantum advantage for trees in which a unique marked vertex is promised to exist. We remove this restriction by recharacterizing the problem in terms of the effective resistance of the search space. In this paper, we present a generalization of one of Montanaro's algorithms to trees containing k marked vertices, where k is not necessarily known a priori. Our approach involves using amplitude estimation to determine a near-optimal weighting of a diffusion operator, which can then be applied to prepare a superposition state with support only on marked vertices and ancestors thereof. By repeatedly sampling this state and updating the input vertex, a marked vertex is reached in a logarithmic number of steps. The algorithm thereby achieves the conjectured bound of O ˜(√{T Rmax }) for finding a single marked vertex and O ˜(k √{T Rmax }) for finding all k marked vertices, where T is an upper bound on the tree size and Rmax is the maximum effective resistance encountered by the algorithm. This constitutes a speedup over Montanaro's original procedure in both the case of finding one and the case of finding multiple marked vertices in an arbitrary tree.
Uncertain decision tree inductive inference
NASA Astrophysics Data System (ADS)
Zarban, L.; Jafari, S.; Fakhrahmad, S. M.
2011-10-01
Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.
Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.
Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling
2015-11-01
In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.
Learning Extended Finite State Machines
NASA Technical Reports Server (NTRS)
Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard
2014-01-01
We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.
Improved multi-objective ant colony optimization algorithm and its application in complex reasoning
NASA Astrophysics Data System (ADS)
Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing
2013-09-01
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.
2015-01-01
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112
GRAPE-6A: A Single-Card GRAPE-6 for Parallel PC-GRAPE Cluster Systems
NASA Astrophysics Data System (ADS)
Fukushige, Toshiyuki; Makino, Junichiro; Kawai, Atsushi
2005-12-01
In this paper, we describe the design and performance of GRAPE-6A, a special-purpose computer for gravitational many-body simulations. It was designed to be used with a PC cluster, in which each node has one GRAPE-6A. Such a configuration is particularly cost-effective in running parallel tree algorithms. Though the use of parallel tree algorithms was possible with the original GRAPE-6 hardware, it was not very cost-effective since a single GRAPE-6 board was still too fast and too expensive. Therefore, we designed GRAPE-6A as a single PCI card to minimize the reproduction cost and to optimize the computing speed. The peak performance is 130 Gflops for one GRAPE-6A board and 3.1 Tflops for our 24 node cluster. We describe the implementation of the tree, TreePM and individual timestep algorithms on both a single GRAPE-6A system and GRAPE-6A cluster. Using the tree algorithm on our 16-node GRAPE-6A system, we can complete a collisionless simulation with 100 million particles (8000 steps) within 10 days.
An Extension of CART's Pruning Algorithm. Program Statistics Research Technical Report No. 91-11.
ERIC Educational Resources Information Center
Kim, Sung-Ho
Among the computer-based methods used for the construction of trees such as AID, THAID, CART, and FACT, the only one that uses an algorithm that first grows a tree and then prunes the tree is CART. The pruning component of CART is analogous in spirit to the backward elimination approach in regression analysis. This idea provides a tool in…
NASA Technical Reports Server (NTRS)
Bernath, Greg
1994-01-01
In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.
Automatic creation of object hierarchies for ray tracing
NASA Technical Reports Server (NTRS)
Goldsmith, Jeffrey; Salmon, John
1987-01-01
Various methods for evaluating generated trees are proposed. The use of the hierarchical extent method of Rubin and Whitted (1980) to find the objects that will be hit by a ray is examined. This method employs tree searching; the construction of a tree of bounding volumes in order to determine the number of objects that will be hit by a ray is discussed. A tree generation algorithm, which uses a heuristic tree search strategy, is described. The effects of shuffling and sorting on the input data are investigated. The cost of inserting an object into the hierarchy during the construction of a tree algorithm is estimated. The steps involved in estimating the number of intersection calculations are presented.
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
Analysis and design of algorithm-based fault-tolerant systems
NASA Technical Reports Server (NTRS)
Nair, V. S. Sukumaran
1990-01-01
An important consideration in the design of high performance multiprocessor systems is to ensure the correctness of the results computed in the presence of transient and intermittent failures. Concurrent error detection and correction have been applied to such systems in order to achieve reliability. Algorithm Based Fault Tolerance (ABFT) was suggested as a cost-effective concurrent error detection scheme. The research was motivated by the complexity involved in the analysis and design of ABFT systems. To that end, a matrix-based model was developed and, based on that, algorithms for both the design and analysis of ABFT systems are formulated. These algorithms are less complex than the existing ones. In order to reduce the complexity further, a hierarchical approach is developed for the analysis of large systems.
Learning accurate very fast decision trees from uncertain data streams
NASA Astrophysics Data System (ADS)
Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo
2015-12-01
Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.
An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.
Liang, Ying; Liao, Bo; Zhu, Wen
2017-01-01
Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.
Simulation-driven machine learning: Bearing fault classification
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Freitas, Carina; Nicolai, Mike
2018-01-01
Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.
Enumeration of spanning trees in planar unclustered networks
NASA Astrophysics Data System (ADS)
Xiao, Yuzhi; Zhao, Haixing; Hu, Guona; Ma, Xiujuan
2014-07-01
Among a variety of subgraphs, spanning trees are one of the most important and fundamental categories. They are relevant to diverse aspects of networks, including reliability, transport, self-organized criticality, loop-erased random walks and so on. In this paper, we introduce a family of modular, self-similar planar networks with zero clustering. Relevant properties of this family are comparable to those networks associated with technological systems having low clustering, like power grids, some electronic circuits, the Internet and some biological systems. So, it is very significant to research on spanning trees of planar networks. However, for a large network, evaluating the relevant determinant is intractable. In this paper, we propose a fairly generic linear algorithm for counting the number of spanning trees of a planar network. Using the algorithm, we derive analytically the exact numbers of spanning trees in planar networks. Our result shows that the computational complexity is O(t) , which is better than that of the matrix tree theorem with O(m2t2) , where t is the number of steps and m is the girth of the planar network. We also obtain the entropy for the spanning trees of a given planar network. We find that the entropy of spanning trees in the studied network is small, which is in sharp contrast to the previous result for planar networks with the same average degree. We also determine an upper bound and a lower bound for the numbers of spanning trees in the family of planar networks by the algorithm. As another application of the algorithm, we give a formula for the number of spanning trees in an outerplanar network with small-world features.
Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon
2015-01-01
This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm. PMID:25954956
Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree
NASA Astrophysics Data System (ADS)
Wahyuni, Sri
2018-03-01
Data mining was the process of finding useful information from a large set of databases. One of the existing techniques in data mining was classification. The method used was decision tree method and algorithm used was C4.5 algorithm. The decision tree method was a method that transformed a very large fact into a decision tree which was presenting the rules. Decision tree method was useful for exploring data, as well as finding a hidden relationship between a number of potential input variables with a target variable. The decision tree of the C4.5 algorithm was constructed with several stages including the selection of attributes as roots, created a branch for each value and divided the case into the branch. These stages would be repeated for each branch until all the cases on the branch had the same class. From the solution of the decision tree there would be some rules of a case. In this case the researcher classified the data of prisoners at Labuhan Deli prison to know the factors of detainees committing criminal acts of drugs. By applying this C4.5 algorithm, then the knowledge was obtained as information to minimize the criminal acts of drugs. From the findings of the research, it was found that the most influential factor of the detainee committed the criminal act of drugs was from the address variable.
Research on vibration signal analysis and extraction method of gear local fault
NASA Astrophysics Data System (ADS)
Yang, X. F.; Wang, D.; Ma, J. F.; Shao, W.
2018-02-01
Gear is the main connection parts and power transmission parts in the mechanical equipment. If the fault occurs, it directly affects the running state of the whole machine and even endangers the personal safety. So it has important theoretical significance and practical value to study on the extraction of the gear fault signal and fault diagnosis of the gear. In this paper, the gear local fault as the research object, set up the vibration model of gear fault vibration mechanism, derive the vibration mechanism of the gear local fault and analyzes the similarities and differences of the vibration signal between the gear non fault and the gears local faults. In the MATLAB environment, the wavelet transform algorithm is used to denoise the fault signal. Hilbert transform is used to demodulate the fault vibration signal. The results show that the method can denoise the strong noise mechanical vibration signal and extract the local fault feature information from the fault vibration signal..
A verified design of a fault-tolerant clock synchronization circuit: Preliminary investigations
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1992-01-01
Schneider demonstrates that many fault tolerant clock synchronization algorithms can be represented as refinements of a single proven correct paradigm. Shankar provides mechanical proof that Schneider's schema achieves Byzantine fault tolerant clock synchronization provided that 11 constraints are satisfied. Some of the constraints are assumptions about physical properties of the system and cannot be established formally. Proofs are given that the fault tolerant midpoint convergence function satisfies three of the constraints. A hardware design is presented, implementing the fault tolerant midpoint function, which is shown to satisfy the remaining constraints. The synchronization circuit will recover completely from transient faults provided the maximum fault assumption is not violated. The initialization protocol for the circuit also provides a recovery mechanism from total system failure caused by correlated transient faults.
Satellite Fault Diagnosis Using Support Vector Machines Based on a Hybrid Voting Mechanism
Yang, Shuqiang; Zhu, Xiaoqian; Jin, Songchang; Wang, Xiang
2014-01-01
The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM) to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved. PMID:25215324
Risk intelligence: making profit from uncertainty in data processing system.
Zheng, Si; Liao, Xiangke; Liu, Xiaodong
2014-01-01
In extreme scale data processing systems, fault tolerance is an essential and indispensable part. Proactive fault tolerance scheme (such as the speculative execution in MapReduce framework) is introduced to dramatically improve the response time of job executions when the failure becomes a norm rather than an exception. Efficient proactive fault tolerance schemes require precise knowledge on the task executions, which has been an open challenge for decades. To well address the issue, in this paper we design and implement RiskI, a profile-based prediction algorithm in conjunction with a riskaware task assignment algorithm, to accelerate task executions, taking the uncertainty nature of tasks into account. Our design demonstrates that the nature uncertainty brings not only great challenges, but also new opportunities. With a careful design, we can benefit from such uncertainties. We implement the idea in Hadoop 0.21.0 systems and the experimental results show that, compared with the traditional LATE algorithm, the response time can be improved by 46% with the same system throughput.
NASA Astrophysics Data System (ADS)
Uma Maheswari, R.; Umamaheswari, R.
2017-02-01
Condition Monitoring System (CMS) substantiates potential economic benefits and enables prognostic maintenance in wind turbine-generator failure prevention. Vibration Monitoring and Analysis is a powerful tool in drive train CMS, which enables the early detection of impending failure/damage. In variable speed drives such as wind turbine-generator drive trains, the vibration signal acquired is of non-stationary and non-linear. The traditional stationary signal processing techniques are inefficient to diagnose the machine faults in time varying conditions. The current research trend in CMS for drive-train focuses on developing/improving non-linear, non-stationary feature extraction and fault classification algorithms to improve fault detection/prediction sensitivity and selectivity and thereby reducing the misdetection and false alarm rates. In literature, review of stationary signal processing algorithms employed in vibration analysis is done at great extent. In this paper, an attempt is made to review the recent research advances in non-linear non-stationary signal processing algorithms particularly suited for variable speed wind turbines.
Detection of faults in rotating machinery using periodic time-frequency sparsity
NASA Astrophysics Data System (ADS)
Ding, Yin; He, Wangpeng; Chen, Binqiang; Zi, Yanyang; Selesnick, Ivan W.
2016-11-01
This paper addresses the problem of extracting periodic oscillatory features in vibration signals for detecting faults in rotating machinery. To extract the feature, we propose an approach in the short-time Fourier transform (STFT) domain where the periodic oscillatory feature manifests itself as a relatively sparse grid. To estimate the sparse grid, we formulate an optimization problem using customized binary weights in the regularizer, where the weights are formulated to promote periodicity. In order to solve the proposed optimization problem, we develop an algorithm called augmented Lagrangian majorization-minimization algorithm, which combines the split augmented Lagrangian shrinkage algorithm (SALSA) with majorization-minimization (MM), and is guaranteed to converge for both convex and non-convex formulation. As examples, the proposed approach is applied to simulated data, and used as a tool for diagnosing faults in bearings and gearboxes for real data, and compared to some state-of-the-art methods. The results show that the proposed approach can effectively detect and extract the periodical oscillatory features.
Risk Intelligence: Making Profit from Uncertainty in Data Processing System
Liao, Xiangke; Liu, Xiaodong
2014-01-01
In extreme scale data processing systems, fault tolerance is an essential and indispensable part. Proactive fault tolerance scheme (such as the speculative execution in MapReduce framework) is introduced to dramatically improve the response time of job executions when the failure becomes a norm rather than an exception. Efficient proactive fault tolerance schemes require precise knowledge on the task executions, which has been an open challenge for decades. To well address the issue, in this paper we design and implement RiskI, a profile-based prediction algorithm in conjunction with a riskaware task assignment algorithm, to accelerate task executions, taking the uncertainty nature of tasks into account. Our design demonstrates that the nature uncertainty brings not only great challenges, but also new opportunities. With a careful design, we can benefit from such uncertainties. We implement the idea in Hadoop 0.21.0 systems and the experimental results show that, compared with the traditional LATE algorithm, the response time can be improved by 46% with the same system throughput. PMID:24883392
Live phylogeny with polytomies: Finding the most compact parsimonious trees.
Papamichail, D; Huang, A; Kennedy, E; Ott, J-L; Miller, A; Papamichail, G
2017-08-01
Construction of phylogenetic trees has traditionally focused on binary trees where all species appear on leaves, a problem for which numerous efficient solutions have been developed. Certain application domains though, such as viral evolution and transmission, paleontology, linguistics, and phylogenetic stemmatics, often require phylogeny inference that involves placing input species on ancestral tree nodes (live phylogeny), and polytomies. These requirements, despite their prevalence, lead to computationally harder algorithmic solutions and have been sparsely examined in the literature to date. In this article we prove some unique properties of most parsimonious live phylogenetic trees with polytomies, and their mapping to traditional binary phylogenetic trees. We show that our problem reduces to finding the most compact parsimonious tree for n species, and describe a novel efficient algorithm to find such trees without resorting to exhaustive enumeration of all possible tree topologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Failure mode effect analysis and fault tree analysis as a combined methodology in risk management
NASA Astrophysics Data System (ADS)
Wessiani, N. A.; Yoshio, F.
2018-04-01
There have been many studies reported the implementation of Failure Mode Effect Analysis (FMEA) and Fault Tree Analysis (FTA) as a method in risk management. However, most of the studies usually only choose one of these two methods in their risk management methodology. On the other side, combining these two methods will reduce the drawbacks of each methods when implemented separately. This paper aims to combine the methodology of FMEA and FTA in assessing risk. A case study in the metal company will illustrate how this methodology can be implemented. In the case study, this combined methodology will assess the internal risks that occur in the production process. Further, those internal risks should be mitigated based on their level of risks.
Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco
2018-06-01
We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.
Adversarial search by evolutionary computation.
Hong, T P; Huang, K Y; Lin, W Y
2001-01-01
In this paper, we consider the problem of finding good next moves in two-player games. Traditional search algorithms, such as minimax and alpha-beta pruning, suffer great temporal and spatial expansion when exploring deeply into search trees to find better next moves. The evolution of genetic algorithms with the ability to find global or near global optima in limited time seems promising, but they are inept at finding compound optima, such as the minimax in a game-search tree. We thus propose a new genetic algorithm-based approach that can find a good next move by reserving the board evaluation values of new offspring in a partial game-search tree. Experiments show that solution accuracy and search speed are greatly improved by our algorithm.
NASA Astrophysics Data System (ADS)
Wu, Pingping; Tan, Handong; Peng, Miao; Ma, Huan; Wang, Mao
2018-05-01
Magnetotellurics and seismic surface waves are two prominent geophysical methods for deep underground exploration. Joint inversion of these two datasets can help enhance the accuracy of inversion. In this paper, we describe a method for developing an improved multi-objective genetic algorithm (NSGA-SBX) and applying it to two numerical tests to verify the advantages of the algorithm. Our findings show that joint inversion with the NSGA-SBX method can improve the inversion results by strengthening structural coupling when the discontinuities of the electrical and velocity models are consistent, and in case of inconsistent discontinuities between these models, joint inversion can retain the advantages of individual inversions. By applying the algorithm to four detection points along the Longmenshan fault zone, we observe several features. The Sichuan Basin demonstrates low S-wave velocity and high conductivity in the shallow crust probably due to thick sedimentary layers. The eastern margin of the Tibetan Plateau shows high velocity and high resistivity in the shallow crust, while two low velocity layers and a high conductivity layer are observed in the middle lower crust, probably indicating the mid-crustal channel flow. Along the Longmenshan fault zone, a high conductivity layer from 8 to 20 km is observed beneath the northern segment and decreases with depth beneath the middle segment, which might be caused by the elevated fluid content of the fault zone.
Eric Rowell; Carl Selelstad; Lee Vierling; Lloyd Queen; Wayne Sheppard
2006-01-01
The success of a local maximum (LM) tree detection algorithm for detecting individual trees from lidar data depends on stand conditions that are often highly variable. A laser height variance and percent canopy cover (PCC) classification is used to segment the landscape by stand condition prior to stem detection. We test the performance of the LM algorithm using canopy...
MacDonald III, Angus W.; Zick, Jennifer L.; Chafee, Matthew V.; Netoff, Theoden I.
2016-01-01
The grand challenges of schizophrenia research are linking the causes of the disorder to its symptoms and finding ways to overcome those symptoms. We argue that the field will be unable to address these challenges within psychiatry’s standard neo-Kraepelinian (DSM) perspective. At the same time the current corrective, based in molecular genetics and cognitive neuroscience, is also likely to flounder due to its neglect for psychiatry’s syndromal structure. We suggest adopting a new approach long used in reliability engineering, which also serves as a synthesis of these approaches. This approach, known as fault tree analysis, can be combined with extant neuroscientific data collection and computational modeling efforts to uncover the causal structures underlying the cognitive and affective failures in people with schizophrenia as well as other complex psychiatric phenomena. By making explicit how causes combine from basic faults to downstream failures, this approach makes affordances for: (1) causes that are neither necessary nor sufficient in and of themselves; (2) within-diagnosis heterogeneity; and (3) between diagnosis co-morbidity. PMID:26779007
Krůček, Martin; Vrška, Tomáš; Král, Kamil
2017-01-01
Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical user interface with the compilation of algorithms focused on the forest environment and extraction of tree parameters. The current version (0.42) extracts important parameters of forest structure from the terrestrial laser scanning data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as well as more advanced parameters such as tree planar projections, stem profiles or detailed crown parameters including convex and concave crown surface and volume. Moreover, 3D Forest provides quantitative measures of between-crown interactions and their real arrangement in 3D space. 3D Forest also includes an original algorithm of automatic tree segmentation and crown segmentation. Comparison with field data measurements showed no significant difference in measuring DBH or tree height using 3D Forest, although for DBH only the Randomized Hough Transform algorithm proved to be sufficiently resistant to noise and provided results comparable to traditional field measurements. PMID:28472167
Khalkhali, Hamid Reza; Lotfnezhad Afshar, Hadi; Esnaashari, Omid; Jabbari, Nasrollah
2016-01-01
Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already. The classification and regression trees (CART) was applied to a breast cancer database contained information on 569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity. The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively. The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.
Creating ensembles of oblique decision trees with evolutionary algorithms and sampling
Cantu-Paz, Erick [Oakland, CA; Kamath, Chandrika [Tracy, CA
2006-06-13
A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.
Wu, Zhao; Xiong, Naixue; Huang, Yannong; Xu, Degang; Hu, Chunyang
2015-01-01
The services composition technology provides flexible methods for building service composition applications (SCAs) in wireless sensor networks (WSNs). The high reliability and high performance of SCAs help services composition technology promote the practical application of WSNs. The optimization methods for reliability and performance used for traditional software systems are mostly based on the instantiations of software components, which are inapplicable and inefficient in the ever-changing SCAs in WSNs. In this paper, we consider the SCAs with fault tolerance in WSNs. Based on a Universal Generating Function (UGF) we propose a reliability and performance model of SCAs in WSNs, which generalizes a redundancy optimization problem to a multi-state system. Based on this model, an efficient optimization algorithm for reliability and performance of SCAs in WSNs is developed based on a Genetic Algorithm (GA) to find the optimal structure of SCAs with fault-tolerance in WSNs. In order to examine the feasibility of our algorithm, we have evaluated the performance. Furthermore, the interrelationships between the reliability, performance and cost are investigated. In addition, a distinct approach to determine the most suitable parameters in the suggested algorithm is proposed. PMID:26561818
Geology of Joshua Tree National Park geodatabase
Powell, Robert E.; Matti, Jonathan C.; Cossette, Pamela M.
2015-09-16
The database in this Open-File Report describes the geology of Joshua Tree National Park and was completed in support of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey (USGS) and in cooperation with the National Park Service (NPS). The geologic observations and interpretations represented in the database are relevant to both the ongoing scientific interests of the USGS in southern California and the management requirements of NPS, specifically of Joshua Tree National Park (JOTR).Joshua Tree National Park is situated within the eastern part of California’s Transverse Ranges province and straddles the transition between the Mojave and Sonoran deserts. The geologically diverse terrain that underlies JOTR reveals a rich and varied geologic evolution, one that spans nearly two billion years of Earth history. The Park’s landscape is the current expression of this evolution, its varied landforms reflecting the differing origins of underlying rock types and their differing responses to subsequent geologic events. Crystalline basement in the Park consists of Proterozoic plutonic and metamorphic rocks intruded by a composite Mesozoic batholith of Triassic through Late Cretaceous plutons arrayed in northwest-trending lithodemic belts. The basement was exhumed during the Cenozoic and underwent differential deep weathering beneath a low-relief erosion surface, with the deepest weathering profiles forming on quartz-rich, biotite-bearing granitoid rocks. Disruption of the basement terrain by faults of the San Andreas system began ca. 20 Ma and the JOTR sinistral domain, preceded by basalt eruptions, began perhaps as early as ca. 7 Ma, but no later than 5 Ma. Uplift of the mountain blocks during this interval led to erosional stripping of the thick zones of weathered quartz-rich granitoid rocks to form etchplains dotted by bouldery tors—the iconic landscape of the Park. The stripped debris filled basins along the fault zones.Mountain ranges and basins in the Park exhibit an east-west physiographic grain controlled by left-lateral fault zones that form a sinistral domain within the broad zone of dextral shear along the transform boundary between the North American and Pacific plates. Geologic and geophysical evidence reveal that movement on the sinistral faults zones has resulted in left steps along the zones, resulting in the development of sub-basins beneath Pinto Basin and Shavers and Chuckwalla Valleys. The sinistral fault zones connect the Mojave Desert dextral faults of the Eastern California Shear Zone to the north and east with the Coachella Valley strands of the southern San Andreas Fault Zone to the west.Quaternary surficial deposits accumulated in alluvial washes and playas and lakes along the valley floors; in alluvial fans, washes, and sheet wash aprons along piedmonts flanking the mountain ranges; and in eolian dunes and sand sheets that span the transition from valley floor to piedmont slope. Sequences of Quaternary pediments are planed into piedmonts flanking valley-floor and upland basins, each pediment in turn overlain by successively younger residual and alluvial surficial deposits.
Improved FTA methodology and application to subsea pipeline reliability design.
Lin, Jing; Yuan, Yongbo; Zhang, Mingyuan
2014-01-01
An innovative logic tree, Failure Expansion Tree (FET), is proposed in this paper, which improves on traditional Fault Tree Analysis (FTA). It describes a different thinking approach for risk factor identification and reliability risk assessment. By providing a more comprehensive and objective methodology, the rather subjective nature of FTA node discovery is significantly reduced and the resulting mathematical calculations for quantitative analysis are greatly simplified. Applied to the Useful Life phase of a subsea pipeline engineering project, the approach provides a more structured analysis by constructing a tree following the laws of physics and geometry. Resulting improvements are summarized in comparison table form.
Improved FTA Methodology and Application to Subsea Pipeline Reliability Design
Lin, Jing; Yuan, Yongbo; Zhang, Mingyuan
2014-01-01
An innovative logic tree, Failure Expansion Tree (FET), is proposed in this paper, which improves on traditional Fault Tree Analysis (FTA). It describes a different thinking approach for risk factor identification and reliability risk assessment. By providing a more comprehensive and objective methodology, the rather subjective nature of FTA node discovery is significantly reduced and the resulting mathematical calculations for quantitative analysis are greatly simplified. Applied to the Useful Life phase of a subsea pipeline engineering project, the approach provides a more structured analysis by constructing a tree following the laws of physics and geometry. Resulting improvements are summarized in comparison table form. PMID:24667681
Fault Detection for Automotive Shock Absorber
NASA Astrophysics Data System (ADS)
Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis
2015-11-01
Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.
Majumdar, Satya N
2003-08-01
We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.
NASA Astrophysics Data System (ADS)
Majumdar, Satya N.
2003-08-01
We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.
Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II
NASA Astrophysics Data System (ADS)
Smith, D.; Boese, M.; Heaton, T. H.
2015-12-01
Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.
Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection
NASA Astrophysics Data System (ADS)
Yi, Zhehan
This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.
NASA Astrophysics Data System (ADS)
Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.
2014-12-01
Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.
A New Algorithm Using the Non-Dominated Tree to Improve Non-Dominated Sorting.
Gustavsson, Patrik; Syberfeldt, Anna
2018-01-01
Non-dominated sorting is a technique often used in evolutionary algorithms to determine the quality of solutions in a population. The most common algorithm is the Fast Non-dominated Sort (FNS). This algorithm, however, has the drawback that its performance deteriorates when the population size grows. The same drawback applies also to other non-dominating sorting algorithms such as the Efficient Non-dominated Sort with Binary Strategy (ENS-BS). An algorithm suggested to overcome this drawback is the Divide-and-Conquer Non-dominated Sort (DCNS) which works well on a limited number of objectives but deteriorates when the number of objectives grows. This article presents a new, more efficient algorithm called the Efficient Non-dominated Sort with Non-Dominated Tree (ENS-NDT). ENS-NDT is an extension of the ENS-BS algorithm and uses a novel Non-Dominated Tree (NDTree) to speed up the non-dominated sorting. ENS-NDT is able to handle large population sizes and a large number of objectives more efficiently than existing algorithms for non-dominated sorting. In the article, it is shown that with ENS-NDT the runtime of multi-objective optimization algorithms such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) can be substantially reduced.
Kong, Jianlei; Ding, Xiaokang; Liu, Jinhao; Yan, Lei; Wang, Jianli
2015-01-01
In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents. PMID:26147726
Efficient Delaunay Tessellation through K-D Tree Decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Peterka, Tom
Delaunay tessellations are fundamental data structures in computational geometry. They are important in data analysis, where they can represent the geometry of a point set or approximate its density. The algorithms for computing these tessellations at scale perform poorly when the input data is unbalanced. We investigate the use of k-d trees to evenly distribute points among processes and compare two strategies for picking split points between domain regions. Because resulting point distributions no longer satisfy the assumptions of existing parallel Delaunay algorithms, we develop a new parallel algorithm that adapts to its input and prove its correctness. We evaluatemore » the new algorithm using two late-stage cosmology datasets. The new running times are up to 50 times faster using k-d tree compared with regular grid decomposition. Moreover, in the unbalanced data sets, decomposing the domain into a k-d tree is up to five times faster than decomposing it into a regular grid.« less
Recursive optimal pruning with applications to tree structured vector quantizers
NASA Technical Reports Server (NTRS)
Kiang, Shei-Zein; Baker, Richard L.; Sullivan, Gary J.; Chiu, Chung-Yen
1992-01-01
A pruning algorithm of Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.
A faster 1.375-approximation algorithm for sorting by transpositions.
Cunha, Luís Felipe I; Kowada, Luis Antonio B; Hausen, Rodrigo de A; de Figueiredo, Celina M H
2015-11-01
Sorting by Transpositions is an NP-hard problem for which several polynomial-time approximation algorithms have been developed. Hartman and Shamir (2006) developed a 1.5-approximation [Formula: see text] algorithm, whose running time was improved to O(nlogn) by Feng and Zhu (2007) with a data structure they defined, the permutation tree. Elias and Hartman (2006) developed a 1.375-approximation O(n(2)) algorithm, and Firoz et al. (2011) claimed an improvement to the running time, from O(n(2)) to O(nlogn), by using the permutation tree. We provide counter-examples to the correctness of Firoz et al.'s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them. In addition, we propose a 1.375-approximation algorithm, modifying Elias and Hartman's approach with the use of permutation trees and achieving O(nlogn) time.
SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting
NASA Astrophysics Data System (ADS)
Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.
2014-12-01
Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.
Delay test generation for synchronous sequential circuits
NASA Astrophysics Data System (ADS)
Devadas, Srinivas
1989-05-01
We address the problem of generating tests for delay faults in non-scan synchronous sequential circuits. Delay test generation for sequential circuits is a considerably more difficult problem than delay testing of combinational circuits and has received much less attention. In this paper, we present a method for generating test sequences to detect delay faults in sequential circuits using the stuck-at fault sequential test generator STALLION. The method is complete in that it will generate a delay test sequence for a targeted fault given sufficient CPU time, if such a sequence exists. We term faults for which no delay test sequence exists, under out test methodology, sequentially delay redundant. We describe means of eliminating sequential delay redundancies in logic circuits. We present a partial-scan methodology for enhancing the testability of difficult-to-test of untestable sequential circuits, wherein a small number of flip-flops are selected and made controllable/observable. The selection process guarantees the elimination of all sequential delay redundancies. We show that an intimate relationship exists between state assignment and delay testability of a sequential machine. We describe a state assignment algorithm for the synthesis of sequential machines with maximal delay fault testability. Preliminary experimental results using the test generation, partial-scan and synthesis algorithm are presented.
NASA Astrophysics Data System (ADS)
Muslim, M. A.; Herowati, A. J.; Sugiharti, E.; Prasetiyo, B.
2018-03-01
A technique to dig valuable information buried or hidden in data collection which is so big to be found an interesting patterns that was previously unknown is called data mining. Data mining has been applied in the healthcare industry. One technique used data mining is classification. The decision tree included in the classification of data mining and algorithm developed by decision tree is C4.5 algorithm. A classifier is designed using applying pessimistic pruning in C4.5 algorithm in diagnosing chronic kidney disease. Pessimistic pruning use to identify and remove branches that are not needed, this is done to avoid overfitting the decision tree generated by the C4.5 algorithm. In this paper, the result obtained using these classifiers are presented and discussed. Using pessimistic pruning shows increase accuracy of C4.5 algorithm of 1.5% from 95% to 96.5% in diagnosing of chronic kidney disease.
C-semiring Frameworks for Minimum Spanning Tree Problems
NASA Astrophysics Data System (ADS)
Bistarelli, Stefano; Santini, Francesco
In this paper we define general algebraic frameworks for the Minimum Spanning Tree problem based on the structure of c-semirings. We propose general algorithms that can compute such trees by following different cost criteria, which must be all specific instantiation of c-semirings. Our algorithms are extensions of well-known procedures, as Prim or Kruskal, and show the expressivity of these algebraic structures. They can deal also with partially-ordered costs on the edges.
Cost and benefits design optimization model for fault tolerant flight control systems
NASA Technical Reports Server (NTRS)
Rose, J.
1982-01-01
Requirements and specifications for a method of optimizing the design of fault-tolerant flight control systems are provided. Algorithms that could be used for developing new and modifying existing computer programs are also provided, with recommendations for follow-on work.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2008-01-01
In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.
Dolev, Danny; Függer, Matthias; Posch, Markus; Schmid, Ulrich; Steininger, Andreas; Lenzen, Christoph
2014-06-01
We present the first implementation of a distributed clock generation scheme for Systems-on-Chip that recovers from an unbounded number of arbitrary transient faults despite a large number of arbitrary permanent faults. We devise self-stabilizing hardware building blocks and a hybrid synchronous/asynchronous state machine enabling metastability-free transitions of the algorithm's states. We provide a comprehensive modeling approach that permits to prove, given correctness of the constructed low-level building blocks, the high-level properties of the synchronization algorithm (which have been established in a more abstract model). We believe this approach to be of interest in its own right, since this is the first technique permitting to mathematically verify, at manageable complexity, high-level properties of a fault-prone system in terms of its very basic components. We evaluate a prototype implementation, which has been designed in VHDL, using the Petrify tool in conjunction with some extensions, and synthesized for an Altera Cyclone FPGA.
Dolev, Danny; Függer, Matthias; Posch, Markus; Schmid, Ulrich; Steininger, Andreas; Lenzen, Christoph
2014-01-01
We present the first implementation of a distributed clock generation scheme for Systems-on-Chip that recovers from an unbounded number of arbitrary transient faults despite a large number of arbitrary permanent faults. We devise self-stabilizing hardware building blocks and a hybrid synchronous/asynchronous state machine enabling metastability-free transitions of the algorithm's states. We provide a comprehensive modeling approach that permits to prove, given correctness of the constructed low-level building blocks, the high-level properties of the synchronization algorithm (which have been established in a more abstract model). We believe this approach to be of interest in its own right, since this is the first technique permitting to mathematically verify, at manageable complexity, high-level properties of a fault-prone system in terms of its very basic components. We evaluate a prototype implementation, which has been designed in VHDL, using the Petrify tool in conjunction with some extensions, and synthesized for an Altera Cyclone FPGA. PMID:26516290
Development of a space-systems network testbed
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan; Alger, Linda; Adams, Stuart; Burkhardt, Laura; Nagle, Gail; Murray, Nicholas
1988-01-01
This paper describes a communications network testbed which has been designed to allow the development of architectures and algorithms that meet the functional requirements of future NASA communication systems. The central hardware components of the Network Testbed are programmable circuit switching communication nodes which can be adapted by software or firmware changes to customize the testbed to particular architectures and algorithms. Fault detection, isolation, and reconfiguration has been implemented in the Network with a hybrid approach which utilizes features of both centralized and distributed techniques to provide efficient handling of faults within the Network.
Applications of an architecture design and assessment system (ADAS)
NASA Technical Reports Server (NTRS)
Gray, F. Gail; Debrunner, Linda S.; White, Tennis S.
1988-01-01
A new Architecture Design and Assessment System (ADAS) tool package is introduced, and a range of possible applications is illustrated. ADAS was used to evaluate the performance of an advanced fault-tolerant computer architecture in a modern flight control application. Bottlenecks were identified and possible solutions suggested. The tool was also used to inject faults into the architecture and evaluate the synchronization algorithm, and improvements are suggested. Finally, ADAS was used as a front end research tool to aid in the design of reconfiguration algorithms in a distributed array architecture.
Parallel peak pruning for scalable SMP contour tree computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, Hamish A.; Weber, Gunther H.; Sewell, Christopher M.
As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this formmore » of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. Here in this paper, we report the first shared SMP algorithm for fully parallel contour tree computation, withfor-mal guarantees of O(lgnlgt) parallel steps and O(n lgn) work, and implementations with up to 10x parallel speed up in OpenMP and up to 50x speed up in NVIDIA Thrust.« less
Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu
2012-02-01
In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.
Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle
NASA Astrophysics Data System (ADS)
Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen
2017-04-01
Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.
Time-dependent seismic hazard analysis for the Greater Tehran and surrounding areas
NASA Astrophysics Data System (ADS)
Jalalalhosseini, Seyed Mostafa; Zafarani, Hamid; Zare, Mehdi
2018-01-01
This study presents a time-dependent approach for seismic hazard in Tehran and surrounding areas. Hazard is evaluated by combining background seismic activity, and larger earthquakes may emanate from fault segments. Using available historical and paleoseismological data or empirical relation, the recurrence time and maximum magnitude of characteristic earthquakes for the major faults have been explored. The Brownian passage time (BPT) distribution has been used to calculate equivalent fictitious seismicity rate for major faults in the region. To include ground motion uncertainty, a logic tree and five ground motion prediction equations have been selected based on their applicability in the region. Finally, hazard maps have been presented.
Swetapadma, Aleena; Yadav, Anamika
2015-01-01
Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088
NASA Astrophysics Data System (ADS)
Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao
2018-03-01
The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.
LIDAR Helps Identify Source of 1872 Earthquake Near Chelan, Washington
NASA Astrophysics Data System (ADS)
Sherrod, B. L.; Blakely, R. J.; Weaver, C. S.
2015-12-01
One of the largest historic earthquakes in the Pacific Northwest occurred on 15 December 1872 (M6.5-7) near the south end of Lake Chelan in north-central Washington State. Lack of recognized surface deformation suggested that the earthquake occurred on a blind, perhaps deep, fault. New LiDAR data show landslides and a ~6 km long, NW-side-up scarp in Spencer Canyon, ~30 km south of Lake Chelan. Two landslides in Spencer Canyon impounded small ponds. An historical account indicated that dead trees were visible in one pond in AD1884. Wood from a snag in the pond yielded a calibrated age of AD1670-1940. Tree ring counts show that the oldest living trees on each landslide are 130 and 128 years old. The larger of the two landslides obliterated the scarp and thus, post-dates the last scarp-forming event. Two trenches across the scarp exposed a NW-dipping thrust fault. One trench exposed alluvial fan deposits, Mazama ash, and scarp colluvium cut by a single thrust fault. Three charcoal samples from a colluvium buried during the last fault displacement had calibrated ages between AD1680 and AD1940. The second trench exposed gneiss thrust over colluvium during at least two, and possibly three fault displacements. The younger of two charcoal samples collected from a colluvium below gneiss had a calibrated age of AD1665- AD1905. For an historical constraint, we assume that the lack of felt reports for large earthquakes in the period between 1872 and today indicates that no large earthquakes capable of rupturing the ground surface occurred in the region after the 1872 earthquake; thus the last displacement on the Spencer Canyon scarp cannot post-date the 1872 earthquake. Modeling of the age data suggests that the last displacement occurred between AD1840 and AD1890. These data, combined with the historical record, indicate that this fault is the source of the 1872 earthquake. Analyses of aeromagnetic data reveal lithologic contacts beneath the scarp that form an ENE-striking, curvilinear zone ~2.5 km wide and ~55 km long. This zone coincides with monoclines mapped in Mesozoic bedrock and Miocene flood basalts. This study ends uncertainty regarding the source of the 1872 earthquake and provides important information for seismic hazard analyses of major infrastructure projects in Washington and British Columbia.
Fault detection and fault tolerance in robotics
NASA Technical Reports Server (NTRS)
Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.
1992-01-01
Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.
NASA Astrophysics Data System (ADS)
Lai, Wenqing; Wang, Yuandong; Li, Wenpeng; Sun, Guang; Qu, Guomin; Cui, Shigang; Li, Mengke; Wang, Yongqiang
2017-10-01
Based on long term vibration monitoring of the No.2 oil-immersed fat wave reactor in the ±500kV converter station in East Mongolia, the vibration signals in normal state and in core loose fault state were saved. Through the time-frequency analysis of the signals, the vibration characteristics of the core loose fault were obtained, and a fault diagnosis method based on the dual tree complex wavelet (DT-CWT) and support vector machine (SVM) was proposed. The vibration signals were analyzed by DT-CWT, and the energy entropy of the vibration signals were taken as the feature vector; the support vector machine was used to train and test the feature vector, and the accurate identification of the core loose fault of the flat wave reactor was realized. Through the identification of many groups of normal and core loose fault state vibration signals, the diagnostic accuracy of the result reached 97.36%. The effectiveness and accuracy of the method in the fault diagnosis of the flat wave reactor core is verified.
Heterogeneous Compression of Large Collections of Evolutionary Trees.
Matthews, Suzanne J
2015-01-01
Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
Inferring patterns in mitochondrial DNA sequences through hypercube independent spanning trees.
Silva, Eduardo Sant Ana da; Pedrini, Helio
2016-03-01
Given a graph G, a set of spanning trees rooted at a vertex r of G is said vertex/edge independent if, for each vertex v of G, v≠r, the paths of r to v in any pair of trees are vertex/edge disjoint. Independent spanning trees (ISTs) provide a number of advantages in data broadcasting due to their fault tolerant properties. For this reason, some studies have addressed the issue by providing mechanisms for constructing independent spanning trees efficiently. In this work, we investigate how to construct independent spanning trees on hypercubes, which are generated based upon spanning binomial trees, and how to use them to predict mitochondrial DNA sequence parts through paths on the hypercube. The prediction works both for inferring mitochondrial DNA sequences comprised of six bases as well as infer anomalies that probably should not belong to the mitochondrial DNA standard. Copyright © 2016 Elsevier Ltd. All rights reserved.
Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme
NASA Technical Reports Server (NTRS)
Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong
2011-01-01
A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred
Exploiting the wavelet structure in compressed sensing MRI.
Chen, Chen; Huang, Junzhou
2014-12-01
Sparsity has been widely utilized in magnetic resonance imaging (MRI) to reduce k-space sampling. According to structured sparsity theories, fewer measurements are required for tree sparse data than the data only with standard sparsity. Intuitively, more accurate image reconstruction can be achieved with the same number of measurements by exploiting the wavelet tree structure in MRI. A novel algorithm is proposed in this article to reconstruct MR images from undersampled k-space data. In contrast to conventional compressed sensing MRI (CS-MRI) that only relies on the sparsity of MR images in wavelet or gradient domain, we exploit the wavelet tree structure to improve CS-MRI. This tree-based CS-MRI problem is decomposed into three simpler subproblems then each of the subproblems can be efficiently solved by an iterative scheme. Simulations and in vivo experiments demonstrate the significant improvement of the proposed method compared to conventional CS-MRI algorithms, and the feasibleness on MR data compared to existing tree-based imaging algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.
Nouri.Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad
2014-01-01
Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed. PMID:26779433
Towards generating ECSS-compliant fault tree analysis results via ConcertoFLA
NASA Astrophysics Data System (ADS)
Gallina, B.; Haider, Z.; Carlsson, A.
2018-05-01
Attitude Control Systems (ACSs) maintain the orientation of the satellite in three-dimensional space. ACSs need to be engineered in compliance with ECSS standards and need to ensure a certain degree of dependability. Thus, dependability analysis is conducted at various levels and by using ECSS-compliant techniques. Fault Tree Analysis (FTA) is one of these techniques. FTA is being automated within various Model Driven Engineering (MDE)-based methodologies. The tool-supported CHESS-methodology is one of them. This methodology incorporates ConcertoFLA, a dependability analysis technique enabling failure behavior analysis and thus FTA-results generation. ConcertoFLA, however, similarly to other techniques, still belongs to the academic research niche. To promote this technique within the space industry, we apply it on an ACS and discuss about its multi-faceted potentialities in the context of ECSS-compliant engineering.
NASA Astrophysics Data System (ADS)
Zeng, Yajun; Skibniewski, Miroslaw J.
2013-08-01
Enterprise resource planning (ERP) system implementations are often characterised with large capital outlay, long implementation duration, and high risk of failure. In order to avoid ERP implementation failure and realise the benefits of the system, sound risk management is the key. This paper proposes a probabilistic risk assessment approach for ERP system implementation projects based on fault tree analysis, which models the relationship between ERP system components and specific risk factors. Unlike traditional risk management approaches that have been mostly focused on meeting project budget and schedule objectives, the proposed approach intends to address the risks that may cause ERP system usage failure. The approach can be used to identify the root causes of ERP system implementation usage failure and quantify the impact of critical component failures or critical risk events in the implementation process.
Accelerated Monte Carlo Simulation for Safety Analysis of the Advanced Airspace Concept
NASA Technical Reports Server (NTRS)
Thipphavong, David
2010-01-01
Safe separation of aircraft is a primary objective of any air traffic control system. An accelerated Monte Carlo approach was developed to assess the level of safety provided by a proposed next-generation air traffic control system. It combines features of fault tree and standard Monte Carlo methods. It runs more than one order of magnitude faster than the standard Monte Carlo method while providing risk estimates that only differ by about 10%. It also preserves component-level model fidelity that is difficult to maintain using the standard fault tree method. This balance of speed and fidelity allows sensitivity analysis to be completed in days instead of weeks or months with the standard Monte Carlo method. Results indicate that risk estimates are sensitive to transponder, pilot visual avoidance, and conflict detection failure probabilities.
Logic flowgraph methodology - A tool for modeling embedded systems
NASA Technical Reports Server (NTRS)
Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.
1991-01-01
The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.
Nouri Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad
2014-04-01
Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed.
Risk assessment techniques with applicability in marine engineering
NASA Astrophysics Data System (ADS)
Rudenko, E.; Panaitescu, F. V.; Panaitescu, M.
2015-11-01
Nowadays risk management is a carefully planned process. The task of risk management is organically woven into the general problem of increasing the efficiency of business. Passive attitude to risk and awareness of its existence are replaced by active management techniques. Risk assessment is one of the most important stages of risk management, since for risk management it is necessary first to analyze and evaluate risk. There are many definitions of this notion but in general case risk assessment refers to the systematic process of identifying the factors and types of risk and their quantitative assessment, i.e. risk analysis methodology combines mutually complementary quantitative and qualitative approaches. Purpose of the work: In this paper we will consider as risk assessment technique Fault Tree analysis (FTA). The objectives are: understand purpose of FTA, understand and apply rules of Boolean algebra, analyse a simple system using FTA, FTA advantages and disadvantages. Research and methodology: The main purpose is to help identify potential causes of system failures before the failures actually occur. We can evaluate the probability of the Top event.The steps of this analize are: the system's examination from Top to Down, the use of symbols to represent events, the use of mathematical tools for critical areas, the use of Fault tree logic diagrams to identify the cause of the Top event. Results: In the finally of study it will be obtained: critical areas, Fault tree logical diagrams and the probability of the Top event. These results can be used for the risk assessment analyses.
Data mining for multiagent rules, strategies, and fuzzy decision tree structure
NASA Astrophysics Data System (ADS)
Smith, James F., III; Rhyne, Robert D., II; Fisher, Kristin
2002-03-01
A fuzzy logic based resource manager (RM) has been developed that automatically allocates electronic attack resources in real-time over many dissimilar platforms. Two different data mining algorithms have been developed to determine rules, strategies, and fuzzy decision tree structure. The first data mining algorithm uses a genetic algorithm as a data mining function and is called from an electronic game. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge. It calls a data mining function, a genetic algorithm, for data mining of the database as required and allows easy evaluation of the information mined in the second step. The criterion for re- optimization is discussed as well as experimental results. Then a second data mining algorithm that uses a genetic program as a data mining function is introduced to automatically discover fuzzy decision tree structures. Finally, a fuzzy decision tree generated through this process is discussed.
NASA Astrophysics Data System (ADS)
Hadas, E.; Jozkow, G.; Walicka, A.; Borkowski, A.
2018-05-01
The estimation of dendrometric parameters has become an important issue for agriculture planning and for the efficient management of orchards. Airborne Laser Scanning (ALS) data is widely used in forestry and many algorithms for automatic estimation of dendrometric parameters of individual forest trees were developed. Unfortunately, due to significant differences between forest and fruit trees, some contradictions exist against adopting the achievements of forestry science to agricultural studies indiscriminately. In this study we present the methodology to identify individual trees in apple orchard and estimate heights of individual trees, using high-density LiDAR data (3200 points/m2) obtained with Unmanned Aerial Vehicle (UAV) equipped with Velodyne HDL32-E sensor. The processing strategy combines the alpha-shape algorithm, principal component analysis (PCA) and detection of local minima. The alpha-shape algorithm is used to separate tree rows. In order to separate trees in a single row, we detect local minima on the canopy profile and slice polygons from alpha-shape results. We successfully separated 92 % of trees in the test area. 6 % of trees in orchard were not separated from each other and 2 % were sliced into two polygons. The RMSE of tree heights determined from the point clouds compared to field measurements was equal to 0.09 m, and the correlation coefficient was equal to 0.96. The results confirm the usefulness of LiDAR data from UAV platform in orchard inventory.
Study of Stand-Alone Microgrid under Condition of Faults on Distribution Line
NASA Astrophysics Data System (ADS)
Malla, S. G.; Bhende, C. N.
2014-10-01
The behavior of stand-alone microgrid is analyzed under the condition of faults on distribution feeders. During fault since battery is not able to maintain dc-link voltage within limit, the resistive dump load control is presented to do so. An inverter control is proposed to maintain balanced voltages at PCC under the unbalanced load condition and to reduce voltage unbalance factor (VUF) at load points. The proposed inverter control also has facility to protect itself from high fault current. Existing maximum power point tracker (MPPT) algorithm is modified to limit the speed of generator during fault. Extensive simulation results using MATLAB/SIMULINK established that the performance of the controllers is quite satisfactory under different fault conditions as well as unbalanced load conditions.
Using certification trails to achieve software fault tolerance
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Masson, Gerald M.
1993-01-01
A conceptually novel and powerful technique to achieve fault tolerance in hardware and software systems is introduced. When used for software fault tolerance, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance was formalized and it was illustrated by applying it to the fundamental problem of finding a minimum spanning tree. Cases in which the second phase can be run concorrectly with the first and act as a monitor are discussed. The certification trail approach was compared to other approaches to fault tolerance. Because of space limitations we have omitted examples of our technique applied to the Huffman tree, and convex hull problems. These can be found in the full version of this paper.
QCCM Center for Quantum Algorithms
2008-10-17
algorithms (e.g., quantum walks and adiabatic computing ), as well as theoretical advances relating algorithms to physical implementations (e.g...Park, NC 27709-2211 15. SUBJECT TERMS Quantum algorithms, quantum computing , fault-tolerant error correction Richard Cleve MITACS East Academic...0511200 Algebraic results on quantum automata A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, D. Thrien Theory of Computing Systems 39(2006
DEVELOPMENT AND TESTING OF FAULT-DIAGNOSIS ALGORITHMS FOR REACTOR PLANT SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grelle, Austin L.; Park, Young S.; Vilim, Richard B.
Argonne National Laboratory is further developing fault diagnosis algorithms for use by the operator of a nuclear plant to aid in improved monitoring of overall plant condition and performance. The objective is better management of plant upsets through more timely, informed decisions on control actions with the ultimate goal of improved plant safety, production, and cost management. Integration of these algorithms with visual aids for operators is taking place through a collaboration under the concept of an operator advisory system. This is a software entity whose purpose is to manage and distill the enormous amount of information an operator mustmore » process to understand the plant state, particularly in off-normal situations, and how the state trajectory will unfold in time. The fault diagnosis algorithms were exhaustively tested using computer simulations of twenty different faults introduced into the chemical and volume control system (CVCS) of a pressurized water reactor (PWR). The algorithms are unique in that each new application to a facility requires providing only the piping and instrumentation diagram (PID) and no other plant-specific information; a subject-matter expert is not needed to install and maintain each instance of an application. The testing approach followed accepted procedures for verifying and validating software. It was shown that the code satisfies its functional requirement which is to accept sensor information, identify process variable trends based on this sensor information, and then to return an accurate diagnosis based on chains of rules related to these trends. The validation and verification exercise made use of GPASS, a one-dimensional systems code, for simulating CVCS operation. Plant components were failed and the code generated the resulting plant response. Parametric studies with respect to the severity of the fault, the richness of the plant sensor set, and the accuracy of sensors were performed as part of the validation exercise. The background and overview of the software will be presented to give an overview of the approach. Following, the verification and validation effort using the GPASS code for simulation of plant transients including a sensitivity study on important parameters will be presented« less
2013-02-01
of a bearing must be put into practice. There are many potential methods, the most traditional being the use of statistical time-domain features...accelerate degradation to test multiples bearings to gain statistical relevance and extrapolate results to scale for field conditions. Temperature...as time statistics , frequency estimation to improve the fault frequency detection. For future investigations, one can further explore the
Bodin, Paul; Bilham, Roger; Behr, Jeff; Gomberg, Joan; Hudnut, Kenneth W.
1994-01-01
Five out of six functioning creepmeters on southern California faults recorded slip triggered at the time of some or all of the three largest events of the 1992 Landers earthquake sequence. Digital creep data indicate that dextral slip was triggered within 1 min of each mainshock and that maximum slip velocities occurred 2 to 3 min later. The duration of triggered slip events ranged from a few hours to several weeks. We note that triggered slip occurs commonly on faults that exhibit fault creep. To account for the observation that slip can be triggered repeatedly on a fault, we propose that the amplitude of triggered slip may be proportional to the depth of slip in the creep event and to the available near-surface tectonic strain that would otherwise eventually be released as fault creep. We advance the notion that seismic surface waves, perhaps amplified by sediments, generate transient local conditions that favor the release of tectonic strain to varying depths. Synthetic strain seismograms are presented that suggest increased pore pressure during periods of fault-normal contraction may be responsible for triggered slip, since maximum dextral shear strain transients correspond to times of maximum fault-normal contraction.
Method for estimating potential tree-grade distributions for northeastern forest species
Daniel A. Yaussy; Daniel A. Yaussy
1993-01-01
Generalized logistic regression was used to distribute trees into four potential tree grades for 20 northeastern species groups. The potential tree grade is defined as the tree grade based on the length and amount of clear cuttings and defects only, disregarding minimum grading diameter. The algorithms described use site index and tree diameter as the predictive...
Switch failure diagnosis based on inductor current observation for boost converters
NASA Astrophysics Data System (ADS)
Jamshidpour, E.; Poure, P.; Saadate, S.
2016-09-01
Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.
User's guide to the Fault Inferring Nonlinear Detection System (FINDS) computer program
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.; Satz, H. S.
1988-01-01
Described are the operation and internal structure of the computer program FINDS (Fault Inferring Nonlinear Detection System). The FINDS algorithm is designed to provide reliable estimates for aircraft position, velocity, attitude, and horizontal winds to be used for guidance and control laws in the presence of possible failures in the avionics sensors. The FINDS algorithm was developed with the use of a digital simulation of a commercial transport aircraft and tested with flight recorded data. The algorithm was then modified to meet the size constraints and real-time execution requirements on a flight computer. For the real-time operation, a multi-rate implementation of the FINDS algorithm has been partitioned to execute on a dual parallel processor configuration: one based on the translational dynamics and the other on the rotational kinematics. The report presents an overview of the FINDS algorithm, the implemented equations, the flow charts for the key subprograms, the input and output files, program variable indexing convention, subprogram descriptions, and the common block descriptions used in the program.
A 3D modeling approach to complex faults with multi-source data
NASA Astrophysics Data System (ADS)
Wu, Qiang; Xu, Hua; Zou, Xukai; Lei, Hongzhuan
2015-04-01
Fault modeling is a very important step in making an accurate and reliable 3D geological model. Typical existing methods demand enough fault data to be able to construct complex fault models, however, it is well known that the available fault data are generally sparse and undersampled. In this paper, we propose a workflow of fault modeling, which can integrate multi-source data to construct fault models. For the faults that are not modeled with these data, especially small-scale or approximately parallel with the sections, we propose the fault deduction method to infer the hanging wall and footwall lines after displacement calculation. Moreover, using the fault cutting algorithm can supplement the available fault points on the location where faults cut each other. Increasing fault points in poor sample areas can not only efficiently construct fault models, but also reduce manual intervention. By using a fault-based interpolation and remeshing the horizons, an accurate 3D geological model can be constructed. The method can naturally simulate geological structures no matter whether the available geological data are sufficient or not. A concrete example of using the method in Tangshan, China, shows that the method can be applied to broad and complex geological areas.
A Self-Stabilizing Hybrid Fault-Tolerant Synchronization Protocol
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2015-01-01
This paper presents a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. The strategy consists of two parts: first, converting Byzantine faults into symmetric faults, and second, using a proven symmetric-fault tolerant algorithm to solve the general case of the problem. A protocol (algorithm) is also present that tolerates symmetric faults, provided that there are more good nodes than faulty ones. The solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. The solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. A mechanical verification of a proposed protocol is also present. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period.
Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm
NASA Astrophysics Data System (ADS)
Yu, Ting-To; Fernàndez, Josè; Rundle, John B.
1998-03-01
Natural selection is the spirit of the genetic algorithm (GA): by keeping the good genes in the current generation, thereby producing better offspring during evolution. The crossover function ensures the heritage of good genes from parent to offspring. Meanwhile, the process of mutation creates a special gene, the character of which does not exist in the parent generation. A program based on genetic algorithms using C language is constructed to invert the parameters of an earthquake-ruptured fault. The verification and application of this code is shown to demonstrate its capabilities. It is determined that this code is able to find the global extreme and can be used to solve more practical problems with constraints gathered from other sources. It is shown that GA is superior to other inverting schema in many aspects. This easy handling and yet powerful algorithm should have many suitable applications in the field of geosciences.
Modeling, Detection, and Disambiguation of Sensor Faults for Aerospace Applications
NASA Technical Reports Server (NTRS)
Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai F.; Curran, Simon
2009-01-01
Sensor faults continue to be a major hurdle for systems health management to reach its full potential. At the same time, few recorded instances of sensor faults exist. It is equally difficult to seed particular sensor faults. Therefore, research is underway to better understand the different fault modes seen in sensors and to model the faults. The fault models can then be used in simulated sensor fault scenarios to ensure that algorithms can distinguish between sensor faults and system faults. The paper illustrates the work with data collected from an electro-mechanical actuator in an aerospace setting, equipped with temperature, vibration, current, and position sensors. The most common sensor faults, such as bias, drift, scaling, and dropout were simulated and injected into the experimental data, with the goal of making these simulations as realistic as feasible. A neural network based classifier was then created and tested on both experimental data and the more challenging randomized data sequences. Additional studies were also conducted to determine sensitivity of detection and disambiguation efficacy to severity of fault conditions.
Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model.
Shin, Sung-Hwan; Kim, SangRyul; Seo, Yun-Ho
2018-06-02
Regular inspection for the maintenance of the wind turbines is difficult because of their remote locations. For this reason, condition monitoring systems (CMSs) are typically installed to monitor their health condition. The purpose of this study is to propose a fault detection algorithm for the mechanical parts of the wind turbine. To this end, long-term vibration data were collected over two years by a CMS installed on a 3 MW wind turbine. The vibration distribution at a specific rotating speed of main shaft is approximated by the Weibull distribution and its cumulative distribution function is utilized for determining the threshold levels that indicate impending failure of mechanical parts. A Hidden Markov model (HMM) is employed to propose the statistical fault detection algorithm in the time domain and the method whereby the input sequence for HMM is extracted is also introduced by considering the threshold levels and the correlation between the signals. Finally, it was demonstrated that the proposed HMM algorithm achieved a greater than 95% detection success rate by using the long-term signals.
A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems
NASA Technical Reports Server (NTRS)
Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon
2009-01-01
Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.
Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆
Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh
2011-01-01
Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969