Science.gov

Sample records for algorithmic problem solving

  1. Problem solving with genetic algorithms and Splicer

    NASA Technical Reports Server (NTRS)

    Bayer, Steven E.; Wang, Lui

    1991-01-01

    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  2. Fourth Order Algorithms for Solving Diverse Many-Body Problems

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.; Forbert, Harald A.; Chen, Chia-Rong; Kidwell, Donald W.; Ciftja, Orion

    2001-03-01

    We show that the method of factorizing an evolution operator of the form e^ɛ(A+B) to fourth order with purely positive coefficient yields new classes of symplectic algorithms for solving classical dynamical problems, unitary algorithms for solving the time-dependent Schrödinger equation, norm preserving algorithms for solving the Langevin equation and large time step convergent Diffusion Monte Carlo algorithms. Results for each class of problems will be presented and disucss

  3. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  4. Using a genetic algorithm to solve fluid-flow problems

    SciTech Connect

    Pryor, R.J. )

    1990-06-01

    Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe.

  5. Problem Solving Techniques for the Design of Algorithms.

    ERIC Educational Resources Information Center

    Kant, Elaine; Newell, Allen

    1984-01-01

    Presents model of algorithm design (activity in software development) based on analysis of protocols of two subjects designing three convex hull algorithms. Automation methods, methods for studying algorithm design, role of discovery in problem solving, and comparison of different designs of case study according to model are highlighted.…

  6. A constraint consensus memetic algorithm for solving constrained optimization problems

    NASA Astrophysics Data System (ADS)

    Hamza, Noha M.; Sarker, Ruhul A.; Essam, Daryl L.; Deb, Kalyanmoy; Elsayed, Saber M.

    2014-11-01

    Constraint handling is an important aspect of evolutionary constrained optimization. Currently, the mechanism used for constraint handling with evolutionary algorithms mainly assists the selection process, but not the actual search process. In this article, first a genetic algorithm is combined with a class of search methods, known as constraint consensus methods, that assist infeasible individuals to move towards the feasible region. This approach is also integrated with a memetic algorithm. The proposed algorithm is tested and analysed by solving two sets of standard benchmark problems, and the results are compared with other state-of-the-art algorithms. The comparisons show that the proposed algorithm outperforms other similar algorithms. The algorithm has also been applied to solve a practical economic load dispatch problem, where it also shows superior performance over other algorithms.

  7. Artificial bee colony algorithm for solving optimal power flow problem.

    PubMed

    Le Dinh, Luong; Vo Ngoc, Dieu; Vasant, Pandian

    2013-01-01

    This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem.

  8. Artificial Bee Colony Algorithm for Solving Optimal Power Flow Problem

    PubMed Central

    Le Dinh, Luong; Vo Ngoc, Dieu

    2013-01-01

    This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem. PMID:24470790

  9. Modified projection algorithms for solving the split equality problems.

    PubMed

    Dong, Qiao-Li; He, Songnian

    2014-01-01

    The split equality problem (SEP) has extraordinary utility and broad applicability in many areas of applied mathematics. Recently, Byrne and Moudafi (2013) proposed a CQ algorithm for solving it. In this paper, we propose a modification for the CQ algorithm, which computes the stepsize adaptively and performs an additional projection step onto two half-spaces in each iteration. We further propose a relaxation scheme for the self-adaptive projection algorithm by using projections onto half-spaces instead of those onto the original convex sets, which is much more practical. Weak convergence results for both algorithms are analyzed.

  10. General heuristics algorithms for solving capacitated arc routing problem

    NASA Astrophysics Data System (ADS)

    Fadzli, Mohammad; Najwa, Nurul; Masran, Hafiz

    2015-05-01

    In this paper, we try to determine the near-optimum solution for the capacitated arc routing problem (CARP). In general, NP-hard CARP is a special graph theory specifically arises from street services such as residential waste collection and road maintenance. By purpose, the design of the CARP model and its solution techniques is to find optimum (or near-optimum) routing cost for a fleet of vehicles involved in operation. In other words, finding minimum-cost routing is compulsory in order to reduce overall operation cost that related with vehicles. In this article, we provide a combination of various heuristics algorithm to solve a real case of CARP in waste collection and benchmark instances. These heuristics work as a central engine in finding initial solutions or near-optimum in search space without violating the pre-setting constraints. The results clearly show that these heuristics algorithms could provide good initial solutions in both real-life and benchmark instances.

  11. An amoeboid algorithm for solving linear transportation problem

    NASA Astrophysics Data System (ADS)

    Gao, Cai; Yan, Chao; Zhang, Zili; Hu, Yong; Mahadevan, Sankaran; Deng, Yong

    2014-03-01

    Transportation Problem (TP) is one of the basic operational research problems, which plays an important role in many practical applications. In this paper, a bio-inspired mathematical model is proposed to handle the Linear Transportation Problem (LTP) in directed networks by modifying the original amoeba model Physarum Solver. Several examples are used to prove that the provided model can effectively solve Balanced Transportation Problem (BTP), Unbalanced Transportation Problem (UTP), especially the Generalized Transportation Problem (GTP), in a nondiscrete way.

  12. Teaching Problem Solving; the Effect of Algorithmic and Heuristic Problem Solving Training in Relation to Task Complexity and Relevant Aptitudes.

    ERIC Educational Resources Information Center

    de Leeuw, L.

    Sixty-four fifth and sixth-grade pupils were taught number series extrapolation by either an algorithm, fully prescribed problem-solving method or a heuristic, less prescribed method. The trained problems were within categories of two degrees of complexity. There were 16 subjects in each cell of the 2 by 2 design used. Aptitude Treatment…

  13. Solving the time dependent vehicle routing problem by metaheuristic algorithms

    NASA Astrophysics Data System (ADS)

    Johar, Farhana; Potts, Chris; Bennell, Julia

    2015-02-01

    The problem we consider in this study is Time Dependent Vehicle Routing Problem (TDVRP) which has been categorized as non-classical VRP. It is motivated by the fact that multinational companies are currently not only manufacturing the demanded products but also distributing them to the customer location. This implies an efficient synchronization of production and distribution activities. Hence, this study will look into the routing of vehicles which departs from the depot at varies time due to the variation in manufacturing process. We consider a single production line where demanded products are being process one at a time once orders have been received from the customers. It is assumed that order released from the production line will be loaded into scheduled vehicle which ready to be delivered. However, the delivery could only be done once all orders scheduled in the vehicle have been released from the production line. Therefore, there could be lateness on the delivery process from awaiting all customers' order of the route to be released. Our objective is to determine a schedule for vehicle routing that minimizes the solution cost including the travelling and tardiness cost. A mathematical formulation is developed to represent the problem and will be solved by two metaheuristics; Variable Neighborhood Search (VNS) and Tabu Search (TS). These algorithms will be coded in C ++ programming and run using 56's Solomon instances with some modification. The outcome of this experiment can be interpreted as the quality criteria of the different approximation methods. The comparison done shown that VNS gave the better results while consuming reasonable computational efforts.

  14. Generalized monotonically convergent algorithms for solving quantum optimal control problems

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Yukiyoshi; Turinici, Gabriel; Rabitz, Herschel

    2004-03-01

    A wide range of cost functionals that describe the criteria for designing optimal pulses can be reduced to two basic functionals by the introduction of product spaces. We extend previous monotonically convergent algorithms to solve the generalized pulse design equations derived from those basic functionals. The new algorithms are proved to exhibit monotonic convergence. Numerical tests are implemented in four-level model systems employing stationary and/or nonstationary targets in the absence and/or presence of relaxation. Trajectory plots that conveniently present the global nature of the convergence behavior show that slow convergence may often be attributed to "trapping" and that relaxation processes may remove such unfavorable behavior.

  15. Generalized monotonically convergent algorithms for solving quantum optimal control problems.

    PubMed

    Ohtsuki, Yukiyoshi; Turinici, Gabriel; Rabitz, Herschel

    2004-03-22

    A wide range of cost functionals that describe the criteria for designing optimal pulses can be reduced to two basic functionals by the introduction of product spaces. We extend previous monotonically convergent algorithms to solve the generalized pulse design equations derived from those basic functionals. The new algorithms are proved to exhibit monotonic convergence. Numerical tests are implemented in four-level model systems employing stationary and/or nonstationary targets in the absence and/or presence of relaxation. Trajectory plots that conveniently present the global nature of the convergence behavior show that slow convergence may often be attributed to "trapping" and that relaxation processes may remove such unfavorable behavior. PMID:15267426

  16. Modified cooperative immune algorithm for solving classification problems

    NASA Astrophysics Data System (ADS)

    Wójcik, Waldemar; Lytvynenko, Volodymyr; Smailova, Saule

    2013-01-01

    The way of the decision of a problem of classification by means of immune algorithm which is based on a principle of cooperation of antibodies of a population is offered. The formal description of structure of an antibody and ways of their association within the limits of a population in the computer network functioning as a unit is given. The way of an estimation of antibodies as elements of a network is considered. The basic phases of work of algorithm, such as are considered: growth of a network, a mutation of cells, compression of a network.

  17. Quantum algorithm for solving some discrete mathematical problems by probing their energy spectra

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng; Fan, Heng; Li, Fuli

    2014-01-01

    When a probe qubit is coupled to a quantum register that represents a physical system, the probe qubit will exhibit a dynamical response only when it is resonant with a transition in the system. Using this principle, we propose a quantum algorithm for solving discrete mathematical problems based on the circuit model. Our algorithm has favorable scaling properties in solving some discrete mathematical problems.

  18. A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.

    PubMed

    Ali, Ahmed F; Tawhid, Mohamed A

    2016-01-01

    Cuckoo search algorithm is a promising metaheuristic population based method. It has been applied to solve many real life problems. In this paper, we propose a new cuckoo search algorithm by combining the cuckoo search algorithm with the Nelder-Mead method in order to solve the integer and minimax optimization problems. We call the proposed algorithm by hybrid cuckoo search and Nelder-Mead method (HCSNM). HCSNM starts the search by applying the standard cuckoo search for number of iterations then the best obtained solution is passing to the Nelder-Mead algorithm as an intensification process in order to accelerate the search and overcome the slow convergence of the standard cuckoo search algorithm. The proposed algorithm is balancing between the global exploration of the Cuckoo search algorithm and the deep exploitation of the Nelder-Mead method. We test HCSNM algorithm on seven integer programming problems and ten minimax problems and compare against eight algorithms for solving integer programming problems and seven algorithms for solving minimax problems. The experiments results show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time. PMID:27217988

  19. A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.

    PubMed

    Ali, Ahmed F; Tawhid, Mohamed A

    2016-01-01

    Cuckoo search algorithm is a promising metaheuristic population based method. It has been applied to solve many real life problems. In this paper, we propose a new cuckoo search algorithm by combining the cuckoo search algorithm with the Nelder-Mead method in order to solve the integer and minimax optimization problems. We call the proposed algorithm by hybrid cuckoo search and Nelder-Mead method (HCSNM). HCSNM starts the search by applying the standard cuckoo search for number of iterations then the best obtained solution is passing to the Nelder-Mead algorithm as an intensification process in order to accelerate the search and overcome the slow convergence of the standard cuckoo search algorithm. The proposed algorithm is balancing between the global exploration of the Cuckoo search algorithm and the deep exploitation of the Nelder-Mead method. We test HCSNM algorithm on seven integer programming problems and ten minimax problems and compare against eight algorithms for solving integer programming problems and seven algorithms for solving minimax problems. The experiments results show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time.

  20. Solving Problems.

    ERIC Educational Resources Information Center

    Hale, Norman; Lindelow, John

    Chapter 12 in a volume on school leadership, this chapter cites the work of several authorities concerning problem-solving or decision-making techniques based on the belief that group problem-solving effort is preferable to individual effort. The first technique, force-field analysis, is described as a means of dissecting complex problems into…

  1. An efficient algorithm for solving the gravity problem of finding a density in a horizontal layer

    NASA Astrophysics Data System (ADS)

    Akimova, Elena N.; Martyshko, Peter S.; Misilov, Vladimir E.; Kosivets, Rostislav A.

    2016-06-01

    An efficient algorithm for solving the inverse gravity problem of finding a variable density in a horizontal layer using gravitational data is constructed. After the discretization and approximation, the problem reduces to solving a system of linear algebraic equations. The idea of this algorithm is based on exploiting the block-Toeplitz structure of coefficients matrix. Utilizing this algorithm drastically reduces the memory usage, as well as the computation time. The algorithm was parallelized and implemented using the Uran supercomputer. A model problem with synthetic gravitational data was solved.

  2. Teaching algorithmic problem solving or conceptual understanding: Role of developmental level, mental capacity, and cognitive style

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor; Robinson, William R.

    1993-06-01

    It has been shown previously that many students solve chemistry problems using only algorithmic strategies and do not understand the chemical concepts on which the problems are based. It is plausible to suggest that if the information is presented in differing formats, the cognitive demand of a problem changes. The main objective of this study is to investigate the degree to which cognitive variables, such as developmental level, mental capacity, and disembedding ability explain student performance on problems which: (1) could be addressed by algorithms or (2) require conceptual understanding. All conceptual problems used in this study were based on a figurative format. The results obtained show that in all four problems requiring algorithmic strategies, developmental level of the students is the best predictor of success. This could be attributed to the fact that these are basically computational problems, requiring mathematical transformations. Although all three problems requiring conceptual understanding had an important aspect in common (the figurative format), in all three the best predictor of success is a different cognitive variable. It was concluded that: (1) the ability to solve computational problems (based on algorithms) is not the major factor in predicting success in solving problems that require conceptual understanding; (2) solving problems based on algorithmic strategies requires formal operational reasoning to a certain degree; and (3) student difficulty in solving problems that require conceptual understanding could be attributed to different cognitive variables.

  3. Greedy heuristic algorithm for solving series of eee components classification problems*

    NASA Astrophysics Data System (ADS)

    Kazakovtsev, A. L.; Antamoshkin, A. N.; Fedosov, V. V.

    2016-04-01

    Algorithms based on using the agglomerative greedy heuristics demonstrate precise and stable results for clustering problems based on k- means and p-median models. Such algorithms are successfully implemented in the processes of production of specialized EEE components for using in space systems which include testing each EEE device and detection of homogeneous production batches of the EEE components based on results of the tests using p-median models. In this paper, authors propose a new version of the genetic algorithm with the greedy agglomerative heuristic which allows solving series of problems. Such algorithm is useful for solving the k-means and p-median clustering problems when the number of clusters is unknown. Computational experiments on real data show that the preciseness of the result decreases insignificantly in comparison with the initial genetic algorithm for solving a single problem.

  4. Ontological Problem-Solving Framework for Assigning Sensor Systems and Algorithms to High-Level Missions

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The lack of knowledge models to represent sensor systems, algorithms, and missions makes opportunistically discovering a synthesis of systems and algorithms that can satisfy high-level mission specifications impractical. A novel ontological problem-solving framework has been designed that leverages knowledge models describing sensors, algorithms, and high-level missions to facilitate automated inference of assigning systems to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the ontological problem-solving architecture, a family of persistence surveillance sensor systems and algorithms has been instantiated in a prototype environment to demonstrate the assignment of systems to subtasks of high-level missions. PMID:22164081

  5. The backtracking survey propagation algorithm for solving random K-SAT problems

    PubMed Central

    Marino, Raffaele; Parisi, Giorgio; Ricci-Tersenghi, Federico

    2016-01-01

    Discrete combinatorial optimization has a central role in many scientific disciplines, however, for hard problems we lack linear time algorithms that would allow us to solve very large instances. Moreover, it is still unclear what are the key features that make a discrete combinatorial optimization problem hard to solve. Here we study random K-satisfiability problems with K=3,4, which are known to be very hard close to the SAT-UNSAT threshold, where problems stop having solutions. We show that the backtracking survey propagation algorithm, in a time practically linear in the problem size, is able to find solutions very close to the threshold, in a region unreachable by any other algorithm. All solutions found have no frozen variables, thus supporting the conjecture that only unfrozen solutions can be found in linear time, and that a problem becomes impossible to solve in linear time when all solutions contain frozen variables. PMID:27694952

  6. The backtracking survey propagation algorithm for solving random K-SAT problems

    NASA Astrophysics Data System (ADS)

    Marino, Raffaele; Parisi, Giorgio; Ricci-Tersenghi, Federico

    2016-10-01

    Discrete combinatorial optimization has a central role in many scientific disciplines, however, for hard problems we lack linear time algorithms that would allow us to solve very large instances. Moreover, it is still unclear what are the key features that make a discrete combinatorial optimization problem hard to solve. Here we study random K-satisfiability problems with K=3,4, which are known to be very hard close to the SAT-UNSAT threshold, where problems stop having solutions. We show that the backtracking survey propagation algorithm, in a time practically linear in the problem size, is able to find solutions very close to the threshold, in a region unreachable by any other algorithm. All solutions found have no frozen variables, thus supporting the conjecture that only unfrozen solutions can be found in linear time, and that a problem becomes impossible to solve in linear time when all solutions contain frozen variables.

  7. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  8. The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems.

    PubMed

    Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  9. The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems.

    PubMed

    Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.

  10. Teaching Algorithmic Problem Solving or Conceptual Understanding: Role of Developmental Level, Mental Capacity, and Cognitive Style.

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Robinson, William R.

    It has been shown previously that many students solve chemistry problems using only algorithmic strategies and do not understand the chemical concepts on which the problems are based. It is plausible to suggest that if the information is presented in differing formats the cognitive demand of a problem changes. The main objective of this study…

  11. Application of the artificial bee colony algorithm for solving the set covering problem.

    PubMed

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem. PMID:24883356

  12. Neural Networks Art: Solving Problems with Multiple Solutions and New Teaching Algorithm

    PubMed Central

    Dmitrienko, V. D; Zakovorotnyi, A. Yu.; Leonov, S. Yu.; Khavina, I. P

    2014-01-01

    A new discrete neural networks adaptive resonance theory (ART), which allows solving problems with multiple solutions, is developed. New algorithms neural networks teaching ART to prevent degradation and reproduction classes at training noisy input data is developed. Proposed learning algorithms discrete ART networks, allowing obtaining different classification methods of input. PMID:25246988

  13. Fuzzy evolutionary algorithm to solve chromosomes conflict and its application to lecture schedule problems

    NASA Astrophysics Data System (ADS)

    Marwati, Rini; Yulianti, Kartika; Pangestu, Herny Wulandari

    2016-02-01

    A fuzzy evolutionary algorithm is an integration of an evolutionary algorithm and a fuzzy system. In this paper, we present an application of a genetic algorithm to a fuzzy evolutionary algorithm to detect and to solve chromosomes conflict. A chromosome conflict is identified by existence of any two genes in a chromosome that has the same values as two genes in another chromosome. Based on this approach, we construct an algorithm to solve a lecture scheduling problem. Time codes, lecture codes, lecturer codes, and room codes are defined as genes. They are collected to become chromosomes. As a result, the conflicted schedule turns into chromosomes conflict. Built in the Delphi program, results show that the conflicted lecture schedule problem is solvable by this algorithm.

  14. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    PubMed Central

    Anderson, John R.

    2011-01-01

    Multivariate pattern analysis can be combined with hidden Markov model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first “mind reading” application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second “model discovery” application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. PMID:21820455

  15. Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.

    PubMed

    Anderson, John R

    2012-03-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving.

  16. Using Grey Wolf Algorithm to Solve the Capacitated Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Korayem, L.; Khorsid, M.; Kassem, S. S.

    2015-05-01

    The capacitated vehicle routing problem (CVRP) is a class of the vehicle routing problems (VRPs). In CVRP a set of identical vehicles having fixed capacities are required to fulfill customers' demands for a single commodity. The main objective is to minimize the total cost or distance traveled by the vehicles while satisfying a number of constraints, such as: the capacity constraint of each vehicle, logical flow constraints, etc. One of the methods employed in solving the CVRP is the cluster-first route-second method. It is a technique based on grouping of customers into a number of clusters, where each cluster is served by one vehicle. Once clusters are formed, a route determining the best sequence to visit customers is established within each cluster. The recently bio-inspired grey wolf optimizer (GWO), introduced in 2014, has proven to be efficient in solving unconstrained, as well as, constrained optimization problems. In the current research, our main contributions are: combining GWO with the traditional K-means clustering algorithm to generate the ‘K-GWO’ algorithm, deriving a capacitated version of the K-GWO algorithm by incorporating a capacity constraint into the aforementioned algorithm, and finally, developing 2 new clustering heuristics. The resulting algorithm is used in the clustering phase of the cluster-first route-second method to solve the CVR problem. The algorithm is tested on a number of benchmark problems with encouraging results.

  17. Simulated annealing algorithm for solving chambering student-case assignment problem

    NASA Astrophysics Data System (ADS)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  18. A Genetic Algorithm for Solving Job-shop Scheduling Problems using the Parameter-free Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Matsui, Shouichi; Watanabe, Isamu; Tokoro, Ken-Ichi

    A new genetic algorithm is proposed for solving job-shop scheduling problems where the total number of search points is limited. The objective of the problem is to minimize the makespan. The solution is represented by an operation sequence, i.e., a permutation of operations. The proposed algorithm is based on the framework of the parameter-free genetic algorithm. It encodes a permutation using random keys into a chromosome. A schedule is derived from a permutation using a hybrid scheduling (HS), and the parameter of HS is also encoded in a chromosome. Experiments using benchmark problems show that the proposed algorithm outperforms the previously proposed algorithms, genetic algorithm by Shi et al. and the improved local search by Nakano et al., for large-scale problems under the constraint of limited number of search points.

  19. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems.

    PubMed

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the "elite strategy" to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion.

  20. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems

    PubMed Central

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584

  1. Use of a genetic algorithm to solve fluid flow problems on an NCUBE/2 multiprocessor computer

    SciTech Connect

    Pryor, R.J.; Cline, D.D.

    1992-04-01

    This paper presents a method to solve partial differential equations governing two-phase fluid flow by using a genetic algorithm on the NCUBE/2 multiprocessor computer. Genetic algorithms represent a significant departure from traditional approaches of solving fluid flow problems. The inherent parallelism of genetic algorithms offers the prospect of obtaining solutions faster than ever possible. The paper discusses the two-phase flow equations, the genetic representation of the unknowns, the fitness function, the genetic operators, and the implementation of the genetic algorithm on the NCUBE/2 computer. The paper investigates the implementation efficiency using a pipe blowdown test and presents the effects of varying both the genetic parameters and the number of processors. The results show that genetic algorithms provide a major advancement in methods for solving two-phase flow problems. A desired goal of solving these equations for a specific simulation problem in real time or faster requires computers with an order of magnitude more processors or faster than the NCUBE/2's 1024.

  2. Use of a genetic algorithm to solve fluid flow problems on an NCUBE/2 multiprocessor computer

    SciTech Connect

    Pryor, R.J.; Cline, D.D.

    1992-04-01

    This paper presents a method to solve partial differential equations governing two-phase fluid flow by using a genetic algorithm on the NCUBE/2 multiprocessor computer. Genetic algorithms represent a significant departure from traditional approaches of solving fluid flow problems. The inherent parallelism of genetic algorithms offers the prospect of obtaining solutions faster than ever possible. The paper discusses the two-phase flow equations, the genetic representation of the unknowns, the fitness function, the genetic operators, and the implementation of the genetic algorithm on the NCUBE/2 computer. The paper investigates the implementation efficiency using a pipe blowdown test and presents the effects of varying both the genetic parameters and the number of processors. The results show that genetic algorithms provide a major advancement in methods for solving two-phase flow problems. A desired goal of solving these equations for a specific simulation problem in real time or faster requires computers with an order of magnitude more processors or faster than the NCUBE/2`s 1024.

  3. Monotonically convergent algorithms for solving quantum optimal control problems described by an integrodifferential equation of motion

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Yukiyoshi; Teranishi, Yoshiaki; Saalfrank, Peter; Turinici, Gabriel; Rabitz, Herschel

    2007-03-01

    A family of monotonically convergent algorithms is presented for solving a wide class of quantum optimal control problems satisfying an inhomogeneous integrodifferential equation of motion. The convergence behavior is examined using a four-level model system under the influence of non-Markovian relaxation. The results show that high quality solutions can be obtained over a wide range of parameters that characterize the algorithms, independent of the presence or absence of relaxation.

  4. The delayed coupling method: An algorithm for solving banded diagonal matrix problems in parallel

    SciTech Connect

    Mattor, N.; Williams, T.J.; Hewett, D.W.; Dimits, A.M.

    1997-09-01

    We present a new algorithm for solving banded diagonal matrix problems efficiently on distributed-memory parallel computers, designed originally for use in dynamic alternating-direction implicit partial differential equation solvers. The algorithm optimizes efficiency with respect to the number of numerical operations and to the amount of interprocessor communication. This is called the ``delayed coupling method`` because the communication is deferred until needed. We focus here on tridiagonal and periodic tridiagonal systems.

  5. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    ERIC Educational Resources Information Center

    Anderson, John R.

    2012-01-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…

  6. A cuckoo search algorithm by Lévy flights for solving reliability redundancy allocation problems

    NASA Astrophysics Data System (ADS)

    Valian, Ehsan; Valian, Elham

    2013-11-01

    A new metaheuristic optimization algorithm, called cuckoo search (CS), was recently developed by Yang and Deb (2009, 2010). This article uses CS and Lévy flights to solve the reliability redundancy allocation problem. The redundancy allocation problem involves setting reliability objectives for components or subsystems in order to meet the resource consumption constraint, e.g. the total cost. The difficulties facing the redundancy allocation problem are to maintain feasibility with respect to three nonlinear constraints, namely, cost, weight and volume-related constraints. The redundancy allocation problems have been studied in the literature for decades, usually using mathematical programming or metaheuristic optimization algorithms. The performance of the algorithm is tested on five well-known reliability redundancy allocation problems and is compared with several well-known methods. Simulation results demonstrate that the optimal solutions obtained by CS are better than the best solutions obtained by other methods.

  7. Cultural algorithms, an alternative heuristic to solve the job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Cortes Rivera, Daniel; Landa Becerra, Ricardo; Coello Coello, Carlos A.

    2007-01-01

    In this work, an approach for solving the job shop scheduling problem using a cultural algorithm is proposed. Cultural algorithms are evolutionary computation methods that extract domain knowledge during the evolutionary process. Additional to this extracted knowledge, the proposed approach also uses domain knowledge given a priori (based on specific domain knowledge available for the job shop scheduling problem). The proposed approach is compared with respect to a Greedy Randomized Adaptive Search Procedure (GRASP), a Parallel GRASP, a Genetic Algorithm, a Hybrid Genetic Algorithm, and a deterministic method called shifting bottleneck. The cultural algorithm proposed in this article is able to produce competitive results with respect to the two approaches previously indicated at a significantly lower computational cost than at least one of them and without using any sort of parallel processing.

  8. The minimal residual QR-factorization algorithm for reliably solving subset regression problems

    NASA Technical Reports Server (NTRS)

    Verhaegen, M. H.

    1987-01-01

    A new algorithm to solve test subset regression problems is described, called the minimal residual QR factorization algorithm (MRQR). This scheme performs a QR factorization with a new column pivoting strategy. Basically, this strategy is based on the change in the residual of the least squares problem. Furthermore, it is demonstrated that this basic scheme might be extended in a numerically efficient way to combine the advantages of existing numerical procedures, such as the singular value decomposition, with those of more classical statistical procedures, such as stepwise regression. This extension is presented as an advisory expert system that guides the user in solving the subset regression problem. The advantages of the new procedure are highlighted by a numerical example.

  9. Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction.

    PubMed

    Wang, Xiaolong; Bao, Zhenmin; Hu, Jingjie; Wang, Shi; Zhan, Aibin

    2008-01-01

    A new DNA computing algorithm based on a ligase chain reaction is demonstrated to solve an SAT problem. The proposed DNA algorithm can solve an n-variable m-clause SAT problem in m steps and the computation time required is O (3m+n). Instead of generating the full-solution DNA library, we start with an empty test tube and then generate solutions that partially satisfy the SAT formula. These partial solutions are then extended step by step by the ligation of new variables using Taq DNA ligase. Correct strands are amplified and false strands are pruned by a ligase chain reaction (LCR) as soon as they fail to satisfy the conditions. If we score and sort the clauses, we can use this algorithm to markedly reduce the number of DNA strands required throughout the computing process. In a computer simulation, the maximum number of DNA strands required was 2(0.48n) when n=50, and the exponent ratio varied inversely with the number of variables n and the clause/variable ratio m/n. This algorithm is highly space-efficient and error-tolerant compared to conventional brute-force searching, and thus can be scaled-up to solve large and hard SAT problems. PMID:17904730

  10. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  11. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem

    NASA Astrophysics Data System (ADS)

    Jiang, Mingfeng; Xia, Ling; Shou, Guofa; Tang, Min

    2007-03-01

    Computing epicardial potentials from body surface potentials constitutes one form of ill-posed inverse problem of electrocardiography (ECG). To solve this ECG inverse problem, the Tikhonov regularization and truncated singular-value decomposition (TSVD) methods have been commonly used to overcome the ill-posed property by imposing constraints on the magnitudes or derivatives of the computed epicardial potentials. Such direct regularization methods, however, are impractical when the transfer matrix is large. The least-squares QR (LSQR) method, one of the iterative regularization methods based on Lanczos bidiagonalization and QR factorization, has been shown to be numerically more reliable in various circumstances than the other methods considered. This LSQR method, however, to our knowledge, has not been introduced and investigated for the ECG inverse problem. In this paper, the regularization properties of the Krylov subspace iterative method of LSQR for solving the ECG inverse problem were investigated. Due to the 'semi-convergence' property of the LSQR method, the L-curve method was used to determine the stopping iteration number. The performance of the LSQR method for solving the ECG inverse problem was also evaluated based on a realistic heart-torso model simulation protocol. The results show that the inverse solutions recovered by the LSQR method were more accurate than those recovered by the Tikhonov and TSVD methods. In addition, by combing the LSQR with genetic algorithms (GA), the performance can be improved further. It suggests that their combination may provide a good scheme for solving the ECG inverse problem.

  12. Problem Solving in the Professions.

    ERIC Educational Resources Information Center

    Jackling, Noel; And Others

    1990-01-01

    It is proposed that algorithms and heuristics are useful in improving professional problem-solving abilities when contextualized within the academic discipline. A basic algorithm applied to problem solving in undergraduate engineering education and a similar algorithm applicable to legal problems are used as examples. Problem complexity and…

  13. A firefly algorithm for solving competitive location-design problem: a case study

    NASA Astrophysics Data System (ADS)

    Sadjadi, Seyed Jafar; Ashtiani, Milad Gorji; Ramezanian, Reza; Makui, Ahmad

    2016-07-01

    This paper aims at determining the optimal number of new facilities besides specifying both the optimal location and design level of them under the budget constraint in a competitive environment by a novel hybrid continuous and discrete firefly algorithm. A real-world application of locating new chain stores in the city of Tehran, Iran, is used and the results are analyzed. In addition, several examples have been solved to evaluate the efficiency of the proposed model and algorithm. The results demonstrate that the performed method provides good-quality results for the test problems.

  14. Fast algorithm for solving the Hankel/Toeplitz Structured Total Least Squares problem

    NASA Astrophysics Data System (ADS)

    Lemmerling, Philippe; Mastronardi, Nicola; van Huffel, Sabine

    2000-07-01

    The Structured Total Least Squares (STLS) problem is a natural extension of the Total Least Squares (TLS) problem when constraints on the matrix structure need to be imposed. Similar to the ordinary TLS approach, the STLS approach can be used to determine the parameter vector of a linear model, given some noisy measurements. In many signal processing applications, the imposition of this matrix structure constraint is necessary for obtaining Maximum Likelihood (ML) estimates of the parameter vectorE In this paper we consider the Toeplitz (Hankel) STLS problem (i.e., an STLS problem in which the Toeplitz (Hankel) structure needs to be preserved). A fast implementation of an algorithm for solving this frequently occurring STLS problem is proposed. The increased efficiency is obtained by exploiting the low displacement rank of the involved matrices and the sparsity of the associated generators. The fast implementation is compared to two other implementations of algorithms for solving the Toeplitz (Hankel) STLS problem. The comparison is carried out on a recently proposed speech compression scheme. The numerical results confirm the high efficiency of the newly proposed fast implementation: the straightforward implementations have a complexity of O((m+n)3) and O(m3) whereas the proposed implementation has a complexity of O(mn+n2).

  15. Solving large-scale real-world telecommunication problems using a grid-based genetic algorithm

    NASA Astrophysics Data System (ADS)

    Luna, Francisco; Nebro, Antonio; Alba, Enrique; Durillo, Juan

    2008-11-01

    This article analyses the use of a grid-based genetic algorithm (GrEA) to solve a real-world instance of a problem from the telecommunication domain. The problem, known as automatic frequency planning (AFP), is used in a global system for mobile communications (GSM) networks to assign a number of fixed frequencies to a set of GSM transceivers located in the antennae of a cellular phone network. Real data instances of the AFP are very difficult to solve owing to the NP-hard nature of the problem, so combining grid computing and metaheuristics turns out to be a way to provide satisfactory solutions in a reasonable amount of time. GrEA has been deployed on a grid with up to 300 processors to solve an AFP instance of 2612 transceivers. The results not only show that significant running time reductions are achieved, but that the search capability of GrEA clearly outperforms that of the equivalent non-grid algorithm.

  16. Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.

  17. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-10-23

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation.

  18. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  19. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    PubMed Central

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  20. Statistical physics analysis of the computational complexity of solving random satisfiability problems using backtrack algorithms

    NASA Astrophysics Data System (ADS)

    Cocco, S.; Monasson, R.

    2001-08-01

    The computational complexity of solving random 3-Satisfiability (3-SAT) problems is investigated using statistical physics concepts and techniques related to phase transitions, growth processes and (real-space) renormalization flows. 3-SAT is a representative example of hard computational tasks; it consists in knowing whether a set of αN randomly drawn logical constraints involving N Boolean variables can be satisfied altogether or not. Widely used solving procedures, as the Davis-Putnam-Loveland-Logemann (DPLL) algorithm, perform a systematic search for a solution, through a sequence of trials and errors represented by a search tree. The size of the search tree accounts for the computational complexity, i.e. the amount of computational efforts, required to achieve resolution. In the present study, we identify, using theory and numerical experiments, easy (size of the search tree scaling polynomially with N) and hard (exponential scaling) regimes as a function of the ratio α of constraints per variable. The typical complexity is explicitly calculated in the different regimes, in very good agreement with numerical simulations. Our theoretical approach is based on the analysis of the growth of the branches in the search tree under the operation of DPLL. On each branch, the initial 3-SAT problem is dynamically turned into a more generic 2+p-SAT problem, where p and 1 - p are the fractions of constraints involving three and two variables respectively. The growth of each branch is monitored by the dynamical evolution of α and p and is represented by a trajectory in the static phase diagram of the random 2+p-SAT problem. Depending on whether or not the trajectories cross the boundary between satisfiable and unsatisfiable phases, single branches or full trees are generated by DPLL, resulting in easy or hard resolutions. Our picture for the origin of complexity can be applied to other computational problems solved by branch and bound algorithms.

  1. Solving the container pre-marshalling problem using variable length genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gheith, Mohamed; Eltawil, Amr B.; Harraz, Nermine A.

    2016-04-01

    In container terminals, the yard area consists of a set of blocks, which consists of a set of bays. Each bay consists of a set of stacks, which consists of a set of tiers. In the container pre-marshalling problem, an initial layout of a bay is converted to a final desired layout. The final layout follows the given loading schedule of this bay. This has a direct impact on the most important container terminal performance measure: the vessel loading time. The deviation between the current layout and the desired layout is expressed by the value of the mis-overlays. The objective of the pre-marshalling problem is to eliminate the mis-overlays with the minimum number of container movements. In this article, a variable chromosome length genetic algorithm was applied to solve the problem. The results of the new solution approach were compared against benchmark instances and the results were remarkably better.

  2. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  3. Solving inverse problem for Markov chain model of customer lifetime value using flower pollination algorithm

    NASA Astrophysics Data System (ADS)

    Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji

    2015-12-01

    Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.

  4. A Method of Solving Scheduling Problems Using Improved Guided Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ou, Gyouhi; Tamura, Hiroki; Tanno, Koichi; Tang, Zheng

    In this paper, an improved guided genetic algorithm is proposed forJob-shop schueduling problem. The proposed method is improved by genetic algorithm using multipliers which can be adjusted during the search process. The simulation results based on some benchmark problems that proves the proposed method can find better solutions than genetic algorithm and original guided genetic algorithm.

  5. Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem

    PubMed Central

    2015-01-01

    Genetic algorithms are powerful search methods inspired by Darwinian evolution. To date, they have been applied to the solution of many optimization problems because of the easy use of their properties and their robustness in finding good solutions to difficult problems. The good operation of genetic algorithms is due in part to its two main variation operators, namely, crossover and mutation operators. Typically, in the literature, we find the use of a single crossover and mutation operator. However, there are studies that have shown that using multi-operators produces synergy and that the operators are mutually complementary. Using multi-operators is not a simple task because which operators to use and how to combine them must be determined, which in itself is an optimization problem. In this paper, it is proposed that the task of exploring the different combinations of the crossover and mutation operators can be carried out by evolutionary computing. The crossover and mutation operators used are those typically used for solving the traveling salesman problem. The process of searching for good combinations was effective, yielding appropriate and synergic combinations of the crossover and mutation operators. The numerical results show that the use of the combination of operators obtained by evolutionary computing is better than the use of a single operator and the use of multi-operators combined in the standard way. The results were also better than those of the last operators reported in the literature. PMID:26367182

  6. A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem.

    PubMed

    He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi

    2015-11-01

    A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP. PMID:26474934

  7. Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm

    PubMed Central

    Martín H., José Antonio

    2013-01-01

    Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways. In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present if and only if it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to “efficiently” solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter . Nevertheless, here it is proved that the probability of requiring a value of to obtain a solution for a random graph decreases exponentially: , making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results. PMID:23349711

  8. Numerical algorithm for solving mathematical programming problems with a smooth surface as a constraint

    NASA Astrophysics Data System (ADS)

    Chernyaev, Yu. A.

    2016-03-01

    A numerical algorithm for minimizing a convex function on a smooth surface is proposed. The algorithm is based on reducing the original problem to a sequence of convex programming problems. Necessary extremum conditions are examined, and the convergence of the algorithm is analyzed.

  9. Meta-heuristic algorithm to solve two-sided assembly line balancing problems

    NASA Astrophysics Data System (ADS)

    Wirawan, A. D.; Maruf, A.

    2016-02-01

    Two-sided assembly line is a set of sequential workstations where task operations can be performed at two sides of the line. This type of line is commonly used for the assembly of large-sized products: cars, buses, and trucks. This paper propose a Decoding Algorithm with Teaching-Learning Based Optimization (TLBO), a recently developed nature-inspired search method to solve the two-sided assembly line balancing problem (TALBP). The algorithm aims to minimize the number of mated-workstations for the given cycle time without violating the synchronization constraints. The correlation between the input parameters and the emergence point of objective function value is tested using scenarios generated by design of experiments. A two-sided assembly line operated in an Indonesia's multinational manufacturing company is considered as the object of this paper. The result of the proposed algorithm shows reduction of workstations and indicates that there is negative correlation between the emergence point of objective function value and the size of population used.

  10. Solving inverse problems of groundwater-pollution-source identification using a differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Gurarslan, Gurhan; Karahan, Halil

    2015-09-01

    In this study, an accurate model was developed for solving problems of groundwater-pollution-source identification. In the developed model, the numerical simulations of flow and pollutant transport in groundwater were carried out using MODFLOW and MT3DMS software. The optimization processes were carried out using a differential evolution algorithm. The performance of the developed model was tested on two hypothetical aquifer models using real and noisy observation data. In the first model, the release histories of the pollution sources were determined assuming that the numbers, locations and active stress periods of the sources are known. In the second model, the release histories of the pollution sources were determined assuming that there is no information on the sources. The results obtained by the developed model were found to be better than those reported in literature.

  11. An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2014-09-01

    In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.

  12. Diagnosing Learners' Problem-Solving Strategies Using Learning Environments with Algorithmic Problems in Secondary Education

    ERIC Educational Resources Information Center

    Kiesmuller, Ulrich

    2009-01-01

    At schools special learning and programming environments are often used in the field of algorithms. Particularly with regard to computer science lessons in secondary education, they are supposed to help novices to learn the basics of programming. In several parts of Germany (e.g., Bavaria) these fundamentals are taught as early as in the seventh…

  13. A configuration space Monte Carlo algorithm for solving the nuclear pairing problem

    NASA Astrophysics Data System (ADS)

    Lingle, Mark

    Nuclear pairing correlations using Quantum Monte Carlo are studied in this dissertation. We start by defining the nuclear pairing problem and discussing several historical methods developed to solve this problem, paying special attention to the applicability of such methods. A numerical example discussing pairing correlations in several calcium isotopes using the BCS and Exact Pairing solutions are presented. The ground state energies, correlation energies, and occupation numbers are compared to determine the applicability of each approach to realistic cases. Next we discuss some generalities related to the theory of Markov Chains and Quantum Monte Carlo in regards to nuclear structure. Finally we present our configuration space Monte Carlo algorithm starting from a discussion of a path integral approach by the authors. Some general features of the Pairing Hamiltonian that boost the effectiveness of a configuration space Monte Carlo approach are mentioned. The full details of our method are presented and special attention is paid to convergence and error control. We present a series of examples illustrating the effectiveness of our approach. These include situations with non-constant pairing strengths, limits when pairing correlations are weak, the computation of excited states, and problems when the relevant configuration space is large. We conclude with a chapter examining some of the effects of continuum states in 24O.

  14. Noise reduction for modal parameters estimation using algorithm of solving partially described inverse singular value problem

    NASA Astrophysics Data System (ADS)

    Bao, Xingxian; Cao, Aixia; Zhang, Jing

    2016-07-01

    Modal parameters estimation plays an important role for structural health monitoring. Accurately estimating the modal parameters of structures is more challenging as the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of solving the partially described inverse singular value problem (PDISVP) combined with the complex exponential (CE) method to estimate the modal parameters. The PDISVP solving method is to reconstruct an L2-norm optimized (filtered) data matrix from the measured (noisy) data matrix, when the prescribed data constraints are one or several sets of singular triplets of the matrix. The measured data matrix is Hankel structured, which is constructed based on the measured impulse response function (IRF). The reconstructed matrix must maintain the Hankel structure, and be lowered in rank as well. Once the filtered IRF is obtained, the CE method can be applied to extract the modal parameters. Two physical experiments, including a steel cantilever beam with 10 accelerometers mounted, and a steel plate with 30 accelerometers mounted, excited by an impulsive load, respectively, are investigated to test the applicability of the proposed scheme. In addition, the consistency diagram is proposed to exam the agreement among the modal parameters estimated from those different accelerometers. Results indicate that the PDISVP-CE method can significantly remove noise from measured signals and accurately estimate the modal frequencies and damping ratios.

  15. Conceptual versus Algorithmic Problem-Solving: Focusing on Problems Dealing with Conservation of Matter in Chemistry

    ERIC Educational Resources Information Center

    Salta, Katerina; Tzougraki, Chryssa

    2011-01-01

    The students' performance in various types of problems dealing with the conservation of matter during chemical reactions has been investigated at different levels of schooling. The participants were 499 ninth grade (ages 14, 15 years) and 624 eleventh grade (ages 16, 17 years) Greek students. Data was collected using a written questionnaire…

  16. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators

  17. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kania, Adhe; Sidarto, Kuntjoro Adji

    2016-02-01

    Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

  18. A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1991-01-01

    The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.

  19. Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths

    NASA Astrophysics Data System (ADS)

    Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna

    2011-06-01

    We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.

  20. Use of a genetic algorithm to solve two-fluid flow problems on an NCUBE multiprocessor computer

    SciTech Connect

    Pryor, R.J.; Cline, D.D.

    1992-01-01

    A method of solving the two-phase fluid flow equations using a genetic algorithm on a NCUBE multiprocessor computer is presented. The topics discussed are the two-phase flow equations, the genetic representation of the unknowns, the fitness function, the genetic operators, and the implementation of the algorithm on the NCUBE computer. The efficiency of the implementation is investigated using a pipe blowdown problem. Effects of varying the genetic parameters and the number of processors are presented.

  1. Use of a genetic algorithm to solve two-fluid flow problems on an NCUBE multiprocessor computer

    SciTech Connect

    Pryor, R.J.; Cline, D.D.

    1992-12-31

    A method of solving the two-phase fluid flow equations using a genetic algorithm on a NCUBE multiprocessor computer is presented. The topics discussed are the two-phase flow equations, the genetic representation of the unknowns, the fitness function, the genetic operators, and the implementation of the algorithm on the NCUBE computer. The efficiency of the implementation is investigated using a pipe blowdown problem. Effects of varying the genetic parameters and the number of processors are presented.

  2. Inverse problem for the solidification of binary alloy in the casting mould solved by using the bee optimization algorithm

    NASA Astrophysics Data System (ADS)

    Hetmaniok, Edyta

    2016-07-01

    In this paper the procedure for solving the inverse problem for the binary alloy solidification in the casting mould is presented. Proposed approach is based on the mathematical model suitable for describing the investigated solidification process, the lever arm model describing the macrosegregation process, the finite element method for solving the direct problem and the artificial bee colony algorithm for minimizing the functional expressing the error of approximate solution. Goal of the discussed inverse problem is the reconstruction of heat transfer coefficient and distribution of temperature in investigated region on the basis of known measurements of temperature.

  3. Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1997-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.

  4. A prefiltered cuckoo search algorithm with geometric operators for solving Sudoku problems.

    PubMed

    Soto, Ricardo; Crawford, Broderick; Galleguillos, Cristian; Monfroy, Eric; Paredes, Fernando

    2014-01-01

    The Sudoku is a famous logic-placement game, originally popularized in Japan and today widely employed as pastime and as testbed for search algorithms. The classic Sudoku consists in filling a 9 × 9 grid, divided into nine 3 × 3 regions, so that each column, row, and region contains different digits from 1 to 9. This game is known to be NP-complete, with existing various complete and incomplete search algorithms able to solve different instances of it. In this paper, we present a new cuckoo search algorithm for solving Sudoku puzzles combining prefiltering phases and geometric operations. The geometric operators allow one to correctly move toward promising regions of the combinatorial space, while the prefiltering phases are able to previously delete from domains the values that do not conduct to any feasible solution. This integration leads to a more efficient domain filtering and as a consequence to a faster solving process. We illustrate encouraging experimental results where our approach noticeably competes with the best approximate methods reported in the literature. PMID:24707205

  5. A prefiltered cuckoo search algorithm with geometric operators for solving Sudoku problems.

    PubMed

    Soto, Ricardo; Crawford, Broderick; Galleguillos, Cristian; Monfroy, Eric; Paredes, Fernando

    2014-01-01

    The Sudoku is a famous logic-placement game, originally popularized in Japan and today widely employed as pastime and as testbed for search algorithms. The classic Sudoku consists in filling a 9 × 9 grid, divided into nine 3 × 3 regions, so that each column, row, and region contains different digits from 1 to 9. This game is known to be NP-complete, with existing various complete and incomplete search algorithms able to solve different instances of it. In this paper, we present a new cuckoo search algorithm for solving Sudoku puzzles combining prefiltering phases and geometric operations. The geometric operators allow one to correctly move toward promising regions of the combinatorial space, while the prefiltering phases are able to previously delete from domains the values that do not conduct to any feasible solution. This integration leads to a more efficient domain filtering and as a consequence to a faster solving process. We illustrate encouraging experimental results where our approach noticeably competes with the best approximate methods reported in the literature.

  6. Mental Capacity and Working Memory in Chemistry: Algorithmic "versus" Open-Ended Problem Solving

    ERIC Educational Resources Information Center

    St Clair-Thompson, Helen; Overton, Tina; Bugler, Myfanwy

    2012-01-01

    Previous research has revealed that problem solving and attainment in chemistry are constrained by mental capacity and working memory. However, the terms mental capacity and working memory come from different theories of cognitive resources, and are assessed using different tasks. The current study examined the relationships between mental…

  7. Software and Algorithms for Solving Computational Geodynamic Problems using Next Generation Hardware

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Gerya, Taras

    2014-05-01

    Numerical geodynamic modeling is typically based on solving a series of partial differential equations which describe the long-term behavior of the solid visco-elasto-brittle/plastic Earth as a highly viscous incompressible fluid with strongly variable non-Newtonian viscosity. Coding for solving geodynamic equations is catching up with the advance of modern high performance computing. In the past five years, newly developed many-core computing technology, including GPU (Graphics Processing Unit) and MIC (Many Integrated Core), has also been utilized for geodynamic modeling. However, the lack of easy-to-expand or easy-to-use geo-computing toolkits limits the high performance software catching up with the endless updating of high performance hardware. In this presentation, we will firstly show two examples of the implementation of solving geodynamic problems based on Stokes and continuity equations with strongly variable viscosity using many-core hardware, with a specific focus on the GPU. The first example is a geometric multi-grid (GMG) solver, which solves a synthetic sinking cube problem using a staggered grid finite difference discretization. The second example is a preconditioned minimal residual (MINRES) solver for incompressible Stokes flow problem with many viscous inclusions which is discretized using the finite element method. Through these two implementation examples, we will analyze the cost of coding and running advantages and disadvantages of the two kinds of coding methodologies, and in a hope to discuss a potential general coding flowchart for solving geodynamic equations using many-core devices. Finally, a software stack based many-core computing framework oriented to geodynamic modeling is proposed for the future.

  8. The effect of neighborhood structures on tabu search algorithm in solving university course timetabling problem

    NASA Astrophysics Data System (ADS)

    Shakir, Ali; AL-Khateeb, Belal; Shaker, Khalid; Jalab, Hamid A.

    2014-12-01

    The design of course timetables for academic institutions is a very difficult job due to the huge number of possible feasible timetables with respect to the problem size. This process contains lots of constraints that must be taken into account and a large search space to be explored, even if the size of the problem input is not significantly large. Different heuristic approaches have been proposed in the literature in order to solve this kind of problem. One of the efficient solution methods for this problem is tabu search. Different neighborhood structures based on different types of move have been defined in studies using tabu search. In this paper, different neighborhood structures on the operation of tabu search are examined. The performance of different neighborhood structures is tested over eleven benchmark datasets. The obtained results of every neighborhood structures are compared with each other. Results obtained showed the disparity between each neighborhood structures and another in terms of penalty cost.

  9. Group Problem Solving.

    ERIC Educational Resources Information Center

    King, James C.

    1988-01-01

    This pamphlet discusses group problem solving in schools. Its point of departure is that teachers go at problems from a number of different directions and that principals need to capitalize on those differences and bring a whole range of skills and perceptions to the problem-solving process. Rather than trying to get everyone to think alike,…

  10. Techniques of Problem Solving.

    ERIC Educational Resources Information Center

    Krantz, Steven G.

    The purpose of this book is to teach the basic principles of problem solving in both mathematical and non-mathematical problems. The major components of the book consist of learning to translate verbal discussion into analytical data, learning problem solving methods for attacking collections of analytical questions or data, and building a…

  11. Developing a Direct Search Algorithm for Solving the Capacitated Open Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Simbolon, Hotman

    2011-06-01

    In open vehicle routing problems, the vehicles are not required to return to the depot after completing service. In this paper, we present the first exact optimization algorithm for the open version of the well-known capacitated vehicle routing problem (CVRP). The strategy of releasing nonbasic variables from their bounds, combined with the "active constraint" method and the notion of superbasics, has been developed for efficiently requirements; this strategy is used to force the appropriate non-integer basic variables to move to their neighborhood integer points. A study of criteria for choosing a nonbasic variable to work with in the integerizing strategy has also been made.

  12. Algorithm to solve a chance-constrained network capacity design problem with stochastic demands and finite support

    DOE PAGES

    Schumacher, Kathryn M.; Chen, Richard Li-Yang; Cohn, Amy E. M.; Castaing, Jeremy

    2016-04-15

    Here, we consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real-world applications, such as the design of power transmission and telecommunications networks. We first consider the case where a set of supply/demand scenarios are provided, and we must determine the minimum-cost set of arc capacities such that a feasible flow exists for each scenario. We briefly review existing theoretical approaches to solving this problem and explore implementation strategies to reduce run times. With this as amore » foundation, our primary focus is on a chance-constrained version of the problem in which α% of the scenarios must be feasible under the chosen capacity, where α is a user-defined parameter and the specific scenarios to be satisfied are not predetermined. We describe an algorithm which utilizes a separation routine for identifying violated cut-sets which can solve the problem to optimality, and we present computational results. We also present a novel greedy algorithm, our primary contribution, which can be used to solve for a high quality heuristic solution. We present computational analysis to evaluate the performance of our proposed approaches.« less

  13. Parallel Algorithm Solves Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Hayashi, A.

    1987-01-01

    Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

  14. Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Fi, Cos D.; Degner, Katherine M.

    2012-01-01

    Teaching through Problem Solving (TtPS) is an effective way to teach mathematics "for" understanding. It also provides students with a way to learn mathematics "with" understanding. In this article, the authors present a definition of what it means to teach through problem solving. They also describe a professional development vignette that…

  15. An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2013-12-01

    In this article, an effective shuffled frog-leaping algorithm (SFLA) is proposed to solve the hybrid flow-shop scheduling problem with identical parallel machines (HFSP-IPM). First, some novel heuristic decoding rules for both job order decision and machine assignment are proposed. Then, three hybrid decoding schemes are designed to decode job order sequences to schedules. A special bi-level crossover and multiple local search operators are incorporated in the searching framework of the SFLA to enrich the memetic searching behaviour and to balance the exploration and exploitation capabilities. Meanwhile, some theoretical analysis for the local search operators is provided for guiding the local search. The parameter setting of the algorithm is also investigated based on the Taguchi method of design of experiments. Finally, numerical testing based on well-known benchmarks and comparisons with some existing algorithms are carried out to demonstrate the effectiveness of the proposed algorithm.

  16. A Fuzzy Goal Programming Procedure for Solving Multiobjective Load Flow Problems via Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Biswas, Papun; Chakraborti, Debjani

    2010-10-01

    This paper describes how the genetic algorithms (GAs) can be efficiently used to fuzzy goal programming (FGP) formulation of optimal power flow problems having multiple objectives. In the proposed approach, the different constraints, various relationships of optimal power flow calculations are fuzzily described. In the model formulation of the problem, the membership functions of the defined fuzzy goals are characterized first for measuring the degree of achievement of the aspiration levels of the goals specified in the decision making context. Then, the achievement function for minimizing the regret for under-deviations from the highest membership value (unity) of the defined membership goals to the extent possible on the basis of priorities is constructed for optimal power flow problems. In the solution process, the GA method is employed to the FGP formulation of the problem for achievement of the highest membership value (unity) of the defined membership functions to the extent possible in the decision making environment. In the GA based solution search process, the conventional Roulette wheel selection scheme, arithmetic crossover and random mutation are taken into consideration to reach a satisfactory decision. The developed method has been tested on IEEE 6-generator 30-bus System. Numerical results show that this method is promising for handling uncertain constraints in practical power systems.

  17. Problem Solving and Learning

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  18. Problem Solving by Design

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Tyrie, Nancy

    2009-01-01

    In a unique school-university partnership, methods students collaborated with fifth graders to use the engineering design process to build their problem-solving skills. By placing the problem in the context of a client having particular needs, the problem took on a real-world appeal that students found intriguing and inviting. In this article, the…

  19. Mathematics as Problem Solving.

    ERIC Educational Resources Information Center

    Soifer, Alexander

    This book contains about 200 problems. It is suggested that it be used by students, teachers or anyone interested in exploring mathematics. In addition to a general discussion on problem solving, there are problems concerned with number theory, algebra, geometry, and combinatorics. (PK)

  20. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  1. NAEP Note: Problem Solving.

    ERIC Educational Resources Information Center

    Carpenter, Thomas P.; And Others

    1980-01-01

    Student weaknesses on problem-solving portions of the NAEP mathematics assessment are discussed using Polya's heuristics as a framework. Recommendations for classroom instruction are discussed. (MP) Aspect of National Assessment (NAEP) dealt with in this document: Results (Interpretation).

  2. What Is Problem Solving?

    ERIC Educational Resources Information Center

    Martinez, Michael E.

    1998-01-01

    Many important human activities involve accomplishing goals without a script. There is no formula for true problem-solving. Heuristic, cognitive "rules of thumb" are the problem-solver's best guide. Learners should understand heuristic tools such as means-end analysis, working backwards, successive approximation, and external representation. Since…

  3. Problem Solving in Electricity.

    ERIC Educational Resources Information Center

    Caillot, Michel; Chalouhi, Elias

    Two studies were conducted to describe how students perform direct current (D-C) circuit problems. It was hypothesized that problem solving in the electricity domain depends largely on good visual processing of the circuit diagram and that this processing depends on the ability to recognize when two or more electrical components are in series or…

  4. Inquiry and Problem Solving.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    1999-01-01

    This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High School); (3) "Project…

  5. Problem-Solving Software

    NASA Technical Reports Server (NTRS)

    1992-01-01

    CBR Express software solves problems by adapting sorted solutions to new problems specified by a user. It is applicable to a wide range of situations. The technology was originally developed by Inference Corporation for Johnson Space Center's Advanced Software Development Workstation. The project focused on the reuse of software designs, and Inference used CBR as part of the ACCESS prototype software. The commercial CBR Express is used as a "help desk" for customer support, enabling reuse of existing information when necessary. It has been adopted by several companies, among them American Airlines, which uses it to solve reservation system software problems.

  6. Solving Common Mathematical Problems

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Mathematical Solutions Toolset is a collection of five software programs that rapidly solve some common mathematical problems. The programs consist of a set of Microsoft Excel worksheets. The programs provide for entry of input data and display of output data in a user-friendly, menu-driven format, and for automatic execution once the input data has been entered.

  7. Solving Problems in Genetics

    ERIC Educational Resources Information Center

    Aznar, Mercedes Martinez; Orcajo, Teresa Ibanez

    2005-01-01

    A teaching unit on genetics and human inheritance using problem-solving methodology was undertaken with fourth-level Spanish Secondary Education students (15 year olds). The goal was to study certain aspects of the students' learning process (concepts, procedures and attitude) when using this methodology in the school environment. The change…

  8. Universal Design Problem Solving

    ERIC Educational Resources Information Center

    Sterling, Mary C.

    2004-01-01

    Universal design is made up of four elements: accessibility, adaptability, aesthetics, and affordability. This article addresses the concept of universal design problem solving through experiential learning for an interior design studio course in postsecondary education. Students' experiences with clients over age 55 promoted an understanding of…

  9. Problem Solving with Patents

    ERIC Educational Resources Information Center

    Moore, Jerilou; Sumrall, William J.

    2008-01-01

    Exploring our patent system is a great way to engage students in creative problem solving. As a result, the authors designed a teaching unit that uses the study of patents to explore one avenue in which scientists and engineers do science. Specifically, through the development of an idea, students learn how science and technology are connected.…

  10. Preparing for Problem Solving

    ERIC Educational Resources Information Center

    Holden, Becky

    2007-01-01

    Seeking more effective mathematics instruction, this author decided to incorporate Cognitively Guided Instruction (CGI) into first-grade classroom lessons. Students in CGI mathematics classrooms are prompted to use their prior knowledge to solve new problems, establish cognitive structures to which new learning can be connected, and be driven by…

  11. Solving Problems through Circles

    ERIC Educational Resources Information Center

    Grahamslaw, Laura; Henson, Lisa H.

    2015-01-01

    Several problem-solving interventions that utilise a "circle" approach have been applied within the field of educational psychology, for example, Circle Time, Circle of Friends, Sharing Circles, Circle of Adults and Solution Circles. This research explored two interventions, Solution Circles and Circle of Adults, and used thematic…

  12. Circumference and Problem Solving.

    ERIC Educational Resources Information Center

    Blackburn, Katie; White, David

    The concept of pi is one of great importance to all developed civilization and one that can be explored and mastered by elementary students through an inductive and problem-solving approach. Such an approach is outlined and discussed. The approach involves the following biblical quotation: "And he made a moltin sea ten cubits from one brim to the…

  13. Introspection in Problem Solving

    ERIC Educational Resources Information Center

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  14. [Problem Solving Activities.

    ERIC Educational Resources Information Center

    Wisconsin Univ. - Stout, Menomonie. Center for Vocational, Technical and Adult Education.

    The teacher directed problem solving activities package contains 17 units: Future Community Design, Let's Build an Elevator, Let's Construct a Catapult, Let's Design a Recreational Game, Let's Make a Hand Fishing Reel, Let's Make a Wall Hanging, Let's Make a Yo-Yo, Marooned in the Past, Metrication, Mousetrap Vehicles, The Multi System…

  15. Using an Algorithm When Solving Hardy-Weinberg Problems in Biology.

    ERIC Educational Resources Information Center

    Stencel, John E.

    1991-01-01

    A real world sample of actual data that students can use to see the application of the Hardy-Weinberg law to a real population is provided. The directions for using a six-step algorithmic procedure to determine Hardy-Weinberg percentages on the data given are described. (KR)

  16. An algorithm for solving the system-level problem in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Sobieszczanski-Sobieski, J.

    1994-01-01

    A multilevel optimization approach which is applicable to nonhierarchic coupled systems is presented. The approach includes a general treatment of design (or behavior) constraints and coupling constraints at the discipline level through the use of norms. Three different types of norms are examined: the max norm, the Kreisselmeier-Steinhauser (KS) norm, and the 1(sub p) norm. The max norm is recommended. The approach is demonstrated on a class of hub frame structures which simulate multidisciplinary systems. The max norm is shown to produce system-level constraint functions which are non-smooth. A cutting-plane algorithm is presented which adequately deals with the resulting corners in the constraint functions. The algorithm is tested on hub frames with increasing number of members (which simulate disciplines), and the results are summarized.

  17. Genetic Algorithm Based Simulated Annealing Method for Solving Unit Commitment Problem in Utility System

    NASA Astrophysics Data System (ADS)

    Rajan, C. Christober Asir

    2010-10-01

    The objective of this paper is to find the generation scheduling such that the total operating cost can be minimized, when subjected to a variety of constraints. This also means that it is desirable to find the optimal generating unit commitment in the power system for the next H hours. Genetic Algorithms (GA's) are general-purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as neural section, genetic recombination and survival of the fittest. In this, the unit commitment schedule is coded as a string of symbols. An initial population of parent solutions is generated at random. Here, each schedule is formed by committing all the units according to their initial status ("flat start"). Here the parents are obtained from a pre-defined set of solution's i.e. each and every solution is adjusted to meet the requirements. Then, a random recommitment is carried out with respect to the unit's minimum down times. And SA improves the status. A 66-bus utility power system with twelve generating units in India demonstrates the effectiveness of the proposed approach. Numerical results are shown comparing the cost solutions and computation time obtained by using the Genetic Algorithm method and other conventional methods.

  18. Fast Parallel Molecular Algorithms for DNA-Based Computation: Solving the Elliptic Curve Discrete Logarithm Problem over GF(2n)

    PubMed Central

    Li, Kenli; Zou, Shuting; Xv, Jin

    2008-01-01

    Elliptic curve cryptographic algorithms convert input data to unrecognizable encryption and the unrecognizable data back again into its original decrypted form. The security of this form of encryption hinges on the enormous difficulty that is required to solve the elliptic curve discrete logarithm problem (ECDLP), especially over GF(2n), n ∈ Z+. This paper describes an effective method to find solutions to the ECDLP by means of a molecular computer. We propose that this research accomplishment would represent a breakthrough for applied biological computation and this paper demonstrates that in principle this is possible. Three DNA-based algorithms: a parallel adder, a parallel multiplier, and a parallel inverse over GF(2n) are described. The biological operation time of all of these algorithms is polynomial with respect to n. Considering this analysis, cryptography using a public key might be less secure. In this respect, a principal contribution of this paper is to provide enhanced evidence of the potential of molecular computing to tackle such ambitious computations. PMID:18431451

  19. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    NASA Astrophysics Data System (ADS)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  20. A weighted reverse Cuthill-McKee procedure for finite element method algorithms to solve strongly anisotropic electrodynamic problems

    SciTech Connect

    Cristofolini, Andrea; Latini, Chiara; Borghi, Carlo A.

    2011-02-01

    This paper presents a technique for improving the convergence rate of a generalized minimum residual (GMRES) algorithm applied for the solution of a algebraic system produced by the discretization of an electrodynamic problem with a tensorial electrical conductivity. The electrodynamic solver considered in this work is a part of a magnetohydrodynamic (MHD) code in the low magnetic Reynolds number approximation. The code has been developed for the analysis of MHD interaction during the re-entry phase of a space vehicle. This application is a promising technique intensively investigated for the shock mitigation and the vehicle control in the higher layers of a planetary atmosphere. The medium in the considered application is a low density plasma, characterized by a tensorial conductivity. This is a result of the behavior of the free electric charges, which tend to drift in a direction perpendicular both to the electric field and to the magnetic field. In the given approximation, the electrodynamics is described by an elliptical partial differential equation, which is solved by means of a finite element approach. The linear system obtained by discretizing the problem is solved by means of a GMRES iterative method with an incomplete LU factorization threshold preconditioning. The convergence of the solver appears to be strongly affected by the tensorial characteristic of the conductivity. In order to deal with this feature, the bandwidth reduction in the coefficient matrix is considered and a novel technique is proposed and discussed. First, the standard reverse Cuthill-McKee (RCM) procedure has been applied to the problem. Then a modification of the RCM procedure (the weighted RCM procedure, WRCM) has been developed. In the last approach, the reordering is performed taking into account the relation between the mesh geometry and the magnetic field direction. In order to investigate the effectiveness of the methods, two cases are considered. The RCM and WRCM procedures

  1. Computer Problem-Solving Coaches

    NASA Astrophysics Data System (ADS)

    Hsu, Leon; Heller, Kenneth

    2005-09-01

    Computers might be able to play an important role in physics instruction by coaching students to develop good problem-solving skills. Building on previous research on student problem solving and on designing computer programs to teach cognitive skills, we are developing a prototype computer coach to provide students with guided practice in solving problems. In addition to helping students become better problem solvers, such programs can be useful in studying how students learn to solve problems and how and if problem-solving skills can be transferred from a computer to a pencil-and-paper environment.

  2. Problem Solving and Beginning Programming.

    ERIC Educational Resources Information Center

    McAllister, Alan

    Based on current models of problem solving within cognitive psychology, this study focused on the spontaneous problem solving strategies used by children as they first learned LOGO computer programming, and on strategy transformations that took place during the problem solving process. The research consisted of a six weeks programming training…

  3. Solving global optimization problems on GPU cluster

    NASA Astrophysics Data System (ADS)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya

    2016-06-01

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  4. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    ERIC Educational Resources Information Center

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The…

  5. PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case

    NASA Astrophysics Data System (ADS)

    Fernández Martínez, Juan L.; García Gonzalo, Esperanza; Fernández Álvarez, José P.; Kuzma, Heidi A.; Menéndez Pérez, César O.

    2010-05-01

    PSO is an optimization technique inspired by the social behavior of individuals in nature (swarms) that has been successfully used in many different engineering fields. In addition, the PSO algorithm can be physically interpreted as a stochastic damped mass-spring system. This analogy has served to introduce the PSO continuous model and to deduce a whole family of PSO algorithms using different finite-differences schemes. These algorithms are characterized in terms of convergence by their respective first and second order stability regions. The performance of these new algorithms is first checked using synthetic functions showing a degree of ill-posedness similar to that found in many geophysical inverse problems having their global minimum located on a very narrow flat valley or surrounded by multiple local minima. Finally we present the application of these PSO algorithms to the analysis and solution of a VES inverse problem associated with a seawater intrusion in a coastal aquifer in southern Spain. PSO family members are successfully compared to other well known global optimization algorithms (binary genetic algorithms and simulated annealing) in terms of their respective convergence curves and the sea water intrusion depth posterior histograms.

  6. Problem Solving: Can Anybody Do It?

    ERIC Educational Resources Information Center

    Bennett, Stuart W.

    2008-01-01

    This paper examines the definition of a problem and at the process of problem solving. An analysis of a number of first and third year chemistry examination papers from English universities revealed that over ninety per cent of the "problems" fell into the "algorithm" category. Using Bloom's taxonomy and the same examination papers, we found that…

  7. Solving Energy-Aware Real-Time Tasks Scheduling Problem with Shuffled Frog Leaping Algorithm on Heterogeneous Platforms

    PubMed Central

    Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.

    2015-01-01

    Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406

  8. Solving Energy-Aware Real-Time Tasks Scheduling Problem with Shuffled Frog Leaping Algorithm on Heterogeneous Platforms.

    PubMed

    Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M K

    2015-06-11

    Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution.

  9. Problem Solving Style, Creative Thinking, and Problem Solving Confidence

    ERIC Educational Resources Information Center

    Houtz, John C.; Selby, Edwin C.

    2009-01-01

    Forty-two undergraduate and graduate students completed VIEW: An Assessment of Problem Solving Style, the non-verbal Torrance Test Thinking Creatively with Pictures, and the Problem Solving Inventory (PSI). VIEW assesses individuals' orientation to change, manner of processing, and ways of deciding, while the Torrance test measures several…

  10. Parent Problem Solving: Analysis of Problem Solving in Parenthood Transition.

    ERIC Educational Resources Information Center

    Alpert, Judith L.; And Others

    The general purpose of this study was to explore the possibility of adapting the Means-Ends Problem-Solving procedure (MEPS) to the investigation of the individual's transition to parenthood. Specific purposes were to determine (1) the internal consistency of the Parent Problem-Solving Scale (PPSS), of its subclasses, and of a combined subscale;…

  11. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization

    SciTech Connect

    McHugh, P.R.

    1995-10-01

    Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.

  12. An NOy* Algorithm for SOLVE

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.; Greenblatt. B. J.; Jost, H.; Podolske, J. R.; Elkins, Jim; Hurst, Dale; Romanashkin, Pavel; Atlas, Elliott; Schauffler, Sue; Donnelly, Steve; Condon, Estelle (Technical Monitor)

    2000-01-01

    De-nitrification and excess re-nitrification was widely observed by ER-2 instruments in the Arctic vortex during SOLVE in winter/spring 2000. Analyses of these events requires a knowledge of the initial or pre-vortex state of the sampled air masses. The canonical relationship of NOy to the long-lived tracer N2O observed in the unperturbed stratosphere is generally used for this purpose. In this paper we will attempt to establish the current unperturbed NOy:N2O relationship (NOy* algorithm) using the ensemble of extra-vortex data from in situ instruments flying on the ER-2 and DC-8, and from the Mark IV remote measurements on the OMS balloon. Initial analysis indicates a change in the SOLVE NOy* from the values predicted by the 1994 Northern Hemisphere NOy* algorithm which was derived from the observations in the ASHOE/MAESA campaign.

  13. Contextual Problem Solving Model Origination

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.

    2009-01-01

    Problem solving has become a central focus of instructional activity in technology education classrooms at all levels (Boser, 1993). Impact assessment considerations incorporating society, culture, and economics are factors that require high-level deliberation involving critical thinking and the implementation of problem solving strategy. The…

  14. Problem Solving, Scaffolding and Learning

    ERIC Educational Resources Information Center

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  15. Learning Impasses in Problem Solving

    NASA Technical Reports Server (NTRS)

    Hodgson, J. P. E.

    1992-01-01

    Problem Solving systems customarily use backtracking to deal with obstacles that they encounter in the course of trying to solve a problem. This paper outlines an approach in which the possible obstacles are investigated prior to the search for a solution. This provides a solution strategy that avoids backtracking.

  16. Difficulties in Genetics Problem Solving.

    ERIC Educational Resources Information Center

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  17. Adolescent Problem-Solving Thinking

    ERIC Educational Resources Information Center

    Platt, Jerome J.; And Others

    1974-01-01

    The hypothesis that adolescent psychiatric patients would be deficient with respect to normal controls in their interpersonal problem-solving skills was tested by comparing the patient and control groups on seven tasks ref lecting different aspects of problem solving. (Author)

  18. Creative Thinking and Problem Solving.

    ERIC Educational Resources Information Center

    Lacy, Grace

    The booklet considers the nature of creativity in children and examines classroom implications. Among the topics addressed are the following: theories about creativity; research; developments in brain research; the creative process; creative problem solving; the Structure of Intellect Problem Solving (SIPS) model; a rationale for creativity in the…

  19. The Future Problem Solving Program.

    ERIC Educational Resources Information Center

    Crabbe, Anne B.

    1989-01-01

    Describes the Future Problem Solving Program, in which students from the U.S. and around the world are tackling some complex challenges facing society, ranging from acid rain to terrorism. The program uses a creative problem solving process developed for business and industry. A sixth-grade toxic waste cleanup project illustrates the process.…

  20. Schema and Problem-Solving.

    ERIC Educational Resources Information Center

    Callison, Daniel

    1998-01-01

    Presents a revised working definition of schema, lists four types of knowledge that individuals have (i.e., identification, elaboration, planning, and execution), and outlines issues in schema theory. The usefulness of schema in problem solving and information problem solving is discussed, and implications for teachers of information literacy are…

  1. Problem Solving vis Soap Bubbles

    ERIC Educational Resources Information Center

    Bader, William A.

    1975-01-01

    Describes the use of a scientific phenomenon related to the concept of surface tension as an intriguing vehicle to direct attention to useful problem solving techniques. The need for a definite building process in attempts to solve mathematical problems is stressed. (EB)

  2. Children Solve Problems.

    ERIC Educational Resources Information Center

    De Bono, Edward

    A group of children were presented with several tasks, including the invention of a sleep machine and a machine to weigh elephants. The tasks were chosen to involve the children in coping with problems of a distinct character. A study of the children's drawings and interpretations shows that children's thinking ability is not very different from…

  3. Solving A Corrosion Problem

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The corrosion problem, it turned out, stemmed from the process called electrolysis. When two different metals are in contact, an electrical potential is set up between them; when the metals are surrounded by an electrolyte, or a conducting medium, the resulting reaction causes corrosion, often very rapid corrosion. In this case the different metals were the copper grounding system and the ferry's aluminum hull; the dockside salt water in which the hull was resting served as the electrolyte. After identifying the source of the trouble, the Ames engineer provided a solution: a new wire-and-rod grounding system made of aluminum like the ferry's hull so there would no longer be dissimilar metals in contact. Ames research on the matter disclosed that the problem was not unique to the Golden Gate ferries. It is being experienced by many pleasure boat operators who are probably as puzzled about it as was the Golden Gate Transit Authority.

  4. Irrelevance in Problem Solving

    NASA Technical Reports Server (NTRS)

    Levy, Alon Y.

    1992-01-01

    The notion of irrelevance underlies many different works in AI, such as detecting redundant facts, creating abstraction hierarchies and reformulation and modeling physical devices. However, in order to design problem solvers that exploit the notion of irrelevance, either by automatically detecting irrelevance or by being given knowledge about irrelevance, a formal treatment of the notion is required. In this paper we present a general framework for analyzing irrelevance. We discuss several properties of irrelevance and show how they vary in a space of definitions outlined by the framework. We show how irrelevance claims can be used to justify the creation of abstractions thereby suggesting a new view on the work on abstraction.

  5. Supporting Problem Solving in PBL

    ERIC Educational Resources Information Center

    Jonassen, David

    2011-01-01

    Although the characteristics of PBL (problem focused, student centered, self-directed, etc.) are well known, the components of a problem-based learning environment (PBLE) and the cognitive scaffolds necessary to support learning to solve different kinds of problems with different learners is less clear. This paper identifies the different…

  6. Solving multiconstraint assignment problems using learning automata.

    PubMed

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the

  7. Problem Solving with General Semantics.

    ERIC Educational Resources Information Center

    Hewson, David

    1996-01-01

    Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

  8. AI tools in computer based problem solving

    NASA Technical Reports Server (NTRS)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  9. Computer Enhanced Problem Solving Skill Acquisition.

    ERIC Educational Resources Information Center

    Slotnick, Robert S.

    1989-01-01

    Discusses the implementation of interactive educational software that was designed to enhance critical thinking, scientific reasoning, and problem solving in a university psychology course. Piagetian and computer learning perspectives are explained; the courseware package, PsychWare, is described; and the use of heuristics and algorithms in…

  10. Students' Problem Solving and Justification

    ERIC Educational Resources Information Center

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  11. Sex Differences in Problem Solving.

    ERIC Educational Resources Information Center

    Johnson, Edward S.

    1984-01-01

    Nine experiments were performed to verify and extend studies on sex differences in problem solving conducted in the 1950s by Sweeney, Carey, Milton, Nakamura, and Berry. A 20-item problem set was administered to over 1,000 college students. Results indicated a male advantage, averaging 35 percent, virtually identical with 1950s results. (Author/BS)

  12. Problem Solving through Paper Folding

    ERIC Educational Resources Information Center

    Wares, Arsalan

    2014-01-01

    The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…

  13. Promote Problem-Solving Discourse

    ERIC Educational Resources Information Center

    Bostic, Jonathan; Jacobbe, Tim

    2010-01-01

    Fourteen fifth-grade students gather at the front of the classroom as their summer school instructor introduces Jonathan Bostic as the mathematics teacher for the week. Before examining any math problems, Bostic sits at eye level with the students and informs them that they will solve problems over the next four days by working individually as…

  14. Robot, computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.

    1972-01-01

    The development of a computer problem solving system is reported that considers physical problems faced by an artificial robot moving around in a complex environment. Fundamental interaction constraints with a real environment are simulated for the robot by visual scan and creation of an internal environmental model. The programming system used in constructing the problem solving system for the simulated robot and its simulated world environment is outlined together with the task that the system is capable of performing. A very general framework for understanding the relationship between an observed behavior and an adequate description of that behavior is included.

  15. Aging and skilled problem solving.

    PubMed

    Charness, N

    1981-03-01

    Information-processing models of problem solving too often are based on restrictive age ranges. On the other hand, gerontologists have investigated few problem-solving tasks and have rarely generated explicit models. As this article demonstrates, both fields can benefit by closer collaboration. One major issue in gerontology is whether aging is associated with irreversible decrement or developmental plasticity. If both processes occur, then an appropriate strategy for investigating aging is to equate age groups for molar problem-solving performance and search for differences in the underlying components. This strategy was adopted to examine the relation of age and skill to problem solving in chess. Chess players were selected to vary widely in age and skill such that these variables were uncorrelated. Problem-solving and memory tasks were administered. Skill level was the only significant predictor for accuracy in both a choose-a-move task and a speeded end-game evaluation task. Age (negatively) and skill (positively) jointly determined performance in an unexpected recall task. Efficient chunking in recall was positively related to skill, though negatively related to age. Recognition confidence, though not accuracy, was negatively related to age. Thus despite age-related declines in encoding and retrieval of information, older players match the problem-solving performance of equivalently skilled younger players. Apparently, they can search the problem space more efficiently, as evidenced by taking less time to select an equally good move. Models of chess skill that stress that role of encoding efficiency, as indexed by chunking in recall, need to be modified to account for performance over the life span.

  16. Problem? "No Problem!" Solving Technical Contradictions

    ERIC Educational Resources Information Center

    Kutz, K. Scott; Stefan, Victor

    2007-01-01

    TRIZ (pronounced TREES), the Russian acronym for the theory of inventive problem solving, enables a person to focus his attention on finding genuine, potential solutions in contrast to searching for ideas that "may" work through a happenstance way. It is a patent database-backed methodology that helps to reduce time spent on the problem,…

  17. A fast algorithm for non-Newtonian flow. An enhanced particle-tracking finite element code for solving boundary-valve problems in viscoelastic flow

    NASA Astrophysics Data System (ADS)

    Malkus, David S.

    1989-01-01

    This project concerned the development of a new fast finite element algorithm to solve flow problems of non-Newtonian fluids such as solutions or melts of polymers. Many constitutive theories for such materials involve single integrals over the deformation history of the particle at the stress evaluation point; examples are the Doi-Edwards and Curtiss-Bird molecular theories and the BKZ family derived from continuum arguments. These theories are believed to be among the most accurate in describing non-Newtonian effects important to polymer process design, effects such as stress relaxation, shear thinning, and normal stress effects. This research developed an optimized version of the algorithm which would run a factor of two faster than the pilot algorithm on scalar machines and would be able to take full advantage of vectorization on machines. Significant progress was made in code vectorization; code enhancement and streamlining; adaptive memory quadrature; model problems for the High Weissenberg Number Problem; exactly incompressible projection; development of multimesh extrapolation procedures; and solution of problems of physical interest. A portable version of the code is in the final stages of benchmarking and testing. It interfaces with the widely used FIDAP fluid dynamics package.

  18. Principles for Teaching Problem Solving. Technical Paper.

    ERIC Educational Resources Information Center

    Foshay, Rob; Kirkley, Jamie

    This Technical Paper focuses on principles for teaching problem solving. Part 1 addresses the need to teach problem solving. Part 2 defines problem solving skills, and describes: general problem solving models of the 1960s and 1970s, current problem solving models, declarative knowledge, mental models, expert versus novice knowledge, procedural…

  19. Quantum Computing: Solving Complex Problems

    ScienceCinema

    DiVincenzo, David [IBM Watson Research Center

    2016-07-12

    One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

  20. Rapid processing of data based on high-performance algorithms for solving inverse problems and 3D-simulation of the tsunami and earthquakes

    NASA Astrophysics Data System (ADS)

    Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.

    2012-04-01

    We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to

  1. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical aspects of the development of a robot computer problem solving system were investigated. The distinctive characteristics were formulated of the approach taken in relation to various studies of cognition and robotics. Vehicle and eye control systems were structured, and the information to be generated by the visual system is defined.

  2. Gender and Mathematical Problem Solving.

    ERIC Educational Resources Information Center

    Duffy, Jim; Gunther, Georg; Walters, Lloyd

    1997-01-01

    Studied the relationship between gender and mathematical problem solving in 83 male and 76 female high achieving Canadian 12-year-olds. Gender differences were found on the Canadian Test of Basic Skills but not on the GAUSS assessment. Implications for the discussion of the origin of gender differences in mathematics are discussed. (SLD)

  3. Customer Service & Team Problem Solving.

    ERIC Educational Resources Information Center

    Martin, Sabrina Budasi

    This curriculum guide provides materials for a six-session, site-specific training course in customer service and team problem solving for the Claretian Medical Center. The course outline is followed the six lesson plans. Components of each lesson plan include a list of objectives, an outline of activities and discussion topics for the lesson,…

  4. Human Problem Solving in 2006

    ERIC Educational Resources Information Center

    Pizlo, Zygmunt

    2007-01-01

    This paper presents a bibliography of a little more than 100 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Compendex databases. Only journal papers, books and dissertations are included. The topics include human development, education, neuroscience, research in applied…

  5. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.

  6. Teaching through Collaborative Problem Solving.

    ERIC Educational Resources Information Center

    Blandford, A. E.

    1994-01-01

    Discussion of a prototype intelligent education system called WOMBAT (Weighted Objectives Method by Arguing with the Tutor) focuses on dialogue and negotiation in collaborative problem solving. The results of a formative evaluation, in which the system was used by 10 subjects who commented on various aspects of the design, are presented. (Contains…

  7. Time Out for Problem Solving.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.; And Others

    Teachers in elementary schools, supervisors of instruction, and other educational practitioners are the primary audience for this publication. The paper presents philosophical, psychological, and practical reasons for including a problem-solving approach in elementary school instruction. It draws on the writings of John Dewey, Jean Piaget, James…

  8. New algorithms for solving third- and fifth-order two point boundary value problems based on nonsymmetric generalized Jacobi Petrov–Galerkin method

    PubMed Central

    Doha, E.H.; Abd-Elhameed, W.M.; Youssri, Y.H.

    2014-01-01

    Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems governed by homogeneous and nonhomogeneous boundary conditions using a dual Petrov–Galerkin method. The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The resulting linear systems from the application of our method are specially structured and they can be efficiently inverted. The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms. The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient. PMID:26425358

  9. Toward a Comprehensive Model of Problem-Solving.

    ERIC Educational Resources Information Center

    Pitt, Ruth B.

    Presented is a model of problem solving that incorporates elements of hypothetico-deductive reasoning in the Piagetian sense, and heuristic-algorithmic processing in the information-processing sense. It assumes that people invoke both formal reasoning strategies and learned algorithms whenever they solve problems. The proposed model integrates the…

  10. Genetics problem solving and worldview

    NASA Astrophysics Data System (ADS)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  11. Anticipating Student Responses to Improve Problem Solving

    ERIC Educational Resources Information Center

    Wallace, Ann H.

    2007-01-01

    This article illustrates how problem solving can be enhanced through careful planning and problem presentation. Often, students shut down or are turned off when presented with a problem to solve. The author describes how to motivate students to embrace a problem to be solved and provides helpful prompts to further the problem-solving process.…

  12. A two-model iteration algorithm for solving the inverse boundary-value problem of heat conduction

    NASA Astrophysics Data System (ADS)

    Balakovskii, S. L.

    1987-12-01

    A method is proposed for restoring the heat flux density on the boundary of a body which consists of the sequential solution of the direct problem for an adequate complex model and the invserse problem for a simplified heat transmission model.

  13. Journey toward Teaching Mathematics through Problem Solving

    ERIC Educational Resources Information Center

    Sakshaug, Lynae E.; Wohlhuter, Kay A.

    2010-01-01

    Teaching mathematics through problem solving is a challenge for teachers who learned mathematics by doing exercises. How do teachers develop their own problem solving abilities as well as their abilities to teach mathematics through problem solving? A group of teachers began the journey of learning to teach through problem solving while taking a…

  14. Solving the Dark Matter Problem

    ScienceCinema

    Baltz, Ted

    2016-07-12

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  15. Structured problem solving for materiel managers.

    PubMed

    Samelson, Q B

    1998-05-01

    A structured approach to problem solving and solution documentation is one of the keys to continuous improvement. Without it, it is quite possible to solve the wrong problem, to solve the right problem in the wrong way, or (maybe worst of all) to solve the same problem over and over again. Companies that have figured out how to solve the right problems in the right way, once and for all, will ultimately move forward much faster than their competitors.

  16. Theoretical and Philosophical Perspectives to Problem Solving.

    ERIC Educational Resources Information Center

    Sherman, Thomas M.; And Others

    1988-01-01

    Five articles explore various theoretical aspects of problems and problem solving skills. Highlights include strategies to learn problem solving skills; knowledge structures; metacognition; behavioral processes and cognitive psychology; erotetic logic; creativity as an aspect of computer problem solving; and programing as a problem-solving…

  17. Quantum Algorithm for Linear Programming Problems

    NASA Astrophysics Data System (ADS)

    Joag, Pramod; Mehendale, Dhananjay

    The quantum algorithm (PRL 103, 150502, 2009) solves a system of linear equations with exponential speedup over existing classical algorithms. We show that the above algorithm can be readily adopted in the iterative algorithms for solving linear programming (LP) problems. The first iterative algorithm that we suggest for LP problem follows from duality theory. It consists of finding nonnegative solution of the equation forduality condition; forconstraints imposed by the given primal problem and for constraints imposed by its corresponding dual problem. This problem is called the problem of nonnegative least squares, or simply the NNLS problem. We use a well known method for solving the problem of NNLS due to Lawson and Hanson. This algorithm essentially consists of solving in each iterative step a new system of linear equations . The other iterative algorithms that can be used are those based on interior point methods. The same technique can be adopted for solving network flow problems as these problems can be readily formulated as LP problems. The suggested quantum algorithm cansolveLP problems and Network Flow problems of very large size involving millions of variables.

  18. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    ERIC Educational Resources Information Center

    Zhang, Dongmei; Shen, Ji

    2015-01-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…

  19. King Oedipus and the Problem Solving Process.

    ERIC Educational Resources Information Center

    Borchardt, Donald A.

    An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and applying…

  20. Exploiting Quantum Resonance to Solve Combinatorial Problems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  1. Community-powered problem solving.

    PubMed

    Gouillart, Francis; Billings, Douglas

    2013-04-01

    Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections.

  2. Community-powered problem solving.

    PubMed

    Gouillart, Francis; Billings, Douglas

    2013-04-01

    Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections. PMID:23593769

  3. Problem Solving in the General Mathematics Classroom

    ERIC Educational Resources Information Center

    Troutman, Andria Price; Lichtenberg, Betty Plunkett

    1974-01-01

    Five steps common to different problem solving models are listed. Next, seven specific abilities related to solving problems are discussed and examples given. Sample activities, appropriate to help in developing these specific abilities, are suggested. (LS)

  4. The Important Thing about Teaching Problem Solving

    ERIC Educational Resources Information Center

    Roberts, Sally K.

    2010-01-01

    The author teaches a content course in problem solving for middle school teachers. During the course, teacher candidates have the opportunity to confront their insecurities as they actively engage in solving math problems using a variety of strategies. As the semester progresses, they add new strategies to their problem-solving arsenal and…

  5. Developing Creativity through Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Albert, Lillie R.; Kim, Rina

    2013-01-01

    This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…

  6. Problem Solving Appraisal of Delinquent Adolescents.

    ERIC Educational Resources Information Center

    Perez, Ruperto M.; And Others

    The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…

  7. Perspectives on Problem Solving and Instruction

    ERIC Educational Resources Information Center

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  8. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  9. LEGO Robotics: An Authentic Problem Solving Tool?

    ERIC Educational Resources Information Center

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  10. Collis-Romberg Mathematical Problem Solving Profiles.

    ERIC Educational Resources Information Center

    Collis, K. F.; Romberg, T. A.

    Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

  11. Models of Problem Solving Processes and Abilities.

    ERIC Educational Resources Information Center

    Feldhusen, John F.; Guthrie, Virginia A.

    1979-01-01

    This paper reviews current models of problem solving to identify results relevant to teachers or instructional developers. Four areas are covered: information processing models, approaches stressing human abilities and factors, creative problem solving models, and other aspects of problem solving. Part of a theme issue on intelligence. (Author/SJL)

  12. Fibonacci's Triangle: A Vehicle for Problem Solving.

    ERIC Educational Resources Information Center

    Ouellette, Hugh

    1979-01-01

    A method for solving certain types of problems is illustrated by problems related to Fibonacci's triangle. The method involves pattern recognition, generalizing, algebraic manipulation, and mathematical induction. (MP)

  13. Solving optimization problems on computational grids.

    SciTech Connect

    Wright, S. J.; Mathematics and Computer Science

    2001-05-01

    Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms have become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software

  14. Assessing Cognitive Learning of Analytical Problem Solving

    NASA Astrophysics Data System (ADS)

    Billionniere, Elodie V.

    Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.

  15. Toward a Design Theory of Problem Solving.

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2000-01-01

    Proposes a metatheory of problem solving. Describes differences among problems in terms of their structured ness, domain specificity (abstractness), and complexity; describes individual differences that affect problem solving; and presents a typology of problems, each of which engages different cognitive, affective, and conative process and…

  16. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  17. Algorithmic Perspectives on Problem Formulations in MDO

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia M.; Lewis, Robert Michael

    2000-01-01

    This work is concerned with an approach to formulating the multidisciplinary optimization (MDO) problem that reflects an algorithmic perspective on MDO problem solution. The algorithmic perspective focuses on formulating the problem in light of the abilities and inabilities of optimization algorithms, so that the resulting nonlinear programming problem can be solved reliably and efficiently by conventional optimization techniques. We propose a modular approach to formulating MDO problems that takes advantage of the problem structure, maximizes the autonomy of implementation, and allows for multiple easily interchangeable problem statements to be used depending on the available resources and the characteristics of the application problem.

  18. Strengthening Programs through Problem Solving.

    ERIC Educational Resources Information Center

    Dyer, Jim

    1993-01-01

    Describes a secondary agricultural education program that was a dumping ground for academically disadvantaged students. Discusses how such a program can be improved by identifying problems and symptoms, treating problems, and goal setting. (JOW)

  19. Analyzing and Solving Productivity Problems.

    ERIC Educational Resources Information Center

    Walsh, David S.; Johnson, Thomas J.

    1980-01-01

    The authors discuss ways to define a company's position on productivity, and explain productivity concepts. They describe a problem cause/solution set matrix with which to identify accurately the most probable cause of productivity problems. (SK)

  20. Distributed problem solving by pilots and dispatchers

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Wich, Mike; Fischer, Ute; Jobe, Kim; Mccoy, Elaine; Beatty, Roger; Smith, Phil

    1993-01-01

    The study addressed the following question: Are flight planning problems solved differently by PILOTS and DISPATCHERS when they work alone versus when they work together? Aspect of their performance that were of interest include the following: Problem perception and definition; Problem solving strategies and information use; Options considered; Solution and rational; and errors.

  1. New Perspectives on Human Problem Solving

    ERIC Educational Resources Information Center

    Goldstone, Robert L.; Pizlo, Zygmunt

    2009-01-01

    In November 2008 at Purdue University, the 2nd Workshop on Human Problem Solving was held. This workshop, which was a natural continuation of the first workshop devoted almost exclusively to optimization problems, addressed a wider range of topics that reflect the scope of the "Journal of Problem Solving." The workshop was attended by 35…

  2. General Description of Human Problem Solving.

    ERIC Educational Resources Information Center

    Klein, Gary A.; Weitzenfeld, Julian

    A theoretical model relating problem identification to problem solving is presented. The main purpose of the study is to increase understanding of decision making among Air Force educators. The problem-solving process is defined as the generation and evaluation of alternatives that will accomplish what is needed and the reidentification of what is…

  3. Teaching Effective Problem Solving Strategies for Interns

    ERIC Educational Resources Information Center

    Warren, Louis L.

    2005-01-01

    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  4. Learning to Solve Problems in Primary Grades

    ERIC Educational Resources Information Center

    Whitin, Phyllis; Whitin, David J.

    2008-01-01

    Problem solving lies at the heart of mathematical learning. Children need opportunities to write, discuss, and solve problems on a regular basis. The problems must incorporate grade-appropriate content and be "accessible and engaging to the students, building on what they know and can do." Teachers also play a key role in establishing a classroom…

  5. Common Core: Solve Math Problems

    ERIC Educational Resources Information Center

    Strom, Erich

    2012-01-01

    The new common core standards for mathematics demand that students (and teachers!) exhibit deeper conceptual understanding. That's music to the ears of education professor John Tapper, who says teachers have overemphasized teaching procedures--and getting right answers. In his new book, "Solving for Why," he makes a powerful case for moving beyond…

  6. Problem-Solving Test: Pyrosequencing

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2013-01-01

    Terms to be familiar with before you start to solve the test: Maxam-Gilbert sequencing, Sanger sequencing, gel electrophoresis, DNA synthesis reaction, polymerase chain reaction, template, primer, DNA polymerase, deoxyribonucleoside triphosphates, orthophosphate, pyrophosphate, nucleoside monophosphates, luminescence, acid anhydride bond,…

  7. Problem Solving Skills for Children.

    ERIC Educational Resources Information Center

    Youngs, Bettie B.

    This guide was written for children, to help them handle problems they might encounter, learn about other children and how they have handled similar problems, and learn what to do when things go wrong or when they feel misunderstood. In the introduction, children are assured that, even when they have problems, they can be happy again. The body of…

  8. Secondary School Genetics Instruction: Making Problem Solving Explicit and Meaningful.

    ERIC Educational Resources Information Center

    Thomson, Norman; Stewart, James

    1985-01-01

    Explains an algorithm which details procedures for solving a broad class of genetics problems common to pre-college biology. Several flow charts (developed from the algorithm) are given with sample questions and suggestions for student use. Conclusions are based on the authors' research (which includes student interviews and textbook analyses).…

  9. Mobile serious games for collaborative problem solving.

    PubMed

    Sanchez, Jaime; Mendoza, Claudia; Salinas, Alvaro

    2009-01-01

    This paper presents the results obtained from the implementation of a series of learning activities based on mobile serious games (MSG) for the development of problem-solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students, who had to solve the problems posed by the game collaboratively. The data shows that the experimental group had a higher perception of their own skills of collaboration and of the plan execution dimension of problem solving than the control group, providing empirical evidence regarding the contribution of MSGs to the development of collaborative problem-solving skills.

  10. Problem-solving model in radiology for medical students.

    PubMed

    Blane, C E; Vydareny, K H; Ten Haken, J D; Calhoun, J G

    1989-05-01

    Current undergraduate medical education is criticized for not preparing physicians to be independent thinkers. The rapid development of new imaging techniques and the problem of escalating medical costs call for efficient patient management. The development of algorithms in imaging work-up of patient problems is an excellent example of problem solving or medical decision making. The senior elective in radiology at our institution incorporates this type of problem-solving session. Small groups (15-25 students) with faculty guidance discuss 5-6 common patient problems to develop an investigative plan in imaging. Algorithms are thus developed by the group, but not presented for memorization. Small changes are then made in the case history so that the students are forced to make new hypotheses and generate a modified algorithm. Correlative costs are included. Flexibility and initiative in development of patient management algorithms are stressed.

  11. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    NASA Astrophysics Data System (ADS)

    Zhang, Dongmei; Shen, Ji

    2015-10-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we conducted an interview study with 16 graduate students coming from a variety of disciplinary backgrounds. During the interviews, we asked participants to solve two interdisciplinary science problems on the topic of osmosis. We investigated participants' problem reasoning processes and probed in their attitudes toward general interdisciplinary approach and specific interdisciplinary problems. Through a careful inductive content analysis of their responses, we studied how disciplinary, cognitive, and affective factors influenced their interdisciplinary problems-solving. We found that participants' prior discipline-based science learning experiences had both positive and negative influences on their interdisciplinary problem-solving. These influences were embodied in their conceptualization of the interdisciplinary problems, the strategies they used to integrate different disciplinary knowledge, and the attitudes they had toward interdisciplinary approach in general and specific interdisciplinary problems. This study sheds light on interdisciplinary science education by revealing the complex relationship between disciplinary learning and interdisciplinary problem-solving.

  12. Pen Pals: Practicing Problem Solving

    ERIC Educational Resources Information Center

    Lampe, Kristen A.; Uselmann, Linda

    2008-01-01

    This article describes a semester-long pen-pal project in which preservice teachers composed mathematical problems and the middle school students worked for solutions. The college students assessed the solution and the middle school students provided feedback regarding the problem itself. (Contains 6 figures.)

  13. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    PubMed

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings. PMID:23366983

  14. Solving Fractional Programming Problems based on Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Raouf, Osama Abdel; Hezam, Ibrahim M.

    2014-04-01

    This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.

  15. Combining Computational and Social Effort for Collaborative Problem Solving.

    PubMed

    Wagy, Mark D; Bongard, Josh C

    2015-01-01

    Rather than replacing human labor, there is growing evidence that networked computers create opportunities for collaborations of people and algorithms to solve problems beyond either of them. In this study, we demonstrate the conditions under which such synergy can arise. We show that, for a design task, three elements are sufficient: humans apply intuitions to the problem, algorithms automatically determine and report back on the quality of designs, and humans observe and innovate on others' designs to focus creative and computational effort on good designs. This study suggests how such collaborations should be composed for other domains, as well as how social and computational dynamics mutually influence one another during collaborative problem solving.

  16. Neural Network Solves "Traveling-Salesman" Problem

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P.; Moopenn, Alexander W.

    1990-01-01

    Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.

  17. Could HPS Improve Problem-Solving?

    ERIC Educational Resources Information Center

    Coelho, Ricardo Lopes

    2013-01-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem…

  18. Solving Problems in Genetics II: Conceptual Restructuring

    ERIC Educational Resources Information Center

    Orcajo, Teresa Ibanez; Aznar, Mercedes Martinez

    2005-01-01

    This paper presents the results of part of an investigation carried out with fourth-level Spanish secondary education students (15 years old), in which we implemented a teaching unit based on problem-solving methodology as an investigation to teach genetics and human inheritance curricular contents. By solving open problems, the students…

  19. Measuring Problem Solving Skills in "Portal 2"

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Wang, Lubin

    2013-01-01

    This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

  20. Problem Solving and Technology. ACESIA Monograph 2.

    ERIC Educational Resources Information Center

    Lomon, Earle L.; And Others

    1977-01-01

    The two articles dealing with problem solving and technology in this publication should be useful to those developing the kinds of materials, experiences, and thinking that elementary school industrial arts offers children. The first article accepts problem solving as an educational goal and reports a timely and universally acceptable approach.…

  1. Mathematical Problem Solving through Sequential Process Analysis

    ERIC Educational Resources Information Center

    Codina, A.; Cañadas, M. C.; Castro, E.

    2015-01-01

    Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…

  2. Problem Solving Software for Math Classes.

    ERIC Educational Resources Information Center

    Troutner, Joanne

    1987-01-01

    Described are 10 computer software programs for problem solving related to mathematics. Programs described are: (1) Box Solves Story Problems; (2) Safari Search; (3) Puzzle Tanks; (4) The King's Rule; (5) The Factory; (6) The Royal Rules; (7) The Enchanted Forest; (8) Gears; (9) The Super Factory; and (10) Creativity Unlimited. (RH)

  3. Student Modeling Based on Problem Solving Times

    ERIC Educational Resources Information Center

    Pelánek, Radek; Jarušek, Petr

    2015-01-01

    Student modeling in intelligent tutoring systems is mostly concerned with modeling correctness of students' answers. As interactive problem solving activities become increasingly common in educational systems, it is useful to focus also on timing information associated with problem solving. We argue that the focus on timing is natural for certain…

  4. Children Solving Problems. The Developing Child Series.

    ERIC Educational Resources Information Center

    Thornton, Stephanie

    The developmental increase in the ability to solve problems is a puzzle. Does it come from basic changes in mental skills, or is it a matter of practice? This book from the Developing Child series synthesizes recent research examining children's problem-solving skills development. Chapter 1 presents the major themes: (1) there is increasing…

  5. Problem Solving Interactions on Electronic Networks.

    ERIC Educational Resources Information Center

    Waugh, Michael; And Others

    Arguing that electronic networking provides a medium which is qualitatively superior to the traditional classroom for conducting certain types of problem solving exercises, this paper details the Water Problem Solving Project, which was conducted on the InterCultural Learning Network in 1985 and 1986 with students from the United States, Mexico,…

  6. Taking "From Scratch" out of Problem Solving

    ERIC Educational Resources Information Center

    Brown, Wayne

    2007-01-01

    Solving problems and creating processes and procedures from the ground up has long been part of the IT department's way of operating. IT staffs will continue to encounter new problems to solve and new technologies to be implemented. They also must involve their constituents in the creation of solutions. Nonetheless, for many issues they no longer…

  7. Dynamic Problem Solving: A New Assessment Perspective

    ERIC Educational Resources Information Center

    Greiff, Samuel; Wustenberg, Sascha; Funke, Joachim

    2012-01-01

    This article addresses two unsolved measurement issues in dynamic problem solving (DPS) research: (a) unsystematic construction of DPS tests making a comparison of results obtained in different studies difficult and (b) use of time-intensive single tasks leading to severe reliability problems. To solve these issues, the MicroDYN approach is…

  8. The Process of Solving Complex Problems

    ERIC Educational Resources Information Center

    Fischer, Andreas; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

  9. A Multivariate Model of Physics Problem Solving

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  10. Teaching and Learning through Problem Solving

    ERIC Educational Resources Information Center

    Ollerton, Mike

    2007-01-01

    In this article, the author relates some problem solving work with primary schools to Department for Children, Schools, and Families (DfES) support. In four primary schools in the West Midlands, the focus was teaching mathematics through problem solving, based on materials published on the DfES "standards" website. The author noticed the way…

  11. Developing Legal Problem-Solving Skills.

    ERIC Educational Resources Information Center

    Nathanson, Stephen

    1994-01-01

    A law professor explains how he came to view legal problem solving as the driving concept in law school curriculum design and draws on personal experience and a survey of students concerning teaching methods in a commercial law course. He outlines six curriculum design principles for teaching legal problem solving. (MSE)

  12. Metacognition: Student Reflections on Problem Solving

    ERIC Educational Resources Information Center

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  13. Conceptual Problem Solving in High School Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  14. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    ERIC Educational Resources Information Center

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  15. Solving the wrong hierarchy problem

    NASA Astrophysics Data System (ADS)

    Blinov, Nikita; Hook, Anson

    2016-06-01

    Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z_2 -symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z_2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs mass by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. We show this mechanism postdicts the top Yukawa to be within 1 σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV.

  16. Robot, computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1973-01-01

    The TENEX computer system, the ARPA network, and computer language design technology was applied to support the complex system programs. By combining the pragmatic and theoretical aspects of robot development, an approach is created which is grounded in realism, but which also has at its disposal the power that comes from looking at complex problems from an abstract analytical point of view.

  17. Solving the wrong hierarchy problem

    DOE PAGES

    Blinov, Nikita; Hook, Anson

    2016-06-29

    Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z2-symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs massmore » by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. Lastly, we show this mechanism postdicts the top Yukawa to be within 1σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV.« less

  18. Sour landfill gas problem solved

    SciTech Connect

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  19. Modelling to solve odour problems.

    PubMed

    Childs, P S; Dunn, A J

    2001-01-01

    The use of dispersion modelling is a powerful tool to establish levels of treatment required to remove odour complaints. Odour is an extremely sensitive issue and is key to the public perception of wastewater environmental protection. This paper describes a case study of the successful resolution of long-standing odour problems at the East Worthing Wastewater Treatment Works (WTW), on the South Coast of England, utilising modelling and appropriate treatment technologies. A number of odour surveys have been conducted on the site to identify the major sources on the works, which were found to be the sludge press house and the primary settlement tanks, situated only 10 metres from the nearest properties. As a result attempts to resolve the odour problem have been made including the covering of identified sources, treating extract using activated carbon filters and installing perfume sprays. During the site development all sources were contained and ventilated to a 60,000 m3/hr Jones & Attwood ODORGARD unit. Its requirement was to ensure that no receptor was exposed to a concentration in excess of 4 ouEm3 (Odour units), in accordance with the odour planning condition. Dispersal modelling was performed to determine the maximum permissible outlet concentration. The results of the modelling exercise established that emissions from the odour control plant should not exceed 675 ouEm3 to ensure that the receptor standard was attained. An optimisation programme was conducted to ensure that the unit was providing the optimum level of treatment prior to taking the olfactometry samples. Following the plant's optimisation the results of the olfactometry analysis confirmed that the discharge levels were below the required 670 ouEm3. Since completion of the sludge treatment centre scheme there have been no registered odour complaints directed at the East Worthing WTW, and the local air quality has been greatly improved for the residents surrounding the works.

  20. Lesion mapping of social problem solving.

    PubMed

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease.

  1. Lesion mapping of social problem solving

    PubMed Central

    Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.

    2014-01-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511

  2. Lesion mapping of social problem solving.

    PubMed

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511

  3. Solving a supply chain scheduling problem with non-identical job sizes and release times by applying a novel effective heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Pei, Jun; Liu, Xinbao; Pardalos, Panos M.; Fan, Wenjuan; Wang, Ling; Yang, Shanlin

    2016-03-01

    Motivated by applications in manufacturing industry, we consider a supply chain scheduling problem, where each job is characterised by non-identical sizes, different release times and unequal processing times. The objective is to minimise the makespan by making batching and sequencing decisions. The problem is formalised as a mixed integer programming model and proved to be strongly NP-hard. Some structural properties are presented for both the general case and a special case. Based on these properties, a lower bound is derived, and a novel two-phase heuristic (TP-H) is developed to solve the problem, which guarantees to obtain a worst case performance ratio of ?. Computational experiments with a set of different sizes of random instances are conducted to evaluate the proposed approach TP-H, which is superior to another two heuristics proposed in the literature. Furthermore, the experimental results indicate that TP-H can effectively and efficiently solve large-size problems in a reasonable time.

  4. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  5. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  6. Environmental problem-solving: Psychosocial factors

    NASA Astrophysics Data System (ADS)

    Miller, Alan

    1982-11-01

    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  7. Styles of problem solving in suicidal individuals.

    PubMed

    Orbach, I; Bar-Joseph, H; Dror, N

    1990-01-01

    This study compared qualitative aspects of problem solving among suicide attempters, suicide ideators, and nonsuicidal patients. The subjects completed a suicidal intent scale and a problem-solving task involving three dilemmas. Problem solving was analyzed along eight qualitative categories: versatility of the various solutions, reliance on self versus others, activity versus passivity, confrontation versus avoidance, relevance of the solution to the problem, positive versus negative affect, reference to the future, and extremity of the solution. The statistical analysis yielded differences among the three groups. In general, the solutions of suicidal patients showed less versatility, more avoidance, less relevance, more negative affect, and less reference to the future than the solutions of the nonsuicidal patients. The suicide attempters and nonsuicidal patients offered more active solutions than did the suicide ideators. Our findings emphasize the importance of general coping styles, as well as energetic/motivational aspects and affective aspects of the problem-solving process. Some applications to therapy are discussed.

  8. Unsupervised neural networks for solving Troesch's problem

    NASA Astrophysics Data System (ADS)

    Muhammad, Asif Zahoor Raja

    2014-01-01

    In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs.

  9. Could HPS Improve Problem-Solving?

    NASA Astrophysics Data System (ADS)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  10. Problem Solving through an Optimization Problem in Geometry

    ERIC Educational Resources Information Center

    Poon, Kin Keung; Wong, Hang-Chi

    2011-01-01

    This article adapts the problem-solving model developed by Polya to investigate and give an innovative approach to discuss and solve an optimization problem in geometry: the Regiomontanus Problem and its application to football. Various mathematical tools, such as calculus, inequality and the properties of circles, are used to explore and reflect…

  11. Problem-Solving Errors of Educational Leaders.

    ERIC Educational Resources Information Center

    Hart, Ann W.; And Others

    Problem solving is one of the most important skills that new and developing professionals must learn. The process is complex, involving information scanning, problem identification, and feedback processes requiring synthesis, interim assessments, problem error recognition and rectification, and timely and appropriate conclusions. This study used…

  12. Solving Problems with the Percentage Bar

    ERIC Educational Resources Information Center

    van Galen, Frans; van Eerde, Dolly

    2013-01-01

    At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…

  13. Task Variables in Mathematical Problem Solving.

    ERIC Educational Resources Information Center

    Goldin, Gerald A., Ed.; McClintock, C. Edwin, Ed.

    A framework for research in problem solving is provided by categorizing and defining variables describing problem tasks. A model is presented in an article by Kulm for the classification of task variables into broad categories. The model attempts to draw realtionships between these categories of task variables and the stages of problem solving…

  14. Problem-Solving with the Computer.

    ERIC Educational Resources Information Center

    Sage, Edwin R.

    Intended to be used in conjunction with a traditional curriculum, this book demonstrates the use of the computer, especially the on-line, interactive type of computer, to solve a variety of problems studied in secondary school mathematics. Each chapter presents several problems, and each problem introduces one or two concepts that must be…

  15. Collaborative Problem Solving in Shared Space

    ERIC Educational Resources Information Center

    Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk

    2015-01-01

    The purpose of this study was to examine collaborative problem solving in a shared virtual space. The main question asked was: How will the performance and processes differ between collaborative problem solvers and independent problem solvers over time? A total of 104 university students (63 female and 41 male) participated in an experimental…

  16. Word Problem Solving with the Apple II.

    ERIC Educational Resources Information Center

    Ignatz, Mila E.

    The aim of this project was to develop computer programs that will provide training in the use of a strategy for solving word problems in everyday mathematics. The strategy includes (1) classifying the problem by type, according to problem characteristics such as symbols, diagrams, relevant formulas, and arithmetic operations; (2) identifying the…

  17. Conceptual problem solving in high school physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  18. Photoreactors for Solving Problems of Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Tchaikovskaya, O. N.; Sokolova, I. V.

    2015-04-01

    Designs and physical aspects of photoreactors, their capabilities for a study of kinetics and mechanisms of processes proceeding under illumination with light, as well as application of photoreactors for solving various applied problem are discussed.

  19. Teaching: The Problem-Solving Approach.

    ERIC Educational Resources Information Center

    Amonashvili, Shalva

    1979-01-01

    Describes experiments in the Soviet Union intended to develop scholastic activities which encourage young children to develop their motivation for cognitive learning. All experiments were based on the problem-solving approach. (DB)

  20. Research: A Five Faceted Problem Solving Process.

    ERIC Educational Resources Information Center

    Gephart, William J.

    1980-01-01

    Five concepts are discussed in order to explain that research is a multifacted problem-solving process: (1) analysis of a concept, its context, and data analysis; (2) treatment or experience; (3) representativeness; (4) measurement, and (5) logic. (GDC)

  1. An Alternate Path To Stoichiometric Problem Solving.

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen

    1997-01-01

    Discusses an alternate path to teaching introductory stoichiometry based on research findings. The recommendation is to use problems that can be solved easily by rapid mental calculation as well as by pure logic. (AIM)

  2. Physics: Quantum problems solved through games

    NASA Astrophysics Data System (ADS)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  3. Solving scheduling tournament problems using a new version of CLONALG

    NASA Astrophysics Data System (ADS)

    Pérez-Cáceres, Leslie; Riff, María Cristina

    2015-01-01

    The travelling tournament problem (TTP) is an important and well-known problem within the collective sports research community. The problem is NP-hard which makes difficult finding quality solution in short amount of time. Recently a new kind of TTP has been proposed 'The Relaxed Travelling Tournament Problem'. This version of the problem allows teams to have some days off during the tournament. In this paper, we propose an immune algorithm that is able to solve both problem versions. The algorithm uses moves which are based on the team home/away patterns. One of these moves has been specially designed for the relaxed travel tournament instances. We have tested the algorithm using well-known problem benchmarks and the results obtained are very encouraging.

  4. Engineering calculations for solving the orbital allotment problem

    NASA Technical Reports Server (NTRS)

    Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.

    1988-01-01

    Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.

  5. Innovative problem solving by wild spotted hyenas.

    PubMed

    Benson-Amram, Sarah; Holekamp, Kay E

    2012-10-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  6. Innovative problem solving by wild spotted hyenas.

    PubMed

    Benson-Amram, Sarah; Holekamp, Kay E

    2012-10-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals.

  7. Innovative problem solving by wild spotted hyenas

    PubMed Central

    Benson-Amram, Sarah; Holekamp, Kay E.

    2012-01-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  8. A Graph Based Backtracking Algorithm for Solving General CSPs

    NASA Technical Reports Server (NTRS)

    Pang, Wanlin; Goodwin, Scott D.

    2003-01-01

    Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches.

  9. Instructional Design for Heuristic-Based Problem Solving.

    ERIC Educational Resources Information Center

    Ingram, Albert L.

    1988-01-01

    Discussion of instructional design models focuses on a study concerned with developing effective instruction in heuristic-based problem solving for computer programing. Highlights include distinctions between algorithms and heuristics; pretests and posttests; revised instructional design procedures; student attitudes; task analysis; and…

  10. Prospective Elementary Teachers' Misunderstandings in Solving Ratio and Proportion Problems

    ERIC Educational Resources Information Center

    Monteiro, Cecilia

    2003-01-01

    This study explores difficulties that prospective elementary mathematics teachers have with the concepts of ratio and proportion, mainly when they are engaged in solving problems using algorithm procedures. These difficulties can be traced back to earlier experiences when they were students of junior and high school. The reflection on these…

  11. Assessment of Problem-Solving Ability

    ERIC Educational Resources Information Center

    Marshall, J.

    1977-01-01

    Problem-solving ability has been assessed within the Royal Australian College of General Practitioners through the use of patient management problems (PMPs) in both medical and surgical areas. It is shown that the highest marks in PMPs are being achieved by students who arrive at the correct diagnosis without accumulating excessive information and…

  12. Solving Geometry Problems via Mechanical Principles

    ERIC Educational Resources Information Center

    Man, Yiu Kwong

    2004-01-01

    The application of physical principles in solving mathematics problems have often been neglected in the teaching of physics or mathematics, especially at the secondary school level. This paper discusses how to apply the mechanical principles to geometry problems via concrete examples, which aims at providing insight and inspirations to physics or…

  13. Pose and Solve Varignon Converse Problems

    ERIC Educational Resources Information Center

    Contreras, José N.

    2014-01-01

    The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…

  14. Using CAS to Solve Classical Mathematics Problems

    ERIC Educational Resources Information Center

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  15. Complex Problem Solving in a Workplace Setting.

    ERIC Educational Resources Information Center

    Middleton, Howard

    2002-01-01

    Studied complex problem solving in the hospitality industry through interviews with six office staff members and managers. Findings show it is possible to construct a taxonomy of problem types and that the most common approach can be termed "trial and error." (SLD)

  16. Problem-Solving: Scaling the "Brick Wall"

    ERIC Educational Resources Information Center

    Benson, Dave

    2011-01-01

    Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…

  17. Reinventing the Wheel: Design and Problem Solving

    ERIC Educational Resources Information Center

    Blasetti, Sean M.

    2010-01-01

    This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…

  18. GIS Live and Web Problem Solving

    ERIC Educational Resources Information Center

    Hagevik, R.; Hales, D.; Harrell, J.

    2007-01-01

    GIS Live is a live, interactive, web problem-solving (WPS) program that partners Geographic Information Systems (GIS) professionals with educators to implement geospatial technologies as curriculum-learning tools. It is a collaborative effort of many government agencies, educational institutions, and professional organizations. Problem-based…

  19. Personality, Problem Solving, and Adolescent Substance Use

    ERIC Educational Resources Information Center

    Jaffee, William B.; D'Zurilla, Thomas J.

    2009-01-01

    The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving…

  20. The Functional Equivalence of Problem Solving Skills

    ERIC Educational Resources Information Center

    Simon, Herbert A.

    1975-01-01

    This analysis of solutions to the Tower of Hanoi Problem underscores the importance of subject-by-subject analysis of "What is learned" in understanding human behavior in problem-solving situations, and provides a technique for describing subjects' task performance programs in detail. (Author/BJG)

  1. Problem-Solving Exercises and Evolution Teaching

    ERIC Educational Resources Information Center

    Angseesing, J. P. A.

    1978-01-01

    It is suggested that the work of Kammerer provides suitable material, in the form of case studies on which to base discussions of Lamarckism versus Darwinism. A set of structured problems is described as an example of possible problem-solving exercises, and further experiments to extend Kammerer's work are outlined. (Author/MA)

  2. Spatial Visualization in Physics Problem Solving

    ERIC Educational Resources Information Center

    Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary

    2007-01-01

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naive students were administered kinematics problems and…

  3. Model Formulation for Physics Problem Solving. Draft.

    ERIC Educational Resources Information Center

    Novak, Gordon S., Jr.

    The major task in solving a physics problem is to construct an appropriate model of the problem in terms of physical principles. The functions performed by such a model, the information which needs to be represented, and the knowledge used in selecting and instantiating an appropriate model are discussed. An example of a model for a mechanics…

  4. Problem solving and decisionmaking: An integration

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1980-01-01

    An attempt was made to redress a critical fault of decisionmaking and problem solving research-a lack of a standard method to classify problem or decision states or conditions. A basic model was identified and expanded to indicate a possible taxonomy of conditions which may be used in reviewing previous research or for systematically pursuing new research designs. A generalization of the basic conditions was then made to indicate that the conditions are essentially the same for both concepts, problem solving and decisionmaking.

  5. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    ERIC Educational Resources Information Center

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  6. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  7. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  8. Genetic algorithms for the vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Volna, Eva

    2016-06-01

    The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing the optimal set of routes for fleet of vehicles in order to serve a given set of customers. Evolutionary algorithms are general iterative algorithms for combinatorial optimization. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper we have performed an experimental study that indicates the suitable use of genetic algorithms for the vehicle routing problem.

  9. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving

  10. Why students still can't solve physics problems after solving over 2000 problems

    NASA Astrophysics Data System (ADS)

    Byun, Taejin; Lee, Gyoungho

    2014-09-01

    This study investigates the belief that solving a large number of physics problems helps students better learn physics. We investigated the number of problems solved, student confidence in solving these problems, academic achievement, and the level of conceptual understanding of 49 science high school students enrolled in upper-level physics classes from Spring 2010 to Summer 2011. The participants solved an average of 2200 physics problems before entering high school. Despite having solved so many problems, no statistically significant correlation was found between the number of problems solved and academic achievement on either a mid-term or physics competition examination. In addition, no significant correlation was found between the number of physics problems solved and performance on the Force Concept Inventory (FCI). Lastly, four students were selected from the 49 participants with varying levels of experience and FCI scores for a case study. We determined that their problem solving and learning strategies was more influential in their success than the number of problems they had solved.

  11. Problem solving in a distributed environment

    NASA Technical Reports Server (NTRS)

    Rashid, R. F.

    1980-01-01

    Distributed problem solving is anayzed as a blend of two disciplines: (1) problem solving and ai; and (2) distributed systems (monitoring). It may be necessary to distribute because the application itself is one of managing distributed resources (e.g., distributed sensor net) and communication delays preclude centralized processing, or it may be desirable to distribute because a single computational engine may not satisfy the needs of a given task. In addition, considerations of reliability may dictate distribution. Examples of multi-process language environment are given.

  12. Insightful problem solving in an Asian elephant.

    PubMed

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food. PMID:21876741

  13. Insightful Problem Solving in an Asian Elephant

    PubMed Central

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E.; Reiss, Diana

    2011-01-01

    The “aha” moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food. PMID:21876741

  14. Solving the hard problem of Bertrand's paradox

    SciTech Connect

    Aerts, Diederik; Sassoli de Bianchi, Massimiliano

    2014-08-15

    Bertrand's paradox is a famous problem of probability theory, pointing to a possible inconsistency in Laplace's principle of insufficient reason. In this article, we show that Bertrand's paradox contains two different problems: an “easy” problem and a “hard” problem. The easy problem can be solved by formulating Bertrand's question in sufficiently precise terms, so allowing for a non-ambiguous modelization of the entity subjected to the randomization. We then show that once the easy problem is settled, also the hard problem becomes solvable, provided Laplace's principle of insufficient reason is applied not to the outcomes of the experiment, but to the different possible “ways of selecting” an interaction between the entity under investigation and that producing the randomization. This consists in evaluating a huge average over all possible “ways of selecting” an interaction, which we call a universal average. Following a strategy similar to that used in the definition of the Wiener measure, we calculate such universal average and therefore solve the hard problem of Bertrand's paradox. The link between Bertrand's problem of probability theory and the measurement problem of quantum mechanics is also briefly discussed.

  15. Preservice teachers' problem-solving processes

    NASA Astrophysics Data System (ADS)

    Taplin, Margaret

    1998-12-01

    The purpose of the study reported in this paper is to explore some of the common difficulties with mathematical word problems experienced by preservice primary teachers. It examines weaknesses in students' content and procedural knowledge, with a particular focus on how they apply these aspects of knowledge to solving closed word problems. The SOLO Taxonomy (Biggs & Collis, 1982, 1991) is used to classify the processes used by students who attempted to solve a group of word problems of varying difficulty. Other characteristics of the students' processes that are analysed include the way they used the cues provided in the problem, the way they brought in additional concepts or processes, and the types of errors they made.

  16. Problem-Solving Strategies for Career Planning.

    ERIC Educational Resources Information Center

    McBryde, Merry J.; Karr-Kidwell, PJ

    The need for new expertise in problem solving in the work setting has emerged as a woman's issue because work outside the home has become a primary means for personal goal attainment for about half the women in the United States and because traditional career patterns and norms are ineffective. Career planning is the process of individual career…

  17. Abortion: A Problem-Solving Approach

    ERIC Educational Resources Information Center

    Campbell, Lloyd P.

    1977-01-01

    The purpose of this article is to use the vehicle of a controversial issue--abortion--as a means of illustrating the advantages of teaching such issues through a problem-solving method. Discussion ideas and resources are presented. (Author/JR)

  18. How Instructional Designers Solve Workplace Problems

    ERIC Educational Resources Information Center

    Fortney, Kathleen S.; Yamagata-Lynch, Lisa C.

    2013-01-01

    This naturalistic inquiry investigated how instructional designers engage in complex and ambiguous problem solving across organizational boundaries in two corporations. Participants represented a range of instructional design experience, from novices to experts. Research methods included a participant background survey, observations of…

  19. Mathematics Knowledge for Understanding and Problem Solving.

    ERIC Educational Resources Information Center

    Putnam, Ralph T.

    1987-01-01

    Two important aspects of transfer in mathematics learning are the application of mathematical knowledge (MK) to problem solving and the acquisition of more advanced concepts. General assumptions and themes of current cognitive research on mathematics learning in schoolchildren are discussed, focusing on issues facilitating the transfer of MK. (TJH)

  20. Assessing Mathematical Problem Solving Using Comparative Judgement

    ERIC Educational Resources Information Center

    Jones, Ian; Swan, Malcolm; Pollitt, Alastair

    2015-01-01

    There is an increasing demand from employers and universities for school leavers to be able to apply their mathematical knowledge to problem solving in varied and unfamiliar contexts. These aspects are however neglected in most examinations of mathematics and, consequentially, in classroom teaching. One barrier to the inclusion of mathematical…

  1. ADHD and Problem-Solving in Play

    ERIC Educational Resources Information Center

    Borg, Suzanne

    2009-01-01

    This paper reports a small-scale study to determine whether there is a difference in problem-solving abilities, from a play perspective, between individuals who are diagnosed as ADHD and are on medication and those not on medication. Ten children, five of whom where on medication and five not, diagnosed as ADHD predominantly inattentive type, were…

  2. Design and Problem Solving in Technology Education.

    ERIC Educational Resources Information Center

    Custer, Rodney L.

    1999-01-01

    Collectively, technological literacy embraces everything from intelligent consumerism to concerns about environmental degradation, ethics, and elitism. Technological problem solving can have social, ecological, or technological goals and may be categorized by four types: invention, design, trouble shooting, and procedures. Every citizen should be…

  3. Facilitating problem solving in high school chemistry

    NASA Astrophysics Data System (ADS)

    Gabel, Dorothy L.; Sherwood, Robert D.

    The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.

  4. Teaching, Learning and Assessing Statistical Problem Solving

    ERIC Educational Resources Information Center

    Marriott, John; Davies, Neville; Gibson, Liz

    2009-01-01

    In this paper we report the results from a major UK government-funded project, started in 2005, to review statistics and handling data within the school mathematics curriculum for students up to age 16. As a result of a survey of teachers we developed new teaching materials that explicitly use a problem-solving approach for the teaching and…

  5. Mental Imagery in Creative Problem Solving.

    ERIC Educational Resources Information Center

    Polland, Mark J.

    In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

  6. ARPACK: Solving large scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Lehoucq, Rich; Maschhoff, Kristi; Sorensen, Danny; Yang, Chao

    2013-11-01

    ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w

  7. Solving Wicked Problems through Action Learning

    ERIC Educational Resources Information Center

    Crul, Liselore

    2014-01-01

    This account of practice outlines the Oxyme Action Learning Program which was conducted as part of the Management Challenge in my final year of the MSc in Coaching and Behavioral Change at Henley Business School. The central research questions were: (1) how action learning can help to solve wicked problems and (2) what the effect of an action…

  8. Effective Practices (Part 4): Problem Solving.

    ERIC Educational Resources Information Center

    Moursund, Dave

    1996-01-01

    Discusses the use of computers to help with problem solving. Topics include information science, including effective procedure and procedural thinking; templates; artificially intelligent agents and expert systems; and applications in education, including the goal of computer literacy for all students, and integrated software packages such as…

  9. Collaborative Problem Solving Methods towards Critical Thinking

    ERIC Educational Resources Information Center

    Yin, Khoo Yin; Abdullah, Abdul Ghani Kanesan; Alazidiyeen, Naser Jamil

    2011-01-01

    This research attempts to examine the collaborative problem solving methods towards critical thinking based on economy (AE) and non economy (TE) in the SPM level among students in the lower sixth form. The quasi experiment method that uses the modal of 3X2 factorial is applied. 294 lower sixth form students from ten schools are distributed…

  10. Problem Solving in Biology: A Methodology

    ERIC Educational Resources Information Center

    Wisehart, Gary; Mandell, Mark

    2008-01-01

    A methodology is described that teaches science process by combining informal logic and a heuristic for rating factual reliability. This system facilitates student hypothesis formation, testing, and evaluation of results. After problem solving with this scheme, students are asked to examine and evaluate arguments for the underlying principles of…

  11. Should Children Learn to Solve Problems?

    ERIC Educational Resources Information Center

    Watras, Joseph

    2011-01-01

    In this comparative essay, the author discusses the opposing educational theories of John Dewey and Gregory Bateson. While Dewey believed that the scientific method was the dominant method of solving problems and thereby acquiring knowledge that mattered, Bateson warned that this one-sided approach would lead to actions that could destroy the…

  12. Making Problem-Solving Simulations More Realistic.

    ERIC Educational Resources Information Center

    Cotton, Samuel E.

    2002-01-01

    Many problem-solving activities include mathematical principles but students do not use them during the design and experimentation phases before creating a prototype or product. Restricting the amount and/or type of materials available to students will require them to calculate and requisition the materials needed. (JOW)

  13. Raise the Bar on Problem Solving

    ERIC Educational Resources Information Center

    Englard, Lisa

    2010-01-01

    In a 1981 diagnostic test, the Ministry of Education in Singapore found its country facing a challenge: Only 46 percent of students in grades 2-4 could solve word problems that were presented without such key words as "altogether" or "left." Yet today, according to results from the Trends in International Mathematics and Science Study (TIMSS…

  14. Problem-Solving Test: Tryptophan Operon Mutants

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  15. Nanomedicine: Problem Solving to Treat Cancer

    ERIC Educational Resources Information Center

    Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.

    2006-01-01

    Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…

  16. Everyday Problem Solving: Dollar Wise, Penny Foolish.

    ERIC Educational Resources Information Center

    Brenner, Mary E.

    Research on everyday learning has begun to illuminate some of the relations between activity and knowledge, and thus can help educators reconceptualize classroom activities. For example, how and what children learn about money epitomize many of the differences between everyday and school-based problem solving. The general goals of this paper are…

  17. Student Problem Solving in High School Genetics.

    ERIC Educational Resources Information Center

    Stewart, James

    1983-01-01

    Describes set of specific steps (procedural knowledge) used when solving monohybrid/dihybrid cross problems and extent to which students could justify execution of each step in terms of their conceptual knowledge of genetics and meiosis. Implications for genetics instruction are discussed. (JN)

  18. Appendix M. Research Utilization and Problem Solving

    ERIC Educational Resources Information Center

    Jung, Charles

    The Research Utilization and Problem Solving (RUPS) Model--an instructional system designed to provide the needed competencies for an entire staff to engage in systems analysis and systems synthesis procedures prior to assessing educational needs and developing curriculum to meet the needs identified--is intended to facilitate the development of…

  19. Problem-solving for better health.

    PubMed

    Smith, B; Barnett, S; Collado, D; Connor, M; DePasquale, J; Gross, L; McDermott, V; Sykes, A

    1994-01-01

    An outline is given of an approach to the health-for-all goals which involves optimizing resource use, prioritizing people's well-being, achieving excellence and a measurable impact at all levels of care, and solving health problems in a broad developmental context. PMID:8141991

  20. The Problem-Solving Nemesis: Mindless Manipulation.

    ERIC Educational Resources Information Center

    Hawkins, Vincent J.

    1987-01-01

    Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)

  1. Instruction Emphasizing Effort Improves Physics Problem Solving

    ERIC Educational Resources Information Center

    Li, Daoquan

    2012-01-01

    Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

  2. Complex Problem Solving--More than Reasoning?

    ERIC Educational Resources Information Center

    Wustenberg, Sascha; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This study investigates the internal structure and construct validity of Complex Problem Solving (CPS), which is measured by a "Multiple-Item-Approach." It is tested, if (a) three facets of CPS--"rule identification" (adequateness of strategies), "rule knowledge" (generated knowledge) and "rule application" (ability to control a system)--can be…

  3. Problem-Framing: A perspective on environmental problem-solving

    NASA Astrophysics Data System (ADS)

    Bardwell, Lisa V.

    1991-09-01

    The specter of environmental calamity calls for the best efforts of an involved public. Ironically, the way people understand the issues all too often serves to discourage and frustrate rather than motivate them to action. This article draws from problem-solving perspectives offered by cognitive psychology and conflict management to examine a framework for thinking about environmental problems that promises to help rather than hinder efforts to address them. Problem-framing emphasizes focusing on the problem definition. Since how one defines a problem determines one's understanding of and approach to that problem, being able to redefine or reframe a problem and to explore the “problem space” can help broaden the range of alternatives and solutions examined. Problem-framing incorporates a cognitive perspective on how people respond to information. It explains why an emphasis on problem definition is not part of people's typical approach to problems. It recognizes the importance of structure and of having ways to organize that information on one's problem-solving effort. Finally, problem-framing draws on both cognitive psychology and conflict management for strategies to manage information and to create a problem-solving environment that not only encourages participation but can yield better approaches to our environmental problems.

  4. Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving

    ERIC Educational Resources Information Center

    Ramani, Geetha B.; Brownell, Celia A.

    2014-01-01

    Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…

  5. Understanding Individual Problem-Solving Style: A Key to Learning and Applying Creative Problem Solving

    ERIC Educational Resources Information Center

    Treffinger, Donald J.; Selby, Edwin C.; Isaksen, Scott G.

    2008-01-01

    More than five decades of research and development have focused on making the Creative Problem Solving process and tools accessible across a wide range of ages and contexts. Recent evidence indicates that when individuals, in both school and corporate settings, understand their own style of problem solving, they are able to learn and apply process…

  6. Writing about the Problem-Solving Process To Improve Problem-Solving Performance.

    ERIC Educational Resources Information Center

    Williams, Kenneth M.

    2003-01-01

    Concludes that writing about the executive processes of problem solving, difficulties encountered, alternative strategies that might have been used, and the problem solving process in general helped students in the treatment group learn to use executive processes more quickly and more effectively than students in the control group. (Author/NB)

  7. Assessing Affect after Mathematical Problem Solving Tasks: Validating the Chamberlin Affective Instrument for Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Chamberlin, Scott A.; Powers, Robert A.

    2013-01-01

    The focus of the article is the validation of an instrument to assess gifted students' affect after mathematical problem solving tasks. Participants were 225 students identified by their district as gifted in grades four to six. The Chamberlin Affective Instrument for Mathematical Problem Solving was used to assess feelings, emotions, and…

  8. Application of Performance Problem-Solving to Educational Problems

    ERIC Educational Resources Information Center

    Bullock, Donald H.

    1973-01-01

    The relevance of performance problem-solving for education is discussed in terms of its effect on the marketability of graduates, the cost-effectiveness of educational programs, and the drop/push/failout rate. (Author)

  9. Combining Computational and Social Effort for Collaborative Problem Solving

    PubMed Central

    Wagy, Mark D.; Bongard, Josh C.

    2015-01-01

    Rather than replacing human labor, there is growing evidence that networked computers create opportunities for collaborations of people and algorithms to solve problems beyond either of them. In this study, we demonstrate the conditions under which such synergy can arise. We show that, for a design task, three elements are sufficient: humans apply intuitions to the problem, algorithms automatically determine and report back on the quality of designs, and humans observe and innovate on others’ designs to focus creative and computational effort on good designs. This study suggests how such collaborations should be composed for other domains, as well as how social and computational dynamics mutually influence one another during collaborative problem solving. PMID:26544199

  10. Combining Computational and Social Effort for Collaborative Problem Solving.

    PubMed

    Wagy, Mark D; Bongard, Josh C

    2015-01-01

    Rather than replacing human labor, there is growing evidence that networked computers create opportunities for collaborations of people and algorithms to solve problems beyond either of them. In this study, we demonstrate the conditions under which such synergy can arise. We show that, for a design task, three elements are sufficient: humans apply intuitions to the problem, algorithms automatically determine and report back on the quality of designs, and humans observe and innovate on others' designs to focus creative and computational effort on good designs. This study suggests how such collaborations should be composed for other domains, as well as how social and computational dynamics mutually influence one another during collaborative problem solving. PMID:26544199

  11. Problem solving stages in the five square problem

    PubMed Central

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory. PMID:26300794

  12. Problem solving stages in the five square problem.

    PubMed

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.

  13. Optimal Planning and Problem-Solving

    NASA Technical Reports Server (NTRS)

    Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg

    2008-01-01

    CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.

  14. Discovering the structure of mathematical problem solving.

    PubMed

    Anderson, John R; Lee, Hee Seung; Fincham, Jon M

    2014-08-15

    The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the duration of these stages, and how these stages are related to the learning of a new mathematical competence. Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found that participants went through 5 major phases in solving a class of problems: A Define Phase where they identified the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase where they performed the necessary arithmetic calculations, a Transform Phase where they performed any mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is characterized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions, the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in mathematical and response regions, and the Respond phase by activity in motor regions. The duration of the Compute and Transform Phases were the only ones that varied with condition. Two features distinguished the mastery trials on which participants came to understand a new problem type. First, the duration of late phases of the problem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and angular gyrus (AG), regions associated with metacognition. This indicates the importance of reflection to successful learning. PMID:24746954

  15. Discovering the structure of mathematical problem solving.

    PubMed

    Anderson, John R; Lee, Hee Seung; Fincham, Jon M

    2014-08-15

    The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the duration of these stages, and how these stages are related to the learning of a new mathematical competence. Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found that participants went through 5 major phases in solving a class of problems: A Define Phase where they identified the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase where they performed the necessary arithmetic calculations, a Transform Phase where they performed any mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is characterized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions, the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in mathematical and response regions, and the Respond phase by activity in motor regions. The duration of the Compute and Transform Phases were the only ones that varied with condition. Two features distinguished the mastery trials on which participants came to understand a new problem type. First, the duration of late phases of the problem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and angular gyrus (AG), regions associated with metacognition. This indicates the importance of reflection to successful learning.

  16. Predicting Positive Self-Efficacy in Group Problem Solving.

    ERIC Educational Resources Information Center

    Wolf, Kay N.

    1997-01-01

    A study of 288 hospital employees engaged in problem-solving groups found that previous group problem-solving experience, educational level, work expertise, and problem-solving confidence were the best predictors of self-efficacy. (SK)

  17. Using Problem-Solution Maps to Improve Students' Problem-Solving Skills

    ERIC Educational Resources Information Center

    Selvaratnam, Mailoo; Canagaratna, Sebastian G.

    2008-01-01

    The effectiveness of problem solving as a learning tool is often diminished because students typically use only an algorithmic approach to get to the answer. We discuss a way of encouraging students to reflect on the solution to their problem by requiring them--after they have arrived at their solution--to draw solution maps. A solution map…

  18. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving

  19. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving

  20. Geogebra for Solving Problems of Physics

    NASA Astrophysics Data System (ADS)

    Kllogjeri, Pellumb; Kllogjeri, Adrian

    Today is highly speed progressing the computer-based education, which allowes educators and students to use educational programming language and e-tutors to teach and learn, to interact with one another and share together the results of their work. In this paper we will be concentrated on the use of GeoGebra programme for solving problems of physics. We have brought an example from physics of how can be used GeoGebra for finding the center of mass(centroid) of a picture(or system of polygons). After the problem is solved graphically, there is an application of finding the center of a real object(a plate)by firstly, scanning the object and secondly, by inserting its scanned picture into the drawing pad of GeoGebra window and lastly, by finding its centroid. GeoGebra serve as effective tool in problem-solving. There are many other applications of GeoGebra in the problems of physics, and many more in different fields of mathematics.

  1. Russian Doll Search for solving Constraint Optimization problems

    SciTech Connect

    Verfaillie, G.; Lemaitre, M.

    1996-12-31

    If the Constraint Satisfaction framework has been extended to deal with Constraint Optimization problems, it appears that optimization is far more complex than satisfaction. One of the causes of the inefficiency of complete tree search methods, like Depth First Branch and Bound, lies in the poor quality of the lower bound on the global valuation of a partial assignment, even when using Forward Checking techniques. In this paper, we introduce the Russian Doll Search algorithm which replaces one search by n successive searches on nested subproblems (n being the number of problem variables), records the results of each search and uses them later, when solving larger subproblems, in order to improve the lower bound on the global valuation of any partial assignment. On small random problems and on large real scheduling problems, this algorithm yields surprisingly good results, which greatly improve as the problems get more constrained and the bandwidth of the used variable ordering diminishes.

  2. A connectionist model for diagnostic problem solving

    NASA Technical Reports Server (NTRS)

    Peng, Yun; Reggia, James A.

    1989-01-01

    A competition-based connectionist model for solving diagnostic problems is described. The problems considered are computationally difficult in that (1) multiple disorders may occur simultaneously and (2) a global optimum in the space exponential to the total number of possible disorders is sought as a solution. The diagnostic problem is treated as a nonlinear optimization problem, and global optimization criteria are decomposed into local criteria governing node activation updating in the connectionist model. Nodes representing disorders compete with each other to account for each individual manifestation, yet complement each other to account for all manifestations through parallel node interactions. When equilibrium is reached, the network settles into a locally optimal state. Three randomly generated examples of diagnostic problems, each of which has 1024 cases, were tested, and the decomposition plus competition plus resettling approach yielded very high accuracy.

  3. Students' Images of Problem Contexts when Solving Applied Problems

    ERIC Educational Resources Information Center

    Moore, Kevin C.; Carlson, Marilyn P.

    2012-01-01

    This article reports findings from an investigation of precalculus students' approaches to solving novel problems. We characterize the images that students constructed during their solution attempts and describe the degree to which they were successful in imagining how the quantities in a problem's context change together. Our analyses revealed…

  4. Interactive Problem Solving Tutorials Through Visual Programming

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian; Schuster, David; Undreiu, Adriana

    2008-10-01

    We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.

  5. Linear systems of equations solved using mathematical algorithms

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1968-01-01

    New mathematical algorithm solves linear systems of equations, AX equals B, and preserves the integer properties of the coefficients. The algorithms presented can also be used for the efficient evaluation of determinates and their leading minors.

  6. Solving radar detection problems using simulation

    NASA Astrophysics Data System (ADS)

    Curtis Schleher, D.

    1995-04-01

    Simulation is a well-known but often misunderstood method for predicting the detection range of radars. Recent advances in computer software and hardware have made simulation easier to apply and use. Users are putting increased reliance on computer simulation in lieu of more expensive test and evaluation. In this paper, a simulation example is given of a complex radar detection problem which is not solvable using conventional procedures. It is shown how this problem is easily solved using a MATLAB simulation on a personal computer (PC).

  7. Optimization neural network for solving flow problems.

    PubMed

    Perfetti, R

    1995-01-01

    This paper describes a neural network for solving flow problems, which are of interest in many areas of application as in fuel, hydro, and electric power scheduling. The neural network consist of two layers: a hidden layer and an output layer. The hidden units correspond to the nodes of the flow graph. The output units represent the branch variables. The network has a linear order of complexity, it is easily programmable, and it is suited for analog very large scale integration (VLSI) realization. The functionality of the proposed network is illustrated by a simulation example concerning the maximal flow problem. PMID:18263420

  8. Iterative methods for solving nonlinear problems of nuclear reactor criticality

    SciTech Connect

    Kuz'min, A. M.

    2012-12-15

    The paper presents iterative methods for calculating the neutron flux distribution in nonlinear problems of nuclear reactor criticality. Algorithms for solving equations for variations in the neutron flux are considered. Convergence of the iterative processes is studied for two nonlinear problems in which macroscopic interaction cross sections are functionals of the spatial neutron distribution. In the first problem, the neutron flux distribution depends on the water coolant density, and in the second one, it depends on the fuel temperature. Simple relationships connecting the vapor content and the temperature with the neutron flux are used.

  9. Development of analogical problem-solving skill.

    PubMed

    Holyoak, K J; Junn, E N; Billman, D O

    1984-12-01

    3 experiments were performed to assess children's ability to solve a problem by analogy to a superficially dissimilar situation. Preschoolers and fifth and sixth graders were asked to solve a problem that allowed multiple solutions. Some subjects were first read a story that included an analogous problem and its solution. When the mapping between the relations involved in the corresponding solutions was relatively simple, and the corresponding instruments were perceptually and functionally similar, even preschoolers were able to use the analogy to derive a solution to the transfer problem (Experiment 1). Furthermore, salient similarity of the instruments was neither sufficient (Experiment 2) nor necessary (Experiment 3) for success by preschool subjects. When the story analog mapped well onto the transfer problem, 4-year-olds were often able to generate a solution that required transformation of an object with little perceptual or semantic similarity to the instrument used in the base analog (Experiment 3). The older children used analogies in a manner qualitatively similar to that observed in comparable studies with adults (Experiment 1), whereas the younger children exhibited different limitations.

  10. Comprehension and computation in Bayesian problem solving

    PubMed Central

    Johnson, Eric D.; Tubau, Elisabet

    2015-01-01

    Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976

  11. Comprehension and computation in Bayesian problem solving.

    PubMed

    Johnson, Eric D; Tubau, Elisabet

    2015-01-01

    Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on "transparent" Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point.

  12. Solving the Swath Segment Selection Problem

    NASA Technical Reports Server (NTRS)

    Knight, Russell; Smith, Benjamin

    2006-01-01

    Several artificial-intelligence search techniques have been tested as means of solving the swath segment selection problem (SSSP) -- a real-world problem that is not only of interest in its own right, but is also useful as a test bed for search techniques in general. In simplest terms, the SSSP is the problem of scheduling the observation times of an airborne or spaceborne synthetic-aperture radar (SAR) system to effect the maximum coverage of a specified area (denoted the target), given a schedule of downlinks (opportunities for radio transmission of SAR scan data to a ground station), given the limit on the quantity of SAR scan data that can be stored in an onboard memory between downlink opportunities, and given the limit on the achievable downlink data rate. The SSSP is NP complete (short for "nondeterministic polynomial time complete" -- characteristic of a class of intractable problems that can be solved only by use of computers capable of making guesses and then checking the guesses in polynomial time).

  13. A Flipped Pedagogy for Expert Problem Solving

    NASA Astrophysics Data System (ADS)

    Pritchard, David

    The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).

  14. An investigation into problem solving in education: a problem-solving curricular framework.

    PubMed

    Arand, J U; Harding, C G

    1987-02-01

    The purpose of this study was to examine how two aspects of teaching, mastery of content and problem solving, could be linked in a curricular framework. A professional educational program in physical therapy which had been developed to teach both content and problem solving was evaluated. The subjects for the study were 81 students in a baccalaureate program in a Midwestern medical school who participated in this problem-solving curriculum. The primary assessment instrument used was the Watson-Glaser Critical Thinking Appraisal. Findings indicated that performance on a test of critical thinking was affected by the curriculum. Regression analysis indicated that one course designed as an introduction to problem solving was significantly related to changes in problem-solving skill scores. Although significant change in the test scores did occur, these changes were not evident until the completion of the year-long program. Differing effects for lecture and field experience (or patient care) courses were not observed, and traditional measures such as grade point averages had no statistical relationship to problem-solving skill scores.

  15. Solving the shepherding problem: heuristics for herding autonomous, interacting agents

    PubMed Central

    Strömbom, Daniel; Mann, Richard P.; Wilson, Alan M.; Hailes, Stephen; Morton, A. Jennifer; Sumpter, David J. T.; King, Andrew J.

    2014-01-01

    Herding of sheep by dogs is a powerful example of one individual causing many unwilling individuals to move in the same direction. Similar phenomena are central to crowd control, cleaning the environment and other engineering problems. Despite single dogs solving this ‘shepherding problem’ every day, it remains unknown which algorithm they employ or whether a general algorithm exists for shepherding. Here, we demonstrate such an algorithm, based on adaptive switching between collecting the agents when they are too dispersed and driving them once they are aggregated. Our algorithm reproduces key features of empirical data collected from sheep–dog interactions and suggests new ways in which robots can be designed to influence movements of living and artificial agents. PMID:25165603

  16. Insight and analysis problem solving in microbes to machines.

    PubMed

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. PMID

  17. Insight and analysis problem solving in microbes to machines.

    PubMed

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices.

  18. How do college students solve proportion problems?

    NASA Astrophysics Data System (ADS)

    Thornton, Melvin C.; Fuller, Robert G.

    Problems which could be solved using proportional reasoning were administered nationwide by college faculty to their own science classes during a three year period. The reasoning of more than 8000 students covering three sections of the country was classified as concrete, transitional, or formal using Piagetian categories. Data from the West closely replicated that from the Midwest on similar metric conversion tasks. Student performance changed noticeably with a different problem format. The percentages of students using a ratio formula, ratio attempt, or intuitive methods of solution held approximately constant over time, task, and section of the country. The data shows the use of additive and conversion methods of solution depends upon the problem presentation.

  19. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  20. Mathematical Problem Solving: A Review of the Literature.

    ERIC Educational Resources Information Center

    Funkhouser, Charles

    The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

  1. Harmony Theory: Problem Solving, Parallel Cognitive Models, and Thermal Physics.

    ERIC Educational Resources Information Center

    Smolensky, Paul; Riley, Mary S.

    This document consists of three papers. The first, "A Parallel Model of (Sequential) Problem Solving," describes a parallel model designed to solve a class of relatively simple problems from elementary physics and discusses implications for models of problem-solving in general. It is shown that one of the most salient features of problem solving,…

  2. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    ERIC Educational Resources Information Center

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  3. Modal preferences in creative problem solving.

    PubMed

    Deininger, Gina; Loudon, Gareth; Norman, Stefanie

    2012-08-01

    Embodied cognitive science appeals to the idea that cognition depends on the body as well as on the brain. This study looks at whether we are more likely to engage just the brain or enlist the body for complex cognitive functioning such as creative problem solving. Participants were presented with a puzzle based on De Bono's lateral thinking puzzles. The puzzle consisted of rotating and joining two-dimensional shapes to make a three-dimensional one. In one condition, participants were given the choice of either solving the puzzle mentally or through manipulation of the images on a computer screen. In another condition, the subjects had to solve the puzzle first mentally and then report which mode they would have preferred to solve the puzzle. Two more conditions were applied with slight variations. In all conditions, an overwhelming majority of participants chose to solve the puzzle by manipulation, even though there was not a significant increase on performance. It appeared that participants were making a conscious choice for the body to play a feedback-driven role in creative cognitive processing. This strong preference for manual manipulation over just mental representation, regardless of the impact on performance, would seem to suggest that it is our natural tendency to involve the body in complex cognitive functioning. This would support the theory that cognition may be more than just a neural process, and that it is a dynamic interplay between body, brain and world. The experiential feedback of the body moving through space and time may be an inherently important factor in creative cognition.

  4. Can compactifications solve the cosmological constant problem?

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Masoumi, Ali

    2016-06-01

    Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ = 0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.

  5. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  6. Multitasking-Pascal extensions solve concurrency problems

    SciTech Connect

    Mackie, P.H.

    1982-09-29

    To avoid deadlock (one process waiting for a resource than another process can't release) and indefinite postponement (one process being continually denied a resource request) in a multitasking-system application, it is possible to use a high-level development language with built-in concurrency handlers. Parallel Pascal is one such language; it extends standard Pascal via special task synchronizers: a new data type called signal, new system procedures called wait and send and a Boolean function termed awaited. To understand the language's use the author examines the problems it helps solve.

  7. The Problem of Assessing Problem Solving: Can Comparative Judgement Help?

    ERIC Educational Resources Information Center

    Jones, Ian; Inglis, Matthew

    2015-01-01

    School mathematics examination papers are typically dominated by short, structured items that fail to assess sustained reasoning or problem solving. A contributory factor to this situation is the need for student work to be marked reliably by a large number of markers of varied experience and competence. We report a study that tested an…

  8. Solving Optimization Problems with Dynamic Geometry Software: The Airport Problem

    ERIC Educational Resources Information Center

    Contreras, José

    2014-01-01

    This paper describes how the author's students (in-service and pre-service secondary mathematics teachers) enrolled in college geometry courses use the Geometers' Sketchpad (GSP) to gain insight to formulate, confirm, test, and refine conjectures to solve the classical airport problem for triangles. The students are then provided with strategic…

  9. A Process Analysis of Engineering Problem Solving and Assessment of Problem Solving Skills

    ERIC Educational Resources Information Center

    Grigg, Sarah J.

    2012-01-01

    In the engineering profession, one of the most critical skills to possess is accurate and efficient problem solving. Thus, engineering educators should strive to help students develop skills needed to become competent problem solvers. In order to measure the development of skills, it is necessary to assess student performance, identify any…

  10. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours

    ERIC Educational Resources Information Center

    Muir, Tracey; Beswick, Kim; Williamson, John

    2008-01-01

    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  11. Problem-Solving Appraisal and Human Adjustment: A Review of 20 Years of Research Using the Problem Solving Inventory

    ERIC Educational Resources Information Center

    Heppner, P. Paul; Witty, Thomas E.; Dixon, Wayne A.

    2004-01-01

    This article reviews and synthesizes more than 120 studies from 20 years (1982-2002) of research that has examined problem-solving appraisal as measured by the Problem Solving Inventory (PSI). The goals of the article are fourfold: (a) introduce the construct of problem-solving appraisal and the PSI within the applied problem-solving literature,…

  12. Solving large sparse eigenvalue problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Philippe, Bernard; Saad, Youcef

    1988-01-01

    An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.

  13. Incubation and Intuition in Creative Problem Solving

    PubMed Central

    Gilhooly, Kenneth J.

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745

  14. Incubation and Intuition in Creative Problem Solving.

    PubMed

    Gilhooly, Kenneth J

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745

  15. Solving Math Problems Approximately: A Developmental Perspective

    PubMed Central

    Ganor-Stern, Dana

    2016-01-01

    Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224

  16. Circumspect descent prevails in solving random constraint satisfaction problems.

    PubMed

    Alava, Mikko; Ardelius, John; Aurell, Erik; Kaski, Petteri; Krishnamurthy, Supriya; Orponen, Pekka; Seitz, Sakari

    2008-10-01

    We study the performance of stochastic local search algorithms for random instances of the K-satisfiability (K-SAT) problem. We present a stochastic local search algorithm, ChainSAT, which moves in the energy landscape of a problem instance by never going upwards in energy. ChainSAT is a focused algorithm in the sense that it focuses on variables occurring in unsatisfied clauses. We show by extensive numerical investigations that ChainSAT and other focused algorithms solve large K-SAT instances almost surely in linear time, up to high clause-to-variable ratios alpha; for example, for K = 4 we observe linear-time performance well beyond the recently postulated clustering and condensation transitions in the solution space. The performance of ChainSAT is a surprise given that by design the algorithm gets trapped into the first local energy minimum it encounters, yet no such minima are encountered. We also study the geometry of the solution space as accessed by stochastic local search algorithms. PMID:18832149

  17. Functional reasoning in diagnostic problem solving

    NASA Technical Reports Server (NTRS)

    Sticklen, Jon; Bond, W. E.; Stclair, D. C.

    1988-01-01

    This work is one facet of an integrated approach to diagnostic problem solving for aircraft and space systems currently under development. The authors are applying a method of modeling and reasoning about deep knowledge based on a functional viewpoint. The approach recognizes a level of device understanding which is intermediate between a compiled level of typical Expert Systems, and a deep level at which large-scale device behavior is derived from known properties of device structure and component behavior. At this intermediate functional level, a device is modeled in three steps. First, a component decomposition of the device is defined. Second, the functionality of each device/subdevice is abstractly identified. Third, the state sequences which implement each function are specified. Given a functional representation and a set of initial conditions, the functional reasoner acts as a consequence finder. The output of the consequence finder can be utilized in diagnostic problem solving. The paper also discussed ways in which this functional approach may find application in the aerospace field.

  18. Problem Solving Interventions: Impact on Young Children with Developmental Disabilities

    ERIC Educational Resources Information Center

    Diamond, Lindsay Lile

    2012-01-01

    Problem-solving skills are imperative to a child's growth and success across multiple environments, including general and special education. Problem solving is comprised of: (a) attention to the critical aspects of a problem, (b) generation of solution(s) to solve the problem, (c) application of a solution(s) to the identified problem, and…

  19. Solving unstructured grid problems on massively parallel computers

    NASA Technical Reports Server (NTRS)

    Hammond, Steven W.; Schreiber, Robert

    1990-01-01

    A highly parallel graph mapping technique that enables one to efficiently solve unstructured grid problems on massively parallel computers is presented. Many implicit and explicit methods for solving discretized partial differential equations require each point in the discretization to exchange data with its neighboring points every time step or iteration. The cost of this communication can negate the high performance promised by massively parallel computing. To eliminate this bottleneck, the graph of the irregular problem is mapped into the graph representing the interconnection topology of the computer such that the sum of the distances that the messages travel is minimized. It is shown that using the heuristic mapping algorithm significantly reduces the communication time compared to a naive assignment of processes to processors.

  20. A cognitive model for problem solving in computer science

    NASA Astrophysics Data System (ADS)

    Parham, Jennifer R.

    According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in solving them. Approaching assessment from this perspective would reveal potential errors leading to incorrect solutions. This dissertation proposes a model describing how people solve computational problems by storing, retrieving, and manipulating information and knowledge. It describes how metacognition interacts with schemata representing conceptual and procedural knowledge, as well as with the external sources of information that might be needed to arrive at a solution. Metacognition includes higher-order, executive processes responsible for controlling and monitoring schemata, which in turn represent the algorithmic knowledge needed for organizing and adapting concepts to a specific domain. The model illustrates how metacognitive processes interact with the knowledge represented by schemata as well as the information from external sources. This research investigates the differences in the way computer science novices use their metacognition and schemata to solve a computer programming problem. After J. Parham and L. Gugerty reached an 85% reliability for six metacognitive processes and six domain-specific schemata for writing a computer program, the resulting vocabulary provided the foundation for supporting the existence of and the interaction between metacognition, schemata, and external sources of information in computer programming. Overall, the participants in this research used their schemata 6% more than their metacognition and their metacognitive processes to control and monitor their schemata used to write a computer program. This research has potential implications in computer science education and software

  1. A mathematical model of a computational problem solving system

    NASA Astrophysics Data System (ADS)

    Aris, Teh Noranis Mohd; Nazeer, Shahrin Azuan

    2015-05-01

    This paper presents a mathematical model based on fuzzy logic for a computational problem solving system. The fuzzy logic uses truth degrees as a mathematical model to represent vague algorithm. The fuzzy logic mathematical model consists of fuzzy solution and fuzzy optimization modules. The algorithm is evaluated based on a software metrics calculation that produces the fuzzy set membership. The fuzzy solution mathematical model is integrated in the fuzzy inference engine that predicts various solutions to computational problems. The solution is extracted from a fuzzy rule base. Then, the solutions are evaluated based on a software metrics calculation that produces the level of fuzzy set membership. The fuzzy optimization mathematical model is integrated in the recommendation generation engine that generate the optimize solution.

  2. Use of EPR to Solve Biochemical Problems

    PubMed Central

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  3. Direct finite element equation solving algorithms

    NASA Technical Reports Server (NTRS)

    Melosh, R. J.; Utku, S.; Salama, M.

    1985-01-01

    This paper presents and examines direct solution algorithms for the linear simultaneous equations that arise when finite element models represent an engineering system. It identifies the mathematical processing of four solution methods and assesses their data processing implications using concurrent processing.

  4. Autonomy and Mathematical Problem-Solving: The Early Years

    ERIC Educational Resources Information Center

    Rogers, Jennifer

    2004-01-01

    Problem solving is seen to lie at the "heart" of mathematics (Cockcroft, 1982). Problem solving is also of great importance to industry that claims many young people leave school and take up jobs without the skills needed to sort out difficulties and problems (Smith Report, 2004). So is problem solving at the heart of mathematics teaching in…

  5. Translation among Symbolic Representations in Problem-Solving. Revised.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  6. Novice Use of Qualitative versus Quantitative Problem Solving in Electrostatics.

    ERIC Educational Resources Information Center

    McMillan, Claude, III; Swadener, Marc

    1991-01-01

    Describes the problem-solving behaviors of six novice subjects attempting to solve an electrostatics problem in calculus-based college physics. The level of qualitative thinking exhibited by these novices was determined. Sound procedural knowledge and problem representation were suggested as an integral part of skilled problem solving in physics.…

  7. Solving standard traveling salesman problem and multiple traveling salesman problem by using branch-and-bound

    NASA Astrophysics Data System (ADS)

    Saad, Shakila; Wan Jaafar, Wan Nurhadani; Jamil, Siti Jasmida

    2013-04-01

    The standard Traveling Salesman Problem (TSP) is the classical Traveling Salesman Problem (TSP) while Multiple Traveling Salesman Problem (MTSP) is an extension of TSP when more than one salesman is involved. The objective of MTSP is to find the least costly route that the traveling salesman problem can take if he wishes to visit exactly once each of a list of n cities and then return back to the home city. There are a few methods that can be used to solve MTSP. The objective of this research is to implement an exact method called Branch-and-Bound (B&B) algorithm. Briefly, the idea of B&B algorithm is to start with the associated Assignment Problem (AP). A branching strategy will be applied to the TSP and MTSP which is Breadth-first-Search (BFS). 11 nodes of cities are implemented for both problem and the solutions to the problem are presented.

  8. Genetic Algorithms for Multiple-Choice Problems

    NASA Astrophysics Data System (ADS)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  9. Journey into Problem Solving: A Gift from Polya

    ERIC Educational Resources Information Center

    Lederman, Eric

    2009-01-01

    In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…

  10. Children use salience to solve coordination problems.

    PubMed

    Grueneisen, Sebastian; Wyman, Emily; Tomasello, Michael

    2015-05-01

    Humans are routinely required to coordinate with others. When communication is not possible, adults often achieve this by using salient cues in the environment (e.g. going to the Eiffel Tower, as an obvious meeting point). To explore the development of this capacity, we presented dyads of 3-, 5-, and 8-year-olds (N = 144) with a coordination problem: Two balls had to be inserted into the same of four boxes to obtain a reward. Identical pictures were attached to three boxes whereas a unique--and thus salient--picture was attached to the fourth. Children either received one ball each, and so had to choose the same box (experimental condition), or they received both balls and could get the reward independently (control condition). In all cases, children could neither communicate nor see each other's choices. Children were significantly more likely to choose the salient option in the experimental condition than in the control condition. However, only the two older age groups chose the salient box above chance levels. This study is the first to show that children from at least age 5 can solve coordination problems by converging on a salient solution.

  11. Solving Fluid Flow Problems on Moving and Adaptive Overlapping Grids

    SciTech Connect

    Henshaw, W

    2005-07-28

    Solution of fluid dynamics problems on overlapping grids will be discussed. An overlapping grid consists of a set of structured component grids that cover a domain and overlap where they meet. Overlapping grids provide an effective approach for developing efficient and accurate approximations for complex, possibly moving geometry. Topics to be addressed include the reactive Euler equations, the incompressible Navier-Stokes equations and elliptic equations solved with a multigrid algorithm. Recent developments coupling moving grids and adaptive mesh refinement and preliminary parallel results will also be presented.

  12. Structured Collaboration versus Individual Learning in Solving Physics Problems

    NASA Astrophysics Data System (ADS)

    Harskamp, Egbert; Ding, Ning

    2006-11-01

    The research issue in this study is how to structure collaborative learning so that it improves solving physics problems more than individual learning. Structured collaborative learning has been compared with individual learning environments with Schoenfeld’s problem-solving episodes. Students took a pre-test and a post-test and had the opportunity to solve six physics problems. Ninety-nine students from a secondary school in Shanghai participated in the study. Students who learnt to solve problems in collaboration and students who learnt to solve problems individually with hints improved their problem-solving skills compared with those who learnt to solve the problems individually without hints. However, it was hard to discern an extra effect for students working collaboratively with hints—although we observed these students working in a more structured way than those in the other groups. We discuss ways to further investigate effective collaborative processes for solving physics problems.

  13. Parallel algorithms for boundary value problems

    NASA Technical Reports Server (NTRS)

    Lin, Avi

    1990-01-01

    A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are two fold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed.

  14. Improved Monkey-King Genetic Algorithm for Solving Large Winner Determination in Combinatorial Auction

    NASA Astrophysics Data System (ADS)

    Li, Yuzhong

    Using GA solve the winner determination problem (WDP) with large bids and items, run under different distribution, because the search space is large, constraint complex and it may easy to produce infeasible solution, would affect the efficiency and quality of algorithm. This paper present improved MKGA, including three operator: preprocessing, insert bid and exchange recombination, and use Monkey-king elite preservation strategy. Experimental results show that improved MKGA is better than SGA in population size and computation. The problem that traditional branch and bound algorithm hard to solve, improved MKGA can solve and achieve better effect.

  15. Dynamics of students’ epistemological framing in group problem solving

    NASA Astrophysics Data System (ADS)

    Nguyen, Hai D.; Chari, Deepa N.; Sayre, Eleanor C.

    2016-11-01

    Many studies have investigated students’ epistemological framing when solving physics problems. Framing supports students’ problem solving as they decide what knowledge to employ and the necessary steps to solve the problem. Students may frame the same problem differently and take alternative paths to a correct solution. When students work in group settings, they share and discuss their framing to decide how to proceed in problem solving as a whole group. In this study, we investigate how groups of students negotiate their framing and frame shifts in group problem solving.

  16. Improving the efficiency of solving discrete optimization problems: The case of VRP

    NASA Astrophysics Data System (ADS)

    Belov, A.; Slastnikov, S.

    2016-02-01

    Paper is devoted constructing efficient metaheuristics algorithms for discrete optimization problems. Particularly, we consider vehicle routing problem applying original ant colony optimization method to solve it. Besides, some parts of algorithm are separated for parallel computing. Some experimental results are performed to compare the efficiency of these methods.

  17. Interpersonal and Emotional Problem Solving among Narcotic Drug Abusers.

    ERIC Educational Resources Information Center

    Appel, Philip W.; Kaestner, Elisabeth

    1979-01-01

    Measured problem-solving abilities of narcotics abusers using the modified means-ends problem-solving procedure. Good subjects had more total relevent means (RMs) for solving problems, used more introspective and emotional RMs, and were better at RM recognition, but did not have more sufficient narratives than poor subjects. (Author/BEF)

  18. Teaching Problem Solving in Secondary School Mathematics Classrooms

    ERIC Educational Resources Information Center

    Lam, Toh Tin; Guan, Tay Eng; Seng, Quek Khiok; Hoong, Leong Yew; Choon, Toh Pee; Him, Ho Foo; Jaguthsing, Dindyal

    2014-01-01

    This paper reports an innovative approach to teaching problem solving in secondary school mathematics classrooms based on a specifically designed problem-solving module.This approach adopts the science practical paradigm and rides on the works of Polya and Schoenfeld in order to give greater emphasis to the problem solving processes. We report the…

  19. Teaching Young Children Interpersonal Problem-Solving Skills

    ERIC Educational Resources Information Center

    Joseph, Gail E.; Strain, Phillip S.

    2010-01-01

    Learning how to problem solve is one of the key developmental milestones in early childhood. Children's problem-solving skills represent a key feature in the development of social competence. Problem solving allows children to stay calm during difficult situations, repair social relations quickly, and get their needs met in ways that are safe and…

  20. Teacher Practices with Toddlers during Social Problem Solving Opportunities

    ERIC Educational Resources Information Center

    Gloeckler, Lissy; Cassell, Jennifer

    2012-01-01

    This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…

  1. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  2. Capturing Problem-Solving Processes Using Critical Rationalism

    ERIC Educational Resources Information Center

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  3. Team-Based Complex Problem Solving: A Collective Cognition Perspective

    ERIC Educational Resources Information Center

    Hung, Woei

    2013-01-01

    Today, much problem solving is performed by teams, rather than individuals. The complexity of these problems has exceeded the cognitive capacity of any individual and requires a team of members to solve them. The success of solving these complex problems not only relies on individual team members who possess different but complementary expertise,…

  4. Problem Solving and Creativity; In Individuals and Groups.

    ERIC Educational Resources Information Center

    Maier, Norman R. F.

    Studies on individual and group problem solving from the past 15 years are brought together in this volume. Four sections of the book consider individual problem solving and the search for a possible unique factor in creativity. The next four sections concern themselves with the various aspects of group problem solving, and a final part of the…

  5. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    ERIC Educational Resources Information Center

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  6. Personal Problem-Solving Activities of Black University Students.

    ERIC Educational Resources Information Center

    Reeder, Bonita Lynne; Heppner, P. Paul

    1985-01-01

    Examined personal problem solving activities of Black undergraduates (N=84) using three measures: Problem Solving Inventory; Level of Problem Solving Skills Estimate Form; and Ways of Coping Scale. Results indicated no racial (Black versus White) or geographic (urban versus rural) differences in responses. (BL)

  7. The Influence of Cognitive Diversity on Group Problem Solving Strategy

    ERIC Educational Resources Information Center

    Lamm, Alexa J.; Shoulders, Catherine; Roberts, T. Grady; Irani, Tracy A.; Snyder, Lori J. Unruh; Brendemuhl, Joel

    2012-01-01

    Collaborative group problem solving allows students to wrestle with different interpretations and solutions brought forth by group members, enhancing both critical thinking and problem solving skills. Since problem solving in groups is a common practice in agricultural education, instructors are often put in the position of organizing student…

  8. Problem Solving in the School Curriculum from a Design Perspective

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng

    2010-01-01

    In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…

  9. Development of a Content Coding System for Marital Problem Solving.

    ERIC Educational Resources Information Center

    Winemiller, David R.; Mitchell, M. Ellen

    While much research has focused on the processes of marital problem solving, the content of marital problem solving has received considerably less attention. This study examined the initial efforts to develop a method for assessing marital problem solving content. Married individuals (N=36) completed a demographic information sheet, the Dyadic…

  10. Perceived Problem Solving, Stress, and Health among College Students

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William

    2005-01-01

    Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…

  11. Internet Computer Coaches for Introductory Physics Problem Solving

    ERIC Educational Resources Information Center

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  12. Maximum/Minimum Problems Solved Using an Algebraic Way

    ERIC Educational Resources Information Center

    Modica, Erasmo

    2010-01-01

    This article describes some problems of the maximum/minimum type, which are generally solved using calculus at secondary school, but which here are solved algebraically. We prove six algebraic properties and then apply them to this kind of problem. This didactic approach allows pupils to solve these problems even at the beginning of secondary…

  13. Space-time spectral collocation algorithm for solving time-fractional Tricomi-type equations

    NASA Astrophysics Data System (ADS)

    Abdelkawy, M. A.; Ahmed, Engy A.; Alqahtani, Rubayyi T.

    2016-08-01

    We introduce a new numerical algorithm for solving one-dimensional time-fractional Tricomi-type equations (T-FTTEs). We used the shifted Jacobi polynomials as basis functions and the derivatives of fractional is evaluated by the Caputo definition. The shifted Jacobi Gauss-Lobatt algorithm is used for the spatial discretization, while the shifted Jacobi Gauss-Radau algorithmis applied for temporal approximation. Substituting these approximations in the problem leads to a system of algebraic equations that greatly simplifies the problem. The proposed algorithm is successfully extended to solve the two-dimensional T-FTTEs. Extensive numerical tests illustrate the capability and high accuracy of the proposed methodologies.

  14. Petri Net Modeling and Decomposition Method for Solving Production Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Nishi, Tatsushi; Maeno, Ryota

    Considering the need to develop general scheduling problem solver, the recent integration of Petri Nets as modeling tools into effective optimization methods for scheduling problems is very promising. The paper addresses a Petri Net modeling and decomposition method for solving a wide variety of scheduling problems. The scheduling problems are represented as the optimal transition firing sequence problems for timed Petri Nets. The Petri Net is decomposed into several subnets in which each subproblem can be easily solved by Dijkstra' algorithm. The approach is applied to a flowshop scheduling problem. The performance of the proposed algorithm is compared with that of a simulated annealing method.

  15. A spectral algorithm for the seriation problem

    SciTech Connect

    Atkins, J.E.; Boman, E.G.; Hendrickson, B.

    1994-11-01

    Given a set of objects and a correlation function f reflecting the desire for two items to be near each other, find all sequences {pi} of the items so that correlation preferences are preserved; that is if {pi}(i) < {pi}(j) < {pi}(k) then f(i,j) {ge} f(i,k) and f(j,k) {ge} f(i,k). This seriation problem has numerous applications, for instance, solving it yields a solution to the consecutive ones problem. We present a spectral algorithm for this problem that has a number of interesting features. Whereas most previous applications of spectral techniques provided bounds or heuristics, our result is an algorithm for a nontrivial combinatorial problem. Our analysis introduces powerful tools from matrix theory to the theoretical computer science community. Also, spectral methods are being applied as heuristics for a variety of sequencing problems and our result helps explain and justify these applications. Although the worst case running time for our approach is not competitive with that of existing methods for well posed problem instances, unlike combinatorial approaches our algorithm remains a credible heuristic for the important cases where there are errors in the data.

  16. Young children's analogical problem solving: gaining insights from video displays.

    PubMed

    Chen, Zhe; Siegler, Robert S

    2013-12-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. The sample of 2- and 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older, but not younger, toddlers extracted the problem-solving strategy depicted in the video and spontaneously transferred the strategy to solve isomorphic problems. Transfer by analogy from the video was evident only when the video illustrated the complete problem goal structure, including the character's intention and the action needed to achieve a goal. The same action isolated from the problem-solving context did not serve as an effective source analogue. These results illuminate the development of early representation and processes involved in analogical problem solving. Theoretical and educational implications are discussed.

  17. Solving the Traveling Salesman's Problem Using the African Buffalo Optimization.

    PubMed

    Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam

    2016-01-01

    This paper proposes the African Buffalo Optimization (ABO) which is a new metaheuristic algorithm that is derived from careful observation of the African buffalos, a species of wild cows, in the African forests and savannahs. This animal displays uncommon intelligence, strategic organizational skills, and exceptional navigational ingenuity in its traversal of the African landscape in search for food. The African Buffalo Optimization builds a mathematical model from the behavior of this animal and uses the model to solve 33 benchmark symmetric Traveling Salesman's Problem and six difficult asymmetric instances from the TSPLIB. This study shows that buffalos are able to ensure excellent exploration and exploitation of the search space through regular communication, cooperation, and good memory of its previous personal exploits as well as tapping from the herd's collective exploits. The results obtained by using the ABO to solve these TSP cases were benchmarked against the results obtained by using other popular algorithms. The results obtained using the African Buffalo Optimization algorithm are very competitive. PMID:26880872

  18. Solving the Traveling Salesman's Problem Using the African Buffalo Optimization

    PubMed Central

    Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam

    2016-01-01

    This paper proposes the African Buffalo Optimization (ABO) which is a new metaheuristic algorithm that is derived from careful observation of the African buffalos, a species of wild cows, in the African forests and savannahs. This animal displays uncommon intelligence, strategic organizational skills, and exceptional navigational ingenuity in its traversal of the African landscape in search for food. The African Buffalo Optimization builds a mathematical model from the behavior of this animal and uses the model to solve 33 benchmark symmetric Traveling Salesman's Problem and six difficult asymmetric instances from the TSPLIB. This study shows that buffalos are able to ensure excellent exploration and exploitation of the search space through regular communication, cooperation, and good memory of its previous personal exploits as well as tapping from the herd's collective exploits. The results obtained by using the ABO to solve these TSP cases were benchmarked against the results obtained by using other popular algorithms. The results obtained using the African Buffalo Optimization algorithm are very competitive. PMID:26880872

  19. Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems

    NASA Astrophysics Data System (ADS)

    Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao

    Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.

  20. Analyzing the many skills involved in solving complex physics problems

    NASA Astrophysics Data System (ADS)

    Adams, Wendy K.; Wieman, Carl E.

    2015-05-01

    We have empirically identified over 40 distinct sub-skills that affect a person's ability to solve complex problems in many different contexts. The identification of so many sub-skills explains why it has been so difficult to teach or assess problem solving as a single skill. The existence of these sub-skills is supported by several studies comparing a wide range of individuals' strengths and weaknesses in these sub-skills, their "problem solving fingerprint," while solving different types of problems including a classical mechanics problem, quantum mechanics problems, and a complex trip-planning problem with no physics. We see clear differences in the problem solving fingerprint of physics and engineering majors compared to the elementary education majors that we tested. The implications of these findings for guiding the teaching and assessing of problem solving in physics instruction are discussed.

  1. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

    ERIC Educational Resources Information Center

    Dufner, Hillrey A.; Alexander, Patricia A.

    The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

  2. Robust algorithms for solving stochastic partial differential equations

    SciTech Connect

    Werner, M.J.; Drummond, P.D.

    1997-04-01

    A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in X{sup 2} parametric waveguides. This example uses non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used will be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. 27 refs., 4 figs.

  3. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  4. Improved local linearization algorithm for solving the quaternion equations

    NASA Technical Reports Server (NTRS)

    Yen, K.; Cook, G.

    1980-01-01

    The objective of this paper is to develop a new and more accurate local linearization algorithm for numerically solving sets of linear time-varying differential equations. Of special interest is the application of this algorithm to the quaternion rate equations. The results are compared, both analytically and experimentally, with previous results using local linearization methods. The new algorithm requires approximately one-third more calculations per step than the previously developed local linearization algorithm; however, this disadvantage could be reduced by using parallel implementation. For some cases the new algorithm yields significant improvement in accuracy, even with an enlarged sampling interval. The reverse is true in other cases. The errors depend on the values of angular velocity, angular acceleration, and integration step size. One important result is that for the worst case the new algorithm can guarantee eigenvalues nearer the region of stability than can the previously developed algorithm.

  5. Decision making and problem solving with computer assistance

    NASA Technical Reports Server (NTRS)

    Kraiss, F.

    1980-01-01

    In modern guidance and control systems, the human as manager, supervisor, decision maker, problem solver and trouble shooter, often has to cope with a marginal mental workload. To improve this situation, computers should be used to reduce the operator from mental stress. This should not solely be done by increased automation, but by a reasonable sharing of tasks in a human-computer team, where the computer supports the human intelligence. Recent developments in this area are summarized. It is shown that interactive support of operator by intelligent computer is feasible during information evaluation, decision making and problem solving. The applied artificial intelligence algorithms comprehend pattern recognition and classification, adaptation and machine learning as well as dynamic and heuristic programming. Elementary examples are presented to explain basic principles.

  6. Individual differences: A third component in problem-solving instruction

    NASA Astrophysics Data System (ADS)

    Ronning, Royce R.; McCurdy, Donald; Ballinger, Ruth

    Present research in problem solving appears to be primarily concerned with problem-solving methods and with degree of knowledge acquisition. A brief argument is advanced that this conceptualization is incomplete because of failure to consider individual differences among problem solvers (other than in problem-solving methods and extent of knowledge). A viable theory of problem-solving instruction must take into account all three areas. Evidence for the argument is presented in the form of data on problem-solving success in junior high school students with extreme scores on Witkin's field independence-field dependence measure of cognitive style. Problem-solving protocols are examined as a second source of data. Field independent students significantly out-performed field dependent students on the problems. Examination of protocols revealed consistent performance patterns favoring field independent students.

  7. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge.

  8. Problem-solving test: Tryptophan operon mutants.

    PubMed

    Szeberényi, József

    2010-09-01

    Terms to be familiar with before you start to solve the test: tryptophan, operon, operator, repressor, inducer, corepressor, promoter, RNA polymerase, chromosome-polysome complex, regulatory gene, cis-acting element, trans-acting element, plasmid, transformation. PMID:21567855

  9. Deterministic algorithm with agglomerative heuristic for location problems

    NASA Astrophysics Data System (ADS)

    Kazakovtsev, L.; Stupina, A.

    2015-10-01

    Authors consider the clustering problem solved with the k-means method and p-median problem with various distance metrics. The p-median problem and the k-means problem as its special case are most popular models of the location theory. They are implemented for solving problems of clustering and many practically important logistic problems such as optimal factory or warehouse location, oil or gas wells, optimal drilling for oil offshore, steam generators in heavy oil fields. Authors propose new deterministic heuristic algorithm based on ideas of the Information Bottleneck Clustering and genetic algorithms with greedy heuristic. In this paper, results of running new algorithm on various data sets are given in comparison with known deterministic and stochastic methods. New algorithm is shown to be significantly faster than the Information Bottleneck Clustering method having analogous preciseness.

  10. Problem-Solving Therapy in the Elderly.

    PubMed

    Kiosses, Dimitris N; Alexopoulos, George S

    2014-03-01

    We systematically reviewed randomized clinical trials of problem-solving therapy (PST) in older adults. Our results indicate that PST led to greater reduction in depressive symptoms of late-life major depression than supportive therapy (ST) and reminiscence therapy. PST resulted in reductions in depression comparable with those of paroxetine and placebo in patients with minor depression and dysthymia, although paroxetine led to greater reductions than placebo. In home health care, PST was more effective than usual care in reducing symptoms of depression in undiagnosed patients. PST reduced disability more than ST in patients with major depression and executive dysfunction. Preliminary data suggest that a home-delivered adaptation of PST that includes environmental adaptations and caregiver involvement is efficacious in reducing disability in depressed patients with advanced cognitive impairment or early dementia. In patients with macular degeneration, PST led to improvement in vision-related disability comparable to that of ST, but PST led to greater improvement in measures of vision-related quality of life. Among stroke patients, PST participants were less likely to develop a major or minor depressive episode than those receiving placebo treatment, although the results were not sustained in a more conservative statistical analysis. Among patients with macular degeneration, PST participants had significantly lower 2-month incidence rates of major depression than usual care participants and were less likely to suffer persistent depression at 6 months. Finally, among stroke patients, PST participants were less likely to develop apathy than those receiving placebo treatment. PST also has been delivered via phone, Internet, and videophone, and there is evidence of feasibility and acceptability. Further, preliminary data indicate that PST delivered through the Internet resulted in a reduction in depression comparable with that of in-person PST in home-care patients. PST

  11. A Problem Solving Framework for Managing Poor Readers in Classrooms.

    ERIC Educational Resources Information Center

    Beck, Judith S.

    1988-01-01

    Points out that poor readers may exhibit behavioral, cognitive, and emotional problems. Offers a problem-solving framework for intervention in poor readers' nonacademic problems, and describes several possible types of intervention. (ARH)

  12. Building and Solving Odd-One-Out Classification Problems: A Systematic Approach

    ERIC Educational Resources Information Center

    Ruiz, Philippe E.

    2011-01-01

    Classification problems ("find the odd-one-out") are frequently used as tests of inductive reasoning to evaluate human or animal intelligence. This paper introduces a systematic method for building the set of all possible classification problems, followed by a simple algorithm for solving the problems of the R-ASCM, a psychometric test derived…

  13. The relationship between students' problem solving frames and epistemological beliefs

    NASA Astrophysics Data System (ADS)

    Wampler, Wendi N.

    Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. Matter and Interactions [M&I] is a curriculum that focuses on a restructuring of physics content knowledge and emphasizes a systematic approach to problem solving, called modeling, which involves the application physical principles to carefully defined systems of objects and interactions (Chabay and Sherwood, 2007a). Because the M&I approach to problem solving is different from many students' previous physics experience, efforts need to be made to attend to their epistemological beliefs and expectations about not only learning physics content knowledge, but problem solving as well. If a student frames solving physics problems as a `plug and chug' type activity, then they are going continue practicing this strategy. Thus, it is important to address students' epistemological beliefs and monitor how they frame the activity of problem solving within the M&I course. This study aims to investigate how students frame problem solving within the context of a large scale implementation of the M&I curriculum, and how, if at all, those frames shift through the semester. By investigating how students frame the act of problem solving in the M&I context, I was able to examine the connection between student beliefs and expectations about problem solving in physics and the skills and strategies used while solving problems in class. To accomplish these goals, I recruited student volunteers from Purdue's introductory, calculus-based physics course and assessed their problem solving approach and espoused epistemological beliefs over the course of a semester. I obtained data through video recordings of the students engaged in small group problem solving during recitation activities

  14. Formulating and Solving Problems in Computational Chemistry.

    ERIC Educational Resources Information Center

    Norris, A. C.

    1980-01-01

    Considered are the main elements of computational chemistry problems and how these elements can be used to formulate the problems mathematically. Techniques that are useful in devising an appropriate solution are also considered. (Author/TG)

  15. Facilitating Students' Problem Solving across Multiple Representations in Introductory Mechanics

    NASA Astrophysics Data System (ADS)

    Nguyen, Dong-Hai; Gire, Elizabeth; Rebello, N. Sanjay

    2010-10-01

    Solving problems presented in multiple representations is an important skill for future physicists and engineers. However, such a task is not easy for most students taking introductory physics courses. We conducted teaching/learning interviews with 20 students in a first-semester calculus-based physics course on several topics in introductory mechanics. These interviews helped identify the common difficulties students encountered when solving physics problems posed in multiple representations as well as the hints that help students overcome those difficulties. We found that most representational difficulties arise due to the lack of students' ability to associate physics knowledge with corresponding mathematical knowledge. Based on those findings, we developed, tested and refined a set of problem-solving exercises to help students learn to solve problems in graphical and equational representations. We present our findings on students' common difficulties with graphical and equational representations, the problem-solving exercises and their impact on students' problem solving abilities.

  16. Mathematical Profiles and Problem Solving Abilities of Mathematically Promising Students

    ERIC Educational Resources Information Center

    Budak, Ibrahim

    2012-01-01

    Mathematically promising students are defined as those who have the potential to become the leaders and problem solvers of the future. The purpose of this research is to reveal what problem solving abilities mathematically promising students show in solving non-routine problems and type of profiles they present in the classroom and during problem…

  17. Problem-Solving Support for English Language Learners

    ERIC Educational Resources Information Center

    Wiest, Lynda R.

    2008-01-01

    Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…

  18. From Example Study to Problem Solving: Smooth Transitions Help Learning.

    ERIC Educational Resources Information Center

    Renkl, Alexander; Atkinson, Robert K.; Maier, Uwe H.; Staley, Richard

    2002-01-01

    Proposed a successive integration of problem-solving elements into example study until learners solved problems on their own and tested the effectiveness of this "fading" method against a traditional method of using example-problem pairs. Results with 20 ninth graders in Germany, 54 U.S. college students, and 45 U.S. college students show that the…

  19. A Computer Based Problem Solving Environment in Chemistry

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Karakirik, Erol

    2005-01-01

    The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves students' problem solving skills on mole concept. The system has three distinct modes that: (1) find step by step solutions to the word problems on the mole concept; (2) enable students to solve word problems on their own by…

  20. A Computer Based Problem Solving Environment in Chemistry

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Karakirik, Erol

    2005-01-01

    The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves the students' problems solving skills on mole concept. The system has three distinct modes that: i) finds step by step solutions to the word problems on the mole concept ii) enable students' to solve word problems on their own…

  1. Solving the Sailors and the Coconuts Problem via Diagrammatic Approach

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2010-01-01

    In this article, we discuss how to use a diagrammatic approach to solve the classic sailors and the coconuts problem. It provides us an insight on how to tackle this type of problem in a novel and intuitive way. This problem-solving approach will be found useful to mathematics teachers or lecturers involved in teaching elementary number theory,…

  2. Solving Information-Based Problems: Evaluating Sources and Information

    ERIC Educational Resources Information Center

    Brand-Gruwel, Saskia; Stadtler, Marc

    2011-01-01

    The focus of this special section is on the processes involved when solving information-based problems. Solving these problems requires from people that they are able to define the information problem, search and select usable and reliable sources and information and synthesise information into a coherent body of knowledge. An important aspect…

  3. Affective Issues in Mathematical Problem Solving: Some Theoretical Considerations.

    ERIC Educational Resources Information Center

    McLeod, Douglas B.

    1988-01-01

    Mandler's theory of emotion is suggested as a framework for investigating affective issues in problem solving. Several dimensions of the emotional states of problem solvers are specified. Implications of this framework for research on affective issues in problem solving are also discussed. (PK)

  4. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    ERIC Educational Resources Information Center

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  5. A Descriptive Study of Cooperative Problem Solving Introductory Physics Labs

    ERIC Educational Resources Information Center

    Knutson, Paul Aanond

    2011-01-01

    The purpose of this study was to determine the ways in which cooperative problem solving in physics instructional laboratories influenced the students' ability to provide qualitative responses to problems. The literature shows that problem solving involves both qualitative and quantitative skills. Qualitative skills are important because those…

  6. Complex Mathematical Problem Solving by Individuals and Dyads.

    ERIC Educational Resources Information Center

    Vye, Nancy J.; Goldman, Susan R.; Voss, James F.; Hmelo, Cindy; Williams, Susan; Cognition and Technology Group at Vanderbilt University

    1997-01-01

    Describes two studies of mathematical problem solving using an episode from "The Adventures of Jasper Woodbury," a set of curriculum materials that afford complex problem-solving opportunities. Discussion focuses on characteristics of problems that make solutions difficult, kinds of reasoning that dyadic interactions support, and considerations of…

  7. A Tool for Helping Veterinary Students Learn Diagnostic Problem Solving.

    ERIC Educational Resources Information Center

    Danielson, Jared A.; Bender, Holly S.; Mills, Eric M.; Vermeer, Pamela J.; Lockee, Barbara B.

    2003-01-01

    Describes the result of implementing the Problem List Generator, a computer-based tool designed to help clinical pathology veterinary students learn diagnostic problem solving. Findings suggest that student problem solving ability improved, because students identified all relevant data before providing a solution. (MES)

  8. Gender Differences in Chemical Problem Solving amongst Nigerian Students.

    ERIC Educational Resources Information Center

    Adigwe, J. C.

    1992-01-01

    This study investigated sex differences in chemical problem solving among Nigerian secondary school chemistry students (100 males and 100 females). Male students excelled over the female students in the following problem-solving processes: (1) problem understanding; (2) construction and execution of solution plans; (3) exhibition of structural…

  9. Problem-Solving during Shared Reading at Kindergarten

    ERIC Educational Resources Information Center

    Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees

    2015-01-01

    This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

  10. Problem-Solving Test: Southwestern Blotting

    ERIC Educational Resources Information Center

    Szeberényi, József

    2014-01-01

    Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA,…

  11. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  12. Cognitive Science: Problem Solving And Learning For Physics Education

    NASA Astrophysics Data System (ADS)

    Ross, Brian H.

    2007-11-01

    Cognitive Science has focused on general principles of problem solving and learning that might be relevant for physics education research. This paper examines three selected issues that have relevance for the difficulty of transfer in problem solving domains: specialized systems of memory and reasoning, the importance of content in thinking, and a characterization of memory retrieval in problem solving. In addition, references to these issues are provided to allow the interested researcher entries to the literatures.

  13. Understanding the Problem. Problem Solving and Communication Activity Series. The Math Forum: Problems of the Week

    ERIC Educational Resources Information Center

    Math Forum @ Drexel, 2009

    2009-01-01

    Different techniques for understanding a problem can lead to ideas for never-used-before solutions. Good problem-solvers use a problem-solving strategy and may come back to it frequently while they are working on the problem to refine their strategy, see if they can find better solutions, or find other questions. Writing is an integral part of…

  14. Innovation and problem solving: a review of common mechanisms.

    PubMed

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild.

  15. Solving the structural inverse gravity problem by the modified gradient methods

    NASA Astrophysics Data System (ADS)

    Martyshko, P. S.; Akimova, E. N.; Misilov, V. E.

    2016-09-01

    New methods for solving the three-dimensional inverse gravity problem in the class of contact surfaces are described. Based on the approach previously suggested by the authors, new algorithms are developed. Application of these algorithms significantly reduces the number of the iterations and computing time compared to the previous ones. The algorithms have been numerically implemented on the multicore processor. The example of solving the structural inverse gravity problem for a model of four-layer medium (with the use of gravity field measurements) is constructed.

  16. The role of conceptual understanding in children's addition problem solving.

    PubMed

    Canobi, K H; Reeve, R A; Pattison, P E

    1998-09-01

    The study examined the relationship between children's conceptual understanding and addition problem-solving procedures. Forty-eight 6- to 8-year-olds solved addition problems and, in a 2nd task, were prompted to judge whether a puppet could use the arithmetic properties of one problem to solve the next problem. Relational properties between consecutive problems were manipulated to reflect aspects of additive composition, commutativity, and associativity principles. Conceptual understanding was assessed by the ability to spontaneously use such relational properties in problem solving (Task 1) and to recognize and explain them when prompted (Task 2). Results revealed that conceptual understanding was related to using order-indifferent, decomposition, and retrieval strategies and speed and accuracy in solving unrelated problems. The importance of conceptual understanding for addition development is discussed.

  17. Identifying, analysing and solving problems in practice.

    PubMed

    Hewitt-Taylor, Jaqui

    When a problem is identified in practice, it is important to clarify exactly what it is and establish the cause before seeking a solution. This solution-seeking process should include input from those directly involved in the problematic situation, to enable individuals to contribute their perspective, appreciate why any change in practice is necessary and what will be achieved by the change. This article describes some approaches to identifying and analysing problems in practice so that effective solutions can be devised. It includes a case study and examples of how the Five Whys analysis, fishbone diagram, problem tree analysis, and Seven-S Model can be used to analyse a problem.

  18. Human opinion dynamics: an inspiration to solve complex optimization problems.

    PubMed

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P; Kapur, Pawan

    2013-01-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making. PMID:24141795

  19. Human opinion dynamics: An inspiration to solve complex optimization problems

    PubMed Central

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan

    2013-01-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making. PMID:24141795

  20. Human opinion dynamics: An inspiration to solve complex optimization problems

    NASA Astrophysics Data System (ADS)

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan

    2013-10-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making.

  1. Additional approaches to solving the phase problem in optics.

    PubMed

    Zenkova, C Yu; Gorsky, M P; Ryabiy, P A; Angelskaya, A O

    2016-04-20

    The paper presents principal approaches to diagnosing the structure-forming skeleton of a complex optical field. Analysis of optical field singularity algorithms, depending on intensity discretization and image resolution, has been carried out. An optimal approach is chosen, which allows us to get much closer to the solution of the phase problem of localization speckle-field special points. The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of the intensity of a speckle field is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a position change of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval and introduce an additional algorithm for solving the phase problem for random 2D intensity distributions. PMID:27140136

  2. How Indirect Supportive Digital Help during and after Solving Physics Problems Can Improve Problem-Solving Abilities

    ERIC Educational Resources Information Center

    Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.

    2009-01-01

    This study investigates the effectiveness of computer-delivered hints in relation to problem-solving abilities in two alternative indirect instruction schemes. In one instruction scheme, hints are available to students immediately after they are given a new problem to solve as well as after they have completed the problem. In the other scheme,…

  3. Problem Solved: How To Coach Cognition.

    ERIC Educational Resources Information Center

    Krynock, Karoline; Robb, Louise

    1999-01-01

    When faced with real-world problems, students devise accurate, logical, and creative solutions using skills connecting to different subject areas. Students are intrigued by assignments involving preservation of species and design of environmentally friendly products and transit systems. Problem-based learning depends on coaching, modeling, and…

  4. A Decision Support System for Solving Multiple Criteria Optimization Problems

    ERIC Educational Resources Information Center

    Filatovas, Ernestas; Kurasova, Olga

    2011-01-01

    In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…

  5. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  6. Artificial immune algorithm for multi-depot vehicle scheduling problems

    NASA Astrophysics Data System (ADS)

    Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling

    2008-10-01

    In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.

  7. Digit Delight: Problem-solving Activities Using 0 through 9.

    ERIC Educational Resources Information Center

    Balka, Don S.

    1988-01-01

    Several problem-solving activities involving only 0-9 to be used with sets of ceramic tiles are presented. Finding specified sums, differences, or products is the object of most of the problems. (MNS)

  8. Identifying, analysing and solving problems in practice.

    PubMed

    Hewitt-Taylor, Jaqui

    When a problem is identified in practice, it is important to clarify exactly what it is and establish the cause before seeking a solution. This solution-seeking process should include input from those directly involved in the problematic situation, to enable individuals to contribute their perspective, appreciate why any change in practice is necessary and what will be achieved by the change. This article describes some approaches to identifying and analysing problems in practice so that effective solutions can be devised. It includes a case study and examples of how the Five Whys analysis, fishbone diagram, problem tree analysis, and Seven-S Model can be used to analyse a problem. PMID:22848969

  9. Aquarium Problems: How To Solve Them

    ERIC Educational Resources Information Center

    DeFilippo, Shirley

    1975-01-01

    Presents some solutions to problems commonly encountered in maintaining a classroom aquarium: pH control, overfeeding, overcrowding of tank populations, incorrect temperature settings, faulty introduction of fish into the tank, and the buildup of too many nitrogenous wastes. (PB)

  10. An emergency medicine clinical problem-solving system.

    PubMed

    Papa, F J

    1985-07-01

    The availability of complete, accurate, and current medical information is an important aspect of clinical problem solving. As the body of medical information grows and increasingly is reformatted into problem-oriented references, information processing by physicians will grow in importance. The most popular clinical problem-solving method, the Weed problem-oriented medical record, primarily records information; it does not provide an explicit information-processing model. An emergency medicine clinical problem-solving system containing information recording and processing methodologies is presented. The information processing methodology of this system is highlighted.

  11. Trends in problem-solving research - Twelve recently described tasks.

    NASA Technical Reports Server (NTRS)

    Coates, G. D.; Alluisi, E. A.; Morgan, B. B., Jr.

    1971-01-01

    Review of descriptions of the 12 problem-solving tasks developed since the last review (Ray, 1955) of this topic, indicating that the newer tasks are more sophisticated in design and provide for better experimental control than those used prior to 1953. Validity, reliability, sensitivity, trainability, problem structure, and problem difficulty are discussed as criteria for the selection of tasks to be used in studies of skilled problem-solving performance.

  12. A fuzzy record-to-record travel algorithm for solving rough set attribute reduction

    NASA Astrophysics Data System (ADS)

    Mafarja, Majdi; Abdullah, Salwani

    2015-02-01

    Attribute reduction can be defined as the process of determining a minimal subset of attributes from an original set of attributes. This paper proposes a new attribute reduction method that is based on a record-to-record travel algorithm for solving rough set attribute reduction problems. This algorithm has a solitary parameter called the DEVIATION, which plays a pivotal role in controlling the acceptance of the worse solutions, after it becomes pre-tuned. In this paper, we focus on a fuzzy-based record-to-record travel algorithm for attribute reduction (FuzzyRRTAR). This algorithm employs an intelligent fuzzy logic controller mechanism to control the value of DEVIATION, which is dynamically changed throughout the search process. The proposed method was tested on standard benchmark data sets. The results show that FuzzyRRTAR is efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

  13. The Effects of Service Learning on Student Problem Solving

    ERIC Educational Resources Information Center

    Guo, Fangfang; Yao, Meilin; Wang, Cong; Yan, Wenfan; Zong, Xiaoli

    2016-01-01

    Previous research indicated that service learning (SL) is an effective pedagogy to improve students' problem-solving ability and increase their classroom engagement. However, studies on SL are rare in China. This study examined the effects of SL on the problem solving of Chinese undergraduate students as well as the mechanism through which it…

  14. Solving L-L Extraction Problems with Excel Spreadsheet

    ERIC Educational Resources Information Center

    Teppaitoon, Wittaya

    2016-01-01

    This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

  15. Emerging Consensus in Novice Physics Problem Solving Research.

    ERIC Educational Resources Information Center

    Roth, Christopher; Chaiklin, Seth

    During the summer of 1986 a conference funded by the National Science Foundation (NSF) was organized to assess the current state of cognitive research on the psychology of physics problem solving, and to examine the needs of physics instructors and instructional designers that must be addressed by a psychological theory of physics problem solving.…

  16. Extricating Justification Scheme Theory in Middle School Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Matteson, Shirley; Capraro, Mary Margaret; Capraro, Robert M.; Lincoln, Yvonna S.

    2012-01-01

    Twenty middle grades students were interviewed to gain insights into their reasoning about problem-solving strategies using a Problem Solving Justification Scheme as our theoretical lens and the basis for our analysis. The scheme was modified from the work of Harel and Sowder (1998) making it more broadly applicable and accounting for research…

  17. Selection and Use of Propositional Knowledge in Statistical Problem Solving.

    ERIC Educational Resources Information Center

    Broers, Nick J.

    2002-01-01

    Trained 10 undergraduate psychology students to have the knowledge needed to solve 5 multiple choice problems on descriptive regression analysis and asked them to think aloud while attempting to solve the problems. Analysis of responses shows that failure to select relevant information in the text, failure to retrieve relevant propositional…

  18. Measuring Problem Solving Skills in Plants vs. Zombies 2

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin

    2015-01-01

    We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…

  19. Problem Solving in Social Studies: Concepts and Critiques.

    ERIC Educational Resources Information Center

    Van Sickle, Ronald L.; Hoge, John D.

    Recent developments in the field of cognitive psychology, particularly in the area of information processing, have shed light on the way people think in order to make decisions and solve problems. In addition, cooperative learning research has provided evidence of the effectiveness of cooperatively structured group work aimed at problem solving.…

  20. A Longitudinal Study of Database-Assisted Problem Solving.

    ERIC Educational Resources Information Center

    Wildemuth, Barbara M.; Friedman, Charles P.; Keyes, John; Downs, Stephen M.

    2000-01-01

    Examines the effects of database assistance on clinical problem solving across three cohorts of medical students and two database interfaces. Discusses the relationship between personal domain knowledge and problem solving, personal domain knowledge and database searching, and comparisons of different interface styles in information retrieval…

  1. Peer Instruction Enhanced Meaningful Learning: Ability to Solve Novel Problems

    ERIC Educational Resources Information Center

    Cortright, Ronald N.; Collins, Heidi L.; DiCarlo, Stephen E.

    2005-01-01

    Students must be able to interpret, relate, and incorporate new information with existing knowledge and apply the new information to solve novel problems. Peer instruction is a cooperative learning technique that promotes critical thinking, problem solving, and decision-making skills. Therefore, we tested the hypothesis that peer instruction…

  2. Facilitating Flexible Problem Solving: A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    Kalyuga, Slava; Renkl, Alexander; Paas, Fred

    2010-01-01

    The development of flexible, transferable problem-solving skills is an important aim of contemporary educational systems. Since processing limitations of our mind represent a major factor influencing any meaningful learning, the acquisition of flexible problem-solving skills needs to be based on known characteristics of our cognitive architecture…

  3. Computer-Based Inquiry into Scientific Problem Solving.

    ERIC Educational Resources Information Center

    Berkowitz, Melissa S.; Szabo, Michael

    1979-01-01

    Problem solving performance of individuals was compared with that of dyads at three levels of mental ability using a computer-based inquiry into the riddle of the frozen Wooly Mammoth. Results indicated significant interactions between grouping and mental ability for certain problem solving internal measures. (RAO)

  4. Schema Knowledge for Solving Arithmetic Story Problems: Some Affective Components.

    ERIC Educational Resources Information Center

    Marshall, Sandra P.

    This report discusses the role of affect in cognitive processing. The importance of affect in processing mathematical information is described in the context of solving arithmetic story problems. Some ideas are offered about the way affective responses to mathematical problem solving situations influence the development, maintenance, and retrieval…

  5. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    PubMed

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions.

  6. Learning from Examples versus Verbal Directions in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Fincham, Jon M.; Anderson, John R.

    2015-01-01

    This event-related fMRI study investigated the differences between learning from examples and learning from verbal directions in mathematical problem solving and how these instruction types affect the activity of relevant brain regions during instruction and solution periods within problem-solving trials. We identified distinct neural signatures…

  7. Best Known Problem Solving Strategies in "High-Stakes" Assessments

    ERIC Educational Resources Information Center

    Hong, Dae S.

    2011-01-01

    In its mathematics standards, National Council of Teachers of Mathematics (NCTM) states that problem solving is an integral part of all mathematics learning and exposure to problem solving strategies should be embedded across the curriculum. Furthermore, by high school, students should be able to use, decide and invent a wide range of strategies.…

  8. A Markov Model Analysis of Problem-Solving Progress.

    ERIC Educational Resources Information Center

    Vendlinski, Terry

    This study used a computerized simulation and problem-solving tool along with artificial neural networks (ANN) as pattern recognizers to identify the common types of strategies high school and college undergraduate chemistry students would use to solve qualitative chemistry problems. Participants were 134 high school chemistry students who used…

  9. Students THINK: A Framework for Improving Problem Solving

    ERIC Educational Resources Information Center

    Thomas, Kelli R.

    2006-01-01

    This article presents the results of research about students' and teachers' use of an interaction framework (THINK) to guide group communication about problem solving. Students who used the THINK framework demonstrated greater gains in problem-solving achievement than students who did not use the framework.

  10. Problem Solving, Reasoning, and Analytical Thinking in a Classroom Environment

    ERIC Educational Resources Information Center

    Robbins, Joanne K.

    2011-01-01

    Problem solving, reasoning, and analytical thinking are defined and described as teachable repertoires. This paper describes work performed at a school serving special needs children, Morningside Academy, that has resulted in specific procedures developed over the past 15 years. These procedures include modifying "Think Aloud Pair Problem Solving"…

  11. "Opportunities in Work Clothes": Online Problem-Solving Project Structures.

    ERIC Educational Resources Information Center

    Harris, Judi

    1994-01-01

    Provides activity structures for and gives examples of problem-solving projects to be used with educational telecomputing. Highlights include information searches, electronic process writing, sequential creations, parallel problem solving, simulations, social action projects, and instructions for accessing information about these and other…

  12. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  13. A Case Study of Dynamic Visualization and Problem Solving

    ERIC Educational Resources Information Center

    Lavy, Ilana

    2007-01-01

    This paper reports an example of a situation in which university students had to solve geometrical problems presented to them dynamically using the interactive computerized environment of the "MicroWorlds Project Builder". In the process of the problem solving, the students used ten different solution strategies. The unsuccessful strategies were…

  14. Measuring Problem Solving with Technology: A Demonstration Study for NAEP

    ERIC Educational Resources Information Center

    Bennett, Randy Elliot; Persky, Hilary; Weiss, Andy; Jenkins, Frank

    2010-01-01

    This paper describes a study intended to demonstrate how an emerging skill, problem solving with technology, might be measured in the National Assessment of Educational Progress (NAEP). Two computer-delivered assessment scenarios were designed, one on solving science-related problems through electronic information search and the other on solving…

  15. Problem Solving and Collaboration Using Mobile Serious Games

    ERIC Educational Resources Information Center

    Sanchez, Jaime; Olivares, Ruby

    2011-01-01

    This paper presents the results obtained with the implementation of a series of learning activities based on Mobile Serious Games (MSGs) for the development of problem solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students in order to solve problems collaboratively. A…

  16. Logo Programming, Problem Solving, and Knowledge-Based Instruction.

    ERIC Educational Resources Information Center

    Swan, Karen; Black, John B.

    The research reported in this paper was designed to investigate the hypothesis that computer programming may support the teaching and learning of problem solving, but that to do so, problem solving must be explicitly taught. Three studies involved students in several grades: 4th, 6th, 8th, 11th, and 12th. Findings collectively show that five…

  17. A New Approach: Computer-Assisted Problem-Solving Systems

    ERIC Educational Resources Information Center

    Gok, Tolga

    2010-01-01

    Computer-assisted problem solving systems are rapidly growing in educational use and with the advent of the Internet. These systems allow students to do their homework and solve problems online with the help of programs like Blackboard, WebAssign and LON-CAPA program etc. There are benefits and drawbacks of these systems. In this study, the…

  18. Problem Solving and the Development of Expertise in Management.

    ERIC Educational Resources Information Center

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  19. Students' Use of Technological Features while Solving a Mathematics Problem

    ERIC Educational Resources Information Center

    Lee, Hollylynne Stohl; Hollebrands, Karen F.

    2006-01-01

    The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…

  20. Improving Students' Ability To Problem Solve through Social Skills Instruction.

    ERIC Educational Resources Information Center

    Hopp, Mary Ann; Horn, Cheryl L.; McGraw, Kelleen; Meyer, Jenny

    When elementary and middle level students lack effective problem-solving skills, they may make poor behavior choices in social conflicts, contributing to a negative learning and instructional environment. This action research project evaluated the impact of using social skills instruction to improve students' ability to solve problems related to…