Science.gov

Sample records for algorithms artificial neural

  1. Classifying epilepsy diseases using artificial neural networks and genetic algorithm.

    PubMed

    Koçer, Sabri; Canal, M Rahmi

    2011-08-01

    In this study, FFT analysis is applied to the EEG signals of the normal and patient subjects and the obtained FFT coefficients are used as inputs in Artificial Neural Network (ANN). The differences shown by the non-stationary random signals such as EEG signals in cases of health and sickness (epilepsy) were evaluated and tried to be analyzed under computer-supported conditions by using artificial neural networks. Multi-Layer Perceptron (MLP) architecture is used Levenberg-Marquardt (LM), Quickprop (QP), Delta-bar delta (DBD), Momentum and Conjugate gradient (CG) learning algorithms, and the best performance was tried to be attained by ensuring the optimization with the use of genetic algorithms of the weights, learning rates, neuron numbers of hidden layer in the training process. This study shows that the artificial neural network increases the classification performance using genetic algorithm.

  2. A TLD dose algorithm using artificial neural networks

    SciTech Connect

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-12-31

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters.

  3. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

    PubMed

    Garro, Beatriz A; Vázquez, Roberto A

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132

  4. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms

    PubMed Central

    Garro, Beatriz A.; Vázquez, Roberto A.

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132

  5. Quantitative analysis of cefalexin based on artificial neural networks combined with modified genetic algorithm using short near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Huan, Yanfu; Feng, Guodong; Wang, Bin; Ren, Yulin; Fei, Qiang

    2013-05-01

    In this paper, a novel chemometric method was developed for rapid, accurate, and quantitative analysis of cefalexin in samples. The experiments were carried out by using the short near-infrared spectroscopy coupled with artificial neural networks. In order to enhancing the predictive ability of artificial neural networks model, a modified genetic algorithm was used to select fixed number of wavelength.

  6. Grinding precision forecasting in optical aspheric grinding using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Guo, Yinbiao; Yang, Qingqing; Han, Chunguang

    2010-10-01

    A new approach based on an artificial neural network (ANN) was presented for the prediction of machining precision of optical aspheric grinding. The ANN model is based on Globally Convergent Adaptive Quick Back Propagation algorithm (GCAOBP). A genetic algorithm (GA) was then applied to the trained ANN model to predict the gridding precision. The integrated GCAOBP-GA algorithm was successful in predicting the Root Mean Square of profile error (RMS) of optical aspheric workpiece in parallel grinding method using machining parameters. The results of experiments have shown that RMS of machined workpiece in parallel grinding can be predicted effectively through this approach.

  7. Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Ozkan, Coskun; Akay, Bahriye

    2012-03-01

    SummaryEstimation of suspended sediment concentration carried by a river is very important for many water resources projects. The accuracy of artificial neural networks (ANN) with artificial bee colony (ABC) algorithm is investigated in this paper for modeling discharge-suspended sediment relationship. The ANN-ABC was compared with those of the neural differential evolution, adaptive neuro-fuzzy, neural networks and rating curve models. The daily stream flow and suspended sediment concentration data from two stations, Rio Valenciano Station and Quebrada Blanca Station, were used as case studies. For evaluating the ability of the models, mean square error and determination coefficient criteria were used. Comparison results showed that the ANN-ABC was able to produce better results than the neural differential evolution, neuro-fuzzy, neural networks and rating curve models. The logarithm transformed data were also used as input to the proposed ANN-ABC models. It was found that the logarithm transform significantly increased accuracy of the models in suspended sediment estimation.

  8. A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.

    PubMed

    Andrade, Andre; Costa, Marcelo; Paolucci, Leopoldo; Braga, Antônio; Pires, Flavio; Ugrinowitsch, Herbert; Menzel, Hans-Joachim

    2015-01-01

    The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components of the ground reaction force which are used as input information for the neural networks in gender-specific gait classification. The classification performance between MOBJ-LASSO (97.4%) and multi-objective algorithm (MOBJ) (97.1%) is similar, but the MOBJ-LASSO algorithm achieved more improved results than the MOBJ because it is able to eliminate the inputs and automatically select the parameters of the neural network. Thus, it is an effective tool for data mining using neural networks. From 20 inputs used for training, MOBJ-LASSO selected the first and second peaks of the vertical force and the force peak in the antero-posterior direction as the variables that classify the gait patterns of the different genders.

  9. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    SciTech Connect

    Rogers, L.L.

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.

  10. Improvement for detection of microcalcifications through clustering algorithms and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Quintanilla-Domínguez, Joel; Ojeda-Magaña, Benjamín; Marcano-Cedeño, Alexis; Cortina-Januchs, María G.; Vega-Corona, Antonio; Andina, Diego

    2011-12-01

    A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detection.

  11. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  12. Surface roughness optimization of polyamide-6/nanoclay nanocomposites using artificial neural network: genetic algorithm approach.

    PubMed

    Moghri, Mehdi; Madic, Milos; Omidi, Mostafa; Farahnakian, Masoud

    2014-01-01

    During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite. PMID:24578636

  13. Surface Roughness Optimization of Polyamide-6/Nanoclay Nanocomposites Using Artificial Neural Network: Genetic Algorithm Approach

    PubMed Central

    Moghri, Mehdi; Omidi, Mostafa; Farahnakian, Masoud

    2014-01-01

    During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite. PMID:24578636

  14. Production of Engineered Fabrics Using Artificial Neural Network-Genetic Algorithm Hybrid Model

    NASA Astrophysics Data System (ADS)

    Mitra, Ashis; Majumdar, Prabal Kumar; Banerjee, Debamalya

    2015-10-01

    The process of fabric engineering which is generally practised in most of the textile mills is very complicated, repetitive, tedious and time consuming. To eliminate this trial and error approach, a new approach of fabric engineering has been attempted in this work. Data sets of construction parameters [comprising of ends per inch, picks per inch, warp count and weft count] and three fabric properties (namely drape coefficient, air permeability and thermal resistance) of 25 handloom cotton fabrics have been used. The weights and biases of three artificial neural network (ANN) models developed for the prediction of drape coefficient, air permeability and thermal resistance were used to formulate the fitness or objective function and constraints of the optimization problem. The optimization problem was solved using genetic algorithm (GA). In both the fabrics which were attempted for engineering, the target and simulated fabric properties were very close. The GA was able to search the optimum set of fabric construction parameters with reasonably good accuracy except in case of EPI. However, the overall result is encouraging and can be improved further by using larger data sets of handloom fabrics by hybrid ANN-GA model.

  15. Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant.

    PubMed

    Sivapathasekaran, C; Mukherjee, Soumen; Ray, Arja; Gupta, Ashish; Sen, Ramkrishna

    2010-04-01

    A nonlinear model describing the relationship between the biosurfactant concentration as a process output and the critical medium components as the independent variables was developed by artificial neural network modeling. The model was optimized for the maximum biosurfactant production by using genetic algorithm. Based on a single-factor-at-a-time optimization strategy, the critical medium components were found to be glucose, urea, SrCl(2) and MgSO(4). The experimental results obtained from a statistical experimental design were used for the modeling and optimization by linking an artificial neural network (ANN) model with genetic algorithm (GA) in MATLAB. Using the optimized concentration of critical elements, the biosurfactant yield showed close agreement with the model prediction. An enhancement in biosurfactant production by approximately 70% was achieved by this optimization procedure. PMID:19914826

  16. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    SciTech Connect

    Rogers, L.L.

    1992-01-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the trained network searches through realizations or patterns of pumping selected by the GA, predicting the outcome. This approach has advantages of parallel processing of the groundwater simulations and the ability to [open quotes]recycle[close quotes] or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models. The ANN technology, inspired by neurobiological theories of massive interconnection and parallelism, has been applied to a variety of optimization problems. In the ANN groundwater management approach presented here, the behavior of complex groundwater scenarios with spatially-variable transport parameters and multiple contaminant plumes are simulated with 2-D flow and transport codes. An ANN is trained upon a set of examples developed from groundwater simulations. The input of the ANN characterizes the different realizations of pumping. The output characterizes the objectives and constraints of the optimization, such as whether regulatory goals have been met, value of cost functions or cleanup time, and mass of contaminant removal. The supervised learning algorithm of backpropagation is used to train the network. The conjugate gradient method and weight-elimination procedures are used to speed convergence and improve performance, respectively. Then a search is made through possible pumping realizations to find optimal realizations.

  17. PM(10) emission forecasting using artificial neural networks and genetic algorithm input variable optimization.

    PubMed

    Antanasijević, Davor Z; Pocajt, Viktor V; Povrenović, Dragan S; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A

    2013-01-15

    This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM(10) emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs. The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting. The model was trained and validated with the data for 26 EU countries for the period from 1999 to 2006. PM(10) emission data, collected through the Convention on Long-range Transboundary Air Pollution - CLRTAP and the EMEP Programme or as emission estimations by the Regional Air Pollution Information and Simulation (RAINS) model, were obtained from Eurostat. The ANN model has shown very good performance and demonstrated that the forecast of PM(10) emission up to two years can be made successfully and accurately. The mean absolute error for two-year PM(10) emission prediction was only 10%, which is more than three times better than the predictions obtained from the conventional multi-linear regression and principal component regression models that were trained and tested using the same datasets and input variables.

  18. A novel user classification method for femtocell network by using affinity propagation algorithm and artificial neural network.

    PubMed

    Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214

  19. Optimization of the operational parameters in a fast axial flow CW CO 2 laser using artificial neural networks and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Adineh, V. R.; Aghanajafi, C.; Dehghan, G. H.; Jelvani, S.

    2008-11-01

    This paper presents an artificial intelligence approach for optimization of the operational parameters such as gas pressure ratio and discharge current in a fast-axial-flow CW CO 2 laser by coupling artificial neural networks and genetic algorithm. First, a series of experiments were used as the learning data for artificial neural networks. The best-trained network was connected to genetic algorithm as a fitness function to find the optimum parameters. After the optimization, the calculated laser power increases by 33% and the measured value increases by 21% in an experiment as compared to a non-optimized case.

  20. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-11-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  1. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-01-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  2. A Real-Time and Closed-Loop Control Algorithm for Cascaded Multilevel Inverter Based on Artificial Neural Network

    PubMed Central

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness. PMID:24772025

  3. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness. PMID:24772025

  4. Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm

    PubMed Central

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466

  5. Dynamics of surface runoff and its influence on the water quality using competitive algorithms in artificial neural networks.

    PubMed

    Kim, Min-Young; Kim, Min-Kyeong

    2007-07-01

    This study was aimed at developing a modeling technique to accurately describe the hydrological interaction with non-point pollutants using Artificial Neural Networks (ANNs). Rainfall, surface discharge water, and nutrient concentrations (total nitrogen and total phosphorus) were monitored and used for ANN computation. A comparison study was conducted for two well-known algorithms in ANNs, Modular Neural Network (MNN) and Generalized Regression Neural Network (GRNN), to find a good modeling tool for the best management of the nutrients. The correlation coefficients (R) for the resulting predictions from the networks versus measured values were generally in the range of 0.70 to 0.75 in surface discharge forecasting, and 0.49 to 0.77 in nutrient predictions. Overall, MNN showed better simulation results to describe the water and nutrient mass dynamics. This study also discussed the issues of network optimization and computational efficiency. The practical implication in this study showed that the ANN technique performs well in predicting the rainfall-surface discharge process, and has relatively acceptable predictions in water quality forecasting.

  6. Exploring the Role of Genetic Algorithms and Artificial Neural Networks for Interpolation of Elevation in Geoinformation Models

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadjadi, S. Y.; Sadeghian, S.

    2013-09-01

    One of the most significant tools to study many engineering projects is three-dimensional modelling of the Earth that has many applications in the Geospatial Information System (GIS), e.g. creating Digital Train Modelling (DTM). DTM has numerous applications in the fields of sciences, engineering, design and various project administrations. One of the most significant events in DTM technique is the interpolation of elevation to create a continuous surface. There are several methods for interpolation, which have shown many results due to the environmental conditions and input data. The usual methods of interpolation used in this study along with Genetic Algorithms (GA) have been optimised and consisting of polynomials and the Inverse Distance Weighting (IDW) method. In this paper, the Artificial Intelligent (AI) techniques such as GA and Neural Networks (NN) are used on the samples to optimise the interpolation methods and production of Digital Elevation Model (DEM). The aim of entire interpolation methods is to evaluate the accuracy of interpolation methods. Universal interpolation occurs in the entire neighbouring regions can be suggested for larger regions, which can be divided into smaller regions. The results obtained from applying GA and ANN individually, will be compared with the typical method of interpolation for creation of elevations. The resulting had performed that AI methods have a high potential in the interpolation of elevations. Using artificial networks algorithms for the interpolation and optimisation based on the IDW method with GA could be estimated the high precise elevations.

  7. Performing target specific band reduction using artificial neural networks and assessment of its efficacy using various target detection algorithms

    NASA Astrophysics Data System (ADS)

    Yadav, Deepti; Arora, M. K.; Tiwari, K. C.; Ghosh, J. K.

    2016-04-01

    Hyperspectral imaging is a powerful tool in the field of remote sensing and has been used for many applications like mineral detection, detection of landmines, target detection etc. Major issues in target detection using HSI are spectral variability, noise, small size of the target, huge data dimensions, high computation cost, complex backgrounds etc. Many of the popular detection algorithms do not work for difficult targets like small, camouflaged etc. and may result in high false alarms. Thus, target/background discrimination is a key issue and therefore analyzing target's behaviour in realistic environments is crucial for the accurate interpretation of hyperspectral imagery. Use of standard libraries for studying target's spectral behaviour has limitation that targets are measured in different environmental conditions than application. This study uses the spectral data of the same target which is used during collection of the HSI image. This paper analyze spectrums of targets in a way that each target can be spectrally distinguished from a mixture of spectral data. Artificial neural network (ANN) has been used to identify the spectral range for reducing data and further its efficacy for improving target detection is verified. The results of ANN proposes discriminating band range for targets; these ranges were further used to perform target detection using four popular spectral matching target detection algorithm. Further, the results of algorithms were analyzed using ROC curves to evaluate the effectiveness of the ranges suggested by ANN over full spectrum for detection of desired targets. In addition, comparative assessment of algorithms is also performed using ROC.

  8. Geometrical features assessment of liver's tumor with application of artificial neural network evolved by imperialist competitive algorithm.

    PubMed

    Keshavarz, M; Mojra, A

    2015-05-01

    Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach.

  9. Geometrical features assessment of liver's tumor with application of artificial neural network evolved by imperialist competitive algorithm.

    PubMed

    Keshavarz, M; Mojra, A

    2015-05-01

    Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach. PMID:25645966

  10. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  11. An Improved Cloud Classification Algorithm for China's FY-2C Multi-Channel Images Using Artificial Neural Network.

    PubMed

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  12. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network

    PubMed Central

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3–11.3 μm; IR2, 11.5–12.5 μm and WV 6.3–7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714

  13. [Artificial neural networks in Neurosciences].

    PubMed

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  14. New algorithm for centroiding in elongated spots for Shack-Hartmann wavefront sensors using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Mello, A. T.; Kanaan, A.; Guzmán, D.

    2014-10-01

    To recover the resolution lost in a ground-based telescopes due to the atmospheric turbulence, it is necessary to use a technique known as Adaptive Optics (AO). The next generation of telescopes will have primary mirrors of more than 30 meter in diameter and will require AO systems from the ground up (Nelson et al. 2006). There are a number of challenges to implement an AO system at these scales. One of these challenges is the accurate measurement of the aberrated wavefronts using a laser guide star and a Shack-Hartmann wavefront sensor. Due to the diameter of the telescope and the use of the sodium layer in the upper atmosphere as photon return for the laser guide stars, the image of the guide star will appear elongated in the wavefront sensor. Typical centroiding algorithms such as Center of Gravity do not perform well under these conditions (Thomas et al. 2008). We present a new technique based on artificial neural networks for measuring the spot position with better accuracy than existing methods. Simulation results confirms that the new algorithm incurs in smaller errors with respect to other centroiding techniques in use.

  15. Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India.

    PubMed

    Senthil Kumar, A R; Goyal, Manish Kumar; Ojha, C S P; Singh, R D; Swamee, P K

    2013-01-01

    The prediction of streamflow is required in many activities associated with the planning and operation of the components of a water resources system. Soft computing techniques have proven to be an efficient alternative to traditional methods for modelling qualitative and quantitative water resource variables such as streamflow, etc. The focus of this paper is to present the development of models using multiple linear regression (MLR), artificial neural network (ANN), fuzzy logic and decision tree algorithms such as M5 and REPTree for predicting the streamflow at Kasol located at the upstream of Bhakra reservoir in Sutlej basin in northern India. The input vector to the various models using different algorithms was derived considering statistical properties such as auto-correlation function, partial auto-correlation and cross-correlation function of the time series. It was found that REPtree model performed well compared to other soft computing techniques such as MLR, ANN, fuzzy logic, and M5P investigated in this study and the results of the REPTree model indicate that the entire range of streamflow values were simulated fairly well. The performance of the naïve persistence model was compared with other models and the requirement of the development of the naïve persistence model was also analysed by persistence index.

  16. A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network.

    PubMed

    Marto, Aminaton; Hajihassani, Mohsen; Armaghani, Danial Jahed; Mohamad, Edy Tonnizam; Makhtar, Ahmad Mahir

    2014-01-01

    Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches. PMID:25147856

  17. A Novel Approach for Blast-Induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network

    PubMed Central

    Marto, Aminaton; Jahed Armaghani, Danial; Tonnizam Mohamad, Edy; Makhtar, Ahmad Mahir

    2014-01-01

    Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches. PMID:25147856

  18. Knowledge Discovery in Medical Mining by using Genetic Algorithms and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Srivathsa, P. K.

    2011-12-01

    Medical Data mining could be thought of as the search for relationships and patterns within the medical data, which facilitates the acquisition of useful knowledge for effective medical diagnosis. Consequently, the predictability of disease will become more effective and the early detection of disease certainly facilitates an increased exposure to required patient care with focused treatment, economic feasibility and improved cure rates. So, the present investigation is carried on medical data(PIMA) using DM and GA based Neural Network technique and the results predict that the methodology is not only reliable but also helps in furthering the scope of the subject.

  19. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  20. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  1. Finding Risk Groups by Optimizing Artificial Neural Networks on the Area under the Survival Curve Using Genetic Algorithms

    PubMed Central

    Kalderstam, Jonas; Edén, Patrik; Ohlsson, Mattias

    2015-01-01

    We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN) are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups. Estimated patient risk can influence treatment choices, and is important for study stratification. A common approach is to sort the patients according to a prognostic index and then group them along the quartile limits. The Cox proportional hazards model (Cox) is one example of this approach. Another method of doing risk grouping is recursive partitioning (Rpart), which constructs a decision tree where each branch point maximizes the statistical separation between the groups. ANN, Cox, and Rpart are compared on five publicly available data sets with varying properties. Cross-validation, as well as separate test sets, are used to validate the models. Results on the test sets show comparable performance, except for the smallest data set where Rpart’s predicted risk groups turn out to be inverted, an example of crossing survival curves. Cross-validation shows that all three models exhibit crossing of some survival curves on this small data set but that the ANN model manages the best separation of groups in terms of median survival time before such crossings. The conclusion is that optimizing the area under the survival curve is a viable approach to identify risk groups. Training ANNs to optimize this area combines two key strengths from both prognostic indices and Rpart. First, a desired minimum group size can be specified, as for a prognostic index. Second, the ability to utilize non-linear effects among the covariates, which Rpart is also able to do. PMID:26352405

  2. Finding Risk Groups by Optimizing Artificial Neural Networks on the Area under the Survival Curve Using Genetic Algorithms.

    PubMed

    Kalderstam, Jonas; Edén, Patrik; Ohlsson, Mattias

    2015-01-01

    We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN) are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups. Estimated patient risk can influence treatment choices, and is important for study stratification. A common approach is to sort the patients according to a prognostic index and then group them along the quartile limits. The Cox proportional hazards model (Cox) is one example of this approach. Another method of doing risk grouping is recursive partitioning (Rpart), which constructs a decision tree where each branch point maximizes the statistical separation between the groups. ANN, Cox, and Rpart are compared on five publicly available data sets with varying properties. Cross-validation, as well as separate test sets, are used to validate the models. Results on the test sets show comparable performance, except for the smallest data set where Rpart's predicted risk groups turn out to be inverted, an example of crossing survival curves. Cross-validation shows that all three models exhibit crossing of some survival curves on this small data set but that the ANN model manages the best separation of groups in terms of median survival time before such crossings. The conclusion is that optimizing the area under the survival curve is a viable approach to identify risk groups. Training ANNs to optimize this area combines two key strengths from both prognostic indices and Rpart. First, a desired minimum group size can be specified, as for a prognostic index. Second, the ability to utilize non-linear effects among the covariates, which Rpart is also able to do. PMID:26352405

  3. Optimization of auto-induction medium for G-CSF production by Escherichia coli using artificial neural networks coupled with genetic algorithm.

    PubMed

    Tian, H; Liu, C; Gao, X D; Yao, W B

    2013-03-01

    Granulocyte colony-stimulating factor (G-CSF) is a cytokine widely used in cancer patients receiving high doses of chemotherapeutic drugs to prevent the chemotherapy-induced suppression of white blood cells. The production of recombinant G-CSF should be increased to meet the increasing market demand. This study aims to model and optimize the carbon source of auto-induction medium to enhance G-CSF production using artificial neural networks coupled with genetic algorithm. In this approach, artificial neural networks served as bioprocess modeling tools, and genetic algorithm (GA) was applied to optimize the established artificial neural network models. Two artificial neural network models were constructed: the back-propagation (BP) network and the radial basis function (RBF) network. The root mean square error, coefficient of determination, and standard error of prediction of the BP model were 0.0375, 0.959, and 8.49 %, respectively, whereas those of the RBF model were 0.0257, 0.980, and 5.82 %, respectively. These values indicated that the RBF model possessed higher fitness and prediction accuracy than the BP model. Under the optimized auto-induction medium, the predicted maximum G-CSF yield by the BP-GA approach was 71.66 %, whereas that by the RBF-GA approach was 75.17 %. These predicted values are in agreement with the experimental results, with 72.4 and 76.014 % for the BP-GA and RBF-GA models, respectively. These results suggest that RBF-GA is superior to BP-GA. The developed approach in this study may be helpful in modeling and optimizing other multivariable, non-linear, and time-variant bioprocesses.

  4. Learning in Artificial Neural Systems

    NASA Technical Reports Server (NTRS)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  5. [Application of artificial neural network based on the genetic algorithm in predicting the root distribution of winter wheat].

    PubMed

    Luo, Changshou; Zuo, Qiang; Li, Baoguo

    2004-02-01

    In this study, a controlled experiment of winter wheat under water stress at the seedling stage was conducted in soil columns in greenhouse. Based on the data gotten from the experiment, a model to estimate root length density distribution was developed through optimizing the weights of neural network by genetic algorithm. The neural network model was constructed by using forward neural network framework, by applying the strategy of the roulette wheel selection and reserving the most optimizing series of weights, which were composed by real codes. This model was applied to predict the root length density distribution of winter wheat, and the predicted root length density had good agreement with experiment data. The way could save a lot of manpower and material resources for determining the root length density distribution of winter wheat.

  6. Neural Network Algorithm for Particle Loading

    SciTech Connect

    J. L. V. Lewandowski

    2003-04-25

    An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given.

  7. Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection.

    PubMed

    Franco, Vanina G; Perín, Juan C; Mantovani, Víctor E; Goicoechea, Héctor C

    2006-01-15

    An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determination was calculated by analysing spiked real fermentation samples (recoveries ca. 115%).

  8. Advances in Artificial Neural Networks - Methodological Development and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  9. Artificial neural networks in medicine

    SciTech Connect

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  10. Synthesis of zinc oxide nanoparticles-chitosan for extraction of methyl orange from water samples: cuckoo optimization algorithm-artificial neural network.

    PubMed

    Khajeh, Mostafa; Golzary, Ali Reza

    2014-10-15

    In this work, zinc nanoparticles-chitosan based solid phase extraction has been developed for separation and preconcentration of trace amount of methyl orange from water samples. Artificial neural network-cuckoo optimization algorithm has been employed to develop the model for simulation and optimization of this method. The pH, volume of elution solvent, mass of zinc oxide nanoparticles-chitosan, flow rate of sample and elution solvent were the input variables, while recovery of methyl orange was the output. The optimum conditions were obtained by cuckoo optimization algorithm. At the optimum conditions, the limit of detections of 0.7μgL(-1)was obtained for the methyl orange. The developed procedure was then applied to the separation and preconcentration of methyl orange from water samples. PMID:24835725

  11. Synthesis of zinc oxide nanoparticles-chitosan for extraction of methyl orange from water samples: cuckoo optimization algorithm-artificial neural network.

    PubMed

    Khajeh, Mostafa; Golzary, Ali Reza

    2014-10-15

    In this work, zinc nanoparticles-chitosan based solid phase extraction has been developed for separation and preconcentration of trace amount of methyl orange from water samples. Artificial neural network-cuckoo optimization algorithm has been employed to develop the model for simulation and optimization of this method. The pH, volume of elution solvent, mass of zinc oxide nanoparticles-chitosan, flow rate of sample and elution solvent were the input variables, while recovery of methyl orange was the output. The optimum conditions were obtained by cuckoo optimization algorithm. At the optimum conditions, the limit of detections of 0.7μgL(-1)was obtained for the methyl orange. The developed procedure was then applied to the separation and preconcentration of methyl orange from water samples.

  12. Synthesis of zinc oxide nanoparticles-chitosan for extraction of methyl orange from water samples: Cuckoo optimization algorithm-artificial neural network

    NASA Astrophysics Data System (ADS)

    Khajeh, Mostafa; Golzary, Ali Reza

    2014-10-01

    In this work, zinc nanoparticles-chitosan based solid phase extraction has been developed for separation and preconcentration of trace amount of methyl orange from water samples. Artificial neural network-cuckoo optimization algorithm has been employed to develop the model for simulation and optimization of this method. The pH, volume of elution solvent, mass of zinc oxide nanoparticles-chitosan, flow rate of sample and elution solvent were the input variables, while recovery of methyl orange was the output. The optimum conditions were obtained by cuckoo optimization algorithm. At the optimum conditions, the limit of detections of 0.7 μg L-1was obtained for the methyl orange. The developed procedure was then applied to the separation and preconcentration of methyl orange from water samples.

  13. Porosity Log Prediction Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier

    2016-08-01

    Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.

  14. Introduction to Concepts in Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  15. Application of artificial neural networks to composite ply micromechanics

    NASA Technical Reports Server (NTRS)

    Brown, D. A.; Murthy, P. L. N.; Berke, L.

    1991-01-01

    Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.

  16. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample

    PubMed Central

    Lyden, Kate; Kozey-Keadle, Sarah; Staudenmayer, John

    2011-01-01

    Previous work from our laboratory provided a “proof of concept” for use of artificial neural networks (nnets) to estimate metabolic equivalents (METs) and identify activity type from accelerometer data (Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P, J Appl Physiol 107: 1330–1307, 2009). The purpose of this study was to develop new nnets based on a larger, more diverse, training data set and apply these nnet prediction models to an independent sample to evaluate the robustness and flexibility of this machine-learning modeling technique. The nnet training data set (University of Massachusetts) included 277 participants who each completed 11 activities. The independent validation sample (n = 65) (University of Tennessee) completed one of three activity routines. Criterion measures were 1) measured METs assessed using open-circuit indirect calorimetry; and 2) observed activity to identify activity type. The nnet input variables included five accelerometer count distribution features and the lag-1 autocorrelation. The bias and root mean square errors for the nnet MET trained on University of Massachusetts and applied to University of Tennessee were +0.32 and 1.90 METs, respectively. Seventy-seven percent of the activities were correctly classified as sedentary/light, moderate, or vigorous intensity. For activity type, household and locomotion activities were correctly classified by the nnet activity type 98.1 and 89.5% of the time, respectively, and sport was correctly classified 23.7% of the time. Use of this machine-learning technique operates reasonably well when applied to an independent sample. We propose the creation of an open-access activity dictionary, including accelerometer data from a broad array of activities, leading to further improvements in prediction accuracy for METs, activity intensity, and activity type. PMID:21885802

  17. An Artificial Neural Network Embedded Position and Orientation Determination Algorithm for Low Cost MEMS INS/GPS Integrated Sensors.

    PubMed

    Chiang, Kai-Wei; Chang, Hsiu-Wen; Li, Chia-Yuan; Huang, Yun-Wen

    2009-01-01

    Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. Direct geo-referencing is the determination of the time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using Global Positioning System (GPS) and Inertial Navigation System (INS) using an Inertial Measurement Unit (IMU). They are usually integrated in such a way that the GPS receiver is the main position sensor, while the IMU is the main orientation sensor. The Kalman Filter (KF) is considered as the optimal estimation tool for real-time INS/GPS integrated kinematic position and orientation determination. An intelligent hybrid scheme consisting of an Artificial Neural Network (ANN) and KF has been proposed to overcome the limitations of KF and to improve the performance of the INS/GPS integrated system in previous studies. However, the accuracy requirements of general mobile mapping applications can't be achieved easily, even by the use of the ANN-KF scheme. Therefore, this study proposes an intelligent position and orientation determination scheme that embeds ANN with conventional Rauch-Tung-Striebel (RTS) smoother to improve the overall accuracy of a MEMS INS/GPS integrated system in post-mission mode. By combining the Micro Electro Mechanical Systems (MEMS) INS/GPS integrated system and the intelligent ANN-RTS smoother scheme proposed in this study, a cheaper but still reasonably accurate position and orientation determination scheme can be anticipated.

  18. Identification of Some Zeolite Group Minerals by Application of Artificial Neural Network and Decision Tree Algorithm Based on SEM-EDS Data

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan

    2016-04-01

    Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 ‑3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for

  19. Identification of Some Zeolite Group Minerals by Application of Artificial Neural Network and Decision Tree Algorithm Based on SEM-EDS Data

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan

    2016-04-01

    Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 -3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for the

  20. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  1. Artificial neural networks in neurosurgery.

    PubMed

    Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali

    2015-03-01

    Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery.

  2. Correcting wave predictions with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Makarynskyy, O.; Makarynska, D.

    2003-04-01

    The predictions of wind waves with different lead times are necessary in a large scope of coastal and open ocean activities. Numerical wave models, which usually provide this information, are based on deterministic equations that do not entirely account for the complexity and uncertainty of the wave generation and dissipation processes. An attempt to improve wave parameters short-term forecasts based on artificial neural networks is reported. In recent years, artificial neural networks have been used in a number of coastal engineering applications due to their ability to approximate the nonlinear mathematical behavior without a priori knowledge of interrelations among the elements within a system. The common multilayer feed-forward networks, with a nonlinear transfer functions in the hidden layers, were developed and employed to forecast the wave characteristics over one hour intervals starting from one up to 24 hours, and to correct these predictions. Three non-overlapping data sets of wave characteristics, both from a buoy, moored roughly 60 miles west of the Aran Islands, west coast of Ireland, were used to train and validate the neural nets involved. The networks were trained with error back propagation algorithm. Time series plots and scatterplots of the wave characteristics as well as tables with statistics show an improvement of the results achieved due to the correction procedure employed.

  3. Creativity in design and artificial neural networks

    SciTech Connect

    Neocleous, C.C.; Esat, I.I.; Schizas, C.N.

    1996-12-31

    The creativity phase is identified as an integral part of the design phase. The characteristics of creative persons which are relevant to designing artificial neural networks manifesting aspects of creativity, are identified. Based on these identifications, a general framework of artificial neural network characteristics to implement such a goal are proposed.

  4. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  5. Introduction to artificial neural networks.

    PubMed

    Grossi, Enzo; Buscema, Massimo

    2007-12-01

    The coupling of computer science and theoretical bases such as nonlinear dynamics and chaos theory allows the creation of 'intelligent' agents, such as artificial neural networks (ANNs), able to adapt themselves dynamically to problems of high complexity. ANNs are able to reproduce the dynamic interaction of multiple factors simultaneously, allowing the study of complexity; they can also draw conclusions on individual basis and not as average trends. These tools can offer specific advantages with respect to classical statistical techniques. This article is designed to acquaint gastroenterologists with concepts and paradigms related to ANNs. The family of ANNs, when appropriately selected and used, permits the maximization of what can be derived from available data and from complex, dynamic, and multidimensional phenomena, which are often poorly predictable in the traditional 'cause and effect' philosophy. PMID:17998827

  6. Charged particle track reconstruction using artificial neural networks

    SciTech Connect

    Glover, C.; Fu, P.; Gabriel, T.; Handler, T.

    1992-12-31

    This paper summarizes the current state of our research in developing and applying artificial neural network (ANN) algorithm described here is based on a crude model of the retina. It takes as input the coordinates of each charged particle`s interaction point (``hit``) in the tracking chamber. The algorithm`s output is a set of vectors pointing to other hits that most likely to form a track.

  7. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    PubMed

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. PMID:24566279

  8. Modeling of dispersive liquid-liquid microextraction for determination of essential oil from Borago officinalis L. by using combination of artificial neural network and genetic algorithm method.

    PubMed

    Khajeh, Mostafa; Moghaddam, Zahra Safaei; Bohlooli, Mousa; Khajeh, Ahmad

    2015-01-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography was applied for the extraction and determination of essential oil constituents of the Borago officinalis L. In this study, an experimental data-based artificial neural network (ANN) model was constructed to describe the performance of DLLME method for various operating conditions. The volume of extraction and dispersive solvents, extraction time and salt effect were the input variables of this process, whereas the extraction efficiency was the output. The ANN method was found to be capable of modeling this procedure accurately. The overall agreement between the experimental data and ANN predictions was satisfactory showing a determination coefficient of 0.982. The optimum operating condition was then determined by the genetic algorithm method. The optimal conditions were 248 µL volume of extraction solvent, 260 µL volume of dispersive solvent, 2.5 min extraction time and 0.16 mol L(-1) of salt. The limit of detection and linear dynamic range were 0.15-24.0 and 1.2-1,800 ng mL(-1), respectively. The main components of the essential oil were δ-cadinene (31.02%), carvacrol (24.91%), α-pinene (20.89%) and α-cadinol (16.47%). PMID:26045584

  9. Modeling of dispersive liquid-liquid microextraction for determination of essential oil from Borago officinalis L. by using combination of artificial neural network and genetic algorithm method.

    PubMed

    Khajeh, Mostafa; Moghaddam, Zahra Safaei; Bohlooli, Mousa; Khajeh, Ahmad

    2015-01-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography was applied for the extraction and determination of essential oil constituents of the Borago officinalis L. In this study, an experimental data-based artificial neural network (ANN) model was constructed to describe the performance of DLLME method for various operating conditions. The volume of extraction and dispersive solvents, extraction time and salt effect were the input variables of this process, whereas the extraction efficiency was the output. The ANN method was found to be capable of modeling this procedure accurately. The overall agreement between the experimental data and ANN predictions was satisfactory showing a determination coefficient of 0.982. The optimum operating condition was then determined by the genetic algorithm method. The optimal conditions were 248 µL volume of extraction solvent, 260 µL volume of dispersive solvent, 2.5 min extraction time and 0.16 mol L(-1) of salt. The limit of detection and linear dynamic range were 0.15-24.0 and 1.2-1,800 ng mL(-1), respectively. The main components of the essential oil were δ-cadinene (31.02%), carvacrol (24.91%), α-pinene (20.89%) and α-cadinol (16.47%).

  10. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.

    PubMed

    Ghaedi, M; Zeinali, N; Ghaedi, A M; Teimuori, M; Tashkhourian, J

    2014-05-01

    In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH=7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R(2)) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the

  11. AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK

    SciTech Connect

    Chady, T.; Caryk, M.; Piekarczyk, B.

    2009-03-03

    The automated defect classification algorithm based on artificial neural network with multilayer backpropagation structure was utilized. The selected features of flaws were used as input data. In order to train the neural network it is necessary to prepare learning data which is representative database of defects. Database preparation requires the following steps: image acquisition and pre-processing, image enhancement, defect detection and feature extraction. The real digital radiographs of welded parts of a ship were used for this purpose.

  12. Functional expansion representations of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1992-01-01

    In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.

  13. Devices and circuits for nanoelectronic implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Turel, Ozgur

    Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.

  14. Artificial Neural Network applied to lightning flashes

    NASA Astrophysics Data System (ADS)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  15. Charged particle track reconstruction using artificial neural networks

    SciTech Connect

    Glover, C.; Fu, P.; Gabriel, T. ); Handler, T. . Dept. of Physics)

    1992-01-01

    This paper summarizes the current state of our research in developing and applying artificial neural network (ANN) algorithm described here is based on a crude model of the retina. It takes as input the coordinates of each charged particle's interaction point ( hit'') in the tracking chamber. The algorithm's output is a set of vectors pointing to other hits that most likely to form a track.

  16. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms

    NASA Astrophysics Data System (ADS)

    Helama, S.; Makarenko, N. G.; Karimova, L. M.; Kruglun, O. A.; Timonen, M.; Holopainen, J.; Meriläinen, J.; Eronen, M.

    2009-03-01

    Tree-rings tell of past climates. To do so, tree-ring chronologies comprising numerous climate-sensitive living-tree and subfossil time-series need to be "transferred" into palaeoclimate estimates using transfer functions. The purpose of this study is to compare different types of transfer functions, especially linear and nonlinear algorithms. Accordingly, multiple linear regression (MLR), linear scaling (LSC) and artificial neural networks (ANN, nonlinear algorithm) were compared. Transfer functions were built using a regional tree-ring chronology and instrumental temperature observations from Lapland (northern Finland and Sweden). In addition, conventional MLR was compared with a hybrid model whereby climate was reconstructed separately for short- and long-period timescales prior to combining the bands of timescales into a single hybrid model. The fidelity of the different reconstructions was validated against instrumental climate data. The reconstructions by MLR and ANN showed reliable reconstruction capabilities over the instrumental period (AD 1802-1998). LCS failed to reach reasonable verification statistics and did not qualify as a reliable reconstruction: this was due mainly to exaggeration of the low-frequency climatic variance. Over this instrumental period, the reconstructed low-frequency amplitudes of climate variability were rather similar by MLR and ANN. Notably greater differences between the models were found over the actual reconstruction period (AD 802-1801). A marked temperature decline, as reconstructed by MLR, from the Medieval Warm Period (AD 931-1180) to the Little Ice Age (AD 1601-1850), was evident in all the models. This decline was approx. 0.5°C as reconstructed by MLR. Different ANN based palaeotemperatures showed simultaneous cooling of 0.2 to 0.5°C, depending on algorithm. The hybrid MLR did not seem to provide further benefit above conventional MLR in our sample. The robustness of the conventional MLR over the calibration

  17. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  18. SEU fault tolerance in artificial neural networks

    SciTech Connect

    Velazco, R.; Assoum, A.; Radi, N.E.; Ecoffet, R.; Botey, X.

    1995-12-01

    In this paper the authors investigate the robustness of Artificial Neural Networks when encountering transient modification of information bits related to the network operation. These kinds of faults are likely to occur as a consequence of interaction with radiation. Results of tests performed to evaluate the fault tolerance properties of two different digital neural circuits are presented.

  19. Artificial neural networks for short term electrical load forecasting

    SciTech Connect

    Reinschmidt, K.F.

    1995-10-01

    The accurate prediction of hourly electrical demand one or more days ahead is of great economic importance to electric utilities for generation unit dispatch and unit commitment. Artificial neural networks for pattern recognition are developed to identify days in the historical record that are most similar to the days being forecasted, to use for load prediction. Artificial neural networks are also used to generate linear and nonlinear multivariate time series models, to project demands forward in time. The genetic algorithm is used to select the optimal set of independent variables for forecasting. Techniques are developed to combine forecasts derived from independent methods, to achieve better accuracy than any single forecast. In this way, artificial neural networks can be used to generate practical, accurate short-term electrical load forecasts.

  20. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    PubMed

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model. PMID:25699703

  1. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    PubMed

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  2. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Shojaeipour, E.; Ghaedi, A. M.; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1 g), contact time (1-40 min) and initial MG concentration (5, 10, 20, 70 and 100 mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R2) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8 mg/g at 25 °C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20 min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  3. Spatial predictive mapping using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Noack, S.; Knobloch, A.; Etzold, S. H.; Barth, A.; Kallmeier, E.

    2014-11-01

    The modelling or prediction of complex geospatial phenomena (like formation of geo-hazards) is one of the most important tasks for geoscientists. But in practice it faces various difficulties, caused mainly by the complexity of relationships between the phenomena itself and the controlling parameters, as well by limitations of our knowledge about the nature of physical/ mathematical relationships and by restrictions regarding accuracy and availability of data. In this situation methods of artificial intelligence, like artificial neural networks (ANN) offer a meaningful alternative modelling approach compared to the exact mathematical modelling. In the past, the application of ANN technologies in geosciences was primarily limited due to difficulties to integrate it into geo-data processing algorithms. In consideration of this background, the software advangeo® was developed to provide a normal GIS user with a powerful tool to use ANNs for prediction mapping and data preparation within his standard ESRI ArcGIS environment. In many case studies, such as land use planning, geo-hazards analysis and prevention, mineral potential mapping, agriculture & forestry advangeo® has shown its capabilities and strengths. The approach is able to add considerable value to existing data.

  4. Groundwater remediation optimization using artificial neural networks

    SciTech Connect

    Rogers, L. L., LLNL

    1998-05-01

    One continuing point of research in optimizing groundwater quality management is reduction of computational burden which is particularly limiting in field-scale applications. Often evaluation of a single pumping strategy, i.e. one call to the groundwater flow and transport model (GFTM) may take several hours on a reasonably fast workstation. For computational flexibility and efficiency, optimal groundwater remediation design at Lawrence Livermore National Laboratory (LLNL) has relied on artificial neural networks (ANNS) trained to approximate the outcome of 2-D field-scale, finite difference/finite element GFTMs. The search itself has been directed primarily by the genetic algorithm (GA) or the simulated annealing (SA) algorithm. This approach has advantages of (1) up to a million fold increase in speed of remediation pattern assessment during the searches and sensitivity analyses for the 2-D LLNL work, (2) freedom from sequential runs of the GFTM (enables workstation farming), and (3) recycling of the knowledge base (i.e. runs of the GFTM necessary to train the ANNS). Reviewed here are the background and motivation for such work, recent applications, and continuing issues of research.

  5. Artificial neural networks and their use in quantitative pathology.

    PubMed

    Dytch, H E; Wied, G L

    1990-12-01

    A brief general introduction to artificial neural networks is presented, examining in detail the structure and operation of a prototype net developed for the solution of a simple pattern recognition problem in quantitative pathology. The process by which a neural network learns through example and gradually embodies its knowledge as a distributed representation is discussed, using this example. The application of neurocomputer technology to problems in quantitative pathology is explored, using real-world and illustrative examples. Included are examples of the use of artificial neural networks for pattern recognition, database analysis and machine vision. In the context of these examples, characteristics of neural nets, such as their ability to tolerate ambiguous, noisy and spurious data and spontaneously generalize from known examples to handle unfamiliar cases, are examined. Finally, the strengths and deficiencies of a connectionist approach are compared to those of traditional symbolic expert system methodology. It is concluded that artificial neural networks, used in conjunction with other nonalgorithmic artificial intelligence techniques and traditional algorithmic processing, may provide useful software engineering tools for the development of systems in quantitative pathology.

  6. Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock

    PubMed Central

    Arab, Mohammad M.; Yadollahi, Abbas; Shojaeiyan, Abdolali; Ahmadi, Hamed

    2016-01-01

    One of the major obstacles to the micropropagation of Prunus rootstocks has, up until now, been the lack of a suitable tissue culture medium. Therefore, reformulation of culture media or modification of the mineral content might be a breakthrough to improve in vitro multiplication of G × N15 (garnem). We found artificial neural network in combination of genetic algorithm (ANN-GA) as a very precise and powerful modeling system for optimizing the culture medium, So that modeling the effects of MS mineral salts (NH4+, NO3-, PO42-, Ca2+, K+, SO42-, Mg2+, and Cl−) on in vitro multiplication parameters (the number of microshoots per explant, average length of microshoots, weight of calluses derived from the base of stem explants, and quality index of plantlets) of G × N15. Showed high R2 correlation values of 87, 91, 87, and 74 between observed and predicted values were found for these four growth parameters, respectively. According to the ANN-GA results, among the input variables, NH4+ and NO3- had the highest values of VSR in data set for the parameters studied. The ANN-GA showed that the best proliferation rate was obtained from medium containing (mM) 27.5 NO3-, 14 NH4+, 5 Ca2+, 25.9 K+, 0.7 Mg2+, 1.1 PO42-, 4.7 SO42-, and 0.96 Cl−. The performance of the medium optimized by ANN-GA, denoted as YAS (Yadollahi, Arab and Shojaeiyan), was compared to that of standard growth media for all Prunus rootstock, including the Murashige and Skoog (MS) medium, (specific media) EM, Quoirin and Lepoivre (QL) medium, and woody plant medium (WPM) Prunus. With respect to shoot length, shoot number per cultured explant and productivity (number of microshoots × length of microshoots), YAS was found to be superior to other media for in vitro multiplication of G × N15 rootstocks. In addition, our results indicated that by using ANN-GA, we were able to determine a suitable culture medium formulation to achieve the best in vitro productivity. PMID:27807436

  7. Alpha spectral analysis via artificial neural networks

    SciTech Connect

    Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T.; Troyer, G.L.

    1994-10-01

    An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system.

  8. Detection of Wildfires with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Umphlett, B.; Leeman, J.; Morrissey, M. L.

    2011-12-01

    Currently fire detection for the National Oceanic and Atmospheric Administration (NOAA) using satellite data is accomplished with algorithms and error checking human analysts. Artificial neural networks (ANNs) have been shown to be more accurate than algorithms or statistical methods for applications dealing with multiple datasets of complex observed data in the natural sciences. ANNs also deal well with multiple data sources that are not all equally reliable or equally informative to the problem. An ANN was tested to evaluate its accuracy in detecting wildfires utilizing polar orbiter numerical data from the Advanced Very High Resolution Radiometer (AVHRR). Datasets containing locations of known fires were gathered from the NOAA's polar orbiting satellites via the Comprehensive Large Array-data Stewardship System (CLASS). The data was then calibrated and navigation corrected using the Environment for Visualizing Images (ENVI). Fires were located with the aid of shapefiles generated via ArcGIS. Afterwards, several smaller ten pixel by ten pixel datasets were created for each fire (using the ENVI corrected data). Several datasets were created for each fire in order to vary fire position and avoid training the ANN to look only at fires in the center of an image. Datasets containing no fires were also created. A basic pattern recognition neural network was established with the MATLAB neural network toolbox. The datasets were then randomly separated into categories used to train, validate, and test the ANN. To prevent over fitting of the data, the mean squared error (MSE) of the network was monitored and training was stopped when the MSE began to rise. Networks were tested using each channel of the AVHRR data independently, channels 3a and 3b combined, and all six channels. The number of hidden neurons for each input set was also varied between 5-350 in steps of 5 neurons. Each configuration was run 10 times, totaling about 4,200 individual network evaluations. Thirty

  9. Artificial Neural Network for Location Estimation in Wireless Communication Systems

    PubMed Central

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments. PMID:22736978

  10. Artificial neural network modeling of p-cresol photodegradation

    PubMed Central

    2013-01-01

    Background The complexity of reactions and kinetic is the current problem of photodegradation processes. Recently, artificial neural networks have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the non-linear relationships between variables in complex systems. In this study, an artificial neural network was applied for modeling p-cresol photodegradation. To optimize the network, the independent variables including irradiation time, pH, photocatalyst amount and concentration of p-cresol were used as the input parameters, while the photodegradation% was selected as output. The photodegradation% was obtained from the performance of the experimental design of the variables under UV irradiation. The network was trained by Quick propagation (QP) and the other three algorithms as a model. To determine the number of hidden layer nodes in the model, the root mean squared error of testing set was minimized. After minimizing the error, the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. Results The comparison indicated that the Quick propagation algorithm had minimum root mean squared error, 1.3995, absolute average deviation, 3.0478, and maximum coefficient of determination, 0.9752, for the testing data set. The validation test results of the artificial neural network based on QP indicated that the root mean squared error was 4.11, absolute average deviation was 8.071 and the maximum coefficient of determination was 0.97. Conclusion Artificial neural network based on Quick propagation algorithm with topology 4-10-1 gave the best performance in this study. PMID:23731706

  11. Forecasting Zakat collection using artificial neural network

    NASA Astrophysics Data System (ADS)

    Sy Ahmad Ubaidillah, Sh. Hafizah; Sallehuddin, Roselina

    2013-04-01

    'Zakat', "that which purifies" or "alms", is the giving of a fixed portion of one's wealth to charity, generally to the poor and needy. It is one of the five pillars of Islam, and must be paid by all practicing Muslims who have the financial means (nisab). 'Nisab' is the minimum level to determine whether there is a 'zakat' to be paid on the assets. Today, in most Muslim countries, 'zakat' is collected through a decentralized and voluntary system. Under this voluntary system, 'zakat' committees are established, which are tasked with the collection and distribution of 'zakat' funds. 'Zakat' promotes a more equitable redistribution of wealth, and fosters a sense of solidarity amongst members of the 'Ummah'. The Malaysian government has established a 'zakat' center at every state to facilitate the management of 'zakat'. The center has to have a good 'zakat' management system to effectively execute its functions especially in the collection and distribution of 'zakat'. Therefore, a good forecasting model is needed. The purpose of this study is to develop a forecasting model for Pusat Zakat Pahang (PZP) to predict the total amount of collection from 'zakat' of assets more precisely. In this study, two different Artificial Neural Network (ANN) models using two different learning algorithms are developed; Back Propagation (BP) and Levenberg-Marquardt (LM). Both models are developed and compared in terms of their accuracy performance. The best model is determined based on the lowest mean square error and the highest correlations values. Based on the results obtained from the study, BP neural network is recommended as the forecasting model to forecast the collection from 'zakat' of assets for PZP.

  12. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    We have tested and deployed Artificial Neural Network (ANN) data mining techniques to analyze remotely sensed multi-channel imaging data from MODIS, GOES, and AVHRR. The goal is to train the ANN to learn the signatures of wildfires in remotely sensed data in order to automate the detection process. We train the ANN using the set of human-detected wildfires in the U.S., which are provided by the Hazard Mapping System (HMS) wildfire detection group at NOAA/NESDIS. The ANN is trained to mimic the behavior of fire detection algorithms and the subjective decision- making by N O M HMS Fire Analysts. We use a local extremum search in order to isolate fire pixels, and then we extract a 7x7 pixel array around that location in 3 spectral channels. The corresponding 147 pixel values are used to populate a 147-dimensional input vector that is fed into the ANN. The ANN accuracy is tested and overfitting is avoided by using a subset of the training data that is set aside as a test data set. We have achieved an automated fire detection accuracy of 80-92%, depending on a variety of ANN parameters and for different instrument channels among the 3 satellites. We believe that this system can be deployed worldwide or for any region to detect wildfires automatically in satellite imagery of those regions. These detections can ultimately be used to provide thermal inputs to climate models.

  13. Distribution feeder loss computation by artificial neural network

    SciTech Connect

    Kau, S.W.; Cho, M.Y.

    1995-12-31

    This paper proposes an artificial neural network (ANN) based feeder loss calculation model for distribution system analysis. In this paper, the functional-link network model is examined to form the artificial neural network architecture to derive the various loss calculation models for feeders with different configuration. Such artificial neural network is a feedforward network that uses standard back-propagation algorithm to adjust weights on the connection path between any two processing elements (PEs). Feeder daily load curve on each season are derived by field test data. Three-phase load flow program is executed to create the training sets with exact loss calculation results. A sensitivity analysis is executed to determine the key factors included power factor, feeder loading, primary conductors, secondary conductors, and transformer capacity as the variables for components located at input layer. By artificial neural network with the pattern recognition ability, this study has developed seasonal and yearly loss calculation models for overhead and underground feeder configuration. Two practical feeders with both overhead and underground configuration in Taiwan Power Company (TPC or Taipower) distribution system are selected for computer simulation to demonstrate the effectiveness and accuracy of the proposed models. As comparing with models derived by the conventional regression technique, results indicate that the proposed models provide more efficient tool to District engineer for feeder loss calculation.

  14. Pruning Neural Networks with Distribution Estimation Algorithms

    SciTech Connect

    Cantu-Paz, E

    2003-01-15

    This paper describes the application of four evolutionary algorithms to the pruning of neural networks used in classification problems. Besides of a simple genetic algorithm (GA), the paper considers three distribution estimation algorithms (DEAs): a compact GA, an extended compact GA, and the Bayesian Optimization Algorithm. The objective is to determine if the DEAs present advantages over the simple GA in terms of accuracy or speed in this problem. The experiments used a feed forward neural network trained with standard back propagation and public-domain and artificial data sets. The pruned networks seemed to have better or equal accuracy than the original fully-connected networks. Only in a few cases, pruning resulted in less accurate networks. We found few differences in the accuracy of the networks pruned by the four EAs, but found important differences in the execution time. The results suggest that a simple GA with a small population might be the best algorithm for pruning networks on the data sets we tested.

  15. Psychometric Measurement Models and Artificial Neural Networks

    ERIC Educational Resources Information Center

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  16. Artificial neural interfaces for bionic cardiovascular treatments.

    PubMed

    Kawada, Toru; Sugimachi, Masaru

    2009-01-01

    An artificial nerve, in the broad sense, may be conceptualized as a physical and logical interface system that reestablishes the information traffic between the central nervous system and peripheral organs. Studies on artificial nerves targeting the autonomic nervous system are in progress to explore new treatment strategies for several cardiovascular diseases. In this article, we will review our research targeting the autonomic nervous system to treat cardiovascular diseases. First, we identified the rule for decoding native sympathetic nerve activity into a heart rate using transfer function analysis, and established a framework for a neurally regulated cardiac pacemaker. Second, we designed a bionic baroreflex system to restore the baroreflex buffering function using electrical stimulation of the celiac ganglion in a rat model of orthostatic hypotension. Third, based on the hypothesis that autonomic imbalance aggravates chronic heart failure, we implanted a neural interface into the right vagal nerve and demonstrated that intermittent vagal stimulation significantly improved the survival rate in rats with chronic heart failure following myocardial infarction. Although several practical problems need to be resolved, such as those relating to the development of electrodes feasible for long-term nerve activity recording, studies of artificial neural interfaces with the autonomic nervous system have great possibilities in the field of cardiovascular treatment. We expect further development of artificial neural interfaces as novel strategies to cope with cardiovascular diseases resistant to conventional therapeutics.

  17. A developmental model for the evolution of artificial neural networks.

    PubMed

    Astor, J C; Adami, C

    2000-01-01

    We present a model of decentralized growth and development for artificial neural networks (ANNs), inspired by developmental biology and the physiology of nervous systems. In this model, each individual artificial neuron is an autonomous unit whose behavior is determined only by the genetic information it harbors and local concentrations of substrates. The chemicals and substrates, in turn, are modeled by a simple artificial chemistry. While the system is designed to allow for the evolution of complex networks, we demonstrate the power of the artificial chemistry by analyzing engineered (handwritten) genomes that lead to the growth of simple networks with behaviors known from physiology. To evolve more complex structures, a Java-based, platform-independent, asynchronous, distributed genetic algorithm (GA) has been implemented that allows users to participate in evolutionary experiments via the World Wide Web.

  18. Design of speaker recognition system based on artificial neural network

    NASA Astrophysics Data System (ADS)

    Chen, Yanhong; Wang, Li; Lin, Han; Li, Jinlong

    2012-10-01

    Speaker recognition is to recognize speaker's identity from its voice which contains physiological and behavioral characteristics unique to each individual. In this paper, the artificial neural network model, which has very good capacity of non-linear division in characteristic space, is used for pattern matching. The speaker's sample characteristic domain is built for his mixed voice characteristic signals based on Kmeanlbg algorithm. Then the dimension of the inputting eigenvector is reduced, and the redundant information is got rid of. On this basis, BP neural network is used to divide capacity area for characteristic space nonlinearly, and the BP neural network acts as a classifier for the speaker. Finally, a speaker recognition system based on the neural network is realized and the experiment results validate the recognition performance and robustness of the system.

  19. Are artificial neural networks black boxes?

    PubMed

    Benitez, J M; Castro, J L; Requena, I

    1997-01-01

    Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.

  20. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  1. [Medical use of artificial neural networks].

    PubMed

    Molnár, B; Papik, K; Schaefer, R; Dombóvári, Z; Fehér, J; Tulassay, Z

    1998-01-01

    The main aim of the research in medical diagnostics is to develop more exact, cost-effective and handsome systems, procedures and methods for supporting the clinicians. In their paper the authors introduce a new method that recently came into the focus referred to as artificial neural networks. Based on the literature of the past 5-6 years they give a brief review--highlighting the most important ones--showing the idea behind neural networks, what they are used for in the medical field. The definition, structure and operation of neural networks are discussed. In the application part they collect examples in order to give an insight in the neural network application research. It is emphasised that in the near future basically new diagnostic equipment can be developed based on this new technology in the field of ECG, EEG and macroscopic and microscopic image analysis systems.

  2. Artificial metaplasticity neural network applied to credit scoring.

    PubMed

    Marcano-Cedeño, Alexis; Marin-de-la-Barcena, A; Jimenez-Trillo, J; Piñuela, J A; Andina, D

    2011-08-01

    The assessment of the risk of default on credit is important for financial institutions. Different Artificial Neural Networks (ANN) have been suggested to tackle the credit scoring problem, however, the obtained error rates are often high. In the search for the best ANN algorithm for credit scoring, this paper contributes with the application of an ANN Training Algorithm inspired by the neurons' biological property of metaplasticity. This algorithm is especially efficient when few patterns of a class are available, or when information inherent to low probability events is crucial for a successful application, as weight updating is overemphasized in the less frequent activations than in the more frequent ones. Two well-known and readily available such as: Australia and German data sets has been used to test the algorithm. The results obtained by AMMLP shown have been superior to state-of-the-art classification algorithms in credit scoring.

  3. Predicting stream water quality using artificial neural networks (ANN)

    SciTech Connect

    Bowers, J.A.

    2000-05-17

    Predicting point and nonpoint source runoff of dissolved and suspended materials into their receiving streams is important to protecting water quality and traditionally has been modeled using deterministic or statistical methods. The purpose of this study was to predict water quality in small streams using an Artificial Neural Network (ANN). The selected input variables were local precipitation, stream flow rates and turbidity for the initial prediction of suspended solids in the stream. A single hidden-layer feedforward neural network using backpropagation learning algorithms was developed with a detailed analysis of model design of those factors affecting successful implementation of the model. All features of a feedforward neural model were investigated including training set creation, number and layers of neurons, neural activation functions, and backpropagation algorithms. Least-squares regression was used to compare model predictions with test data sets. Most of the model configurations offered excellent predictive capabilities. Using either the logistic or the hyperbolic tangent neural activation function did not significantly affect predicted results. This was also true for the two learning algorithms tested, the Levenberg-Marquardt and Polak-Ribiere conjugate-gradient descent methods. The most important step during model development and training was the representative selection of data records for training of the model.

  4. Hybrid multiobjective evolutionary design for artificial neural networks.

    PubMed

    Goh, Chi-Keong; Teoh, Eu-Jin; Tan, Kay Chen

    2008-09-01

    Evolutionary algorithms are a class of stochastic search methods that attempts to emulate the biological process of evolution, incorporating concepts of selection, reproduction, and mutation. In recent years, there has been an increase in the use of evolutionary approaches in the training of artificial neural networks (ANNs). While evolutionary techniques for neural networks have shown to provide superior performance over conventional training approaches, the simultaneous optimization of network performance and architecture will almost always result in a slow training process due to the added algorithmic complexity. In this paper, we present a geometrical measure based on the singular value decomposition (SVD) to estimate the necessary number of neurons to be used in training a single-hidden-layer feedforward neural network (SLFN). In addition, we develop a new hybrid multiobjective evolutionary approach that includes the features of a variable length representation that allow for easy adaptation of neural networks structures, an architectural recombination procedure based on the geometrical measure that adapts the number of necessary hidden neurons and facilitates the exchange of neuronal information between candidate designs, and a microhybrid genetic algorithm ( microHGA) with an adaptive local search intensity scheme for local fine-tuning. In addition, the performances of well-known algorithms as well as the effectiveness and contributions of the proposed approach are analyzed and validated through a variety of data set types.

  5. Development of programmable artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J.

    1993-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  6. Neural networks: A versatile tool from artificial intelligence

    SciTech Connect

    Yama, B.R.; Lineberry, G.T.

    1996-12-31

    Artificial Intelligence research has produced several tools for commercial application in recent years. Artificial Neural Networks (ANNs), Fuzzy Logic, and Expert Systems are some of the techniques that are widely used today in various fields of engineering and business. Among these techniques, ANNs are gaining popularity due to their learning and other brain-like capabilities. Within the mining industry, ANN technology is being utilized with large payoffs for real-time process control applications. In this paper, a brief introduction to ANNs and the associated terminology is given. The neural network development process is outlined, followed by the back-propagation learning algorithm. Next, the development of two multi-layer, feed-forward neural networks is described and the results axe presented. One network is developed for prediction of strength of intact rock specimens, and another network is developed for prediction of mineral concentrations. Preliminary results indicate a predictive error less than 10% using cross-validation on a limited data set. The performance of the neural network for prediction of mineral concentrations was compared with kriging. It was found that the neural network performed not only satisfactorily, but in some cases performed better than, the kriging model.

  7. Applications of artificial neural nets in clinical biomechanics.

    PubMed

    Schöllhorn, W I

    2004-11-01

    The purpose of this article is to provide an overview of current applications of artificial neural networks in the area of clinical biomechanics. The body of literature on artificial neural networks grew intractably vast during the last 15 years. Conventional statistical models may present certain limitations that can be overcome by neural networks. Artificial neural networks in general are introduced, some limitations, and some proven benefits are discussed.

  8. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging.

  9. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, L.J.; Keller, P.E.

    1997-10-28

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.

  10. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  11. Artificial Neural Network Analysis in Preclinical Breast Cancer

    PubMed Central

    Motalleb, Gholamreza

    2014-01-01

    Objective: In this study, artificial neural network (ANN) analysis of virotherapy in preclinical breast cancer was investigated. Materials and Methods: In this research article, a multilayer feed-forward neural network trained with an error back-propagation algorithm was incorporated in order to develop a predictive model. The input parameters of the model were virus dose, week and tamoxifen citrate, while tumor weight was included in the output parameter. Two different training algorithms, namely quick propagation (QP) and Levenberg-Marquardt (LM), were used to train ANN. Results: The results showed that the LM algorithm, with 3-9-1 arrangement is more efficient compared to QP. Using LM algorithm, the coefficient of determination (R2) between the actual and predicted values was determined as 0.897118 for all data. Conclusion: It can be concluded that this ANN model may provide good ability to predict the biometry information of tumor in preclinical breast cancer virotherapy. The results showed that the LM algorithm employed by Neural Power software gave the better performance compared with the QP and virus dose, and it is more important factor compared to tamoxifen and time (week). PMID:24381857

  12. Predicting lithologic parameters using artificial neural networks

    SciTech Connect

    Link, C.A.; Wideman, C.J.; Hanneman, D.L.

    1995-06-01

    Artificial neural networks (ANNs) are becoming increasingly popular as a method for parameter classification and as a tool for recognizing complex relationships in a variety of data types. The power of ANNs lies in their ability to {open_quotes}learn{close_quotes} from a set of training data and then being able to {open_quotes}generalize{close_quotes} to new data sets. In addition, ANNs are able to incorporate data over a large range of scales and are robust in the presence of noise. A back propagation artificial neural network has proved to be a useful tool for predicting sequence boundaries from well logs in a Cenozoic basin. The network was trained using the following log set: neutron porosity, bulk density, pef, and interpreted paleosol horizons from a well in the Deer Lodge Valley, southwestern Montana. After successful training, this network was applied to the same set of well logs from a nearby well minus the interpreted paleosol horizons. The trained neural network was able to produce reasonable predictions for paleosol sequence boundaries in the test well based on the previous training. In an ongoing oil reservoir characterization project, a back propagation neural network is being used to produce estimates of porosity and permeability for subsequent input into a reservoir simulator. A combination of core, well log, geological, and 3-D seismic data serves as input to a back propagation network which outputs estimates of the spatial distribution of porosity and permeability away from the well.

  13. Alternative learning algorithms for feedforward neural networks

    SciTech Connect

    Vitela, J.E.

    1996-03-01

    The efficiency of the back propagation algorithm to train feed forward multilayer neural networks has originated the erroneous belief among many neural networks users, that this is the only possible way to obtain the gradient of the error in this type of networks. The purpose of this paper is to show how alternative algorithms can be obtained within the framework of ordered partial derivatives. Two alternative forward-propagating algorithms are derived in this work which are mathematically equivalent to the BP algorithm. This systematic way of obtaining learning algorithms illustrated with this particular type of neural networks can also be used with other types such as recurrent neural networks.

  14. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    PubMed

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  15. Modeling of mass transfer of Phospholipids in separation process with supercritical CO2 fluid by RBF artificial neural networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...

  16. Stress calculation of crankshaft using artificial neural network

    SciTech Connect

    Shiomi, Kazuyuki; Watanabe, Sei

    1995-12-31

    A system that calculates the stress concentration factor of the crankpin fillet from six characteristic dimensions of the crankshaft was developed using an artificial neural network. The learning database was constructed based on the finite element analysis, and an ``adaptive transfer function algorithm`` was used for the learning calculations. The calculation errors of the stress concentration factors applied to crankshafts of small utility engines and outboard motors were found to be within {minus}6.9 to +6.3% of the measured values. With this system, designers can calculate the stress concentrated at crankpin fillets precisely in a short time.

  17. Adaptive conventional power system stabilizer based on artificial neural network

    SciTech Connect

    Kothari, M.L.; Segal, R.; Ghodki, B.K.

    1995-12-31

    This paper deals with an artificial neural network (ANN) based adaptive conventional power system stabilizer (PSS). The ANN comprises an input layer, a hidden layer and an output layer. The input vector to the ANN comprises real power (P) and reactive power (Q), while the output vector comprises optimum PSS parameters. A systematic approach for generating training set covering wide range of operating conditions, is presented. The ANN has been trained using back-propagation training algorithm. Investigations reveal that the dynamic performance of ANN based adaptive conventional PSS is quite insensitive to wide variations in loading conditions.

  18. Artificial neural networks for classifying olfactory signals.

    PubMed

    Linder, R; Pöppl, S J

    2000-01-01

    For practical applications, artificial neural networks have to meet several requirements: Mainly they should learn quick, classify accurate and behave robust. Programs should be user-friendly and should not need the presence of an expert for fine tuning diverse learning parameters. The present paper demonstrates an approach using an oversized network topology, adaptive propagation (APROP), a modified error function, and averaging outputs of four networks described for the first time. As an example, signals from different semiconductor gas sensors of an electronic nose were classified. The electronic nose smelt different types of edible oil with extremely different a-priori-probabilities. The fully-specified neural network classifier fulfilled the above mentioned demands. The new approach will be helpful not only for classifying olfactory signals automatically but also in many other fields in medicine, e.g. in data mining from medical databases.

  19. Squeezing the turnip with artificial neural nets.

    PubMed

    Francl, Leonard J

    2004-09-01

    ABSTRACT Modeling in epidemiology has followed many different strategies and philosophies. Artificial neural networks (ANNs) comprise a family of highly flexible and adaptive models that have shown promise for application to modeling disease phenomena in general and plant disease forecasting in particular. ANN modeling requires the availability of representative, robust input data and exhaustive testing of model aptness and optimization; meanwhile, ANNs sacrifice much of the biological insight often derived through other model forms. On the other hand, ANNs may extract previously undetected and possibly complex relationships, which can increase prediction accuracy over mainstream statistical methods, usually in an incremental manner.

  20. Digital Image Compression Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.

    1993-01-01

    The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.

  1. Higher-order artificial neural networks

    SciTech Connect

    Bengtsson, M.

    1990-12-01

    The report investigates the storage capacity of an artificial neural network where the state of each neuron depends on quadratic correlations of all other neurons, i.e. a third order network. This is in contrast to a standard Hopfield network where the state of each single neuron depends on the state on every other neuron, without any correlations. The storage capacity of a third order network is larger than that for standard Hopfield by one order of N. However, the number of connections is also larger by an order of N. It is shown that the storage capacity per connection is identical for standard Hopfield and for this third order network.

  2. Hadamard design and artificial neural nets

    SciTech Connect

    Kuerten, K.E. Universitaet Wien ); Klingen, N. )

    1993-04-01

    Hadamard theory is shown to play an important role in the generation of Boolean decision functions, a fundamental tool in the field of artificial neural network design. Based on a group-theoretic introduction of a complete set of Hadamard vectors, whose matrices are of the order of a power of two, the authors classify subsets according to the degree of their linear dependence. They show in the thermodynamic limit that essentially the whole Hadamard space is occupied by representatives with defect not exceeding two or three. 15 refs., 1 fig.

  3. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  4. Adaptive evolutionary artificial neural networks for pattern classification.

    PubMed

    Oong, Tatt Hee; Isa, Nor Ashidi Mat

    2011-11-01

    This paper presents a new evolutionary approach called the hybrid evolutionary artificial neural network (HEANN) for simultaneously evolving an artificial neural networks (ANNs) topology and weights. Evolutionary algorithms (EAs) with strong global search capabilities are likely to provide the most promising region. However, they are less efficient in fine-tuning the search space locally. HEANN emphasizes the balancing of the global search and local search for the evolutionary process by adapting the mutation probability and the step size of the weight perturbation. This is distinguishable from most previous studies that incorporate EA to search for network topology and gradient learning for weight updating. Four benchmark functions were used to test the evolutionary framework of HEANN. In addition, HEANN was tested on seven classification benchmark problems from the UCI machine learning repository. Experimental results show the superior performance of HEANN in fine-tuning the network complexity within a small number of generations while preserving the generalization capability compared with other algorithms. PMID:21968733

  5. Combination of uniform design with artificial neural network coupling genetic algorithm: an effective way to obtain high yield of biomass and algicidal compound of a novel HABs control actinomycete

    PubMed Central

    2014-01-01

    Controlling harmful algae blooms (HABs) using microbial algicides is cheap, efficient and environmental-friendly. However, obtaining high yield of algicidal microbes to meet the need of field test is still a big challenge since qualitative and quantitative analysis of algicidal compounds is difficult. In this study, we developed a protocol to increase the yield of both biomass and algicidal compound present in a novel algicidal actinomycete Streptomyces alboflavus RPS, which kills Phaeocystis globosa. To overcome the problem in algicidal compound quantification, we chose algicidal ratio as the index and used artificial neural network to fit the data, which was appropriate for this nonlinear situation. In this protocol, we firstly determined five main influencing factors through single factor experiments and generated the multifactorial experimental groups with a U15(155) uniform-design-table. Then, we used the traditional quadratic polynomial stepwise regression model and an accurate, fully optimized BP-neural network to simulate the fermentation. Optimized with genetic algorithm and verified using experiments, we successfully increased the algicidal ratio of the fermentation broth by 16.90% and the dry mycelial weight by 69.27%. These results suggested that this newly developed approach is a viable and easy way to optimize the fermentation conditions for algicidal microorganisms. PMID:24886410

  6. Artificial neural networks in predicting current in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Panoiu, C.; Iordan, A.; Ghiormez, L.

    2014-03-01

    The paper presents a study of the possibility of using artificial neural networks for the prediction of the current and the voltage of Electric Arc Furnaces. Multi-layer perceptron and radial based functions Artificial Neural Networks implemented in Matlab were used. The study is based on measured data items from an Electric Arc Furnace in an industrial plant in Romania.

  7. Automatic segmentation of cerebral MR images using artificial neural networks

    SciTech Connect

    Alirezaie, J.; Jernigan, M.E.; Nahmias, C.

    1996-12-31

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the Self Organizing Feature Map (SOFM) artificial neural network for feature mapping and generates a set of codebook vectors. By extending the network with an additional layer the map will be classified and each tissue class will be labelled. An algorithm has been developed for extracting the cerebrum from the head scan prior to the segmentation. Extracting the cerebrum is performed by stripping away the skull pixels from the T2 image. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. To compare the results with other conventional approaches we applied the c-means algorithm to the problem.

  8. Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks

    NASA Astrophysics Data System (ADS)

    Montahaei, Mansoure; Oskooi, Behrooz

    2014-02-01

    An extension of an artificial neural network (ANN) approach to solve the magnetotelluric (MT) inverse problem for azimuthally anisotropic resistivities is presented and applied for a real dataset. Three different model classes, containing general 1-D and 2-D azimuthally anisotropic features, have been considered. For each model class, characteristics of three-layer feed forward ANNs trained through an error back propagation algorithm have been adjusted to approximate the inverse modeling function. It appears that, at least for synthetic models, reasonable results would be obtained by applying the amplitudes of the complex impedance tensor elements as inputs. Furthermore, the Levenberg-Marquart algorithm possesses optimal performance as a learning paradigm for this problem. The evaluation of applicability of the trained ANNs for unknown data sets excluded from the learning procedure reveals that the trained ANNs possess acceptable interpolation and extrapolation abilities to estimate model parameters accurately. This method was also successfully used for a field dataset wherein anisotropy had been previously recognized.

  9. Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS.

    PubMed

    Zhang, Ping; Hong, Bo; He, Liang; Cheng, Fei; Zhao, Peng; Wei, Cailiang; Liu, Yunhui

    2015-10-01

    PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN) model and a geographical information system (GIS) in Xi'an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO₂, and NO₂, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors' variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm) and elastic (trainrp) algorithms were more than 0.8, the index of agreement (IA) ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE) and Root Mean Square Error (RMSE) indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas.

  10. Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS

    PubMed Central

    Zhang, Ping; Hong, Bo; He, Liang; Cheng, Fei; Zhao, Peng; Wei, Cailiang; Liu, Yunhui

    2015-01-01

    PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN) model and a geographical information system (GIS) in Xi’an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO2, and NO2, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors’ variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm) and elastic (trainrp) algorithms were more than 0.8, the index of agreement (IA) ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE) and Root Mean Square Error (RMSE) indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas. PMID:26426030

  11. Artificial neural network for multifunctional areas.

    PubMed

    Riccioli, Francesco; El Asmar, Toufic; El Asmar, Jean-Pierre; Fagarazzi, Claudio; Casini, Leonardo

    2016-01-01

    The issues related to the appropriate planning of the territory are particularly pronounced in highly inhabited areas (urban areas), where in addition to protecting the environment, it is important to consider an anthropogenic (urban) development placed in the context of sustainable growth. This work aims at mathematically simulating the changes in the land use, by implementing an artificial neural network (ANN) model. More specifically, it will analyze how the increase of urban areas will develop and whether this development would impact on areas with particular socioeconomic and environmental value, defined as multifunctional areas. The simulation is applied to the Chianti Area, located in the province of Florence, in Italy. Chianti is an area with a unique landscape, and its territorial planning requires a careful examination of the territory in which it is inserted. PMID:26718948

  12. A new approach to artificial neural networks.

    PubMed

    Baptista Filho, B D; Cabral, E L; Soares, A J

    1998-01-01

    A novel approach to artificial neural networks is presented. The philosophy of this approach is based on two aspects: the design of task-specific networks, and a new neuron model with multiple synapses. The synapses' connective strengths are modified through selective and cumulative processes conducted by axo-axonic connections from a feedforward circuit. This new concept was applied to the position control of a planar two-link manipulator exhibiting excellent results on learning capability and generalization when compared with a conventional feedforward network. In the present paper, the example shows only a network developed from a neuronal reflexive circuit with some useful artifices, nevertheless without the intention of covering all possibilities devised.

  13. Dynamic artificial neural networks with affective systems.

    PubMed

    Schuman, Catherine D; Birdwell, J Douglas

    2013-01-01

    Artificial neural networks (ANNs) are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP) and long term depression (LTD), and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.

  14. Galaxies, human eyes, and artificial neural networks.

    PubMed

    Lahav, O; Naim, A; Buta, R J; Corwin, H G; de Vaucouleurs, G; Dressler, A; Huchra, J P; van den Bergh, S; Raychaudhury, S; Sodré, L; Storrie-Lombardi, M C

    1995-02-10

    The quantitative morphological classification of galaxies is important for understanding the origin of type frequency and correlations with environment. However, galaxy morphological classification is still mainly done visually by dedicated individuals, in the spirit of Hubble's original scheme and its modifications. The rapid increase in data on galaxy images at low and high redshift calls for a re-examination of the classification schemes and for automatic methods. Here are shown results from a systematic comparison of the dispersion among human experts classifying a uniformly selected sample of more than 800 digitized galaxy images. These galaxy images were then classified by six of the authors independently. The human classifications are compared with each other and with an automatic classification by an artificial neural network, which replicates the classification by a human expert to the same degree of agreement as that between two human experts. PMID:17813914

  15. Artificial neural network circuits with Josephson devices

    SciTech Connect

    Harada, Y.; Goto, E. )

    1991-03-01

    This article describes a new approach of Josephson devices for computer applications. With an artificial neural network scheme Josephson devices is expected to develop a new paradigm for future computer systems. Here the authors discuss circuit configuration for a neuron with Josephson devices. The authors proposed a combination of a variable bias source and Josephson devices for a synapse circuit. The bias source signal is steered by the Josephson device input signal and becomes the synapse output signal. These output signals are summed up at the specific resistor or inductor to produce the weighted sum of Josephson devices input signals. According to the error signal, the bias source value is corrected. This corresponds to the learning procedure.

  16. Artificial neural network for multifunctional areas.

    PubMed

    Riccioli, Francesco; El Asmar, Toufic; El Asmar, Jean-Pierre; Fagarazzi, Claudio; Casini, Leonardo

    2016-01-01

    The issues related to the appropriate planning of the territory are particularly pronounced in highly inhabited areas (urban areas), where in addition to protecting the environment, it is important to consider an anthropogenic (urban) development placed in the context of sustainable growth. This work aims at mathematically simulating the changes in the land use, by implementing an artificial neural network (ANN) model. More specifically, it will analyze how the increase of urban areas will develop and whether this development would impact on areas with particular socioeconomic and environmental value, defined as multifunctional areas. The simulation is applied to the Chianti Area, located in the province of Florence, in Italy. Chianti is an area with a unique landscape, and its territorial planning requires a careful examination of the territory in which it is inserted.

  17. The Classification of a Simulation Data of a Servo System via Evolutionary Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Alkaya, Asil; Bayhan, G. Miraç

    Evolutionary neural networks (EANNs) are the combination of artificial neural networks and evolutionary algorithms. This merge enabled these two methods to complement the disadvantages of the other methods. Traditional artificial neural networks based on backpropagation algorithms have some limitations. Contribution by artificial neural networks was the flexibility of nonlinear function approximation, which cannot be easily implemented with prototype evolutionary algorithm. On the other hand, evolutionary algorithm has freed artificial neural networks from simple gradient descent approaches of optimization. Classification is an important task in many domains and though there are several methods that can be used to find the relationship between the input and output space , among the different works, EAs and NNs stands out as one of the most promising methods. In this study, the data gathered from a simulation of a servo system involving a servo amplifier, a motor, a lead screw/nut, and a sliding carriage of some sort is classified by the application coded in Qt programming environment to predict the rise time of a servomechanism in terms of two (continuous) gain settings and two (discrete) choices of mechanical linkages.

  18. Training Spiking Neural Models Using Artificial Bee Colony

    PubMed Central

    Vazquez, Roberto A.; Garro, Beatriz A.

    2015-01-01

    Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644

  19. Training spiking neural models using artificial bee colony.

    PubMed

    Vazquez, Roberto A; Garro, Beatriz A

    2015-01-01

    Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644

  20. Applications of artificial neural networks in medical science.

    PubMed

    Patel, Jigneshkumar L; Goyal, Ramesh K

    2007-09-01

    Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.

  1. [How can an otolaryngologist benefit from artificial neural networks?].

    PubMed

    Szaleniec, Joanna; Składzień, Jacek; Tadeusiewicz, Ryszard; Oleś, Krzysztof; Konior, Marcin; Przeklasa, Robert

    2012-01-01

    Artificial neural networks are informatic systems that have unique computational capabilities. The principle of their functioning is based on the rules of data processing in the brain. This article discusses the most important features of the artificial neural networks with reference to their applications in otolaryngology. The cited studies concern the fields of rhinology, audiology, phoniatrics, vestibulology, oncology, sleep apnea and salivary gland diseases. The authors also refer to their own experience with predictive neural models designed in the Department of Otolaryngology of the Jagiellonian University Medical College in Krakow. The applications of artificial neural networks in clinical diagnosis, automated signal interpretation and outcome prediction are presented. Moreover, the article explains how the artificial neural networks work and how the otolaryngologists can use them in their clinical practice and research.

  2. Neural algorithms on VLSI concurrent architectures

    SciTech Connect

    Caviglia, D.D.; Bisio, G.M.; Parodi, G.

    1988-09-01

    The research concerns the study of neural algorithms for developing CAD tools with A.I. features in VLSI design activities. In this paper the focus is on optimization problems such as partitioning, placement and routing. These problems require massive computational power to be solved (NP-complete problems) and the standard approach is usually based on euristic techniques. Neural algorithms can be represented by a circuital model. This kind of representation can be easily mapped in a real circuit, which, however, features limited flexibility with respect to the variety of problems. In this sense the simulation of the neural circuit, by mapping it on a digital VLSI concurrent architecture seems to be preferrable; in addition this solution offers a wider choice with regard to algorithms characteristics (e.g. transfer curve of neural elements, reconfigurability of interconnections, etc.). The implementation with programmable components, such as transputers, allows an indirect mapping of the algorithm (one transputer for N neurons) accordingly to the dimension and the characteristics of the problem. In this way the neural algorithm described by the circuit is reduced to the algorithm that simulates the network behavior. The convergence properties of that formulation are studied with respect to the characteristics of the neural element transfer curve.

  3. Automatic voice recognition using traditional and artificial neural network approaches

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1989-01-01

    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.

  4. Vectorized algorithms for spiking neural network simulation.

    PubMed

    Brette, Romain; Goodman, Dan F M

    2011-06-01

    High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages. PMID:21395437

  5. Optimization of the Production of Extracellular Polysaccharide from the Shiitake Medicinal Mushroom Lentinus edodes (Agaricomycetes) Using Mutation and a Genetic Algorithm-Coupled Artificial Neural Network (GA-ANN).

    PubMed

    Adeeyo, Adeyemi Ojutalayo; Lateef, Agbaje; Gueguim-Kana, Evariste Bosco

    2016-01-01

    Exopolysaccharide (EPS) production by a strain of Lentinus edodes was studied via the effects of treatments with ultraviolet (UV) irradiation and acridine orange. Furthermore, optimization of EPS production was studied using a genetic algorithm coupled with an artificial neural network in submerged fermentation. Exposure to irradiation and acridine orange resulted in improved EPS production (2.783 and 5.548 g/L, respectively) when compared with the wild strain (1.044 g/L), whereas optimization led to improved productivity (23.21 g/L). The EPS produced by various strains also demonstrated good DPPH scavenging activities of 45.40-88.90%, and also inhibited the growth of Escherichia coli and Klebsiella pneumoniae. This study shows that multistep optimization schemes involving physical-chemical mutation and media optimization can be an attractive strategy for improving the yield of bioactives from medicinal mushrooms. To the best of our knowledge, this report presents the first reference of a multistep approach to optimizing EPS production in L. edodes. PMID:27649726

  6. Artificial neural networks optimization method for radioactive source localization

    SciTech Connect

    Wacholder, E.; Elias, E.; Merlis, Y.

    1995-05-01

    An optimization artificial neural networks model is developed for solving the ill-posed inverse transport problem associated with localizing radioactive sources in a medium with known properties and dimensions. The model is based on the recurrent (or feedback) Hopfield network with fixed weights. The source distribution is determined based on the response of a limited number of external detectors of known spatial deployment in conjunction with a radiation transport model. The algorithm is tested and evaluated for a large number of simulated two-dimensional cases. Computations are carried out at different noise levels to account for statistical errors encountered in engineering applications. The sensitivity to noise is found to depend on the number of detectors and on their spatial deployment. A pretest empirical procedure is, therefore, suggested for determining an effective arrangement of detectors for a given problem.

  7. Artificial neural networks for plasma x-ray spectroscopic analysis

    SciTech Connect

    Larsen, J.T. ); Morgan, W.L. ); Goldstein, W.H. )

    1992-10-01

    Modern diagnostic instrumentation produces a vast amount of data that often requires substantial analysis efforts. New methods are needed to improve the efficiency of the analysis process. Artificial neural networks have been applied to a variety of signal processing and image recognition problems. The feed-forward, back-propagation technique is well suited for the analysis of scientific laboratory data, which is viewed as a pattern-matching problem. We summarize the concepts and algorithms as implemented on a personal computer, and illustrate the method using a nonlocal thermodynamic equilibrium theoretical atomic physics model for {ital k}-shell x-ray spectroscopy of a high density, high temperature aluminum plasma. Extensions to other types of spectroscopy data analysis are discussed.

  8. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  9. Geophysical phenomena classification by artificial neural networks

    SciTech Connect

    Gough, M.P.; Bruckner, J.R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN`s) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN`s were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  10. DEM interpolation based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Jiao, Limin; Liu, Yaolin

    2005-10-01

    This paper proposed a systemic resolution scheme of Digital Elevation model (DEM) interpolation based on Artificial Neural Networks (ANNs). In this paper, we employ BP network to fit terrain surface, and then detect and eliminate the samples with gross errors. This paper uses Self-organizing Feature Map (SOFM) to cluster elevation samples. The study area is divided into many more homogenous tiles after clustering. BP model is employed to interpolate DEM in each cluster. Because error samples are eliminated and clusters are built, interpolation result is better. The case study indicates that ANN interpolation scheme is feasible. It also shows that ANN can get a more accurate result by comparing ANN with polynomial and spline interpolation. ANN interpolation doesn't need to determine the interpolation function beforehand, so manmade influence is lessened. The ANN interpolation is more automatic and intelligent. At the end of the paper, we propose the idea of constructing ANN surface model. This model can be used in multi-scale DEM visualization, and DEM generalization, etc.

  11. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    Wildfires have a profound impact upon the biosphere and our society in general. They cause loss of life, destruction of personal property and natural resources and alter the chemistry of the atmosphere. In response to the concern over the consequences of wildland fire and to support the fire management community, the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS) located in Camp Springs, Maryland gradually developed an operational system to routinely monitor wildland fire by satellite observations. The Hazard Mapping System, as it is known today, allows a team of trained fire analysts to examine and integrate, on a daily basis, remote sensing data from Geostationary Operational Environmental Satellite (GOES), Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors and generate a 24 hour fire product for the conterminous United States. Although assisted by automated fire detection algorithms, N O M has not been able to eliminate the human element from their fire detection procedures. As a consequence, the manually intensive effort has prevented NOAA from transitioning to a global fire product as urged particularly by climate modelers. NASA at Goddard Space Flight Center in Greenbelt, Maryland is helping N O M more fully automate the Hazard Mapping System by training neural networks to mimic the decision-making process of the frre analyst team as well as the automated algorithms.

  12. Doubly stochastic Poisson processes in artificial neural learning.

    PubMed

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  13. Evolution of an artificial neural network based autonomous land vehicle controller.

    PubMed

    Baluja, S

    1996-01-01

    This paper presents an evolutionary method for creating an artificial neural network based autonomous land vehicle controller. The evolved controllers perform better in unseen situations than those trained with an error backpropagation learning algorithm designed for this task. In this paper, an overview of the previous connectionist based approaches to this task is given, and the evolutionary algorithms used in this study are described in detail. Methods for reducing the high computational costs of training artificial neural networks with evolutionary algorithms are explored. Error metrics specific to the task of autonomous vehicle control are introduced; the evolutionary algorithms guided by these error metrics reveal improved performance over those guided by the standard sum-squared error metric. Finally, techniques for integrating evolutionary search and error backpropagation are presented. The evolved networks are designed to control Carnegie Mellon University's NAVLAB vehicles in road following tasks. PMID:18263046

  14. Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.

    2008-05-01

    The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p

  15. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  16. Multiple image sensor data fusion through artificial neural networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With multisensor data fusion technology, the data from multiple sensors are fused in order to make a more accurate estimation of the environment through measurement, processing and analysis. Artificial neural networks are the computational models that mimic biological neural networks. With high per...

  17. Genetic algorithms for genetic neural nets. Research report

    SciTech Connect

    Sharp, D.H.; Reinitz, J.; Mjolsness, E.

    1991-01-01

    In contrast to most synthetic neural nets, biological neural networks have a strong component of genetic determination which acts before and during experiential learning. Three broad levels of phenomena are present: long-term evolution, involving crossover as well as point mutation; a developmental process mapping genetic information to a set of cells and their internal states of gene expression (genotype to phenotype); and the subsequent synaptogenesis. We describe a very simple mathematical idealization of these three levels which combines the crossover search method of genetic algorithms with the developmental models used in our previous work on 'genetic' or 'recursively generated' artificial neural nets and elaborated into a connectionist model of biological development. Despite incorporating all three levels (evolution on genes; development of cells; synapse formation) the model may actually be far cheaper to compute with than a comparable search directly in synaptic weight space.

  18. On Design and Implementation of Neural-Machine Interface for Artificial Legs

    PubMed Central

    Zhang, Xiaorong; Liu, Yuhong; Zhang, Fan; Ren, Jin; Sun, Yan (Lindsay); Yang, Qing

    2011-01-01

    The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees’ intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user’s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user’s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs. PMID:22389637

  19. Artificial neural network simulation of battery performance

    SciTech Connect

    O`Gorman, C.C.; Ingersoll, D.; Jungst, R.G.; Paez, T.L.

    1998-12-31

    Although they appear deceptively simple, batteries embody a complex set of interacting physical and chemical processes. While the discrete engineering characteristics of a battery such as the physical dimensions of the individual components, are relatively straightforward to define explicitly, their myriad chemical and physical processes, including interactions, are much more difficult to accurately represent. Within this category are the diffusive and solubility characteristics of individual species, reaction kinetics and mechanisms of primary chemical species as well as intermediates, and growth and morphology characteristics of reaction products as influenced by environmental and operational use profiles. For this reason, development of analytical models that can consistently predict the performance of a battery has only been partially successful, even though significant resources have been applied to this problem. As an alternative approach, the authors have begun development of a non-phenomenological model for battery systems based on artificial neural networks. Both recurrent and non-recurrent forms of these networks have been successfully used to develop accurate representations of battery behavior. The connectionist normalized linear spline (CMLS) network has been implemented with a self-organizing layer to model a battery system with the generalized radial basis function net. Concurrently, efforts are under way to use the feedforward back propagation network to map the {open_quotes}state{close_quotes} of a battery system. Because of the complexity of battery systems, accurate representation of the input and output parameters has proven to be very important. This paper describes these initial feasibility studies as well as the current models and makes comparisons between predicted and actual performance.

  20. An Examination of Application of Artificial Neural Network in Cognitive Radios

    NASA Astrophysics Data System (ADS)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  1. Adaptive computation algorithm for RBF neural network.

    PubMed

    Han, Hong-Gui; Qiao, Jun-Fei

    2012-02-01

    A novel learning algorithm is proposed for nonlinear modelling and identification using radial basis function neural networks. The proposed method simplifies neural network training through the use of an adaptive computation algorithm (ACA). In addition, the convergence of the ACA is analyzed by the Lyapunov criterion. The proposed algorithm offers two important advantages. First, the model performance can be significantly improved through ACA, and the modelling error is uniformly ultimately bounded. Secondly, the proposed ACA can reduce computational cost and accelerate the training speed. The proposed method is then employed to model classical nonlinear system with limit cycle and to identify nonlinear dynamic system, exhibiting the effectiveness of the proposed algorithm. Computational complexity analysis and simulation results demonstrate its effectiveness.

  2. Synoptic Classification and Establishment of Analogues with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Michaelides, S. C.; Liassidou, F.; Schizas, C. N.

    2007-06-01

    Weather charts depicting the spatial distribution of various meteorological parameters constitute an indispensable pictorial tool for meteorologists, in diagnosing and forecasting synoptic conditions and the associated weather. The purpose of the present research is to investigate whether training artificial neural networks can be employed in the objective identification of synoptic patterns on weather charts. In order to achieve this, the daily analyses at 0000UTC for 1996 were employed. The respective data consist of the grid-point values of the geopotential height of the 500 hPa isobaric level in the atmosphere. A uniform grid-point spacing of 2.5° × 2.5° is used and the geographical area covered by the investigation lies between 25°N and 65°N and between 20°W and 50°E, covering Europe, the Middle East and the Northern African Coast. An unsupervised learning self-organizing feature map algorithm, namely the Kohonen's algorithm, was employed. The input consists of the grid-point data described above and the output is the synoptic class which each day belongs to. The results referred to in this study employ the generation of 15 and 20 synoptic classes (more classes have been investigated but the results are not reported here). The results indicate that the present technique produced a satisfactory classification of the synoptic patterns over the geographical region mentioned above. Also, it is revealed that the classification performed in this study exhibits a strong seasonal relationship.

  3. Improved Diagnostics Using Polarization Imaging and Artificial Neural Networks

    PubMed Central

    Xuan, Jianhua; Klimach, Uwe; Zhao, Hongzhi; Chen, Qiushui; Zou, Yingyin; Wang, Yue

    2007-01-01

    In recent years, there has been an increasing interest in studying the propagation of polarized light in biological cells and tissues. This paper presents a novel approach to cell or tissue imaging using a full Stokes imaging system with advanced polarization image analysis algorithms for improved diagnostics. The key component of the Stokes imaging system is the electrically tunable retarder, enabling high-speed operation of the system to acquire four intensity images sequentially. From the acquired intensity images, four Stokes vector images can be computed to obtain complete polarization information. Polarization image analysis algorithms are then developed to analyze Stokes polarization images for cell or tissue classification. Specifically, wavelet transforms are first applied to the Stokes components for initial feature analysis and extraction. Artificial neural networks (ANNs) are then used to extract diagnostic features for improved classification and prediction. In this study, phantom experiments have been conducted using a prototyped Stokes polarization imaging device. In particular, several types of phantoms, consisting of polystyrene latex spheres in various diameters, were prepared to simulate different conditions of epidermal layer of skin. The experimental results from phantom studies and a plant cell study show that the classification performance using Stokes images is significantly improved over that using the intensity image only. PMID:18274657

  4. Fast training algorithms for multilayer neural nets.

    PubMed

    Brent, R P

    1991-01-01

    An algorithm that is faster than back-propagation and for which it is not necessary to specify the number of hidden units in advance is described. The relationship with other fast pattern-recognition algorithms, such as algorithms based on k-d trees, is discussed. The algorithm has been implemented and tested on artificial problems, such as the parity problem, and on real problems arising in speech recognition. Experimental results, including training times and recognition accuracy, are given. Generally, the algorithm achieves accuracy as good as or better than nets trained using back-propagation. Accuracy is comparable to that for the nearest-neighbor algorithm, which is slower and requires more storage space.

  5. A biomimetic adaptive algorithm and low-power architecture for implantable neural decoders.

    PubMed

    Rapoport, Benjamin I; Wattanapanitch, Woradorn; Penagos, Hector L; Musallam, Sam; Andersen, Richard A; Sarpeshkar, Rahul

    2009-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat.

  6. A Biomimetic Adaptive Algorithm and Low-Power Architecture for Implantable Neural Decoders

    PubMed Central

    Rapoport, Benjamin I.; Wattanapanitch, Woradorn; Penagos, Hector L.; Musallam, Sam; Andersen, Richard A.; Sarpeshkar, Rahul

    2010-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat. PMID:19964345

  7. Adaptive Neurons For Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  8. Non-US artificial neural network research. FASAC special study

    SciTech Connect

    Davidson, R. B.

    1991-10-01

    This assessment was undertaken to examine for US Government research and development sponsors (and for Government policy-makers and analysts who must be aware of foreign scientific and technological capabilities) the recent range, quality, and accomplishments of non-US artificial neural network research and development activities. It records the project's initial assessments of major artificial neural network research and development activities in Western Europe, Japan, and the Soviet Union, where the largest, most organized efforts are proceeding or where potential military applications are of interest to US policy-makers. We plan to issue updated versions of this report periodically, as more research and development activities (in more places) are examined and as the efforts assessed in this report succeed or fail. This report focuses on artificial neural networks as an information processing technology, the goal of which is design and production of powerful computers for appropriate applications.

  9. On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving Plastic Artificial Neural Networks

    PubMed Central

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099

  10. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks.

    PubMed

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.

  11. Wood Defect Identification Based on Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Cao, Jun; Wang, Feng-Hu; Sun, Jian-Ping; Liu, Yu

    Defects in wooden material reduce the value of timber. In order to save and improve the utilization of the timber, many studies are carried out on the ways to detect defects in wood. The recent development of computer technology, data processing technology and signal processing technology provides researchers with more damage identification problem solution ideas and methods. This article studies the vibration characteristics of wood. With an exploration of the wavelet analysis and artificial neural network for the wood composite material defects based on non-destructive testing, an artificial neural network model is established for wood-based composite materials non-destructive testing technology.

  12. Evolving artificial neural networks to control chaotic systems

    NASA Astrophysics Data System (ADS)

    Weeks, Eric R.; Burgess, John M.

    1997-08-01

    We develop a genetic algorithm that produces neural network feedback controllers for chaotic systems. The algorithm was tested on the logistic and Hénon maps, for which it stabilizes an unstable fixed point using small perturbations, even in the presence of significant noise. The network training method [D. E. Moriarty and R. Miikkulainen, Mach. Learn. 22, 11 (1996)] requires no previous knowledge about the system to be controlled, including the dimensionality of the system and the location of unstable fixed points. This is the first dimension-independent algorithm that produces neural network controllers using time-series data. A software implementation of this algorithm is available via the World Wide Web.

  13. Functional approximation using artificial neural networks in structural mechanics

    NASA Technical Reports Server (NTRS)

    Alam, Javed; Berke, Laszlo

    1993-01-01

    The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In this study, the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied to the mapping of functions that are encountered in structural mechanics problems. Several different network configurations were chosen to train the available data for problems in materials characterization and structural analysis of plates and shells. By using the recall process, the accuracy of these trained networks was assessed.

  14. Analysis of torsional oscillations using an artificial neural network

    SciTech Connect

    Hsu, Y.Y.; Jeng, L,H. )

    1992-12-01

    In this paper, a novel approach using an artificial neural network (ANN) is proposed for the analysis of torsional oscillations in a power system. In the developed artificial neural network, those system variables such as generator loadings and capacitor compensation ratio which have major impacts on the damping characteristics of torsional oscillatio modes are employed as the inputs. The outputs of the neural net provide the desired eigenvalues for torsional modes. Once the connection weights of the neural network have been learned using a set of training data derived off-line, the neural network can be applied to torsional analysis in real-time situations. To demonstrate the effectiveness of the proposed neural net, torsional analysis is performed on the IEEE First Benchmark Model. It is concluded from the test results that accurate assessment of the torsional mode eigenvalues can be achieved by the neural network in a very efficient manner. Thereofore, the proposed neural network approach can serve as a valuable tool to system operators in conducting SSR analysis in operational planning.

  15. Synchronous machine steady-state stability analysis using an artificial neural network

    SciTech Connect

    Chen, C.R.; Hsu, Y.Y. . Dept. of Electrical Engineering)

    1991-03-01

    A new type of artificial neural network is proposed for the steady-state stability analysis of a synchronous generator. In the developed artificial neutral network, those system variables which play an important role in steady-state stability such as generator outputs and power system stabilizer parameters are employed as the inputs. The output of the neural net provides the information on steady-state stability. Once the connection weights of the neural network have been learned using a set of training data derived off-line, the neural net can be applied to analyze the steady-state stability of the system time. To demonstrate the effectiveness of the proposed neural net, steady-state stability analysis is performed on a synchronous generator connected to a large power system. It is found that the proposed neural net requires much less training time than the multilayer feedforward network with backpropagation-momentum learning algorithm. It is also concluded from the test results that correct stability assessment can be achieved by the neural network.

  16. Application of artificial neural networks (ANNs) in wine technology.

    PubMed

    Baykal, Halil; Yildirim, Hatice Kalkan

    2013-01-01

    In recent years, neural networks have turned out as a powerful method for numerous practical applications in a wide variety of disciplines. In more practical terms neural networks are one of nonlinear statistical data modeling tools. They can be used to model complex relationships between inputs and outputs or to find patterns in data. In food technology artificial neural networks (ANNs) are useful for food safety and quality analyses, predicting chemical, functional and sensory properties of various food products during processing and distribution. In wine technology, ANNs have been used for classification and for predicting wine process conditions. This review discusses the basic ANNs technology and its possible applications in wine technology.

  17. Recursive least-squares learning algorithms for neural networks

    SciTech Connect

    Lewis, P.S. ); Hwang, Jenq-Neng . Dept. of Electrical Engineering)

    1990-01-01

    This paper presents the development of a pair of recursive least squares (RLS) algorithms for online training of multilayer perceptrons, which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation, either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is in the order of (N{sup 2}), where N is the number of network parameters. This is due to the estimation of the N {times} N inverse Hessian matrix. Less computationally intensive approximations of the RLS algorithms can be easily derived by using only block diagonal elements of this matrix, thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example, RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6331). 14 refs., 3 figs.

  18. Artificial neural network Radon inversion for image reconstruction.

    PubMed

    Rodriguez, A F; Blass, W E; Missimer, J H; Leenders, K L

    2001-04-01

    Image reconstruction techniques are essential to computer tomography. Algorithms such as filtered backprojection (FBP) or algebraic techniques are most frequently used. This paper presents an attempt to apply a feed-forward back-propagation supervised artificial neural network (BPN) to tomographic image reconstruction, specifically to positron emission tomography (PET). The main result is that the network trained with Gaussian test images proved to be successful at reconstructing images from projection sets derived from arbitrary objects. Additional results relate to the design of the network and the full width at half maximum (FWHM) of the Gaussians in the training sets. First, the optimal number of nodes in the middle layer is about an order of magnitude less than the number of input or output nodes. Second, the number of iterations required to achieve a required training set tolerance appeared to decrease exponentially with the number of nodes in the middle layer. Finally, for training sets containing Gaussians of a single width, the optimal accuracy of reconstructing the control set is obtained with a FWHM of three pixels. Intended to explore feasibility, the BPN presented in the following does not provide reconstruction accuracy adequate for immediate application to PET. However, the trained network does reconstruct general images independent of the data with which it was trained. Proposed in the concluding section are several possible refinements that should permit the development of a network capable of fast reconstruction of three-dimensional images from the discrete, noisy projection data characteristic of PET.

  19. Detection of spikes with artificial neural networks using raw EEG.

    PubMed

    Ozdamar, O; Kalayci, T

    1998-04-01

    Artificial neural networks (ANN) using raw electroencephalogram (EEG) data were developed and tested off-line to detect transient epileptiform discharges (spike and spike/wave) and EMG activity in an ongoing EEG. In the present study, a feedforward ANN with a variable number of input and hidden layer units and two output units was used to optimize the detection system. The ANN system was trained and tested with the backpropagation algorithm using a large data set of exemplars. The effects of different EEG time windows and the number of hidden layer neurons were examined using rigorous statistical tests for optimum detection sensitivity and selectivity. The best ANN configuration occurred with an input time window of 150 msec (30 input units) and six hidden layer neurons. This input interval contained information on the wave component of the epileptiform discharge which improved detection. Two-dimensional receiver operating curves were developed to define the optimum threshold parameters for best detection. Comparison with previous networks using raw EEG showed improvement in both sensitivity and selectivity. This study showed that raw EEG can be successfully used to train ANNs to detect epileptogenic discharges with a high success rate without resorting to experimenter-selected parameters which may limit the efficiency of the system.

  20. Applying artificial neural networks to modeling the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Xiao, Cunying; Hu, Xiong

    2010-07-01

    An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model’s zonal mean temperatures are too high by ˜6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause.

  1. Use of artificial neural network for spatial rainfall analysis

    NASA Astrophysics Data System (ADS)

    Paraskevas, Tsangaratos; Dimitrios, Rozos; Andreas, Benardos

    2014-04-01

    In the present study, the precipitation data measured at 23 rain gauge stations over the Achaia County, Greece, were used to estimate the spatial distribution of the mean annual precipitation values over a specific catchment area. The objective of this work was achieved by programming an Artificial Neural Network (ANN) that uses the feed-forward back-propagation algorithm as an alternative interpolating technique. A Geographic Information System (GIS) was utilized to process the data derived by the ANN and to create a continuous surface that represented the spatial mean annual precipitation distribution. The ANN introduced an optimization procedure that was implemented during training, adjusting the hidden number of neurons and the convergence of the ANN in order to select the best network architecture. The performance of the ANN was evaluated using three standard statistical evaluation criteria applied to the study area and showed good performance. The outcomes were also compared with the results obtained from a previous study in the area of research which used a linear regression analysis for the estimation of the mean annual precipitation values giving more accurate results. The information and knowledge gained from the present study could improve the accuracy of analysis concerning hydrology and hydrogeological models, ground water studies, flood related applications and climate analysis studies.

  2. Unique applications for artificial neural networks. Phase 1. Final report

    SciTech Connect

    Not Available

    1991-08-08

    The investigation concerns the application of modular neural networks, working synergistically with genetic search, to provide a powerful means of intelligently controlling heuristic mathematical algorithms for large-scale vehicle routing and scheduling problems. The design lends itself naturally to parallel computing on loosely coupled networks of computers, and to implementation on parallel architectures such as MIMD machines. Extensive developmental work, coding and computational testing was carried on generic vehicle routing problems. The results are consistently superior to known alternatives, and provide strong motivation to extend the approach into more complex problem domains and military applications. The basic approach was also applied to routing problems with time constraints, a significant complication of considerable practical importance. Results of this problem are also consistently good, and there is potential to further investigate the use of the approach in this domain. Finally, very preliminary results are available for applying the methodology to routing and mission planning for remote autonomous military vehicles, such as Tomahawk cruise missiles or other smart weapons systems. In summary, the high performance achieved suggests that the multiparadigm approaches that utilize methods from artificial intelligence in conjunction with powerful and proven methods from mathematical combinatorial optimization can build upon the strengths of each constituent, and achieve performance that none of the methods can obtain in isolation.

  3. A solution method of unit commitment by artificial neural networks

    SciTech Connect

    Yokoyama, R. )

    1992-08-01

    This paper explores the possibility of applying the Hopfield neural network to combinatorial optimization problems in power systems, in particular to unit commitment. A large number of inequality constraints included in unit commitment are handled by dedicated neural networks. As an exact mapping of the problem onto the neural network is impossible with the state of the art, the authors have developed a two step solution method: firstly, generators to start up at each period are determined by the network and then their outputs are adjusted by a conventional algorithm. The proposed neural network could solve a unit commitment of 30 units over 24 periods, and results obtained are very encouraging.

  4. Artificial neural networks: theoretical background and pharmaceutical applications: a review.

    PubMed

    Wesolowski, Marek; Suchacz, Bogdan

    2012-01-01

    In recent times, there has been a growing interest in artificial neural networks, which are a rough simulation of the information processing ability of the human brain, as modern and vastly sophisticated computational techniques. This interest has also been reflected in the pharmaceutical sciences. This paper presents a review of articles on the subject of the application of neural networks as effective tools assisting the solution of various problems in science and the pharmaceutical industry, especially those characterized by multivariate and nonlinear dependencies. After a short description of theoretical background and practical basics concerning the computations performed by means of neural networks, the most important pharmaceutical applications of neural networks, with suitable references, are demonstrated. The huge role played by neural networks in pharmaceutical analysis, pharmaceutical technology, and searching for the relationships between the chemical structure and the properties of newly synthesized compounds as candidates for drugs is discussed.

  5. Simple artificial neural networks that match probability and exploit and explore when confronting a multiarmed bandit.

    PubMed

    Dawson, Michael R W; Dupuis, Brian; Spetch, Marcia L; Kelly, Debbie M

    2009-08-01

    The matching law (Herrnstein 1961) states that response rates become proportional to reinforcement rates; this is related to the empirical phenomenon called probability matching (Vulkan 2000). Here, we show that a simple artificial neural network generates responses consistent with probability matching. This behavior was then used to create an operant procedure for network learning. We use the multiarmed bandit (Gittins 1989), a classic problem of choice behavior, to illustrate that operant training balances exploiting the bandit arm expected to pay off most frequently with exploring other arms. Perceptrons provide a medium for relating results from neural networks, genetic algorithms, animal learning, contingency theory, reinforcement learning, and theories of choice.

  6. Simple artificial neural networks that match probability and exploit and explore when confronting a multiarmed bandit.

    PubMed

    Dawson, Michael R W; Dupuis, Brian; Spetch, Marcia L; Kelly, Debbie M

    2009-08-01

    The matching law (Herrnstein 1961) states that response rates become proportional to reinforcement rates; this is related to the empirical phenomenon called probability matching (Vulkan 2000). Here, we show that a simple artificial neural network generates responses consistent with probability matching. This behavior was then used to create an operant procedure for network learning. We use the multiarmed bandit (Gittins 1989), a classic problem of choice behavior, to illustrate that operant training balances exploiting the bandit arm expected to pay off most frequently with exploring other arms. Perceptrons provide a medium for relating results from neural networks, genetic algorithms, animal learning, contingency theory, reinforcement learning, and theories of choice. PMID:19596631

  7. Application of artificial neural networks to the design optimization of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  8. Introducing Artificial Neural Networks through a Spreadsheet Model

    ERIC Educational Resources Information Center

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  9. Artificial Neural Networks in Policy Research: A Current Assessment.

    ERIC Educational Resources Information Center

    Woelfel, Joseph

    1993-01-01

    Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…

  10. Artificial Neural Networks for Modeling Knowing and Learning in Science.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2000-01-01

    Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)

  11. Recurrent Artificial Neural Networks and Finite State Natural Language Processing.

    ERIC Educational Resources Information Center

    Moisl, Hermann

    It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…

  12. An artificial neural network approach to transformer fault diagnosis

    SciTech Connect

    Zhang, Y.; Ding, X.; Liu, Y.; Griffin, P.J.

    1996-10-01

    This paper presents an artificial neural network (ANN) approach to diagnose and detect faults in oil-filled power transformers based on dissolved gas-in-oil analysis. A two-step ANN method is used to detect faults with or without cellulose involved. Good diagnosis accuracy is obtained with the proposed approach.

  13. Artificial-neural-network-based failure detection and isolation

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Gharsalli, Imed; Alouani, Ali T.

    1998-03-01

    This paper presents the design of a systematic failure detection and isolation system that uses the concept of failure sensitive variables (FSV) and artificial neural networks (ANN). The proposed approach was applied to tube leak detection in a utility boiler system. Results of the experimental testing are presented in the paper.

  14. An Artificial Neural Network Approach for the Prediction of Absorption Measurements of an Evanescent Field Fiber Sensor

    PubMed Central

    Saracoglu, Ö. Galip

    2008-01-01

    This paper describes artificial neural network (ANN) based prediction of the response of a fiber optic sensor using evanescent field absorption (EFA). The sensing probe of the sensor is made up a bundle of five PCS fibers to maximize the interaction of evanescent field with the absorbing medium. Different backpropagation algorithms are used to train the multilayer perceptron ANN. The Levenberg-Marquardt algorithm, as well as the other algorithms used in this work successfully predicts the sensor responses.

  15. Artificial neural network to search for metal-poor galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Kong, Xu; Chen, Yang

    2014-02-01

    Aims: To find a fast and reliable method for selecting metal-poor galaxies (MPGs), especially in large surveys and huge databases, an artificial neural network (ANN) method is applied to a sample of star-forming galaxies from the Sloan Digital Sky Survey (SDSS) data release 9 (DR9) provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU). Methods: A two-step approach is adopted: (i) The ANN network must be trained with a subset of objects that are known to be either MPGs or metal rich galaxies (MRGs), treating the strong emission line flux measurements as input feature vectors in n-dimensional space, where n is the number of strong emission line flux ratios. (ii) After the network is trained on a sample of star-forming galaxies, the remaining galaxies are classified in the automatic test analysis as either MPGs or MRGs. We consider several random divisions of the data into training and testing sets; for instance, for our sample, a total of 70 percent of the data are involved in training the algorithm, 15 percent are involved in validating the algorithm, and the remaining 15 percent are used for blind testing the resulting classifier. Results: For target selection, we have achieved an acquisition rate for MPGs of 96 percent and 92 percent for an MPGs threshold of 12 + log (O/H) = 8.00 and 12 + log (O/H) = 8.39, respectively. Running the code takes minutes in most cases under the Matlab 2013a software environment. The ANN method can easily be extended to any MPGs target selection task when the physical property of the target can be expressed as a quantitative variable. The code in the paper is available on the web (http://fshi5388.blog.163.com).

  16. Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks.

    PubMed

    Givehchi, Alireza; Schneider, Gisbert

    2004-06-01

    The influence of preprocessing of molecular descriptor vectors for solving classification tasks was analyzed for drug/nondrug classification by artificial neural networks. Molecular properties were used to form descriptor vectors. Two types of neural networks were used, supervised multilayer neural nets trained with the back-propagation algorithm, and unsupervised self-organizing maps (Kohonen maps). Data were preprocessed by logistic scaling and histogram equalization. For both types of neural networks, the preprocessing step significantly improved classification compared to nonstandardized data. Classification accuracy was measured as prediction mean square error and Matthews correlation coefficient in the case of supervised learning, and quantization error in the case of unsupervised learning. The results demonstrate that appropriate data preprocessing is an essential step in solving classification tasks.

  17. Tuning the stator resistance of induction motors using artificial neural network

    SciTech Connect

    Cabrera, L.A.; Elbuluk, M.E.; Husain, I.

    1997-09-01

    Tuning the stator resistance of induction motors is very important, especially when it is used to implement direct torque control (DTC) in which the stator resistance is a main parameter. In this paper, an artificial network (ANN) is used to accomplish tuning of the stator resistance of an induction motor. The parallel recursive prediction error and backpropagation training algorithms were used in training the neural network for the simulation and experimental results, respectively. The neural network used to tune the stator resistance was trained on-line, making the DTC strategy more robust and accurate. Simulation results are presented for three different neural-network configurations showing the efficiency of the tuning process. Experimental results were obtained for the one of the three neural-network configuration. Both simulation and experimental results showed that the ANN have tuned the stator resistance in the controller to track actual resistance of the machine.

  18. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  19. Convex quadratic optimization on artificial neural networks

    SciTech Connect

    Adler, I.; Verma, S.

    1994-12-31

    We present continuous-valued Hopfield recurrent neural networks on which we map convex quadratic optimization problems. We consider two different convex quadratic programs, each of which is mapped to a different neural network. Activation functions are shown to play a key role in the mapping under each model. The class of activation functions which can be used in this mapping is characterized in terms of the properties needed. It is shown that the first derivatives of penalty as well as barrier functions belong to this class. The trajectories of dynamics under the first model are shown to be closely related to affine-scaling trajectories of interior-point methods. On the other hand, the trajectories of dynamics under the second model correspond to projected steepest descent pathways.

  20. Evaluating neural networks and artificial intelligence systems

    NASA Astrophysics Data System (ADS)

    Alberts, David S.

    1994-02-01

    Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.

  1. Prediction of Force Measurements of a Microbend Sensor Based on an Artificial Neural Network

    PubMed Central

    Efendioglu, Hasan S.; Yildirim, Tulay; Fidanboylu, Kemal

    2009-01-01

    Artificial neural network (ANN) based prediction of the response of a microbend fiber optic sensor is presented. To the best of our knowledge no similar work has been previously reported in the literature. Parallel corrugated plates with three deformation cycles, 6 mm thickness of the spacer material and 16 mm mechanical periodicity between deformations were used in the microbend sensor. Multilayer Perceptron (MLP) with different training algorithms, Radial Basis Function (RBF) network and General Regression Neural Network (GRNN) are used as ANN models in this work. All of these models can predict the sensor responses with considerable errors. RBF has the best performance with the smallest mean square error (MSE) values of training and test results. Among the MLP algorithms and GRNN the Levenberg-Marquardt algorithm has good results. These models successfully predict the sensor responses, hence ANNs can be used as useful tool in the design of more robust fiber optic sensors. PMID:22399991

  2. Research on WNN modeling for gold price forecasting based on improved artificial bee colony algorithm.

    PubMed

    Li, Bai

    2014-01-01

    Gold price forecasting has been a hot issue in economics recently. In this work, wavelet neural network (WNN) combined with a novel artificial bee colony (ABC) algorithm is proposed for this gold price forecasting issue. In this improved algorithm, the conventional roulette selection strategy is discarded. Besides, the convergence statuses in a previous cycle of iteration are fully utilized as feedback messages to manipulate the searching intensity in a subsequent cycle. Experimental results confirm that this new algorithm converges faster than the conventional ABC when tested on some classical benchmark functions and is effective to improve modeling capacity of WNN regarding the gold price forecasting scheme.

  3. Research on WNN Modeling for Gold Price Forecasting Based on Improved Artificial Bee Colony Algorithm

    PubMed Central

    2014-01-01

    Gold price forecasting has been a hot issue in economics recently. In this work, wavelet neural network (WNN) combined with a novel artificial bee colony (ABC) algorithm is proposed for this gold price forecasting issue. In this improved algorithm, the conventional roulette selection strategy is discarded. Besides, the convergence statuses in a previous cycle of iteration are fully utilized as feedback messages to manipulate the searching intensity in a subsequent cycle. Experimental results confirm that this new algorithm converges faster than the conventional ABC when tested on some classical benchmark functions and is effective to improve modeling capacity of WNN regarding the gold price forecasting scheme. PMID:24744773

  4. Artificial neural network for risk assessment in preterm neonates

    PubMed Central

    Zernikow, B; Holtmannspoetter, K; Michel, E; Pielemeier, W; Hornschuh, F; Westermann, A; Hennecke, K

    1998-01-01

    AIM—To predict the individual neonatal mortality risk of preterm infants using an artificial neural network "trained" on admission data.
METHODS—A total of 890 preterm neonates (<32 weeks gestational age and/or <1500 g birthweight) were enrolled in our retrospective study. The neural network trained on infants born between 1990and 1993. The predictive value was tested on infants born in the successive three years.
RESULTS—The artificial neural network performed significantly better than a logistic regression model (area under the receiver operator curve 0.95 vs 0.92). Survival was associated with high morbidity if the predicted mortality risk was greater than 0.50. There were no preterm infants with a predicted mortality risk of greater than 0.80. The mortality risks of two non-survivors with birthweights >2000 g and severe congenital disease had largely been underestimated.
CONCLUSION—An artificial neural network trained on admission data can accurately predict the mortality risk for most preterm infants. However, the significant number of prediction failures renders it unsuitable for individual treatment decisions.

 PMID:9828740

  5. Application of artificial neural networks in nonlinear analysis of trusses

    NASA Technical Reports Server (NTRS)

    Alam, J.; Berke, L.

    1991-01-01

    A method is developed to incorporate neural network model based upon the Backpropagation algorithm for material response into nonlinear elastic truss analysis using the initial stiffness method. Different network configurations are developed to assess the accuracy of neural network modeling of nonlinear material response. In addition to this, a scheme based upon linear interpolation for material data, is also implemented for comparison purposes. It is found that neural network approach can yield very accurate results if used with care. For the type of problems under consideration, it offers a viable alternative to other material modeling methods.

  6. Elements of an algorithm for optimizing a parameter-structural neural network

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2016-06-01

    The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  7. Confidence intervals in Flow Forecasting by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Panagoulia, Dionysia; Tsekouras, George

    2014-05-01

    One of the major inadequacies in implementation of Artificial Neural Networks (ANNs) for flow forecasting is the development of confidence intervals, because the relevant estimation cannot be implemented directly, contrasted to the classical forecasting methods. The variation in the ANN output is a measure of uncertainty in the model predictions based on the training data set. Different methods for uncertainty analysis, such as bootstrap, Bayesian, Monte Carlo, have already proposed for hydrologic and geophysical models, while methods for confidence intervals, such as error output, re-sampling, multi-linear regression adapted to ANN have been used for power load forecasting [1-2]. The aim of this paper is to present the re-sampling method for ANN prediction models and to develop this for flow forecasting of the next day. The re-sampling method is based on the ascending sorting of the errors between real and predicted values for all input vectors. The cumulative sample distribution function of the prediction errors is calculated and the confidence intervals are estimated by keeping the intermediate value, rejecting the extreme values according to the desired confidence levels, and holding the intervals symmetrical in probability. For application of the confidence intervals issue, input vectors are used from the Mesochora catchment in western-central Greece. The ANN's training algorithm is the stochastic training back-propagation process with decreasing functions of learning rate and momentum term, for which an optimization process is conducted regarding the crucial parameters values, such as the number of neurons, the kind of activation functions, the initial values and time parameters of learning rate and momentum term etc. Input variables are historical data of previous days, such as flows, nonlinearly weather related temperatures and nonlinearly weather related rainfalls based on correlation analysis between the under prediction flow and each implicit input

  8. Numerical solution of differential equations by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1995-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks (ANN's) are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed by the author to mate the adaptability of the ANN with the speed and precision of the digital computer. This method has been successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  9. Artificial neural network based permanent magnet DC motor drives

    SciTech Connect

    Hoque, M.A. Zaman, M.R.; Rahman, M.A.

    1995-12-31

    A novel scheme for the speed control of a permanent magnet (PM) dc motor drive incorporating artificial neural network (ANN) is proposed. The drive system includes an ANN speed controller, micro-processor based dc-dc converter and a laboratory PM dc motor. A multi-layer artificial neural network structure with a feedback loop is designed in order to precisely operate the control circuit for the dc-dc converter. The complete drive system is simulated and implemented in real time. Both the simulation and experimental results prove the inherent capability of the ANN which makes it possible to maintain desired speed control in the presence of parameter variations and load disturbances. The performances of the ANN based PM dc drive system are compared with the simulated results of the conventionally controlled drive system. This clearly indicates the better performance of the ANN based PM dc motor drive system, particularly in case of parameter and load variations.

  10. Artificial neural networks technology for neutron spectrometry and dosimetry.

    PubMed

    Vega-Carrillo, H R; Hernández-Dávila, V M; Manzanares-Acuña, E; Gallego, E; Lorente, A; Iñiguez, M P

    2007-01-01

    Artificial Neural Network Technology has been applied to unfold neutron spectra and to calculate 13 dosimetric quantities using seven count rates from a Bonner Sphere Spectrometer with a (6)LiI(Eu). Two different networks, one for spectrometry and another for dosimetry, were designed. To train and test both networks, 177 neutron spectra from the IAEA compilation were utilised. Spectra were re-binned into 31 energy groups, and the dosimetric quantities were calculated using the MCNP code and the fluence-to-dose conversion coefficients from ICRP 74. Neutron spectra and UTA4 response matrix were used to calculate the expected count rates in the Bonner spectrometer. Spectra and H(10) of (239)PuBe and (241)AmBe were experimentally obtained and compared with those determined with the artificial neural networks. PMID:17522034

  11. THE CHOICE OF OPTIMAL STRUCTURE OF ARTIFICIAL NEURAL NETWORK CLASSIFIER INTENDED FOR CLASSIFICATION OF WELDING FLAWS

    SciTech Connect

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Caryk, M.; Piekarczyk, B.

    2010-02-22

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Two weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.

  12. Electricity price short-term forecasting using artificial neural networks

    SciTech Connect

    Szkuta, B.R.; Sanabria, L.A.; Dillon, T.S.

    1999-08-01

    This paper presents the System Marginal Price (SMP) short-term forecasting implementation using the Artificial Neural Networks (ANN) computing technique. The described approach uses the three-layered ANN paradigm with back-propagation. The retrospective SMP real-world data, acquired from the deregulated Victorian power system, was used for training and testing the ANN. The results presented in this paper confirm considerable value of the ANN based approach in forecasting the SMP.

  13. Confirmation of artificial neural networks: Nuclear power plant fault diagnostics

    SciTech Connect

    Kim, K.; Aljundi, T.L.; Barlett, E.B. )

    1992-01-01

    A fault diagnostics adviser was developed by training a backpropagation artificial neural network (ANN) to diagnose the status of the San Onofre nuclear generating station using data obtained from the plant's training simulator. These data simulate the plant's conditions during ten distinct transients. Stacked generalization is then used to confirm the diagnosis of the ANN. The network is capable of diagnosing each of the ten transients in a timely manner.

  14. Using Artificial Neural Networks to Assess Changes in Microbial Communities

    SciTech Connect

    Brandt, C.C.; Macnaughton, S.; Palumbo, A.V.; Pfiffner, S.M.; Schryver, J.C.

    1999-04-19

    We evaluated artificial neural networks (ANNs) as a technique for assessing changes in soil microbial communities following exposure to metals. We analyzed signature lipid biomarker (SLB) data collected from two soil microcosm experiments using traditional statistical techniques and ANN. Two phases of data analysis were done; pattern recognition and prediction. In general, the ANNs were better able to detect patterns and relationships in the SLB data than were the traditional statistical techniques.

  15. The importance of artificial neural networks in biomedicine

    SciTech Connect

    Burke, H.B.

    1995-12-31

    The future explanatory power in biomedicine will be at the molecular-genetic level of analysis (rather than the epidemiologic-demographic or anatomic-cellular levels). This is the level of complex systems. Complex systems are characterized by nonlinearity and complex interactions. It is difficult for traditional statistical methods to capture complex systems because traditional methods attempt to find the model that best fits the statistician`s understanding of the phenomenon; complex systems are difficult to understand and therefore difficult to fit with a simple model. Artificial neural networks are nonparametric regression models. They can capture any phenomena, to any degree of accuracy (depending on the adequacy of the data and the power of the predictors), without prior knowledge of the phenomena. Further, artificial neural networks can be represented, not only as formulae, but also as graphical models. Graphical models can increase analytic power and flexibility. Artificial neural networks are a powerful method for capturing complex phenomena, but their use requires a paradigm shift, from exploratory analysis of the data to exploratory analysis of the model.

  16. A comparison of artificial neural networks and statistical analyses

    SciTech Connect

    Blough, D.K.; Anderson, K.K.

    1994-01-01

    Artificial neural networks have come to be used in a wide variety of data analytic applications, many of which were traditionally approached using statistical methods. It is the purpose of this paper to discuss the nature of the information obtained by each methodology, that of artificial neural networks and that of statistical analyses. Two aspects of the comparison will be considered: (1) what are the requirements needed for each approach in terms of model specification, data requirements, and computing power, and (2) what sort of information is contained in the results of each approach. Example analyses are presented characterizing the differences in the two approaches. A specific problem (hydrodynamic yield estimation) is presented with a corresponding data set. This data is then analyzed using statistical methods, and the results are compared with those obtained by using an artificial neural network. The requirements and results of the two approaches are then summarized as general guidelines an investigator can use in deciding which approach would be best for analyzing a given data set.

  17. Artificial neural network modeling of dissolved oxygen in reservoir.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan. PMID:24078053

  18. Resource constrained design of artificial neural networks using comparator neural network

    NASA Technical Reports Server (NTRS)

    Wah, Benjamin W.; Karnik, Tanay S.

    1992-01-01

    We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.

  19. The application of artificial neural networks in astronomy

    NASA Astrophysics Data System (ADS)

    Li, Li-Li; Zhang, Yan-Xia; Zhao, Yong-Heng; Yang, Da-Wei

    2006-12-01

    Artificial Neural Networks (ANNs) are computer algorithms inspired from simple models of human central nervous system activity. They can be roughly divided into two main kinds: supervised and unsupervised. The supervised approach lays the stress on "teaching" a machine to do the work of a mention human expert, usually by showing examples for which the true answer is supplied by the expert. The unsupervised one is aimed at learning new things from the data, and most useful when the data cannot easily be plotted in a two or three dimensional space. ANNs have been used widely and successfully in various fields, for instance, pattern recognition, financial analysis, biology, engineering and so on, because they have many merits such as self-learning, self-adapting, good robustness and dynamically rapid response as well as strong capability of dealing with non-linear problems. In the last few years there has been an increasing interest toward the astronomical applications of ANNs. In this paper, the authors firstly introduce the fundamental principle of ANNs together with the architecture of the network and outline various kinds of learning algorithms and network toplogies. The specific aspects of the applications of ANNs in astronomical problems are also listed, which contain the strong capabilities of approximating to arbitrary accuracy, any nonlinear functional mapping, parallel and distributed storage, tolerance of faulty and generalization of results. They summarize the advantages and disadvantages of main ANN models available to the astronomical community. Furthermore, the application cases of ANNs in astronomy are mainly described in detail. Here, the focus is on some of the most interesting fields of its application, for example: object detection, star/galaxy classification, spectral classification, galaxy morphology classification, the estimation of photometric redshifts of galaxies and time series analysis. In addition, other kinds of applications have been

  20. TEDANN: Turbine engine diagnostic artificial neural network

    SciTech Connect

    Kangas, L.J.; Greitzer, F.L.; Illi, O.J. Jr.

    1994-03-17

    The initial focus of TEDANN is on AGT-1500 fuel flow dynamics: that is, fuel flow faults detectable in the signals from the Electronic Control Unit`s (ECU) diagnostic connector. These voltage signals represent the status of the Electro-Mechanical Fuel System (EMFS) in response to ECU commands. The EMFS is a fuel metering device that delivers fuel to the turbine engine under the management of the ECU. The ECU is an analog computer whose fuel flow algorithm is dependent upon throttle position, ambient air and turbine inlet temperatures, and compressor and turbine speeds. Each of these variables has a representative voltage signal available at the ECU`s J1 diagnostic connector, which is accessed via the Automatic Breakout Box (ABOB). The ABOB is a firmware program capable of converting 128 separate analog data signals into digital format. The ECU`s J1 diagnostic connector provides 32 analog signals to the ABOB. The ABOB contains a 128 to 1 multiplexer and an analog-to-digital converter, CP both operated by an 8-bit embedded controller. The Army Research Laboratory (ARL) developed and published the hardware specifications as well as the micro-code for the ABOB Intel EPROM processor and the internal code for the multiplexer driver subroutine. Once the ECU analog readings are converted into a digital format, the data stream will be input directly into TEDANN via the serial RS-232 port of the Contact Test Set (CTS) computer. The CTS computer is an IBM compatible personal computer designed and constructed for tactical use on the battlefield. The CTS has a 50MHz 32-bit Intel 80486DX processor. It has a 200MB hard drive and 8MB RAM. The CTS also has serial, parallel and SCSI interface ports. The CTS will also host a frame-based expert system for diagnosing turbine engine faults (referred to as TED; not shown in Figure 1).

  1. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai

    2016-09-01

    The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.

  2. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    PubMed

    Xing, Jida; Chen, Jie

    2015-01-01

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  3. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    PubMed

    Xing, Jida; Chen, Jie

    2015-06-23

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  4. A Winner Determination Algorithm for Combinatorial Auctions Based on Hybrid Artificial Fish Swarm Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Genrang; Lin, ZhengChun

    The problem of winner determination in combinatorial auctions is a hotspot electronic business, and a NP hard problem. A Hybrid Artificial Fish Swarm Algorithm(HAFSA), which is combined with First Suite Heuristic Algorithm (FSHA) and Artificial Fish Swarm Algorithm (AFSA), is proposed to solve the problem after probing it base on the theories of AFSA. Experiment results show that the HAFSA is a rapidly and efficient algorithm for The problem of winner determining. Compared with Ant colony Optimization Algorithm, it has a good performance with broad and prosperous application.

  5. Lexical Tone Recognition with an Artificial Neural Network

    PubMed Central

    Zhou, Ning; Zhang, Wenle; Lee, Chao-Yang; Xu, Li

    2008-01-01

    Objectives Tone production is particularly important for communicating in tone languages such as Mandarin Chinese. In the present study, an artificial neural network was used to recognize tones produced by adult native speakers. The purposes of the study were (1) to test the sensitivity of the neural network to speaker variation typically in adult speaker groups, (2) to evaluate two normalization procedures to overcome the effects of speaker variation, and (3) to compare tone recognition performance of the neural network with that of the human listeners. Design A feedforward multilayer neural network was used. Twenty-nine adult native Mandarin Chinese speakers were recruited to record tone samples. The F0 contours of the vowel part of the 1044 monosyllabic words recorded were extracted using an autocorrelation method. Samples from the F0 contours were used as inputs to the neural network. The efficacy of the neural network was first tested by varying the number of inputs and the number of neurons in the hidden layer from 1 to 16. The sensitivity of the neural network to speaker variation was tested by (1) using the raw F0 data from speech tokens of a number of randomly drawn speakers that varied from 1 to 29, (2) using the raw F0 data from speech tokens of either male-only or female-only speakers, and (3) using two sets of normalized F0 data (i.e., tone 1-based normalization and first-order derivative) from speech tokens from a number of randomly drawn speakers that varied from 1 to 29. The recognition performance of the neural network under several experimental conditions was compared with the corresponding recognition performance of 10 normal-hearing, native Mandarin Chinese speaking adult listeners. Results Three inputs and four hidden neurons were found to be sufficient for the neural network to perform at about 85% correct using speech samples without normalization. The performance of the neural network was affected by variation across speakers particularly

  6. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    NASA Technical Reports Server (NTRS)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  7. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images.

    PubMed

    Barrett, T K; Sandler, D G

    1993-04-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 microm rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  8. Application of artificial neural network for prediction of marine diesel engine performance

    NASA Astrophysics Data System (ADS)

    Mohd Noor, C. W.; Mamat, R.; Najafi, G.; Nik, W. B. Wan; Fadhil, M.

    2015-12-01

    This study deals with an artificial neural network (ANN) modelling of a marine diesel engine to predict the brake power, output torque, brake specific fuel consumption, brake thermal efficiency and volumetric efficiency. The input data for network training was gathered from engine laboratory testing running at various engine speed. The prediction model was developed based on standard back-propagation Levenberg-Marquardt training algorithm. The performance of the model was validated by comparing the prediction data sets with the measured experiment data. Results showed that the ANN model provided good agreement with the experimental data with high accuracy.

  9. EEG signal classification based on artificial neural networks and amplitude spectra features

    NASA Astrophysics Data System (ADS)

    Chojnowski, K.; FrÄ czek, J.

    BCI (called Brain-Computer Interface) is an interface that allows direct communication between human brain and an external device. It bases on EEG signal collection, processing and classification. In this paper a complete BCI system is presented which classifies EEG signal using artificial neural networks. For this purpose we used a multi-layered perceptron architecture trained with the RProp algorithm. Furthermore a simple multi-threaded method for automatic network structure optimizing was shown. We presented the results of our system in the opening and closing eyes recognition task. We also showed how our system could be used for controlling devices basing on imaginary hand movements.

  10. Dynamic modeling of physical phenomena for probabilistic risk assessments using artificial neural networks

    SciTech Connect

    Benjamin, A.S.; Paez, T.L.; Brown, N.N.

    1998-01-01

    In most probabilistic risk assessments, there is a subset of accident scenarios that involves physical challenges to the system, such as high heat rates and/or accelerations. The system`s responses to these challenges may be complicated, and their prediction may require the use of long-running computer codes. To deal with the many scenarios demanded by a risk assessment, the authors have been investigating the use of artificial neural networks (ANNs) as a fast-running estimation tool. They have developed a multivariate linear spline algorithm by extending previous ANN methods that use radial basis functions. They have applied the algorithm to problems involving fires, shocks, and vibrations. They have found that within the parameter range for which it is trained, the algorithm can simulate the nonlinear responses of complex systems with high accuracy. Running times per case are less than one second.

  11. Robust growing neural gas algorithm with application in cluster analysis.

    PubMed

    Qin, A K; Suganthan, P N

    2004-01-01

    We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes are available from . By incorporating several robust strategies, such as outlier resistant scheme, adaptive modulation of learning rates and cluster repulsion method into the traditional GNG framework, the proposed RGNG network possesses better robustness properties. The RGNG is insensitive to initialization, input sequence ordering and the presence of outliers. Furthermore, the RGNG network can automatically determine the optimal number of clusters by seeking the extreme value of the Minimum Description Length (MDL) measure during network growing process. The resulting center positions of the optimal number of clusters represented by prototype vectors are close to the actual ones irrespective of the existence of outliers. Topology relationships among these prototypes can also be established. Experimental results have shown the superior performance of our proposed method over the original GNG incorporating MDL method, called GNG-M, in static data clustering tasks on both artificial and UCI data sets. PMID:15555857

  12. Metaheuristic Algorithms for Convolution Neural Network

    PubMed Central

    Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent). PMID:27375738

  13. Metaheuristic Algorithms for Convolution Neural Network.

    PubMed

    Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent). PMID:27375738

  14. Using artificial neural nets to predict building energy parameters

    SciTech Connect

    Stevenson, W.J.

    1994-12-31

    Artificial neural nets were used as nonlinear function approximators on two data sets of building energy parameters and solar radiation data. During the modeling (training) phase, the data to be predicted were unavailable, providing a ``blind`` test of the technique. The first time series consisted of building energy ``inputs`` (such as solar radiation and temperature) for September--December 1989 and required the prediction of energy use for January--February 1990. The extrapolation was performed with only the data immediately at hand. Although results for chilled and hot-water use were acceptable, the prediction of electricity use would have benefited markedly from easily available additional information, such as working and nonworking days. The second time series required the prediction of beam solar insolation from four global directional measurements. This was an interpolation problem, and good predictions were achieved for this data set. Conjugate gradient and cascade correlation neural net programs were used.

  15. Artificial neural nets for K-complex detection.

    PubMed

    Jansen, B H

    1990-01-01

    An explorative study was initiated to determine whether artificial neural nets (ANNs) can be used to detect K-complexes in EEGs (electroencephalograms). K-complexes are relatively large waves with a duration of between 500 and 1500 ms often seen during sleep stage 2. Sleep spindles (bursts of rhythmic activity with a frequency of 12 to 16 Hz) are almost always observed in the neighborhood of K-complexes. The data and methods used to analyze K-complex are described. In all cases, a multilayer backpropagation ANN was used. The number of input nodes and hidden layers varied. Two different strategies were used to prepare the input to the ANN, and results for both are presented. The results indicate that the neural net approaches used are not adequate for the detection of K-complexes.

  16. Design of Jetty Piles Using Artificial Neural Networks

    PubMed Central

    2014-01-01

    To overcome the complication of jetty pile design process, artificial neural networks (ANN) are adopted. To generate the training samples for training ANN, finite element (FE) analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN) with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost. PMID:25177724

  17. Short-term load forecasting using an artificial neural network

    SciTech Connect

    Lee, K.Y.; Cha, Y.T. ); Park, J.H. )

    1992-02-01

    Artificial Neural Network (ANN) Method is applied to forecast the short-term load for a large power system. The load has two distinct patterns: weekday and weekend-day patterns. The weekend-day pattern include Saturday, Sunday, and Monday loads. In this paper a nonlinear load model is proposed and several structures of ANN for short-term load forecasting are tested. Inputs to the ANN are past loads and the output of the ANN is the load forecast for a given day. The network with one or two hidden layers are tested with various combination of neurons, and results are compared in terms of forecasting error. The neural network, when grouped into different load patterns, gives good load forecast.

  18. Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware

    NASA Technical Reports Server (NTRS)

    Zee, Frank

    1995-01-01

    The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.

  19. Fuzzy logic -- artificial neural networks integration for transient identification

    SciTech Connect

    Ikonomopoulos, A.; Tsoukalas, L.H. . Dept. of Nuclear Engineering); Uhrig, R.E. . Dept. of Nuclear Engineering Oak Ridge National Lab., TN )

    1991-01-01

    A methodology is presented that integrates pretrained artificial neural networks (ANNs) with rule-based fuzzy logic systems, for the purpose of distinguishing different transients in a Nuclear Power Plant (NPP). In general this approach appears to provide timely, concise and task specific information about the status of a system under consideration. The pretrained neural network typifies different transient scenarios and derives membership functions which independently represent individual transients. The overall system successfully performs transient identification, in a time span faster or at least comparable to that of transient development. In order to examine the proposed methodology simulated accidents are used. The results obtained demonstrate the excellent noise tolerance of ANNs and suggest a new approach for transient identification.

  20. Fuzzy logic -- artificial neural networks integration for transient identification

    SciTech Connect

    Ikonomopoulos, A.; Tsoukalas, L.H.; Uhrig, R.E. |

    1991-12-31

    A methodology is presented that integrates pretrained artificial neural networks (ANNs) with rule-based fuzzy logic systems, for the purpose of distinguishing different transients in a Nuclear Power Plant (NPP). In general this approach appears to provide timely, concise and task specific information about the status of a system under consideration. The pretrained neural network typifies different transient scenarios and derives membership functions which independently represent individual transients. The overall system successfully performs transient identification, in a time span faster or at least comparable to that of transient development. In order to examine the proposed methodology simulated accidents are used. The results obtained demonstrate the excellent noise tolerance of ANNs and suggest a new approach for transient identification.

  1. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-01-01

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant's training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  2. A Multistrategy Optimization Improved Artificial Bee Colony Algorithm

    PubMed Central

    Liu, Wen

    2014-01-01

    Being prone to the shortcomings of premature and slow convergence rate of artificial bee colony algorithm, an improved algorithm was proposed. Chaotic reverse learning strategies were used to initialize swarm in order to improve the global search ability of the algorithm and keep the diversity of the algorithm; the similarity degree of individuals of the population was used to characterize the diversity of population; population diversity measure was set as an indicator to dynamically and adaptively adjust the nectar position; the premature and local convergence were avoided effectively; dual population search mechanism was introduced to the search stage of algorithm; the parallel search of dual population considerably improved the convergence rate. Through simulation experiments of 10 standard testing functions and compared with other algorithms, the results showed that the improved algorithm had faster convergence rate and the capacity of jumping out of local optimum faster. PMID:24982924

  3. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect

    Koch, Werner Zhang, Dong H.

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  4. Error bounds on the output of artificial neural networks

    SciTech Connect

    Bartlett, E.B.; Kim, H. )

    1993-01-01

    Resolving the uncertainties associated with solutions obtained from artificial neural networks (ANNs) is a major concern for ANN researchers. Error bounds on the solutions are important because they are an integral part of verification and validation. In this research, stacked generalization (SG) is applied to provide error bounds for novel solutions obtained from ANNS. An outline of SG and its use is given. The data used in this demonstration of SG are given. This work shows that SG can provide error bounds on ANN results. We have applied SG to nuclear power plant fault detection for verification of diagnoses provided by ANNs.

  5. Simulation of nonlinear strutures with artificial neural networks

    SciTech Connect

    Paez, T.L.

    1996-03-01

    Structural system simulation is important in analysis, design, testing, control, and other areas, but it is particularly difficult when the system under consideration is nonlinear. Artificial neural networks offer a useful tool for the modeling of nonlinear systems, however, such modeling may be inefficient or insufficiently accurate when the system under consideration is complex. This paper shows that there are several transformations that can be used to uncouple and simplify the components of motion of a complex nonlinear system, thereby making its modeling and simulation a much simpler problem. A numerical example is also presented.

  6. Using Artificial Neural Networks to Assess Microbial Communities

    SciTech Connect

    Almeida, J.S.; Brand, C.C.; Palumbo, A.V.; Pfiffner, S.M.; Schryver, J.C.

    1998-09-08

    We are evaluating artificial neural networks (ANNs) as tools for assessing changes in soil microbial communities following exposure to metals. We analyzed signature lipid biomarker data collected from two soil microcosm experiments using an autoassociative ANN. In one experiment, the microcosms were exposed to O, 100, or 250 ppm of metals, and in the other experiment the microcosms were exposed to O or 500 ppm of metals. The ANNs were able to distinguish between microcosms exposed and not exposed to metals in both experiments.

  7. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2016-06-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  8. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  9. Total solar irradiance reconstruction using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Tebabal Yirdaw, Ambelu; Damtie, Baylie; Nigussie, Melessew; Bires, Abiyot; Yizengaw, Endawoke

    2015-08-01

    A feed-forward neural network which can account for nonlinear relationships was used to reconstruct total solar irradiance (TSI). A single layer feed forward neural network with back-propagation algorithm have been implemented for reconstructing daily total solar irradiance from daily photometric sunspot index, and core to wing ratio of Mg II index data. The data year from 1978 to 2013 was used for the training, validation and testing purpose. In order to obtain the optimum neural network for TSI reconstruction, the root mean square error (RMSE), mean absolute error (MAE) and regression coefficient have been taken into account. We have carried out the analysis is made by comparing the reconstructed TSI from neural networks (NNs ) and TSI measurement from satellite. We have found out that the reconstructed TSI and the PMOD composite have the correlation coefficient of about R=0.9307 over the span of the recorded, 1978 to 2013. The NNs model output indicates that reconstructed TSI from solar proxies (photometric index and MgII ) can explain 86.6% of the variance of TSI. Neural network is able to recreate TSI observations on a time scale of a day. This reconstructed TSI using NNs further strengthens the view that surface magnetism indeed plays a dominant role in modulating solar irradiance.

  10. Artificial neural network based controller for permanent magnet DC motor drives

    SciTech Connect

    Hoque, M.A.; Zaman, M.R.; Rahman, M.A.

    1995-12-31

    This paper introduces a novel approach of designing a controller using multi-layer feed-forward neural network (FFNN) for the speed control of a permanent magnet (PM) dc motor. Artificial neural network (ANN) controller with its massive parallel properties and learning capabilities offers a promising way to solving the problem of system non-linearity, parameter variations and unexpected load excursions associated with a PM dc motor drive system. Self-tuning technique of the controller in real time is achieved through an improved on-line back-propagation training algorithm based on an output error propagation. The proposed ANN controller is implemented with a PM dc motor drive system in the laboratory. The laboratory test results validate the efficacy of the based controller for a high performance PM dc motor drive.

  11. Modeling of relative intensity noise and terminal electrical noise of semiconductor lasers using artificial neural network

    NASA Astrophysics Data System (ADS)

    Rezaei, A.; Noori, L.

    2016-06-01

    In this paper, artificial neural network (ANN) is used to predict the source laser's relative intensity noise (RIN) and the terminal electrical noise (TEN) of semiconductor lasers. For this purpose, the multi-layer perceptron (MLP) neural network trained with the back propagation algorithm is used. To develop this model, the normalized bias current and frequency are selected as the input parameters and the RIN and TEN of semiconductor lasers are selected as the output parameters. The obtained results show that the proposed ANN model is in a good agreement with the numerical method, and a small error between the predicted values and the numerical solution is obtained. Therefore, the proposed ANN model is a useful, reliable, fast and cheap tool to predict the RIN and TEN of semiconductor lasers.

  12. Learning evasive maneuvers using evolutionary algorithms and neural networks

    NASA Astrophysics Data System (ADS)

    Kang, Moung Hung

    In this research, evolutionary algorithms and recurrent neural networks are combined to evolve control knowledge to help pilots avoid being struck by a missile, based on a two-dimensional air combat simulation model. The recurrent neural network is used for representing the pilot's control knowledge and evolutionary algorithms (i.e., Genetic Algorithms, Evolution Strategies, and Evolutionary Programming) are used for optimizing the weights and/or topology of the recurrent neural network. The simulation model of the two-dimensional evasive maneuver problem evolved is used for evaluating the performance of the recurrent neural network. Five typical air combat conditions were selected to evaluate the performance of the recurrent neural networks evolved by the evolutionary algorithms. Analysis of Variance (ANOVA) tests and response graphs were used to analyze the results. Overall, there was little difference in the performance of the three evolutionary algorithms used to evolve the control knowledge. However, the number of generations of each algorithm required to obtain the best performance was significantly different. ES converges the fastest, followed by EP and then by GA. The recurrent neural networks evolved by the evolutionary algorithms provided better performance than the traditional recommendations for evasive maneuvers, maximum gravitational turn, for each air combat condition. Furthermore, the recommended actions of the recurrent neural networks are reasonable and can be used for pilot training.

  13. Improved artificial bee colony algorithm based gravity matching navigation method.

    PubMed

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  14. Prediction aluminum corrosion inhibitor efficiency using artificial neural network (ANN)

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Sh; Kalhor, E. G.; Nabavi, S. R.; Alamiparvin, L.; Pogaku, R.

    2016-06-01

    In this study, activity of some Schiff bases as aluminum corrosion inhibitor was investigated using artificial neural network (ANN). Hence, corrosion inhibition efficiency of Schiff bases (in any type) were gathered from different references. Then these molecules were drawn and optimized in Hyperchem software. Molecular descriptors generating and descriptors selection were fulfilled by Dragon software and principal component analysis (PCA) method, respectively. These structural descriptors along with environmental descriptors (ambient temperature, time of exposure, pH and the concentration of inhibitor) were used as input variables. Furthermore, aluminum corrosion inhibition efficiency was used as output variable. Experimental data were split into three sets: training set (for model building) and test set (for model validation) and simulation (for general model). Modeling was performed by Multiple linear regression (MLR) methods and artificial neural network (ANN). The results obtained in linear models showed poor correlation between experimental and theoretical data. However nonlinear model presented satisfactory results. Higher correlation coefficient of ANN (R > 0.9) revealed that ANN can be successfully applied for prediction of aluminum corrosion inhibitor efficiency of Schiff bases in different environmental conditions.

  15. Landslide susceptibility analysis using an artificial neural network model

    NASA Astrophysics Data System (ADS)

    Mansor, Shattri; Pradhan, Biswajeet; Daud, Mohamed; Jamaludin, Normalina; Khuzaimah, Zailani

    2007-10-01

    This paper deals with landslide susceptibility analysis using an artificial neural network model for Cameron Highland, Malaysia. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for the landslide hazards. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. Landslide hazard was analyzed using landslide occurrence factors employing the logistic regression model. The results of the analysis were verified using the landslide location data and compared with logistic regression model. The accuracy of hazard map observed was 85.73%. The qualitative landslide susceptibility analysis was carried out using an artificial neural network model by doing map overlay analysis in GIS environment. This information could be used to estimate the risk to population, property and existing infrastructure like transportation network.

  16. The Application of Artificial Neural Networks to Astronomical Classification

    NASA Astrophysics Data System (ADS)

    Naim, A.

    1995-12-01

    Galaxies are fundamental to the understanding of the structure and evolution of the universe. They contain stars, gas and dust, and serve as an astrophysical laboratory in which physical processes can be examined. In the context of the large scale structure of the universe galaxies can be viewed as test particles. They are bright and therefore visible at very large distances, and also numerous and so can be used to provide reliable statistics. In previous decades the major obstacle to studying the large scale structure of the universe was the relatively sparse data samples, because obtaining large quantities of galaxian images and spectra requires a lot of observing time, and the accumulation of significant data bases was therefore a slow process. This obstacle is in the process of being removed today, with the advent of large-scale surveys (e.g., the APM galaxy survey, the Sloan Digital Sky Survey and the 2 degree Field survey). The new challenge with which the astronomical community is faced is the management and analysis of the forthcoming extragalactic data bases. On top of the obvious need for better hardware to give large storage volumes and quick access, one needs to devise automated tools for data analysis. The sheer volume of the data renders manual analysis impractical. It would be best if one could somehow transfer the knowledge and expertise accumulated over years of painstaking manual analysis to a machine. This thesis is part of an effort to achieve this goal. I borrowed techniques that have proved useful in other fields (e.g., engineering) and applied them to astronomical datasets. The major tool I used was Artificial Neural Networks (ANNs), which was originally conceived as a simplified computational model for the brain. The scope of methods and algorithms referred to as ANNs is quite wide. In particular, a distinction is made between Supervised Learning algorithms and Unsupervised methods. The former put the emphasis on ``teaching'' a machine to do

  17. Proposed health state awareness of helicopter blades using an artificial neural network strategy

    NASA Astrophysics Data System (ADS)

    Lee, Andrew; Habtour, Ed; Gadsden, S. A.

    2016-05-01

    Structural health prognostics and diagnosis strategies can be classified as either model or signal-based. Artificial neural network strategies are popular signal-based techniques. This paper proposes the use of helicopter blades in order to study the sensitivity of an artificial neural network to structural fatigue. The experimental setup consists of a scale aluminum helicopter blade exposed to transverse vibratory excitation at the hub using single axis electrodynamic shaker. The intent of this study is to optimize an algorithm for processing high-dimensional data while retaining important information content in an effort to select input features and weights, as well as health parameters, for training a neural network. Data from accelerometers and piezoelectric transducers is collected from a known system designated as healthy. Structural damage will be introduced to different blades, which they will be designated as unhealthy. A variety of different tests will be performed to track the evolution and severity of the damage. A number of damage detection and diagnosis strategies will be implemented. A preliminary experiment was performed on aluminum cantilever beams providing a simpler model for implementation and proof of concept. Future work will look at utilizing the detection information as part of a hierarchical control system in order to mitigate structural damage and fatigue. The proposed approach may eliminate massive data storage on board of an aircraft through retaining relevant information only. The control system can then employ the relevant information to intelligently reconfigure adaptive maneuvers to avoid harmful regimes, thus, extending the life of the aircraft.

  18. Supervised artificial neural network-based method for conversion of solar radiation data (case study: Algeria)

    NASA Astrophysics Data System (ADS)

    Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk

    2016-01-01

    In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.

  19. Possible applicability of artificial neural network hardware to power system computation

    SciTech Connect

    Connor, J.T.; Damborg, M.J.; Atlas, L.E. . Dept. of Electrical Engineering)

    1992-01-01

    The paper reviews 2 very distinct suggestions for using artificial neural network hardware in power systems. The majority of our discussion concerns taking advantage of the hardware for fine-grained parallel computation. We also discuss our experience with recurrent artificial neural networks for load forecasting. A constant theme in power system analysis is faster computation. Sometimes the need for speed is to implement analysis on-line while other times the need is simply to perform more computation to explore a problem more thoroughly. Computation speed has historically been sought through algorithms. In more current times, this search has been supplemented with attempts to complete parallel computation. These parallel approaches have typically involved a few CPUs on a supercomputer or up to 32 in hypercube experiments. The application of SIMD computers designed for neural network simulations to the problem of power flow calculations is discussed. Clustering techniques are introduced to enable power flow calculation times that are independent of system size. Results of recurrent network electric load forecasting are also discussed.

  20. A Compact Optical Instrument with Artificial Neural Network for pH Determination

    PubMed Central

    Capel-Cuevas, Sonia; López-Ruiz, Nuria; Martinez-Olmos, Antonio; Cuéllar, Manuel P.; Pegalajar, Maria del Carmen; Palma, Alberto José; de Orbe-Payá, Ignacio; Capitán-Vallvey, Luis Fermin

    2012-01-01

    The aim of this work was the determination of pH with a sensor array-based optical portable instrument. This sensor array consists of eleven membranes with selective colour changes at different pH intervals. The method for the pH calculation is based on the implementation of artificial neural networks that use the responses of the membranes to generate a final pH value. A multi-objective algorithm was used to select the minimum number of sensing elements required to achieve an accurate pH determination from the neural network, and also to minimise the network size. This helps to minimise instrument and array development costs and save on microprocessor energy consumption. A set of artificial neural networks that fulfils these requirements is proposed using different combinations of the membranes in the sensor array, and is evaluated in terms of accuracy and reliability. In the end, the network including the response of the eleven membranes in the sensor was selected for validation in the instrument prototype because of its high accuracy. The performance of the instrument was evaluated by measuring the pH of a large set of real samples, showing that high precision can be obtained in the full range. PMID:22778668

  1. Genetic Algorithm Based Neural Networks for Nonlinear Optimization

    1994-09-28

    This software develops a novel approach to nonlinear optimization using genetic algorithm based neural networks. To our best knowledge, this approach represents the first attempt at applying both neural network and genetic algorithm techniques to solve a nonlinear optimization problem. The approach constructs a neural network structure and an appropriately shaped energy surface whose minima correspond to optimal solutions of the problem. A genetic algorithm is employed to perform a parallel and powerful search ofmore » the energy surface.« less

  2. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  3. Third-dimension information retrieval from a single convergent-beam transmission electron diffraction pattern using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Pennington, Robert S.; Van den Broek, Wouter; Koch, Christoph T.

    2014-05-01

    We have reconstructed third-dimension specimen information from convergent-beam electron diffraction (CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave formalism as an artificial neural network and optimizing with resilient back propagation, we demonstrate specimen orientation reconstructions with depth resolutions down to 5 nm. To show our algorithm's ability to analyze realistic data, we also discuss and demonstrate our algorithm reconstructing from noisy data and using a limited number of CBED disks. Applicability of this reconstruction algorithm to other specimen parameters is discussed.

  4. Automatic Ship Detection in Single-Pol SAR Images Using Texture Features in Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Khesali, E.; Enayati, H.; Modiri, M.; Mohseni Aref, M.

    2015-12-01

    This paper presents a novel method for detecting ships from high-resolution synthetic aperture radar (SAR) images. This method categorizes ship targets from single-pol SAR images using texture features in artificial neural networks. As such, the method tries to overcome the lack of an operational solution that is able to reliably detect ships with one SAR channel. The method has the following three main stages: 1) feature extraction; 2) feature selection; and 3) ship detection. The first part extracts different texture features from SAR image. These textures include occurrence and co occurrence measures with different window sizes. Then, best features are selected. Finally, the artificial neural network is used to extract ship pixels from sea ones. In post processing stage some morphological filters are used to improve the result. The effectiveness of the proposed method is verified using Sentinel-1 data in VV polarization. Experimental results indicate that the proposed algorithm can be implemented with time-saving, high precision ship extraction, feature analysis, and detection. The results also show that using texture features the algorithm properly discriminates speckle noise from ships.

  5. Monthly evaporation forecasting using artificial neural networks and support vector machines

    NASA Astrophysics Data System (ADS)

    Tezel, Gulay; Buyukyildiz, Meral

    2016-04-01

    Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.

  6. Heterogeneous artificial neural network for short term electrical load forecasting

    SciTech Connect

    Piras, A.; Germond, A.; Buchenel, B.; Imhof, K.; Jaccard, Y.

    1995-12-31

    Short term electrical load forecasting is a topic of major interest for the planning of energy production and distribution. The use of artificial neural networks has been demonstrated as a valid alternative to classical statistical methods in terms of accuracy of results. However, a common architecture able to forecast the load in different geographical regions, showing different load shape and climate characteristics, is still missing. In this paper the authors discuss a heterogeneous neural network architecture composed of an unsupervised part, namely a neural gas, which is used to analyze the process in submodels finding local features in the data and suggesting regression variables, and a supervised one, a multilayer perceptron, which performs the approximation of the underlying function. The results outputs are then summed by a weighted fuzzy average, allowing a smooth transition between sub models. The effectiveness of the proposed architecture is demonstrated by two days ahead load forecasting of EOS power system sub areas, corresponding to five different geographical regions, and of its total electrical load.

  7. Heterogeneous artificial neural network for short term electrical load forecasting

    SciTech Connect

    Piras, A.; Germond, A.; Buchenel, B.; Imhof, K.; Jaccard, Y.

    1996-02-01

    Short term electrical load forecasting is a topic of major interest for the planning of energy production and distribution. The use of artificial neural networks has been demonstrated as a valid alternative to classical statistical methods in terms of accuracy of results. However a common architecture able to forecast the load in different geographical regions, showing different load shape and climate characteristics, is still missing. In this paper the authors discuss a heterogeneous neural network architecture composed of an unsupervised part, namely a neural gas, which is used to analyze the process in sub models finding local features in the data and suggesting regression variables, and a supervised one, a multilayer perceptron, which performs the approximation of the underlying function. The resulting outputs are then summed by a weighted fuzzy average, allowing a smooth transition between sub models. The effectiveness of the proposed architecture is demonstrated by two days ahead load forecasting of EOS power system sub areas, corresponding to five different geographical regions, and of its total electrical load.

  8. Low-power hardware implementation of artificial neural network strain detection for extrinsic Fabry-Pérot interferometric sensors under sinusoidal excitation

    NASA Astrophysics Data System (ADS)

    Mitchell, Kyle; Ebel, William J.; Watkins, Steve E.

    2009-11-01

    Artificial neural networks are studied for use in estimating strain in extrinsic Fabry-Pérot interferometric sensors. These networks can require large memory spaces and a large number of calculations for implementation. We describe a modified neural network solution that is suitable for implementation on relatively low cost, low-power hardware. Moreover, we give strain estimates resulting from an implementation of the artificial neural network algorithm on an 8-bit 8051 processor with 64 kbytes of memory. For example, one of our results shows that for 2048 samples of the transmittance signal, the presented neural network algorithm requires around 24,622 floating point multiplies and 35,835 adds, and where the data and algorithm fit within the 64-kbyte memory.

  9. Artificial bee colony algorithm for solving optimal power flow problem.

    PubMed

    Le Dinh, Luong; Vo Ngoc, Dieu; Vasant, Pandian

    2013-01-01

    This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem.

  10. Artificial Bee Colony Algorithm for Solving Optimal Power Flow Problem

    PubMed Central

    Le Dinh, Luong; Vo Ngoc, Dieu

    2013-01-01

    This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem. PMID:24470790

  11. Application of Artificial Neural Network to the Classification of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Zaric, D.

    2009-09-01

    The application of an artificial neural network (ANN) based on a multi-layered back-propagation algorithm to the classification of stellar spectra is presented. Using a part of catalogue's data in the training process, network learns to pssociate the appearance of a visual spectrum (hydrogen Balmer lines, continuum shape) with the classification parameters (MK spectral types). The performance of the network is evaluatey by using it to classihy phe remaining rata set and by comparing this ANN classification with the original catalogue one. ANN code is written in C++. It uses back-propagation algorithm for training and an approach that can be best described as "associative memory model" for prediction (classification).

  12. Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study

    SciTech Connect

    Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu

    2011-10-15

    Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations

  13. Artificial Neural Network L* from different magnetospheric field models

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.

    2011-12-01

    The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.

  14. Artificial immune algorithm for multi-depot vehicle scheduling problems

    NASA Astrophysics Data System (ADS)

    Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling

    2008-10-01

    In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.

  15. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Collister, Adrian A.; Lahav, Ofer

    2004-04-01

    We introduce ANNz, a freely available software package for photometric redshift estimation using artificial neural networks. ANNz learns the relation between photometry and redshift from an appropriate training set of galaxies for which the redshift is already known. Where a large and representative training set is available, ANNz is a highly competitive tool when compared with traditional template-fitting methods. The ANNz package is demonstrated on the Sloan Digital Sky Survey Data Release 1, and for this particular data set the rms redshift error in the range 0<~z<~0.7 is σrms=0.023. Nonideal conditions (spectroscopic sets that are small or brighter than the photometric set for which redshifts are required) are simulated, and the impact on the photometric redshift accuracy is assessed.2

  16. Practical application of artificial neural networks in the neurosciences

    NASA Astrophysics Data System (ADS)

    Pinti, Antonio

    1995-04-01

    This article presents a practical application of artificial multi-layer perceptron (MLP) neural networks in neurosciences. The data that are processed are labeled data from the visual analysis of electrical signals of human sleep. The objective of this work is to automatically classify into sleep stages the electrophysiological signals recorded from electrodes placed on a sleeping patient. Two large data bases were designed by experts in order to realize this study. One data base was used to train the network and the other to test its generalization capacity. The classification results obtained with the MLP network were compared to a type K nearest neighbor Knn non-parametric classification method. The MLP network gave a better result in terms of classification than the Knn method. Both classification techniques were implemented on a transputer system. With both networks in their final configuration, the MLP network was 160 times faster than the Knn model in classifying a sleep period.

  17. Artificial neural networks to model and diagnose cardiovascular systems

    SciTech Connect

    Kangas, L.J.; Keller, P.E.; Allen, P.A.

    1995-12-31

    In this paper, a novel approach to modeling and diagnosing the cardiovascular system is introduced. A model exhibits a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. Potentially, a model will be incorporated into a cardiovascular diagnostic system. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and. the actual variables of an individual at a given time are used for diagnosis. This approach also exploits sensor fusion to optimize the utilization of biomedical sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  18. Applications of artificial neural networks (ANNs) in food science.

    PubMed

    Huang, Yiqun; Kangas, Lars J; Rasco, Barbara A

    2007-01-01

    Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decades, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs hold a great deal of promise for modeling complex tasks in process control and simulation and in applications of machine perception including machine vision and electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in the field.

  19. Prediction of Dried Durian Moisture Content Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Husna, Marati; Purqon, Acep

    2016-08-01

    Moisture content has a crucial issue in post-harvest processing since it plays main role to estimate a quality of dried product. However, estimating the moisture content is difficult since it shows mathematically nonlinear systems and complex physical processes. We investigate the prediction of moisture content of dried product by using Artificial Neural Networks (ANN). Our sample is a Bengkulu's local durian that is dried using a microwave oven. Our results show that ANN can predict the moisture content by performing with R2 value is 98.47%. Moreover, the RMSE values is 3.97% and MSE values is 0.16%. Our results indicate that ANN model have high capability for predicting moisture content and it is potentially applied in post-harvest product, especially in drying product quality control.

  20. Incomplete fuzzy data processing systems using artificial neural network

    NASA Technical Reports Server (NTRS)

    Patyra, Marek J.

    1992-01-01

    In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.

  1. Flood estimation at ungauged sites using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Dawson, C. W.; Abrahart, R. J.; Shamseldin, A. Y.; Wilby, R. L.

    2006-03-01

    Artificial neural networks (ANNs) have been applied within the field of hydrological modelling for over a decade but relatively little attention has been paid to the use of these tools for flood estimation in ungauged catchments. This paper uses data from the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH) to predict T-year flood events and the index flood (the median of the annual maximum series) for 850 catchments across the UK. When compared with multiple regression models, ANNs provide improved flood estimates that can be used by engineers and hydrologists. Comparisons are also made with the empirical model presented in the FEH and a preliminary study is made of the spatial distribution of ANN residuals, highlighting the influence that geographical factors have on model performance.

  2. Modeling biodegradation and kinetics of glyphosate by artificial neural network.

    PubMed

    Nourouzi, Mohsen M; Chuah, Teong G; Choong, Thomas S Y; Rabiei, F

    2012-01-01

    An artificial neural network (ANN) model was developed to simulate the biodegradation of herbicide glyphosate [2-(Phosphonomethylamino) acetic acid] in a solution with varying parameters pH, inoculum size and initial glyphosate concentration. The predictive ability of ANN model was also compared with Monod model. The result showed that ANN model was able to accurately predict the experimental results. A low ratio of self-inhibition and half saturation constants of Haldane equations (< 8) exhibited the inhibitory effect of glyphosate on bacteria growth. The value of K(i)/K(s) increased when the mixed inoculum size was increased from 10(4) to 10(6) bacteria/mL. It was found that the percentage of glyphosate degradation reached a maximum value of 99% at an optimum pH 6-7 while for pH values higher than 9 or lower than 4, no degradation was observed. PMID:22424071

  3. Applications of Artificial Neural Networks (ANNs) in Food Science

    SciTech Connect

    HUang, Yiqun; Kangas, Lars J.; Rasco, Barbara A.

    2007-02-01

    Abstract Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decade, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs have a great deal of promise for modeling complex tasks in process control and simulation, and in applications of machine perception including machine vision and the electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in this field.

  4. Inflow forecasting using Artificial Neural Networks for reservoir operation

    NASA Astrophysics Data System (ADS)

    Chiamsathit, Chuthamat; Adeloye, Adebayo J.; Bankaru-Swamy, Soundharajan

    2016-05-01

    In this study, multi-layer perceptron (MLP) artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1) inflow known and assumed to be the historic (Type A); (2) inflow known and assumed to be the forecast (Type F); (3) inflow known and assumed to be the historic mean for month (Type M); and (4) inflow is unknown with release decision only conditioned on the starting reservoir storage (Type N). Reservoir performance was summarised in terms of reliability, resilience, vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while Type N was the worst performing. This clearly demonstrates the importance of good inflow information for effective reservoir operation.

  5. The application of artificial neural networks in indirect cost estimation

    NASA Astrophysics Data System (ADS)

    Leśniak, Agnieszka

    2013-10-01

    Estimating of the costs of construction project is one of the most important task in the management of the project. The total costs can be divided into direct costs that are related to executing the works, and indirect costs that accompany delivery. A precise costs estimation is usually a highly labour and time-intensive task especially when using manual calculation methods. This paper presents Artificial Neural Network (ANN) approach to predicting index of indirect cost of construction projects in Poland. A quantitative study was undertaken on the factors conditioning indirect costs of polish construction projects and a determination was made of the actual costs incurred by enterprises during project implementation. As a result of these studies, a data set was assembled covering 72 real-life cases of building projects constructed in Poland.

  6. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    SciTech Connect

    Saini, K. K.; Saini, Sanju

    2008-10-07

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  7. Hourly load forecasting using artificial neural networks. Final report

    SciTech Connect

    Khotanzad, A.

    1995-09-01

    An artificial neural network short-term load forecaster (ANNSTLF) and an artificial neural network (ANN) based temperature forecaster have been developed by Southern Methodist University under contracts RP2473-44 and RP3573-4. ANNSTLF can produce hourly load forecasts for one to 168 hours ahead (one to seven days ahead) with errors ranging from 2 to 4% depending on utility size and characteristics. Implementation of ANNSTLF requires an initial training with historical hourly load and weather data. Two weather parameters, temperature and relative humidity, from either one or multiple locations can be utilized. In the operational phase, the previous day`s load and weather data and hourly weather forecasts are needed. The temperature forecaster can generate hourly temperature forecasts from the predicted values for high and low temperatures of future days. Both forecasters run on a PC platform under the MS-DOS operating system. The development of ANNSTLF is based on decomposition of the load-weather relationship into three distinct trends: Weekly, daily, and hourly. Each trend is modeled by a separate module containing several multi-layer feed-forward ANNs trained by the back-propagation learning rule. The forecasts produced by each module are combined by adaptive filters to arrive at the final forecast. During the forecasting phase, the parameters of the ANNs within each module are adoptively changed according to the latest forecast accuracy. The temperature forecaster consists of a single ANN that requires the previous day`s hourly temperatures and the next day`s predicted high and low temperatures as inputs. The resulting hourly forecasts are adoptively scaled to assure that the high and low temperatures match their respective predictions. The system is capable of forecasting up to seven days ahead. ANNSTLF has been implemented at twenty utilities across the nation and is being used on-Ene by several of them.

  8. South America downscaling: using spatial artificial neural network

    NASA Astrophysics Data System (ADS)

    Mendes, David; Marengo, José

    2010-05-01

    The mathematical models used to simulate the present climate and project future climate with forcing by greenhouse gases and aerosols are generally referred to as General Circulation Models or Global Climate Models (GCMs). However, the spatial resolution of GCMs remains quite coarse, in the order of 300 x 300 km, and at scale, the regional and local details of the climate which are influenced by spatial heterogeneities in the regional physiography are lost. Therefore, there is the need to convert the GCM outputs into a reliable data set with higher spatial resolution, with daily rainfall and temperature time series at the scale of the watershed or a region to which the climate impact is going to be investigated. The methods used to convert GCM outputs into local meteorological variables required for reliable climate modeling are usually referred to as downscaling techniques. There are a variety of downscaling techniques in the literature, but two major approaches can be identified at the moment, namely, dynamic downscaling and empirical (statistical) downscaling. The most widely used empirical downscaling methods are the multiple linear regression and stochastic weather generation. However, the interest in nonlinear regression methods, namely, artificial neural network (ANN), is nowadays increasing because of their high potential for complex, nonlinear and time-varying input-output mapping. The main aim of this work is to develop and test a novel type of statistical downscaling technique based on the Artificial Neural Network (ANN), applied of the climate change. This work analyses the performance of the IPCC models in simulate the present and future climate using ANN. The ANN used here are based on a feed forward configuration of the multilayer perception that has been used by a growing number of authors. To carry out statistical downscaling for each meteorological date (grid point), the predictors and predictands were supplied to the models (ANN) and spatial

  9. Electric demand prediction using artificial neural network technology

    SciTech Connect

    Gibson, G.L.; Kraft, T.T. )

    1993-03-01

    As a means of promoting demand-side management (DSM) technologies, electric utilities have developed increasingly complex electric rate structures. Electric rates are typically based on both demand and energy use and, in some instances, can change on an hourly basis. The ability of a building's owner or operator to react to the variability of these rates would be greatly enhanced if a building's electric demand and energy use could be accurately predicted on a daily basis. This is especially true for buildings that are equipped with thermal energy storage (TES) systems for building cooling. TES systems are designed to shift the electric demand associated with building cooling to night-time hours when electric rates are usually lowest. TES systems are typically designed to provide the maximum benefit under design day weather and building usage conditions. As a result, TES systems are often under-utilized (with an associated reduction in savings) during time periods when less than design day conditions exist. To optimize TES system equipment operation, it is first necessary to predict building electric and cooling demand under non-design day conditions. A personal computer-based software package that operates in conjunction with a building's energy management and control system (EMCS) to automatically optimize TES system operation is currently installed and operating in an office building in the northeastern United States. This software package uses artificial neural network (ANN) technology to model several parameters related to building energy use and TES system operation. The purpose of this article is to report on the initial performance of the artificial neural network in its prediction of building electric load.

  10. Comparison of sonar discrimination: dolphin and an artificial neural network.

    PubMed

    Au, W W

    1994-05-01

    The capability of an echolocating dolphin to discriminate differences in the wall thickness of cylinders (3.81 cm o.d. and 12.7 cm length) was determined by Au and Pawloski [J. Comp. Physiol. A 170, 41-47 (1992)]. The dolphin was required to discriminate a standard target from comparison targets of differing wall thicknesses. Performance varied from 96% to 56% correct depending on the wall thickness of the comparison targets. The 75% correct threshold was determined to be wall thickness differences of -0.23 mm for comparison targets with thinner walls and +0.27 mm for comparison targets with thicker walls than the standard. The dolphin performance was unchanged in the presence of artificial broadband masking noise until the echo-energy-to-noise ratio fell below approximately 15 dB. A counterpropagation artificial neural network was used to examine broadband echo features from the same cylinders. Features of the echoes were determined by passing them through a filter bank of constant-Q filters. Echo features of the standard and each comparison target were analyzed in pairs by a neural network having two output nodes. Twenty echoes per target were used in the training set and 30 additional echoes per target were used in the test set. For the noise free condition, the network performed at a comparable level to the dolphin for Q values between 4 and 5. In the presence of noise, Q values between 7 and 8 were needed before the network could perform at a comparable level to the dolphin for echo-energy-to-noise ratios of 10 and 15 dB.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Comparison of sonar discrimination: dolphin and an artificial neural network.

    PubMed

    Au, W W

    1994-05-01

    The capability of an echolocating dolphin to discriminate differences in the wall thickness of cylinders (3.81 cm o.d. and 12.7 cm length) was determined by Au and Pawloski [J. Comp. Physiol. A 170, 41-47 (1992)]. The dolphin was required to discriminate a standard target from comparison targets of differing wall thicknesses. Performance varied from 96% to 56% correct depending on the wall thickness of the comparison targets. The 75% correct threshold was determined to be wall thickness differences of -0.23 mm for comparison targets with thinner walls and +0.27 mm for comparison targets with thicker walls than the standard. The dolphin performance was unchanged in the presence of artificial broadband masking noise until the echo-energy-to-noise ratio fell below approximately 15 dB. A counterpropagation artificial neural network was used to examine broadband echo features from the same cylinders. Features of the echoes were determined by passing them through a filter bank of constant-Q filters. Echo features of the standard and each comparison target were analyzed in pairs by a neural network having two output nodes. Twenty echoes per target were used in the training set and 30 additional echoes per target were used in the test set. For the noise free condition, the network performed at a comparable level to the dolphin for Q values between 4 and 5. In the presence of noise, Q values between 7 and 8 were needed before the network could perform at a comparable level to the dolphin for echo-energy-to-noise ratios of 10 and 15 dB.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8207144

  12. Artificial Neural Network Modeling to Evaluate the Dynamic Flow Stress of 7050 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Quan, Guo-zheng; Wang, Tong; Li, Yong-le; Zhan, Zong-yang; Xia, Yu-feng

    2016-02-01

    The flow stress data have been obtained by a set of isothermal hot compression tests, which were carried out in the temperature range of 573-723 K and strain rates of 0.01, 0.1, 1, and 10 s-1 with a reduction of 60% on a Gleeble-1500 thermo-mechanical simulator. On the basis of the experimental data, constitutive equation and an artificial neural network model were developed for the analysis and simulation of the flow behavior of the 7050 aluminum alloy. After training with standard back-propagation learning algorithm, the artificial neural network model has the ability to present the intrinsic relationship between the flow stress and the processing variables. In the present model, the temperature, strain, and strain rate were chosen as inputs, and the flow stress was chosen as output. By comparing the values of correlation coefficient and average absolute relative error, the prediction accuracy of the model and the improved Arrhenius-type model can be evaluated. The results indicated that the well-trained artificial neural network model is more accurate than the improved Arrhenius-type model in predicting the hot compressive behavior of the as-extruded 7050 aluminum alloy. Based on the predicted stress data and experimental stress data, the 3D continuous stress-strain maps at different strains, temperatures, and strain rates were plotted subsequently. Besides, the flow stress values at arbitrary temperature, strain rate, and strain are explicit on the 3D continuous stress-strain maps, which would be beneficial to articulate working processes more validly.

  13. A novel technology for fabricating customizable VLSI artificial neural network chips

    SciTech Connect

    Fu, C.Y.; Law, B.; Chapline, G.; Swenson, D.

    1992-02-05

    This paper describes an implementation of hardware neural networks using highly linear thin-film resistor technology and an 8-bit binary weight circuit to produce customizable artificial neural network chips and systems. These neural networks are programmed using precision laser cutting and deposition. The fast turnaround of laser-based customization allows us to explore different neural network architectures and to rapidly program the synaptic weights. Our customizable chip allows us to expand an artificial network laterally and vertically. This flexibility permits us to build very large neural network systems.

  14. Robustness against S.E.U. of an artificial neural network space application

    SciTech Connect

    Assoum, A.; Radi, N.E.; Velazco, R.; Elie, F.; Ecoffet, R.

    1996-06-01

    The authors study the sensitivity of Artificial Neural Networks (ANN) to Single Event Upsets (SEU). A neural network designed to detect electronic and protonic whistlers has been implemented using a dedicated VLSI circuit: the LNeuro neural processor. Results of both SEU software simulations and heavy ion tests point out the fault tolerance properties of ANN hardware implementations.

  15. Eye tracking using artificial neural networks for human computer interaction.

    PubMed

    Demjén, E; Aboši, V; Tomori, Z

    2011-01-01

    This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assumes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user's eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration procedure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of development is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections).

  16. Informational properties of neural nets performing algorithmic and logical tasks.

    PubMed

    Ritz, B M; Hofacker, G L

    1996-06-01

    It is argued that the genetic information necessary to encode an algorithmic neural processor tutoring an otherwise randomly connected biological neural net is represented by the entropy of the analogous minimal Turing machine. Such a near-minimal machine is constructed performing the whole range of bivalent propositional logic in n variables. Neural nets computing the same task are presented; their informational entropy can be gauged with reference to the analogous Turing machine. It is also shown that nets with one hidden layer can be trained to perform algorithms solving propositional logic by error back-propagation. PMID:8672562

  17. Informational properties of neural nets performing algorithmic and logical tasks.

    PubMed

    Ritz, B M; Hofacker, G L

    1996-06-01

    It is argued that the genetic information necessary to encode an algorithmic neural processor tutoring an otherwise randomly connected biological neural net is represented by the entropy of the analogous minimal Turing machine. Such a near-minimal machine is constructed performing the whole range of bivalent propositional logic in n variables. Neural nets computing the same task are presented; their informational entropy can be gauged with reference to the analogous Turing machine. It is also shown that nets with one hidden layer can be trained to perform algorithms solving propositional logic by error back-propagation.

  18. Didactic Strategy Discussion Based on Artificial Neural Networks Results.

    NASA Astrophysics Data System (ADS)

    Andina, D.; Bermúdez-Valbuena, R.

    2009-04-01

    Artificial Neural Networks (ANNs) are a mathematical model of the main known characteristics of biological brian dynamics. ANNs inspired in biological reality have been useful to design machines that show some human-like behaviours. Based on them, many experimentes have been succesfully developed emulating several biologial neurons characteristics, as learning how to solve a given problem. Sometimes, experimentes on ANNs feedback to biology and allow advances in understanding the biological brian behaviour, allowing the proposal of new therapies for medical problems involving neurons performing. Following this line, the author present results on artificial learning on ANN, and interpret them aiming to reinforce one of this two didactic estrategies to learn how to solve a given difficult task: a) To train with clear, simple, representative examples and feel confidence in brian generalization capabilities to achieve succes in more complicated cases. b) To teach with a set of difficult cases of the problem feeling confidence that the brian will efficiently solve the rest of cases if it is able to solve the difficult ones. Results may contribute in the discussion of how to orientate the design innovative succesful teaching strategies in the education field.

  19. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  20. Reliability and risk analysis using artificial neural networks

    SciTech Connect

    Robinson, D.G.

    1995-12-31

    This paper discusses preliminary research at Sandia National Laboratories into the application of artificial neural networks for reliability and risk analysis. The goal of this effort is to develop a reliability based methodology that captures the complex relationship between uncertainty in material properties and manufacturing processes and the resulting uncertainty in life prediction estimates. The inputs to the neural network model are probability density functions describing system characteristics and the output is a statistical description of system performance. The most recent application of this methodology involves the comparison of various low-residue, lead-free soldering processes with the desire to minimize the associated waste streams with no reduction in product reliability. Model inputs include statistical descriptions of various material properties such as the coefficients of thermal expansion of solder and substrate. Consideration is also given to stochastic variation in the operational environment to which the electronic components might be exposed. Model output includes a probabilistic characterization of the fatigue life of the surface mounted component.

  1. Gait quality assessment using self-organising artificial neural networks.

    PubMed

    Barton, Gabor; Lisboa, Paulo; Lees, Adrian; Attfield, Steve

    2007-03-01

    In this study, the challenge to maximise the potential of gait analysis by employing advanced methods was addressed by using self-organising neural networks to quantify the deviation of patients' gait from normal. Data including three-dimensional joint angles, moments and powers of the two lower limbs and the pelvis were used to train Kohonen artificial neural networks to learn an abstract definition of normal gait. Subsequently, data from patients with gait problems were presented to the network which quantified the quality of gait in the form of a single curve by calculating the quantisation error during the gait cycle. A sensitivity analysis involving the manipulation of gait variables' weighting was able to highlight specific causes of the deviation including the anatomical location and the timing of wrong gait patterns. Use of the quantisation error can be regarded as an extension of previously described gait indices because it measures the goodness of gait and additionally provides information related to the causes underlying gait deviations.

  2. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-12-31

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant`s training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  3. Classification of Images Acquired with Colposcopy Using Artificial Neural Networks

    PubMed Central

    Simões, Priscyla W; Izumi, Narjara B; Casagrande, Ramon S; Venson, Ramon; Veronezi, Carlos D; Moretti, Gustavo P; da Rocha, Edroaldo L; Cechinel, Cristian; Ceretta, Luciane B; Comunello, Eros; Martins, Paulo J; Casagrande, Rogério A; Snoeyer, Maria L; Manenti, Sandra A

    2014-01-01

    OBJECTIVE To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. PURPOSE Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set was composed of images collected from patients who underwent colposcopy. These images were provided by a gynecology clinic located in the city of Criciúma (Brazil). The image database (n = 170) was divided; 48 images were used for the training process, 58 images were used for the tests, and 64 images were used for the validation. A hybrid neural network based on Kohonen self-organizing maps and multilayer perceptron (MLP) networks was used. RESULTS After 126 cycles, the validation was performed. The best results reached an accuracy of 72.15%, a sensibility of 69.78%, and a specificity of 68%. CONCLUSION Although the preliminary results still exhibit an average efficiency, the present approach is an innovative and promising technique that should be deeply explored in the context of the present study. PMID:25374454

  4. Surface daytime net radiation estimation using artificial neural networks

    DOE PAGES

    Jiang, Bo; Zhang, Yi; Liang, Shunlin; Zhang, Xiaotong; Xiao, Zhiqiang

    2014-11-11

    Net all-wave surface radiation (Rn) is one of the most important fundamental parameters in various applications. However, conventional Rn measurements are difficult to collect because of the high cost and ongoing maintenance of recording instruments. Therefore, various empirical Rn estimation models have been developed. This study presents the results of two artificial neural network (ANN) models (general regression neural networks (GRNN) and Neuroet) to estimate Rn globally from multi-source data, including remotely sensed products, surface measurements, and meteorological reanalysis products. Rn estimates provided by the two ANNs were tested against in-situ radiation measurements obtained from 251 global sites between 1991–2010more » both in global mode (all data were used to fit the models) and in conditional mode (the data were divided into four subsets and the models were fitted separately). Based on the results obtained from extensive experiments, it has been proved that the two ANNs were superior to linear-based empirical models in both global and conditional modes and that the GRNN performed better and was more stable than Neuroet. The GRNN estimates had a determination coefficient (R2) of 0.92, a root mean square error (RMSE) of 34.27 W·m–2 , and a bias of –0.61 W·m–2 in global mode based on the validation dataset. In conclusion, ANN methods are a potentially powerful tool for global Rn estimation.« less

  5. Artificial neural network prediction of antisense oligodeoxynucleotide activity.

    PubMed

    Giddings, Michael C; Shah, Atul A; Freier, Sue; Atkins, John F; Gesteland, Raymond F; Matveeva, Olga V

    2002-10-01

    An mRNA transcript contains many potential antisense oligodeoxynucleotide target sites. Identification of the most efficacious targets remains an important and challenging problem. Building on separate work that revealed a strong correlation between the inclusion of short sequence motifs and the activity level of an oligo, we have developed a predictive artificial neural network system for mapping tetranucleotide motif content to antisense oligo activity. Trained for high-specificity prediction, the system has been cross-validated against a database of 348 oligos from the literature and a larger proprietary database of 908 oligos. In cross- validation tests the system identified effective oligos (i.e. oligos capable of reducing target mRNA expression to <25% that of the control) with 53% accuracy, in contrast to the <10% success rates commonly reported for trial-and-error oligo selection, suggesting a possible 5-fold reduction in the in vivo screening required to find an active oligo. We have implemented a web interface to a trained neural network. Given an RNA transcript as input, the system identifies the most likely oligo targets and provides estimates of the probabilities that oligos targeted against these sites will be effective. PMID:12364609

  6. Artificial neural network based microwave precipitation estimation using scattering index and polarization corrected temperature

    NASA Astrophysics Data System (ADS)

    Mahesh, C.; Prakash, Satya; Sathiyamoorthy, V.; Gairola, R. M.

    2011-11-01

    An Artificial Neural Network (ANN) based technique is proposed for estimating precipitation over Indian land and oceanic regions [30° S - 40° N and 30° E - 120° E] using Scattering Index (SI) and Polarization Corrected Temperature (PCT) derived from Special Sensor Microwave Imager (SSM/I) measurements. This rainfall retrieval algorithm is designed to estimate rainfall using a combination of SSM/I and Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements. For training the ANN, SI and PCT (which signify rain signatures in a better way) calculated from SSM/I brightness temperature are considered as inputs and Precipitation Radar (PR) rain rate as output. SI is computed using 19.35 GHz, 22.235 GHz and 85.5 GHz Vertical channels and PCT is computed using 85.5 GHz Vertical and Horizontal channels. Once the training is completed, the independent data sets (which were not included in the training) were used to test the performance of the network. Instantaneous precipitation estimates with independent test data sets are validated with PR surface rain rate measurements. The results are compared with precipitation estimated using power law based (i) global algorithm and (ii) regional algorithm. Overall results show that ANN based present algorithm shows better agreement with PR rain rate. This study is aimed at developing a more accurate operational rainfall retrieval algorithm for Indo-French Megha-Tropiques Microwave Analysis and Detection of Rain and Atmospheric Structures (MADRAS) radiometer.

  7. A new optimized GA-RBF neural network algorithm.

    PubMed

    Jia, Weikuan; Zhao, Dean; Shen, Tian; Su, Chunyang; Hu, Chanli; Zhao, Yuyan

    2014-01-01

    When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.

  8. An Improved Back Propagation Neural Network Algorithm on Classification Problems

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd; Ransing, R. S.; Salleh, Mohd Najib Mohd; Ghazali, Rozaida; Hamid, Norhamreeza Abdul

    The back propagation algorithm is one the most popular algorithms to train feed forward neural networks. However, the convergence of this algorithm is slow, it is mainly because of gradient descent algorithm. Previous research demonstrated that in 'feed forward' algorithm, the slope of the activation function is directly influenced by a parameter referred to as 'gain'. This research proposed an algorithm for improving the performance of the back propagation algorithm by introducing the adaptive gain of the activation function. The gain values change adaptively for each node. The influence of the adaptive gain on the learning ability of a neural network is analysed. Multi layer feed forward neural networks have been assessed. Physical interpretation of the relationship between the gain value and the learning rate and weight values is given. The efficiency of the proposed algorithm is compared with conventional Gradient Descent Method and verified by means of simulation on four classification problems. In learning the patterns, the simulations result demonstrate that the proposed method converged faster on Wisconsin breast cancer with an improvement ratio of nearly 2.8, 1.76 on diabetes problem, 65% better on thyroid data sets and 97% faster on IRIS classification problem. The results clearly show that the proposed algorithm significantly improves the learning speed of the conventional back-propagation algorithm.

  9. A New Optimized GA-RBF Neural Network Algorithm

    PubMed Central

    Zhao, Dean; Su, Chunyang; Hu, Chanli; Zhao, Yuyan

    2014-01-01

    When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid. PMID:25371666

  10. Software Design Challenges in Time Series Prediction Systems Using Parallel Implementation of Artificial Neural Networks

    PubMed Central

    Manikandan, Narayanan; Subha, Srinivasan

    2016-01-01

    Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used. PMID:26881271

  11. Predictive ion source control using artificial neural network for RFT-30 cyclotron

    NASA Astrophysics Data System (ADS)

    Kong, Young Bae; Hur, Min Goo; Lee, Eun Je; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-01-01

    An RFT-30 cyclotron is a 30 MeV proton accelerator for radioisotope production and fundamental research. The ion source of the RFT-30 cyclotron creates plasma from hydrogen gas and transports an ion beam into the center region of the cyclotron. Ion source control is used to search source parameters for best quality of the ion beam. Ion source control in a real system is a difficult and time consuming task, and the operator should search the source parameters by manipulating the cyclotron directly. In this paper, we propose an artificial neural network based predictive control approach for the RFT-30 ion source. The proposed approach constructs the ion source model by using an artificial neural network and finds the optimized parameters with the simulated annealing algorithm. To analyze the performance of the proposed approach, we evaluated the simulations with the experimental data of the ion source. The performance results show that the proposed approach can provide an efficient way to analyze and control the ion source of the RFT-30 cyclotron.

  12. Software Design Challenges in Time Series Prediction Systems Using Parallel Implementation of Artificial Neural Networks.

    PubMed

    Manikandan, Narayanan; Subha, Srinivasan

    2016-01-01

    Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used. PMID:26881271

  13. Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks

    SciTech Connect

    Senesac, Larry R; Datskos, Panos G; Sepaniak, Michael J

    2006-01-01

    In the present work, we have performed analyte species and concentration identification using an array of ten differentially functionalized microcantilevers coupled with a back-propagation artificial neural network pattern recognition algorithm. The array consists of ten nanostructured silicon microcantilevers functionalized by polymeric and gas chromatography phases and macrocyclic receptors as spatially dense, differentially responding sensing layers for identification and quantitation of individual analyte(s) and their binary mixtures. The array response (i.e. cantilever bending) to analyte vapor was measured by an optical readout scheme and the responses were recorded for a selection of individual analytes as well as several binary mixtures. An artificial neural network (ANN) was designed and trained to recognize not only the individual analytes and binary mixtures, but also to determine the concentration of individual components in a mixture. To the best of our knowledge, ANNs have not been applied to microcantilever array responses previously to determine concentrations of individual analytes. The trained ANN correctly identified the eleven test analyte(s) as individual components, most with probabilities greater than 97%, whereas it did not misidentify an unknown (untrained) analyte. Demonstrated unique aspects of this work include an ability to measure binary mixtures and provide both qualitative (identification) and quantitative (concentration) information with array-ANN-based sensor methodologies.

  14. Artificial neural network and multiple regression model for nickel(II) adsorption on powdered activated carbons.

    PubMed

    Hema, M; Srinivasan, K

    2011-07-01

    Nickel removal efficiency of powered activated carbons of coconut oilcake, neem oilcake and commercial carbon was investigated by using artificial neural network. The effective parameters for the removal of nickel (%R) by adsorption process, which included the pH, contact time (T), distinctiveness of activated carbon (Cn), amount of activated carbon (Cw) and initial concentration of nickel (Co) were investigated. Levenberg-Marquardt (LM) Back-propagation algorithm is used to train the network. The network topology was optimized by varying number of hidden layer and number of neurons in hidden layer. The model was developed in terms of training; validation and testing of experimental data, the test subsets that each of them contains 60%, 20% and 20% of total experimental data, respectively. Multiple regression equation was developed for nickel adsorption system and the output was compared with both simulated and experimental outputs. Standard deviation (SD) with respect to experimental output was quite higher in the case of regression model when compared with ANN model. The obtained experimental data best fitted with the artificial neural network. PMID:23029923

  15. Software Design Challenges in Time Series Prediction Systems Using Parallel Implementation of Artificial Neural Networks.

    PubMed

    Manikandan, Narayanan; Subha, Srinivasan

    2016-01-01

    Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used.

  16. Detection of clustered microcalcifications in masses on mammograms by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Hara, Takeshi; Fujita, Hiroshi; Iwase, Takuji; Endo, Tokiko

    2001-07-01

    The existence of a cluster of microcalcifications in mass area on mammogram is one of important features for distinguishing the breast cancer between benign and malignant. However, missed detections often occur because of its low subject contrast in denser background and small quantity of microcalcifications. To get a higher performance of detecting the cluster in mass area, we combined the shift-invariant artificial neural network (SIANN) with triple-ring filter (TRF) method in our computer-aided diagnosis (CAD) system. 150 region-of- interests around mass containing both of positive and negative microcalcifications were selected for training the network by a modified error-back-propagation algorithm. A variable-ring filter was used for eliminating the false- positive (FP) detections after the outputs of SIANN and TRF. The remained Fps were then reduced by a conventional three layer artificial neural network. Finally, the program identified clustered microcalcifications form individual microcalcifications. In a practical detection of 30 cases with 40 clusters in masses, the sensitivity of detecting clusters was improved form 90% by our previous method to 95% by using both SIANN and TRF, while the number of FP clusters was decreased from 0.85 to 0.40 cluster per image.

  17. Software Development Cost and Time Forecasting Using a High Performance Artificial Neural Network Model

    NASA Astrophysics Data System (ADS)

    Attarzadeh, Iman; Ow, Siew Hock

    Nowadays, mature software companies are more interested to have a precise estimation of software metrics such as project time, cost, quality, and risk at the early stages of software development process. The ability to precisely estimate project time and costs by project managers is one of the essential tasks in software development activities, and it named software effort estimation. The estimated effort at the early stage of project development process is uncertain, vague, and often the least accurate. It is because that very little information is available at the beginning stage of project. Therefore, a reliable and precise effort estimation model is an ongoing challenge for project managers and software engineers. This research work proposes a novel soft computing model incorporating Constructive Cost Model (COCOMO) to improve the precision of software time and cost estimation. The proposed artificial neural network model has good generalisation, adaption capability, and it can be interpreted and validated by software engineers. The experimental results show that applying the desirable features of artificial neural networks on the algorithmic estimation model improves the accuracy of time and cost estimation and estimated effort can be very close to the actual effort.

  18. Modeling of frost crystal growth over a flat plate using artificial neural networks and fractal geometries

    NASA Astrophysics Data System (ADS)

    Tahavvor, Ali Reza

    2016-06-01

    In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.

  19. A radial basis function neural network based on artificial immune systems for remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Yan, Qin; Zhong, Yanfei

    2008-12-01

    The radial basis function (RBF) neural network is a powerful method for remote sensing image classification. It has a simple architecture and the learning algorithm corresponds to the solution of a linear regression problem, resulting in a fast training process. The main drawback of this strategy is the requirement of an efficient algorithm to determine the number, position, and dispersion of the RBF. Traditional methods to determine the centers are: randomly choose input vectors from the training data set; vectors obtained from unsupervised clustering algorithms, such as k-means, applied to the input data. These conduce that traditional RBF neural network is sensitive to the center initialization. In this paper, the artificial immune network (aiNet) model, a new computational intelligence based on artificial immune networks (AIN), is applied to obtain appropriate centers for remote sensing image classification. In the aiNet-RBF algorihtm, each input pattern corresonds to an antigenic stimulus, while each RBF candidate center is considered to be an element, or cell, of the immune network model. The steps are as follows: A set of candidate centers is initialized at random, where the initial number of candidates and their positions is not crucial to the performance. Then, the clonal selection principle will control which candidates will be selected and how they will be upadated. Note that the clonal selection principle will be responsible for how the centers will represent the training data set. Finally, the immune network will identify and eliminate or suppress self-recognizing individuals to control the number of candidate centers. After the above learning phase, the aiNet network centers represent internal images of the inuput patterns presented to it. The algorithm output is taken to be the matrix of memory cells' coordinates that represent the final centers to be adopted by the RBF network. The stopping criterion of the proposed algorithm is given by a pre

  20. A novel neural-inspired learning algorithm with application to clinical risk prediction.

    PubMed

    Tay, Darwin; Poh, Chueh Loo; Kitney, Richard I

    2015-04-01

    Clinical risk prediction - the estimation of the likelihood an individual is at risk of a disease - is a coveted and exigent clinical task, and a cornerstone to the recommendation of life saving management strategies. This is especially important for individuals at risk of cardiovascular disease (CVD) given the fact that it is the leading causes of death in many developed counties. To this end, we introduce a novel learning algorithm - a key factor that influences the performance of machine learning-based prediction models - and utilities it to develop CVD risk prediction tool. This novel neural-inspired algorithm, called the Artificial Neural Cell System for classification (ANCSc), is inspired by mechanisms that develop the brain and empowering it with capabilities such as information processing/storage and recall, decision making and initiating actions on external environment. Specifically, we exploit on 3 natural neural mechanisms responsible for developing and enriching the brain - namely neurogenesis, neuroplasticity via nurturing and apoptosis - when implementing ANCSc algorithm. Benchmark testing was conducted using the Honolulu Heart Program (HHP) dataset and results are juxtaposed with 2 other algorithms - i.e. Support Vector Machine (SVM) and Evolutionary Data-Conscious Artificial Immune Recognition System (EDC-AIRS). Empirical experiments indicate that ANCSc algorithm (statistically) outperforms both SVM and EDC-AIRS algorithms. Key clinical markers identified by ANCSc algorithm include risk factors related to diet/lifestyle, pulmonary function, personal/family/medical history, blood data, blood pressure, and electrocardiography. These clinical markers, in general, are also found to be clinically significant - providing a promising avenue for identifying potential cardiovascular risk factors to be evaluated in clinical trials.

  1. XROUTE: A knowledge-based routing system using neural networks and genetic algorithms

    SciTech Connect

    Kadaba, N.

    1990-01-01

    This dissertation is concerned with applying alternative methods of artificial intelligence (AI) in conjunction with mathematical methods to Vehicle Routing Problems. The combination of good mathematical models, knowledge-based systems, artificial neural networks, and adaptive genetic algorithms (GA) - which are shown to be synergistic - produces near-optimal results, which none of the individual methods can produce on its own. A significant problem associated with application of the Back Propagation learning paradigm for pattern classification with neural networks is the lack of high accuracy in generalization when the domain is large. In this work, a multiple neural network system is employed, using two self-organizing neural networks that work as feature extractors, producing information that is used to train a generalization neural network. The technique was successfully applied to the selection of control rules for a Traveling Salesman Problem heuristic, thus making it adaptive to the input problem instance. XROUTE provides an interactive visualization system, using state-of-the-art vehicle routing models and AI tools, yet allows an interactive environment for human expertise to be utilized in powerful ways. XROUTE provides an experimental, exploratory framework that allows many variations, and alternatives to problems with different characteristics. XROUTE is dynamic, expandable, and adaptive, and typically outperforms alternative methods in computer-aided vehicle routing.

  2. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation.

    PubMed

    Du, Tingsong; Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.

  3. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  4. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    SciTech Connect

    Toomarian, N.; Kirkham, H.

    1993-12-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  5. Nuclear power plant status diagnostics using an artificial neural network

    SciTech Connect

    Bartlett, E.B.; Uhrig, R.E. )

    1992-03-01

    In this paper, nuclear power plant operating status recognition is investigated using a self-optimizing stochastic learning algorithm artificial neutral network (ANN) with dynamic node architecture learning. The objective is to train the ANN to classify selected nuclear power plant accident conditions and assess the potential for future success in this area. The network is trained on normal operating conditions as well as on potentially unsafe conditions based on nuclear power plant training simulator-generated accident scenarios. These scenarios include hot-and cold-leg loss of coolant, control rod ejection, total loss of off-site power, main streamline break, main feedwater line break, and steam generator tube leak accidents as well as the normal operating condition. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results. continued research work indicated.

  6. Monitoring the authenticity of low-fat yogurts by an artificial neural network.

    PubMed

    da Cruz, A G; Walter, E H M; Cadena, R S; Faria, J A F; Bolini, H M A; Frattini Fileti, A M

    2009-10-01

    The growing consumption of low- and reduced-fat dairy products demands routine control of their authenticity by health agencies. The usual analyses of fat in dairy products are very simple laboratory methods; however, they require manipulation and use of reagents of a corrosive nature, such as sulfuric acid, to break the chemical bounds between fat and proteins. Additionally, they generate chemical residues that require an appropriate destination. In this work, the use of an artificial neural network based on simple instrumental analyses, such as pH, color, and hardness (inputs) is proposed for the classification of commercial yogurts in the low- and reduced-fat categories (outputs). A total of 108 strawberry-flavored yogurts (48 probiotic low-fat, 36 low-fat, and 24 full-fat yogurts) belonging to several commercial brands and from different batches were used in this research. The statistical analysis showed different features for each yogurt category; thus, a database was built and a neural model was trained with the Levenberg-Marquardt algorithm by using the neural network toolbox of the software MATLAB 7.0.1. Validation with unseen data pairs showed that the proposed model was 100% efficient. Because the instrumental analyses do not require any sample preparation and do not produce any chemical residues, the proposed procedure is a fast and interesting approach to monitoring the authenticity of these products.

  7. Artificial Neural Network Analysis of Immobilized Lipase Catalyzed Synthesis of Biodiesel from Rapeseed Soapstock

    NASA Astrophysics Data System (ADS)

    Ying, Yanjie; Shao, Ping; Jiang, Shaotong; Sun, Peilong

    Refined vegetable oils are the predominant feedstocks for the production of biodiesel. However, their relatively high costs render the resulting fuels unable to compete with petroleum-derived fuel. Artificial neural network (ANN) analysis of immobilized Candida rugosa lipase (CRL) on chitosan catalyzed preparation of biodiesel from rapeseed soapstock with methanol was carried out. Methanol substrate molar ratio, enzyme amount, water content and reaction temperature were four important parameters employed. Back-Propagation algorithm with momentous factor was adopted to train the neural network. The momentous factor and learning rate were selected as 0.95 and 0.8. ANN analysis showed good correspondence between experimental and predicted values. The coefficient of determination (R2) between experimental and predicted values was 99.20%. Biodiesel conversion of 75.4% was obtained when optimum conditions of immobilized lipase catalysed for biodiesel production were methanol substrate molar ratio of 4.4:1, enzyme amount of 11.6%, water content of 4% and reaction temperature of 45°. Methyl ester content was above 95% after short path distillation process. Biodiesel conversion was increased markedly by neural network analysis.

  8. Artificial awareness for robots using artificial neural nets to monitor robotic workcells

    SciTech Connect

    Tucker, S.D.; Ray, L.P.

    1997-04-01

    Current robotic systems are unable to recognize most unexpected changes in the work environment, such as tool breakage, workpiece motion, or sensor failure. Unless halted by a human operator, they are likely to continue actions that are at best inappropriate, and at worst may cause damage to the workpiece or robot. This project investigated use of Artificial Neural Networks (ANNs) to learn the expected characteristics of sensor data during normal operations, recognize when data no longer is consistent with normal operation, suspend operations and alert a human operator. Data on force and torque applied at the robot tool tip were collected from two workcells: a robotic deburring system and a robot material-handling system. Data were collected for normal operations and for operations in which a fault condition was introduced. Data simulating sensor failure and excessive sensor noise were generated. Artificial Neural Networks (ANN) were trained to classify operating conditions; several ANN architectures were tested. The selected ANNs were able to correctly classify all valid operating conditions and the majority of fault conditions over the entire range of operating conditions, having {open_quotes}learned{close_quotes} the expected force/torque data. Most faults introduced appreciable error in the data; these were correctly classified. However, a small minority of faults did not give rise to a detectable difference in force and torque data. It is believed that these faults could be detected using other sensors. The computational workload varies with the implementation, but is moderate: up to 2.3 megaflops. This makes implementation of a real-time workcell monitor feasible.

  9. A study on ionospheric TEC forecast using genetic algorithm and neural network

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Yuan, Hong

    Back propagation artificial neural network (ANN) augmented by genetic algorithm (GA) is introduced to forecast ionospheric TEC with the dual-frequency GPS measurements from the low and high solar activity years in this paper due to ionosphere space characterizing by the highly nonlinear and time-varying with random variations. First, with different number of neurons in the hidden layer, different transfer function and training function, the training performance of network model is analyzed and then optimized network structure is determined. The ionospheric TEC values one hour in advance are forecasted and further the prediction performance of the developed network model is evaluated at the given criterions. The results show that predicted TEC using BP neural network improved by genetic algorithm has good agreement with observed data. In addition, the prediction errors are smaller in middle and high latitudes than in low latitudes, smaller in low solar activity than in high solar activity. Compared with BP Network with three layers structure, Prediction precision of network model optimized by genetic algorithm is further improved. The resolution quality indicate that the proposed algorithm can offer a powerful and reliable alternative to the design of ionospheric TEC forecast technologies, and provide advice for the regional ionospheric TEC maps. Key words: Neural network, Genetic algorithm, Ionospheric TEC, Forecast,

  10. Surrogate Modeling of Deformable Joint Contact using Artificial Neural Networks

    PubMed Central

    Eskinazi, Ilan; Fregly, Benjamin J.

    2016-01-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591

  11. Biological and bionic hands: natural neural coding and artificial perception.

    PubMed

    Bensmaia, Sliman J

    2015-09-19

    The first decade and a half of the twenty-first century brought about two major innovations in neuroprosthetics: the development of anthropomorphic robotic limbs that replicate much of the function of a native human arm and the refinement of algorithms that decode intended movements from brain activity. However, skilled manipulation of objects requires somatosensory feedback, for which vision is a poor substitute. For upper-limb neuroprostheses to be clinically viable, they must therefore provide for the restoration of touch and proprioception. In this review, I discuss efforts to elicit meaningful tactile sensations through stimulation of neurons in somatosensory cortex. I focus on biomimetic approaches to sensory restoration, which leverage our current understanding about how information about grasped objects is encoded in the brain of intact individuals. I argue that not only can sensory neuroscience inform the development of sensory neuroprostheses, but also that the converse is true: stimulating the brain offers an exceptional opportunity to causally interrogate neural circuits and test hypotheses about natural neural coding.

  12. Biological and bionic hands: natural neural coding and artificial perception

    PubMed Central

    Bensmaia, Sliman J.

    2015-01-01

    The first decade and a half of the twenty-first century brought about two major innovations in neuroprosthetics: the development of anthropomorphic robotic limbs that replicate much of the function of a native human arm and the refinement of algorithms that decode intended movements from brain activity. However, skilled manipulation of objects requires somatosensory feedback, for which vision is a poor substitute. For upper-limb neuroprostheses to be clinically viable, they must therefore provide for the restoration of touch and proprioception. In this review, I discuss efforts to elicit meaningful tactile sensations through stimulation of neurons in somatosensory cortex. I focus on biomimetic approaches to sensory restoration, which leverage our current understanding about how information about grasped objects is encoded in the brain of intact individuals. I argue that not only can sensory neuroscience inform the development of sensory neuroprostheses, but also that the converse is true: stimulating the brain offers an exceptional opportunity to causally interrogate neural circuits and test hypotheses about natural neural coding. PMID:26240424

  13. Biological and bionic hands: natural neural coding and artificial perception.

    PubMed

    Bensmaia, Sliman J

    2015-09-19

    The first decade and a half of the twenty-first century brought about two major innovations in neuroprosthetics: the development of anthropomorphic robotic limbs that replicate much of the function of a native human arm and the refinement of algorithms that decode intended movements from brain activity. However, skilled manipulation of objects requires somatosensory feedback, for which vision is a poor substitute. For upper-limb neuroprostheses to be clinically viable, they must therefore provide for the restoration of touch and proprioception. In this review, I discuss efforts to elicit meaningful tactile sensations through stimulation of neurons in somatosensory cortex. I focus on biomimetic approaches to sensory restoration, which leverage our current understanding about how information about grasped objects is encoded in the brain of intact individuals. I argue that not only can sensory neuroscience inform the development of sensory neuroprostheses, but also that the converse is true: stimulating the brain offers an exceptional opportunity to causally interrogate neural circuits and test hypotheses about natural neural coding. PMID:26240424

  14. Surface daytime net radiation estimation using artificial neural networks

    SciTech Connect

    Jiang, Bo; Zhang, Yi; Liang, Shunlin; Zhang, Xiaotong; Xiao, Zhiqiang

    2014-11-11

    Net all-wave surface radiation (Rn) is one of the most important fundamental parameters in various applications. However, conventional Rn measurements are difficult to collect because of the high cost and ongoing maintenance of recording instruments. Therefore, various empirical Rn estimation models have been developed. This study presents the results of two artificial neural network (ANN) models (general regression neural networks (GRNN) and Neuroet) to estimate Rn globally from multi-source data, including remotely sensed products, surface measurements, and meteorological reanalysis products. Rn estimates provided by the two ANNs were tested against in-situ radiation measurements obtained from 251 global sites between 1991–2010 both in global mode (all data were used to fit the models) and in conditional mode (the data were divided into four subsets and the models were fitted separately). Based on the results obtained from extensive experiments, it has been proved that the two ANNs were superior to linear-based empirical models in both global and conditional modes and that the GRNN performed better and was more stable than Neuroet. The GRNN estimates had a determination coefficient (R2) of 0.92, a root mean square error (RMSE) of 34.27 W·m–2 , and a bias of –0.61 W·m–2 in global mode based on the validation dataset. In conclusion, ANN methods are a potentially powerful tool for global Rn estimation.

  15. Artificial neural network modeling of the water quality index using land use areas as predictors.

    PubMed

    Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin

    2015-02-01

    This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.

  16. A hybrid calibration-free/artificial neural networks approach to the quantitative analysis of LIBS spectra

    NASA Astrophysics Data System (ADS)

    D'Andrea, Eleonora; Pagnotta, Stefano; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Palleschi, Vincenzo; Lazzerini, Beatrice

    2015-03-01

    A `hybrid' method is proposed for the quantitative analysis of materials by LIBS, combining the precision of the calibration-free LIBS (CF-LIBS) algorithm with the quickness of artificial neural networks. The method allows the precise determination of the samples' composition even in the presence of relatively large laser fluctuations and matrix effects. To show the strength and robustness of this approach, a number of synthetic LIBS spectra of Cu-Ni binary alloys with different composition were computer-simulated, in correspondence of different plasma temperatures, electron number densities and ablated mass. The CF-LIBS/ANN approach here proposed demonstrated to be capable, after appropriate training, of `learning' the basic physical relations between the experimentally measured line intensities and the plasma parameters. Because of that the composition of the sample can be correctly determined, as in CF-LIBS measurements, but in a much shorter time.

  17. Artificial neural-network based feeder reconfiguration for loss reduction in distribution systems

    SciTech Connect

    Hoyong Kim; Yunseok Ko; Kyunghee Jung . Dept. of Distribution System)

    1993-07-01

    Neural networks have the capability to map the complex and extremely non-linear relationship between the load levels of zone and system topologies, which is required for feeder reconfiguration in distribution systems. This study is intended to propose the strategies to reconfigure the feeder, by using artificial neural networks with mapping ability. Artificial neural networks determine the appropriate system topology that reduces the power loss according to the variation of load pattern. The control strategy can be easily obtained from the system topology which is provided by artificial neural networks. Artificial neural networks are in groups. The first group estimates the proper load level from the load data of each zone, and the second determines the appropriate system topology from the input load level. In addition, several programs with the training set builder are developed for the design, the training and the accuracy test of artificial neural networks. The authors also evaluate the performance of neural networks designed here, on the test distribution system. Neural networks are implemented in FORTRAN language, and trained on the personal computer COMPAQ 386.

  18. Autonomous self-configuration of artificial neural networks for data classification or system control

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang

    2009-05-01

    Artificial neural networks (ANNs) are powerful methods for the classification of multi-dimensional data as well as for the control of dynamic systems. In general terms, ANNs consist of neurons that are, e.g., arranged in layers and interconnected by real-valued or binary neural couplings or weights. ANNs try mimicking the processing taking place in biological brains. The classification and generalization capabilities of ANNs are given by the interconnection architecture and the coupling strengths. To perform a certain classification or control task with a particular ANN architecture (i.e., number of neurons, number of layers, etc.), the inter-neuron couplings and their accordant coupling strengths must be determined (1) either by a priori design (i.e., manually) or (2) using training algorithms such as error back-propagation. The more complex the classification or control task, the less obvious it is how to determine an a priori design of an ANN, and, as a consequence, the architecture choice becomes somewhat arbitrary. Furthermore, rather than being able to determine for a given architecture directly the corresponding coupling strengths necessary to perform the classification or control task, these have to be obtained/learned through training of the ANN on test data. We report on the use of a Stochastic Optimization Framework (SOF; Fink, SPIE 2008) for the autonomous self-configuration of Artificial Neural Networks (i.e., the determination of number of hidden layers, number of neurons per hidden layer, interconnections between neurons, and respective coupling strengths) for performing classification or control tasks. This may provide an approach towards cognizant and self-adapting computing architectures and systems.

  19. Towards Artificial Speech Therapy: A Neural System for Impaired Speech Segmentation.

    PubMed

    Iliya, Sunday; Neri, Ferrante

    2016-09-01

    This paper presents a neural system-based technique for segmenting short impaired speech utterances into silent, unvoiced, and voiced sections. Moreover, the proposed technique identifies those points of the (voiced) speech where the spectrum becomes steady. The resulting technique thus aims at detecting that limited section of the speech which contains the information about the potential impairment of the speech. This section is of interest to the speech therapist as it corresponds to the possibly incorrect movements of speech organs (lower lip and tongue with respect to the vocal tract). Two segmentation models to detect and identify the various sections of the disordered (impaired) speech signals have been developed and compared. The first makes use of a combination of four artificial neural networks. The second is based on a support vector machine (SVM). The SVM has been trained by means of an ad hoc nested algorithm whose outer layer is a metaheuristic while the inner layer is a convex optimization algorithm. Several metaheuristics have been tested and compared leading to the conclusion that some variants of the compact differential evolution (CDE) algorithm appears to be well-suited to address this problem. Numerical results show that the SVM model with a radial basis function is capable of effective detection of the portion of speech that is of interest to a therapist. The best performance has been achieved when the system is trained by the nested algorithm whose outer layer is hybrid-population-based/CDE. A population-based approach displays the best performance for the isolation of silence/noise sections, and the detection of unvoiced sections. On the other hand, a compact approach appears to be clearly well-suited to detect the beginning of the steady state of the voiced signal. Both the proposed segmentation models display outperformed two modern segmentation techniques based on Gaussian mixture model and deep learning. PMID:27354188

  20. Towards Artificial Speech Therapy: A Neural System for Impaired Speech Segmentation.

    PubMed

    Iliya, Sunday; Neri, Ferrante

    2016-09-01

    This paper presents a neural system-based technique for segmenting short impaired speech utterances into silent, unvoiced, and voiced sections. Moreover, the proposed technique identifies those points of the (voiced) speech where the spectrum becomes steady. The resulting technique thus aims at detecting that limited section of the speech which contains the information about the potential impairment of the speech. This section is of interest to the speech therapist as it corresponds to the possibly incorrect movements of speech organs (lower lip and tongue with respect to the vocal tract). Two segmentation models to detect and identify the various sections of the disordered (impaired) speech signals have been developed and compared. The first makes use of a combination of four artificial neural networks. The second is based on a support vector machine (SVM). The SVM has been trained by means of an ad hoc nested algorithm whose outer layer is a metaheuristic while the inner layer is a convex optimization algorithm. Several metaheuristics have been tested and compared leading to the conclusion that some variants of the compact differential evolution (CDE) algorithm appears to be well-suited to address this problem. Numerical results show that the SVM model with a radial basis function is capable of effective detection of the portion of speech that is of interest to a therapist. The best performance has been achieved when the system is trained by the nested algorithm whose outer layer is hybrid-population-based/CDE. A population-based approach displays the best performance for the isolation of silence/noise sections, and the detection of unvoiced sections. On the other hand, a compact approach appears to be clearly well-suited to detect the beginning of the steady state of the voiced signal. Both the proposed segmentation models display outperformed two modern segmentation techniques based on Gaussian mixture model and deep learning.

  1. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. PMID:26841228

  2. Artificial neural networks (ANNs) and modeling of powder flow.

    PubMed

    Kachrimanis, K; Karamyan, V; Malamataris, S

    2003-01-01

    Effects of micromeritic properties (bulk, tapped and particle density, particle size and shape) on the flow rate through circular orifices are investigated, for three pharmaceutical excipients (Lactose, Emcompress and Starch) separated in four sieve fractions, and are modeled with the help of artificial neural networks (ANNs). Eight variables were selected as inputs and correlated by applying the Spearman product-moment correlation matrix and the visual component planes of trained Self-Organizing Maps (SOMs). Back-propagation feed-forward ANN with six hidden units in a single hidden layer was selected for modeling experimental data and its predictions were compared with those of the flow equation proposed by. It was found that SOMs are efficient for the identification of co-linearity in the input variables and the ANN is superior to the flow equation since it does not require separate regression for each excipient and its predictive ability is higher. Besides the orifice diameter, most influential and important variable was the difference between tapped and bulk density. From the pruned ANN an approximate non-linear model was extracted, which describes powder flow rate in terms of the four network's input variables of the greatest predictive importance or saliency (difference between tapped and bulk density (x(2)), orifice diameter (x(3)), circle equivalent particle diameter (x(4)) and particle density [equation in text].

  3. Application of artificial neural networks for prediction of photocatalytic reactor.

    PubMed

    Delnavaz, Mohammad

    2015-02-01

    In this paper, forecasting of kinetic constant and efficiency of photocatalytic process of TiO2 nano powder immobilized on light expanded clay aggregates (LECA) was investigated. Synthetic phenolic wastewater, which is toxic and not easily biodegradable, was selected as the pollutant. The efficiency of the process in various operation conditions, including initial phenol concentration, pH, TiO2 concentration, retention time, and UV lamp intensity, was then measured. The TiO2 nano powder was immobilized on LECA using slurry and sol-gel methods. Kinetics of photocatalytic reactions has been proposed to follow the Langmuir-Hinshelwood model in different initial phenol concentration and pH. Several steps of training and testing of the models were used to determine the appropriate architecture of the artificial neural network models (ANNs). The ANN-based models were found to provide an efficient and robust tool in predicting photocatalytic reactor efficiency and kinetic constant for treating phenolic compounds. PMID:25790514

  4. Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks

    PubMed Central

    Lai, Jinxing

    2016-01-01

    In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability. PMID:26819587

  5. Statistical downscaling rainfall using artificial neural network: significantly wetter Bangkok?

    NASA Astrophysics Data System (ADS)

    Vu, Minh Tue; Aribarg, Thannob; Supratid, Siriporn; Raghavan, Srivatsan V.; Liong, Shie-Yui

    2015-08-01

    Artificial neural network (ANN) is an established technique with a flexible mathematical structure that is capable of identifying complex nonlinear relationships between input and output data. The present study utilizes ANN as a method of statistically downscaling global climate models (GCMs) during the rainy season at meteorological site locations in Bangkok, Thailand. The study illustrates the applications of the feed forward back propagation using large-scale predictor variables derived from both the ERA-Interim reanalyses data and present day/future GCM data. The predictors are first selected over different grid boxes surrounding Bangkok region and then screened by using principal component analysis (PCA) to filter the best correlated predictors for ANN training. The reanalyses downscaled results of the present day climate show good agreement against station precipitation with a correlation coefficient of 0.8 and a Nash-Sutcliffe efficiency of 0.65. The final downscaled results for four GCMs show an increasing trend of precipitation for rainy season over Bangkok by the end of the twenty-first century. The extreme values of precipitation determined using statistical indices show strong increases of wetness. These findings will be useful for policy makers in pondering adaptation measures due to flooding such as whether the current drainage network system is sufficient to meet the changing climate and to plan for a range of related adaptation/mitigation measures.

  6. Spatiotemporal modeling of monthly soil temperature using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tang, Xiao-Ping; Guo, Nai-Jia; Yang, Chao; Liu, Hong-Bin; Shang, Yue-Feng

    2013-08-01

    Soil temperature data are critical for understanding land-atmosphere interactions. However, in many cases, they are limited at both spatial and temporal scales. In the current study, an attempt was made to predict monthly mean soil temperature at a depth of 10 cm using artificial neural networks (ANNs) over a large region with complex terrain. Gridded independent variables, including latitude, longitude, elevation, topographic wetness index, and normalized difference vegetation index, were derived from a digital elevation model and remote sensing images with a resolution of 1 km. The good performance and robustness of the proposed ANNs were demonstrated by comparisons with multiple linear regressions. On average, the developed ANNs presented a relative improvement of about 44 % in root mean square error, 70 % in mean absolute percentage error, and 18 % in coefficient of determination over classical linear models. The proposed ANN models were then applied to predict soil temperatures at unsampled locations across the study area. Spatiotemporal variability of soil temperature was investigated based on the obtained database. Future work will be needed to test the applicability of ANNs for estimating soil temperature at finer scales.

  7. Design The Cervical Cancer Detector Use The Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Intan Af'idah, Dwi; Didik Widianto, Eko; Setyawan, Budi

    2013-06-01

    Cancer is one of the contagious diseases that become a public health issue, both in the world and in Indonesia. In the world, 12% of all deaths caused by cancer and is the second killer after cardiovascular disease. Early detection using the IVA is a practical and inexpensive (only requiring acetic acid). However, the accuracy of the method is quite low, as it can not detect the stage of the cancer. While other methods have a better sensitivity than the IVA method, is a method of PAP smear. However, this method is relatively expensive, and requires an experienced pathologist-cytologist. According to the case above, Considered important to make the cancer cervics detector that is used to detect the abnormality and cervical cancer stage and consists of a digital microscope, as well as a computer application based on artificial neural network. The use of cervical cancer detector software and hardware are integrated each other. After the specifications met, the steps to design the cervical cancer detection are: Modifying a conventional microscope by adding a lens, image recording, and the lights, Programming the tools, designing computer applications, Programming features abnormality detection and staging of cancer.

  8. Multiobjective analysis of a public wellfield using artificial neural networks

    USGS Publications Warehouse

    Coppola, E.A.; Szidarovszky, F.; Davis, D.; Spayd, S.; Poulton, M.M.; Roman, E.

    2007-01-01

    As competition for increasingly scarce ground water resources grows, many decision makers may come to rely upon rigorous multiobjective techniques to help identify appropriate and defensible policies, particularly when disparate stakeholder groups are involved. In this study, decision analysis was conducted on a public water supply wellfield to balance water supply needs with well vulnerability to contamination from a nearby ground water contaminant plume. With few alternative water sources, decision makers must balance the conflicting objectives of maximizing water supply volume from noncontaminated wells while minimizing their vulnerability to contamination from the plume. Artificial neural networks (ANNs) were developed with simulation data from a numerical ground water flow model developed for the study area. The ANN-derived state transition equations were embedded into a multiobjective optimization model, from which the Pareto frontier or trade-off curve between water supply and wellfield vulnerability was identified. Relative preference values and power factors were assigned to the three stakeholders, namely the company whose waste contaminated the aquifer, the community supplied by the wells, and the water utility company that owns and operates the wells. A compromise pumping policy that effectively balances the two conflicting objectives in accordance with the preferences of the three stakeholder groups was then identified using various distance-based methods. ?? 2006 National Ground Water Association.

  9. Automatic labeling and characterization of objects using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Hill, Scott E.; Cromp, Robert F.

    1989-01-01

    Existing NASA supported scientific data bases are usually developed, managed and populated in a tedious, error prone and self-limiting way in terms of what can be described in a relational Data Base Management System (DBMS). The next generation Earth remote sensing platforms, i.e., Earth Observation System, (EOS), will be capable of generating data at a rate of over 300 Mbs per second from a suite of instruments designed for different applications. What is needed is an innovative approach that creates object-oriented databases that segment, characterize, catalog and are manageable in a domain-specific context and whose contents are available interactively and in near-real-time to the user community. Described here is work in progress that utilizes an artificial neural net approach to characterize satellite imagery of undefined objects into high-level data objects. The characterized data is then dynamically allocated to an object-oriented data base where it can be reviewed and assessed by a user. The definition, development, and evolution of the overall data system model are steps in the creation of an application-driven knowledge-based scientific information system.

  10. Molnets: An Artificial Chemistry Based on Neural Networks

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Luk, Johnny; Segovia-Juarez, Jose L.; Lohn, Jason; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The fundamental problem in the evolution of matter is to understand how structure-function relationships are formed and increase in complexity from the molecular level all the way to a genetic system. We have created a system where structure-function relationships arise naturally and without the need of ad hoc function assignments to given structures. The idea was inspired by neural networks, where the structure of the net embodies specific computational properties. In this system networks interact with other networks to create connections between the inputs of one net and the outputs of another. The newly created net then recomputes its own synaptic weights, based on anti-hebbian rules. As a result some connections may be cut, and multiple nets can emerge as products of a 'reaction'. The idea is to study emergent reaction behaviors, based on simple rules that constitute a pseudophysics of the system. These simple rules are parameterized to produce behaviors that emulate chemical reactions. We find that these simple rules show a gradual increase in the size and complexity of molecules. We have been building a virtual artificial chemistry laboratory for discovering interesting reactions and for testing further ideas on the evolution of primitive molecules. Some of these ideas include the potential effect of membranes and selective diffusion according to molecular size.

  11. Prediction of problematic wine fermentations using artificial neural networks.

    PubMed

    Román, R César; Hernández, O Gonzalo; Urtubia, U Alejandra

    2011-11-01

    Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.

  12. Atmospheric controls on Puerto Rico precipitation using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ramseyer, Craig A.; Mote, Thomas L.

    2016-01-01

    The growing need for local climate change scenarios has given rise to a wide range of empirical climate downscaling techniques. One of the most critical decisions in these methodologies is the selection of appropriate predictor variables for the downscaled surface predictand. A systematic approach to selecting predictor variables should be employed to ensure that the most important variables are utilized for the study site where the climate change scenarios are being developed. Tropical study areas have been far less examined than mid- and high-latitudes in the climate downscaling literature. As a result, studies analyzing optimal predictor variables for tropics are limited. The objectives of this study include developing artificial neural networks for six sites around Puerto Rico to develop nonlinear functions between 37 atmospheric predictor variables and local rainfall. The relative importance of each predictor is analyzed to determine the most important inputs in the network. Randomized ANNs are produced to determine the statistical significance of the relative importance of each predictor variable. Lower tropospheric moisture and winds are shown to be the most important variables at all sites. Results show inter-site variability in u- and v-wind importance depending on the unique geographic situation of the site. Lower tropospheric moisture and winds are physically linked to variability in sea surface temperatures (SSTs) and the strength and position of the North Atlantic High Pressure cell (NAHP). The changes forced by anthropogenic climate change in regional SSTs and the NAHP will impact rainfall variability in Puerto Rico.

  13. Artificial Neural Networks in Mammography Interpretation and Diagnostic Decision Making

    PubMed Central

    Burnside, Elizabeth S.

    2013-01-01

    Screening mammography is the most effective means for early detection of breast cancer. Although general rules for discriminating malignant and benign lesions exist, radiologists are unable to perfectly detect and classify all lesions as malignant and benign, for many reasons which include, but are not limited to, overlap of features that distinguish malignancy, difficulty in estimating disease risk, and variability in recommended management. When predictive variables are numerous and interact, ad hoc decision making strategies based on experience and memory may lead to systematic errors and variability in practice. The integration of computer models to help radiologists increase the accuracy of mammography examinations in diagnostic decision making has gained increasing attention in the last two decades. In this study, we provide an overview of one of the most commonly used models, artificial neural networks (ANNs), in mammography interpretation and diagnostic decision making and discuss important features in mammography interpretation. We conclude by discussing several common limitations of existing research on ANN-based detection and diagnostic models and provide possible future research directions. PMID:23781276

  14. Automatic classification of DMSA scans using an artificial neural network.

    PubMed

    Wright, J W; Duguid, R; McKiddie, F; Staff, R T

    2014-04-01

    DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from 'definitely normal' to 'definitely abnormal'. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α < 0.05) in performance between the network and operators. A further result from this work was that when suitably optimized, a negative predictive value of 100% for renal defects was achieved by the network, while still managing to identify 93% of the negative cases in the dataset. These results are encouraging for application of such a network as a screening tool or quality assurance assistant in clinical practice.

  15. Automatic classification of DMSA scans using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Wright, J. W.; Duguid, R.; Mckiddie, F.; Staff, R. T.

    2014-04-01

    DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α < 0.05) in performance between the network and operators. A further result from this work was that when suitably optimized, a negative predictive value of 100% for renal defects was achieved by the network, while still managing to identify 93% of the negative cases in the dataset. These results are encouraging for application of such a network as a screening tool or quality assurance assistant in clinical practice.

  16. Using artificial neural network tools to analyze microbial biomarker data

    SciTech Connect

    Brandt, C.C.; Schryver, J.C.; Almeida, J.S.; Pfiffner, S.M.; Palumbo, A.V.

    2004-03-17

    A major challenge in the successful implementation of bioremediation is understanding the structure of the indigenous microbial community and how this structure is affected by environmental conditions. Culture-independent approaches that use biomolecular markers have become the key to comparative microbial community analysis. However, the analysis of biomarkers from environmental samples typically generates a large number of measurements. The large number and complex nonlinear relationships among these measurements makes conventional linear statistical analysis of the data difficult. New data analysis tools are needed to help understand these data. We adapted artificial neural network (ANN) tools for relating changes in microbial biomarkers to geochemistry. ANNs are nonlinear pattern recognition methods that can learn from experience to improve their performance. We have successfully applied these techniques to the analysis of membrane lipids and nucleic acid biomarker data from both laboratory and field studies. Although ANNs typically outperform linear data analysis techniques, the user must be aware of several considerations and issues to ensure that analysis results are not misleading: (1) Overfitting, especially in small sample size data sets; (2) Model selection; (3) Interpretation of analysis results; and (4) Availability of tools (code). This poster summarizes approaches for addressing each of these issues. The objectives are: (1) Develop new nonlinear data analysis tools for relating microbial biomolecular markers to geochemical conditions; (2) Apply these nonlinear tools to field and laboratory studies relevant to the NABIR Program; and (3) Provide these tools and guidance in their use to other researchers.

  17. Atmospheric controls on Puerto Rico precipitation using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ramseyer, Craig A.; Mote, Thomas L.

    2016-10-01

    The growing need for local climate change scenarios has given rise to a wide range of empirical climate downscaling techniques. One of the most critical decisions in these methodologies is the selection of appropriate predictor variables for the downscaled surface predictand. A systematic approach to selecting predictor variables should be employed to ensure that the most important variables are utilized for the study site where the climate change scenarios are being developed. Tropical study areas have been far less examined than mid- and high-latitudes in the climate downscaling literature. As a result, studies analyzing optimal predictor variables for tropics are limited. The objectives of this study include developing artificial neural networks for six sites around Puerto Rico to develop nonlinear functions between 37 atmospheric predictor variables and local rainfall. The relative importance of each predictor is analyzed to determine the most important inputs in the network. Randomized ANNs are produced to determine the statistical significance of the relative importance of each predictor variable. Lower tropospheric moisture and winds are shown to be the most important variables at all sites. Results show inter-site variability in u- and v-wind importance depending on the unique geographic situation of the site. Lower tropospheric moisture and winds are physically linked to variability in sea surface temperatures (SSTs) and the strength and position of the North Atlantic High Pressure cell (NAHP). The changes forced by anthropogenic climate change in regional SSTs and the NAHP will impact rainfall variability in Puerto Rico.

  18. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers.

  19. Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks.

    PubMed

    Lai, Jinxing; Qiu, Junling; Feng, Zhihua; Chen, Jianxun; Fan, Haobo

    2016-01-01

    In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability. PMID:26819587

  20. Signal processing using artificial neural network for BOTDA sensor system.

    PubMed

    Azad, Abul Kalam; Wang, Liang; Guo, Nan; Tam, Hwa-Yaw; Lu, Chao

    2016-03-21

    We experimentally demonstrate the use of artificial neural network (ANN) to process sensing signals obtained from Brillouin optical time domain analyzer (BOTDA). The distributed temperature information is extracted directly from the local Brillouin gain spectra (BGSs) along the fiber under test without the process of determination of Brillouin frequency shift (BFS) and hence conversion from BFS to temperature. Unlike our previous work for short sensing distance where ANN is trained by measured BGSs, here we employ ideal BGSs with different linewidths to train the ANN in order to take the linewidth variation due to different conditions from the training and testing phases into account, making it feasible for long distance sensing. Moreover, the performance of ANN is compared with other two techniques, Lorentzian curve fitting and cross-correlation method, and our results show that ANN has higher accuracy and larger tolerance to measurement error, especially at large frequency scanning step. We also show that the temperature extraction from BOTDA measurements employing ANN is significantly faster than the other two approaches. Hence ANN can be an excellent alternative tool to process BGSs measured by BOTDA and obtain temperature distribution along the fiber, especially when large frequency scanning step is adopted to significantly reduce the measurement time but without sacrifice of sensing accuracy. PMID:27136863

  1. Signal processing using artificial neural network for BOTDA sensor system.

    PubMed

    Azad, Abul Kalam; Wang, Liang; Guo, Nan; Tam, Hwa-Yaw; Lu, Chao

    2016-03-21

    We experimentally demonstrate the use of artificial neural network (ANN) to process sensing signals obtained from Brillouin optical time domain analyzer (BOTDA). The distributed temperature information is extracted directly from the local Brillouin gain spectra (BGSs) along the fiber under test without the process of determination of Brillouin frequency shift (BFS) and hence conversion from BFS to temperature. Unlike our previous work for short sensing distance where ANN is trained by measured BGSs, here we employ ideal BGSs with different linewidths to train the ANN in order to take the linewidth variation due to different conditions from the training and testing phases into account, making it feasible for long distance sensing. Moreover, the performance of ANN is compared with other two techniques, Lorentzian curve fitting and cross-correlation method, and our results show that ANN has higher accuracy and larger tolerance to measurement error, especially at large frequency scanning step. We also show that the temperature extraction from BOTDA measurements employing ANN is significantly faster than the other two approaches. Hence ANN can be an excellent alternative tool to process BGSs measured by BOTDA and obtain temperature distribution along the fiber, especially when large frequency scanning step is adopted to significantly reduce the measurement time but without sacrifice of sensing accuracy.

  2. Classification of breast abnormalities using artificial neural network

    NASA Astrophysics Data System (ADS)

    Zaman, Nur Atiqah Kamarul; Rahman, Wan Eny Zarina Wan Abdul; Jumaat, Abdul Kadir; Yasiran, Siti Salmah

    2015-05-01

    Classification is the process of recognition, differentiation and categorizing objects into groups. Breast abnormalities are calcifications which are tumor markers that indicate the presence of cancer in the breast. The aims of this research are to classify the types of breast abnormalities using artificial neural network (ANN) classifier and to evaluate the accuracy performance using receiver operating characteristics (ROC) curve. The methods used in this research are ANN for breast abnormalities classifications and Canny edge detector as a feature extraction method. Previously the ANN classifier provides only the number of benign and malignant cases without providing information for specific cases. However in this research, the type of abnormality for each image can be obtained. The existing MIAS MiniMammographic database classified the mammogram images into three features only namely characteristic of background tissues, class of abnormality and radius of abnormality. However, in this research three other features are added-in. These three features are number of spots, area and shape of abnormalities. Lastly the performance of the ANN classifier is evaluated using ROC curve. It is found that ANN has an accuracy of 97.9% which is considered acceptable.

  3. An artificial intelligent algorithm for tumor detection in screening mammogram.

    PubMed

    Zheng, L; Chan, A K

    2001-07-01

    Cancerous tumor mass is one of the major types of breast cancer. When cancerous masses are embedded in and camouflaged by varying densities of parenchymal tissue structures, they are very difficult to be visually detected on mammograms. This paper presents an algorithm that combines several artificial intelligent techniques with the discrete wavelet transform (DWT) for detection of masses in mammograms. The AI techniques include fractal dimension analysis, multiresolution markov random field, dogs-and-rabbits algorithm, and others. The fractal dimension analysis serves as a preprocessor to determine the approximate locations of the regions suspicious for cancer in the mammogram. The dogs-and-rabbits clustering algorithm is used to initiate the segmentation at the LL subband of a three-level DWT decomposition of the mammogram. A tree-type classification strategy is applied at the end to determine whether a given region is suspicious for cancer. We have verified the algorithm with 322 mammograms in the Mammographic Image Analysis Society Database. The verification results show that the proposed algorithm has a sensitivity of 97.3% and the number of false positive per image is 3.92.

  4. Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Şencan Şahin, Arzu

    2012-11-01

    Thermal performance of solar air collector depends on many parameters as inlet air temperature, air velocity, collector slope and properties related to collector. In this study, the effect of the different parameters which affect the performance of the solar air collector are investigated. In order to maximize the thermal performance of a solar air collector genetic algorithm (GA) and artificial bee colony algorithm (ABC) have been used. The results obtained indicate that GA and ABC algorithms can be applied successfully for the optimization of the thermal performance of solar air collector.

  5. An artificial neural network system for diagnosing gas turbine engine fuel faults

    SciTech Connect

    Illi, O.J. Jr.; Greitzer, F.L.; Kangas, L.J.; Reeve, T.

    1994-04-01

    The US Army Ordnance Center & School and Pacific Northwest Laboratories are developing a turbine engine diagnostic system for the M1A1 Abrams tank. This system employs Artificial Neural Network (AN) technology to perform diagnosis and prognosis of the tank`s AGT-1500 gas turbine engine. This paper describes the design and prototype development of the ANN component of the diagnostic system, which we refer to as ``TEDANN`` for Turbine Engine Diagnostic Artificial Neural Networks.

  6. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  7. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    PubMed Central

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-01-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis. PMID:27658585

  8. An artificial bee colony algorithm for uncertain portfolio selection.

    PubMed

    Chen, Wei

    2014-01-01

    Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns are given by experts' evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns. In the proposed mean-variance-entropy model, the uncertain mean value of the return is used to measure investment return, the uncertain variance of the return is used to measure investment risk, and the entropy is used to measure diversification degree of portfolio. In order to solve the proposed model, a modified artificial bee colony (ABC) algorithm is designed. Finally, a numerical example is given to illustrate the modelling idea and the effectiveness of the proposed algorithm. PMID:25089292

  9. An artificial bee colony algorithm for uncertain portfolio selection.

    PubMed

    Chen, Wei

    2014-01-01

    Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns are given by experts' evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns. In the proposed mean-variance-entropy model, the uncertain mean value of the return is used to measure investment return, the uncertain variance of the return is used to measure investment risk, and the entropy is used to measure diversification degree of portfolio. In order to solve the proposed model, a modified artificial bee colony (ABC) algorithm is designed. Finally, a numerical example is given to illustrate the modelling idea and the effectiveness of the proposed algorithm.

  10. An Artificial Bee Colony Algorithm for Uncertain Portfolio Selection

    PubMed Central

    Chen, Wei

    2014-01-01

    Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns are given by experts' evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns. In the proposed mean-variance-entropy model, the uncertain mean value of the return is used to measure investment return, the uncertain variance of the return is used to measure investment risk, and the entropy is used to measure diversification degree of portfolio. In order to solve the proposed model, a modified artificial bee colony (ABC) algorithm is designed. Finally, a numerical example is given to illustrate the modelling idea and the effectiveness of the proposed algorithm. PMID:25089292

  11. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    PubMed

    Zhang, Jun; Dolg, Michael

    2015-10-01

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. PMID:26327507

  12. Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches.

    PubMed

    Çelik, Ufuk; Yurtay, Nilüfer; Koç, Emine Rabia; Tepe, Nermin; Güllüoğlu, Halil; Ertaş, Mustafa

    2015-01-01

    The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS) were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.

  13. Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches

    PubMed Central

    Çelik, Ufuk; Yurtay, Nilüfer; Koç, Emine Rabia; Tepe, Nermin; Güllüoğlu, Halil; Ertaş, Mustafa

    2015-01-01

    The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS) were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy. PMID:26075014

  14. Modeling Career Counselor Decisions with Artificial Neural Networks: Predictions of Fit across a Comprehensive Occupational Map.

    ERIC Educational Resources Information Center

    Carson, Andrew D.; Bizot, Elizabeth B.; Hendershot, Peggy E.; Barton, Margaret G.; Garvin, Mary K.; Kraemer, Barbara

    1999-01-01

    Career recommendations were made based on aptitude scores of 335 high school freshmen. Artificial neural networks were used to map recommendations to 12 occupational clusters. Overall accuracy of neural networks (.80) approached that of discriminant function analysis (.84). The two methods had different strengths and weaknesses. (SK)

  15. Using Artificial Neural Networks in Educational Research: Some Comparisons with Linear Statistical Models.

    ERIC Educational Resources Information Center

    Everson, Howard T.; And Others

    This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…

  16. Estimating complicated baselines in analytical signals using the iterative training of Bayesian regularized artificial neural networks.

    PubMed

    Mani-Varnosfaderani, Ahmad; Kanginejad, Atefeh; Gilany, Kambiz; Valadkhani, Abolfazl

    2016-10-12

    The present work deals with the development of a new baseline correction method based on the comparative learning capabilities of artificial neural networks. The developed method uses the Bayes probability theorem for prevention of the occurrence of the over-fitting and finding a generalized baseline. The developed method has been applied on simulated and real metabolomic gas-chromatography (GC) and Raman data sets. The results revealed that the proposed method can be used to handle different types of baselines with cave, convex, curvelinear, triangular and sinusoidal patterns. For further evaluation of the performances of this method, it has been compared with benchmarking baseline correction methods such as corner-cutting (CC), morphological weighted penalized least squares (MPLS), adaptive iteratively-reweighted penalized least squares (airPLS) and iterative polynomial fitting (iPF). In order to compare the methods, the projected difference resolution (PDR) criterion has been calculated for the data before and after the baseline correction procedure. The calculated values of PDR after the baseline correction using iBRANN, airPLS, MPLS, iPF and CC algorithms for the GC metabolomic data were 4.18, 3.64, 3.88, 1.88 and 3.08, respectively. The obtained results in this work demonstrated that the developed iterative Bayesian regularized neural network (iBRANN) method in this work thoroughly detects the baselines and is superior over the CC, MPLS, airPLS and iPF techniques. A graphical user interface has been developed for the suggested algorithm and can be used for easy implementation of the iBRANN algorithm for the correction of different chromatography, NMR and Raman data sets. PMID:27662759

  17. Estimating complicated baselines in analytical signals using the iterative training of Bayesian regularized artificial neural networks.

    PubMed

    Mani-Varnosfaderani, Ahmad; Kanginejad, Atefeh; Gilany, Kambiz; Valadkhani, Abolfazl

    2016-10-12

    The present work deals with the development of a new baseline correction method based on the comparative learning capabilities of artificial neural networks. The developed method uses the Bayes probability theorem for prevention of the occurrence of the over-fitting and finding a generalized baseline. The developed method has been applied on simulated and real metabolomic gas-chromatography (GC) and Raman data sets. The results revealed that the proposed method can be used to handle different types of baselines with cave, convex, curvelinear, triangular and sinusoidal patterns. For further evaluation of the performances of this method, it has been compared with benchmarking baseline correction methods such as corner-cutting (CC), morphological weighted penalized least squares (MPLS), adaptive iteratively-reweighted penalized least squares (airPLS) and iterative polynomial fitting (iPF). In order to compare the methods, the projected difference resolution (PDR) criterion has been calculated for the data before and after the baseline correction procedure. The calculated values of PDR after the baseline correction using iBRANN, airPLS, MPLS, iPF and CC algorithms for the GC metabolomic data were 4.18, 3.64, 3.88, 1.88 and 3.08, respectively. The obtained results in this work demonstrated that the developed iterative Bayesian regularized neural network (iBRANN) method in this work thoroughly detects the baselines and is superior over the CC, MPLS, airPLS and iPF techniques. A graphical user interface has been developed for the suggested algorithm and can be used for easy implementation of the iBRANN algorithm for the correction of different chromatography, NMR and Raman data sets.

  18. Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling

    NASA Astrophysics Data System (ADS)

    Bakanovskaya, L. N.

    2016-08-01

    The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.

  19. Use of artificial neural networks as estimators and controllers

    NASA Astrophysics Data System (ADS)

    Concilio, Antonio; Sorrentino, A.

    1996-04-01

    Active noise control is one among the most promising applications of the so-called Smart Structures, because it ensures, or promises, lower weight, lower cost, more effectiveness and all what is desirable in a vehicle design process, with respect to the current solutions. More and more attention in the research world has been devoting to this argument, pushed by both political, economical and environmental reasons, the one connected to the others. Piezoceramic actuators, integrated into the structure, seem to offer the most fashionable and practical solutions among all the proposed architectures, [1-2]. As sensors, microphones demonstrated to be the most performing, above all because they give the most suitable representation of the field that has to be cancelled, [3-4]. This approach is known as Acousto-Structural Active Control, ASAC, [5]. However, according to Fuller's definition, [6] , an intelligent controller is needed to ensure the development of an "Intelligent Structure" . Its main characteristic should be represented by the capability of learning by examples, of following the structure during its evolution, of being the system "brain" . This peculiarity may be offered by Artificial Neural Networks (ANN's), [7-8]. They present other important features, like the capability, in principle, of treating non-linear as well as linear problems, [9], of identifying dynamic systems, [10], of properly acting as a controller. Then, such a net could integrate in itself the function of "system estimator" or "observer" ,and of interpolator - extrapolator and controller, contemporarily. The authors have been working on such subjects for a long time, proposing for instance ANN's as time-domain structural parameters estimators on a simple 2D element ( a framed plate), [11], as noise and vibration controllers in a FF system, [12-13], as materials damping parameters extractors from experimental data, [14]. All these applications were aimed at noise reduction problems. The

  20. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  1. Projection learning algorithm for threshold - controlled neural networks

    SciTech Connect

    Reznik, A.M.

    1995-03-01

    The projection learning algorithm proposed in [1, 2] and further developed in [3] substantially improves the efficiency of memorizing information and accelerates the learning process in neural networks. This algorithm is compatible with the completely connected neural network architecture (the Hopfield network [4]), but its application to other networks involves a number of difficulties. The main difficulties include constraints on interconnection structure and the need to eliminate the state uncertainty of latent neurons if such are present in the network. Despite the encouraging preliminary results of [3], further extension of the applications of the projection algorithm therefore remains problematic. In this paper, which is a continuation of the work begun in [3], we consider threshold-controlled neural networks. Networks of this type are quite common. They represent the receptor neuron layers in some neurocomputer designs. A similar structure is observed in the lower divisions of biological sensory systems [5]. In multilayer projection neural networks with lateral interconnections, the neuron layers or parts of these layers may also have the structure of a threshold-controlled completely connected network. Here the thresholds are the potentials delivered through the projection connections from other parts of the network. The extension of the projection algorithm to the class of threshold-controlled networks may accordingly prove to be useful both for extending its technical applications and for better understanding of the operation of the nervous system in living organisms.

  2. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hajela, Prabhat

    1990-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  3. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, L.; Hajela, P.

    1992-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  4. Use of artificial neural networks to analyze nuclear power plant performance

    SciTech Connect

    Guo, Z.; Uhrig, R.E. )

    1992-07-01

    This paper discusses a hybrid artificial neural network used to model the thermodynamic behavior of the Tennessee Valley Authority's Sequoyah nuclear power plant using data for heat rate measurements acquired over a 1-yr period. The modeling process involves the use of a self-organizing network to rearrange the original data into several classes by clustering. Then, the centroids of these clusters are used as the training patterns for an artificial neural network that utilizes backpropagation training to adjust the weights on the connections between artificial neurons. This procedure greatly reduces the training time and reduces the system error.

  5. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  6. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    SciTech Connect

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-03

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  7. A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)

    NASA Astrophysics Data System (ADS)

    Raj, A. Stanley; Srinivas, Y.; Oliver, D. Hudson; Muthuraj, D.

    2014-03-01

    The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.

  8. Calibration of a shock wave position sensor using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    1993-01-01

    This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.

  9. Multidimensional interpolation using artificial neural networks: Application to an H I cloud in Perseus

    NASA Astrophysics Data System (ADS)

    Serra-Ricart, Miquel; Trapero, Joaquin; Beckman, John E.; Garrido, Lluis; Gaitan, Vicens

    1995-01-01

    In this paper we propose a method for interpolating multidimensional unbinned data, which could also be sparse, using artificial neural network techniques. An artificial example is first presented in order to show the reliability and potential of the neural network interpolator. A robust behavior is found. We apply the technique to the mapping of a cloud of interstellar atomic hydrogen. The cloud was mapped in H I at 21 cm and we find the neural network method ideal for interpolating the unevenly sampled data, yielding a map from which the global physical parameters of the cloud can be readily obtained.

  10. Target discrimination in synthetic aperture radar using artificial neural networks.

    PubMed

    Principe, J C; Kim, M; Fisher, M

    1998-01-01

    This paper addresses target discrimination in synthetic aperture radar (SAR) imagery using linear and nonlinear adaptive networks. Neural networks are extensively used for pattern classification but here the goal is discrimination. We show that the two applications require different cost functions. We start by analyzing with a pattern recognition perspective the two-parameter constant false alarm rate (CFAR) detector which is widely utilized as a target detector in SAR. Then we generalize its principle to construct the quadratic gamma discriminator (QGD), a nonparametrically trained classifier based on local image intensity. The linear processing element of the QCD is further extended with nonlinearities yielding a multilayer perceptron (MLP) which we call the NL-QGD (nonlinear QGD). MLPs are normally trained based on the L(2) norm. We experimentally show that the L(2) norm is not recommended to train MLPs for discriminating targets in SAR. Inspired by the Neyman-Pearson criterion, we create a cost function based on a mixed norm to weight the false alarms and the missed detections differently. Mixed norms can easily be incorporated into the backpropagation algorithm, and lead to better performance. Several other norms (L(8), cross-entropy) are applied to train the NL-QGD and all outperformed the L(2) norm when validated by receiver operating characteristics (ROC) curves. The data sets are constructed from TABILS 24 ISAR targets embedded in 7 km(2) of SAR imagery (MIT/LL mission 90).

  11. Artificial neural network modelling of a large-scale wastewater treatment plant operation.

    PubMed

    Güçlü, Dünyamin; Dursun, Sükrü

    2010-11-01

    Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.

  12. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    PubMed Central

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-01-01

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure–Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods. PMID:27529225

  13. Artificial neural networks in gynaecological diseases: current and potential future applications.

    PubMed

    Siristatidis, Charalampos S; Chrelias, Charalampos; Pouliakis, Abraham; Katsimanis, Evangelos; Kassanos, Dimitrios

    2010-10-01

    Current (and probably future) practice of medicine is mostly associated with prediction and accurate diagnosis. Especially in clinical practice, there is an increasing interest in constructing and using valid models of diagnosis and prediction. Artificial neural networks (ANNs) are mathematical systems being used as a prospective tool for reliable, flexible and quick assessment. They demonstrate high power in evaluating multifactorial data, assimilating information from multiple sources and detecting subtle and complex patterns. Their capability and difference from other statistical techniques lies in performing nonlinear statistical modelling. They represent a new alternative to logistic regression, which is the most commonly used method for developing predictive models for outcomes resulting from partitioning in medicine. In combination with the other non-algorithmic artificial intelligence techniques, they provide useful software engineering tools for the development of systems in quantitative medicine. Our paper first presents a brief introduction to ANNs, then, using what we consider the best available evidence through paradigms, we evaluate the ability of these networks to serve as first-line detection and prediction techniques in some of the most crucial fields in gynaecology. Finally, through the analysis of their current application, we explore their dynamics for future use.

  14. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications.

    PubMed

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-08-11

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure-Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron-Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  15. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications.

    PubMed

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-01-01

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure-Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron-Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods. PMID:27529225

  16. Improved Fault Classification in Series Compensated Transmission Line: Comparative Evaluation of Chebyshev Neural Network Training Algorithms.

    PubMed

    Vyas, Bhargav Y; Das, Biswarup; Maheshwari, Rudra Prakash

    2016-08-01

    This paper presents the Chebyshev neural network (ChNN) as an improved artificial intelligence technique for power system protection studies and examines the performances of two ChNN learning algorithms for fault classification of series compensated transmission line. The training algorithms are least-square Levenberg-Marquardt (LSLM) and recursive least-square algorithm with forgetting factor (RLSFF). The performances of these algorithms are assessed based on their generalization capability in relating the fault current parameters with an event of fault in the transmission line. The proposed algorithm is fast in response as it utilizes postfault samples of three phase currents measured at the relaying end corresponding to half-cycle duration only. After being trained with only a small part of the generated fault data, the algorithms have been tested over a large number of fault cases with wide variation of system and fault parameters. Based on the studies carried out in this paper, it has been found that although the RLSFF algorithm is faster for training the ChNN in the fault classification application for series compensated transmission lines, the LSLM algorithm has the best accuracy in testing. The results prove that the proposed ChNN-based method is accurate, fast, easy to design, and immune to the level of compensations. Thus, it is suitable for digital relaying applications.

  17. Identification of Propionibacteria to the species level using Fourier transform infrared spectroscopy and artificial neural networks.

    PubMed

    Dziuba, B

    2013-01-01

    Fourier transform infrared spectroscopy (FTIR) and artificial neural networks (ANN's) were used to identify species of Propionibacteria strains. The aim of the study was to improve the methodology to identify species of Propionibacteria strains, in which the differentiation index D, calculated based on Pearson's correlation and cluster analyses were used to describe the correlation between the Fourier transform infrared spectra and bacteria as molecular systems brought unsatisfactory results. More advanced statistical methods of identification of the FTIR spectra with application of artificial neural networks (ANN's) were used. In this experiment, the FTIR spectra of Propionibacteria strains stored in the library were used to develop artificial neural networks for their identification. Several multilayer perceptrons (MLP) and probabilistic neural networks (PNN) were tested. The practical value of selected artificial neural networks was assessed based on identification results of spectra of 9 reference strains and 28 isolates. To verify results of isolates identification, the PCR based method with the pairs of species-specific primers was used. The use of artificial neural networks in FTIR spectral analyses as the most advanced chemometric method supported correct identification of 93% bacteria of the genus Propionibacterium to the species level.

  18. DETECTING ACTIVE GALACTIC NUCLEI USING MULTI-FILTER IMAGING DATA. II. INCORPORATING ARTIFICIAL NEURAL NETWORKS

    SciTech Connect

    Dong, X. Y.; De Robertis, M. M.

    2013-10-01

    This is the second paper of the series Detecting Active Galactic Nuclei Using Multi-filter Imaging Data. In this paper we review shapelets, an image manipulation algorithm, which we employ to adjust the point-spread function (PSF) of galaxy images. This technique is used to ensure the image in each filter has the same and sharpest PSF, which is the preferred condition for detecting AGNs using multi-filter imaging data as we demonstrated in Paper I of this series. We apply shapelets on Canada-France-Hawaii Telescope Legacy Survey Wide Survey ugriz images. Photometric parameters such as effective radii, integrated fluxes within certain radii, and color gradients are measured on the shapelets-reconstructed images. These parameters are used by artificial neural networks (ANNs) which yield: photometric redshift with an rms of 0.026 and a regression R-value of 0.92; galaxy morphological types with an uncertainty less than 2 T types for z ≤ 0.1; and identification of galaxies as AGNs with 70% confidence, star-forming/starburst (SF/SB) galaxies with 90% confidence, and passive galaxies with 70% confidence for z ≤ 0.1. The incorporation of ANNs provides a more reliable technique for identifying AGN or SF/SB candidates, which could be very useful for large-scale multi-filter optical surveys that also include a modest set of spectroscopic data sufficient to train neural networks.

  19. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting

    PubMed Central

    Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627

  20. Abnormality detection in retinal images using ant colony optimization and artificial neural networks - biomed 2010.

    PubMed

    Kavitha, Ganesan; Ramakrishnan, Swaminathan

    2010-01-01

    Optic disc and retinal vasculature are important anatomical structures in the retina of the eye and any changes observed in these structures provide vital information on severity of various diseases. Digital retinal images are shown to provide a meaningful way of documenting and assessing some of the key elements inside the eye including the optic nerve and the tiny retinal blood vessels. In this work, an attempt has been made to detect and differentiate abnormalities of the retina using Digital image processing together with Optimization based segmentation and Artificial Neural Network methods. The retinal fundus images were recorded using standard protocols. Ant Colony Optimization is employed to extract the most significant objects namely the optic disc and blood vessel. The features related to these objects are obtained and corresponding indices are also derived. Further, these features are subjected to classification using Radial Basis Function Neural Networks and compared with conventional training algorithms. Results show that the Ant Colony Optimization is efficient in extracting useful information from retinal images. The features derived are effective for classification of normal and abnormal images using Radial basis function networks compared to other methods. As Optic disc and blood vessels are significant markers of abnormality in retinal images, the method proposed appears to be useful for mass screening. In this paper, the objectives of the study, methodology and significant observations are presented. PMID:20467104

  1. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.

    PubMed

    Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.

  2. Abnormality detection in retinal images using ant colony optimization and artificial neural networks - biomed 2010.

    PubMed

    Kavitha, Ganesan; Ramakrishnan, Swaminathan

    2010-01-01

    Optic disc and retinal vasculature are important anatomical structures in the retina of the eye and any changes observed in these structures provide vital information on severity of various diseases. Digital retinal images are shown to provide a meaningful way of documenting and assessing some of the key elements inside the eye including the optic nerve and the tiny retinal blood vessels. In this work, an attempt has been made to detect and differentiate abnormalities of the retina using Digital image processing together with Optimization based segmentation and Artificial Neural Network methods. The retinal fundus images were recorded using standard protocols. Ant Colony Optimization is employed to extract the most significant objects namely the optic disc and blood vessel. The features related to these objects are obtained and corresponding indices are also derived. Further, these features are subjected to classification using Radial Basis Function Neural Networks and compared with conventional training algorithms. Results show that the Ant Colony Optimization is efficient in extracting useful information from retinal images. The features derived are effective for classification of normal and abnormal images using Radial basis function networks compared to other methods. As Optic disc and blood vessels are significant markers of abnormality in retinal images, the method proposed appears to be useful for mass screening. In this paper, the objectives of the study, methodology and significant observations are presented.

  3. Automation of Some Operations of a Wind Tunnel Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Buggele, Alvin E.

    1996-01-01

    Artificial neural networks were used successfully to sequence operations in a small, recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings and mach numbers for conditions occurring shortly after startup and extending to fully developed flow. Artificial neural networks were trained and tested for estimating: sensor readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel was operated with its mach 2.0 nozzle, and shadowgraph was recorded near the nozzle exit. These results support the thesis that artificial neural networks can be combined with current workstation technology to automate wind tunnel operations.

  4. Adaptive NUC algorithm for uncooled IRFPA based on neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Ziji; Jiang, Yadong; Lv, Jian; Zhu, Hongbin

    2010-10-01

    With developments in uncooled infrared plane array (UFPA) technology, many new advanced uncooled infrared sensors are used in defensive weapons, scientific research, industry and commercial applications. A major difference in imaging techniques between infrared IRFPA imaging system and a visible CCD camera is that, IRFPA need nonuniformity correction and dead pixel compensation, we usually called it infrared image pre-processing. Two-point or multi-point correction algorithms based on calibration commonly used may correct the non-uniformity of IRFPAs, but they are limited by pixel linearity and instability. Therefore, adaptive non-uniformity correction techniques are developed. Two of these adaptive non-uniformity correction algorithms are mostly discussed, one is based on temporal high-pass filter, and another is based on neural network. In this paper, a new NUC algorithm based on improved neural networks is introduced, and involves the compare result between improved neural networks and other adaptive correction techniques. A lot of different will discussed in different angle, like correction effects, calculation efficiency, hardware implementation and so on. According to the result and discussion, it could be concluding that the adaptive algorithm offers improved performance compared to traditional calibration mode techniques. This new algorithm not only provides better sensitivity, but also increases the system dynamic range. As the sensor application expended, it will be very useful in future infrared imaging systems.

  5. Automatic brain MR image denoising based on texture feature-based artificial neural networks.

    PubMed

    Chang, Yu-Ning; Chang, Herng-Hua

    2015-01-01

    Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.

  6. Structure-response relationship in electrospray ionization-mass spectrometry of sartans by artificial neural networks.

    PubMed

    Golubović, Jelena; Birkemeyer, Claudia; Protić, Ana; Otašević, Biljana; Zečević, Mira

    2016-03-18

    Quantitative structure-property relationship (QSPR) methods are based on the hypothesis that changes in the molecular structure are reflected in changes in the observed property of the molecule. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. For the first time a quantitative structure-response relationship in electrospray ionization-mass spectrometry (ESI-MS) by means of artificial neural networks (ANN) on the group of angiotensin II receptor antagonists--sartans has been established. The investigated descriptors correspond to different properties of the analytes: polarity (logP), ionizability (pKa), surface area (solvent excluded volume) and number of proton acceptors. The influence of the instrumental parameters: methanol content in mobile phase, mobile phase pH and flow rate was also examined. Best performance showed a multilayer perceptron network with the architecture 6-3-3-1, trained with backpropagation algorithm. It showed high prediction ability on the previously unseen (test) data set with a coefficient of determination of 0.994. High prediction ability of the model would enable prediction of ESI-MS responsiveness under different conditions. This is particularly important in the method development phase. Also, prediction of responsiveness can be important in case of gradient-elution LC-MS and LC-MS/MS methods in which instrumental conditions are varied during time. Polarity, chargeability and surface area all appeared to be crucial for electrospray ionization whereby signal intensity appeared to be the result of a simultaneous influence of the molecular descriptors and their interactions. Percentage of organic phase in the mobile phase showed a positive, while flow rate showed a negative impact on signal intensity.

  7. Automatic brain MR image denoising based on texture feature-based artificial neural networks.

    PubMed

    Chang, Yu-Ning; Chang, Herng-Hua

    2015-01-01

    Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time. PMID:26405887

  8. Hierarchical artificial bee colony algorithm for RFID network planning optimization.

    PubMed

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness. PMID:24592200

  9. Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

    PubMed Central

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness. PMID:24592200

  10. Hierarchical artificial bee colony algorithm for RFID network planning optimization.

    PubMed

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  11. Forecasting of the critical frequency of the ionosphere F2 layer by the method of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Barkhatov, N. A.; Revunov, S. E.; Uryadov, V. P.

    2004-12-01

    An algorithm of forecasting of the ionosphere F2 layer critical frequency for time intervals: 1, 2, 3, 12, and 24 hours was developed on the basis of the technology of artificial neural networks (ANN). The experimental search for a valid training array and architecture of ANN was performed. The solar wind parameters, interplanetary magnetic field, and geomagnetic disturbance indexes were additionally used in the forecasting. This made it possible to improve its effectiveness. The practical importance of the performed work is in the application of its results for efficient correction of the ionosphere model for an improvement of the ionosphere shortwave radio communication.

  12. Automatic event detection based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Doubravová, Jana; Wiszniowski, Jan; Horálek, Josef

    2015-04-01

    The proposed algorithm was developed to be used for Webnet, a local seismic network in West Bohemia. The Webnet network was built to monitor West Bohemia/Vogtland swarm area. During the earthquake swarms there is a large number of events which must be evaluated automatically to get a quick estimate of the current earthquake activity. Our focus is to get good automatic results prior to precise manual processing. With automatic data processing we may also reach a lower completeness magnitude. The first step of automatic seismic data processing is the detection of events. To get a good detection performance we require low number of false detections as well as high number of correctly detected events. We used a single layer recurrent neural network (SLRNN) trained by manual detections from swarms in West Bohemia in the past years. As inputs of the SLRNN we use STA/LTA of half-octave filter bank fed by vertical and horizontal components of seismograms. All stations were trained together to obtain the same network with the same neuron weights. We tried several architectures - different number of neurons - and different starting points for training. Networks giving the best results for training set must not be the optimal ones for unknown waveforms. Therefore we test each network on test set from different swarm (but still with similar characteristics, i.e. location, focal mechanisms, magnitude range). We also apply a coincidence verification for each event. It means that we can lower the number of false detections by rejecting events on one station only and force to declare an event on all stations in the network by coincidence on two or more stations. In further work we would like to retrain the network for each station individually so each station will have its own coefficients (neural weights) set. We would also like to apply this method to data from Reykjanet network located in Reykjanes peninsula, Iceland. As soon as we have a reliable detection, we can proceed to

  13. Artificial neural networks for decision support in clinical medicine.

    PubMed

    Forsström, J J; Dalton, K J

    1995-10-01

    Connectionist models such as neural networks are alternatives to linear, parametric statistical methods. Neural networks are computer-based pattern recognition methods with loose similarities with the nervous system. Individual variables of the network, usually called 'neurones', can receive inhibitory and excitatory inputs from other neurones. The networks can define relationships among input data that are not apparent when using other approaches, and they can use these relationships to improve accuracy. Thus, neural nets have substantial power to recognize patterns even in complex datasets. Neural network methodology has outperformed classical statistical methods in cases where the input variables are interrelated. Because clinical measurements usually derive from multiple interrelated systems it is evident that neural networks might be more accurate than classical methods in multivariate analysis of clinical data. This paper reviews the use of neural networks in medical decision support. A short introduction to the basics of neural networks is given, and some practical issues in applying the networks are highlighted. The current use of neural networks in image analysis, signal processing and laboratory medicine is reviewed. It is concluded that neural networks have an important role in image analysis and in signal processing. However, further studies are needed to determine the value of neural networks in the analysis of laboratory data.

  14. Enhancing artificial bee colony algorithm with self-adaptive searching strategy and artificial immune network operators for global optimization.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  15. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  16. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes.

    PubMed

    Fernandez de Canete, J; Gonzalez-Perez, S; Ramos-Diaz, J C

    2012-04-01

    The closed loop control of blood glucose levels might help to reduce many short- and long-term complications of type 1 diabetes. Continuous glucose monitoring and insulin pump systems have facilitated the development of the artificial pancreas. In this paper, artificial neural networks are used for both the identification of patient dynamics and the glycaemic regulation. A subcutaneous glucose measuring system together with a Lispro insulin subcutaneous pump were used to gather clinical data for each patient undergoing treatment, and a corresponding in silico and ad hoc neural network model was derived for each patient to represent their particular glucose-insulin relationship. Based on this nonlinear neural network model, an ad hoc neural network controller was designed to close the feedback loop for glycaemic regulation of the in silico patient. Both the neural network model and the controller were tested for each patient under simulation, and the results obtained show a good performance during food intake and variable exercise conditions.

  17. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  18. Hybrid neural network and statistical classification algorithms in computer-assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Stotzka, Rainer

    2000-06-01

    The development of computer assisted diagnosis systems for image-patterns is still in the early stages compared to the powerful image and object recognition capabilities of the human eye and visual cortex. Rules have to be defined and features have to be found manually in digital images to come to an automatic classification. The extraction of discriminating features is especially in medical applications a very time consuming process. The quality of the defined features influences directly the classification success. Artificial neural networks are in principle able to solve complex recognition and classification tasks, but their computational expenses restrict their use to small images. A new improved image object classification scheme consists of neural networks as feature extractors and common statistical discrimination algorithms. Applied to the recognition of different types of tumor nuclei images this system is able to find differences which are barely discernible by human eyes.

  19. Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.

    1997-01-01

    The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.

  20. Comparison of polynomial approximations and artificial neural nets for response surfaces in engineering optimization

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.

    1991-01-01

    Engineering optimization problems involve minimizing some function subject to constraints. In areas such as aircraft optimization, the constraint equations may be from numerous disciplines such as transfer of information between these disciplines and the optimization algorithm. They are also suited to problems which may require numerous re-optimizations such as in multi-objective function optimization or to problems where the design space contains numerous local minima, thus requiring repeated optimizations from different initial designs. Their use has been limited, however, by the fact that development of response surfaces randomly selected or preselected points in the design space. Thus, they have been thought to be inefficient compared to algorithms to the optimum solution. A development has taken place in the last several years which may effect the desirability of using response surfaces. It may be possible that artificial neural nets are more efficient in developing response surfaces than polynomial approximations which have been used in the past. This development is the concern of the work.

  1. Application of artificial neural networks for versatile preprocessing of electrocardiogram recordings.

    PubMed

    Mateo, J; Rieta, J J

    2012-02-01

    The electrocardiogram (ECG) is the most widely used method for diagnosis of heart diseases, where a good quality of recordings allows the proper interpretation and identification of physiological and pathological phenomena. However, ECG recordings often have interference from noises including thermal, muscle, baseline and powerline noises. These signals severely limit ECG recording utility and, hence, have to be removed. To deal with this problem, the present paper proposes an artificial neural network (ANN) as a filter to remove all kinds of noise in just one step. The method is based on a growing ANN which optimizes both the number of nodes in the hidden layer and the coefficient matrices, which are optimized by means of the Widrow-Hoff delta algorithm. The ANN has been trained with a database comprising all kinds of noise, both from synthesized and real ECG recordings, in order to handle any noise signal present in the ECG. The proposed system improves results yielded by conventional techniques of ECG filtering, such as FIR-based systems, adaptive filtering and wavelet filtering. Therefore, the algorithm could serve as an effective framework to substantially reduce noise in ECG recordings. In addition, the resulting ECG signal distortion is notably more reduced in comparison with conventional methodologies. In summary, the current contribution introduces a new method which is able to suppress all ECG interference signals in only one step with low ECG distortion and a high noise reduction.

  2. Artificial neural network approach for moiré fringe center determination

    NASA Astrophysics Data System (ADS)

    Woo, Wing Hon; Ratnam, Mani Maran; Yen, Kin Sam

    2015-11-01

    The moiré effect has been used in high-accuracy positioning and alignment systems for decades. Various methods have been proposed to identify and locate moiré fringes in order to relate the pattern information to dimensional and displacement measurement. These methods can be broadly categorized into manual interpretation based on human knowledge and image processing based on computational algorithms. An artificial neural network (ANN) is proposed to locate moiré fringe centers within circular grating moiré patterns. This ANN approach aims to mimic human decision making by eliminating complex mathematical computations or time-consuming image processing algorithms in moiré fringe recognition. A feed-forward backpropagation ANN architecture was adopted in this work. Parametric studies were performed to optimize the ANN architecture. The finalized ANN approach was able to determine the location of the fringe centers with average deviations of 3.167 pixels out of 200 pixels (≈1.6%) and 6.166 pixels out of 200 pixels (≈3.1%) for real moiré patterns that lie within and outside the training intervals, respectively. In addition, a reduction of 43.4% in the computational time was reported using the ANN approach. Finally, the applicability of the ANN approach for moiré fringe center determination was confirmed.

  3. Optimisation of artificial neural network structure using Direct Encoding Graph Syntax (DEGS)

    SciTech Connect

    Kothari, B.; Esat, I.

    1996-12-31

    An artificial neural network (ANN) is intended to represent usually a complex non-linear mapping between the two data sets that can then be able to generalize on unseen data for the solution of a particular task. The evaluation of the correct ANN structure (and hence the mapping) is very often, solely a ANN and error procedure which may not lead to the required solution. The Genetic algorithm (GA) has been perceived by researchers as a effective systematic technique for the design of ANNs. However the GA can be hampered by the difficulty of generating a variety of ANN structures. In addition there is the problem of a significant increase of the search space for network architectures as the network size increases (scalability problem). Even if these problems are addressed, the ANN structures produced by the GA must be viable and then efficiently trainable by a competent training algorithm. A network is not viable if it is incomplete with isolated processing units. Also the possibility of encountering the permutation problem which refers to the creation of ANNs that are different in structure but are equivalent geometrically also has to be reduced as this significantly reduces the efficiency of the GA. The above characteristics are indicative of other encoding schemes that poorly encode the ANN. This paper describes a direct encoding scheme, Direct Encoding Graph Syntax (DEGS), that endeavors to overcome these flaws. Its successful implementation in conjunction with the GA, for the design of ANNs to evaluate the 9-bit parity problem is also discussed.

  4. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.

    PubMed

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. PMID:27044001

  5. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.

    PubMed

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.

  6. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks

    PubMed Central

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. PMID:27044001

  7. Decoding the brain's algorithm for categorization from its neural implementation.

    PubMed

    Mack, Michael L; Preston, Alison R; Love, Bradley C

    2013-10-21

    Acts of cognition can be described at different levels of analysis: what behavior should characterize the act, what algorithms and representations underlie the behavior, and how the algorithms are physically realized in neural activity [1]. Theories that bridge levels of analysis offer more complete explanations by leveraging the constraints present at each level [2-4]. Despite the great potential for theoretical advances, few studies of cognition bridge levels of analysis. For example, formal cognitive models of category decisions accurately predict human decision making [5, 6], but whether model algorithms and representations supporting category decisions are consistent with underlying neural implementation remains unknown. This uncertainty is largely due to the hurdle of forging links between theory and brain [7-9]. Here, we tackle this critical problem by using brain response to characterize the nature of mental computations that support category decisions to evaluate two dominant, and opposing, models of categorization. We found that brain states during category decisions were significantly more consistent with latent model representations from exemplar [5] rather than prototype theory [10, 11]. Representations of individual experiences, not the abstraction of experiences, are critical for category decision making. Holding models accountable for behavior and neural implementation provides a means for advancing more complete descriptions of the algorithms of cognition. PMID:24094852

  8. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air

    NASA Astrophysics Data System (ADS)

    Castellano-Méndez, M.; Aira, M. J.; Iglesias, I.; Jato, V.; González-Manteiga, W.

    2005-05-01

    An increasing percentage of the European population suffers from allergies to pollen. The study of the evolution of air pollen concentration supplies prior knowledge of the levels of pollen in the air, which can be useful for the prevention and treatment of allergic symptoms, and the management of medical resources. The symptoms of Betula pollinosis can be associated with certain levels of pollen in the air. The aim of this study was to predict the risk of the concentration of pollen exceeding a given level, using previous pollen and meteorological information, by applying neural network techniques. Neural networks are a widespread statistical tool useful for the study of problems associated with complex or poorly understood phenomena. The binary response variable associated with each level requires a careful selection of the neural network and the error function associated with the learning algorithm used during the training phase. The performance of the neural network with the validation set showed that the risk of the pollen level exceeding a certain threshold can be successfully forecasted using artificial neural networks. This prediction tool may be implemented to create an automatic system that forecasts the risk of suffering allergic symptoms.

  9. Identification of power system load dynamics using artificial neural networks

    SciTech Connect

    Bostanci, M.; Koplowitz, J.; Taylor, C.W. |

    1997-11-01

    Power system loads are important for planning and operation of an electric power system. Load characteristics can significantly influence the results of synchronous stability and voltage stability studies. This paper presents a methodology for identification of power system load dynamics using neural networks. Input-output data of a power system dynamic load is used to design a neural network model which comprises delayed inputs and feedback connections. The developed neural network model can predict the future power system dynamic load behavior for arbitrary inputs. In particular, a third-order induction motor load neural network model is developed to verify the methodology. Neural network simulation results are illustrated and compared with the induction motor load response.

  10. Design, implementation and testing of an artificial neural network based fault direction discriminator for protecting transmission lines

    SciTech Connect

    Sidhu, T.S.; Singh, H.; Sachdev, M.S.

    1995-04-01

    This paper describes a fault direction discriminator that uses an Artificial Neural Network (ANN) for protecting transmission lines. The discriminator uses various attributes to reach a decision and tends to emulate the conventional pattern classification problem. An equation of the boundary describing the classification is embedded in the Multilayer Feedforward Neural Network (MFNN) by training through the use of an appropriate learning algorithm and suitable training data. The discriminator uses instantaneous values of the line voltages and line currents to make decisions. Results showing the performance of the ANN-based discriminator are presented in the paper and indicate that it is fast, robust and accurate. It is suitable for realizing an ultrafast directional comparison protection of transmission lines.

  11. Artificial neural networks in evaluation and optimization of modified release solid dosage forms.

    PubMed

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-10-18

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms.

  12. Application of neural based estimation algorithm for gait phases of above knee prosthesis.

    PubMed

    Tileylioğlu, E; Yilmaz, A

    2015-01-01

    In this study, two gait phase estimation methods which utilize a rule based quantization and an artificial neural network model respectively are developed and applied for the microcontroller based semi-active knee prosthesis in order to respond user demands and adapt environmental conditions. In this context, an experimental environment in which gait data collected synchronously from both inertial and image based measurement systems has been set up. The inertial measurement system that incorporates MEM accelerometers and gyroscopes is used to perform direct motion measurement through the microcontroller, while the image based measurement system is employed for producing the verification data and assessing the success of the prosthesis. Embedded algorithms dynamically normalize the input data prior to gait phase estimation. The real time analyses of two methods revealed that embedded ANN based approach performs slightly better in comparison with the rule based algorithm and has advantage of being easily-scalable, thus able to accommodate additional input parameters considering the microcontroller constraints.

  13. Beneficial role of noise in artificial neural networks

    SciTech Connect

    Monterola, Christopher; Saloma, Caesar; Zapotocky, Martin

    2008-06-18

    We demonstrate enhancement of neural networks efficacy to recognize frequency encoded signals and/or to categorize spatial patterns of neural activity as a result of noise addition. For temporal information recovery, noise directly added to the receiving neurons allow instantaneous improvement of signal-to-noise ratio [Monterola and Saloma, Phys. Rev. Lett. 2002]. For spatial patterns however, recurrence is necessary to extend and homogenize the operating range of a feed-forward neural network [Monterola and Zapotocky, Phys. Rev. E 2005]. Finally, using the size of the basin of attraction of the networks learned patterns (dynamical fixed points), a procedure for estimating the optimal noise is demonstrated.

  14. Can artificial neural networks provide an "expert's" view of medical students performances on computer based simulations?

    PubMed

    Stevens, R H; Najafi, K

    1992-01-01

    Artificial neural networks were trained to recognize the test selection patterns of students' successful solutions to seven immunology computer based simulations. When new student's test selections were presented to the trained neural network, their problem solutions were correctly classified as successful or non-successful > 90% of the time. Examination of the neural networks output weights after each test selection revealed a progressive increase for the relevant problem suggesting that a successful solution was represented by the neural network as the accumulation of relevant tests. Unsuccessful problem solutions revealed two patterns of students performances. The first pattern was characterized by low neural network output weights for all seven problems reflecting extensive searching and lack of recognition of relevant information. In the second pattern, the output weights from the neural network were biased towards one of the remaining six incorrect problems suggesting that the student mis-represented the current problem as an instance of a previous problem.

  15. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  16. Risk stratification in heart failure using artificial neural networks.

    PubMed Central

    Atienza, F.; Martinez-Alzamora, N.; De Velasco, J. A.; Dreiseitl, S.; Ohno-Machado, L.

    2000-01-01

    Accurate risk stratification of heart failure patients is critical to improve management and outcomes. Heart failure is a complex multisystem disease in which several predictors are categorical. Neural network models have successfully been applied to several medical classification problems. Using a simple neural network, we assessed one-year prognosis in 132 patients, consecutively admitted with heart failure, by classifying them in 3 groups: death, readmission and one-year event-free survival. Given the small number of cases, the neural network model was trained using a resampling method. We identified relevant predictors using the Automatic Relevance Determination (ARD) method, and estimated their mean effect on the 3 different outcomes. Only 9 individuals were misclassified. Neural networks have the potential to be a useful tool for making prognosis in the domain of heart failure. PMID:11079839

  17. Adaptive artificial neural network for autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  18. A comparison of polynomial approximations and artificial neural nets as response surfaces

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.; Barthelemy, Jean-Francois M.

    1992-01-01

    Artificial neural nets and polynomial approximations were used to develop response surfaces for several test problems. Based on the number of functional evaluations required to build the approximations and the number of undetermined parameters associated with the approximations, the performance of the two types of approximations was found to be comparable. A rule of thumb is developed for determining the number of nodes to be used on a hidden layer of an artificial neural net, and the number of designs needed to train an approximation is discussed.

  19. Artificial neural network to predict degradation of non-metallic lining materials from laboratory tests

    SciTech Connect

    Silverman, D.C.

    1994-12-31

    Artificial neural networks are computer simulations that have the potential of ``finding`` the same patterns that corrosion practitioners recognize to relate experimental test results to lifetime predictions. This potential ability was utilized to construct an artificial neural network to recognize the pattern between results from a sequential immersion test for organic non-metallic lining materials and their ability to function as linings in actual applications. The network so constructed has been shown to predict field performance from this test. The network was incorporated within an Expert System to simplify data input and output, allow for simple consistency checks, and to make the final prediction.

  20. An application of artificial neural networks to experimental data approximation

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1993-01-01

    As an initial step in the evaluation of networks, a feedforward architecture is trained to approximate experimental data by the backpropagation algorithm. Several drawbacks were detected and an alternative learning algorithm was then developed to partially address the drawbacks. This noniterative algorithm has a number of advantages over the backpropagation method and is easily implemented on existing hardware.

  1. Artificial neural network for identification of a substance from a Mössbauer data bank

    NASA Astrophysics Data System (ADS)

    Salles, Evandro O. T.; de Souza, P. A.; Garg, V. K.

    1994-12-01

    Mössbauer data and references of the minerals reported in the literature have been stored in a computer. Artificial neutral networks (ANN) were taught with the average values of experimental data of isomer shift quadrupole splitting of known mineral systems (sulphate, sulphide and sulphites, and silicates). Artificial neural networks successfully identified the unknown substance when fed with the new values of isomer shift and quadrupole splitting.

  2. Intelligent Sensor Positioning and Orientation Through Constructive Neural Network-Embedded INS/GPS Integration Algorithms

    PubMed Central

    Chiang, Kai-Wei; Chang, Hsiu-Wen

    2010-01-01

    Mobile mapping systems have been widely applied for acquiring spatial information in applications such as spatial information systems and 3D city models. Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include a Global Positioning System (GPS) as the major positioning sensor and an Inertial Navigation System (INS) as the major orientation sensor. In the classical approach, the limitations of the Kalman Filter (KF) method and the overall price of multi-sensor systems have limited the popularization of most land-based mobile mapping applications. Although intelligent sensor positioning and orientation schemes consisting of Multi-layer Feed-forward Neural Networks (MFNNs), one of the most famous Artificial Neural Networks (ANNs), and KF/smoothers, have been proposed in order to enhance the performance of low cost Micro Electro Mechanical System (MEMS) INS/GPS integrated systems, the automation of the MFNN applied has not proven as easy as initially expected. Therefore, this study not only addresses the problems of insufficient automation in the conventional methodology that has been applied in MFNN-KF/smoother algorithms for INS/GPS integrated systems proposed in previous studies, but also exploits and analyzes the idea of developing alternative intelligent sensor positioning and orientation schemes that integrate various sensors in more automatic ways. The proposed schemes are implemented using one of the most famous constructive neural networks—the Cascade Correlation Neural Network (CCNNs)—to overcome the limitations of conventional techniques based on KF/smoother algorithms as well as previously developed MFNN-smoother schemes. The CCNNs applied also have the advantage of a more flexible topology compared to MFNNs. Based on the experimental data utilized the preliminary results presented in this article illustrate the effectiveness of the proposed schemes compared to smoother algorithms as well as the MFNN

  3. Intelligent sensor positioning and orientation through constructive neural network-embedded INS/GPS integration algorithms.

    PubMed

    Chiang, Kai-Wei; Chang, Hsiu-Wen

    2010-01-01

    Mobile mapping systems have been widely applied for acquiring spatial information in applications such as spatial information systems and 3D city models. Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include a Global Positioning System (GPS) as the major positioning sensor and an Inertial Navigation System (INS) as the major orientation sensor. In the classical approach, the limitations of the Kalman Filter (KF) method and the overall price of multi-sensor systems have limited the popularization of most land-based mobile mapping applications. Although intelligent sensor positioning and orientation schemes consisting of Multi-layer Feed-forward Neural Networks (MFNNs), one of the most famous Artificial Neural Networks (ANNs), and KF/smoothers, have been proposed in order to enhance the performance of low cost Micro Electro Mechanical System (MEMS) INS/GPS integrated systems, the automation of the MFNN applied has not proven as easy as initially expected. Therefore, this study not only addresses the problems of insufficient automation in the conventional methodology that has been applied in MFNN-KF/smoother algorithms for INS/GPS integrated systems proposed in previous studies, but also exploits and analyzes the idea of developing alternative intelligent sensor positioning and orientation schemes that integrate various sensors in more automatic ways. The proposed schemes are implemented using one of the most famous constructive neural networks--the Cascade Correlation Neural Network (CCNNs)--to overcome the limitations of conventional techniques based on KF/smoother algorithms as well as previously developed MFNN-smoother schemes. The CCNNs applied also have the advantage of a more flexible topology compared to MFNNs. Based on the experimental data utilized the preliminary results presented in this article illustrate the effectiveness of the proposed schemes compared to smoother algorithms as well as the MFNN

  4. Using artificial neural networks to retrieve the aerosol type from multi-spectral lidar data

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Vasilescu, Jeni

    2015-04-01

    Aerosols can influence the microphysical and macrophysical properties of clouds and hence impact the energy balance, precipitation and the hydrological cycle. They have different scattering and absorption properties depending on their origin, therefore measured optical properties can be used to retrieve their physical properties, as well as to estimate their chemical composition. Due to the measurement limitations (spectral, uncertainties, range) and high variability of the aerosol properties with environmental conditions (including mixing during transport), the identification of the aerosol type from lidar data is still not solved. However, ground, airborne and space-based lidars provide more and more observations to be exploited. Since 2000, EARLINET collected more than 20,000 aerosol vertical profiles under various meteorological conditions, concerning local or long-range transport of aerosols in the free troposphere. This paper describes the basic algorithm for aerosol typing from optical data using the benefits of artificial neural networks. A relevant database was built to provide sufficient training cases for the neural network, consisting of synthetic and measured aerosol properties. Synthetic aerosols were simulated starting from the microphysical properties of basic components, internally mixed in various proportions. The algorithm combines the GADS database (Global Aerosol DataSet) to OPAC model (Optical Properties of Aerosol and Clouds) and T-Matrix code in order to compute, in an iterative way, the intensive optical properties of each aerosol type. Both pure and mixed aerosol types were considered, as well as their particular non-sphericity and hygroscopicity. Real aerosol cases were picked up from the ESA-CALIPSO database, as well as EARLINET datasets. Specific selection criteria were applied to identify cases with accurate optical data and validated sources. Cross-check of the synthetic versus measured aerosol intensive parameters was performed in

  5. An algorithm to predict the connectome of neural microcircuits

    PubMed Central

    Reimann, Michael W.; King, James G.; Muller, Eilif B.; Ramaswamy, Srikanth; Markram, Henry

    2015-01-01

    Experimentally mapping synaptic connections, in terms of the numbers and locations of their synapses and estimating connection probabilities, is still not a tractable task, even for small volumes of tissue. In fact, the six layers of the neocortex contain thousands of unique types of synaptic connections between the many different types of neurons, of which only a handful have been characterized experimentally. Here we present a theoretical framework and a data-driven algorithmic strategy to digitally reconstruct the complete synaptic connectivity between the different types of neurons in a small well-defined volume of tissue—the micro-scale connectome of a neural microcircuit. By enforcing a set of established principles of synaptic connectivity, and leveraging interdependencies between fundamental properties of neural microcircuits to constrain the reconstructed connectivity, the algorithm yields three parameters per connection type that predict the anatomy of all types of biologically viable synaptic connections. The predictions reproduce a spectrum of experimental data on synaptic connectivity not used by the algorithm. We conclude that an algorithmic approach to the connectome can serve as a tool to accelerate experimental mapping, indicating the minimal dataset required to make useful predictions, identifying the datasets required to improve their accuracy, testing the feasibility of experimental measurements, and making it possible to test hypotheses of synaptic connectivity. PMID:26500529

  6. A DSP-based neural network non-uniformity correction algorithm for IRFPA

    NASA Astrophysics Data System (ADS)

    Liu, Chong-liang; Jin, Wei-qi; Cao, Yang; Liu, Xiu

    2009-07-01

    An effective neural network non-uniformity correction (NUC) algorithm based on DSP is proposed in this paper. The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise(FPN).We introduced and analyzed the artificial neural network scene-based non-uniformity correction (SBNUC) algorithm. A design of DSP-based NUC development platform for IRFPA is described. The DSP hardware platform designed is of low power consumption, with 32-bit fixed point DSP TMS320DM643 as the kernel processor. The dependability and expansibility of the software have been improved by DSP/BIOS real-time operating system and Reference Framework 5. In order to realize real-time performance, the calibration parameters update is set at a lower task priority then video input and output in DSP/BIOS. In this way, calibration parameters updating will not affect video streams. The work flow of the system and the strategy of real-time realization are introduced. Experiments on real infrared imaging sequences demonstrate that this algorithm requires only a few frames to obtain high quality corrections. It is computationally efficient and suitable for all kinds of non-uniformity.

  7. Lévy flight artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Sharma, Harish; Bansal, Jagdish Chand; Arya, K. V.; Yang, Xin-She

    2016-08-01

    Artificial bee colony (ABC) optimisation algorithm is a relatively simple and recent population-based probabilistic approach for global optimisation. The solution search equation of ABC is significantly influenced by a random quantity which helps in exploration at the cost of exploitation of the search space. In the ABC, there is a high chance to skip the true solution due to its large step sizes. In order to balance between diversity and convergence in the ABC, a Lévy flight inspired search strategy is proposed and integrated with ABC. The proposed strategy is named as Lévy Flight ABC (LFABC) has both the local and global search capability simultaneously and can be achieved by tuning the Lévy flight parameters and thus automatically tuning the step sizes. In the LFABC, new solutions are generated around the best solution and it helps to enhance the exploitation capability of ABC. Furthermore, to improve the exploration capability, the numbers of scout bees are increased. The experiments on 20 test problems of different complexities and five real-world engineering optimisation problems show that the proposed strategy outperforms the basic ABC and recent variants of ABC, namely, Gbest-guided ABC, best-so-far ABC and modified ABC in most of the experiments.

  8. Simultaneous determination of calcium and magnesium in water using artificial neural network spectro-photometric method

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Li, Shuang; Xin, Huizhen; Cao, Hengxia

    2010-09-01

    A new analytical method using Back-Propagation (BP) artificial neural networks and spectrophotometry for simultaneous determination of calcium and magnesium in tap water, the Yellow River water and seawater is established. By condition experiment, the optimum analytical conditions for calcium, magnesium and Arsenazo (III) color reactions are obtained. Levenberg-Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 11-10-2 (nodes). The initial value of gradient coefficient μ is fixed at 0.001 and the increase factor and reduction factor of μ take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviations of the calculated results for calcium and magnesium are 2.31% and 2.14%, respectively. The results of standard addition method show that the recoveries of calcium and magnesium are 103.6% and 100.8% in the tap water, 103.2% and 96.6% in the Yellow River water (Lijin district of Shandong Province), and 98.8%-103.3% and 98.43%-103.4% in seawater from Jiaozhou Bay of Qingdao. It is found that 14 common cations and anions do not interfere with the determination of calcium and magnesium under the optimum experimental conditions. The comparative experiments do not show any obvious difference between the results obtained by this new method and those obtained by the classical complexometric titration method in seawater medium. This method exhibits good reproducibility and high accuracy in the determination of calcium and magnesium and can be used for the simultaneous determination of Ca2+ and Mg2+ in tap water and natural water.

  9. Forecasting geomagnetic activity indices using the Boyle index through artificial neural networks

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Ramkumar

    2010-11-01

    Adverse space weather conditions affect various sectors making both human lives and technologies highly susceptible. This dissertation introduces a new set of algorithms suitable for short term space weather forecasts with an enhanced lead-time and better accuracy in predicting Kp, Dst and the AE index over some leading models. Kp is a 3-hour averaged global geomagnetic activity index good for midlatitude regions. The Dst index, an hourly index calculated using four ground based magnetic field measurements near the equator, measures the energy of the Earth's ring current. The Auroral Electrojet indices or AE indices are hourly indices used to characterize the global geomagnetic activity in the auroral zone. Our algorithms can predict these indices purely from the solar wind data with lead times up to 6 hours. We have trained and tested an ANN (Artificial Neural Network) over a complete solar cycle to serve this purpose. Over the last couple of decades, ANNs have been successful for temporal prediction problems amongst other advanced non-linear techniques. Our ANN-based algorithms receive near-real-time inputs either from ACE (Advanced Composition Explorer), located at L1, and a handful of ground-based magnetometers or only from ACE. The Boyle potential, phi = 10-4 (vkm/sec)2+ 11.7BnT sin3 (theta/2) kV, or the Boyle Index (BI) is an empirically-derived formula that approximates the Earth's polar cap potential and is easily derivable in real time using the solar wind data from ACE. The logarithms of both 3-hour and 1-hour averages of the Boyle Index correlate well with the subsequent Kp, Dst and AE: Kp = 8.93 log 10 - 12.55. Dst = 0.355 - 6.48, and AE = 5.87 - 83.46. Inputs to our ANN models have greatly benefitted from the BI and its proven record as a forecasting parameter since its initiation in October, 2003. A preconditioning event tunes the magnetosphere to a specific state before an impending geomagnetic storm. The neural net not only improves the

  10. A Model for Improving the Learning Curves of Artificial Neural Networks

    PubMed Central

    2016-01-01

    In this article, the performance of a hybrid artificial neural network (i.e. scale-free and small-world) was analyzed and its learning curve compared to three other topologies: random, scale-free and small-world, as well as to the chemotaxis neural network of the nematode Caenorhabditis Elegans. One hundred equivalent networks (same number of vertices and average degree) for each topology were generated and each was trained for one thousand epochs. After comparing the mean learning curves of each network topology with the C. elegans neural network, we found that the networks that exhibited preferential attachment exhibited the best learning curves. PMID:26901646

  11. Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri

    1997-01-01

    Artificial neural networks are widely used in engineering applications, such as control, pattern recognition, plant modeling and condition monitoring to name just a few. In this seminar we will explore the possibility of applying neural networks to aerodynamic design, in particular, the design of turbomachinery airfoils. The principle idea behind this effort is to represent the design space using a neural network (within some parameter limits), and then to employ an optimization procedure to search this space for a solution that exhibits optimal performance characteristics. Results obtained for design problems in two spatial dimensions will be presented.

  12. Optically Connected Multiprocessors For Simulating Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Ghosh, Joydeep; Hwang, Kai

    1988-05-01

    This paper investigates the architectural requirements in simulating large neural networks using a highly parallel multiprocessor with distributed memory and optical interconnects. First, we model the structure of a neural network and the functional behavior of individual cells. These models are used to estimate the volume of messages that need to be exchanged among physical processors to simulate the weighted connections of the neural network. The distributed processor/memory organization is tailored to an electronic implementation for greater versatility and flexibility. Optical interconnects are used to satisfy the interprocessor communication bandwidth demands. The hybrid implementation attempts to balance the processing, memory and bandwidth demands in simulating asynchronous, value-passing models for cooperative parallel computation with self-learning capabilities.

  13. Vein matching using artificial neural network in vein authentication systems

    NASA Astrophysics Data System (ADS)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  14. A fast neural-network algorithm for VLSI cell placement.

    PubMed

    Aykanat, Cevdet; Bultan, Tevfik; Haritaoğlu, Ismail

    1998-12-01

    Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average.

  15. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    PubMed

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. PMID:26422422

  16. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    PubMed

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks.

  17. Creation and testing of an artificial neural network based carbonate detector for Mars rovers

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Castano, Rebecca; Gilmore, Martha S.; Merrill, Matthew; Greenwood, James P.

    2005-01-01

    We have developed an artificial neural network (ANN) based carbonate detector capable of running on current and future rover hardware. The detector can identify calcite in visible/NIR (350-2500 nm) spectra of both laboratory specimens covered by ferric dust and rocks in Mars analogue field environments. The ANN was trained using the Backpropagation algorithm with sigmoid activation neurons. For the training dataset, we chose nine carbonate and eight non-carbonate representative mineral spectra from the USGS spectral library. Using these spectra as seeds, we generated 10,000 variants with up to 2% Gaussian noise in each reflectance measurement. We cross-validated several ANN architectures, training on 9,900 spectra and testing on the remaining 100. The best performing ANN correctly detected, with perfect accuracy, the presence (or absence) of carbonate in spectral data taken on field samples from the Mojave desert and clean, pure marbles from CT. Sensitivity experiments with JSC Mars-1 simulant dust suggest the carbonate detector would perform well in aeolian Martian environments.

  18. Development of sediment load estimation models by using artificial neural networking techniques.

    PubMed

    Hassan, Muhammad; Ali Shamim, M; Sikandar, Ali; Mehmood, Imran; Ahmed, Imtiaz; Ashiq, Syed Zishan; Khitab, Anwar

    2015-11-01

    This study aims at the development of an artificial neural network-based model for the estimation of weekly sediment load at a catchment located in northern part of Pakistan. The adopted methodology has been based upon antecedent sediment conditions, discharge, and temperature information. Model input and data length selection was carried out using a novel mathematical tool, Gamma test. Model training was carried out by using three popular algorithms namely Broyden-Fletcher-Goldfarb-Shanno (BFGS), back propagation (BP), and local linear regression (LLR) using forward selection of input variables. Evaluation of the best model was carried out on the basis of basic statistical parameters namely R-square, root mean squared error (RMSE), and mean biased error (MBE). Results indicated that BFGS-based ANN model outperformed all other models with significantly low values of RMSE and MBE. A strong correlation was also found between the observed and estimated sediment load values for the same model as the value of Nash-Sutcliffe model efficiency coefficient (R-square) was found to be quite high as well. PMID:26463089

  19. Artificial neural network in breast lesions from fine-needle aspiration cytology smear.

    PubMed

    Subbaiah, R M; Dey, Pranab; Nijhawan, Raje

    2014-03-01

    Artificial neural networks (ANNs) are applied in engineering and certain medical fields. ANN has immense potential and is rarely been used in breast lesions. In this present study, we attempted to build up a complete robust back propagation ANN model based on cytomorphological data, morphometric data, nuclear densitometric data, and gray level co-occurrence matrix (GLCM) of ductal carcinoma and fibroadenomas of breast cases diagnosed on fine-needle aspiration cytology (FNAC). We selected 52 cases of fibroadenomas and 60 cases of infiltrating ductal carcinoma of breast diagnosed on FNAC by two cytologists. Essential cytological data was quantitated by two independent cytologists (SRM, PD). With the help of Image J software, nuclear morphomeric, densitometric, and GLCM features were measured in all the cases on hematoxylin and eosin-stained smears. With the available data, an ANN model was built up with the help of Neurointelligence software. The network was designed as 41-20-1 (41 input nodes, 20 hidden nodes, 1 output node). The network was trained by the online back propagation algorithm and 500 iterations were done. Learning was adjusted after every iteration. ANN model correctly identified all cases of fibroadenomas and infiltrating carcinomas in the test set. This is one of the first successful composite ANN models of breast carcinomas. This basic model can be used to diagnose the gray zone area of the breast lesions on FNAC. We assume that this model may have far-reaching implications in future.

  20. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.

    PubMed

    Sasaki, Masao S; Tachibana, Akira; Takeda, Shunichi

    2014-05-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. PMID:24366315

  1. Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems.

    PubMed

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.

  2. Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations

    NASA Astrophysics Data System (ADS)

    Kasiviswanathan, K. S.; Cibin, R.; Sudheer, K. P.; Chaubey, I.

    2013-08-01

    This paper presents a method of constructing prediction interval for artificial neural network (ANN) rainfall runoff models during calibration with a consideration of generating ensemble predictions. A two stage optimization procedure is envisaged in this study for construction of prediction interval for the ANN output. In Stage 1, ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector. In Stage 2, possible variability of ANN parameters (obtained in Stage 1) is optimized so as to create an ensemble of models with the consideration of minimum residual variance for the ensemble mean, while ensuring a maximum of the measured data to fall within the estimated prediction interval. The width of the prediction interval is also minimized simultaneously. The method is demonstrated using a real world case study of rainfall runoff data for an Indian basin. The method was able to produce ensembles with a prediction interval (average width) of 26.49 m3/s with 97.17% of the total observed data points lying within the interval in validation. One specific advantage of the method is that when ensemble mean value is considered as a forecast, the peak flows are predicted with improved accuracy by this method compared to traditional single point forecasted ANNs.

  3. Training Knowledge Bots for Physics-Based Simulations Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Wong, Jay Ming

    2014-01-01

    Millions of complex physics-based simulations are required for design of an aerospace vehicle. These simulations are usually performed by highly trained and skilled analysts, who execute, monitor, and steer each simulation. Analysts rely heavily on their broad experience that may have taken 20-30 years to accumulate. In addition, the simulation software is complex in nature, requiring significant computational resources. Simulations of system of systems become even more complex and are beyond human capacity to effectively learn their behavior. IBM has developed machines that can learn and compete successfully with a chess grandmaster and most successful jeopardy contestants. These machines are capable of learning some complex problems much faster than humans can learn. In this paper, we propose using artificial neural network to train knowledge bots to identify the idiosyncrasies of simulation software and recognize patterns that can lead to successful simulations. We examine the use of knowledge bots for applications of computational fluid dynamics (CFD), trajectory analysis, commercial finite-element analysis software, and slosh propellant dynamics. We will show that machine learning algorithms can be used to learn the idiosyncrasies of computational simulations and identify regions of instability without including any additional information about their mathematical form or applied discretization approaches.

  4. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.

    PubMed

    Sasaki, Masao S; Tachibana, Akira; Takeda, Shunichi

    2014-05-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.

  5. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors

    PubMed Central

    Sasaki, Masao S.; Tachibana, Akira; Takeda, Shunichi

    2014-01-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the ‘integrate-and-fire’ algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to 239Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation–environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. PMID:24366315

  6. Modeling of ammonia emission in the USA and EU countries using an artificial neural network approach.

    PubMed

    Stamenković, Lidija J; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V

    2015-12-01

    Ammonia emissions at the national level are frequently estimated by applying the emission inventory approach, which includes the use of emission factors, which are difficult and expensive to determine. Emission factors are therefore the subject of estimation, and as such they contribute to inherent uncertainties in the estimation of ammonia emissions. This paper presents an alternative approach for the prediction of ammonia emissions at the national level based on artificial neural networks and broadly available sustainability and economical/agricultural indicators as model inputs. The Multilayer Perceptron (MLP) architecture was optimized using a trial-and-error procedure, including the number of hidden neurons, activation function, and a back-propagation algorithm. Principal component analysis (PCA) was applied to reduce mutual correlation between the inputs. The obtained results demonstrate that the MLP model created using the PCA transformed inputs (PCA-MLP) provides a more accurate prediction than the MLP model based on the original inputs. In the validation stage, the MLP and PCA-MLP models were tested for ammonia emission predictions for up to 2 years and compared with a principal component regression model. Among the three models, the PCA-MLP demonstrated the best performance, providing predictions for the USA and the majority of EU countries with a relative error of less than 20%.

  7. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    PubMed

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  8. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil.

    PubMed

    Olawoyin, Richard

    2016-10-01

    The backpropagation (BP) artificial neural network (ANN) is a renowned and extensively functional mathematical tool used for time-series predictions and approximations; which also define results for non-linear functions. ANNs are vital tools in the predictions of toxicant levels, such as polycyclic aromatic hydrocarbons (PAH) potentially derived from anthropogenic activities in the microenvironment. In the present work, BP ANN was used as a prediction tool to study the potential toxicity of PAH carcinogens (PAHcarc) in soils. Soil samples (16 × 4 = 64) were collected from locations in South-southern Nigeria. The concentration of PAHcarc in laboratory cultivated white melilot, Melilotus alba roots grown on treated soils was predicted using ANN model training. Results indicated the Levenberg-Marquardt back-propagation training algorithm converged in 2.5E+04 epochs at an average RMSE value of 1.06E-06. The averagedR(2) comparison between the measured and predicted outputs was 0.9994. It may be deduced from this study that, analytical processes involving environmental risk assessment as used in this study can successfully provide prompt prediction and source identification of major soil toxicants. PMID:27424056

  9. Digital image classification with the help of artificial neural network by simple histogram

    PubMed Central

    Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant

    2016-01-01

    Background: Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. Aims and Objectives: In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. Materials and Methods: A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. Result: A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. Conclusion: The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations. PMID:27279679

  10. Recognizing targets from infrared intensity scan patterns using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Aytaç, Tayfun; Barshan, Billur

    2009-01-01

    This study investigates the use of simple, low-cost infrared sensors for the recognition of geometry and surface type of commonly encountered features or targets in indoor environments, such as planes, corners, and edges. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting target in a way that cannot be represented by a simple analytical relationship, therefore complicating the localization and recognition process. We employ artificial neural networks to determine the geometry and the surface type of targets and provide experimental verification with three different geometries and three different surface types. The networks are trained with the Levenberg-Marquardt algorithm and pruned with the optimal brain surgeon technique. The geometry and the surface type of targets can be correctly classified with rates of 99 and 78.4%, respectively. An average correct classification rate of 78% is achieved when both geometry and surface type are differentiated. This indicates that the geometrical properties of the targets are more distinctive than their surface properties, and surface determination is the limiting factor in recognizing the patterns. The results demonstrate that processing the data from simple infrared sensors through suitable techniques can help us exploit their full potential and extend their usage beyond well-known applications.

  11. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model

    PubMed Central

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders’ expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day’s price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately. PMID:27196055

  12. Modeling of methane oxidation in landfill cover soil using an artificial neural network.

    PubMed

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah; Younes, Mohammad K; Irwan, Dani

    2014-02-01

    Knowing the fraction of methane (CH4) oxidized in landfill cover soils is an important step in estimating the total CH4 emissions from any landfill. Predicting CH4 oxidation in landfill cover soils is a difficult task because it is controlled by a number of biological and environmental factors. This study proposes an artificial neural network (ANN) approach using feedforward backpropagation to predict CH4 oxidation in landfill cover soil in relation to air temperature, soil moisture content, oxygen (O2) concentration at a depth of 10 cm in cover soil, and CH4 concentration at the bottom of cover soil. The optimum ANN model giving the lowest mean square error (MSE) was configured from three layers, with 12 and 9 neurons at the first and the second hidden layers, respectively, log-sigmoid (logsig) transfer function at the hidden and output layers, and the Levenberg-Marquardt training algorithm. This study revealed that the ANN oxidation model can predict CH4 oxidation with a MSE of 0.0082, a coefficient of determination (R2) between the measured and predicted outputs of up to 0.937, and a model efficiency (E) of 0.8978. To conclude, further developments of the proposed ANN model are required to generalize and apply the model to other landfills with different cover soil properties.

  13. Stochastic simulation and spatial estimation with multiple data types using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.; Rizzo, Donna M.

    2007-11-01

    A novel data-driven artificial neural network (ANN) that quantitatively combines large numbers of multiple types of soft data is presented for performing stochastic simulation and/or spatial estimation. A counterpropagation ANN is extended with a radial basis function to estimate parameter fields that reproduce the spatial structure exhibited in autocorrelated parameters. Applications involve using three geophysical properties measured on a slab of Berea sandstone and the delineation of landfill leachate at a site in the Netherlands using electrical formation conductivity as our primary variable and six types of secondary data (e.g., hydrochemistry, archaea, and bacteria). The ANN estimation fields are statistically similar to geostatistical methods (indicator simulation and cokriging) and reference fields (when available). The method is a nonparametric clustering/classification algorithm that can assimilate significant amounts of disparate data types with both continuous and categorical responses without the computational burden associated with the construction of positive definite covariance and cross-covariance matrices. The combination of simplicity and computational speed makes the method ideally suited for environmental subsurface characterization and other Earth science applications with spatially autocorrelated variables.

  14. Development of sediment load estimation models by using artificial neural networking techniques.

    PubMed

    Hassan, Muhammad; Ali Shamim, M; Sikandar, Ali; Mehmood, Imran; Ahmed, Imtiaz; Ashiq, Syed Zishan; Khitab, Anwar

    2015-11-01

    This study aims at the development of an artificial neural network-based model for the estimation of weekly sediment load at a catchment located in northern part of Pakistan. The adopted methodology has been based upon antecedent sediment conditions, discharge, and temperature information. Model input and data length selection was carried out using a novel mathematical tool, Gamma test. Model training was carried out by using three popular algorithms namely Broyden-Fletcher-Goldfarb-Shanno (BFGS), back propagation (BP), and local linear regression (LLR) using forward selection of input variables. Evaluation of the best model was carried out on the basis of basic statistical parameters namely R-square, root mean squared error (RMSE), and mean biased error (MBE). Results indicated that BFGS-based ANN model outperformed all other models with significantly low values of RMSE and MBE. A strong correlation was also found between the observed and estimated sediment load values for the same model as the value of Nash-Sutcliffe model efficiency coefficient (R-square) was found to be quite high as well.

  15. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil.

    PubMed

    Olawoyin, Richard

    2016-10-01

    The backpropagation (BP) artificial neural network (ANN) is a renowned and extensively functional mathematical tool used for time-series predictions and approximations; which also define results for non-linear functions. ANNs are vital tools in the predictions of toxicant levels, such as polycyclic aromatic hydrocarbons (PAH) potentially derived from anthropogenic activities in the microenvironment. In the present work, BP ANN was used as a prediction tool to study the potential toxicity of PAH carcinogens (PAHcarc) in soils. Soil samples (16 × 4 = 64) were collected from locations in South-southern Nigeria. The concentration of PAHcarc in laboratory cultivated white melilot, Melilotus alba roots grown on treated soils was predicted using ANN model training. Results indicated the Levenberg-Marquardt back-propagation training algorithm converged in 2.5E+04 epochs at an average RMSE value of 1.06E-06. The averagedR(2) comparison between the measured and predicted outputs was 0.9994. It may be deduced from this study that, analytical processes involving environmental risk assessment as used in this study can successfully provide prompt prediction and source identification of major soil toxicants.

  16. An artificial neural network approach for ranking quenching parameters in central galaxies

    NASA Astrophysics Data System (ADS)

    Teimoorinia, Hossen; Bluck, Asa F. L.; Ellison, Sara L.

    2016-04-01

    We present a novel technique for ranking the relative importance of galaxy properties in the process of quenching star formation. Specifically, we develop an artificial neural network (ANN) approach for pattern recognition and apply it to a population of over 400 000 central galaxies taken from the Sloan Digital Sky Survey Data Release 7. We utilize a variety of physical galaxy properties for training the pattern recognition algorithm to recognize star-forming and passive systems, for a `training set' of ˜100 000 galaxies. We then apply the ANN model to a `verification set' of ˜100 000 different galaxies, randomly chosen from the remaining sample. The success rate of each parameter singly, and in conjunction with other parameters, is taken as an indication of how important the parameters are to the process(es) of central galaxy quenching. We find that central velocity dispersion, bulge mass and bulge-to-total stellar mass ratio are excellent predictors of the passive state of the system, indicating that properties related to the central mass of the galaxy are most closely linked to the cessation of star formation. Larger scale galaxy properties (total or disc stellar masses), or those linked to environment (halo masses or δ5), perform significantly less well. Our results are plausibly explained by AGN feedback driving the quenching of central galaxies, although we discuss other possibilities as well.

  17. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation

    PubMed Central

    Du, Tingsong; Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA. PMID:26447713

  18. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation.

    PubMed

    Du, Tingsong; Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA. PMID:26447713

  19. Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron.

    PubMed

    Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2016-03-01

    Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident.

  20. Temporal and Spatial prediction of groundwater levels using Artificial Neural Networks, Fuzzy logic and Kriging interpolation.

    NASA Astrophysics Data System (ADS)

    Tapoglou, Evdokia; Karatzas, George P.; Trichakis, Ioannis C.; Varouchakis, Emmanouil A.

    2014-05-01

    The purpose of this study is to examine the use of Artificial Neural Networks (ANN) combined with kriging interpolation method, in order to simulate the hydraulic head both spatially and temporally. Initially, ANNs are used for the temporal simulation of the hydraulic head change. The results of the most appropriate ANNs, determined through a fuzzy logic system, are used as an input for the kriging algorithm where the spatial simulation is conducted. The proposed algorithm is tested in an area located across Isar River in Bayern, Germany and covers an area of approximately 7800 km2. The available data extend to a time period from 1/11/2008 to 31/10/2012 (1460 days) and include the hydraulic head at 64 wells, temperature and rainfall at 7 weather stations and surface water elevation at 5 monitoring stations. One feedforward ANN was trained for each of the 64 wells, where hydraulic head data are available, using a backpropagation algorithm. The most appropriate input parameters for each wells' ANN are determined considering their proximity to the measuring station, as well as their statistical characteristics. For the rainfall, the data for two consecutive time lags for best correlated weather station, as well as a third and fourth input from the second best correlated weather station, are used as an input. The surface water monitoring stations with the three best correlations for each well are also used in every case. Finally, the temperature for the best correlated weather station is used. Two different architectures are considered and the one with the best results is used henceforward. The output of the ANNs corresponds to the hydraulic head change per time step. These predictions are used in the kriging interpolation algorithm. However, not all 64 simulated values should be used. The appropriate neighborhood for each prediction point is constructed based not only on the distance between known and prediction points, but also on the training and testing error of

  1. Artificial Neural Networks: A New Approach for Predicting Application Behavior. AIR 2001 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…

  2. The Use of Artificial Neural Networks to Estimate Speech Intelligibility from Acoustic Variables: A Preliminary Analysis.

    ERIC Educational Resources Information Center

    Metz, Dale Evan; And Others

    1992-01-01

    A preliminary scheme for estimating the speech intelligibility of hearing-impaired speakers from acoustic parameters, using a computerized artificial neural network to process mathematically the acoustic input variables, is outlined. Tests with 60 hearing-impaired speakers found the scheme to be highly accurate in identifying speakers separated by…

  3. Automatic Keyword Identification by Artificial Neural Networks Compared to Manual Identification by Users of Filtering Systems.

    ERIC Educational Resources Information Center

    Boger, Zvi; Kuflik, Tsvi; Shoval, Peretz; Shapira, Bracha

    2001-01-01

    Discussion of information filtering (IF) and information retrieval focuses on the use of an artificial neural network (ANN) as an alternative method for both IF and term selection and compares its effectiveness to that of traditional methods. Results show that the ANN relevance prediction out-performs the prediction of an IF system. (Author/LRW)

  4. Statistical Classification for Cognitive Diagnostic Assessment: An Artificial Neural Network Approach

    ERIC Educational Resources Information Center

    Cui, Ying; Gierl, Mark; Guo, Qi

    2016-01-01

    The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…

  5. Predicting Item Difficulty in a Reading Comprehension Test with an Artificial Neural Network.

    ERIC Educational Resources Information Center

    Perkins, Kyle; And Others

    1995-01-01

    This article reports the results of using a three-layer back propagation artificial neural network to predict item difficulty in a reading comprehension test. Three classes of variables were examined: text structure, propositional analysis, and cognitive demand. Results demonstrate that the networks can consistently predict item difficulty. (JL)

  6. Predicting Item Difficulty in a Reading Comprehension Test with an Artificial Neural Network.

    ERIC Educational Resources Information Center

    Perkins, Kyle; And Others

    This paper reports the results of using a three-layer backpropagation artificial neural network to predict item difficulty in a reading comprehension test. Two network structures were developed, one with and one without a sigmoid function in the output processing unit. The data set, which consisted of a table of coded test items and corresponding…

  7. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1995-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system.

  8. Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport of sediment and nutrients from land application areas is an environmental concern. New methods are needed for estimating soil and nutrient concentrations of runoff from cropland areas on which manure is applied. Artificial Neural Networks (ANN) trained with a Backpropagation (BP) algor...

  9. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....

  10. [Optimization of pellet formulation with the help of artificial neural networks].

    PubMed

    Kása, Péter; Sovány, Tamás; Hódi, Klára

    2007-01-01

    The authors demonstrate the essence and the application possibility of artificial neural networks in the formulation of pharmaceutical preparations. They draw attention to that the use of ANN the data processing will speed up and more accurate which will cause the decrease of the preliminary investigations and the amounts of the materials. PMID:17933271

  11. Predicting Final GPA of Graduate School Students: Comparing Artificial Neural Networking and Simultaneous Multiple Regression

    ERIC Educational Resources Information Center

    Anderson, Joan L.

    2006-01-01

    Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…

  12. Application of the artificial bee colony algorithm for solving the set covering problem.

    PubMed

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem. PMID:24883356

  13. Uniformly stable backpropagation algorithm to train a feedforward neural network.

    PubMed

    Rubio, José de Jesús; Angelov, Plamen; Pacheco, Jaime

    2011-03-01

    Neural networks (NNs) have numerous applications to online processes, but the problem of stability is rarely discussed. This is an extremely important issue because, if the stability of a solution is not guaranteed, the equipment that is being used can be damaged, which can also cause serious accidents. It is true that in some research papers this problem has been considered, but this concerns continuous-time NN only. At the same time, there are many systems that are better described in the discrete time domain such as population of animals, the annual expenses in an industry, the interest earned by a bank, or the prediction of the distribution of loads stored every hour in a warehouse. Therefore, it is of paramount importance to consider the stability of the discrete-time NN. This paper makes several important contributions. 1) A theorem is stated and proven which guarantees uniform stability of a general discrete-time system. 2) It is proven that the backpropagation (BP) algorithm with a new time-varying rate is uniformly stable for online identification and the identification error converges to a small zone bounded by the uncertainty. 3) It is proven that the weights' error is bounded by the initial weights' error, i.e., overfitting is eliminated in the proposed algorithm. 4) The BP algorithm is applied to predict the distribution of loads that a transelevator receives from a trailer and places in the deposits in a warehouse every hour, so that the deposits in the warehouse are reserved in advance using the prediction results. 5) The BP algorithm is compared with the recursive least square (RLS) algorithm and with the Takagi-Sugeno type fuzzy inference system in the problem of predicting the distribution of loads in a warehouse, giving that the first and the second are stable and the third is unstable. 6) The BP algorithm is compared with the RLS algorithm and with the Kalman filter algorithm in a synthetic example.

  14. Applications of Artificial Neural Networks in integrated water management: fiction or future?

    PubMed

    Schulze, F H; Wolf, H; Jansen, H W; van der Veer, P

    2005-01-01

    An Artificial Neural Network (ANN) is nowadays recognized as a very promising tool for relating input data to output data. It is said that the possibilities of artificial neural networks are unlimited. Here we focus on the potential role of neural networks in integrated water management. An Artificial Neural Network (ANN) is a mathematical methodology which describes relations between cause (input data) and effects (output data) irrespective of the process laying behind and without the need for making assumptions considering the nature of the relations. The applications are widespread and vary from optimization of measuring networks, operational water management, prediction of drinking water consumption, on-line steering of wastewater treatment plants and sewage systems, up to more specific applications such as establishing a relationship between the observed erosion of groyne field sediments and the characteristics of passing vessels on the river Rhine. Especially where processes are complex, neural networks can open new possibilities for understanding and modelling these kinds of complex processes. Besides explaining the method of ANN this paper shows different applications. Three examples have been worked out in more detail. An intelligent monitoring system is shown for the on-line prediction of water consumption, ANN are successfully used for sludge cost monitoring and optimizing wastewater treatment and the usage of ANN is shown in optimizing and monitoring water quality measuring networks. An ANN appears to be a multiuse and powerful tool for modelling complex processes.

  15. Artificial neural network classification using a minimal training set - Comparison to conventional supervised classification

    NASA Technical Reports Server (NTRS)

    Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin

    1990-01-01

    Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.

  16. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  17. RRAM-based hardware implementations of artificial neural networks: progress update and challenges ahead

    NASA Astrophysics Data System (ADS)

    Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D.

    2016-02-01

    Artificial neural networks have been receiving increasing attention due to their superior performance in many information processing tasks. Typically, scaling up the size of the network results in better performance and richer functionality. However, large neural networks are challenging to implement in software and customized hardware are generally required for their practical implementations. In this work, we will discuss our group's recent efforts on the development of such custom hardware circuits, based on hybrid CMOS/memristor circuits, in particular of CMOL variety. We will start by reviewing the basics of memristive devices and of CMOL circuits. We will then discuss our recent progress towards demonstration of hybrid circuits, focusing on the experimental and theoretical results for artificial neural networks based on crossbarintegrated metal oxide memristors. We will conclude presentation with the discussion of the remaining challenges and the most pressing research needs.

  18. Evaluation of the efficiency of artificial neural networks for genetic value prediction.

    PubMed

    Silva, G N; Tomaz, R S; Sant'Anna, I C; Carneiro, V Q; Cruz, C D; Nascimento, M

    2016-01-01

    Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency. PMID:27051007

  19. Optimization with artificial neural network systems - A mapping principle and a comparison to gradient based methods

    NASA Technical Reports Server (NTRS)

    Leong, Harrison Monfook

    1988-01-01

    General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.

  20. Fault diagnosis in nuclear power plants using an artificial neural network technique

    SciTech Connect

    Chou, H.P. ); Prock, J.; Bonfert, J.P. )

    1993-01-01

    Application of artificial intelligence (AI) computational techniques, such as expert systems, fuzzy logic, and neural networks in diverse areas has taken place extensively. In the nuclear industry, the intended goal for these AI techniques is to improve power plant operational safety and reliability. As a computerized operator support tool, the artificial neural network (ANN) approach is an emerging technology that currently attracts a large amount of interest. The ability of ANNs to extract the input/output relation of a complicated process and the superior execution speed of a trained ANN motivated this study. The goal was to develop neural networks for sensor and process faults diagnosis with the potential of implementing as a component of a real-time operator support system LYDIA, early sensor and process fault detection and diagnosis.