Algorithms for improved performance in cryptographic protocols.
Schroeppel, Richard Crabtree; Beaver, Cheryl Lynn
2003-11-01
Public key cryptographic algorithms provide data authentication and non-repudiation for electronic transmissions. The mathematical nature of the algorithms, however, means they require a significant amount of computation, and encrypted messages and digital signatures possess high bandwidth. Accordingly, there are many environments (e.g. wireless, ad-hoc, remote sensing networks) where public-key requirements are prohibitive and cannot be used. The use of elliptic curves in public-key computations has provided a means by which computations and bandwidth can be somewhat reduced. We report here on the research conducted in an LDRD aimed to find even more efficient algorithms and to make public-key cryptography available to a wider range of computing environments. We improved upon several algorithms, including one for which a patent has been applied. Further we discovered some new problems and relations on which future cryptographic algorithms may be based.
Turbopump Performance Improved by Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2002-01-01
The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.
Performance Improvements of the Phoneme Recognition Algorithm.
1984-06-01
present time, there are commercially available speech recognition machines that perform limited speech recognition. There are still major drawbacks to...to recognize. Even though the training period has been made fairly painless to the user, it still severely limits the vocabulary the machine can...this information to perform the recognition routines. 47 ..- 7f Alterations to the templates’ spectrum file was limited to changing values in the
Improved Ant Colony Clustering Algorithm and Its Performance Study
Gao, Wei
2016-01-01
Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533
Improved Ant Colony Clustering Algorithm and Its Performance Study.
Gao, Wei
2016-01-01
Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering.
The control algorithm improving performance of electric load simulator
NASA Astrophysics Data System (ADS)
Guo, Chenxia; Yang, Ruifeng; Zhang, Peng; Fu, Mengyao
2017-01-01
In order to improve dynamic performance and signal tracking accuracy of electric load simulator, the influence of the moment of inertia, stiffness, friction, gaps and other factors on the system performance were analyzed on the basis of researching the working principle of load simulator in this paper. The PID controller based on Wavelet Neural Network was used to achieve the friction nonlinear compensation, while the gap inverse model was used to compensate the gap nonlinear. The compensation results were simulated by MATLAB software. It was shown that the follow-up performance of sine response curve of the system became better after compensating, the track error was significantly reduced, the accuracy was improved greatly and the system dynamic performance was improved.
Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael
2015-04-08
The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on themore » performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.« less
Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael
2015-04-08
The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on the performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.
Negri, Lucas; Nied, Ademir; Kalinowski, Hypolito; Paterno, Aleksander
2011-01-01
This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. PMID:22163806
ARPANET Routing Algorithm Improvements
1978-10-01
IMPROVEMENTS . .PFOnINI ORG. REPORT MUNDER -- ) _ .. .... 3940 7, AUT(c) .. .. .. CONTRACT Of GRANT NUMSlet e) SJ. M. /Mc~uillan E. C./Rosen I...8217), this problem may persist for a very long time, causing extremely bad performance throughout the whole network (for instance, if w’ reports that one of...algorithm may naturally tend to oscillate between bad routing paths and become itself a major contributor to network congestion. These examples show
Thrust stand evaluation of engine performance improvement algorithms in an F-15 airplane
NASA Technical Reports Server (NTRS)
Conners, Timothy R.
1992-01-01
An investigation is underway to determine the benefits of a new propulsion system optimization algorithm in an F-15 airplane. The performance seeking control (PSC) algorithm optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses an onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. As part of the PSC test program, the F-15 aircraft was operated on a horizontal thrust stand. Thrust was measured with highly accurate load cells. The measured thrust was compared to onboard model estimates and to results from posttest performance programs. Thrust changes using the various PSC modes were recorded. Those results were compared to benefits using the less complex highly integrated digital electronic control (HIDEC) algorithm. The PSC maximum thrust mode increased intermediate power thrust by 10 percent. The PSC engine model did very well at estimating measured thrust and closely followed the transients during optimization. Quantitative results from the evaluation of the algorithms and performance calculation models are included with emphasis on measured thrust results. The report presents a description of the PSC system and a discussion of factors affecting the accuracy of the thrust stand load measurements.
Wang, Mengjun; Devarajan, Karthik; Singal, Amit G; Marrero, Jorge A; Dai, Jianliang; Feng, Ziding; Rinaudo, Jo Ann S; Srivastava, Sudhir; Evans, Alison; Hann, Hie-Won; Lai, Yinzhi; Yang, Hushan; Block, Timothy M; Mehta, Anand
2016-02-01
Biomarkers for the early diagnosis of hepatocellular carcinoma (HCC) are needed to decrease mortality from this cancer. However, as new biomarkers have been slow to be brought to clinical practice, we have developed a diagnostic algorithm that utilizes commonly used clinical measurements in those at risk of developing HCC. Briefly, as α-fetoprotein (AFP) is routinely used, an algorithm that incorporated AFP values along with four other clinical factors was developed. Discovery analysis was performed on electronic data from patients who had liver disease (cirrhosis) alone or HCC in the background of cirrhosis. The discovery set consisted of 360 patients from two independent locations. A logistic regression algorithm was developed that incorporated log-transformed AFP values with age, gender, alkaline phosphatase, and alanine aminotransferase levels. We define this as the Doylestown algorithm. In the discovery set, the Doylestown algorithm improved the overall performance of AFP by 10%. In subsequent external validation in over 2,700 patients from three independent sites, the Doylestown algorithm improved detection of HCC as compared with AFP alone by 4% to 20%. In addition, at a fixed specificity of 95%, the Doylestown algorithm improved the detection of HCC as compared with AFP alone by 2% to 20%. In conclusion, the Doylestown algorithm consolidates clinical laboratory values, with age and gender, which are each individually associated with HCC risk, into a single value that can be used for HCC risk assessment. As such, it should be applicable and useful to the medical community that manages those at risk for developing HCC.
ERIC Educational Resources Information Center
1996
This document contains four papers presented at a symposium on performance improvement moderated by Edward Schorer at the 1996 conference of the Academy of Human Resource Development (AHRD) "The Organizational Ecology of Ethical Problems: International Case Studies in the Light of HPT [Human Performance Technology]" (Peter J. Dean,…
NASA Astrophysics Data System (ADS)
Wang, Xingwei; Song, XiaoFei; Chapman, Brian E.; Zheng, Bin
2012-03-01
We developed a new pulmonary vascular tree segmentation/extraction algorithm. The purpose of this study was to assess whether adding this new algorithm to our previously developed computer-aided detection (CAD) scheme of pulmonary embolism (PE) could improve the CAD performance (in particular reducing false positive detection rates). A dataset containing 12 CT examinations with 384 verified pulmonary embolism regions associated with 24 threedimensional (3-D) PE lesions was selected in this study. Our new CAD scheme includes the following image processing and feature classification steps. (1) A 3-D based region growing process followed by a rolling-ball algorithm was utilized to segment lung areas. (2) The complete pulmonary vascular trees were extracted by combining two approaches of using an intensity-based region growing to extract the larger vessels and a vessel enhancement filtering to extract the smaller vessel structures. (3) A toboggan algorithm was implemented to identify suspicious PE candidates in segmented lung or vessel area. (4) A three layer artificial neural network (ANN) with the topology 27-10-1 was developed to reduce false positive detections. (5) A k-nearest neighbor (KNN) classifier optimized by a genetic algorithm was used to compute detection scores for the PE candidates. (6) A grouping scoring method was designed to detect the final PE lesions in three dimensions. The study showed that integrating the pulmonary vascular tree extraction algorithm into the CAD scheme reduced false positive rates by 16.2%. For the case based 3D PE lesion detecting results, the integrated CAD scheme achieved 62.5% detection sensitivity with 17.1 false-positive lesions per examination.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
Algorithm performance evaluation
NASA Astrophysics Data System (ADS)
Smith, Richard N.; Greci, Anthony M.; Bradley, Philip A.
1995-03-01
Traditionally, the performance of adaptive antenna systems is measured using automated antenna array pattern measuring equipment. This measurement equipment produces a plot of the receive gain of the antenna array as a function of angle. However, communications system users more readily accept and understand bit error rate (BER) as a performance measure. The work reported on here was conducted to characterize adaptive antenna receiver performance in terms of overall communications system performance using BER as a performance measure. The adaptive antenna system selected for this work featured a linear array, least mean square (LMS) adaptive algorithm and a high speed phase shift keyed (PSK) communications modem.
NASA Astrophysics Data System (ADS)
Ulrich, Steve; de Lafontaine, Jean
2007-12-01
Upcoming landing missions to Mars will require on-board guidance and control systems in order to meet the scientific requirement of landing safely within hundreds of meters to the target of interest. More specifically, in the longitudinal plane, the first objective of the entry guidance and control system is to bring the vehicle to its specified velocity at the specified altitude (as required for safe parachute deployment), while the second objective is to reach the target position in the longitudinal plane. This paper proposes an improvement to the robustness of the constant flight path angle guidance law for achieving the first objective. The improvement consists of combining this guidance law with a novel adaptive control scheme, derived from the so-called Simple Adaptive Control (SAC) technique. Monte-Carlo simulation results are shown to demonstrate the accuracy and the robustness of the proposed guidance and adaptive control system.
One improved LSB steganography algorithm
NASA Astrophysics Data System (ADS)
Song, Bing; Zhang, Zhi-hong
2013-03-01
It is easy to be detected by X2 and RS steganalysis with high accuracy that using LSB algorithm to hide information in digital image. We started by selecting information embedded location and modifying the information embedded method, combined with sub-affine transformation and matrix coding method, improved the LSB algorithm and a new LSB algorithm was proposed. Experimental results show that the improved one can resist the X2 and RS steganalysis effectively.
Improved Chaff Solution Algorithm
2009-03-01
Programme de démonstration de technologies (PDT) sur l’intégration de capteurs et de systèmes d’armes embarqués (SISWS), un algorithme a été élaboré...technologies (PDT) sur l’intégration de capteurs et de systèmes d’armes embarqués (SISWS), un algorithme a été élaboré pour déterminer automatiquement...0Z4 2. SECURITY CLASSIFICATION (Overall security classification of the document including special warning terms if applicable .) UNCLASSIFIED
NASA Astrophysics Data System (ADS)
Jun, Xie Cheng; Su, Yan; Wei, Zhang
2006-08-01
In this paper, a modified algorithm was introduced to improve Rice coding algorithm and researches of image compression with the CDF (2,2) wavelet lifting scheme was made. Our experiments show that the property of the lossless image compression is much better than Huffman, Zip, lossless JPEG, RAR, and a little better than (or equal to) the famous SPIHT. The lossless compression rate is improved about 60.4%, 45%, 26.2%, 16.7%, 0.4% on average. The speed of the encoder is faster about 11.8 times than the SPIHT's and its efficiency in time can be improved by 162%. The speed of the decoder is faster about 12.3 times than that of the SPIHT's and its efficiency in time can be rasied about 148%. This algorithm, instead of largest levels wavelet transform, has high coding efficiency when the wavelet transform levels is larger than 3. For the source model of distributions similar to the Laplacian, it can improve the efficiency of coding and realize the progressive transmit coding and decoding.
Improved autonomous star identification algorithm
NASA Astrophysics Data System (ADS)
Luo, Li-Yan; Xu, Lu-Ping; Zhang, Hua; Sun, Jing-Rong
2015-06-01
The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014_CXJJ-DH_12), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JB141303 and 201413B), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), and the Xi’an Science and Technology Plan, China (Grant. No CXY1350(4)).
NASA Astrophysics Data System (ADS)
Ciany, Charles M.; Zurawski, William C.
2009-05-01
Raytheon has extensively processed high-resolution sidescan sonar images with its CAD/CAC algorithms to provide classification of targets in a variety of shallow underwater environments. The Raytheon CAD/CAC algorithm is based on non-linear image segmentation into highlight, shadow, and background regions, followed by extraction, association, and scoring of features from candidate highlight and shadow regions of interest (ROIs). The targets are classified by thresholding an overall classification score, which is formed by summing the individual feature scores. The algorithm performance is measured in terms of probability of correct classification as a function of false alarm rate, and is determined by both the choice of classification features and the manner in which the classifier rates and combines these features to form its overall score. In general, the algorithm performs very reliably against targets that exhibit "strong" highlight and shadow regions in the sonar image- i.e., both the highlight echo and its associated shadow region from the target are distinct relative to the ambient background. However, many real-world undersea environments can produce sonar images in which a significant percentage of the targets exhibit either "weak" highlight or shadow regions in the sonar image. The challenge of achieving robust performance in these environments has traditionally been addressed by modifying the individual feature scoring algorithms to optimize the separation between the corresponding highlight or shadow feature scores of targets and non-targets. This study examines an alternate approach that employs principles of Fisher fusion to determine a set of optimal weighting coefficients that are applied to the individual feature scores before summing to form the overall classification score. The results demonstrate improved performance of the CAD/CAC algorithm on at-sea data sets.
Improved pulse laser ranging algorithm based on high speed sampling
NASA Astrophysics Data System (ADS)
Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang
2016-10-01
Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.
Improved Heat-Stress Algorithm
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Fehn, Steven
2007-01-01
NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.
2016-09-01
A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.
Improving Search Algorithms by Using Intelligent Coordinates
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan; Bandari, Esfandiar
2004-01-01
We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent eta is self-interested; it sets its variable to maximize its own function g (sub eta). Three factors govern such a distributed algorithm's performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit alI three factors by modifying a search algorithm's exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based player engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.
Development of Improved Algorithms and Multiscale Modeling Capability with SUNTANS
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Development of Improved Algorithms and Multiscale...a wide range of scales through use of accurate numerical methods and high- performance computational algorithms . The tool will be applied to study...dissipation. OBJECTIVES The primary objective is to enhance the capabilities of the SUNTANS model through development of algorithms to study
Stimpson, Shane; Collins, Benjamin; Kochunas, Brendan
2017-03-10
The MPACT code, being developed collaboratively by the University of Michigan and Oak Ridge National Laboratory, is the primary deterministic neutron transport solver being deployed within the Virtual Environment for Reactor Applications (VERA) as part of the Consortium for Advanced Simulation of Light Water Reactors (CASL). In many applications of the MPACT code, transport-corrected scattering has proven to be an obstacle in terms of stability, and considerable effort has been made to try to resolve the convergence issues that arise from it. Most of the convergence problems seem related to the transport-corrected cross sections, particularly when used in the 2Dmore » method of characteristics (MOC) solver, which is the focus of this work. Here in this paper, the stability and performance of the 2-D MOC solver in MPACT is evaluated for two iteration schemes: Gauss-Seidel and Jacobi. With the Gauss-Seidel approach, as the MOC solver loops over groups, it uses the flux solution from the previous group to construct the inscatter source for the next group. Alternatively, the Jacobi approach uses only the fluxes from the previous outer iteration to determine the inscatter source for each group. Consequently for the Jacobi iteration, the loop over groups can be moved from the outermost loop$-$as is the case with the Gauss-Seidel sweeper$-$to the innermost loop, allowing for a substantial increase in efficiency by minimizing the overhead of retrieving segment, region, and surface index information from the ray tracing data. Several test problems are assessed: (1) Babcock & Wilcox 1810 Core I, (2) Dimple S01A-Sq, (3) VERA Progression Problem 5a, and (4) VERA Problem 2a. The Jacobi iteration exhibits better stability than Gauss-Seidel, allowing for converged solutions to be obtained over a much wider range of iteration control parameters. Additionally, the MOC solve time with the Jacobi approach is roughly 2.0-2.5× faster per sweep. While the performance and stability of
Belief network algorithms: A study of performance
Jitnah, N.
1996-12-31
This abstract gives an overview of the work. We present a survey of Belief Network algorithms and propose a domain characterization system to be used as a basis for algorithm comparison and for predicting algorithm performance.
Lu, Bin; Yan, Hong-Bing; Mu, Chao-Wei; Gao, Yang; Hou, Zhi-Hui; Wang, Zhi-Qiang; Liu, Kun; Parinella, Ashley H.; Leipsic, Jonathon A.
2015-01-01
Objective To investigate the effect of a novel motion-correction algorithm (Snap-short Freeze, SSF) on image quality and diagnostic accuracy in patients undergoing prospectively ECG-triggered CCTA without administering rate-lowering medications. Materials and Methods Forty-six consecutive patients suspected of CAD prospectively underwent CCTA using prospective ECG-triggering without rate control and invasive coronary angiography (ICA). Image quality, interpretability, and diagnostic performance of SSF were compared with conventional multisegment reconstruction without SSF, using ICA as the reference standard. Results All subjects (35 men, 57.6 ± 8.9 years) successfully underwent ICA and CCTA. Mean heart rate was 68.8±8.4 (range: 50–88 beats/min) beats/min without rate controlling medications during CT scanning. Overall median image quality score (graded 1–4) was significantly increased from 3.0 to 4.0 by the new algorithm in comparison to conventional reconstruction. Overall interpretability was significantly improved, with a significant reduction in the number of non-diagnostic segments (690 of 694, 99.4% vs 659 of 694, 94.9%; P<0.001). However, only the right coronary artery (RCA) showed a statistically significant difference (45 of 46, 97.8% vs 35 of 46, 76.1%; P = 0.004) on a per-vessel basis in this regard. Diagnostic accuracy for detecting ≥50% stenosis was improved using the motion-correction algorithm on per-vessel [96.2% (177/184) vs 87.0% (160/184); P = 0.002] and per-segment [96.1% (667/694) vs 86.6% (601/694); P <0.001] levels, but there was not a statistically significant improvement on a per-patient level [97.8 (45/46) vs 89.1 (41/46); P = 0.203]. By artery analysis, diagnostic accuracy was improved only for the RCA [97.8% (45/46) vs 78.3% (36/46); P = 0.007]. Conclusion The intracycle motion correction algorithm significantly improved image quality and diagnostic interpretability in patients undergoing CCTA with prospective ECG triggering and
Enghauser, Michael
2015-02-01
The goal of the Domestic Nuclear Detection Office (DNDO) Algorithm Improvement Program (AIP) is to facilitate gamma-radiation detector nuclide identification algorithm development, improvement, and validation. Accordingly, scoring criteria have been developed to objectively assess the performance of nuclide identification algorithms. In addition, a Microsoft Excel spreadsheet application for automated nuclide identification scoring has been developed. This report provides an overview of the equations, nuclide weighting factors, nuclide equivalencies, and configuration weighting factors used by the application for scoring nuclide identification algorithm performance. Furthermore, this report presents a general overview of the nuclide identification algorithm scoring application including illustrative examples.
Ojala, Jarkko; Kapanen, Mika; Hyödynmaa, Simo
2016-06-01
New version 13.6.23 of the electron Monte Carlo (eMC) algorithm in Varian Eclipse™ treatment planning system has a model for 4MeV electron beam and some general improvements for dose calculation. This study provides the first overall accuracy assessment of this algorithm against full Monte Carlo (MC) simulations for electron beams from 4MeV to 16MeV with most emphasis on the lower energy range. Beams in a homogeneous water phantom and clinical treatment plans were investigated including measurements in the water phantom. Two different material sets were used with full MC: (1) the one applied in the eMC algorithm and (2) the one included in the Eclipse™ for other algorithms. The results of clinical treatment plans were also compared to those of the older eMC version 11.0.31. In the water phantom the dose differences against the full MC were mostly less than 3% with distance-to-agreement (DTA) values within 2mm. Larger discrepancies were obtained in build-up regions, at depths near the maximum electron ranges and with small apertures. For the clinical treatment plans the overall dose differences were mostly within 3% or 2mm with the first material set. Larger differences were observed for a large 4MeV beam entering curved patient surface with extended SSD and also in regions of large dose gradients. Still the DTA values were within 3mm. The discrepancies between the eMC and the full MC were generally larger for the second material set. The version 11.0.31 performed always inferiorly, when compared to the 13.6.23.
Jerry L. Harbour; Julie L. Marble
2005-09-01
Countless articles and books have been written about and numerous programs have been developed to improve performance. Despite this plethora of activity on how to improve performance, we have largely failed to address the more fundamental question of how performance actually improves. To begin exploring this more basic question, we have plotted some 1,200 performance records to date and found that irrespective of venue, industry, or business, there seems to be a fundamental and repeatable set of concepts regarding how performance improves over time. Such gained insights represent both opportunities and challenges to the performance technologist. Differences in performance outcomes may, for example, be as much a function of the life cycle stage of a performance system as the efficacy of the selected improvement method itself. Accordingly, it may be more difficult to compare differing performance improvement methods than previously thought.
Improved LMS algorithm for adaptive beamforming
NASA Technical Reports Server (NTRS)
Godara, Lal C.
1990-01-01
Two adaptive algorithms which make use of all the available samples to estimate the required gradient are proposed and studied. The first algorithm is referred to as the recursive LMS (least mean squares) and is applicable to a general array. The second algorithm is referred to as the improved LMS algorithm and exploits the Toeplitz structure of the ACM (array correlation matrix); it can be used only for an equispaced linear array.
Improved imaging algorithm for bridge crack detection
NASA Astrophysics Data System (ADS)
Lu, Jingxiao; Song, Pingli; Han, Kaihong
2012-04-01
This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.
Polarization image fusion algorithm based on improved PCNN
NASA Astrophysics Data System (ADS)
Zhang, Siyuan; Yuan, Yan; Su, Lijuan; Hu, Liang; Liu, Hui
2013-12-01
The polarization detection technique provides polarization information of objects which conventional detection techniques are unable to obtain. In order to fully utilize of obtained polarization information, various polarization imagery fusion algorithms have been developed. In this research, we proposed a polarization image fusion algorithm based on the improved pulse coupled neural network (PCNN). The improved PCNN algorithm uses polarization parameter images to generate the fused polarization image with object details for polarization information analysis and uses the matching degree M as the fusion rule. The improved PCNN fused image is compared with fused images based on Laplacian pyramid (LP) algorithm, Wavelet algorithm and PCNN algorithm. Several performance indicators are introduced to evaluate the fused images. The comparison showed the presented algorithm yields image with much higher quality and preserves more detail information of the objects.
Embarking on performance improvement.
Brown, Bobbi; Falk, Leslie Hough
2014-06-01
Healthcare organizations should approach performance improvement as a program, not a project. The program should be led by a guidance team that identifies goals, prioritizes work, and removes barriers to enable clinical improvement teams and work groups to realize performance improvements. A healthcare enterprise data warehouse can provide the initial foundation for the program analytics. Evidence-based best practices can help achieve improved outcomes and reduced costs.
Improved algorithm for hyperspectral data dimension determination
NASA Astrophysics Data System (ADS)
CHEN, Jie; DU, Lei; LI, Jing; HAN, Yachao; GAO, Zihong
2017-02-01
The correlation between adjacent bands of hyperspectral image data is relatively strong. However, signal coexists with noise and the HySime (hyperspectral signal identification by minimum error) algorithm which is based on the principle of least squares is designed to calculate the estimated noise value and the estimated signal correlation matrix value. The algorithm is effective with accurate noise value but ineffective with estimated noise value obtained from spectral dimension reduction and de-correlation process. This paper proposes an improved HySime algorithm based on noise whitening process. It carries out the noise whitening, instead of removing noise pixel by pixel, process on the original data first, obtains the noise covariance matrix estimated value accurately, and uses the HySime algorithm to calculate the signal correlation matrix value in order to improve the precision of results. With simulated as well as real data experiments in this paper, results show that: firstly, the improved HySime algorithm are more accurate and stable than the original HySime algorithm; secondly, the improved HySime algorithm results have better consistency under the different conditions compared with the classic noise subspace projection algorithm (NSP); finally, the improved HySime algorithm improves the adaptability of non-white image noise with noise whitening process.
An Improved Ant Algorithm for Grid Task Scheduling Strategy
NASA Astrophysics Data System (ADS)
Wei, Laizhi; Zhang, Xiaobin; Li, Yun; Li, Yujie
Task scheduling is an important factor that directly influences the performance and efficiency of the system. Grid resources are usually distributed in different geographic locations, belonging to different organizations and resources' properties are vastly different, in order to complete efficiently, intelligently task scheduling, the choice of scheduling strategy is essential. This paper proposes an improved ant algorithm for grid task scheduling strategy, by introducing a new type pheromone and a new node redistribution selection rule. On the one hand, the algorithm can track performances of resources and tag it. On the other hand, add algorithm to deal with task scheduling unsuccessful situations that improve the algorithm's robustness and the successful probability of task allocation and reduce unnecessary overhead of system, shortening the total time to complete tasks. The data obtained from simulation experiment shows that use this algorithm to resolve schedule problem better than traditional ant algorithm.
An improved simulated annealing algorithm for standard cell placement
NASA Technical Reports Server (NTRS)
Jones, Mark; Banerjee, Prithviraj
1988-01-01
Simulated annealing is a general purpose Monte Carlo optimization technique that was applied to the problem of placing standard logic cells in a VLSI ship so that the total interconnection wire length is minimized. An improved standard cell placement algorithm that takes advantage of the performance enhancements that appear to come from parallelizing the uniprocessor simulated annealing algorithm is presented. An outline of this algorithm is given.
Improved algorithm for calculating the Chandrasekhar function
NASA Astrophysics Data System (ADS)
Jablonski, A.
2013-02-01
algorithms by selecting ranges of the argument omega in which the performance is the fastest. Reasons for the new version: Some of the theoretical models describing electron transport in condensed matter need a source of the Chandrasekhar H function values with an accuracy of at least 10 decimal places. Additionally, calculations of this function should be as fast as possible since frequent calls to a subroutine providing this function are made (e.g., numerical evaluation of a double integral with a complicated integrand containing the H function). Both conditions were satisfied in the algorithm previously published [1]. However, it has been found that a proper selection of the quadrature in an integral representation of the Chandrasekhar function may considerably decrease the running time. By suitable selection of the number of abscissas in Gauss-Legendre quadrature, the execution time was decreased by a factor of more than 20. Simultaneously, the accuracy of results has not been affected. Summary of revisions: (1) As in previous work [1], two integral representations of the Chandrasekhar function, H(x,omega), were considered: the expression published by Dudarev and Whelan [2] and the expression published by Davidović et al. [3]. The algorithms implementing these representations were designated A and B, respectively. All integrals in these implementations were previously calculated using Romberg quadrature. It has been found, however, that the use of Gauss-Legendre quadrature considerably improved the performance of both algorithms. Two conditions have to be satisfied. (i) The number of abscissas, N, has to be rather large, and (ii) the abscissas and corresponding weights should be determined with accuracy as high as possible. The abscissas and weights are available for N=16, 20, 24, 32, 40, 48, 64, 80, and 96 with accuracy of 20 decimal places [4], and all these values were introduced into a new procedure GAUSS replacing procedure ROMBERG. Due to the fact that the
Performance Improvement Processes.
ERIC Educational Resources Information Center
1997
This document contains four papers from a symposium on performance improvement processes. In "Never the Twain Shall Meet?: A Glimpse into High Performance Work Practices and Downsizing" (Laurie J. Bassi, Mark E. Van Buren) evidence from a national cross-industry of more than 200 establishments is used to demonstrate that high-performance…
Improved artificial bee colony algorithm based gravity matching navigation method.
Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang
2014-07-18
Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.
Optimization and Improvement of FOA Corner Cube Algorithm
McClay, W A; Awwal, A S; Burkhart, S C; Candy, J V
2004-10-01
Alignment of laser beams based on video images is a crucial task necessary to automate operation of the 192 beams at the National Ignition Facility (NIF). The final optics assembly (FOA) is the optical element that aligns the beam into the target chamber. This work presents an algorithm for determining the position of a corner cube alignment image in the final optics assembly. The improved algorithm was compared to the existing FOA algorithm on 900 noise-simulated images. While the existing FOA algorithm based on correlation with a synthetic template has a radial standard deviation of 1 pixel, the new algorithm based on classical matched filtering (CMF) and polynomial fit to the correlation peak improves the radial standard deviation performance to less than 0.3 pixels. In the new algorithm the templates are designed from real data stored during a year of actual operation.
An Improved Back Propagation Neural Network Algorithm on Classification Problems
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd; Ransing, R. S.; Salleh, Mohd Najib Mohd; Ghazali, Rozaida; Hamid, Norhamreeza Abdul
The back propagation algorithm is one the most popular algorithms to train feed forward neural networks. However, the convergence of this algorithm is slow, it is mainly because of gradient descent algorithm. Previous research demonstrated that in 'feed forward' algorithm, the slope of the activation function is directly influenced by a parameter referred to as 'gain'. This research proposed an algorithm for improving the performance of the back propagation algorithm by introducing the adaptive gain of the activation function. The gain values change adaptively for each node. The influence of the adaptive gain on the learning ability of a neural network is analysed. Multi layer feed forward neural networks have been assessed. Physical interpretation of the relationship between the gain value and the learning rate and weight values is given. The efficiency of the proposed algorithm is compared with conventional Gradient Descent Method and verified by means of simulation on four classification problems. In learning the patterns, the simulations result demonstrate that the proposed method converged faster on Wisconsin breast cancer with an improvement ratio of nearly 2.8, 1.76 on diabetes problem, 65% better on thyroid data sets and 97% faster on IRIS classification problem. The results clearly show that the proposed algorithm significantly improves the learning speed of the conventional back-propagation algorithm.
Improved wavefront reconstruction algorithm from slope measurements
NASA Astrophysics Data System (ADS)
Phuc, Phan Huy; Manh, Nguyen The; Rhee, Hyug-Gyo; Ghim, Young-Sik; Yang, Ho-Soon; Lee, Yun-Woo
2017-03-01
In this paper, we propose a wavefront reconstruction algorithm from slope measurements based on a zonal method. In this algorithm, the slope measurement sampling geometry used is the Southwell geometry, in which the phase values and the slope data are measured at the same nodes. The proposed algorithm estimates the phase value at a node point using the slope measurements of eight points around the node, as doing so is believed to result in better accuracy with regard to the wavefront. For optimization of the processing time, a successive over-relaxation method is applied to iteration loops. We use a trial-and-error method to determine the best relaxation factor for each type of wavefront in order to optimize the iteration time and, thus, the processing time of the algorithm. Specifically, for a circularly symmetric wavefront, the convergence rate of the algorithm can be improved by using the result of a Fourier Transform as an initial value for the iteration. Various simulations are presented to demonstrate the improvements realized when using the proposed algorithm. Several experimental measurements of deflectometry are also processed by using the proposed algorithm.
An improved corner detection algorithm for image sequence
NASA Astrophysics Data System (ADS)
Yan, Minqi; Zhang, Bianlian; Guo, Min; Tian, Guangyuan; Liu, Feng; Huo, Zeng
2014-11-01
A SUSAN corner detection algorithm for a sequence of images is proposed in this paper, The correlation matching algorithm is treated for the coarse positioning of the detection area, after that, SUSAN corner detection is used to obtain interesting points of the target. The SUSAN corner detection has been improved. For the situation that the points of a small area are often detected as corner points incorrectly, the neighbor direction filter is applied to reduce the rate of mistakes. Experiment results show that the algorithm enhances the anti-noise performance, improve the accuracy of detection.
Improving Surface Irrigation Performance
Technology Transfer Automated Retrieval System (TEKTRAN)
Surface irrigation systems often have a reputation for poor performance. One key feature of efficient surface irrigation systems is precision (e.g. laser-guided) land grading. Poor land grading can make other improvements ineffective. An important issue, related to land shaping, is developing the pr...
MCNP Progress & Performance Improvements
Brown, Forrest B.; Bull, Jeffrey S.; Rising, Michael Evan
2015-04-14
Twenty-eight slides give information about the work of the US DOE/NNSA Nuclear Criticality Safety Program on MCNP6 under the following headings: MCNP6.1.1 Release, with ENDF/B-VII.1; Verification/Validation; User Support & Training; Performance Improvements; and Work in Progress. Whisper methodology will be incorporated into the code, and run speed should be increased.
Improving night sky star image processing algorithm for star sensors.
Arbabmir, Mohammad Vali; Mohammadi, Seyyed Mohammad; Salahshour, Sadegh; Somayehee, Farshad
2014-04-01
In this paper, the night sky star image processing algorithm, consisting of image preprocessing, star pattern recognition, and centroiding steps, is improved. It is shown that the proposed noise reduction approach can preserve more necessary information than other frequently used approaches. It is also shown that the proposed thresholding method unlike commonly used techniques can properly perform image binarization, especially in images with uneven illumination. Moreover, the higher performance rate and lower average centroiding estimation error of near 0.045 for 400 simulated images compared to other algorithms show the high capability of the proposed night sky star image processing algorithm.
An improved dehazing algorithm of aerial high-definition image
NASA Astrophysics Data System (ADS)
Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying
2016-01-01
For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.
An improved harmony search algorithm with dynamically varying bandwidth
NASA Astrophysics Data System (ADS)
Kalivarapu, J.; Jain, S.; Bag, S.
2016-07-01
The present work demonstrates a new variant of the harmony search (HS) algorithm where bandwidth (BW) is one of the deciding factors for the time complexity and the performance of the algorithm. The BW needs to have both explorative and exploitative characteristics. The ideology is to use a large BW to search in the full domain and to adjust the BW dynamically closer to the optimal solution. After trying a series of approaches, a methodology inspired by the functioning of a low-pass filter showed satisfactory results. This approach was implemented in the self-adaptive improved harmony search (SIHS) algorithm and tested on several benchmark functions. Compared to the existing HS algorithm and its variants, SIHS showed better performance on most of the test functions. Thereafter, the algorithm was applied to geometric parameter optimization of a friction stir welding tool.
NASA Technical Reports Server (NTRS)
Lennard, D. J.
1978-01-01
Potential CF6 engine performance improvements directed at reduced fuel consumption were identified and screened relative to airline acceptability and are reviewed. The screening process developed to provide evaluations of fuel savings and economic factors including return on investment and direct operating cost is described. In addition, assessments of development risk and production potential are made. Several promising concepts selected for full-scale development based on a ranking involving these factors are discussed.
An improved HMM/SVM dynamic hand gesture recognition algorithm
NASA Astrophysics Data System (ADS)
Zhang, Yi; Yao, Yuanyuan; Luo, Yuan
2015-10-01
In order to improve the recognition rate and stability of dynamic hand gesture recognition, for the low accuracy rate of the classical HMM algorithm in train the B parameter, this paper proposed an improved HMM/SVM dynamic gesture recognition algorithm. In the calculation of the B parameter of HMM model, this paper introduced the SVM algorithm which has the strong ability of classification. Through the sigmoid function converted the state output of the SVM into the probability and treat this probability as the observation state transition probability of the HMM model. After this, it optimized the B parameter of HMM model and improved the recognition rate of the system. At the same time, it also enhanced the accuracy and the real-time performance of the human-computer interaction. Experiments show that this algorithm has a strong robustness under the complex background environment and the varying illumination environment. The average recognition rate increased from 86.4% to 97.55%.
Improved Global Ocean Color Using Polymer Algorithm
NASA Astrophysics Data System (ADS)
Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques
2010-12-01
A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.
An improved direction finding algorithm based on Toeplitz approximation.
Wang, Qing; Chen, Hua; Zhao, Guohuang; Chen, Bin; Wang, Pichao
2013-01-07
In this paper, a novel direction of arrival (DOA) estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC) algorithm is proposed through combining a fast MUSIC-like algorithm termed the modified fourth order cumulants MUSIC (MFOC-MUSIC) algorithm and Toeplitz approximation. In the proposed algorithm, the redundant information in the cumulants is removed. Besides, the computational complexity is reduced due to the decreased dimension of the fourth-order cumulants matrix, which is equal to the number of the virtual array elements. That is, the effective array aperture of a physical array remains unchanged. However, due to finite sampling snapshots, there exists an estimation error of the reduced-rank FOC matrix and thus the capacity of DOA estimation degrades. In order to improve the estimation performance, Toeplitz approximation is introduced to recover the Toeplitz structure of the reduced-dimension FOC matrix just like the ideal one which has the Toeplitz structure possessing optimal estimated results. The theoretical formulas of the proposed algorithm are derived, and the simulations results are presented. From the simulations, in comparison with the MFOC-MUSIC algorithm, it is concluded that the TFOC-MUSIC algorithm yields an excellent performance in both spatially-white noise and in spatially-color noise environments.
High performance FDTD algorithm for GPGPU supercomputers
NASA Astrophysics Data System (ADS)
Zakirov, Andrey; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari
2016-10-01
An implementation of FDTD method for solution of optical and other electrodynamic problems of high computational cost is described. The implementation is based on the LRnLA algorithm DiamondTorre, which is developed specifically for GPGPU hardware. The specifics of the DiamondTorre algorithms for staggered grid (Yee cell) and many-GPU devices are shown. The algorithm is implemented in the software for real physics calculation. The software performance is estimated through algorithms parameters and computer model. The real performance is tested on one GPU device, as well as on the many-GPU cluster. The performance of up to 0.65 • 1012 cell updates per second for 3D domain with 0.3 • 1012 Yee cells total is achieved.
Bootstrap performance profiles in stochastic algorithms assessment
Costa, Lino; Espírito Santo, Isabel A.C.P.; Oliveira, Pedro
2015-03-10
Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.
Passive MMW algorithm performance characterization using MACET
NASA Astrophysics Data System (ADS)
Williams, Bradford D.; Watson, John S.; Amphay, Sengvieng A.
1997-06-01
As passive millimeter wave sensor technology matures, algorithms which are tailored to exploit the benefits of this technology are being developed. The expedient development of such algorithms requires an understanding of not only the gross phenomenology, but also specific quirks and limitations inherent in sensors and the data gathering methodology specific to this regime. This level of understanding is approached as the technology matures and increasing amounts of data become available for analysis. The Armament Directorate of Wright Laboratory, WL/MN, has spearheaded the advancement of passive millimeter-wave technology in algorithm development tools and modeling capability as well as sensor development. A passive MMW channel is available within WL/MNs popular multi-channel modeling program Irma, and a sample passive MMW algorithm is incorporated into the Modular Algorithm Concept Evaluation Tool, an algorithm development and evaluation system. The Millimeter Wave Analysis of Passive Signatures system provides excellent data collection capability in the 35, 60, and 95 GHz MMW bands. This paper exploits these assets for the study of the PMMW signature of a High Mobility Multi- Purpose Wheeled Vehicle in the three bands mentioned, and the effect of camouflage upon this signature and autonomous target recognition algorithm performance.
Reconstruction algorithm for improved ultrasound image quality.
Madore, Bruno; Meral, F Can
2012-02-01
A new algorithm is proposed for reconstructing raw RF data into ultrasound images. Previous delay-and-sum beamforming reconstruction algorithms are essentially one-dimensional, because a sum is performed across all receiving elements. In contrast, the present approach is two-dimensional, potentially allowing any time point from any receiving element to contribute to any pixel location. Computer-intensive matrix inversions are performed once, in advance, to create a reconstruction matrix that can be reused indefinitely for a given probe and imaging geometry. Individual images are generated through a single matrix multiplication with the raw RF data, without any need for separate envelope detection or gridding steps. Raw RF data sets were acquired using a commercially available digital ultrasound engine for three imaging geometries: a 64-element array with a rectangular field-of- view (FOV), the same probe with a sector-shaped FOV, and a 128-element array with rectangular FOV. The acquired data were reconstructed using our proposed method and a delay- and-sum beamforming algorithm for comparison purposes. Point spread function (PSF) measurements from metal wires in a water bath showed that the proposed method was able to reduce the size of the PSF and its spatial integral by about 20 to 38%. Images from a commercially available quality-assurance phantom had greater spatial resolution and contrast when reconstructed with the proposed approach.
HALOE Algorithm Improvements for Upper Tropospheric Sounding
NASA Technical Reports Server (NTRS)
Thompson, Robert E.
2001-01-01
This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Sounding." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.
HALOE Algorithm Improvements for Upper Tropospheric Soundings
NASA Technical Reports Server (NTRS)
Thompson, Robert E.; Douglass, Anne (Technical Monitor)
2000-01-01
This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Sounding." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.
HALOE Algorithm Improvements for Upper Tropospheric Sounding
NASA Technical Reports Server (NTRS)
Thompson, Robert Earl; McHugh, Martin J.; Gordley, Larry L.; Hervig, Mark E.; Russell, James M., III; Douglass, Anne (Technical Monitor)
2001-01-01
This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth Upper Atmospheric Research Satellite (UARS) Science Investigator Program entitled 'HALOE Algorithm Improvements for Upper Tropospheric Sounding.' The goal of this effort is to develop and implement major inversion and processing improvements that will extend Halogen Occultation Experiment (HALOE) measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.
HALOE Algorithm Improvements for Upper Tropospheric Sounding
NASA Technical Reports Server (NTRS)
McHugh, Martin J.; Gordley, Larry L.; Russell, James M., III; Hervig, Mark E.
1999-01-01
This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Soundings." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first-year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multi-channel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.
An improved back projection algorithm of ultrasound tomography
Xiaozhen, Chen; Mingxu, Su; Xiaoshu, Cai
2014-04-11
Binary logic back projection algorithm is improved in this work for the development of fast ultrasound tomography system with a better effect of image reconstruction. The new algorithm is characterized by an extra logical value ‘2’ and dual-threshold processing of collected raw data. To compare with the original algorithm, a numerical simulation was conducted by the verification of COMSOL simulations formerly, and then a set of ultrasonic tomography system is established to perform the experiments of one, two and three cylindrical objects. The object images are reconstructed through the inversion of signals matrix acquired by the transducer array after a preconditioning, while the corresponding spatial imaging errors can obviously indicate that the improved back projection method can achieve modified inversion effect.
Polynomial Local Improvement Algorithms in Combinatorial Optimization.
1981-11-01
NUMBER SOL 81- 21 IIS -J O 15 14. TITLE (am#Su&Utl & YEO RPR ERO OEE Polynomial Local Improvement Algorithms in TcnclRpr Combinatorial Optimization 6...Stanford, CA 94305 II . CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE Office of Naval Research - Dept. of the Navy November 1981 800 N. Qu~incy Street...corresponds to a node of the tree. ii ) The father of a vertex is its optimal adjacent vertex; if a vertex is a local optimum, it has no father. The tree is
An improved genetic algorithm with dynamic topology
NASA Astrophysics Data System (ADS)
Cai, Kai-Quan; Tang, Yan-Wu; Zhang, Xue-Jun; Guan, Xiang-Min
2016-12-01
The genetic algorithm (GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence. Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 61401011), the National Key Technologies R & D Program of China (Grant No. 2015BAG15B01), and the National Natural Science Foundation of China (Grant No. U1533119).
Performance Improvement Assuming Complexity
ERIC Educational Resources Information Center
Rowland, Gordon
2007-01-01
Individual performers, work teams, and organizations may be considered complex adaptive systems, while most current human performance technologies appear to assume simple determinism. This article explores the apparent mismatch and speculates on future efforts to enhance performance if complexity rather than simplicity is assumed. Included are…
An Adaptive Hybrid Genetic Algorithm for Improved Groundwater Remediation Design
NASA Astrophysics Data System (ADS)
Espinoza, F. P.; Minsker, B. S.; Goldberg, D. E.
2001-12-01
Identifying optimal designs for a groundwater remediation system is computationally intensive, especially for complex, nonlinear problems such as enhanced in situ bioremediation technology. To improve performance, we apply a hybrid genetic algorithm (HGA), which is a two-step solution method: a genetic algorithm (GA) for global search using the entire population and then a local search (LS) to improve search speed for only a few individuals in the population. We implement two types of HGAs: a non-adaptive HGA (NAHGA), whose operations are invariant throughout the run, and a self-adaptive HGA (SAHGA), whose operations adapt to the performance of the algorithm. The best settings of the two HGAs for optimal performance are then investigated for a groundwater remediation problem. The settings include the frequency of LS with respect to the normal GA evaluation, probability of individual selection for LS, evolution criterion for LS (Lamarckian or Baldwinian), and number of local search iterations. A comparison of the algorithms' performance under different settings will be presented.
Improving Algorithm for Automatic Spectra Processing
NASA Astrophysics Data System (ADS)
Rackovic, K.; Nikolic, S.; Kotrc, P.
2009-09-01
Testing and improving of the computer program for automatic processing (flat-fielding) of a great number of solar spectra obtained with the horizontal heliospectrograph HSFA2 has been done. This program was developed in the Astronomical Institute of Academy of Sciences of the Czech Republic in Ondřejov. An irregularity in its work has been discovered, i.e. the program didn't work for some of the spectra. To discover a cause of this error an algorithm has been developed, and a program for examination of the parallelism of reference hairs crossing the spectral slit on records of solar spectra has been made. The standard methods for data processing have been applied-calculating and analyzing higher-order moments of distribution of radiation intensity. The spectra with the disturbed parallelism of the reference hairs have been eliminated from further processing. In order to improve this algorithm of smoothing of spectra, isolation and removal of the harmonic made by a sunspot with multiple elementary transformations of ordinates (Labrouste's transformations) are planned. This project was accomplished at the first summer astronomy practice of students of the Faculty of Mathematics, University of Belgrade, Serbia in 2007 in Ondřejov.
Improved Algorithms Speed It Up for Codes
Hazi, A
2005-09-20
Huge computers, huge codes, complex problems to solve. The longer it takes to run a code, the more it costs. One way to speed things up and save time and money is through hardware improvements--faster processors, different system designs, bigger computers. But another side of supercomputing can reap savings in time and speed: software improvements to make codes--particularly the mathematical algorithms that form them--run faster and more efficiently. Speed up math? Is that really possible? According to Livermore physicist Eugene Brooks, the answer is a resounding yes. ''Sure, you get great speed-ups by improving hardware,'' says Brooks, the deputy leader for Computational Physics in N Division, which is part of Livermore's Physics and Advanced Technologies (PAT) Directorate. ''But the real bonus comes on the software side, where improvements in software can lead to orders of magnitude improvement in run times.'' Brooks knows whereof he speaks. Working with Laboratory physicist Abraham Szoeke and others, he has been instrumental in devising ways to shrink the running time of what has, historically, been a tough computational nut to crack: radiation transport codes based on the statistical or Monte Carlo method of calculation. And Brooks is not the only one. Others around the Laboratory, including physicists Andrew Williamson, Randolph Hood, and Jeff Grossman, have come up with innovative ways to speed up Monte Carlo calculations using pure mathematics.
Performance Improvement [in HRD].
ERIC Educational Resources Information Center
1995
These four papers are from a symposium that was facilitated by Richard J. Torraco at the 1995 conference of the Academy of Human Resource Development (HRD). "Performance Technology--Isn't It Time We Found Some New Models?" (William J. Rothwell) reviews briefly two classic models, describes criteria for the high performance workplace…
Research on video target tracking technology based on improved SIFT algorithm
NASA Astrophysics Data System (ADS)
Zhuang, Zhemin; Guo, Zhijie; Yuang, Ye
2017-01-01
A novel target tracking algorithm based on improved SIFT (Scale Invariant Feature Transform (SIFT) algorithm is proposed in this paper. In order to improve real-time performance, the processing neighborhood of SIFT has been improved to decrease the complexity of calculation, and the dimension of the SIFT vector is set from 128 to 40. Simulations and experiments show this improved algorithm brings us low computation complexity and high tracking accuracy and robustness.
Evaluating Algorithm Performance Metrics Tailored for Prognostics
NASA Technical Reports Server (NTRS)
Saxena, Abhinav; Celaya, Jose; Saha, Bhaskar; Saha, Sankalita; Goebel, Kai
2009-01-01
Prognostics has taken a center stage in Condition Based Maintenance (CBM) where it is desired to estimate Remaining Useful Life (RUL) of the system so that remedial measures may be taken in advance to avoid catastrophic events or unwanted downtimes. Validation of such predictions is an important but difficult proposition and a lack of appropriate evaluation methods renders prognostics meaningless. Evaluation methods currently used in the research community are not standardized and in many cases do not sufficiently assess key performance aspects expected out of a prognostics algorithm. In this paper we introduce several new evaluation metrics tailored for prognostics and show that they can effectively evaluate various algorithms as compared to other conventional metrics. Specifically four algorithms namely; Relevance Vector Machine (RVM), Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and Polynomial Regression (PR) are compared. These algorithms vary in complexity and their ability to manage uncertainty around predicted estimates. Results show that the new metrics rank these algorithms in different manner and depending on the requirements and constraints suitable metrics may be chosen. Beyond these results, these metrics offer ideas about how metrics suitable to prognostics may be designed so that the evaluation procedure can be standardized. 1
Web multimedia information retrieval using improved Bayesian algorithm.
Yu, Yi-Jun; Chen, Chun; Yu, Yi-Min; Lin, Huai-Zhong
2003-01-01
The main thrust of this paper is application of a novel data mining approach on the log of user's feedback to improve web multimedia information retrieval performance. A user space model was constructed based on data mining, and then integrated into the original information space model to improve the accuracy of the new information space model. It can remove clutter and irrelevant text information and help to eliminate mismatch between the page author's expression and the user's understanding and expectation. User space model was also utilized to discover the relationship between high-level and low-level features for assigning weight. The authors proposed improved Bayesian algorithm for data mining. Experiment proved that the authors' proposed algorithm was efficient.
Chan, J.C.-W.; Huang, C.; DeFries, R.
2001-01-01
Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. Our results confirmed the theoretical explanation [1] that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm.
High-speed scanning: an improved algorithm
NASA Astrophysics Data System (ADS)
Nachimuthu, A.; Hoang, Khoi
1995-10-01
In using machine vision for assessing an object's surface quality, many images are required to be processed in order to separate the good areas from the defective ones. Examples can be found in the leather hide grading process; in the inspection of garments/canvas on the production line; in the nesting of irregular shapes into a given surface... . The most common method of subtracting the total area from the sum of defective areas does not give an acceptable indication of how much of the `good' area can be used, particularly if the findings are to be used for the nesting of irregular shapes. This paper presents an image scanning technique which enables the estimation of useable areas within an inspected surface in terms of the user's definition, not the supplier's claims. That is, how much useable area the user can use, not the total good area as the supplier estimated. An important application of the developed technique is in the leather industry where the tanner (the supplier) and the footwear manufacturer (the user) are constantly locked in argument due to disputed quality standards of finished leather hide, which disrupts production schedules and wasted costs in re-grading, re- sorting... . The developed basic algorithm for area scanning of a digital image will be presented. The implementation of an improved scanning algorithm will be discussed in detail. The improved features include Boolean OR operations and many other innovative functions which aim at optimizing the scanning process in terms of computing time and the accurate estimation of useable areas.
Benchmarking the performance of daily temperature homogenisation algorithms
NASA Astrophysics Data System (ADS)
Warren, Rachel; Bailey, Trevor; Jolliffe, Ian; Willett, Kate
2015-04-01
This work explores the creation of realistic synthetic data and its use as a benchmark for comparing the performance of different homogenisation algorithms on daily temperature data. Four different regions in the United States have been selected and three different inhomogeneity scenarios explored for each region. These benchmark datasets are beneficial as, unlike in the real world, the underlying truth is known a priori, thus allowing definite statements to be made about the performance of the algorithms run on them. Performance can be assessed in terms of the ability of algorithms to detect changepoints and also their ability to correctly remove inhomogeneities. The focus is on daily data, thus presenting new challenges in comparison to monthly data and pushing the boundaries of previous studies. The aims of this work are to evaluate and compare the performance of various homogenisation algorithms, aiding their improvement and enabling a quantification of the uncertainty remaining in the data even after they have been homogenised. An important outcome is also to evaluate how realistic the created benchmarks are. It is essential that any weaknesses in the benchmarks are taken into account when judging algorithm performance against them. This information in turn will help to improve future versions of the benchmarks. I intend to present a summary of this work including the method of benchmark creation, details of the algorithms run and some preliminary results. This work forms a three year PhD and feeds into the larger project of the International Surface Temperature Initiative which is working on a global scale and with monthly instead of daily data.
Modeling and performance analysis of GPS vector tracking algorithms
NASA Astrophysics Data System (ADS)
Lashley, Matthew
This dissertation provides a detailed analysis of GPS vector tracking algorithms and the advantages they have over traditional receiver architectures. Standard GPS receivers use a decentralized architecture that separates the tasks of signal tracking and position/velocity estimation. Vector tracking algorithms combine the two tasks into a single algorithm. The signals from the various satellites are processed collectively through a Kalman filter. The advantages of vector tracking over traditional, scalar tracking methods are thoroughly investigated. A method for making a valid comparison between vector and scalar tracking loops is developed. This technique avoids the ambiguities encountered when attempting to make a valid comparison between tracking loops (which are characterized by noise bandwidths and loop order) and the Kalman filters (which are characterized by process and measurement noise covariance matrices) that are used by vector tracking algorithms. The improvement in performance offered by vector tracking is calculated in multiple different scenarios. Rule of thumb analysis techniques for scalar Frequency Lock Loops (FLL) are extended to the vector tracking case. The analysis tools provide a simple method for analyzing the performance of vector tracking loops. The analysis tools are verified using Monte Carlo simulations. Monte Carlo simulations are also used to study the effects of carrier to noise power density (C/N0) ratio estimation and the advantage offered by vector tracking over scalar tracking. The improvement from vector tracking ranges from 2.4 to 6.2 dB in various scenarios. The difference in the performance of the three vector tracking architectures is analyzed. The effects of using a federated architecture with and without information sharing between the receiver's channels are studied. A combination of covariance analysis and Monte Carlo simulation is used to analyze the performance of the three algorithms. The federated algorithm without
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.
Improving performance via mini-applications.
Crozier, Paul Stewart; Thornquist, Heidi K.; Numrich, Robert W.; Williams, Alan B.; Edwards, Harold Carter; Keiter, Eric Richard; Rajan, Mahesh; Willenbring, James M.; Doerfler, Douglas W.; Heroux, Michael Allen
2009-09-01
Application performance is determined by a combination of many choices: hardware platform, runtime environment, languages and compilers used, algorithm choice and implementation, and more. In this complicated environment, we find that the use of mini-applications - small self-contained proxies for real applications - is an excellent approach for rapidly exploring the parameter space of all these choices. Furthermore, use of mini-applications enriches the interaction between application, library and computer system developers by providing explicit functioning software and concrete performance results that lead to detailed, focused discussions of design trade-offs, algorithm choices and runtime performance issues. In this paper we discuss a collection of mini-applications and demonstrate how we use them to analyze and improve application performance on new and future computer platforms.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
Improved CHAID algorithm for document structure modelling
NASA Astrophysics Data System (ADS)
Belaïd, A.; Moinel, T.; Rangoni, Y.
2010-01-01
This paper proposes a technique for the logical labelling of document images. It makes use of a decision-tree based approach to learn and then recognise the logical elements of a page. A state-of-the-art OCR gives the physical features needed by the system. Each block of text is extracted during the layout analysis and raw physical features are collected and stored in the ALTO format. The data-mining method employed here is the "Improved CHi-squared Automatic Interaction Detection" (I-CHAID). The contribution of this work is the insertion of logical rules extracted from the logical layout knowledge to support the decision tree. Two setups have been tested; the first uses one tree per logical element, the second one uses a single tree for all the logical elements we want to recognise. The main system, implemented in Java, coordinates the third-party tools (Omnipage for the OCR part, and SIPINA for the I-CHAID algorithm) using XML and XSL transforms. It was tested on around 1000 documents belonging to the ICPR'04 and ICPR'08 conference proceedings, representing about 16,000 blocks. The final error rate for determining the logical labels (among 9 different ones) is less than 6%.
Performance evaluation of SAR/GMTI algorithms
NASA Astrophysics Data System (ADS)
Garber, Wendy; Pierson, William; Mcginnis, Ryan; Majumder, Uttam; Minardi, Michael; Sobota, David
2016-05-01
There is a history and understanding of exploiting moving targets within ground moving target indicator (GMTI) data, including methods for modeling performance. However, many assumptions valid for GMTI processing are invalid for synthetic aperture radar (SAR) data. For example, traditional GMTI processing assumes targets are exo-clutter and a system that uses a GMTI waveform, i.e. low bandwidth (BW) and low pulse repetition frequency (PRF). Conversely, SAR imagery is typically formed to focus data at zero Doppler and requires high BW and high PRF. Therefore, many of the techniques used in performance estimation of GMTI systems are not valid for SAR data. However, as demonstrated by papers in the recent literature,1-11 there is interest in exploiting moving targets within SAR data. The techniques employed vary widely, including filter banks to form images at multiple Dopplers, performing smear detection, and attempting to address the issue through waveform design. The above work validates the need for moving target exploitation in SAR data, but it does not represent a theory allowing for the prediction or bounding of performance. This work develops an approach to estimate and/or bound performance for moving target exploitation specific to SAR data. Synthetic SAR data is generated across a range of sensor, environment, and target parameters to test the exploitation algorithms under specific conditions. This provides a design tool allowing radar systems to be tuned for specific moving target exploitation applications. In summary, we derive a set of rules that bound the performance of specific moving target exploitation algorithms under variable operating conditions.
Improving permafrost distribution modelling using feature selection algorithms
NASA Astrophysics Data System (ADS)
Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail
2016-04-01
The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its
NASA Astrophysics Data System (ADS)
Swetadri Vasan, S. N.; Ionita, Ciprian N.; Titus, A. H.; Cartwright, A. N.; Bednarek, D. R.; Rudin, S.
2012-03-01
We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame.
Vasan, S N Swetadri; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S
2012-02-23
We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame.
Improved algorithm of ray tracing in ICF cryogenic targets
NASA Astrophysics Data System (ADS)
Zhang, Rui; Yang, Yongying; Ling, Tong; Jiang, Jiabin
2016-10-01
The high precision ray tracing inside inertial confinement fusion (ICF) cryogenic targets plays an important role in the reconstruction of the three-dimensional density distribution by algebraic reconstruction technique (ART) algorithm. The traditional Runge-Kutta methods, which is restricted by the precision of the grid division and the step size of ray tracing, cannot make an accurate calculation in the case of refractive index saltation. In this paper, we propose an improved algorithm of ray tracing based on the Runge-Kutta methods and Snell's law of refraction to achieve high tracing precision. On the boundary of refractive index, we apply Snell's law of refraction and contact point search algorithm to ensure accuracy of the simulation. Inside the cryogenic target, the combination of the Runge-Kutta methods and self-adaptive step algorithm are employed for computation. The original refractive index data, which is used to mesh the target, can be obtained by experimental measurement or priori refractive index distribution function. A finite differential method is performed to calculate the refractive index gradient of mesh nodes, and the distance weighted average interpolation methods is utilized to obtain refractive index and gradient of each point in space. In the simulation, we take ideal ICF target, Luneberg lens and Graded index rod as simulation model to calculate the spot diagram and wavefront map. Compared the simulation results to Zemax, it manifests that the improved algorithm of ray tracing based on the fourth-order Runge-Kutta methods and Snell's law of refraction exhibits high accuracy. The relative error of the spot diagram is 0.2%, and the peak-to-valley (PV) error and the root-mean-square (RMS) error of the wavefront map is less than λ/35 and λ/100, correspondingly.
Missile placement analysis based on improved SURF feature matching algorithm
NASA Astrophysics Data System (ADS)
Yang, Kaida; Zhao, Wenjie; Li, Dejun; Gong, Xiran; Sheng, Qian
2015-03-01
The precious battle damage assessment by use of video images to analysis missile placement is a new study area. The article proposed an improved speeded up robust features algorithm named restricted speeded up robust features, which combined the combat application of TV-command-guided missiles and the characteristics of video image. Its restrictions mainly reflected in two aspects, one is to restrict extraction area of feature point; the second is to restrict the number of feature points. The process of missile placement analysis based on video image was designed and a video splicing process and random sample consensus purification were achieved. The RSURF algorithm is proved that has good realtime performance on the basis of guarantee the accuracy.
CF6 fan performance improvement
NASA Technical Reports Server (NTRS)
Patt, R. F.; Reemsnyder, D. C.
1980-01-01
A significant portion of the NASA-sponsored Performance Improvement Program for the CF6 engine was the development of an improved fan concept. This involved aerodynamic redesign of the CF6 fan blade to increase fan efficiency while retaining the mechanical integrity, operability, and acoustic characteristics of the existing blade. A further improvement in performance was obtained by adding a fan case stiffener ring to decouple blade-case vibrational characteristics, permitting a significant reduction in running tip clearance. Engine testing was performed to establish the performance, mechanical and acoustic properties of the new design relative to the current fan, and to establish power management characteristics for the CF6-50C2/E2 engine. A significant improvement in cruise power SFC of 1.8 percent was demonstrated in Sea Level testing projected to altitude flight conditions.
An improved conscan algorithm based on a Kalman filter
NASA Technical Reports Server (NTRS)
Eldred, D. B.
1994-01-01
Conscan is commonly used by DSN antennas to allow adaptive tracking of a target whose position is not precisely known. This article describes an algorithm that is based on a Kalman filter and is proposed to replace the existing fast Fourier transform based (FFT-based) algorithm for conscan. Advantages of this algorithm include better pointing accuracy, continuous update information, and accommodation of missing data. Additionally, a strategy for adaptive selection of the conscan radius is proposed. The performance of the algorithm is illustrated through computer simulations and compared to the FFT algorithm. The results show that the Kalman filter algorithm is consistently superior.
Improved ant colony algorithm and its simulation study
NASA Astrophysics Data System (ADS)
Wang, Zongjiang
2013-03-01
Ant colony algorithm is development a new heuristic algorithm through simulation ant foraging. For its convergence rate slow, easy to fall into local optimal solution proposed for the adjustment of key parameters, pheromone update to improve the way and through the issue of TSP experiments, results showed that the improved algorithm has better overall search capabilities and demonstrated the feasibility and effectiveness of this method.
Evaluating and Improving Teacher Performance.
ERIC Educational Resources Information Center
Manatt, Richard P.
This workbook, coordinated with Manatt Teacher Performance Evaluation (TPE) workshops, summarizes large group presentation in sequence with the transparancies used. The first four modules of the workbook deal with the state of the art of evaluating and improving teacher performance; the development of the TPE system, including selection of…
Improving Reading Performance through Hypnosis.
ERIC Educational Resources Information Center
Fillmer, H. Thompson; And Others
1981-01-01
Describes a study investigating the effects of group hypnosis on the reading performance of university students in a reading and writing center. Discusses study procedures and presents data on pretest scores and gains in vocabulary and comprehension scores. Concludes that regular use of self-hypnosis significantly improved performance. (DMM)
An improved NAS-RIF algorithm for image restoration
NASA Astrophysics Data System (ADS)
Gao, Weizhe; Zou, Jianhua; Xu, Rong; Liu, Changhai; Li, Hengnian
2016-10-01
Space optical images are inevitably degraded by atmospheric turbulence, error of the optical system and motion. In order to get the true image, a novel nonnegativity and support constants recursive inverse filtering (NAS-RIF) algorithm is proposed to restore the degraded image. Firstly the image noise is weaken by Contourlet denoising algorithm. Secondly, the reliable object support region estimation is used to accelerate the algorithm convergence. We introduce the optimal threshold segmentation technology to improve the object support region. Finally, an object construction limit and the logarithm function are added to enhance algorithm stability. Experimental results demonstrate that, the proposed algorithm can increase the PSNR, and improve the quality of the restored images. The convergence speed of the proposed algorithm is faster than that of the original NAS-RIF algorithm.
An improved Apriori algorithm for mining association rules
NASA Astrophysics Data System (ADS)
Yuan, Xiuli
2017-03-01
Among mining algorithms based on association rules, Apriori technique, mining frequent itermsets and interesting associations in transaction database, is not only the first used association rule mining technique but also the most popular one. After studying, it is found out that the traditional Apriori algorithms have two major bottlenecks: scanning the database frequently; generating a large number of candidate sets. Based on the inherent defects of Apriori algorithm, some related improvements are carried out: 1) using new database mapping way to avoid scanning the database repeatedly; 2) further pruning frequent itemsets and candidate itemsets in order to improve joining efficiency; 3) using overlap strategy to count support to achieve high efficiency. Under the same conditions, the results illustrate that the proposed improved Apriori algorithm improves the operating efficiency compared with other improved algorithms.
Performance Comparison Of Evolutionary Algorithms For Image Clustering
NASA Astrophysics Data System (ADS)
Civicioglu, P.; Atasever, U. H.; Ozkan, C.; Besdok, E.; Karkinli, A. E.; Kesikoglu, A.
2014-09-01
Evolutionary computation tools are able to process real valued numerical sets in order to extract suboptimal solution of designed problem. Data clustering algorithms have been intensively used for image segmentation in remote sensing applications. Despite of wide usage of evolutionary algorithms on data clustering, their clustering performances have been scarcely studied by using clustering validation indexes. In this paper, the recently proposed evolutionary algorithms (i.e., Artificial Bee Colony Algorithm (ABC), Gravitational Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Adaptive Differential Evolution Algorithm (JADE), Differential Search Algorithm (DSA) and Backtracking Search Optimization Algorithm (BSA)) and some classical image clustering techniques (i.e., k-means, fcm, som networks) have been used to cluster images and their performances have been compared by using four clustering validation indexes. Experimental test results exposed that evolutionary algorithms give more reliable cluster-centers than classical clustering techniques, but their convergence time is quite long.
An improved NAS-RIF algorithm for blind image restoration
NASA Astrophysics Data System (ADS)
Liu, Ning; Jiang, Yanbin; Lou, Shuntian
2007-01-01
Image restoration is widely applied in many areas, but when operating on images with different scales for the representation of pixel intensity levels or low SNR, the traditional restoration algorithm lacks validity and induces noise amplification, ringing artifacts and poor convergent ability. In this paper, an improved NAS-RIF algorithm is proposed to overcome the shortcomings of the traditional algorithm. The improved algorithm proposes a new cost function which adds a space-adaptive regularization term and a disunity gain of the adaptive filter. In determining the support region, a pre-segmentation is used to form it close to the object in the image. Compared with the traditional algorithm, simulations show that the improved algorithm behaves better convergence, noise resistance and provides a better estimate of original image.
Che, Yanting; Wang, Qiuying; Gao, Wei; Yu, Fei
2015-10-05
In this paper, an improved inertial frame alignment algorithm for a marine SINS under mooring conditions is proposed, which significantly improves accuracy. Since the horizontal alignment is easy to complete, and a characteristic of gravity is that its component in the horizontal plane is zero, we use a clever method to improve the conventional inertial alignment algorithm. Firstly, a large misalignment angle model and a dimensionality reduction Gauss-Hermite filter are employed to establish the fine horizontal reference frame. Based on this, the projection of the gravity in the body inertial coordinate frame can be calculated easily. Then, the initial alignment algorithm is accomplished through an inertial frame alignment algorithm. The simulation and experiment results show that the improved initial alignment algorithm performs better than the conventional inertial alignment algorithm, and meets the accuracy requirements of a medium-accuracy marine SINS.
Surviving Performance Improvement "Solutions": Aligning Performance Improvement Interventions
ERIC Educational Resources Information Center
Bernardez, Mariano L.
2009-01-01
How can organizations avoid the negative, sometimes chaotic, effects of multiple, poorly coordinated performance improvement interventions? How can we avoid punishing our external clients or staff with the side effects of solutions that might benefit our bottom line or internal efficiency at the expense of the value received or perceived by…
Improving CMD Areal Density Analysis: Algorithms and Strategies
NASA Astrophysics Data System (ADS)
Wilson, R. E.
2014-06-01
Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMDÂ¡Â¯s) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMDgeneration program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities (A ), and large variation in A are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.
A new improved artificial bee colony algorithm for ship hull form optimization
NASA Astrophysics Data System (ADS)
Huang, Fuxin; Wang, Lijue; Yang, Chi
2016-04-01
The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416
Eight Minutes to Performance Improvement.
ERIC Educational Resources Information Center
Seidman, William; McCauley, Michael
2003-01-01
Discusses how to produce behavior change and related performance improvement by nonexperts in as little as eight minutes by having them become instantly engaged through instant credibility of the content and instant application to their situation. Explains digital coach technology which can create instant engagement for the nonexpert. (Author/LRW)
Improving the Performance of AI Algorithms.
1987-09-01
transition from one phase to the next rrquirwv, an expansion of the problem representation ’.c" from a relatively abstract to & mr concrete level. As...mapping transfornation. The con- straints impxsed at early phases of development are generally vi.ewed as issues of validation (des the implementation...change. S Environment spanning begins during the initial program design "" phase , when the implementation system is originally selected. The %.- problem
Proper bibeta ROC model: algorithm, software, and performance evaluation
NASA Astrophysics Data System (ADS)
Chen, Weijie; Hu, Nan
2016-03-01
Semi-parametric models are often used to fit data collected in receiver operating characteristic (ROC) experiments to obtain a smooth ROC curve and ROC parameters for statistical inference purposes. The proper bibeta model as recently proposed by Mossman and Peng enjoys several theoretical properties. In addition to having explicit density functions for the latent decision variable and an explicit functional form of the ROC curve, the two parameter bibeta model also has simple closed-form expressions for true-positive fraction (TPF), false-positive fraction (FPF), and the area under the ROC curve (AUC). In this work, we developed a computational algorithm and R package implementing this model for ROC curve fitting. Our algorithm can deal with any ordinal data (categorical or continuous). To improve accuracy, efficiency, and reliability of our software, we adopted several strategies in our computational algorithm including: (1) the LABROC4 categorization to obtain the true maximum likelihood estimation of the ROC parameters; (2) a principled approach to initializing parameters; (3) analytical first-order and second-order derivatives of the likelihood function; (4) an efficient optimization procedure (the L-BFGS algorithm in the R package "nlopt"); and (5) an analytical delta method to estimate the variance of the AUC. We evaluated the performance of our software with intensive simulation studies and compared with the conventional binormal and the proper binormal-likelihood-ratio models developed at the University of Chicago. Our simulation results indicate that our software is highly accurate, efficient, and reliable.
An Improved Neutron Transport Algorithm for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Clowdsley, Martha S.; Walker, Steven A.; Badavi, Francis F.
2010-01-01
Long term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures, and vehicles. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions, and that an extremely fine energy grid is required to resolve the problem under the current formulation. Two numerical methods are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. Convergence testing is completed by running the code for various environments and shielding materials with various energy grids to ensure stability of the newly implemented method.
Sodium bicarbonate improves swimming performance.
Lindh, A M; Peyrebrune, M C; Ingham, S A; Bailey, D M; Folland, J P
2008-06-01
Sodium bicarbonate ingestion has been shown to improve performance in single-bout, high intensity events, probably due to an increase in buffering capacity, but its influence on single-bout swimming performance has not been investigated. The effects of sodium bicarbonate supplementation on 200 m freestyle swimming performance were investigated in elite male competitors. Following a randomised, double blind counterbalanced design, 9 swimmers completed maximal effort swims on 3 separate occasions: a control trial (C); after ingestion of sodium bicarbonate (SB: NaHCO3 300 mg . kg (-1) body mass); and after ingestion of a placebo (P: CaCO3 200 mg . kg (-1) body mass). The SB and P agents were packed in gelatine capsules and ingested 90 - 60 min prior to each 200 m swim. Mean 200 m performance times were significantly faster for SB than C or P (1 : 52.2 +/- 4.7; 1 : 53.7 +/- 3.8; 1 : 54.0 +/- 3.6 min : ss; p < 0.05). Base excess, pH and blood bicarbonate were all elevated pre-exercise in the SB compared to C and P trials (p < 0.05). Post-200 m blood lactate concentrations were significantly higher following the SB trial compared with P and C (p < 0.05). It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.
Improvement and implementation for Canny edge detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Tao; Qiu, Yue-hong
2015-07-01
Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.
An improved spectral graph partitioning algorithm for mapping parallel computations
Hendrickson, B.; Leland, R.
1992-09-01
Efficient use of a distributed memory parallel computer requires that the computational load be balanced across processors in a way that minimizes interprocessor communication. We present a new domain mapping algorithm that extends recent work in which ideas from spectral graph theory have been applied to this problem. Our generalization of spectral graph bisection involves a novel use of multiple eigenvectors to allow for division of a computation into four or eight parts at each stage of a recursive decomposition. The resulting method is suitable for scientific computations like irregular finite elements or differences performed on hypercube or mesh architecture machines. Experimental results confirm that the new method provides better decompositions arrived at more economically and robustly than with previous spectral methods. We have also improved upon the known spectral lower bound for graph bisection.
Improved ant colony algorithm for global path planning
NASA Astrophysics Data System (ADS)
Li, Pengfei; Wang, Hongbo; Li, Xiaogang
2017-03-01
The ant colony algorithm has many advantages compared with other algorithms in path planning, but its shortcomings still cannot be ignored. For example, the convergence speed is very low at initial stage, it is easy to fall into the local optimal solution, and the solution speed is slow and so on. In order to solve these problems and reduce the search time, this paper firstly makes the assignment of the main parameters of α, β, M and ρ in the ant colony algorithm through a large number of experimental data analysis. Then an improved ant colony algorithm based on dynamic parameters and new pheromone updating mechanism is proposed in this paper. Simulation results show that the improved ant colony algorithm can not only greatly shorten the algorithm running time, but also has greater probability to get the global optimal solution, and the convergence rate of algorithm is better than traditional ant colony algorithm. It is very advantageous for solving large-scale optimization problems.
Case study of isosurface extraction algorithm performance
Sutton, P M; Hansen, C D; Shen, H; Schikore, D
1999-12-14
Isosurface extraction is an important and useful visualization method. Over the past ten years, the field has seen numerous isosurface techniques published leaving the user in a quandary about which one should be used. Some papers have published complexity analysis of the techniques yet empirical evidence comparing different methods is lacking. This case study presents a comparative study of several representative isosurface extraction algorithms. It reports and analyzes empirical measurements of execution times and memory behavior for each algorithm. The results show that asymptotically optimal techniques may not be the best choice when implemented on modern computer architectures.
Li, Jun-Qing; Pan, Quan-Ke; Duan, Pei-Yong
2016-06-01
In this paper, we propose an improved discrete artificial bee colony (DABC) algorithm to solve the hybrid flexible flowshop scheduling problem with dynamic operation skipping features in molten iron systems. First, each solution is represented by a two-vector-based solution representation, and a dynamic encoding mechanism is developed. Second, a flexible decoding strategy is designed. Next, a right-shift strategy considering the problem characteristics is developed, which can clearly improve the solution quality. In addition, several skipping and scheduling neighborhood structures are presented to balance the exploration and exploitation ability. Finally, an enhanced local search is embedded in the proposed algorithm to further improve the exploitation ability. The proposed algorithm is tested on sets of the instances that are generated based on the realistic production. Through comprehensive computational comparisons and statistical analysis, the highly effective performance of the proposed DABC algorithm is favorably compared against several presented algorithms, both in solution quality and efficiency.
ARPANET Routing Algorithm Improvements. Volume 1
1980-08-01
engineers , and can be tuned tn be any desired frequency. However, the frequency of updating wculd be related to the performance of the routing scheme...be more complex than any simulator. Congestion control procedures are designed by engineers and tested on simulators but they must - 24g - I Report No...Advanced Research Projects Agency 1400 Wilson Boulevardt Arlington, VA 22209 Attention: Program Management and to: Defense Communicatlons Engineering
Unsteady transonic algorithm improvements for realistic aircraft applications
NASA Technical Reports Server (NTRS)
Batina, John T.
1987-01-01
Improvements to a time-accurate approximate factorization (AF) algorithm were implemented for steady and unsteady transonic analysis of realistic aircraft configurations. These algorithm improvements were made to the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code developed at the Langley Research Center. The code permits the aeroelastic analysis of complete aircraft in the flutter critical transonic speed range. The AF algorithm of the CAP-TSD code solves the unsteady transonic small-disturbance equation. The algorithm improvements include: an Engquist-Osher (E-O) type-dependent switch to more accurately and efficiently treat regions of supersonic flow; extension of the E-O switch for second-order spatial accuracy in these regions; nonreflecting far field boundary conditions for more accurate unsteady applications; and several modifications which accelerate convergence to steady-state. Calculations are presented for several configurations including the General Dynamics one-ninth scale F-16C aircraft model to evaluate the algorithm modifications. The modifications have significantly improved the stability of the AF algorithm and hence the reliability of the CAP-TSD code in general.
Resuscitation review to improve nursing performance during cardiac arrest.
Carpico, Bronwynne; Jenkins, Peggy
2011-01-01
The purpose of this study was to evaluate the effect of Resuscitation Review Simulation Education (RRSE) on improving adherence to hospital protocols and American Heart Association (AHA) resuscitation standards. Prior to implementing the RRSE on two nursing units, performance was evaluated during a simulated cardiac arrest using a mannequin and comparing performance against AHA algorithms. Performance was measured at two separate periods: preintervention and 3 months after the intervention. Both units improved overall scores after the RRSE.
Improving sparse representation algorithms for maritime video processing
NASA Astrophysics Data System (ADS)
Smith, L. N.; Nichols, J. M.; Waterman, J. R.; Olson, C. C.; Judd, K. P.
2012-06-01
We present several improvements to published algorithms for sparse image modeling with the goal of improving processing of imagery of small watercraft in littoral environments. The first improvement is to the K-SVD algorithm for training over-complete dictionaries, which are used in sparse representations. It is shown that the training converges significantly faster by incorporating multiple dictionary (i.e., codebook) update stages in each training iteration. The paper also provides several useful and practical lessons learned from our experience with sparse representations. Results of three applications of sparse representation are presented and compared to the state-of-the-art methods; image compression, image denoising, and super-resolution.
Performance Trend of Different Algorithms for Structural Design Optimization
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.
1996-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
Improved Ant Algorithms for Software Testing Cases Generation
Yang, Shunkun; Xu, Jiaqi
2014-01-01
Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to porduce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. PMID:24883391
Improved ant algorithms for software testing cases generation.
Yang, Shunkun; Man, Tianlong; Xu, Jiaqi
2014-01-01
Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to produce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations.
Economic load dispatch using improved gravitational search algorithm
NASA Astrophysics Data System (ADS)
Huang, Yu; Wang, Jia-rong; Guo, Feng
2016-03-01
This paper presents an improved gravitational search algorithm(IGSA) to solve the economic load dispatch(ELD) problem. In order to avoid the local optimum phenomenon, mutation processing is applied to the GSA. The IGSA is applied to solve the economic load dispatch problems with the valve point effects, which has 13 generators and a load demand of 2520 MW. Calculation results show that the algorithm in this paper can deal with the ELD problems with high stability.
Visualizing and improving the robustness of phase retrieval algorithms
Tripathi, Ashish; Leyffer, Sven; Munson, Todd; ...
2015-06-01
Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.
An Improved Physarum polycephalum Algorithm for the Shortest Path Problem
Wang, Qing; Adamatzky, Andrew; Chan, Felix T. S.; Mahadevan, Sankaran
2014-01-01
Shortest path is among classical problems of computer science. The problems are solved by hundreds of algorithms, silicon computing architectures and novel substrate, unconventional, computing devices. Acellular slime mould P. polycephalum is originally famous as a computing biological substrate due to its alleged ability to approximate shortest path from its inoculation site to a source of nutrients. Several algorithms were designed based on properties of the slime mould. Many of the Physarum-inspired algorithms suffer from a low converge speed. To accelerate the search of a solution and reduce a number of iterations we combined an original model of Physarum-inspired path solver with a new a parameter, called energy. We undertook a series of computational experiments on approximating shortest paths in networks with different topologies, and number of nodes varying from 15 to 2000. We found that the improved Physarum algorithm matches well with existing Physarum-inspired approaches yet outperforms them in number of iterations executed and a total running time. We also compare our algorithm with other existing algorithms, including the ant colony optimization algorithm and Dijkstra algorithm. PMID:24982960
Human performance models and rear-end collision avoidance algorithms.
Brown, T L; Lee, J D; McGehee, D V
2001-01-01
Collision warning systems offer a promising approach to mitigate rear-end collisions, but substantial uncertainty exists regarding the joint performance of the driver and the collision warning algorithms. A simple deterministic model of driver performance was used to examine kinematics-based and perceptual-based rear-end collision avoidance algorithms over a range of collision situations, algorithm parameters, and assumptions regarding driver performance. The results show that the assumptions concerning driver reaction times have important consequences for algorithm performance, with underestimates dramatically undermining the safety benefit of the warning. Additionally, under some circumstances, when drivers rely on the warning algorithms, larger headways can result in more severe collisions. This reflects the nonlinear interaction among the collision situation, the algorithm, and driver response that should not be attributed to the complexities of driver behavior but to the kinematics of the situation. Comparisons made with experimental data demonstrate that a simple human performance model can capture important elements of system performance and complement expensive human-in-the-loop experiments. Actual or potential applications of this research include selection of an appropriate algorithm, more accurate specification of algorithm parameters, and guidance for future experiments.
Contemporary: The Psychological Side of Performance Improvement.
ERIC Educational Resources Information Center
Gerson, Richard F.
2001-01-01
Discusses the importance of focusing on the people side of performance improvement instead of just the models, processes, and theories. Topics include the mental state of the performer; the psychology of performance improvement; stress and its effects on performance; guaranteeing performance improvement; performance attributions; and external…
The performance of the quantum adiabatic algorithm on spike Hamiltonians
NASA Astrophysics Data System (ADS)
Kong, Linghang; Crosson, Elizabeth
Spike Hamiltonians arise from optimization instances for which the adiabatic algorithm provably out performs classical simulated annealing. In this work, we study the efficiency of the adiabatic algorithm for solving the “the Hamming weight with a spike” problem by analyzing the scaling of the spectral gap at the critical point for various sizes of the barrier. Our main result is a rigorous lower bound on the minimum spectral gap for the adiabatic evolution when the bit-symmetric cost function has a thin but polynomially high barrier, which is based on a comparison argument and an improved variational ansatz for the ground state. We also adapt the discrete WKB method for the case of abruptly changing potentials and compare it with the predictions of the spin coherent instanton method which was previously used by Farhi, Goldstone and Gutmann. Finally, our improved ansatz for the ground state leads to a method for predicting the location of avoided crossings in the excited energy states of the thin spike Hamiltonian, and we use a recursion relation to understand the ordering of some of these avoided crossings as a step towards analyzing the previously observed diabatic cascade phenomenon.
Improve Relationships to Improve Student Performance
ERIC Educational Resources Information Center
Arum, Richard
2011-01-01
Attempts to raise student performance have focused primarily on either relationships between adults in the system or formal curriculum. Relatively ignored has been a focus on what sociologists believe is the primary relationship of consequence for student outcomes--authority relationships between students and educators. Successful school reform is…
An Improved Passive Phase Conjugation Array Communication Algorithm
NASA Astrophysics Data System (ADS)
Jia, Ning; Guo, Zhongyuan; Huang, Jianchun; Chen, Geng
2010-09-01
The time-varying, dispersive, multipath underwater acoustic channel is a challenging environment for reliable coherent communications. A method proposed recently to cope with intersymbol interference (ISI) is Passive-Phase-Conjugation (PPC) cascaded with Decision-Feedback Equalization (DFE). Based on the theory of signal propagation in a waveguide, PPC can mitigate channel fading and improve the signal-to-noise ratio (SNR) by using a receiver array. At the same time the residual ISI will be removed by DFE. This method will lead to explosive divergence when the channel is changed by a large amount, because PPC estimates channels inaccurately. An improved algorithm is introduced in this paper to estimate the channel during all the communication process; as a result, the change of the channel can be found in time and the PPC could use more accurate channel estimated. Using simulated and at-sea data, we demonstrate that this algorithm can improve the stability of original algorithm in changed channels.
The Evaluation of an improved AMSU rain rate algorithm
NASA Astrophysics Data System (ADS)
Qiu, S.; Pellegrino, P.; Ferraro, R.; Zhao, L.
2003-12-01
Improvements have been made to the rain rate retrieval from the Advanced Microwave Sounding Units (AMSU). The new features of the improved rain rate algorithm include the two-stream corrections on the satellite brightness temperatures, cloud and rain type classification and removal of the two ad hoc thresholds in the ice water path (IWP) and effective diameter (De) retrieval where the scattering signals are very small. A monthly mean comparison has been made between the improved algorithm and the current NOAA operational algorithm. In addition, comparison with monthly mean rainfall derived from SSMI, TRMM, and GPCP are also conducted in the evaluation. These comparisons indicate that the new algorithm greatly reduces the previous positive bias over ocean, while increases rainfall intensity and picks up more light rain over land. Also, Pacific Atolls rain gauges are used to demonstrate the greatly improved rain rate retrieval over the tropical Pacific ocean. Results of a winter time case study over California from February 2003 further confirm the enhanced ability of the new algorithm in identifying both light and heavy rain over land.
An improved filter-u least mean square vibration control algorithm for aircraft framework.
Huang, Quanzhen; Luo, Jun; Gao, Zhiyuan; Zhu, Xiaojin; Li, Hengyu
2014-09-01
Active vibration control of aerospace vehicle structures is very a hot spot and in which filter-u least mean square (FULMS) algorithm is one of the key methods. But for practical reasons and technical limitations, vibration reference signal extraction is always a difficult problem for FULMS algorithm. To solve the vibration reference signal extraction problem, an improved FULMS vibration control algorithm is proposed in this paper. Reference signal is constructed based on the controller structure and the data in the algorithm process, using a vibration response residual signal extracted directly from the vibration structure. To test the proposed algorithm, an aircraft frame model is built and an experimental platform is constructed. The simulation and experimental results show that the proposed algorithm is more practical with a good vibration suppression performance.
Typical performance of approximation algorithms for NP-hard problems
NASA Astrophysics Data System (ADS)
Takabe, Satoshi; Hukushima, Koji
2016-11-01
Typical performance of approximation algorithms is studied for randomized minimum vertex cover problems. A wide class of random graph ensembles characterized by an arbitrary degree distribution is discussed with the presentation of a theoretical framework. Herein, three approximation algorithms are examined: linear-programming relaxation, loopy-belief propagation, and the leaf-removal algorithm. The former two algorithms are analyzed using a statistical-mechanical technique, whereas the average-case analysis of the last one is conducted using the generating function method. These algorithms have a threshold in the typical performance with increasing average degree of the random graph, below which they find true optimal solutions with high probability. Our study reveals that there exist only three cases, determined by the order of the typical performance thresholds. In addition, we provide some conditions for classification of the graph ensembles and demonstrate explicitly some examples for the difference in thresholds.
Generic algorithms for high performance scalable geocomputing
NASA Astrophysics Data System (ADS)
de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek
2016-04-01
During the last decade, the characteristics of computing hardware have changed a lot. For example, instead of a single general purpose CPU core, personal computers nowadays contain multiple cores per CPU and often general purpose accelerators, like GPUs. Additionally, compute nodes are often grouped together to form clusters or a supercomputer, providing enormous amounts of compute power. For existing earth simulation models to be able to use modern hardware platforms, their compute intensive parts must be rewritten. This can be a major undertaking and may involve many technical challenges. Compute tasks must be distributed over CPU cores, offloaded to hardware accelerators, or distributed to different compute nodes. And ideally, all of this should be done in such a way that the compute task scales well with the hardware resources. This presents two challenges: 1) how to make good use of all the compute resources and 2) how to make these compute resources available for developers of simulation models, who may not (want to) have the required technical background for distributing compute tasks. The first challenge requires the use of specialized technology (e.g.: threads, OpenMP, MPI, OpenCL, CUDA). The second challenge requires the abstraction of the logic handling the distribution of compute tasks from the model-specific logic, hiding the technical details from the model developer. To assist the model developer, we are developing a C++ software library (called Fern) containing algorithms that can use all CPU cores available in a single compute node (distributing tasks over multiple compute nodes will be done at a later stage). The algorithms are grid-based (finite difference) and include local and spatial operations such as convolution filters. The algorithms handle distribution of the compute tasks to CPU cores internally. In the resulting model the low-level details of how this is done is separated from the model-specific logic representing the modeled system
An Improved Force Feedback Control Algorithm for Active Tendons
Guo, Tieneng; Liu, Zhifeng; Cai, Ligang
2012-01-01
An active tendon, consisting of a displacement actuator and a co-located force sensor, has been adopted by many studies to suppress the vibration of large space flexible structures. The damping, provided by the force feedback control algorithm in these studies, is small and can increase, especially for tendons with low axial stiffness. This study introduces an improved force feedback algorithm, which is based on the idea of velocity feedback. The algorithm provides a large damping ratio for space flexible structures and does not require a structure model. The effectiveness of the algorithm is demonstrated on a structure similar to JPL-MPI. The results show that large damping can be achieved for the vibration control of large space structures. PMID:23112660
Improved dynamic-programming-based algorithms for segmentation of masses in mammograms
Dominguez, Alfonso Rojas; Nandi, Asoke K.
2007-11-15
In this paper, two new boundary tracing algorithms for segmentation of breast masses are presented. These new algorithms are based on the dynamic programming-based boundary tracing (DPBT) algorithm proposed in Timp and Karssemeijer, [S. Timp and N. Karssemeijer, Med. Phys. 31, 958-971 (2004)] The DPBT algorithm contains two main steps: (1) construction of a local cost function, and (2) application of dynamic programming to the selection of the optimal boundary based on the local cost function. The validity of some assumptions used in the design of the DPBT algorithm is tested in this paper using a set of 349 mammographic images. Based on the results of the tests, modifications to the computation of the local cost function have been designed and have resulted in the Improved-DPBT (IDPBT) algorithm. A procedure for the dynamic selection of the strength of the components of the local cost function is presented that makes these parameters independent of the image dataset. Incorporation of this dynamic selection procedure has produced another new algorithm which we have called ID{sup 2}PBT. Methods for the determination of some other parameters of the DPBT algorithm that were not covered in the original paper are presented as well. The merits of the new IDPBT and ID{sup 2}PBT algorithms are demonstrated experimentally by comparison against the DPBT algorithm. The segmentation results are evaluated with base on the area overlap measure and other segmentation metrics. Both of the new algorithms outperform the original DPBT; the improvements in the algorithms performance are more noticeable around the values of the segmentation metrics corresponding to the highest segmentation accuracy, i.e., the new algorithms produce more optimally segmented regions, rather than a pronounced increase in the average quality of all the segmented regions.
Thermal Performance Simulation of MWNT/NR composites Based on Levenberg-Marquard Algorithm
NASA Astrophysics Data System (ADS)
Yu, Z. Z.; Liu, J. S.
2017-02-01
In this paper, Levenberg-Marquard algorithm was used to simulate thermal performance of aligned carbon nanotubes-filled rubber composite, and the effect of temperature, filling amount, MWNTs orientation and other factors on thermal performance were studied. The research results showed: MWNTs orientation can greatly improve the thermal conductivity of composite materials, the thermal performance improvement of overall orientation was higher than the local orientation. Volume fraction can affect thermal performance, thermal conductivity increased with the increase of volume fraction. Temperature had no significant effect on the thermal conductivity. The simulation results correlated well with experimental results, which showed that the simulation algorithm is effective and feasible.
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.
2007-01-01
Zhou and Cess [2001] developed an algorithm for retrieving surface downwelling longwave radiation (SDLW) based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for scenes that were covered with ice clouds. An improved version of the algorithm prevents the large errors in the SDLW at low water vapor amounts by taking into account that under such conditions the SDLW and water vapor amount are nearly linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths available from the Cloud and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) product to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing and will be incorporated as one of the CERES empirical surface radiation algorithms.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.
2005-01-01
The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
Improved performance thermal barrier coatings
NASA Technical Reports Server (NTRS)
Levine, S. R.; Miller, R. A.; Stecura, S.
1983-01-01
Thermal barrier coatings offer an attractive approach to improving the durability and efficiency of the hot section of heat engines. The coatings typically consist of an inner alloy bond coating about 0.01 cm thick resistant to oxidation and hot corrosion and an outer ceramic layer, usually a stabilized zirconia, 0.01-0.05 cm thick. Here, the materials, thermomechanical stress, and hot corrosion problems associated with thermal barrier coatings are reviewed along with the capabilities and limitations of current technology. The coatings discussed include ZrO2-Y2O3/NiCrAlY, ZrO2-Y2O3/NiCoCrAlY, ZrO2-MgO/NiCoCrAlY, CaO-SiO2/Co-Cr-Al-Y, and CaO-SiO2/NiCrAlY systems. It is emphasized that the performance of thermal barrier coatings is governed by many complex and interrelated factors, so that optimization of these coatings always involves certain tradeoffs.
Ensemble of classifiers to improve accuracy of the CLIP4 machine-learning algorithm
NASA Astrophysics Data System (ADS)
Kurgan, Lukasz; Cios, Krzysztof J.
2002-03-01
Machine learning, one of the data mining and knowledge discovery tools, addresses automated extraction of knowledge from data, expressed in the form of production rules. The paper describes a method for improving accuracy of rules generated by inductive machine learning algorithm by generating the ensemble of classifiers. It generates multiple classifiers using the CLIP4 algorithm and combines them using a voting scheme. The generation of a set of different classifiers is performed by injecting controlled randomness into the learning algorithm, but without modifying the training data set. Our method is based on the characteristic properties of the CLIP4 algorithm. The case study of the SPECT heart image analysis system is used as an example where improving accuracy is very important. Benchmarking results on other well-known machine learning datasets, and comparison with an algorithm that uses boosting technique to improve its accuracy are also presented. The proposed method always improves the accuracy of the results when compared with the accuracy of a single classifier generated by the CLIP4 algorithm, as opposed to using boosting. The obtained results are comparable with other state-of-the-art machine learning algorithms.
An Improved Wind Speed Retrieval Algorithm For The CYGNSS Mission
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Clarizia, M. P.
2015-12-01
The NASA spaceborne Cyclone Global Navigation Satellite System (CYGNSS) mission is a constellation of 8 microsatellites focused on tropical cyclone (TC) inner core process studies. CYGNSS will be launched in October 2016, and will use GPS-Reflectometry (GPS-R) to measure ocean surface wind speed in all precipitating conditions, and with sufficient frequency to resolve genesis and rapid intensification. Here we present a modified and improved version of the current baseline Level 2 (L2) wind speed retrieval algorithm designed for CYGNSS. An overview of the current approach is first presented, which makes use of two different observables computed from 1-second Level 1b (L1b) delay-Doppler Maps (DDMs) of radar cross section. The first observable, the Delay-Doppler Map Average (DDMA), is the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second, the Leading Edge Slope (LES), is the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of time delays and Doppler frequencies to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km. In the current approach, the relationship between the observable value and the surface winds is described by an empirical Geophysical Model Function (GMF) that is characterized by a very high slope in the high wind regime, for both DDMA and LES observables, causing large errors in the retrieval at high winds. A simple mathematical modification of these observables is proposed, which linearizes the relationship between ocean surface roughness and the observables. This significantly reduces the non-linearity present in the GMF that relate the observables to the wind speed, and reduces the root-mean square error between true and retrieved winds, particularly in the high wind
Performance study of LMS based adaptive algorithms for unknown system identification
NASA Astrophysics Data System (ADS)
Javed, Shazia; Ahmad, Noor Atinah
2014-07-01
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
Performance study of LMS based adaptive algorithms for unknown system identification
Javed, Shazia; Ahmad, Noor Atinah
2014-07-10
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
Performance characterization of a combined material identification and screening algorithm
NASA Astrophysics Data System (ADS)
Green, Robert L.; Hargreaves, Michael D.; Gardner, Craig M.
2013-05-01
Portable analytical devices based on a gamut of technologies (Infrared, Raman, X-Ray Fluorescence, Mass Spectrometry, etc.) are now widely available. These tools have seen increasing adoption for field-based assessment by diverse users including military, emergency response, and law enforcement. Frequently, end-users of portable devices are non-scientists who rely on embedded software and the associated algorithms to convert collected data into actionable information. Two classes of problems commonly encountered in field applications are identification and screening. Identification algorithms are designed to scour a library of known materials and determine whether the unknown measurement is consistent with a stored response (or combination of stored responses). Such algorithms can be used to identify a material from many thousands of possible candidates. Screening algorithms evaluate whether at least a subset of features in an unknown measurement correspond to one or more specific substances of interest and are typically configured to detect from a small list potential target analytes. Thus, screening algorithms are much less broadly applicable than identification algorithms; however, they typically provide higher detection rates which makes them attractive for specific applications such as chemical warfare agent or narcotics detection. This paper will present an overview and performance characterization of a combined identification/screening algorithm that has recently been developed. It will be shown that the combined algorithm provides enhanced detection capability more typical of screening algorithms while maintaining a broad identification capability. Additionally, we will highlight how this approach can enable users to incorporate situational awareness during a response.
Bayesian fusion algorithm for improved oscillometric blood pressure estimation.
Forouzanfar, Mohamad; Dajani, Hilmi R; Groza, Voicu Z; Bolic, Miodrag; Rajan, Sreeraman; Batkin, Izmail
2016-11-01
A variety of oscillometric algorithms have been recently proposed in the literature for estimation of blood pressure (BP). However, these algorithms possess specific strengths and weaknesses that should be taken into account before selecting the most appropriate one. In this paper, we propose a fusion method to exploit the advantages of the oscillometric algorithms and circumvent their limitations. The proposed fusion method is based on the computation of the weighted arithmetic mean of the oscillometric algorithms estimates, and the weights are obtained using a Bayesian approach by minimizing the mean square error. The proposed approach is used to fuse four different oscillometric blood pressure estimation algorithms. The performance of the proposed method is evaluated on a pilot dataset of 150 oscillometric recordings from 10 subjects. It is found that the mean error and standard deviation of error are reduced relative to the individual estimation algorithms by up to 7 mmHg and 3 mmHg in estimation of systolic pressure, respectively, and by up to 2 mmHg and 3 mmHg in estimation of diastolic pressure, respectively.
Improved document image segmentation algorithm using multiresolution morphology
NASA Astrophysics Data System (ADS)
Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.
2011-01-01
Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.
Liu, Wenyuan; Wang, Chunlei; Wang, Baowen; Wang, Changwu
2014-02-01
Cancer gene expression data have the characteristics of high dimensionalities and small samples so it is necessary to perform dimensionality reduction of the data. Traditional linear dimensionality reduction approaches can not find the nonlinear relationship between the data points. In addition, they have bad dimensionality reduction results. Therefore a multiple weights locally linear embedding (LLE) algorithm with improved distance is introduced to perform dimensionality reduction in this study. We adopted an improved distance to calculate the neighbor of each data point in this algorithm, and then we introduced multiple sets of linearly independent local weight vectors for each neighbor, and obtained the embedding results in the low-dimensional space of the high-dimensional data by minimizing the reconstruction error. Experimental result showed that the multiple weights LLE algorithm with improved distance had good dimensionality reduction functions of the cancer gene expression data.
On improving linear solver performance: a block variant of GMRES
Baker, A H; Dennis, J M; Jessup, E R
2004-05-10
The increasing gap between processor performance and memory access time warrants the re-examination of data movement in iterative linear solver algorithms. For this reason, we explore and establish the feasibility of modifying a standard iterative linear solver algorithm in a manner that reduces the movement of data through memory. In particular, we present an alternative to the restarted GMRES algorithm for solving a single right-hand side linear system Ax = b based on solving the block linear system AX = B. Algorithm performance, i.e. time to solution, is improved by using the matrix A in operations on groups of vectors. Experimental results demonstrate the importance of implementation choices on data movement as well as the effectiveness of the new method on a variety of problems from different application areas.
Getting Results: Improving Process & People Performance.
ERIC Educational Resources Information Center
Finnegan, Gregory
2000-01-01
Discusses the application of performance technology to improve the performance of people and processes and shows ways to extend the influence of the performance analyst to investigate and improve core processes within an organization. Describes the performance analysis model and presents four case studies based on hospital performance issues. (LRW)
Efficient Improvement of Silage Additives by Using Genetic Algorithms
Davies, Zoe S.; Gilbert, Richard J.; Merry, Roger J.; Kell, Douglas B.; Theodorou, Michael K.; Griffith, Gareth W.
2000-01-01
The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e., no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a “fitness” value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a “cost” element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage
Efficient improvement of silage additives by using genetic algorithms.
Davies, Z S; Gilbert, R J; Merry, R J; Kell, D B; Theodorou, M K; Griffith, G W
2000-04-01
The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e. , no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a "fitness" value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a "cost" element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage fermentation. We
An improved image compression algorithm using binary space partition scheme and geometric wavelets.
Chopra, Garima; Pal, A K
2011-01-01
Geometric wavelet is a recent development in the field of multivariate nonlinear piecewise polynomials approximation. The present study improves the geometric wavelet (GW) image coding method by using the slope intercept representation of the straight line in the binary space partition scheme. The performance of the proposed algorithm is compared with the wavelet transform-based compression methods such as the embedded zerotree wavelet (EZW), the set partitioning in hierarchical trees (SPIHT) and the embedded block coding with optimized truncation (EBCOT), and other recently developed "sparse geometric representation" based compression algorithms. The proposed image compression algorithm outperforms the EZW, the Bandelets and the GW algorithm. The presented algorithm reports a gain of 0.22 dB over the GW method at the compression ratio of 64 for the Cameraman test image.
Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm
NASA Technical Reports Server (NTRS)
Riggs, George; Hall, Dorothy K.
2012-01-01
The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).
An improved particle swarm optimization algorithm for reliability problems.
Wu, Peifeng; Gao, Liqun; Zou, Dexuan; Li, Steven
2011-01-01
An improved particle swarm optimization (IPSO) algorithm is proposed to solve reliability problems in this paper. The IPSO designs two position updating strategies: In the early iterations, each particle flies and searches according to its own best experience with a large probability; in the late iterations, each particle flies and searches according to the fling experience of the most successful particle with a large probability. In addition, the IPSO introduces a mutation operator after position updating, which can not only prevent the IPSO from trapping into the local optimum, but also enhances its space developing ability. Experimental results show that the proposed algorithm has stronger convergence and stability than the other four particle swarm optimization algorithms on solving reliability problems, and that the solutions obtained by the IPSO are better than the previously reported best-known solutions in the recent literature.
Improving the MODIS Global Snow-Mapping Algorithm
NASA Technical Reports Server (NTRS)
Klein, Andrew G.; Hall, Dorothy K.; Riggs, George A.
1997-01-01
An algorithm (Snowmap) is under development to produce global snow maps at 500 meter resolution on a daily basis using data from the NASA MODIS instrument. MODIS, the Moderate Resolution Imaging Spectroradiometer, will be launched as part of the first Earth Observing System (EOS) platform in 1998. Snowmap is a fully automated, computationally frugal algorithm that will be ready to implement at launch. Forests represent a major limitation to the global mapping of snow cover as a forest canopy both obscures and shadows the snow underneath. Landsat Thematic Mapper (TM) and MODIS Airborne Simulator (MAS) data are used to investigate the changes in reflectance that occur as a forest stand becomes snow covered and to propose changes to the Snowmap algorithm that will improve snow classification accuracy forested areas.
An improved FCM medical image segmentation algorithm based on MMTD.
Zhou, Ningning; Yang, Tingting; Zhang, Shaobai
2014-01-01
Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD) and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.
Vyas, Bhargav Y; Das, Biswarup; Maheshwari, Rudra Prakash
2016-08-01
This paper presents the Chebyshev neural network (ChNN) as an improved artificial intelligence technique for power system protection studies and examines the performances of two ChNN learning algorithms for fault classification of series compensated transmission line. The training algorithms are least-square Levenberg-Marquardt (LSLM) and recursive least-square algorithm with forgetting factor (RLSFF). The performances of these algorithms are assessed based on their generalization capability in relating the fault current parameters with an event of fault in the transmission line. The proposed algorithm is fast in response as it utilizes postfault samples of three phase currents measured at the relaying end corresponding to half-cycle duration only. After being trained with only a small part of the generated fault data, the algorithms have been tested over a large number of fault cases with wide variation of system and fault parameters. Based on the studies carried out in this paper, it has been found that although the RLSFF algorithm is faster for training the ChNN in the fault classification application for series compensated transmission lines, the LSLM algorithm has the best accuracy in testing. The results prove that the proposed ChNN-based method is accurate, fast, easy to design, and immune to the level of compensations. Thus, it is suitable for digital relaying applications.
Improved mine blast algorithm for optimal cost design of water distribution systems
NASA Astrophysics Data System (ADS)
Sadollah, Ali; Guen Yoo, Do; Kim, Joong Hoon
2015-12-01
The design of water distribution systems is a large class of combinatorial, nonlinear optimization problems with complex constraints such as conservation of mass and energy equations. Since feasible solutions are often extremely complex, traditional optimization techniques are insufficient. Recently, metaheuristic algorithms have been applied to this class of problems because they are highly efficient. In this article, a recently developed optimizer called the mine blast algorithm (MBA) is considered. The MBA is improved and coupled with the hydraulic simulator EPANET to find the optimal cost design for water distribution systems. The performance of the improved mine blast algorithm (IMBA) is demonstrated using the well-known Hanoi, New York tunnels and Balerma benchmark networks. Optimization results obtained using IMBA are compared to those using MBA and other optimizers in terms of their minimum construction costs and convergence rates. For the complex Balerma network, IMBA offers the cheapest network design compared to other optimization algorithms.
A strictly improving Phase 1 algorithm using least-squares subproblems
Leichner, S.A.; Dantzig, G.B.; Davis, J.W.
1992-04-01
Although the simplex method`s performance in solving linear programming problems is usually quite good, it does not guarantee strict improvement at each iteration on degenerate problems. Instead of trying to recognize and avoid degenerate steps in the simplex method, we have developed a new Phase I algorithm that is completely impervious to degeneracy, with strict improvement attained at each iteration. It is also noted that the new Phase I algorithm is closely related to a number of existing algorithms. When tested on the 30 smallest NETLIB linear programming test problems, the computational results for the new Phase I algorithm were almost 3.5 times faster than the simplex method; on some problems, it was over 10 times faster.
A strictly improving Phase 1 algorithm using least-squares subproblems
Leichner, S.A.; Dantzig, G.B.; Davis, J.W.
1992-04-01
Although the simplex method's performance in solving linear programming problems is usually quite good, it does not guarantee strict improvement at each iteration on degenerate problems. Instead of trying to recognize and avoid degenerate steps in the simplex method, we have developed a new Phase I algorithm that is completely impervious to degeneracy, with strict improvement attained at each iteration. It is also noted that the new Phase I algorithm is closely related to a number of existing algorithms. When tested on the 30 smallest NETLIB linear programming test problems, the computational results for the new Phase I algorithm were almost 3.5 times faster than the simplex method; on some problems, it was over 10 times faster.
RESEARCH NOTE An improved leap-frog rotational algorithm
NASA Astrophysics Data System (ADS)
Svanberg, Marcus
A new implicit leap-frog algorithm for the integration of rigid body rotational motion is presented. Orientations are represented by quaternions and the algorithm is compared with three existing leap-frog integrators, by solving the classical equations of motion for a (H O) cluster. We find that the present scheme exhibits superior energy conservation properties, especially for integration times of about 10 ps or longer. Contrary to previous algorithms, the present one behaves as a true Verlet integrator, where the degree of energy conservation is independent of the length of the trajectory. The method is similar to the implicit scheme proposed by D. Fincham (1992, Molec. Simulation, 8, 165), with the difference that selfconsistent quaternions, as well as their time derivatives, are obtained by iteration at the mid-timestep instead of after the complete timestep. A slight modification of either the explicit or the implicit leap-frog rotational algorithm in existing molecular dynamics programs may thus lead to significant improvements of energy conservation, as long as this property is not dominated by other sources such as errors due to potential truncation. It is demonstrated that the present algorithm can be used with timesteps as large as 4 fs in water simulations, and still produce stable trajectories of 10 ns duration. 2 20
Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering
Zheng, Ming; Sun, Ying; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang
2012-01-01
Background Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. Method An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Results Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved. PMID:23173043
Improving Performance in a Nuclear Cardiology Department
ERIC Educational Resources Information Center
LaFleur, Doug; Smalley, Karolyn; Austin, John
2005-01-01
Improving performance in the medical industry is an area that is ideally suited for the tools advocated by the International Society of Performance Improvement (ISPI). This paper describes an application of the tools that have been developed by Dale Brethower and Geary Rummler, two pillars of the performance improvement industry. It allows the…
An Improved Neutron Transport Algorithm for Space Radiation
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.
2000-01-01
A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.
Improved Contact Algorithms for Implicit FE Simulation of Sheet Forming
NASA Astrophysics Data System (ADS)
Zhuang, S.; Lee, M. G.; Keum, Y. T.; Wagoner, R. H.
2007-05-01
Implicit finite element simulations of sheet forming processes do not always converge, particularly for complex tool geometries and rapidly changing contact. The SHEET-3 program exhibits remarkable stability and strong convergence by use of its special N-CFS algorithm and a sheet normal defined by the mesh, but these features alone do not always guarantee convergence and accuracy. An improved contact capability within the N-CFS algorithm is formulated taking into account sheet thickness within the framework of shell elements. Two imaginary surfaces offset from the mid-plane of shell elements are implemented along the mesh normal direction. An efficient contact searching algorithm based on the mesh-patch tool description is formulated along the mesh normal direction. The contact search includes a general global searching procedure and a new local searching procedure enforcing the contact condition along the mesh normal direction. The processes of unconstrained cylindrical bending and drawing through a drawbead are simulated to verify the accuracy and convergence of the improved contact algorithm.
NASA Astrophysics Data System (ADS)
Goswami, D.; Chakraborty, S.
2014-11-01
Laser machining is a promising non-contact process for effective machining of difficult-to-process advanced engineering materials. Increasing interest in the use of lasers for various machining operations can be attributed to its several unique advantages, like high productivity, non-contact processing, elimination of finishing operations, adaptability to automation, reduced processing cost, improved product quality, greater material utilization, minimum heat-affected zone and green manufacturing. To achieve the best desired machining performance and high quality characteristics of the machined components, it is extremely important to determine the optimal values of the laser machining process parameters. In this paper, fireworks algorithm and cuckoo search (CS) algorithm are applied for single as well as multi-response optimization of two laser machining processes. It is observed that although almost similar solutions are obtained for both these algorithms, CS algorithm outperforms fireworks algorithm with respect to average computation time, convergence rate and performance consistency.
Liu, Qianshun; Bai, Jian; Yu, Feihong
2014-11-10
In an effort to improve compressive sensing and spare signal reconstruction by way of the backtracking-based adaptive orthogonal matching pursuit (BAOMP), a new sparse coding algorithm called improved adaptive backtracking-based OMP (ABOMP) is proposed in this study. Many aspects have been improved compared to the original BAOMP method, including replacing the fixed threshold with an adaptive one, adding residual feedback and support set verification, and others. Because of these ameliorations, the proposed algorithm can more precisely choose the atoms. By adding the adaptive step-size mechanism, it requires much less iteration and thus executes more efficiently. Additionally, a simple but effective contrast enhancement method is also adopted to further improve the denoising results and visual effect. By combining the IABOMP algorithm with the state-of-art dictionary learning algorithm K-SVD, the proposed algorithm achieves better denoising effects for astronomical images. Numerous experimental results show that the proposed algorithm performs successfully and effectively on Gaussian and Poisson noise removal.
Performance Pay Path to Improvement
ERIC Educational Resources Information Center
Gratz, Donald B.
2011-01-01
The primary goal of performance pay for the past decade has been higher test scores, and the most prominent strategy has been to increase teacher performance through financial incentives. If teachers are rewarded for success, according to this logic, they will try harder. If they try harder, more children will achieve higher test scores. The…
Hu, Ruiqiang; Li, Chengwei
2015-01-01
Automated closed-loop insulin infusion therapy has been studied for many years. In closed-loop system, the control algorithm is the key technique of precise insulin infusion. The control algorithm needs to be designed and validated. In this paper, an improved PID algorithm based on insulin-on-board estimate is proposed and computer simulations are done using a combinational mathematical model of the dynamics of blood glucose-insulin regulation in the blood system. The simulation results demonstrate that the improved PID algorithm can perform well in different carbohydrate ingestion and different insulin sensitivity situations. Compared with the traditional PID algorithm, the control performance is improved obviously and hypoglycemia can be avoided. To verify the effectiveness of the proposed control algorithm, in silico testing is done using the UVa/Padova virtual patient software.
NASA Technical Reports Server (NTRS)
Lawton, Pat
2004-01-01
The objective of this work was to support the design of improved IUE NEWSIPS high dispersion extraction algorithms. The purpose of this work was to evaluate use of the Linearized Image (LIHI) file versus the Re-Sampled Image (SIHI) file, evaluate various extraction, and design algorithms for evaluation of IUE High Dispersion spectra. It was concluded the use of the Re-Sampled Image (SIHI) file was acceptable. Since the Gaussian profile worked well for the core and the Lorentzian profile worked well for the wings, the Voigt profile was chosen for use in the extraction algorithm. It was found that the gamma and sigma parameters varied significantly across the detector, so gamma and sigma masks for the SWP detector were developed. Extraction code was written.
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm
Yang, Zhang; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.
Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.
Spatial Modulation Improves Performance in CTIS
NASA Technical Reports Server (NTRS)
Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.
2009-01-01
Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of
NASA Astrophysics Data System (ADS)
Hu, Hongda; Shu, Hong
2015-05-01
Heavy computation limits the use of Kriging interpolation methods in many real-time applications, especially with the ever-increasing problem size. Many researchers have realized that parallel processing techniques are critical to fully exploit computational resources and feasibly solve computation-intensive problems like Kriging. Much research has addressed the parallelization of traditional approach to Kriging, but this computation-intensive procedure may not be suitable for high-resolution interpolation of spatial data. On the basis of a more effective serial approach, we propose an improved coarse-grained parallel algorithm to accelerate ordinary Kriging interpolation. In particular, the interpolation task of each unobserved point is considered as a basic parallel unit. To reduce time complexity and memory consumption, the large right hand side matrix in the Kriging linear system is transformed and fixed at only two columns and therefore no longer directly relevant to the number of unobserved points. The MPI (Message Passing Interface) model is employed to implement our parallel programs in a homogeneous distributed memory system. Experimentally, the improved parallel algorithm performs better than the traditional one in spatial interpolation of annual average precipitation in Victoria, Australia. For example, when the number of processors is 24, the improved algorithm keeps speed-up at 20.8 while the speed-up of the traditional algorithm only reaches 9.3. Likewise, the weak scaling efficiency of the improved algorithm is nearly 90% while that of the traditional algorithm almost drops to 40% with 16 processors. Experimental results also demonstrate that the performance of the improved algorithm is enhanced by increasing the problem size.
Binocular self-calibration performed via adaptive genetic algorithm based on laser line imaging
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.; Mejía Alanís, Francisco Carlos
2016-07-01
An accurate technique to perform binocular self-calibration by means of an adaptive genetic algorithm based on a laser line is presented. In this calibration, the genetic algorithm computes the vision parameters through simulated binary crossover (SBX). To carry it out, the genetic algorithm constructs an objective function from the binocular geometry of the laser line projection. Then, the SBX minimizes the objective function via chromosomes recombination. In this algorithm, the adaptive procedure determines the search space via line position to obtain the minimum convergence. Thus, the chromosomes of vision parameters provide the minimization. The approach of the proposed adaptive genetic algorithm is to calibrate and recalibrate the binocular setup without references and physical measurements. This procedure leads to improve the traditional genetic algorithms, which calibrate the vision parameters by means of references and an unknown search space. It is because the proposed adaptive algorithm avoids errors produced by the missing of references. Additionally, the three-dimensional vision is carried out based on the laser line position and vision parameters. The contribution of the proposed algorithm is corroborated by an evaluation of accuracy of binocular calibration, which is performed via traditional genetic algorithms.
NASA Astrophysics Data System (ADS)
Das, B.; Wilson, M.; Divakarla, M. G.; Chen, W.; Barnet, C.; Wolf, W.
2013-05-01
Algorithm Development Library (ADL) is a framework that mimics the operational system IDPS (Interface Data Processing Segment) that is currently being used to process data from instruments aboard Suomi National Polar-orbiting Partnership (S-NPP) satellite. The satellite was launched successfully in October 2011. The Cross-track Infrared and Microwave Sounder Suite (CrIMSS) consists of the Advanced Technology Microwave Sounder (ATMS) and Cross-track Infrared Sounder (CrIS) instruments that are on-board of S-NPP. These instruments will also be on-board of JPSS (Joint Polar Satellite System) that will be launched in early 2017. The primary products of the CrIMSS Environmental Data Record (EDR) include global atmospheric vertical temperature, moisture, and pressure profiles (AVTP, AVMP and AVPP) and Ozone IP (Intermediate Product from CrIS radiances). Several algorithm updates have recently been proposed by CrIMSS scientists that include fixes to the handling of forward modeling errors, a more conservative identification of clear scenes, indexing corrections for daytime products, and relaxed constraints between surface temperature and air temperature for daytime land scenes. We have integrated these improvements into the ADL framework. This work compares the results from ADL emulation of future IDPS system incorporating all the suggested algorithm updates with the current official processing results by qualitative and quantitative evaluations. The results prove these algorithm updates improve science product quality.
Improving Reading Performances through Hypnosis.
ERIC Educational Resources Information Center
Fillmer, H. Thompson; And Others
A study was undertaken to investigate the effects of one hypnotic session on the reading improvement of high-risk college students with low aptitude scores and histories of failure in academic situations. The 27 students in the experimental group participated in a one-hour hypnosis session in which they were given a procedure to follow for…
NASA Astrophysics Data System (ADS)
Zhu, Bin; Fan, Xiang; Ma, Dong-hui; Cheng, Zheng-dong
2009-07-01
The desire to maximize target detection range focuses attention on algorithms for detecting and tracking point targets. However, point target detection and tracking is a challenging task for two difficulties: the one is targets occupying only a few pixels or less in the complex noise and background clutter; the other is the requirement of computational load for real-time applications. Temporal signal processing algorithms offer superior clutter rejection to that of the standard spatial processing approaches. In this paper, the traditional single frame algorithm based on the background prediction is improved to consecutive multi-frames exponentially weighted recursive least squared (EWRLS) algorithm. Farther, the dual solution of EWRLS (DEWLS) is deduced to reduce the computational burden. DEWLS algorithm only uses the inner product of the points pair in training set. The predict result is given directly without compute any middle variable. Experimental results show that the RLS filter can largely increase the signal to noise ratio (SNR) of images; it has the best detection performance than other mentioned algorithms; moving targets can be detected within 2 or 3 frames with lower false alarm. Moreover, whit the dual solution improvement, the computational efficiency is enhanced over 41% to the EWRLS algorithm.
Can search algorithms save large-scale automatic performance tuning?
Balaprakash, P.; Wild, S. M.; Hovland, P. D.
2011-01-01
Empirical performance optimization of computer codes using autotuners has received significant attention in recent years. Given the increased complexity of computer architectures and scientific codes, evaluating all possible code variants is prohibitively expensive for all but the simplest kernels. One way for autotuners to overcome this hurdle is through use of a search algorithm that finds high-performing code variants while examining relatively few variants. In this paper we examine the search problem in autotuning from a mathematical optimization perspective. As an illustration of the power and limitations of this optimization, we conduct an experimental study of several optimization algorithms on a number of linear algebra kernel codes. We find that the algorithms considered obtain performance gains similar to the optimal ones found by complete enumeration or by large random searches but in a tiny fraction of the computation time.
Heat Acclimation Improves Exercise Performance
2010-01-01
environments. Twelve trained cyclists performed tests of maximal aerobic power ( VO2max ), time-trial performance, and lactate threshold, in both cool [13...C, 30% relative humidity (RH)] and hot (38°C, 30% RH) environments before and after a 10-day heat acclimation (~50% VO2max in 40°C) program. The hot...and cool condition VO2max and lactate threshold tests were both preceded by either warm (41° C) water or thermoneutral (34°C) water immersion to
Kidney segmentation in CT sequences using SKFCM and improved GrowCut algorithm
2015-01-01
Background Organ segmentation is an important step in computer-aided diagnosis and pathology detection. Accurate kidney segmentation in abdominal computed tomography (CT) sequences is an essential and crucial task for surgical planning and navigation in kidney tumor ablation. However, kidney segmentation in CT is a substantially challenging work because the intensity values of kidney parenchyma are similar to those of adjacent structures. Results In this paper, a coarse-to-fine method was applied to segment kidney from CT images, which consists two stages including rough segmentation and refined segmentation. The rough segmentation is based on a kernel fuzzy C-means algorithm with spatial information (SKFCM) algorithm and the refined segmentation is implemented with improved GrowCut (IGC) algorithm. The SKFCM algorithm introduces a kernel function and spatial constraint into fuzzy c-means clustering (FCM) algorithm. The IGC algorithm makes good use of the continuity of CT sequences in space which can automatically generate the seed labels and improve the efficiency of segmentation. The experimental results performed on the whole dataset of abdominal CT images have shown that the proposed method is accurate and efficient. The method provides a sensitivity of 95.46% with specificity of 99.82% and performs better than other related methods. Conclusions Our method achieves high accuracy in kidney segmentation and considerably reduces the time and labor required for contour delineation. In addition, the method can be expanded to 3D segmentation directly without modification. PMID:26356850
Improved zerotree coding algorithm for wavelet image compression
NASA Astrophysics Data System (ADS)
Chen, Jun; Li, Yunsong; Wu, Chengke
2000-12-01
A listless minimum zerotree coding algorithm based on the fast lifting wavelet transform with lower memory requirement and higher compression performance is presented in this paper. Most state-of-the-art image compression techniques based on wavelet coefficients, such as EZW and SPIHT, exploit the dependency between the subbands in a wavelet transformed image. We propose a minimum zerotree of wavelet coefficients which exploits the dependency not only between the coarser and the finer subbands but also within the lowest frequency subband. And a ne listless significance map coding algorithm based on the minimum zerotree, using new flag maps and new scanning order different form Wen-Kuo Lin et al. LZC, is also proposed. A comparison reveals that the PSNR results of LMZC are higher than those of LZC, and the compression performance of LMZC outperforms that of SPIHT in terms of hard implementation.
Improved performance in NASTRAN (R)
NASA Technical Reports Server (NTRS)
Chan, Gordon C.
1989-01-01
Three areas of improvement in COSMIC/NASTRAN, 1989 release, were incorporated recently that make the analysis program run faster on large problems. Actual log files and actual timings on a few test samples that were run on IBM, CDC, VAX, and CRAY computers were compiled. The speed improvement is proportional to the problem size and number of continuation cards. Vectorizing certain operations in BANDIT, makes BANDIT run twice as fast in some large problems using structural elements with many node points. BANDIT is a built-in NASTRAN processor that optimizes the structural matrix bandwidth. The VAX matrix packing routine BLDPK was modified so that it is now packing a column of a matrix 3 to 9 times faster. The denser and bigger the matrix, the greater is the speed improvement. This improvement makes a host of routines and modules that involve matrix operation run significantly faster, and saves disc space for dense matrices. A UNIX version, converted from 1988 COSMIC/NASTRAN, was tested successfully on a Silicon Graphics computer using the UNIX V Operating System, with Berkeley 4.3 Extensions. The Utility Modules INPUTT5 and OUTPUT5 were expanded to handle table data, as well as matrices. Both INPUTT5 and OUTPUT5 are general input/output modules that read and write FORTRAN files with or without format. More user informative messages are echoed from PARAMR, PARAMD, and SCALAR modules to ensure proper data values and data types being handled. Two new Utility Modules, GINOFILE and DATABASE, were written for the 1989 release. Seven rigid elements are added to COSMIC/NASTRAN. They are: CRROD, CRBAR, CRTRPLT, CRBE1, CRBE2, CRBE3, and CRSPLINE.
Performance evaluation of image processing algorithms on the GPU.
Castaño-Díez, Daniel; Moser, Dominik; Schoenegger, Andreas; Pruggnaller, Sabine; Frangakis, Achilleas S
2008-10-01
The graphics processing unit (GPU), which originally was used exclusively for visualization purposes, has evolved into an extremely powerful co-processor. In the meanwhile, through the development of elaborate interfaces, the GPU can be used to process data and deal with computationally intensive applications. The speed-up factors attained compared to the central processing unit (CPU) are dependent on the particular application, as the GPU architecture gives the best performance for algorithms that exhibit high data parallelism and high arithmetic intensity. Here, we evaluate the performance of the GPU on a number of common algorithms used for three-dimensional image processing. The algorithms were developed on a new software platform called "CUDA", which allows a direct translation from C code to the GPU. The implemented algorithms include spatial transformations, real-space and Fourier operations, as well as pattern recognition procedures, reconstruction algorithms and classification procedures. In our implementation, the direct porting of C code in the GPU achieves typical acceleration values in the order of 10-20 times compared to a state-of-the-art conventional processor, but they vary depending on the type of the algorithm. The gained speed-up comes with no additional costs, since the software runs on the GPU of the graphics card of common workstations.
Room for Improvement: Performance Evaluations.
ERIC Educational Resources Information Center
Webb, Gisela
1989-01-01
Describes a performance management approach to library personnel management that stresses communication, clarification of goals, and reinforcement of new practices and behaviors. Each phase of the evaluation process (preparation, rating, administrative review, appraisal interview, and follow-up) and special evaluations to be used in cases of…
2010-01-01
Background Exon arrays provide a way to measure the expression of different isoforms of genes in an organism. Most of the procedures to deal with these arrays are focused on gene expression or on exon expression. Although the only biological analytes that can be properly assigned a concentration are transcripts, there are very few algorithms that focus on them. The reason is that previously developed summarization methods do not work well if applied to transcripts. In addition, gene structure prediction, i.e., the correspondence between probes and novel isoforms, is a field which is still unexplored. Results We have modified and adapted a previous algorithm to take advantage of the special characteristics of the Affymetrix exon arrays. The structure and concentration of transcripts -some of them possibly unknown- in microarray experiments were predicted using this algorithm. Simulations showed that the suggested modifications improved both specificity (SP) and sensitivity (ST) of the predictions. The algorithm was also applied to different real datasets showing its effectiveness and the concordance with PCR validated results. Conclusions The proposed algorithm shows a substantial improvement in the performance over the previous version. This improvement is mainly due to the exploitation of the redundancy of the Affymetrix exon arrays. An R-Package of SPACE with the updated algorithms have been developed and is freely available. PMID:21110835
Preliminary flight evaluation of an engine performance optimization algorithm
NASA Technical Reports Server (NTRS)
Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.
1991-01-01
A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.
Simple algorithms for calculating optical communication performance through turbulence
NASA Astrophysics Data System (ADS)
Shapiro, J. H.; Harney, R. C.
1981-01-01
Propagation through turbulence can impose severe limitations on the performance of atmospheric optical communication links. Previous studies have established quantitative results for turbulence-induced beam spread, angular spread, and scintillation. This paper develops communication-theory results for single-bit and message transmission through turbulence. Programmable calculator algorithms for evaluating these results are given, and used to examine system performance in some realistic scenarios. These algorithms make it possible for the uninitiated communication engineer to rapidly assess the effects of turbulence on an atmospheric optical communication link.
Protein sequence classification with improved extreme learning machine algorithms.
Cao, Jiuwen; Xiong, Lianglin
2014-01-01
Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms.
Improved Polyurethane Storage Tank Performance
2010-12-15
temperature using a color change temperature indicator tape and using an Infrared (IR) pyrometer . Based on the flow of compound during welding, it is...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Seaman Corporation,1000 Venture...congressionally mandated research project was undertaken to study polyurethane coated fabric systems and fabrication processes that are or may be used, in
Human Performance Improvement: Lessons To Be Learned from Quality Improvement.
ERIC Educational Resources Information Center
Hummel, Paul A.
2003-01-01
Discusses quality improvement (QI) and how it can help human performance improvement (HPI). Compares QI and HPI and discusses focusing on products and services; focusing on the customer; using data more effectively; continuous improvement; benchmarking; establishing standards; specialization; and involving the clients. (LRW)
Improvement of Passive Microwave Rainfall Retrieval Algorithm over Mountainous Terrain
NASA Astrophysics Data System (ADS)
Shige, S.; Yamamoto, M.
2015-12-01
The microwave radiometer (MWR) algorithms underestimate heavy rainfall associated with shallow orographic rainfall systems owing to weak ice scattering signatures. Underestimation of the Global Satellite Mapping of Precipitation (GSMaP) MWR has been mitigated by an orographic/nonorographic rainfall classification scheme (Shige et al. 2013, 2015; Taniguchi et al. 2013; Yamamoto and Shige 2015). The orographic/nonorographic rainfall classification scheme is developed on the basis of orographically forced upward vertical motion and the convergence of surface moisture flux estimated from ancillary data. Lookup tables derived from orographic precipitation profiles are used to estimate rainfall for an orographic rainfall pixel, whereas those derived from original precipitation profiles are used to estimate rainfall for a nonorographic rainfall pixel. The orographic/nonorographic rainfall classification scheme has been used by the version of GSMaP products, which are available in near real time (about 4 h after observation) via the Internet (http://sharaku.eorc.jaxa.jp/GSMaP/index.htm). The current version of GSMaP MWR algorithm with the orographic/nonorographic rainfall classification scheme improves rainfall estimation over the entire tropical region, but there is still room for improvement. In this talk, further improvement of orographic rainfall retrievals will be shown.
Performance, Productivity and Continuous Improvement. Symposium.
ERIC Educational Resources Information Center
2002
This document contains four papers from a symposium on performance, productivity, and continuous improvement. "Investigating the Association between Productivity and Quality Performance in Two Manufacturing Settings" (Constantine Kontoghiorghes, Robert Gudgel) summarizes a study that identified the following quality management variables…
Improved SPGD algorithm to avoid local extremum for incoherent beam combining
NASA Astrophysics Data System (ADS)
Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Wang, Tingfeng; Guo, Jin
2017-01-01
The stochastic parallel gradient descent (SPGD) algorithm and the fast steering mirrors (FSM) are applied for incoherent beam combining in this paper. An equation is derived to calculate the wavefront reflected from the FSM under certain control voltages and the relationship between the strength of random disturbances and the combing efficiency is discussed via simulations, indicating that the combining efficiency is inversely proportional to the square of the strength of disturbance. The maximum value of the acceptable disturbance can be determined though the fitting curve which presents an instructional way to reduce the disturbance in advance. Besides, the SPGD algorithm is improved to overcome the weakness of tending to be trapped in the local extremum in incoherent beam combining. In the proposed algorithm, pattern recognition is used to check whether the algorithm is trapped and an "additional move" can be applied to get out of local extremum. The results of simulations show that the proposed algorithm can improve the performance of the incoherent beam combining. Comparative simulations are conducted where the value of evaluation function is increased about 60% compared to the conventional algorithm under the same conditions. The threshold of disturbance also increases about 15% when the accepted value of evaluation function set to 0.8 in the normalized form showing the feasibility of the method. Also, statistical data shows the proposed method depends less on the gain coefficient.
Jimenez, Edward Steven,
2013-09-01
The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.
Liver Segmentation Based on Snakes Model and Improved GrowCut Algorithm in Abdominal CT Image
He, Baochun; Ma, Zhiyuan; Zong, Mao; Zhou, Xiangrong; Fujita, Hiroshi
2013-01-01
A novel method based on Snakes Model and GrowCut algorithm is proposed to segment liver region in abdominal CT images. First, according to the traditional GrowCut method, a pretreatment process using K-means algorithm is conducted to reduce the running time. Then, the segmentation result of our improved GrowCut approach is used as an initial contour for the future precise segmentation based on Snakes model. At last, several experiments are carried out to demonstrate the performance of our proposed approach and some comparisons are conducted between the traditional GrowCut algorithm. Experimental results show that the improved approach not only has a better robustness and precision but also is more efficient than the traditional GrowCut method. PMID:24066017
Scheduling Algorithm for Improving Lift (SAIL): Phase 1, documentation
Hawthorne, J.E.; MeLaren, R.A.
1988-07-01
The Military Sealift Command, a component of the United States Transportational Command, is responsible for the Sealift of military personnel and material during a crisis. Conceptual plans for these complex moves, called ''deliberate plans,'' are continually being prepared. A computer-based scheduling system, the Sealift Strategic Analysis Subsystem (SEASTRAT), is under development for assisting on the production of these plans. The ship scheduling portion of this system, the Scheduling Algorithm foe Improving Lift (SAIL), combines linear optimization and heuristic methods to determine ship routes and cargo loadings which honor a variety of complex operational constraints. 13 refs., 2 figs., 2 tabs.
Gear Performance Improved by Coating
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
2004-01-01
run until either surface fatigue occurred or 300 million stress cycles were completed. Tests were run using either a pair of uncoated gears or a pair of coated gears (coated gears mated with uncoated gears were not evaluated). The fatigue test results, shown on Weibull coordinates in the graph, demonstrate that the coating provided substantially longer fatigue lives even though some of the coated gears endured larger stresses. The increase in fatigue life was a factor of about 5 and the statistical confidence for the improvement is high (greater than 99 percent). Examination of the tested gears revealed substantial reductions of total wear for coated gears in comparison to uncoated gears. The coated gear surface topography changed with running, with localized areas of the tooth surface becoming smoother with running. Theories explaining how coatings can extend gear fatigue lives are research topics for coating, tribology, and fatigue specialists. This work was done as a partnership between NASA, the U.S. Army Research Laboratory, United Technologies Research Corporation, and Sikorsky Aircraft.
Improved OSIRIS NO2 retrieval algorithm: description and validation
NASA Astrophysics Data System (ADS)
Sioris, Christopher E.; Rieger, Landon A.; Lloyd, Nicholas D.; Bourassa, Adam E.; Roth, Chris Z.; Degenstein, Douglas A.; Camy-Peyret, Claude; Pfeilsticker, Klaus; Berthet, Gwenaël; Catoire, Valéry; Goutail, Florence; Pommereau, Jean-Pierre; McLinden, Chris A.
2017-03-01
A new retrieval algorithm for OSIRIS (Optical Spectrograph and Infrared Imager System) nitrogen dioxide (NO2) profiles is described and validated. The algorithm relies on spectral fitting to obtain slant column densities of NO2, followed by inversion using an algebraic reconstruction technique and the SaskTran spherical radiative transfer model (RTM) to obtain vertical profiles of local number density. The validation covers different latitudes (tropical to polar), years (2002-2012), all seasons (winter, spring, summer, and autumn), different concentrations of nitrogen dioxide (from denoxified polar vortex to polar summer), a range of solar zenith angles (68.6-90.5°), and altitudes between 10.5 and 39 km, thereby covering the full retrieval range of a typical OSIRIS NO2 profile. The use of a larger spectral fitting window than used in previous retrievals reduces retrieval uncertainties and the scatter in the retrieved profiles due to noisy radiances. Improvements are also demonstrated through the validation in terms of bias reduction at 15-17 km relative to the OSIRIS operational v3.0 algorithm. The diurnal variation of NO2 along the line of sight is included in a fully spherical multiple scattering RTM for the first time. Using this forward model with built-in photochemistry, the scatter of the differences relative to the correlative balloon NO2 profile data is reduced.
An improved sink particle algorithm for SPH simulations
NASA Astrophysics Data System (ADS)
Hubber, D. A.; Walch, S.; Whitworth, A. P.
2013-04-01
Numerical simulations of star formation frequently rely on the implementation of sink particles: (a) to avoid expending computational resource on the detailed internal physics of individual collapsing protostars, (b) to derive mass functions, binary statistics and clustering kinematics (and hence to make comparisons with observation), and (c) to model radiative and mechanical feedback; sink particles are also used in other contexts, for example to represent accreting black holes in galactic nuclei. We present a new algorithm for creating and evolving sink particles in smoothed particle hydrodynamic (SPH) simulations, which appears to represent a significant improvement over existing algorithms - particularly in situations where sinks are introduced after the gas has become optically thick to its own cooling radiation and started to heat up by adiabatic compression. (i) It avoids spurious creation of sinks. (ii) It regulates the accretion of matter on to a sink so as to mitigate non-physical perturbations in the vicinity of the sink. (iii) Sinks accrete matter, but the associated angular momentum is transferred back to the surrounding medium. With the new algorithm - and modulo the need to invoke sufficient resolution to capture the physics preceding sink formation - the properties of sinks formed in simulations are essentially independent of the user-defined parameters of sink creation, or the number of SPH particles used.
An improved algorithm of fiber tractography demonstrates postischemic cerebral reorganization
NASA Astrophysics Data System (ADS)
Liu, Xiao-dong; Lu, Jie; Yao, Li; Li, Kun-cheng; Zhao, Xiao-jie
2008-03-01
In vivo white matter tractography by diffusion tensor imaging (DTI) accurately represents the organizational architecture of white matter in the vicinity of brain lesions and especially ischemic brain. In this study, we suggested an improved fiber tracking algorithm based on TEND, called TENDAS, for tensor deflection with adaptive stepping, which had been introduced a stepping framework for interpreting the algorithm behavior as a function of the tensor shape (linear-shaped or not) and tract history. The propagation direction at each step was given by the deflection vector. TENDAS tractography was used to examine a 17-year-old recovery patient with congenital right hemisphere artery stenosis combining with fMRI. Meaningless picture location was used as spatial working memory task in this study. We detected the shifted functional localization to the contralateral homotypic cortex and more prominent and extensive left-sided parietal and medial frontal cortical activations which were used directly as seed mask for tractography for the reconstruction of individual spatial parietal pathways. Comparing with the TEND algorithms, TENDAS shows smoother and less sharp bending characterization of white matter architecture of the parietal cortex. The results of this preliminary study were twofold. First, TENDAS may provide more adaptability and accuracy in reconstructing certain anatomical features, whereas it is very difficult to verify tractography maps of white matter connectivity in the living human brain. Second, our study indicates that combination of TENDAS and fMRI provide a unique image of functional cortical reorganization and structural modifications of postischemic spatial working memory.
New image compression algorithm based on improved reversible biorthogonal integer wavelet transform
NASA Astrophysics Data System (ADS)
Zhang, Libao; Yu, Xianchuan
2012-10-01
The low computational complexity and high coding efficiency are the most significant requirements for image compression and transmission. Reversible biorthogonal integer wavelet transform (RB-IWT) supports the low computational complexity by lifting scheme (LS) and allows both lossy and lossless decoding using a single bitstream. However, RB-IWT degrades the performances and peak signal noise ratio (PSNR) of the image coding for image compression. In this paper, a new IWT-based compression scheme based on optimal RB-IWT and improved SPECK is presented. In this new algorithm, the scaling parameter of each subband is chosen for optimizing the transform coefficient. During coding, all image coefficients are encoding using simple, efficient quadtree partitioning method. This scheme is similar to the SPECK, but the new method uses a single quadtree partitioning instead of set partitioning and octave band partitioning of original SPECK, which reduces the coding complexity. Experiment results show that the new algorithm not only obtains low computational complexity, but also provides the peak signal-noise ratio (PSNR) performance of lossy coding to be comparable to the SPIHT algorithm using RB-IWT filters, and better than the SPECK algorithm. Additionally, the new algorithm supports both efficiently lossy and lossless compression using a single bitstream. This presented algorithm is valuable for future remote sensing image compression.
Impact of Multiscale Retinex Computation on Performance of Segmentation Algorithms
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.
2004-01-01
Classical segmentation algorithms subdivide an image into its constituent components based upon some metric that defines commonality between pixels. Often, these metrics incorporate some measure of "activity" in the scene, e.g. the amount of detail that is in a region. The Multiscale Retinex with Color Restoration (MSRCR) is a general purpose, non-linear image enhancement algorithm that significantly affects the brightness, contrast and sharpness within an image. In this paper, we will analyze the impact the MSRCR has on segmentation results and performance.
A high-performance FFT algorithm for vector supercomputers
NASA Technical Reports Server (NTRS)
Bailey, David H.
1988-01-01
Many traditional algorithms for computing the fast Fourier transform (FFT) on conventional computers are unacceptable for advanced vector and parallel computers because they involve nonunit, power-of-two memory strides. A practical technique for computing the FFT that avoids all such strides and appears to be near-optimal for a variety of current vector and parallel computers is presented. Performance results of a program based on this technique are given. Notable among these results is that a FORTRAN implementation of this algorithm on the CRAY-2 runs up to 77-percent faster than Cray's assembly-coded library routine.
Performance characterization of the dynamic programming obstacle detection algorithm.
Gandhi, Tarak; Yang, Mau-Tsuen; Kasturi, Rangachar; Camps, Octavia I; Coraor, Lee D; McCandless, Jeffrey
2006-05-01
A computer vision-based system using images from an airborne aircraft can increase flight safety by aiding the pilot to detect obstacles in the flight path so as to avoid mid-air collisions. Such a system fits naturally with the development of an external vision system proposed by NASA for use in high-speed civil transport aircraft with limited cockpit visibility. The detection techniques should provide high detection probability for obstacles that can vary from subpixels to a few pixels in size, while maintaining a low false alarm probability in the presence of noise and severe background clutter. Furthermore, the detection algorithms must be able to report such obstacles in a timely fashion, imposing severe constraints on their execution time. For this purpose, we have implemented a number of algorithms to detect airborne obstacles using image sequences obtained from a camera mounted on an aircraft. This paper describes the methodology used for characterizing the performance of the dynamic programming obstacle detection algorithm and its special cases. The experimental results were obtained using several types of image sequences, with simulated and real backgrounds. The approximate performance of the algorithm is also theoretically derived using principles of statistical analysis in terms of the signal-to-noise ration (SNR) required for the probabilities of false alarms and misdetections to be lower than prespecified values. The theoretical and experimental performance are compared in terms of the required SNR.
Atmospheric turbulence and sensor system effects on biometric algorithm performance
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy
2015-05-01
Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.
A Multifaceted Independent Performance Analysis of Facial Subspace Recognition Algorithms
Bajwa, Usama Ijaz; Taj, Imtiaz Ahmad; Anwar, Muhammad Waqas; Wang, Xuan
2013-01-01
Face recognition has emerged as the fastest growing biometric technology and has expanded a lot in the last few years. Many new algorithms and commercial systems have been proposed and developed. Most of them use Principal Component Analysis (PCA) as a base for their techniques. Different and even conflicting results have been reported by researchers comparing these algorithms. The purpose of this study is to have an independent comparative analysis considering both performance and computational complexity of six appearance based face recognition algorithms namely PCA, 2DPCA, A2DPCA, (2D)2PCA, LPP and 2DLPP under equal working conditions. This study was motivated due to the lack of unbiased comprehensive comparative analysis of some recent subspace methods with diverse distance metric combinations. For comparison with other studies, FERET, ORL and YALE databases have been used with evaluation criteria as of FERET evaluations which closely simulate real life scenarios. A comparison of results with previous studies is performed and anomalies are reported. An important contribution of this study is that it presents the suitable performance conditions for each of the algorithms under consideration. PMID:23451054
On the performances of computer vision algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.
2012-01-01
Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.
Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.
NASA Astrophysics Data System (ADS)
Elliott, William Dewey
1995-01-01
A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over
Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.
2012-01-01
We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.
Improving synthetical stellar libraries using the cross-entropy algorithm
NASA Astrophysics Data System (ADS)
Martins, L. P.; Vitoriano, R.; Coelho, P.; Caproni, A.
Stellar libraries are fundamental tools for the study of stellar populations since they are one of the fundamental ingredients for stellar population synthesis codes. We have implemented an innovative method to perform the calibration of atomic line lists used to generate the synthetic spectra of theoretical libraries, much more robust and efficient than the methods so far used. Here we present the adaptation and validation of this method, called Cross-Entropy algorithm, to the calibration of atomic line list. We show that the method is extremely efficient for calibration of atomic line lists when the transition contributes with at least 10^{-4} of the continuum flux.
Restoring Executive Confidence in Performance Improvement
ERIC Educational Resources Information Center
Seidman, William; McCauley, Michael
2012-01-01
Many organizations have significantly decreased their investment in performance improvement initiatives because they believe they are too risky. In fact, organizations should invest in performance improvements to build cash reserves and gain market share. Recent scientific breakthroughs have led to the development of methodologies and technologies…
Multi-expert tracking algorithm based on improved compressive tracker
NASA Astrophysics Data System (ADS)
Feng, Yachun; Zhang, Hong; Yuan, Ding
2015-12-01
Object tracking is a challenging task in computer vision. Most state-of-the-art methods maintain an object model and update the object model by using new examples obtained incoming frames in order to deal with the variation in the appearance. It will inevitably introduce the model drift problem into the object model updating frame-by-frame without any censorship mechanism. In this paper, we adopt a multi-expert tracking framework, which is able to correct the effect of bad updates after they happened such as the bad updates caused by the severe occlusion. Hence, the proposed framework exactly has the ability which a robust tracking method should process. The expert ensemble is constructed of a base tracker and its formal snapshot. The tracking result is produced by the current tracker that is selected by means of a simple loss function. We adopt an improved compressive tracker as the base tracker in our work and modify it to fit the multi-expert framework. The proposed multi-expert tracking algorithm significantly improves the robustness of the base tracker, especially in the scenes with frequent occlusions and illumination variations. Experiments on challenging video sequences with comparisons to several state-of-the-art trackers demonstrate the effectiveness of our method and our tracking algorithm can run at real-time.
Investigation of microwave antennas with improved performances
NASA Astrophysics Data System (ADS)
Zhou, Rongguo
of the performances of the antenna with different feeding interfaces, is described. The experimental results of the final packaged antenna agree reasonably with the simulation results. Third, an improved two-antenna direction of arrival (DOA) estimation technique is explored, which is inspired by the human auditory system. The idea of this work is to utilize a lossy scatter, which emulates the low-pass filtering function of the human head at high frequency, to achieve more accurate DOA estimation. A simple 2-monopole example is studied and the multiple signal classification (MUSIC) algorithm is applied to calculate the DOA. The improved estimation accuracy is demonstrated in both simulation and experiment. Furthermore, inspired by the sound localization capability of human using just a single ear, a novel direction of arrival estimation technique using a single UWB antenna is proposed and studied. The DOA estimation accuracies of the single UWB antenna are studied in the x-y, x-z and y-z planes with different Signal to Noise Ratios (SNR). The proposed single antenna DOA technique is demonstrated in both simulation and experiment, although with reduced accuracy comparing with the case of two antennas with a scatter in between. At the end, the conclusions of this dissertation are drawn and possible future works are discussed.
Simulated performance of remote sensing ocean colour algorithms during the 1996 PRIME cruise
NASA Astrophysics Data System (ADS)
Westbrook, A. G.; Pinkerton, M. H.; Aiken, J.; Pilgrim, D. A.
Coincident pigment and underwater radiometric data were collected during a cruise along the 20°W meridian from 60°N to 37°N in the north-eastern Atlantic Ocean as part of the Natural Environment Research Council (NERC) thematic programme: plankton reactivity in the marine environment (PRIME). These data were used to simulate the retrieval of two bio-optical variables from remotelysensed measurements of ocean colour (for example by the NASA Sea-viewing wide field-of-view sensor, SeaWiFS), using two-band semi-empirical algorithms. The variables considered were the diffuse attenuation coefficient at 490 nm, ( Kd(490), units: m -1) and the phytoplankton pigment concentration expressed as optically-weighted chlorophyll- a concentration [ Ca, units: mg m -3]. There was good agreement between the measured and the retrieved bio-optical values. Algorithms based on the PRIME data were generated to compare the performance of local algorithms (algorithms which apply to a restricted area and/or season) with global algorithms (algorithms developed on data from a wide variety of water masses). The use of local algorithms improved the average accuracy, but not the precision, of the retrievals: errors were still ±36% ( Kd) and ±117% ( Ca) using local algorithms.
Performance analysis of LVQ algorithms: a statistical physics approach.
Ghosh, Anarta; Biehl, Michael; Hammer, Barbara
2006-01-01
Learning vector quantization (LVQ) constitutes a powerful and intuitive method for adaptive nearest prototype classification. However, original LVQ has been introduced based on heuristics and numerous modifications exist to achieve better convergence and stability. Recently, a mathematical foundation by means of a cost function has been proposed which, as a limiting case, yields a learning rule similar to classical LVQ2.1. It also motivates a modification which shows better stability. However, the exact dynamics as well as the generalization ability of many LVQ algorithms have not been thoroughly investigated so far. Using concepts from statistical physics and the theory of on-line learning, we present a mathematical framework to analyse the performance of different LVQ algorithms in a typical scenario in terms of their dynamics, sensitivity to initial conditions, and generalization ability. Significant differences in the algorithmic stability and generalization ability can be found already for slightly different variants of LVQ. We study five LVQ algorithms in detail: Kohonen's original LVQ1, unsupervised vector quantization (VQ), a mixture of VQ and LVQ, LVQ2.1, and a variant of LVQ which is based on a cost function. Surprisingly, basic LVQ1 shows very good performance in terms of stability, asymptotic generalization ability, and robustness to initializations and model parameters which, in many cases, is superior to recent alternative proposals.
Performance evaluation of image segmentation algorithms on microscopic image data.
Beneš, Miroslav; Zitová, Barbara
2015-01-01
In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown.
Performance of redirected walking algorithms in a constrained virtual world.
Hodgson, Eric; Bachmann, Eric; Thrash, Tyler
2014-04-01
Redirected walking algorithms imperceptibly rotate a virtual scene about users of immersive virtual environment systems in order to guide them away from tracking area boundaries. Ideally, these distortions permit users to explore large unbounded virtual worlds while walking naturally within a physically limited space. Many potential virtual worlds are composed of corridors, passageways, or aisles. Assuming users are not expected to walk through walls or other objects within the virtual world, these constrained worlds limit the directions of travel and as well as the number of opportunities to change direction. The resulting differences in user movement characteristics within the physical world have an impact on redirected walking algorithm performance. This work presents a comparison of generalized RDW algorithm performance within a constrained virtual world. In contrast to previous studies involving unconstrained virtual worlds, experimental results indicate that the steer-to-orbit keeps users in a smaller area than the steer-to-center algorithm. Moreover, in comparison to steer-to-center, steer-to-orbit is shown to reduce potential wall contacts by over 29%.
Performance evaluation of image processing algorithms in digital mammography
NASA Astrophysics Data System (ADS)
Zanca, Federica; Van Ongeval, Chantal; Jacobs, Jurgen; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde
2008-03-01
The purpose of the study is to evaluate the performance of different image processing algorithms in terms of representation of microcalcification clusters in digital mammograms. Clusters were simulated in clinical raw ("for processing") images. The entire dataset of images consisted of 200 normal mammograms, selected out of our clinical routine cases and acquired with a Siemens Novation DR system. In 100 of the normal images a total of 142 clusters were simulated; the remaining 100 normal mammograms served as true negative input cases. Both abnormal and normal images were processed with 5 commercially available processing algorithms: Siemens OpView1 and Siemens OpView2, Agfa Musica1, Sectra Mamea AB Sigmoid and IMS Raffaello Mammo 1.2. Five observers were asked to locate and score the cluster(s) in each image, by means of dedicated software tool. Observer performance was assessed using the JAFROC Figure of Merit. FROC curves, fitted using the IDCA method, have also been calculated. JAFROC analysis revealed significant differences among the image processing algorithms in the detection of microcalcifications clusters (p=0.0000369). Calculated average Figures of Merit are: 0.758 for Siemens OpView2, 0.747 for IMS Processing 1.2, 0.736 for Agfa Musica1 processing, 0.706 for Sectra Mamea AB Sigmoid processing and 0.703 for Siemens OpView1. This study is a first step towards a quantitative assessment of image processing in terms of cluster detection in clinical mammograms. Although we showed a significant difference among the image processing algorithms, this method does not on its own allow for a global performance ranking of the investigated algorithms.
Li Anode Technology for Improved Performance
NASA Technical Reports Server (NTRS)
Chen, Tuqiang
2011-01-01
A novel, low-cost approach to stabilization of Li metal anodes for high-performance rechargeable batteries was developed. Electrolyte additives are selected and used in Li cell electrolyte systems, promoting formation of a protective coating on Li metal anodes for improved cycle and safety performance. Li batteries developed from the new system will show significantly improved battery performance characteristics, including energy/power density, cycle/ calendar life, cost, and safety.
Quality and performance improvement in respiratory care.
Malinowski, Thomas P
2004-06-01
An essential responsibility of the modern respiratory care manager is to establish and monitor a particular level of quality and service being provided by a department. Focusing on quality and performance improvement fosters an environment that empowers and encourages all employees to be innovative and resolve roadblocks that limit organizational performance. This article discusses the issues regarding quality and performance improvement that arise in the daily operations of a respiratory care department.
An improved bi-level algorithm for partitioning dynamic grid hierarchies.
Deiterding, Ralf (California Institute of Technology, Pasadena, CA); Johansson, Henrik (Uppsala University, Uppsala, Sweden); Steensland, Johan; Ray, Jaideep
2006-05-01
Structured adaptive mesh refinement methods are being widely used for computer simulations of various physical phenomena. Parallel implementations potentially offer realistic simulations of complex three-dimensional applications. But achieving good scalability for large-scale applications is non-trivial. Performance is limited by the partitioner's ability to efficiently use the underlying parallel computer's resources. Designed on sound SAMR principles, Nature+Fable is a hybrid, dedicated SAMR partitioning tool that brings together the advantages of both domain-based and patch-based techniques while avoiding their drawbacks. But the original bi-level partitioning approach in Nature+Fable is insufficient as it for realistic applications regards frequently occurring bi-levels as ''impossible'' and fails. This document describes an improved bi-level partitioning algorithm that successfully copes with all possible bi-levels. The improved algorithm uses the original approach side-by-side with a new, complementing approach. By using a new, customized classification method, the improved algorithm switches automatically between the two approaches. This document describes the algorithms, discusses implementation issues, and presents experimental results. The improved version of Nature+Fable was found to be able to handle realistic applications and also to generate less imbalances, similar box count, but more communication as compared to the native, domain-based partitioner in the SAMR framework AMROC.
Improving the Performance and Portability of VPIC
NASA Astrophysics Data System (ADS)
Bird, Robert; Peters, Evan; Nystrom, David; Albright, Brian
2016-10-01
VPIC is a Particle-in-Cell (PIC) code which is able to deliver novel science at unprecedened scale. Most notably, this includes the attainment of petaflop performance during the simulation of trillions of particles. Such high levels of performance have historically been achieved though the use of vectorization, and explicit compiler intrinsics in VPIC. An approach which can offer good performance, at the cost of the code needing to be re-written for each new vector-width or hardware architecture. In this work we present an investigation of how modern coding techniques and auto-vectorization can be used to enable VPIC to automatically scale to new vector-widths and hardware platforms, using a single codebase which no longer needs to be manually adapted for new vector-widths. To achieve this, we express the core PIC algorithm in such a way that the compiler is able to generate auto-vectorized instructions, including an adaptation of the algorithm so that it no longer contains data dependencies. We also present a performance study for this new code variant, showing that it is able to achieve vector performance comparable to that of historic hand coded intrinsics on both Intel Knights Landing and traditional Intel Xeon platforms. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.
Sung, Wen-Tsai; Chiang, Yen-Chun
2012-12-01
This study examines wireless sensor network with real-time remote identification using the Android study of things (HCIOT) platform in community healthcare. An improved particle swarm optimization (PSO) method is proposed to efficiently enhance physiological multi-sensors data fusion measurement precision in the Internet of Things (IOT) system. Improved PSO (IPSO) includes: inertia weight factor design, shrinkage factor adjustment to allow improved PSO algorithm data fusion performance. The Android platform is employed to build multi-physiological signal processing and timely medical care of things analysis. Wireless sensor network signal transmission and Internet links allow community or family members to have timely medical care network services.
NASA Astrophysics Data System (ADS)
Cosofret, Bogdan R.; Shokhirev, Kirill; Mulhall, Phil; Payne, David; Harris, Bernard
2014-05-01
Technology development efforts seek to increase the capability of detection systems in low Signal-to-Noise regimes encountered in both portal and urban detection applications. We have recently demonstrated significant performance enhancement in existing Advanced Spectroscopic Portals (ASP), Standoff Radiation Detection Systems (SORDS) and handheld isotope identifiers through the use of new advanced detection and identification algorithms. The Poisson Clutter Split (PCS) algorithm is a novel approach for radiological background estimation that improves the detection and discrimination capability of medium resolution detectors. The algorithm processes energy spectra and performs clutter suppression, yielding de-noised gamma-ray spectra that enable significant enhancements in detection and identification of low activity threats with spectral target recognition algorithms. The performance is achievable at the short integration times (0.5 - 1 second) necessary for operation in a high throughput and dynamic environment. PCS has been integrated with ASP, SORDS and RIID units and evaluated in field trials. We present a quantitative analysis of algorithm performance against data collected by a range of systems in several cluttered environments (urban and containerized) with embedded check sources. We show that the algorithm achieves a high probability of detection/identification with low false alarm rates under low SNR regimes. For example, utilizing only 4 out of 12 NaI detectors currently available within an ASP unit, PCS processing demonstrated Pd,ID > 90% at a CFAR (Constant False Alarm Rate) of 1 in 1000 occupancies against weak activity (7 - 8μCi) and shielded sources traveling through the portal at 30 mph. This vehicle speed is a factor of 6 higher than was previously possible and results in significant increase in system throughput and overall performance.
A new multiobjective performance criterion used in PID tuning optimization algorithms
Sahib, Mouayad A.; Ahmed, Bestoun S.
2015-01-01
In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978
A new multiobjective performance criterion used in PID tuning optimization algorithms.
Sahib, Mouayad A; Ahmed, Bestoun S
2016-01-01
In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions.
Does Mandatory Attendance Improve Student Performance?
ERIC Educational Resources Information Center
Marburger, Daniel R.
2006-01-01
Previous empirical literature indicates that student performance is inversely correlated with absenteeism. The author investigates the impact of enforcing an attendance policy on absenteeism and student performance. The evidence suggests that an enforced mandatory attendance policy significantly reduces absenteeism and improves exam performance.
A fast and high performance multiple data integration algorithm for identifying human disease genes
2015-01-01
Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620
Protein-fold recognition using an improved single-source K diverse shortest paths algorithm.
Lhota, John; Xie, Lei
2016-04-01
Protein structure prediction, when construed as a fold recognition problem, is one of the most important applications of similarity search in bioinformatics. A new protein-fold recognition method is reported which combines a single-source K diverse shortest path (SSKDSP) algorithm with Enrichment of Network Topological Similarity (ENTS) algorithm to search a graphic feature space generated using sequence similarity and structural similarity metrics. A modified, more efficient SSKDSP algorithm is developed to improve the performance of graph searching. The new implementation of the SSKDSP algorithm empirically requires 82% less memory and 61% less time than the current implementation, allowing for the analysis of larger, denser graphs. Furthermore, the statistical significance of fold ranking generated from SSKDSP is assessed using ENTS. The reported ENTS-SSKDSP algorithm outperforms original ENTS that uses random walk with restart for the graph search as well as other state-of-the-art protein structure prediction algorithms HHSearch and Sparks-X, as evaluated by a benchmark of 600 query proteins. The reported methods may easily be extended to other similarity search problems in bioinformatics and chemoinformatics. The SSKDSP software is available at http://compsci.hunter.cuny.edu/~leixie/sskdsp.html.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu
This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Improvement of Service Searching Algorithm in the JVO Portal Site
NASA Astrophysics Data System (ADS)
Eguchi, S.; Shirasak, Y.; Komiya, Y.; Ohishi, M.; Mizumoto, Y.; Ishihara, Y.; Tsutsumi, J.; Hiyama, T.; Nakamoto, H.; Sakamoto, M.
2012-09-01
The Virtual Observatory (VO) consists of a huge amount of astronomical databases which contain both of theoretical and observational data obtained with various methods, telescopes, and instruments. Since VO provides raw and processed observational data, astronomers can concentrate themselves on their scientific interests without awareness of instruments; all they have to know is which service provides their interested data. On the other hand, services on the VO system will be better used if queries can be made by means of telescopes, wavelengths, and object types; currently it is difficult for newcomers to find desired ones. We have recently started a project towards improving the data service functionality and usability on the Japanese VO (JVO) portal site. We are now working on implementation of a function to automatically classify all services on VO in terms of telescopes and instruments without referring to the facility and instrument keywords, which are not always filled in most cases. In the paper, we report a new algorithm towards constructing the facility and instrument keywords from other information of a service, and discuss its effectiveness. We also propose a new user interface of the portal site with this algorithm.
Performance comparison of motion estimation algorithms on digital video images
NASA Astrophysics Data System (ADS)
Ali, N. A.; Ja'Afar, A. S.; Anathakrishnan, K. S.
2009-12-01
This paper presents a comparative study on technique to achieve high compression ratio in video coding. The focus is on the Block Matching Motion Estimation (BMME) techniques. It has been particularly used in various coding standards. In the BMME, search patterns and the center-biased characteristics of motion vector (MV) have large impact on the search speed and quality of video. Three fast Block Matching Algorithms (BMAs) of motion estimation through block matching have been implemented and performance of these three has been tested using MATLAB software. The Cross Diamond Search (CDS) is compared with Full Search (FS) and Cross Search (CS) algorithms based on search points (search speed) and peak signal-to-noise ratio (PSNR) as the quality of the video. The CDS algorithm was designed to fit the cross-center-biased (CCB) MV distribution characteristics of the real-world video sequences. CDS compares favorably with the other algorithms for low motion sequences in terms of speed, quality and computational complexity. Keywords: Block-matching, motion estimation, digital video compression, cross-centered biased, cross diamond search.
Performance comparison of motion estimation algorithms on digital video images
NASA Astrophysics Data System (ADS)
Ali, N. A.; Ja'afar, A. S.; Anathakrishnan, K. S.
2010-03-01
This paper presents a comparative study on technique to achieve high compression ratio in video coding. The focus is on the Block Matching Motion Estimation (BMME) techniques. It has been particularly used in various coding standards. In the BMME, search patterns and the center-biased characteristics of motion vector (MV) have large impact on the search speed and quality of video. Three fast Block Matching Algorithms (BMAs) of motion estimation through block matching have been implemented and performance of these three has been tested using MATLAB software. The Cross Diamond Search (CDS) is compared with Full Search (FS) and Cross Search (CS) algorithms based on search points (search speed) and peak signal-to-noise ratio (PSNR) as the quality of the video. The CDS algorithm was designed to fit the cross-center-biased (CCB) MV distribution characteristics of the real-world video sequences. CDS compares favorably with the other algorithms for low motion sequences in terms of speed, quality and computational complexity. Keywords: Block-matching, motion estimation, digital video compression, cross-centered biased, cross diamond search.
Improved interpretation of satellite altimeter data using genetic algorithms
NASA Technical Reports Server (NTRS)
Messa, Kenneth; Lybanon, Matthew
1992-01-01
Genetic algorithms (GA) are optimization techniques that are based on the mechanics of evolution and natural selection. They take advantage of the power of cumulative selection, in which successive incremental improvements in a solution structure become the basis for continued development. A GA is an iterative procedure that maintains a 'population' of 'organisms' (candidate solutions). Through successive 'generations' (iterations) the population as a whole improves in simulation of Darwin's 'survival of the fittest'. GA's have been shown to be successful where noise significantly reduces the ability of other search techniques to work effectively. Satellite altimetry provides useful information about oceanographic phenomena. It provides rapid global coverage of the oceans and is not as severely hampered by cloud cover as infrared imagery. Despite these and other benefits, several factors lead to significant difficulty in interpretation. The GA approach to the improved interpretation of satellite data involves the representation of the ocean surface model as a string of parameters or coefficients from the model. The GA searches in parallel, a population of such representations (organisms) to obtain the individual that is best suited to 'survive', that is, the fittest as measured with respect to some 'fitness' function. The fittest organism is the one that best represents the ocean surface model with respect to the altimeter data.
Medical Image Encryption: An Application for Improved Padding Based GGH Encryption Algorithm.
Sokouti, Massoud; Zakerolhosseini, Ali; Sokouti, Babak
2016-01-01
Medical images are regarded as important and sensitive data in the medical informatics systems. For transferring medical images over an insecure network, developing a secure encryption algorithm is necessary. Among the three main properties of security services ( i.e. , confidentiality, integrity, and availability), the confidentiality is the most essential feature for exchanging medical images among physicians. The Goldreich Goldwasser Halevi (GGH) algorithm can be a good choice for encrypting medical images as both the algorithm and sensitive data are represented by numeric matrices. Additionally, the GGH algorithm does not increase the size of the image and hence, its complexity will remain as simple as O(n(2) ). However, one of the disadvantages of using the GGH algorithm is the Chosen Cipher Text attack. In our strategy, this shortcoming of GGH algorithm has been taken in to consideration and has been improved by applying the padding (i.e., snail tour XORing), before the GGH encryption process. For evaluating their performances, three measurement criteria are considered including (i) Number of Pixels Change Rate (NPCR), (ii) Unified Average Changing Intensity (UACI), and (iii) Avalanche effect. The results on three different sizes of images showed that padding GGH approach has improved UACI, NPCR, and Avalanche by almost 100%, 35%, and 45%, respectively, in comparison to the standard GGH algorithm. Also, the outcomes will make the padding GGH resist against the cipher text, the chosen cipher text, and the statistical attacks. Furthermore, increasing the avalanche effect of more than 50% is a promising achievement in comparison to the increased complexities of the proposed method in terms of encryption and decryption processes.
Medical Image Encryption: An Application for Improved Padding Based GGH Encryption Algorithm
Sokouti, Massoud; Zakerolhosseini, Ali; Sokouti, Babak
2016-01-01
Medical images are regarded as important and sensitive data in the medical informatics systems. For transferring medical images over an insecure network, developing a secure encryption algorithm is necessary. Among the three main properties of security services (i.e., confidentiality, integrity, and availability), the confidentiality is the most essential feature for exchanging medical images among physicians. The Goldreich Goldwasser Halevi (GGH) algorithm can be a good choice for encrypting medical images as both the algorithm and sensitive data are represented by numeric matrices. Additionally, the GGH algorithm does not increase the size of the image and hence, its complexity will remain as simple as O(n2). However, one of the disadvantages of using the GGH algorithm is the Chosen Cipher Text attack. In our strategy, this shortcoming of GGH algorithm has been taken in to consideration and has been improved by applying the padding (i.e., snail tour XORing), before the GGH encryption process. For evaluating their performances, three measurement criteria are considered including (i) Number of Pixels Change Rate (NPCR), (ii) Unified Average Changing Intensity (UACI), and (iii) Avalanche effect. The results on three different sizes of images showed that padding GGH approach has improved UACI, NPCR, and Avalanche by almost 100%, 35%, and 45%, respectively, in comparison to the standard GGH algorithm. Also, the outcomes will make the padding GGH resist against the cipher text, the chosen cipher text, and the statistical attacks. Furthermore, increasing the avalanche effect of more than 50% is a promising achievement in comparison to the increased complexities of the proposed method in terms of encryption and decryption processes. PMID:27857824
A DRAM compiler algorithm for high performance VLSI embedded memories
NASA Technical Reports Server (NTRS)
Eldin, A. G.
1992-01-01
In many applications, the limited density of the embedded SRAM does not allow integrating the memory on the same chip with other logic and functional blocks. In such cases, the embedded DRAM provides the optimum combination of very high density, low power, and high performance. For ASIC's to take full advantage of this design strategy, an efficient and highly reliable DRAM compiler must be used. The embedded DRAM architecture, cell, and peripheral circuit design considerations and the algorithm of a high performance memory compiler are presented .
The optical synthetic aperture image restoration based on the improved maximum-likelihood algorithm
NASA Astrophysics Data System (ADS)
Geng, Zexun; Xu, Qing; Zhang, Baoming; Gong, Zhihui
2012-09-01
Optical synthetic aperture imaging (OSAI) can be envisaged in the future for improving the image resolution from high altitude orbits. Several future projects are based on optical synthetic aperture for science or earth observation. Comparing with equivalent monolithic telescopes, however, the partly filled aperture of OSAI induces the attenuation of the modulation transfer function of the system. Consequently, images acquired by OSAI instrument have to be post-processed to restore ones equivalent in resolution to that of a single filled aperture. The maximum-likelihood (ML) algorithm proposed by Benvenuto performed better than traditional Wiener filter did, but it didn't work stably and the point spread function (PSF), was assumed to be known and unchanged in iterative restoration. In fact, the PSF is unknown in most cases, and its estimation was expected to be updated alternatively in optimization. Facing these limitations of this method, an improved ML (IML) reconstruction algorithm was proposed in this paper, which incorporated PSF estimation by means of parameter identification into ML, and updated the PSF successively during iteration. Accordingly, the IML algorithm converged stably and reached better results. Experiment results showed that the proposed algorithm performed much better than ML did in peak signal to noise ratio, mean square error and the average contrast evaluation indexes.
Multifocal Clinical Performance Improvement Across 21 Hospitals
Skeath, Melinda; Whippy, Alan
2015-01-01
Abstract: Improving quality and safety across an entire healthcare system in multiple clinical areas within a short time frame is challenging. We describe our experience with improving inpatient quality and safety at Kaiser Permanente Northern California. The foundations of performance improvement are a “four-wheel drive” approach and a comprehensive driver diagram linking improvement goals to focal areas. By the end of 2011, substantial improvements occurred in hospital-acquired infections (central-line–associated bloodstream infections and Clostridium difficile infections); falls; hospital-acquired pressure ulcers; high-alert medication and surgical safety; sepsis care; critical care; and The Joint Commission core measures. PMID:26247072
Wing extensions for improving climb performance
NASA Technical Reports Server (NTRS)
Nicks, O. W.
1983-01-01
Recent wind tunnel studies have shown that significant improvements in wing efficiency and climb performance can be achieved using wing extensions having sharp edges and unmodified upper airfoil contours. Based on tests of six configurations, a simple tip shape provided the best wing efficiency at high lift conditions without penalty during cruise conditions. The best configuration tested exhibited more than 20 percent improvement in the maximum rate of climb, plus a reduction in stall speed and a slight improvement in cruise performance over a baseline tip with a round edge. In addition to measurements that were used to determine performance, flow visualization studies provided insight into reasons for improved wing efficiency. Tests were conducted using a high performance general aviation aircraft model with a tapered, cantilevered wing.
Performance evaluation of operational atmospheric correction algorithms over the East China Seas
NASA Astrophysics Data System (ADS)
He, Shuangyan; He, Mingxia; Fischer, Jürgen
2017-01-01
To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction (AC) algorithms (ESA MEGS 7.4.1 and NASA SeaDAS 6.1) were evaluated over the East China Seas (ECS) using MERIS data. The spectral remote sensing reflectance R rs(λ), aerosol optical thickness (AOT), and Ångström exponent (α) retrieved using the two algorithms were validated using in situ measurements obtained between May 2002 and October 2009. Match-ups of R rs, AOT, and α between the in situ and MERIS data were obtained through strict exclusion criteria. Statistical analysis of R rs(λ) showed a mean percentage difference (MPD) of 9%-13% in the 490-560 nm spectral range, and significant overestimation was observed at 413 nm (MPD>72%). The AOTs were overestimated (MPD>32%), and although the ESA algorithm outperformed the NASA algorithm in the blue-green bands, the situation was reversed in the red-near-infrared bands. The value of α was obviously underestimated by the ESA algorithm (MPD=41%) but not by the NASA algorithm (MPD=35%). To clarify why the NASA algorithm performed better in the retrieval of α, scatter plots of the α single scattering albedo (SSA) density were prepared. These α-SSA density scatter plots showed that the applicability of the aerosol models used by the NASA algorithm over the ECS is better than that used by the ESA algorithm, although neither aerosol model is suitable for the ECS region. The results of this study provide a reference to both data users and data agencies regarding the use of operational data products and the investigation into the improvement of current AC schemes over the ECS.
NASA Astrophysics Data System (ADS)
Finney, Greg A.; Persons, Christopher M.; Henning, Stephan; Hazen, Jessie; Whitley, Daniel
2014-06-01
IERUS Technologies, Inc. and the University of Alabama in Huntsville have partnered to perform characterization and development of algorithms and hardware for adaptive optics. To date the algorithm work has focused on implementation of the stochastic parallel gradient descent (SPGD) algorithm. SPGD is a metric-based approach in which a scalar metric is optimized by taking random perturbative steps for many actuators simultaneously. This approach scales to systems with a large number of actuators while maintaining bandwidth, while conventional methods are negatively impacted by the very large matrix multiplications that are required. The metric approach enables the use of higher speed sensors with fewer (or even a single) sensing element(s), enabling a higher control bandwidth. Furthermore, the SPGD algorithm is model-free, and thus is not strongly impacted by the presence of nonlinearities which degrade the performance of conventional phase reconstruction methods. Finally, for high energy laser applications, SPGD can be performed using the primary laser beam without the need for an additional beacon laser. The conventional SPGD algorithm was modified to use an adaptive gain to improve convergence while maintaining low steady state error. Results from laboratory experiments using phase plates as atmosphere surrogates will be presented, demonstrating areas in which the adaptive gain yields better performance and areas which require further investigation.
Intelligent QoS routing algorithm based on improved AODV protocol for Ad Hoc networks
NASA Astrophysics Data System (ADS)
Huibin, Liu; Jun, Zhang
2016-04-01
Mobile Ad Hoc Networks were playing an increasingly important part in disaster reliefs, military battlefields and scientific explorations. However, networks routing difficulties are more and more outstanding due to inherent structures. This paper proposed an improved cuckoo searching-based Ad hoc On-Demand Distance Vector Routing protocol (CSAODV). It elaborately designs the calculation methods of optimal routing algorithm used by protocol and transmission mechanism of communication-package. In calculation of optimal routing algorithm by CS Algorithm, by increasing QoS constraint, the found optimal routing algorithm can conform to the requirements of specified bandwidth and time delay, and a certain balance can be obtained among computation spending, bandwidth and time delay. Take advantage of NS2 simulation software to take performance test on protocol in three circumstances and validate the feasibility and validity of CSAODV protocol. In results, CSAODV routing protocol is more adapt to the change of network topological structure than AODV protocol, which improves package delivery fraction of protocol effectively, reduce the transmission time delay of network, reduce the extra burden to network brought by controlling information, and improve the routing efficiency of network.
An improved robust blind motion de-blurring algorithm for remote sensing images
NASA Astrophysics Data System (ADS)
He, Yulong; Liu, Jin; Liang, Yonghui
2016-10-01
Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.
Improving Process Heating System Performance v3
2016-04-11
Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives
Bayesian image reconstruction for improving detection performance of muon tomography.
Wang, Guobao; Schultz, Larry J; Qi, Jinyi
2009-05-01
Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.
A performance comparison of integration algorithms in simulating flexible structures
NASA Technical Reports Server (NTRS)
Howe, R. M.
1989-01-01
Asymptotic formulas for the characteristic root errors as well as transfer function gain and phase errors are presented for a number of traditional and new integration methods. Normalized stability regions in the lambda h plane are compared for the various methods. In particular, it is shown that a modified form of Euler integration with root matching is an especially efficient method for simulating lightly-damped structural modes. The method has been used successfully for structural bending modes in the real-time simulation of missiles. Performance of this algorithm is compared with other special algorithms, including the state-transition method. A predictor-corrector version of the modified Euler algorithm permits it to be extended to the simulation of nonlinear models of the type likely to be obtained when using the discretized structure approach. Performance of the different integration methods is also compared for integration step sizes larger than those for which the asymptotic formulas are valid. It is concluded that many traditional integration methods, such as RD-4, are not competitive in the simulation of lightly damped structures.
Peer Mentors Can Improve Academic Performance
ERIC Educational Resources Information Center
Asgari, Shaki; Carter, Frederick, Jr.
2016-01-01
The present study examined the relationship between peer mentoring and academic performance. Students from two introductory psychology classes either received (n = 37) or did not receive (n = 36) peer mentoring. The data indicated a consistent improvement in the performance (i.e., grades on scheduled exams) of the mentored group. A similar pattern…
Preschoolers' Cognitive Performance Improves Following Massage.
ERIC Educational Resources Information Center
Hart, Sybil; Field, Tiffany; Hernandez-Reif, Maria; Lundy, Brenda
1998-01-01
Effects of massage on preschoolers' cognitive performance were assessed. Preschoolers were given Wechsler Preschool and Primary Scale of Intelligence-Revised subtests before and after receiving 15-minute massage or spending 15 minutes reading stories with the experimenter. Children's performance on Block Design improved following massage, and…
The CF6 engine performance improvement
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1982-01-01
As part of the NASA-sponsored Engine Component Improvement (ECI) Program, a feasibility analysis of performance improvement and retention concepts for the CF6-6 and CF6-50 engines was conducted and seven concepts were identified for development and ground testing: new fan, new front mount, high pressure turbine aerodynamic performance improvement, high pressure turbine roundness, high pressure turbine active clearance control, low pressure turbine active clearance control, and short core exhaust nozzle. The development work and ground testing are summarized, and the major test results and an enomic analysis for each concept are presented.
Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...
Improvements and Extensions for Joint Polar Satellite System Algorithms
NASA Astrophysics Data System (ADS)
Grant, K. D.; Feeley, J. H.; Miller, S. W.; Jamilkowski, M. L.
2014-12-01
The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing system of the old POES system managed by the NOAA. JPSS satellites will carry sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for the JPSS is the Common Ground System (CGS), and provides command, control, and communications (C3), data processing and product delivery. CGS's data processing capability processes the data from the JPSS satellites to provide environmental data products (including Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to the NOAA Satellite Operations Facility. The first satellite in the JPSS constellation, known as the Suomi National Polar-orbiting Partnership (S-NPP) satellite, was launched on 28 October 2011. CGS is currently processing and delivering SDRs and EDRs for S-NPP and will continue through the lifetime of the JPSS program. The EDRs for S-NPP are currently undergoing an extensive Calibration and Validation (Cal/Val) campaign. Changes identified by the Cal/Val campaign are coming available for implementation into the operational system in support of both S-NPP and JPSS-1 (scheduled for launch in 2017). Some of these changes will be available in time to update the S-NPP algorithm baseline, while others will become operational just prior to JPSS-1 launch. In addition, new capabilities, such as higher spectral and spatial resolution, will be exercised on JPSS-1. This paper will describe changes to current algorithms and products as a result of the Cal/Val campaign and related initiatives for improved capabilities. Improvements include Cross Track Infrared Sounder high spectral
Global Precipitation Measurement (GPM) Microwave Imager Falling Snow Retrieval Algorithm Performance
NASA Astrophysics Data System (ADS)
Skofronick Jackson, Gail; Munchak, Stephen J.; Johnson, Benjamin T.
2015-04-01
Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges and uncertainties remaining. This work reports on the development and post-launch testing of retrieval algorithms for the NASA Global Precipitation Measurement (GPM) mission Core Observatory satellite launched in February 2014. In particular, we will report on GPM Microwave Imager (GMI) radiometer instrument algorithm performance with respect to falling snow detection and estimation. Since GPM's launch, the at-launch GMI precipitation algorithms, based on a Bayesian framework, have been used with the new GPM data. The at-launch database is generated using proxy satellite data merged with surface measurements (instead of models). One year after launch, the Bayesian database will begin to be replaced with the more realistic observational data from the GPM spacecraft radar retrievals and GMI data. It is expected that the observational database will be much more accurate for falling snow retrievals because that database will take full advantage of the 166 and 183 GHz snow-sensitive channels. Furthermore, much retrieval algorithm work has been done to improve GPM retrievals over land. The Bayesian framework for GMI retrievals is dependent on the a priori database used in the algorithm and how profiles are selected from that database. Thus, a land classification sorts land surfaces into ~15 different categories for surface-specific databases (radiometer brightness temperatures are quite dependent on surface characteristics). In addition, our work has shown that knowing if the land surface is snow-covered, or not, can improve the performance of the algorithm. Improvements were made to the algorithm that allow for daily inputs of ancillary snow cover
Performance improvement integration: a whole systems approach.
Page, C K
1999-02-01
Performance improvement integration in health care organizations is a challenge for health care leaders. Required for accreditation by the Joint Commission on Accreditation of Healthcare Organizations (Joint Commission), performance improvement (PI) can be designed as a sustainable model for performance to survive in a turbulent period. Central Baptist Hospital developed a model for PI that focused on strategy established by the leadership team, delineated responsibility through the organizational structure of shared governance, and accountability for outcomes evidenced through the organization's profitability. Such an approach integrated into the culture of the organization can produce positive financial margins, positive customer satisfaction, and commendations from the Joint Commission.
Improvement of retrieval algorithms for severe air pollution
NASA Astrophysics Data System (ADS)
Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko
2016-10-01
Increased emissions of anthropogenic aerosols associated with economic growth can lead to increased concentrations of hazardous air pollutants. Furthermore, dust storms or biomass burning plumes can cause serious environmental hazards, yet their aerosol properties are poorly understood. Our research group has worked on the development of an efficient algorithm for aerosol retrieval during hazy episodes (dense concentrations of atmospheric aerosols). It is noted that near UV measurements are available for detection of carbonaceous aerosols. The biomass burning aerosols (BBA) due to large-scale forest fires and/or burn agriculture exacerbated the severe air pollution. It is known that global warming and climate change have caused increasing instances of forest fires, which have in turn accelerated climate change. It is well known that this negative cycle decreases the quality of the global environment and human health. The Japan Aerospace Exploration Agency (JAXA) has been developing a new Earth observing system, the GCOM (Global Change Observation Mission) project, which consists of two satellite series: GCOM-W1 and GCOM-C1. The first GCOM-C satellite will board the SGLI (second generation GLI [global imager]) to be launched in early 2017. The SGLI is capable of multi-channel (19) observation, including a near UV channel (0.380 μm) and two polarization channels at red and near-infrared wavelengths of 0.67 and 0.87 μm. Thus, global aerosol retrieval will be achieved with simultaneous polarization and total radiance. In this study, algorithm improvement for aerosol remote sensing, especially of BBA episodes, is examined using Terra/MODIS measurements from 2003, when the GLI and POLDER-2 sensors were working onboard the Japanese satellite ADEOS-2.
Strategy Changes After Errors Improve Performance
Van der Borght, Liesbet; Desmet, Charlotte; Notebaert, Wim
2016-01-01
The observation that performance does not improve following errors contradicts the traditional view on error monitoring (Fiehler et al., 2005; Núñez Castellar et al., 2010; Notebaert and Verguts, 2011). However, recent findings suggest that typical laboratory tasks provided us with a narrow window on error monitoring (Jentzsch and Dudschig, 2009; Desmet et al., 2012). In this study we investigated strategy-use after errors in a mental arithmetic task. In line with our hypothesis, this more complex task did show increased performance after errors. More specifically, switching to a different strategy after an error resulted in improved performance, while repeating the same strategy resulted in worse performance. These results show that in more ecological valid tasks, post-error behavioral improvement can be observed. PMID:26793159
NASA Technical Reports Server (NTRS)
Ramanathan, V.; Inamdar, Anand K.
2005-01-01
Our main task was to validate and improve the generation of surface long wave fluxes from the CERES TOA window channel flux measurements. We completed this task successfully for the clear sky fluxes in the presence of aerosols including dust during the first year of the project. The algorithm we developed for CERES was remarkably successful for clear sky fluxes and we have no further tasks that need to be performed past the requested termination date of December 31, 2004. We found that the information contained in the TOA fluxes was not sufficient to improve upon the current CERES algorithm for cloudy sky fluxes. Given this development and given our success in clear sky fluxes, we do not see any reason to continue our validation work beyond what we have completed. Specific details are given.
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.
GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.
Improvements to a five-phase ABS algorithm for experimental validation
NASA Astrophysics Data System (ADS)
Gerard, Mathieu; Pasillas-Lépine, William; de Vries, Edwin; Verhaegen, Michel
2012-10-01
The anti-lock braking system (ABS) is the most important active safety system for passenger cars. Unfortunately, the literature is not really precise about its description, stability and performance. This research improves a five-phase hybrid ABS control algorithm based on wheel deceleration [W. Pasillas-Lépine, Hybrid modeling and limit cycle analysis for a class of five-phase anti-lock brake algorithms, Veh. Syst. Dyn. 44 (2006), pp. 173-188] and validates it on a tyre-in-the-loop laboratory facility. Five relevant effects are modelled so that the simulation matches the reality: oscillations in measurements, wheel acceleration reconstruction, brake pressure dynamics, brake efficiency changes and tyre relaxation. The time delays in measurement and actuation have been identified as the main difficulty for the initial algorithm to work in practice. Three methods are proposed in order to deal with these delays. It is verified that the ABS limit cycles encircle the optimal braking point, without assuming any tyre parameter being a priori known. The ABS algorithm is compared with the commercial algorithm developed by Bosch.
IMPROVED ALGORITHMS FOR RADAR-BASED RECONSTRUCTION OF ASTEROID SHAPES
Greenberg, Adam H.; Margot, Jean-Luc
2015-10-15
We describe our implementation of a global-parameter optimizer and Square Root Information Filter into the asteroid-modeling software shape. We compare the performance of our new optimizer with that of the existing sequential optimizer when operating on various forms of simulated data and actual asteroid radar data. In all cases, the new implementation performs substantially better than its predecessor: it converges faster, produces shape models that are more accurate, and solves for spin axis orientations more reliably. We discuss potential future changes to improve shape's fitting speed and accuracy.
CCA performance of a new source list/EZW hybrid compression algorithm
NASA Astrophysics Data System (ADS)
Huber, A. Kris; Budge, Scott E.; Moon, Todd K.; Bingham, Gail E.
2001-11-01
A new data compression algorithm for encoding astronomical source lists is presented. Two experiments in combined compression and analysis (CCA) are described, the first using simulated imagery based upon a tractable source list model, and the second using images from SPIRIT III, a spaceborne infrared sensor. A CCA system consisting of the source list compressor followed by a zerotree-wavelet residual encoder is compared to alternatives based on three other astronomical image compression algorithms. CCA performance is expressed in terms of image distortion along with relevant measures of point source detection and estimation quality. Some variations of performance with compression bit rate and point source flux are characterized. While most of the compression algorithms reduce high-frequency quantum noise at certain bit rates, conclusive evidence is not found that such denoising brings an improvement in point source detection or estimation performance of the CCA systems. The proposed algorithm is a top performer in every measure of CCA performance; the computational complexity is relatively high, however.
Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems.
Lai, Xinsheng; Zhou, Yuren; Xia, Xiaoyun; Zhang, Qingfu
2016-12-13
The Steiner tree problem (STP) aims to determine some Steiner nodes such that the minimum spanning tree over these Steiner nodes and a given set of special nodes has the minimum weight, which is NP-hard. STP includes several important cases. The Steiner tree problem in graphs (GSTP) is one of them. Many heuristics have been proposed for STP, and some of them have proved to be performance guarantee approximation algorithms for this problem. Since evolutionary algorithms (EAs) are general and popular randomized heuristics, it is significant to investigate the performance of EAs for STP. Several empirical investigations have shown that EAs are efficient for STP. However, up to now, there is no theoretical work on the performance of EAs for STP. In this paper, we reveal that the (1 + 1) EA achieves 3/2-approximation ratio for STP in a special class of quasi-bipartite graphs in expected runtime O(r(r + s - 1) ⋅ wmax), where r, s and wmax are respectively the number of Steiner nodes, the number of special nodes and the largest weight among all edges in the input graph. We also show that the (1 + 1) EA is better than two other heuristics on two GSTP instances, and the (1 + 1) EA may be inefficient on a constructed GSTP instance.
Performance improvement in telemedicine: the essential elements.
Eliasson, A H; Poropatich, R K
1998-08-01
Performance improvement activities in telemedicine may be placed into five categories. (1) Licensing and credentialing. Telemedicine overcomes geographical boundaries, but its reach is constrained by state laws on licensing. Some states require a state license, whereas others grant "consultation exemptions" for out-of-state physicians. Simple renewable licenses do not guarantee quality. Potential solutions include a national telemedicine license or license reciprocity laws for telemedicine. (2) Data security and privacy. Telemedicine technology raises some security concerns. Differences in reporting requirements among states complicate the issue of privacy. Storage of telemedicine consultation records may help physicians document care decisions for risk management, but conventional long-term storage may not be feasible because of cost constraints and may not be required to document the encounter appropriately. (3) Informed consent. Potential failures in security and transmission are new, and should be communicated to the patient. (4) Peer review. Peer review findings encourage thorough, accurate, and legible documentation. Results should be recorded by provider and must be available during the recredentialing process. (5) Tailored performance improvement initiatives. By using established principles and techniques, performance improvement initiatives can gather, analyze, and communicate information about the cost-effectiveness of telemedicine. These performance improvement efforts are the heart of quality management and are critical to the justification of telemedicine. Walter Reed Telemedicine has put into effect a performance improvement plan in accordance with this outline. This article describes the plan and suggests it as a model for other telemedicine programs.
Experimental verification of an interpolation algorithm for improved estimates of animal position.
Schell, Chad; Jaffe, Jules S
2004-07-01
This article presents experimental verification of an interpolation algorithm that was previously proposed in Jaffe [J. Acoust. Soc. Am. 105, 3168-3175 (1999)]. The goal of the algorithm is to improve estimates of both target position and target strength by minimizing a least-squares residual between noise-corrupted target measurement data and the output of a model of the sonar's amplitude response to a target at a set of known locations. Although this positional estimator was shown to be a maximum likelihood estimator, in principle, experimental verification was desired because of interest in understanding its true performance. Here, the accuracy of the algorithm is investigated by analyzing the correspondence between a target's true position and the algorithm's estimate. True target position was measured by precise translation of a small test target (bead) or from the analysis of images of fish from a coregistered optical imaging system. Results with the stationary spherical test bead in a high signal-to-noise environment indicate that a large increase in resolution is possible, while results with commercial aquarium fish indicate a smaller increase is obtainable. However, in both experiments the algorithm provides improved estimates of target position over those obtained by simply accepting the angular positions of the sonar beam with maximum output as target position. In addition, increased accuracy in target strength estimation is possible by considering the effects of the sonar beam patterns relative to the interpolated position. A benefit of the algorithm is that it can be applied "ex post facto" to existing data sets from commercial multibeam sonar systems when only the beam intensities have been stored after suitable calibration.
Engine component improvement program: Performance improvement. [fuel consumption
NASA Technical Reports Server (NTRS)
Mcaulay, J. E.
1979-01-01
Fuel consumption of commercial aircraft is considered. Fuel saving and retention components for new production and retrofit of JT9D, JT8D, and CF6 engines are reviewed. The manner in which the performance improvement concepts were selected for development and a summary of the current status of each of the 16 selected concepts are discussed.
Clinical performance improvement: measuring costs and benefits.
Brailer, D J
1998-01-01
Market shifts in health care reimbursement have made the improvement of clinical performance a key strategic goal for health care delivery systems, including hospitals, physician groups, and integrated delivery systems. This process requires a clinical management infrastructure, advanced clinical information technology, engaged physicians, and alterations to the strategic plan for the delivery system. Because the change to a clinical efficiency orientation takes several years for organizations to achieve, adoption of this approach must begin before markets become fully mature for managed care and most practicing physicians are aware of the change. This article outlines how to evaluate the costs and benefits of improving clinical performance and how to determine when an organization should begin making this change. It advises delivery systems executives to raise the priority of clinical performance improvement and to measure both the near-term and long-term impact of this approach on revenue, cost, quality, and market share.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2012-11-01
The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.
Improvement of unsupervised texture classification based on genetic algorithms
NASA Astrophysics Data System (ADS)
Okumura, Hiroshi; Togami, Yuuki; Arai, Kohei
2004-11-01
At the previous conference, the authors are proposed a new unsupervised texture classification method based on the genetic algorithms (GA). In the method, the GA are employed to determine location and size of the typical textures in the target image. The proposed method consists of the following procedures: 1) the determination of the number of classification category; 2) each chromosome used in the GA consists of coordinates of center pixel of each training area candidate and those size; 3) 50 chromosomes are generated using random number; 4) fitness of each chromosome is calculated; the fitness is the product of the Classification Reliability in the Mixed Texture Cases (CRMTC) and the Stability of NZMV against Scanning Field of View Size (SNSFS); 5) in the selection operation in the GA, the elite preservation strategy is employed; 6) in the crossover operation, multi point crossover is employed and two parent chromosomes are selected by the roulette strategy; 7) in mutation operation, the locuses where the bit inverting occurs are decided by a mutation rate; 8) go to the procedure 4. However, this method has not been automated because it requires not only target image but also the number of categories for classification. In this paper, we describe some improvement for implementation of automated texture classification. Some experiments are conducted to evaluate classification capability of the proposed method by using images from Brodatz's photo album and actual airborne multispectral scanner. The experimental results show that the proposed method can select appropriate texture samples and can provide reasonable classification results.
Improving the Energy Market: Algorithms, Market Implications, and Transmission Switching
NASA Astrophysics Data System (ADS)
Lipka, Paula Ann
This dissertation aims to improve ISO operations through a better real-time market solution algorithm that directly considers both real and reactive power, finds a feasible Alternating Current Optimal Power Flow solution, and allows for solving transmission switching problems in an AC setting. Most of the IEEE systems do not contain any thermal limits on lines, and the ones that do are often not binding. Chapter 3 modifies the thermal limits for the IEEE systems to create new, interesting test cases. Algorithms created to better solve the power flow problem often solve the IEEE cases without line limits. However, one of the factors that makes the power flow problem hard is thermal limits on the lines. The transmission networks in practice often have transmission lines that become congested, and it is unrealistic to ignore line limits. Modifying the IEEE test cases makes it possible for other researchers to be able to test their algorithms on a setup that is closer to the actual ISO setup. This thesis also examines how to convert limits given on apparent power---as is in the case in the Polish test systems---to limits on current. The main consideration in setting line limits is temperature, which linearly relates to current. Setting limits on real or apparent power is actually a proxy for using the limits on current. Therefore, Chapter 3 shows how to convert back to the best physical representation of line limits. A sequential linearization of the current-voltage formulation of the Alternating Current Optimal Power Flow (ACOPF) problem is used to find an AC-feasible generator dispatch. In this sequential linearization, there are parameters that are set to the previous optimal solution. Additionally, to improve accuracy of the Taylor series approximations that are used, the movement of the voltage is restricted. The movement of the voltage is allowed to be very large at the first iteration and is restricted further on each subsequent iteration, with the restriction
Method for improving fuel cell performance
Uribe, Francisco A.; Zawodzinski, Thomas
2003-10-21
A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.
Graff, Mario; Poli, Riccardo; Flores, Juan J
2013-01-01
Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
Image Compression Algorithm Altered to Improve Stereo Ranging
NASA Technical Reports Server (NTRS)
Kiely, Aaron
2008-01-01
A report discusses a modification of the ICER image-data-compression algorithm to increase the accuracy of ranging computations performed on compressed stereoscopic image pairs captured by cameras aboard the Mars Exploration Rovers. (ICER and variants thereof were discussed in several prior NASA Tech Briefs articles.) Like many image compressors, ICER was designed to minimize a mean-square-error measure of distortion in reconstructed images as a function of the compressed data volume. The present modification of ICER was preceded by formulation of an alternative error measure, an image-quality metric that focuses on stereoscopic-ranging quality and takes account of image-processing steps in the stereoscopic-ranging process. This metric was used in empirical evaluation of bit planes of wavelet-transform subbands that are generated in ICER. The present modification, which is a change in a bit-plane prioritization rule in ICER, was adopted on the basis of this evaluation. This modification changes the order in which image data are encoded, such that when ICER is used for lossy compression, better stereoscopic-ranging results are obtained as a function of the compressed data volume.
Improved satellite image compression and reconstruction via genetic algorithms
NASA Astrophysics Data System (ADS)
Babb, Brendan; Moore, Frank; Peterson, Michael; Lamont, Gary
2008-10-01
A wide variety of signal and image processing applications, including the US Federal Bureau of Investigation's fingerprint compression standard [3] and the JPEG-2000 image compression standard [26], utilize wavelets. This paper describes new research that demonstrates how a genetic algorithm (GA) may be used to evolve transforms that outperform wavelets for satellite image compression and reconstruction under conditions subject to quantization error. The new approach builds upon prior work by simultaneously evolving real-valued coefficients representing matched forward and inverse transform pairs at each of three levels of a multi-resolution analysis (MRA) transform. The training data for this investigation consists of actual satellite photographs of strategic urban areas. Test results show that a dramatic reduction in the error present in reconstructed satellite images may be achieved without sacrificing the compression capabilities of the forward transform. The transforms evolved during this research outperform previous start-of-the-art solutions, which optimized coefficients for the reconstruction transform only. These transforms also outperform wavelets, reducing error by more than 0.76 dB at a quantization level of 64. In addition, transforms trained using representative satellite images do not perform quite as well when subsequently tested against images from other classes (such as fingerprints or portraits). This result suggests that the GA developed for this research is automatically learning to exploit specific attributes common to the class of images represented in the training population.
An improved algorithm for evaluating trellis phase codes
NASA Technical Reports Server (NTRS)
Mulligan, M. G.; Wilson, S. G.
1984-01-01
A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.
An improved algorithm for evaluating trellis phase codes
NASA Technical Reports Server (NTRS)
Mulligan, M. G.; Wilson, S. G.
1982-01-01
A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.
A de-noising algorithm to improve SNR of segmented gamma scanner for spectrum analysis
NASA Astrophysics Data System (ADS)
Li, Huailiang; Tuo, Xianguo; Shi, Rui; Zhang, Jinzhao; Henderson, Mark Julian; Courtois, Jérémie; Yan, Minhao
2016-05-01
An improved threshold shift-invariant wavelet transform de-noising algorithm for high-resolution gamma-ray spectroscopy is proposed to optimize the threshold function of wavelet transforms and reduce signal resulting from pseudo-Gibbs artificial fluctuations. This algorithm was applied to a segmented gamma scanning system with large samples in which high continuum levels caused by Compton scattering are routinely encountered. De-noising data from the gamma ray spectrum measured by segmented gamma scanning system with improved, shift-invariant and traditional wavelet transform algorithms were all evaluated. The improved wavelet transform method generated significantly enhanced performance of the figure of merit, the root mean square error, the peak area, and the sample attenuation correction in the segmented gamma scanning system assays. We also found that the gamma energy spectrum can be viewed as a low frequency signal as well as high frequency noise superposition by the spectrum analysis. Moreover, a smoothed spectrum can be appropriate for straightforward automated quantitative analysis.
Using Semantic Coaching to Improve Teacher Performance.
ERIC Educational Resources Information Center
Caccia, Paul F.
1996-01-01
Explains that semantic coaching is a system of conversational analysis and communication design developed by Fernando Flores, and was based on the earlier research of John Austin and John Searle. Describes how to establish the coaching relationship, and how to coach for improved performance. (PA)
The People Side of Performance Improvement.
ERIC Educational Resources Information Center
Gerson, Richard F.
1999-01-01
Discusses 11 keys to the personal side of performance improvement, including positive attitude, high self esteem and positive self-image, communication skills, lifelong learning, caring about other people, health and well-being, motivation, goal setting, relaxation, visualization, and personal value system. (LRW)
A Paradigm Shift to Improve Academic Performance
ERIC Educational Resources Information Center
Rulloda, Rudolfo B.
2009-01-01
A shift to computer skills for improving academic performances was investigated. The No Child Left Behind Act of 2001 increased the amount of high school dropouts after the Act was enacted. At-risk students were included in this research study. Several models described using teachers for core subjects and mentors to built citizenship skills, along…
Using the Internet To Improve Student Performance.
ERIC Educational Resources Information Center
Guptill, Angela M.
2000-01-01
This article discusses the benefits and outcomes of using Internet-based instruction to improve the performance of students with disabilities by developing Internet-based lessons and assessments that target the growth of higher-order thinking skills required on many state assessments. Internet resources for educators are listed. (Contains…
Electrolysis Performance Improvement and Validation Experiment
NASA Technical Reports Server (NTRS)
Schubert, Franz H.
1992-01-01
Viewgraphs on electrolysis performance improvement and validation experiment are presented. Topics covered include: water electrolysis: an ever increasing need/role for space missions; static feed electrolysis (SFE) technology: a concept developed for space applications; experiment objectives: why test in microgravity environment; and experiment description: approach, hardware description, test sequence and schedule.
NASA Technical Reports Server (NTRS)
Vo, San C.; Biegel, Bryan (Technical Monitor)
2001-01-01
Scalar multiplication is an essential operation in elliptic curve cryptosystems because its implementation determines the speed and the memory storage requirements. This paper discusses some improvements on two popular signed window algorithms for implementing scalar multiplications of an elliptic curve point - Morain-Olivos's algorithm and Koyarna-Tsuruoka's algorithm.
Verbal communication improves laparoscopic team performance.
Shiliang Chang; Waid, Erin; Martinec, Danny V; Bin Zheng; Swanstrom, Lee L
2008-06-01
The impact of verbal communication on laparoscopic team performance was examined. A total of 24 dyad teams, comprised of residents, medical students, and office staff, underwent 2 team tasks using a previously validated bench model. Twelve teams (feedback groups) received instant verbal instruction and feedback on their performance from an instructor which was compared with 12 teams (control groups) with minimal or no verbal feedback. Their performances were both video and audio taped for analysis. Surgical backgrounds were similar between feedback and control groups. Teams with more verbal feedback achieved significantly better task performance (P = .002) compared with the control group with less feedback. Impact of verbal feedback was more pronounced for tasks requiring team cooperation (aiming and navigation) than tasks depending on individual skills (knotting). Verbal communication, especially the instructions and feedback from an experienced instructor, improved team efficiency and performance.
Improvement of phase unwrapping algorithm based on image segmentation and merging
NASA Astrophysics Data System (ADS)
Wang, Huaying; Liu, Feifei; Zhu, Qiaofen
2013-11-01
A modified algorithm based on image segmentation and merging is proposed and demonstrated to improve the accuracy of the phase unwrapping algorithm. There are three improved aspects. Firstly, the method of unequal region segmentation is taken, which can make the regional information to be completely and accurately reproduced. Secondly, for the condition of noise and undersampling in different regions, different phase unwrapping algorithms are used, respectively. Lastly, for the sake of improving the accuracy of the phase unwrapping results, a method of weighted stack is applied to the overlapping region originated from blocks merging. The proposed algorithm has been verified by simulations and experiments. The results not only validate the accuracy and rapidity of the improved algorithm to recover the phase information of the measured object, but also illustrate the importance of the improved algorithm in Traditional Chinese Medicine Decoction Pieces cell identification.
Improving the performance of cardiac abnormality detection from PCG signal
NASA Astrophysics Data System (ADS)
Sujit, N. R.; Kumar, C. Santhosh; Rajesh, C. B.
2016-03-01
The Phonocardiogram (PCG) signal contains important information about the condition of heart. Using PCG signal analysis prior recognition of coronary illness can be done. In this work, we developed a biomedical system for the detection of abnormality in heart and methods to enhance the performance of the system using SMOTE and AdaBoost technique have been presented. Time and frequency domain features extracted from the PCG signal is input to the system. The back-end classifier to the system developed is Decision Tree using CART (Classification and Regression Tree), with an overall classification accuracy of 78.33% and sensitivity (alarm accuracy) of 40%. Here sensitivity implies the precision obtained from classifying the abnormal heart sound, which is an essential parameter for a system. We further improve the performance of baseline system using SMOTE and AdaBoost algorithm. The proposed approach outperforms the baseline system by an absolute improvement in overall accuracy of 5% and sensitivity of 44.92%.
Performance improvement of CGHs for optical testing
NASA Astrophysics Data System (ADS)
Pruss, Christof; Reichelt, Stephan; Korolkov, Victor P.; Osten, Wolfgang; Tiziani, Hans J.
2003-05-01
The expansion of the field of diffractive optics applications is accompanied by toughening performance requirements for CGHs. Optical testing sets especially high requirements, concerning wavefront accuracy and diffraction efficiency. The key point in fabrication technology is the writing system creating the photomask or the profiled pattern. The diffractive optics fabrication facility at ITO (University of Stuttgart) is based on the circular laser writing system CLWS-300. This flexible and high-accurate tool was originally designed for binary diffractive optics fabrication. This paper presents novel enhancements of this system allowing direct laser writing of a wide range of binary and continuous-relief CGHs on photoresist layers, chromium films and LDW-glass. Main topics of the enhancements were the scanning accuracy and exposure control. Many types of CGHs (binary precision holograms for optical testing, Shack-Hartmann arrays, microlens discs for confocal microscopy, diffractive interferometer objectives, doughnut generators etc.) have been manufactured using the developed algorithms and hardware.
NASA Technical Reports Server (NTRS)
Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.
2014-01-01
Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This
GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.
Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim
2016-08-01
In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior.
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
An Improved Vision-based Algorithm for Unmanned Aerial Vehicles Autonomous Landing
NASA Astrophysics Data System (ADS)
Zhao, Yunji; Pei, Hailong
In vision-based autonomous landing system of UAV, the efficiency of target detecting and tracking will directly affect the control system. The improved algorithm of SURF(Speed Up Robust Features) will resolve the problem which is the inefficiency of the SURF algorithm in the autonomous landing system. The improved algorithm is composed of three steps: first, detect the region of the target using the Camshift; second, detect the feature points in the region of the above acquired using the SURF algorithm; third, do the matching between the template target and the region of target in frame. The results of experiment and theoretical analysis testify the efficiency of the algorithm.
Branch-pipe-routing approach for ships using improved genetic algorithm
NASA Astrophysics Data System (ADS)
Sui, Haiteng; Niu, Wentie
2016-09-01
Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.
Use of a genetic algorithm to improve the rail profile on Stockholm underground
NASA Astrophysics Data System (ADS)
Persson, Ingemar; Nilsson, Rickard; Bik, Ulf; Lundgren, Magnus; Iwnicki, Simon
2010-12-01
In this paper, a genetic algorithm optimisation method has been used to develop an improved rail profile for Stockholm underground. An inverted penalty index based on a number of key performance parameters was generated as a fitness function and vehicle dynamics simulations were carried out with the multibody simulation package Gensys. The effectiveness of each profile produced by the genetic algorithm was assessed using the roulette wheel method. The method has been applied to the rail profile on the Stockholm underground, where problems with rolling contact fatigue on wheels and rails are currently managed by grinding. From a starting point of the original BV50 and the UIC60 rail profiles, an optimised rail profile with some shoulder relief has been produced. The optimised profile seems similar to measured rail profiles on the Stockholm underground network and although initial grinding is required, maintenance of the profile will probably not require further grinding.
Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, G
2016-05-01
With the advent of miniaturized inertial sensors many systems have been developed within the last decade to study and analyze human motion and posture, specially in the medical field. Data measured by the sensors are usually processed by algorithms based on Kalman Filters in order to estimate the orientation of the body parts under study. These filters traditionally include fixed parameters, such as the process and observation noise variances, whose value has large influence in the overall performance. It has been demonstrated that the optimal value of these parameters differs considerably for different motion intensities. Therefore, in this work, we show that, by applying frequency analysis to determine motion intensity, and varying the formerly fixed parameters accordingly, the overall precision of orientation estimation algorithms can be improved, therefore providing physicians with reliable objective data they can use in their daily practice.
NASA Astrophysics Data System (ADS)
Hou, Zhen-Long; Wei, Xiao-Hui; Huang, Da-Nian; Sun, Xu
2015-09-01
We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine MPI with CUDA to formulate a hybrid algorithm. Parallel computing performance metrics are introduced to analyze and compare the performance of the algorithms. We summarize the rules for the performance evaluation of parallel algorithms. We use model and real data from the Vinton salt dome to test the algorithms. We find good match between model and real density data, and verify the high efficiency and feasibility of parallel computing algorithms in the inversion of full tensor gravity gradiometry data.
Burg algorithm for enhancing measurement performance in wavelength scanning interferometry
NASA Astrophysics Data System (ADS)
Woodcock, Rebecca; Muhamedsalih, Hussam; Martin, Haydn; Jiang, Xiangqian
2016-06-01
Wavelength scanning interferometry (WSI) is a technique for measuring surface topography that is capable of resolving step discontinuities and does not require any mechanical movement of the apparatus or measurand, allowing measurement times to be reduced substantially in comparison to related techniques. The axial (height) resolution and measurement range in WSI depends in part on the algorithm used to evaluate the spectral interferograms. Previously reported Fourier transform based methods have a number of limitations which is in part due to the short data lengths obtained. This paper compares the performance auto-regressive model based techniques for frequency estimation in WSI. Specifically, the Burg method is compared with established Fourier transform based approaches using both simulation and experimental data taken from a WSI measurement of a step-height sample.
Ping, Bo; Su, Fenzhen; Meng, Yunshan
2016-01-01
In this study, an improved Data INterpolating Empirical Orthogonal Functions (DINEOF) algorithm for determination of missing values in a spatio-temporal dataset is presented. Compared with the ordinary DINEOF algorithm, the iterative reconstruction procedure until convergence based on every fixed EOF to determine the optimal EOF mode is not necessary and the convergence criterion is only reached once in the improved DINEOF algorithm. Moreover, in the ordinary DINEOF algorithm, after optimal EOF mode determination, the initial matrix with missing data will be iteratively reconstructed based on the optimal EOF mode until the reconstruction is convergent. However, the optimal EOF mode may be not the best EOF for some reconstructed matrices generated in the intermediate steps. Hence, instead of using asingle EOF to fill in the missing data, in the improved algorithm, the optimal EOFs for reconstruction are variable (because the optimal EOFs are variable, the improved algorithm is called VE-DINEOF algorithm in this study). To validate the accuracy of the VE-DINEOF algorithm, a sea surface temperature (SST) data set is reconstructed by using the DINEOF, I-DINEOF (proposed in 2015) and VE-DINEOF algorithms. Four parameters (Pearson correlation coefficient, signal-to-noise ratio, root-mean-square error, and mean absolute difference) are used as a measure of reconstructed accuracy. Compared with the DINEOF and I-DINEOF algorithms, the VE-DINEOF algorithm can significantly enhance the accuracy of reconstruction and shorten the computational time. PMID:27195692
Zhu, Wei; Wang, Wei; Yuan, Gannan
2016-06-01
In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).
NASA Astrophysics Data System (ADS)
Chatterjee, A.; Ghoshal, S. P.; Mukherjee, V.
In this paper, a conventional thermal power system equipped with automatic voltage regulator, IEEE type dual input power system stabilizer (PSS) PSS3B and integral controlled automatic generation control loop is considered. A distributed generation (DG) system consisting of aqua electrolyzer, photovoltaic cells, diesel engine generator, and some other energy storage devices like flywheel energy storage system and battery energy storage system is modeled. This hybrid distributed system is connected to the grid. While integrating this DG with the onventional thermal power system, improved transient performance is noticed. Further improvement in the transient performance of this grid connected DG is observed with the usage of superconducting magnetic energy storage device. The different tunable parameters of the proposed hybrid power system model are optimized by artificial bee colony (ABC) algorithm. The optimal solutions offered by the ABC algorithm are compared with those offered by genetic algorithm (GA). It is also revealed that the optimizing performance of the ABC is better than the GA for this specific application.
Improved Low Temperature Performance of Supercapacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe
2013-01-01
Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary
Rivera, José; Herrera, Gilberto; Chacón, Mario; Acosta, Pedro; Carrillo, Mariano
2008-01-01
The development of intelligent sensors involves the design of reconfigurable systems capable of working with different input sensors signals. Reconfigurable systems should expend the least possible amount of time readjusting. A self-adjustment algorithm for intelligent sensors should be able to fix major problems such as offset, variation of gain and lack of linearity with good accuracy. This paper shows the performance of a progressive polynomial algorithm utilizing different grades of relative nonlinearity of an output sensor signal. It also presents an improvement to this algorithm which obtains an optimal response with minimum nonlinearity error, based on the number and selection sequence of the readjust points. In order to verify the potential of this proposed criterion, a temperature measurement system was designed. The system is based on a thermistor which presents one of the worst nonlinearity behaviors. The application of the proposed improved method in this system showed that an adequate sequence of the adjustment points yields to the minimum nonlinearity error. In realistic applications, by knowing the grade of relative nonlinearity of a sensor, the number of readjustment points can be determined using the proposed method in order to obtain the desired nonlinearity error. This will impact on readjustment methodologies and their associated factors like time and cost. PMID:27873936
Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin
2016-01-01
An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents’ positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904
Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin
2016-01-01
An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness.
MTRC compensation in high-resolution ISAR imaging via improved polar format algorithm based on ICPF
NASA Astrophysics Data System (ADS)
Liu, Yang; Xu, Shiyou; Chen, Zengping; Yuan, Bin
2014-12-01
In this paper, we present a detailed analysis on the performance degradation of inverse synthetic aperture radar (ISAR) imagery with the polar format algorithm (PFA) due to the inaccurate rotation center. And a novel algorithm is developed to estimate the rotation center for ISAR targets to overcome the degradation. In real ISAR scenarios, the real rotation center shift is usually not coincided with the gravity center of the high-resolution range profile (HRRP), due to the data-driven translational motion compensation. Because of the imprecise information of rotation center, PFA image yields model errors and severe blurring in the cross-range direction. To tackle this problem, an improved PFA based on integrated cubic phase function (ICPF) is proposed. In the method, the rotation center in the slant range is estimated firstly by ICPF, and the signal is shifted accordingly. Finally, the standard PFA algorithm can be carried out straightforwardly. With the proposed method, wide-angle ISAR imagery of non-cooperative targets can be achieved by PFA with improved focus quality. Simulation and real-data experiments confirm the effectiveness of the proposal.
Improving lesion detectability in PET imaging with a penalized likelihood reconstruction algorithm
NASA Astrophysics Data System (ADS)
Wangerin, Kristen A.; Ahn, Sangtae; Ross, Steven G.; Kinahan, Paul E.; Manjeshwar, Ravindra M.
2015-03-01
Ordered Subset Expectation Maximization (OSEM) is currently the most widely used image reconstruction algorithm for clinical PET. However, OSEM does not necessarily provide optimal image quality, and a number of alternative algorithms have been explored. We have recently shown that a penalized likelihood image reconstruction algorithm using the relative difference penalty, block sequential regularized expectation maximization (BSREM), achieves more accurate lesion quantitation than OSEM, and importantly, maintains acceptable visual image quality in clinical wholebody PET. The goal of this work was to evaluate lesion detectability with BSREM versus OSEM. We performed a twoalternative forced choice study using 81 patient datasets with lesions of varying contrast inserted into the liver and lung. At matched imaging noise, BSREM and OSEM showed equivalent detectability in the lungs, and BSREM outperformed OSEM in the liver. These results suggest that BSREM provides not only improved quantitation and clinically acceptable visual image quality as previously shown but also improved lesion detectability compared to OSEM. We then modeled this detectability study, applying both nonprewhitening (NPW) and channelized Hotelling (CHO) model observers to the reconstructed images. The CHO model observer showed good agreement with the human observers, suggesting that we can apply this model to future studies with varying simulation and reconstruction parameters.
Using Human Dynamics to Improve Operator Performance
NASA Astrophysics Data System (ADS)
Antunes, Rui; Coito, Fernando V.; Duarte-Ramos, Hermínio
Traditionally Man-Machine Interfaces (MMI) are concerned with the ergonomic aspects of the operation, often disregarding other aspects on how humans learn and use machines. The explicit use of the operator dynamics characterization for the definition of the Human-in-the-Loop control system may allow an improved performance for manual control systems. The proposed human model depends on the activity to be performed and the mechanical Man-Machine Interface. As a first approach for model development, a number of 1-D manual tracking experiments were evaluated, using an analog Joystick. A simple linear human model was obtained and used to design an improved closed-loop control structure. This paper describes practical aspects of an ongoing PhD work on cognitive control in Human-Machine systems.
An improved generalized differential evolution algorithm for multi-objective reactive power dispatch
NASA Astrophysics Data System (ADS)
Ramesh, S.; Kannan, S.; Baskar, S.
2012-04-01
An improved multi-objective generalized differential evolution (I-GDE3) approach to solve optimal reactive power dispatch (ORPD) with multiple and competing objectives is proposed in this article. The objective functions are minimization of real power loss and bus voltage profile improvement. For maintaining good diversity, the concepts of simulated binary crossover (SBX) based recombination and dynamic crowding distance (DCD), are implemented in the GDE3 algorithm. I-GDE3 obtains the Pareto-solution set for ORPD that is impervious to load drifts and perturbations. The performance of the proposed approach is tested in standard IEEE 118-bus and IEEE 300-bus test systems and the result demonstrates the capability of the I-GDE3 algorithm in generating diverse and well distributed Pareto-optimal solutions that are less sensitive to various loading conditions along with load perturbations. The performance of I-GDE3 is compared with respect to multi-objective performance measures namely span, hyper-volume and C-measure. The results show the effectiveness of I-GDE3 and confirm its potential to solve the multi-objective RPD problem.
Improving the Performance of the Extreme-scale Simulator
Engelmann, Christian; Naughton III, Thomas J
2014-01-01
Investigating the performance of parallel applications at scale on future high-performance computing (HPC) architectures and the performance impact of different architecture choices is an important component of HPC hardware/software co-design. The Extreme-scale Simulator (xSim) is a simulation-based toolkit for investigating the performance of parallel applications at scale. xSim scales to millions of simulated Message Passing Interface (MPI) processes. The overhead introduced by a simulation tool is an important performance and productivity aspect. This paper documents two improvements to xSim: (1) a new deadlock resolution protocol to reduce the parallel discrete event simulation management overhead and (2) a new simulated MPI message matching algorithm to reduce the oversubscription management overhead. The results clearly show a significant performance improvement, such as by reducing the simulation overhead for running the NAS Parallel Benchmark suite inside the simulator from 1,020\\% to 238% for the conjugate gradient (CG) benchmark and from 102% to 0% for the embarrassingly parallel (EP) and benchmark, as well as, from 37,511% to 13,808% for CG and from 3,332% to 204% for EP with accurate process failure simulation.
Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage
Lee, Kyuman; Baek, Hoki; Lim, Jaesung
2016-01-01
The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user
Toward 'smart' DNA microarrays: algorithms for improving data quality and statistical inference
NASA Astrophysics Data System (ADS)
Bakewell, David J. G.; Wit, Ernst
2007-12-01
DNA microarrays are a laboratory tool for understanding biological processes at the molecular scale and future applications of this technology include healthcare, agriculture, and environment. Despite their usefulness, however, the information microarrays make available to the end-user is not used optimally, and the data is often noisy and of variable quality. This paper describes the use of hierarchical Maximum Likelihood Estimation (MLE) for generating algorithms that improve the quality of microarray data and enhance statistical inference about gene behavior. The paper describes examples of recent work that improves microarray performance, demonstrated using data from both Monte Carlo simulations and published experiments. One example looks at the variable quality of cDNA spots on a typical microarray surface. It is shown how algorithms, derived using MLE, are used to "weight" these spots according to their morphological quality, and subsequently lead to improved detection of gene activity. Another example, briefly discussed, addresses the "noisy data about too many genes" issue confronting many analysts who are also interested in the collective action of a group of genes, often organized as a pathway or complex. Preliminary work is described where MLE is used to "share" variance information across a pre-assigned group of genes of interest, leading to improved detection of gene activity.
Whole beetroot consumption acutely improves running performance.
Murphy, Margaret; Eliot, Katie; Heuertz, Rita M; Weiss, Edward
2012-04-01
Nitrate ingestion improves exercise performance; however, it has also been linked to adverse health effects, except when consumed in the form of vegetables. The purpose of this study was to determine, in a double-blind crossover study, whether whole beetroot consumption, as a means for increasing nitrate intake, improves endurance exercise performance. Eleven recreationally fit men and women were studied in a double-blind placebo controlled crossover trial performed in 2010. Participants underwent two 5-km treadmill time trials in random sequence, once 75 minutes after consuming baked beetroot (200 g with ≥500 mg nitrate) and once 75 minutes after consuming cranberry relish as a eucaloric placebo. Based on paired t tests, mean running velocity during the 5-km run tended to be faster after beetroot consumption (12.3±2.7 vs 11.9±2.6 km/hour; P=0.06). During the last 1.1 miles (1.8 km) of the 5-km run, running velocity was 5% faster (12.7±3.0 vs 12.1±2.8 km/hour; P=0.02) in the beetroot trial, with no differences in velocity (P≥0.25) in the earlier portions of the 5-km run. No differences in exercise heart rate were observed between trials; however, at 1.8 km into the 5-km run, rating of perceived exertion was lower with beetroot (13.0±2.1 vs 13.7±1.9; P=0.04). Consumption of nitrate-rich, whole beetroot improves running performance in healthy adults. Because whole vegetables have been shown to have health benefits, whereas nitrates from other sources may have detrimental health effects, it would be prudent for individuals seeking performance benefits to obtain nitrates from whole vegetables, such as beetroot.
Efficiency Improvements to the Displacement Based Multilevel Structural Optimization Algorithm
NASA Technical Reports Server (NTRS)
Plunkett, C. L.; Striz, A. G.; Sobieszczanski-Sobieski, J.
2001-01-01
Multilevel Structural Optimization (MSO) continues to be an area of research interest in engineering optimization. In the present project, the weight optimization of beams and trusses using Displacement based Multilevel Structural Optimization (DMSO), a member of the MSO set of methodologies, is investigated. In the DMSO approach, the optimization task is subdivided into a single system and multiple subsystems level optimizations. The system level optimization minimizes the load unbalance resulting from the use of displacement functions to approximate the structural displacements. The function coefficients are then the design variables. Alternately, the system level optimization can be solved using the displacements themselves as design variables, as was shown in previous research. Both approaches ensure that the calculated loads match the applied loads. In the subsystems level, the weight of the structure is minimized using the element dimensions as design variables. The approach is expected to be very efficient for large structures, since parallel computing can be utilized in the different levels of the problem. In this paper, the method is applied to a one-dimensional beam and a large three-dimensional truss. The beam was tested to study possible simplifications to the system level optimization. In previous research, polynomials were used to approximate the global nodal displacements. The number of coefficients of the polynomials equally matched the number of degrees of freedom of the problem. Here it was desired to see if it is possible to only match a subset of the degrees of freedom in the system level. This would lead to a simplification of the system level, with a resulting increase in overall efficiency. However, the methods tested for this type of system level simplification did not yield positive results. The large truss was utilized to test further improvements in the efficiency of DMSO. In previous work, parallel processing was applied to the
Improving Fatigue Performance of AHSS Welds
Feng, Zhili; Yu, Xinghua; Erdman, III, Donald L.; Wang, Yanli; Kelly, Steve; Hou, Wenkao; Yan, Benda; Wang, Zhifeng; Yu, Zhenzhen; Liu, Stephen
2015-03-01
Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage of the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.
Improving Access to Foundational Energy Performance Data
Studer, D.; Livingood, W.; Torcellini, P.
2014-08-01
Access to foundational energy performance data is key to improving the efficiency of the built environment. However, stakeholders often lack access to what they perceive as credible energy performance data. Therefore, even if a stakeholder determines that a product would increase efficiency, they often have difficulty convincing their management to move forward. Even when credible data do exist, such data are not always sufficient to support detailed energy performance analyses, or the development of robust business cases. One reason for this is that the data parameters that are provided are generally based on the respective industry norms. Thus, for mature industries with extensive testing standards, the data made available are often quite detailed. But for emerging technologies, or for industries with less well-developed testing standards, available data are generally insufficient to support robust analysis. However, even for mature technologies, there is no guarantee that the data being supplied are the same data needed to accurately evaluate a product?s energy performance. To address these challenges, the U.S. Department of Energy funded development of a free, publically accessible Web-based portal, the Technology Performance Exchange(TM), to facilitate the transparent identification, storage, and sharing of foundational energy performance data. The Technology Performance Exchange identifies the intrinsic, technology-specific parameters necessary for a user to perform a credible energy analysis and includes a robust database to store these data. End users can leverage stored data to evaluate the site-specific performance of various technologies, support financial analyses with greater confidence, and make better informed procurement decisions.
An improved algorithm for labeling connected components in a binary image
NASA Astrophysics Data System (ADS)
Yang, Xue D.
1989-03-01
In this note, we present an improved algorithm to Schwartz, Sharir and Siegel's algorithm for labeling the connected components of a binary image. Our algorithm uses the same bracket marking mechanisms as is used in the original algorithm to associate equivalent groups. The main improvement of our algorithm is that it reduces the three scans on each line required by the original algorithm in its first pass into only one scan by using a recursive group-boundary dynamic tracking technique, while maintaining the computation on each pixel during scan still a constant time. This algorithm is fast enough to handle images in real time and simple enough to allow an easy and very economical hardware implementation.
Exponential H ∞ Synchronization of Chaotic Cryptosystems Using an Improved Genetic Algorithm
Hsiao, Feng-Hsiag
2015-01-01
This paper presents a systematic design methodology for neural-network- (NN-) based secure communications in multiple time-delay chaotic (MTDC) systems with optimal H ∞ performance and cryptography. On the basis of the Improved Genetic Algorithm (IGA), which is demonstrated to have better performance than that of a traditional GA, a model-based fuzzy controller is then synthesized to stabilize the MTDC systems. A fuzzy controller is synthesized to not only realize the exponential synchronization, but also achieve optimal H ∞ performance by minimizing the disturbance attenuation level. Furthermore, the error of the recovered message is stated by using the n-shift cipher and key. Finally, a numerical example with simulations is given to demonstrate the effectiveness of our approach. PMID:26366432
An improved POCS super-resolution infrared image reconstruction algorithm based on visual mechanism
NASA Astrophysics Data System (ADS)
Liu, Jinsong; Dai, Shaosheng; Guo, Zhongyuan; Zhang, Dezhou
2016-09-01
The traditional projection onto convex sets (POCS) super-resolution (SR) reconstruction algorithm can only get reconstructed images with poor contrast, low signal-to-noise ratio and blurring edges. In order to solve the above disadvantages, an improved POCS SR infrared image reconstruction algorithm based on visual mechanism is proposed, which introduces data consistency constraint with variable correction thresholds to highlight the target edges and filter out background noises; further, the algorithm introduces contrast constraint considering the resolving ability of human eyes into the traditional algorithm, enhancing the contrast of the image reconstructed adaptively. The experimental results show that the improved POCS algorithm can acquire high quality infrared images whose contrast, average gradient and peak signal to noise ratio are improved many times compared with traditional algorithm.
Crossover Improvement for the Genetic Algorithm in Information Retrieval.
ERIC Educational Resources Information Center
Vrajitoru, Dana
1998-01-01
In information retrieval (IR), the aim of genetic algorithms (GA) is to help a system to find, in a huge documents collection, a good reply to a query expressed by the user. Analysis of phenomena seen during the implementation of a GA for IR has led to a new crossover operation, which is introduced and compared to other learning methods.…
Improved performance of the optically scanned transducer
NASA Astrophysics Data System (ADS)
Turner, C. W.; Bolorforosh, M. S.
1992-11-01
The rapid increase in the use of ultrasound in both clinical and industrial applications requires more advanced and reliable imaging systems for calibrating and characterizing high performance ultrasonic transducers. The optically scanned hydrophone (OSH) is an alternative imaging system capable of quasi-real time imaging of broadband acoustic fields. The main application of the OSH is in the imaging and characterization of acoustic fields such as those emitted from clinical and therapeutic transducers. In this paper, the recent development of the OSH and its application to real time imaging of broadband acoustic fields are reported. Using improved fabrication techniques the optical sampling efficiency of the OSH has been considerably improved. This is achieved by adopting new assembly techniques and incorporating a novel differential electrode configuration. The improved optical sampling efficiency has provided a more competitive, versatile, and faster imaging system. The performance of the modified OSH is compared against the other types of hydrophone such as the spot poled and the needle types.
Improvement and analysis of ID3 algorithm in decision-making tree
NASA Astrophysics Data System (ADS)
Xie, Xiao-Lan; Long, Zhen; Liao, Wen-Qi
2015-12-01
For the cooperative system under development, it needs to use the spatial analysis and relative technology concerning data mining in order to carry out the detection of the subject conflict and redundancy, while the ID3 algorithm is an important data mining. Due to the traditional ID3 algorithm in the decision-making tree towards the log part is rather complicated, this paper obtained a new computational formula of information gain through the optimization of algorithm of the log part. During the experiment contrast and theoretical analysis, it is found that IID3 (Improved ID3 Algorithm) algorithm owns higher calculation efficiency and accuracy and thus worth popularizing.
Motion Cueing Algorithm Modification for Improved Turbulence Simulation
NASA Technical Reports Server (NTRS)
Ercole, Anthony V.; Cardullo, Frank M.; Zaychik, Kirill; Kelly, Lon C.; Houck, Jacob
2009-01-01
Atmospheric turbulence cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. Cardullo and Ellor initially addressed this problem by directly porting the turbulence model output to the motion system. Reid and Robinson addressed the problem by employing a parallel aircraft model, which is only stimulated by the turbulence inputs and adding a filter specially designed to pass the higher turbulence frequencies. There have been advances in motion cueing algorithm development at the Man-Machine Systems Laboratory, at SUNY Binghamton. In particular, the system used to generate turbulence cues has been studied. The Reid approach, implemented by Telban and Cardullo, was employed to augment the optimal motion cueing algorithm installed at the NASA LaRC Simulation Laboratory, driving the Visual Motion Simulator. In this implementation, the output of the primary flight channel was added to the output of the turbulence channel and then sent through a non-linear cueing filter. The cueing filter is an adaptive filter; therefore, it is not desirable for the output of the turbulence channel to be augmented by this type of filter. The likelihood of the signal becoming divergent was also an issue in this design. After testing on-site it became apparent that the architecture of the turbulence algorithm was generating unacceptable cues. As mentioned above, this cueing algorithm comprised a filter that was designed to operate at low bandwidth. Therefore, the turbulence was also filtered, augmenting the cues generated by the model. If any filtering is to be done to the turbulence, it will utilize a filter with a much higher bandwidth, above the frequencies produced by the aircraft response to turbulence. The authors have developed an implementation wherein only the signal from the primary flight channel passes through the nonlinear cueing filter. This paper discusses three
Chung, King; Zeng, Fan-Gang; Acker, Kyle N
2006-10-01
Although cochlear implant (CI) users have enjoyed good speech recognition in quiet, they still have difficulties understanding speech in noise. We conducted three experiments to determine whether a directional microphone and an adaptive multichannel noise reduction algorithm could enhance CI performance in noise and whether Speech Transmission Index (STI) can be used to predict CI performance in various acoustic and signal processing conditions. In Experiment I, CI users listened to speech in noise processed by 4 hearing aid settings: omni-directional microphone, omni-directional microphone plus noise reduction, directional microphone, and directional microphone plus noise reduction. The directional microphone significantly improved speech recognition in noise. Both directional microphone and noise reduction algorithm improved overall preference. In Experiment II, normal hearing individuals listened to the recorded speech produced by 4- or 8-channel CI simulations. The 8-channel simulation yielded similar speech recognition results as in Experiment I, whereas the 4-channel simulation produced no significant difference among the 4 settings. In Experiment III, we examined the relationship between STIs and speech recognition. The results suggested that STI could predict actual and simulated CI speech intelligibility with acoustic degradation and the directional microphone, but not the noise reduction algorithm. Implications for intelligibility enhancement are discussed.
Technetium Getters to Improve Cast Stone Performance
Neeway, James J.; Lawter, Amanda R.; Serne, R. Jeffrey; Asmussen, Robert M.; Qafoku, Nikolla
2015-10-15
The cementitious material known as Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. Two radionuclides of particular concern in these waste streams are technetium-99 (99Tc) and iodine-129 (129I). These radioactive tank waste components contribute the most to the environmental impacts associated with the cleanup of the Hanford site. A recent environmental assessment of Cast Stone performance, which assumes a diffusion controlled release of contaminants from the waste form, calculates groundwater in excess of the allowable maximum permissible concentrations for both contaminants. There is, therefore, a need and an opportunity to improve the retention of both 99Tc and 129I in Cast Stone. One method to improve the performance of Cast Stone is through the addition of “getters” that selectively sequester Tc and I, therefore reducing their diffusion out of Cast Stone. In this paper, we present results of Tc and I removal from solution with various getters with batch sorption experiments conducted in deionized water (DIW) and a highly caustic 7.8 M Na Ave LAW simulant. In general, the data show that the selected getters are effective in DIW but their performance is comprised when experiments are performed with the 7.8 M Na Ave LAW simulant. Reasons for the mitigated performance in the LAW simulant may be due to competition with Cr present in the 7.8 M Na Ave LAW simulant and to a pH effect.
Fink, Nir; Furst, Miriam; Muchnik, Chava
2012-09-01
A common complaint of the hearing impaired is the inability to understand speech in noisy environments even with their hearing assistive devices. Only a few single-channel algorithms have significantly improved speech intelligibility in noise for hearing-impaired listeners. The current study introduces a cochlear noise reduction algorithm. It is based on a cochlear representation of acoustic signals and real-time derivation of a binary speech mask. The contribution of the algorithm for enhancing word recognition in noise was evaluated on a group of 42 normal-hearing subjects, 35 hearing-aid users, 8 cochlear implant recipients, and 14 participants with bimodal devices. Recognition scores of Hebrew monosyllabic words embedded in Gaussian noise at several signal-to-noise ratios (SNRs) were obtained with processed and unprocessed signals. The algorithm was not effective among the normal-hearing participants. However, it yielded a significant improvement in some of the hearing-impaired subjects under different listening conditions. Its most impressive benefit appeared among cochlear implant recipients. More than 20% improvement in recognition score of noisy words was obtained by 12, 16, and 26 hearing-impaired at SNR of 30, 24, and 18 dB, respectively. The algorithm has a potential to improve speech intelligibility in background noise, yet further research is required to improve its performances.
Improving E85-Engine Performance and Efficiency
NASA Astrophysics Data System (ADS)
Huang, K.; Tao, R.
2010-03-01
E85 is an important alternative fuel with 85% ethanol and 15% gasoline. However, it is widely reported that E85 vehicles have difficulties to start in winter. There are also complains about the E85 engine performance. Here we report that with proper application of electrorheology, we can solve these issues and improve the engine performance. E85 vehicles all have port injected engines. The fuel is injected into cylinders as droplets. Before the ignition, the fuel evaporates. Because E85 is more viscous than gasoline, the injected E85 droplet size is not small. Especially, in the winter the cold weather makes the viscosity even higher, leading the E85 droplets even bigger. Since evaporation starts from the droplet surfaces, large droplets are difficult to be evaporated before the ignition comes. When there is no enough fuel vapor, the engine cannot start. To solve this problem, we introduce a small device just before the fuel injection, which produces a strong electric field to reduce the fuel viscosity, leading to much smaller fuel droplets in atomization. The evaporation is much faster and the engine is easier to start. After the engine is started, the warm metal surfaces help evaporate the fuel and the engine operates fairly well. As the small fuel droplets produced by our device make the combustion fast and timely, engine efficiency and performance are also improved.
Yeguas, Enrique; Joan-Arinyo, Robert; Victoria Luz N, Mar A
2011-01-01
The availability of a model to measure the performance of evolutionary algorithms is very important, especially when these algorithms are applied to solve problems with high computational requirements. That model would compute an index of the quality of the solution reached by the algorithm as a function of run-time. Conversely, if we fix an index of quality for the solution, the model would give the number of iterations to be expected. In this work, we develop a statistical model to describe the performance of PBIL and CHC evolutionary algorithms applied to solve the root identification problem. This problem is basic in constraint-based, geometric parametric modeling, as an instance of general constraint-satisfaction problems. The performance model is empirically validated over a benchmark with very large search spaces.
Improved algorithms for parsing ESLTAGs: a grammatical model suitable for RNA pseudoknots.
Rajasekaran, Sanguthevar; Al Seesi, Sahar; Ammar, Reda A
2010-01-01
Formal grammars have been employed in biology to solve various important problems. In particular, grammars have been used to model and predict RNA structures. Two such grammars are Simple Linear Tree Adjoining Grammars (SLTAGs) and Extended SLTAGs (ESLTAGs). Performances of techniques that employ grammatical formalisms critically depend on the efficiency of the underlying parsing algorithms. In this paper, we present efficient algorithms for parsing SLTAGs and ESLTAGs. Our algorithm for SLTAGs parsing takes O(min{m,n⁴}) time and O(min{m,n⁴}) space, where m is the number of entries that will ever be made in the matrix M (that is normally used by TAG parsing algorithms). Our algorithm for ESLTAGs parsing takes O(min{m,n⁴}) time and O(min{m,n⁴}) space. We show that these algorithms perform better, in practice, than the algorithms of Uemura et al.
A new algorithm to improve assessment of cortical bone geometry in pQCT.
Cervinka, Tomas; Sievänen, Harri; Lala, Deena; Cheung, Angela M; Giangregorio, Lora; Hyttinen, Jari
2015-12-01
High-resolution peripheral quantitative computed tomography (HR-pQCT) is now considered the leading imaging modality in bone research. However, access to HR-pQCT is limited and image acquisition is mainly constrained only for the distal third of appendicular bones. Hence, the conventional pQCT is still commonly used despite inaccurate threshold-based segmentation of cortical bone that can compromise the assessment of whole bone strength. Therefore, this study addressed whether the use of an advanced image processing algorithm, called OBS, can enhance the cortical bone analysis in pQCT images and provide similar information to HR-pQCT when the same volumes of interest are analyzed. Using pQCT images of European Forearm Phantom (EFP), and pQCT and HR-pQCT images of the distal tibia from 15 cadavers, we compared the results from the OBS algorithm with those obtained from common pQCT analyses, HR-pQCT manual analysis (considered as a gold standard) and common HR-pQCT analysis dual threshold technique.We found that the use of OBS segmentation method for pQCT image analysis of EFP data did not result in any improvement but reached similar performance in cortical bone delineation as did HR-pQCT image analyses. The assessments of cortical cross-sectional bone area and thickness by OBS algorithm were overestimated by less than 4% while area moments of inertia were overestimated by ~5–10%, depending on reference HR-pQCT analysis method. In conclusion, this study showed that the OBS algorithm performed reasonably well and it offers a promising practical tool to enhance the assessment of cortical bone geometry in pQCT.
Methods and apparatus for improving sensor performance
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Kenny, Thomas W. (Inventor); Reynolds, Joseph K. (Inventor); Van Zandt, Thomas R. (Inventor); Waltman, Steven B. (Inventor)
1993-01-01
Methods and apparatus for improving performance of a sensor having a sensor proof mass elastically suspended at an initial equilibrium position by a suspension force, provide a tunable force opposing that suspension force and preset the proof mass with that tunable force to a second equilibrium position less stable than the initial equilibrium position. The sensor is then operated from that preset second equilibrium position of the proof mass short of instability. The spring constant of the elastic suspension may be continually monitored, and such continually monitored spring constant may be continually adjusted to maintain the sensor at a substantially constant sensitivity during its operation.
Improved Operating Performance of Mining Machine Picks
NASA Astrophysics Data System (ADS)
Prokopenko, S.; Li, A.; Kurzina, I.; Sushko, A.
2016-08-01
The reasons of low performance of mining machine picks are stated herein. In order to improve the wear resistance and the cutting ability of picks a new design of a cutting carbide tip insert to be fixed on a removable and rotating pick head is developed. Owing to the new design, the tool ensures a twofold increase in the cutting force maintained longer, a twofold reduction in the specific power consumption of the breaking process, and extended service life of picks and the possibility of their multiple use.
Disease management as a performance improvement strategy.
McClatchey, S
2001-11-01
Disease management is a strategy of organizing care and services for a patient population across the continuum. It is characterized by a population database, interdisciplinary and interagency collaboration, and evidence-based clinical information. The effectiveness of a disease management program has been measured by a combination of clinical, financial, and quality of life outcomes. In early 1997, driven by a strategic planning process that established three Centers of Excellence (COE), we implemented disease management as the foundation for a new approach to performance improvement utilizing five key strategies. The five implementation strategies are outlined, in addition to a review of the key elements in outcome achievement.
Improvement of Automotive Part Supplier Performance Evaluation
NASA Astrophysics Data System (ADS)
Kongmunee, Chalermkwan; Chutima, Parames
2016-05-01
This research investigates the problem of the part supplier performance evaluation in a major Japanese automotive plant in Thailand. Its current evaluation scheme is based on experiences and self-opinion of the evaluators. As a result, many poor performance suppliers are still considered as good suppliers and allow to supply parts to the plant without further improvement obligation. To alleviate this problem, the brainstorming session among stakeholders and evaluators are formally conducted. The result of which is the appropriate evaluation criteria and sub-criteria. The analytical hierarchy process is also used to find suitable weights for each criteria and sub-criteria. The results show that a newly developed evaluation method is significantly better than the previous one in segregating between good and poor suppliers.
Orion Guidance and Control Ascent Abort Algorithm Design and Performance Results
NASA Technical Reports Server (NTRS)
Proud, Ryan W.; Bendle, John R.; Tedesco, Mark B.; Hart, Jeremy J.
2009-01-01
During the ascent flight phase of NASA s Constellation Program, the Ares launch vehicle propels the Orion crew vehicle to an agreed to insertion target. If a failure occurs at any point in time during ascent then a system must be in place to abort the mission and return the crew to a safe landing with a high probability of success. To achieve continuous abort coverage one of two sets of effectors is used. Either the Launch Abort System (LAS), consisting of the Attitude Control Motor (ACM) and the Abort Motor (AM), or the Service Module (SM), consisting of SM Orion Main Engine (OME), Auxiliary (Aux) Jets, and Reaction Control System (RCS) jets, is used. The LAS effectors are used for aborts from liftoff through the first 30 seconds of second stage flight. The SM effectors are used from that point through Main Engine Cutoff (MECO). There are two distinct sets of Guidance and Control (G&C) algorithms that are designed to maximize the performance of these abort effectors. This paper will outline the necessary inputs to the G&C subsystem, the preliminary design of the G&C algorithms, the ability of the algorithms to predict what abort modes are achievable, and the resulting success of the abort system. Abort success will be measured against the Preliminary Design Review (PDR) abort performance metrics and overall performance will be reported. Finally, potential improvements to the G&C design will be discussed.
NASA Astrophysics Data System (ADS)
Singh, Sartajvir; Talwar, Rajneesh
2016-12-01
Detection of snow cover changes is vital for avalanche hazard analysis and flood flashes that arise due to variation in temperature. Hence, multitemporal change detection is one of the practical mean to estimate the snow cover changes over larger area using remotely sensed data. There have been some previous studies that examined how accuracy of change detection analysis is affected by different topography effects over Northwestern Indian Himalayas. The present work emphases on the intercomparison of different topography effects on discrimination performance of fuzzy based change vector analysis (FCVA) as change detection algorithm that includes extraction of change-magnitude and change-direction from a specific pixel belongs multiple or partial membership. The qualitative and quantitative analysis of the proposed FCVA algorithm is performed under topographic conditions and topographic correction conditions. The experimental outcomes confirmed that in change category discrimination procedure, FCVA with topographic correction achieved 86.8% overall accuracy and 4.8% decay (82% of overall accuracy) is found in FCVA without topographic correction. This study suggests that by incorporating the topographic correction model over mountainous region satellite imagery, performance of FCVA algorithm can be significantly improved up to great extent in terms of determining actual change categories.
Rabow, A A; Scheraga, H A
1996-09-01
We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints.
Effective Application of Improved Profit-Mining Algorithm for the Interday Trading Model
Wu, Jungpin
2014-01-01
Many real world applications of association rule mining from large databases help users make better decisions. However, they do not work well in financial markets at this time. In addition to a high profit, an investor also looks for a low risk trading with a better rate of winning. The traditional approach of using minimum confidence and support thresholds needs to be changed. Based on an interday model of trading, we proposed effective profit-mining algorithms which provide investors with profit rules including information about profit, risk, and winning rate. Since profit-mining in the financial market is still in its infant stage, it is important to detail the inner working of mining algorithms and illustrate the best way to apply them. In this paper we go into details of our improved profit-mining algorithm and showcase effective applications with experiments using real world trading data. The results show that our approach is practical and effective with good performance for various datasets. PMID:24688442
Effective application of improved profit-mining algorithm for the interday trading model.
Hsieh, Yu-Lung; Yang, Don-Lin; Wu, Jungpin
2014-01-01
Many real world applications of association rule mining from large databases help users make better decisions. However, they do not work well in financial markets at this time. In addition to a high profit, an investor also looks for a low risk trading with a better rate of winning. The traditional approach of using minimum confidence and support thresholds needs to be changed. Based on an interday model of trading, we proposed effective profit-mining algorithms which provide investors with profit rules including information about profit, risk, and winning rate. Since profit-mining in the financial market is still in its infant stage, it is important to detail the inner working of mining algorithms and illustrate the best way to apply them. In this paper we go into details of our improved profit-mining algorithm and showcase effective applications with experiments using real world trading data. The results show that our approach is practical and effective with good performance for various datasets.
An improved teaching-learning based robust edge detection algorithm for noisy images.
Thirumavalavan, Sasirooba; Jayaraman, Sasikala
2016-11-01
This paper presents an improved Teaching Learning Based Optimization (TLO) and a methodology for obtaining the edge maps of the noisy real life digital images. TLO is a population based algorithm that simulates the teaching-learning mechanism in class rooms, comprising two phases of teaching and learning. The 'Teaching Phase' represents learning from the teacher and 'Learning Phase' indicates learning by the interaction between learners. This paper introduces a third phase denoted by "Avoiding Phase" that helps to keep the learners away from the worst students with a view of exploring the problem space more effectively and escaping from the sub-optimal solutions. The improved TLO (ITLO) explores the solution space and provides the global best solution. The edge detection problem is formulated as an optimization problem and solved using the ITLO. The results of real life and medical images illustrate the performance of the developed method.
NASA Astrophysics Data System (ADS)
Zecchin, A. C.; Simpson, A. R.; Maier, H. R.; Marchi, A.; Nixon, J. B.
2012-09-01
Evolutionary algorithms (EAs) have been applied successfully to many water resource problems, such as system design, management decision formulation, and model calibration. The performance of an EA with respect to a particular problem type is dependent on how effectively its internal operators balance the exploitation/exploration trade-off to iteratively find solutions of an increasing quality. For a given problem, different algorithms are observed to produce a variety of different final performances, but there have been surprisingly few investigations into characterizing how the different internal mechanisms alter the algorithm's searching behavior, in both the objective and decision space, to arrive at this final performance. This paper presents metrics for analyzing the searching behavior of ant colony optimization algorithms, a particular type of EA, for the optimal water distribution system design problem, which is a classical NP-hard problem in civil engineering. Using the proposed metrics, behavior is characterized in terms of three different attributes: (1) the effectiveness of the search in improving its solution quality and entering into optimal or near-optimal regions of the search space, (2) the extent to which the algorithm explores as it converges to solutions, and (3) the searching behavior with respect to the feasible and infeasible regions. A range of case studies is considered, where a number of ant colony optimization variants are applied to a selection of water distribution system optimization problems. The results demonstrate the utility of the proposed metrics to give greater insight into how the internal operators affect each algorithm's searching behavior.
Using shadow page cache to improve isolated drivers performance.
Zheng, Hao; Dong, Xiaoshe; Wang, Endong; Chen, Baoke; Zhu, Zhengdong; Liu, Chengzhe
2015-01-01
With the advantage of the reusability property of the virtualization technology, users can reuse various types and versions of existing operating systems and drivers in a virtual machine, so as to customize their application environment. In order to prevent users' virtualization environments being impacted by driver faults in virtual machine, Chariot examines the correctness of driver's write operations by the method of combining a driver's write operation capture and a driver's private access control table. However, this method needs to keep the write permission of shadow page table as read-only, so as to capture isolated driver's write operations through page faults, which adversely affect the performance of the driver. Based on delaying setting frequently used shadow pages' write permissions to read-only, this paper proposes an algorithm using shadow page cache to improve the performance of isolated drivers and carefully study the relationship between the performance of drivers and the size of shadow page cache. Experimental results show that, through the shadow page cache, the performance of isolated drivers can be greatly improved without impacting Chariot's reliability too much.
An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication
NASA Astrophysics Data System (ADS)
Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao
2014-05-01
For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.
Research on super-resolution image reconstruction based on an improved POCS algorithm
NASA Astrophysics Data System (ADS)
Xu, Haiming; Miao, Hong; Yang, Chong; Xiong, Cheng
2015-07-01
Super-resolution image reconstruction (SRIR) can improve the fuzzy image's resolution; solve the shortage of the spatial resolution, excessive noise, and low-quality problem of the image. Firstly, we introduce the image degradation model to reveal the essence of super-resolution reconstruction process is an ill-posed inverse problem in mathematics. Secondly, analysis the blurring reason of optical imaging process - light diffraction and small angle scattering is the main reason for the fuzzy; propose an image point spread function estimation method and an improved projection onto convex sets (POCS) algorithm which indicate effectiveness by analyzing the changes between the time domain and frequency domain algorithm in the reconstruction process, pointed out that the improved POCS algorithms based on prior knowledge have the effect to restore and approach the high frequency of original image scene. Finally, we apply the algorithm to reconstruct synchrotron radiation computer tomography (SRCT) image, and then use these images to reconstruct the three-dimensional slice images. Comparing the differences between the original method and super-resolution algorithm, it is obvious that the improved POCS algorithm can restrain the noise and enhance the image resolution, so it is indicated that the algorithm is effective. This study and exploration to super-resolution image reconstruction by improved POCS algorithm is proved to be an effective method. It has important significance and broad application prospects - for example, CT medical image processing and SRCT ceramic sintering analyze of microstructure evolution mechanism.
Du, Tingsong; Hu, Yang; Ke, Xianting
2015-01-01
An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.
Evaluation of odometry algorithm performances using a railway vehicle dynamic model
NASA Astrophysics Data System (ADS)
Allotta, B.; Pugi, L.; Ridolfi, A.; Malvezzi, M.; Vettori, G.; Rindi, A.
2012-05-01
In modern railway Automatic Train Protection and Automatic Train Control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. Simplified two-dimensional models of railway vehicles have been usually used for Hardware in the Loop test rig testing of conventional odometry algorithms and of on-board safety relevant subsystems (like the Wheel Slide Protection braking system) in which the train speed is estimated from the measures of the wheel angular speed. Two-dimensional models are not suitable to develop solutions like the inertial type localisation algorithms (using 3D accelerometers and 3D gyroscopes) and the introduction of Global Positioning System (or similar) or the magnetometer. In order to test these algorithms correctly and increase odometry performances, a three-dimensional multibody model of a railway vehicle has been developed, using Matlab-Simulink™, including an efficient contact model which can simulate degraded adhesion conditions (the development and prototyping of odometry algorithms involve the simulation of realistic environmental conditions). In this paper, the authors show how a 3D railway vehicle model, able to simulate the complex interactions arising between different on-board subsystems, can be useful to evaluate the odometry algorithm and safety relevant to on-board subsystem performances.
PIMM: A Performance Improvement Measurement Methodology
Not Available
1994-05-15
This report presents a Performance Improvement Measurement Methodology (PIMM) for measuring and reporting the mission performance for organizational elements of the U.S. Department of Energy to comply with the Chief Financial Officer`s Act (CFOA) of 1990 and the Government Performance and Results Act (GPRA) of 1993. The PIMM is illustrated by application to the Morgantown Energy Technology Center (METC), a Research, Development and Demonstration (RD&D) field center of the Office of Fossil Energy, along with limited applications to the Strategic Petroleum Reserve Office and the Office of Fossil Energy. METC is now implementing the first year of a pilot project under GPRA using the PIMM. The PIMM process is applicable to all elements of the Department; organizations may customize measurements to their specific missions. The PIMM has four aspects: (1) an achievement measurement that applies to any organizational element, (2) key indicators that apply to institutional elements, (3) a risk reduction measurement that applies to all RD&D elements and to elements with long-term activities leading to risk-associated outcomes, and (4) a cost performance evaluation. Key Indicators show how close the institution is to attaining long range goals. Risk reduction analysis is especially relevant to RD&D. Product risk is defined as the chance that the product of new technology will not meet the requirements of the customer. RD&D is conducted to reduce technology risks to acceptable levels. The PIMM provides a profile to track risk reduction as RD&D proceeds. Cost performance evaluations provide a measurement of the expected costs of outcomes relative to their actual costs.
Verma, T.; Painuly, N.K.; Mishra, S.P.; Shajahan, M.; Singh, N.; Bhatt, M.L.B.; Jamal, N.; Pant, M.C.
2016-01-01
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery. Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy planning. Materials and Methods: Treatment plans for ten lung cancer patients previously planned on Monte Carlo algorithm were re-planned using same treatment planning indices (gantry angel, rank, power etc.) in other four algorithms. Results: The values of radiotherapy planning parameters such as Mean dose, volume of 95% isodose line, Conformity Index, Homogeneity Index for target, Maximum dose, Mean dose; %Volume receiving 20Gy or more by contralateral lung; % volume receiving 30 Gy or more; % volume receiving 25 Gy or more, Mean dose received by heart; %volume receiving 35Gy or more; %volume receiving 50Gy or more, Mean dose to Easophagous; % Volume receiving 45Gy or more, Maximum dose received by Spinal cord and Total monitor unit, Volume of 50 % isodose lines were recorded for all ten patients. Performance of different algorithms was also evaluated statistically. Conclusion: MC and PB algorithms found better as for tumor coverage, dose distribution homogeneity in Planning Target Volume and minimal dose to organ at risks are concerned. Superposition algorithms found to be better than convolution and fast superposition. In the case of tumors located centrally, it is recommended to use Monte Carlo algorithms for the optimal use of radiotherapy. PMID:27853720
Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun
2014-01-01
An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940
Feng, Yanhong; Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun
2014-01-01
An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm.
Affine Projection Algorithm with Improved Data-Selective Method Using the Condition Number
NASA Astrophysics Data System (ADS)
Ban, Sung Jun; Lee, Chang Woo; Kim, Sang Woo
Recently, a data-selective method has been proposed to achieve low misalignment in affine projection algorithm (APA) by keeping the condition number of an input data matrix small. We present an improved method, and a complexity reduction algorithm for the APA with the data-selective method. Experimental results show that the proposed algorithm has lower misalignment and a lower condition number for an input data matrix than both the conventional APA and the APA with the previous data-selective method.
2011-04-01
Comparison of Performance Effectiveness of Linear Control Algorithms Developed for a Simplified Ground Vehicle Suspension System by Ross... Linear Control Algorithms Developed for a Simplified Ground Vehicle Suspension System Ross Brown Motile Robotics, Inc, research contractor at U.S... Linear Control Algorithms Developed for a Simplified Ground Vehicle Suspension System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Performance of a parallel algorithm for standard cell placement on the Intel Hypercube
NASA Technical Reports Server (NTRS)
Jones, Mark; Banerjee, Prithviraj
1987-01-01
A parallel simulated annealing algorithm for standard cell placement on the Intel Hypercube is presented. A novel tree broadcasting strategy is used extensively for updating cell locations in the parallel environment. Studies on the performance of the algorithm on example industrial circuits show that it is faster and gives better final placement results than uniprocessor simulated annealing algorithms.
An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming
2017-02-01
In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.
Research on target tracking based on improved SURF algorithm and Kalman prediction
NASA Astrophysics Data System (ADS)
Hu, Dandan; Nan, Jiang
2016-07-01
For the problem of ignoring color information and computing complexity and so on, a new target tracking algorithm based on improved SURF(Speed Up Robust Features) algorithm and Kalman filter fusion is studied. First, the color invariants are added in the generation process of SURF. And then the current position is predicted by using the Kalman filter and establishing the search window. Finally, the feature vectors in the search window are extracted by using the improved SURF algorithm for matching. The experiments prove that the algorithm can always track targets stably when the target appears scale changed, rotation and partial occlusion, and the tracking speed is greatly improved than that of the SURF algorithm.
An Improved WiFi Indoor Positioning Algorithm by Weighted Fusion
Ma, Rui; Guo, Qiang; Hu, Changzhen; Xue, Jingfeng
2015-01-01
The rapid development of mobile Internet has offered the opportunity for WiFi indoor positioning to come under the spotlight due to its low cost. However, nowadays the accuracy of WiFi indoor positioning cannot meet the demands of practical applications. To solve this problem, this paper proposes an improved WiFi indoor positioning algorithm by weighted fusion. The proposed algorithm is based on traditional location fingerprinting algorithms and consists of two stages: the offline acquisition and the online positioning. The offline acquisition process selects optimal parameters to complete the signal acquisition, and it forms a database of fingerprints by error classification and handling. To further improve the accuracy of positioning, the online positioning process first uses a pre-match method to select the candidate fingerprints to shorten the positioning time. After that, it uses the improved Euclidean distance and the improved joint probability to calculate two intermediate results, and further calculates the final result from these two intermediate results by weighted fusion. The improved Euclidean distance introduces the standard deviation of WiFi signal strength to smooth the WiFi signal fluctuation and the improved joint probability introduces the logarithmic calculation to reduce the difference between probability values. Comparing the proposed algorithm, the Euclidean distance based WKNN algorithm and the joint probability algorithm, the experimental results indicate that the proposed algorithm has higher positioning accuracy. PMID:26334278
An Improved WiFi Indoor Positioning Algorithm by Weighted Fusion.
Ma, Rui; Guo, Qiang; Hu, Changzhen; Xue, Jingfeng
2015-08-31
The rapid development of mobile Internet has offered the opportunity for WiFi indoor positioning to come under the spotlight due to its low cost. However, nowadays the accuracy of WiFi indoor positioning cannot meet the demands of practical applications. To solve this problem, this paper proposes an improved WiFi indoor positioning algorithm by weighted fusion. The proposed algorithm is based on traditional location fingerprinting algorithms and consists of two stages: the offline acquisition and the online positioning. The offline acquisition process selects optimal parameters to complete the signal acquisition, and it forms a database of fingerprints by error classification and handling. To further improve the accuracy of positioning, the online positioning process first uses a pre-match method to select the candidate fingerprints to shorten the positioning time. After that, it uses the improved Euclidean distance and the improved joint probability to calculate two intermediate results, and further calculates the final result from these two intermediate results by weighted fusion. The improved Euclidean distance introduces the standard deviation of WiFi signal strength to smooth the WiFi signal fluctuation and the improved joint probability introduces the logarithmic calculation to reduce the difference between probability values. Comparing the proposed algorithm, the Euclidean distance based WKNN algorithm and the joint probability algorithm, the experimental results indicate that the proposed algorithm has higher positioning accuracy.
Improved noise-immune phase-unwrapping algorithm
NASA Astrophysics Data System (ADS)
Cusack, R.; Huntley, J. M.; Goldrein, H. T.
1995-02-01
An algorithm for unwrapping noisy phase maps has recently been proposed, based on the identification of discontinuity sources that mark the start or end of a 2 pi phase discontinuity. Branch cuts between sources act as barriers to unwrapping, resulting in a unique phase map that is independent of the unwrapping route. We investigate four methods for optimizing the placement of the cuts. A modified nearest neighbor approach is found to be the most successful and can reliably unwrap unfiltered speckle-interferometry phase maps with discontinuity source densities of 0.05 sources pixel-1.
SPICE: Sentinel-3 Performance Improvement for Ice Sheets
NASA Astrophysics Data System (ADS)
McMillan, Malcolm; Shepherd, Andrew; Roca, Monica; Escorihuela, Maria Jose; Thibaut, Pierre; Remy, Frederique; Escola, Roger; Benveniste, Jerome; Ambrozio, Americo; Restano, Marco
2016-04-01
Since the launch of ERS-1 in 1991, polar-orbiting satellite radar altimeters have provided a near continuous record of ice sheet elevation change, yielding estimates of ice sheet mass imbalance at the scale of individual ice sheet basins. One of the principle challenges associated with radar altimetry comes from the relatively large ground footprint of conventional pulse-limited radars, which limits their capacity to make reliable measurements in areas of complex topographic terrain. In recent years, progress has been made towards improving ground resolution, through the implementation of Synthetic Aperture Radar (SAR), or Delay-Doppler, techniques. In 2010, the launch of CryoSat heralded the start of a new era of SAR altimetry, although full SAR coverage of the polar ice sheets will only be achieved with the launch of the first Sentinel-3 satellite in January 2016. Because of the heritage of SAR altimetry provided by CryoSat, current SAR altimeter processing techniques have to some extent been optimized and evaluated for water and sea ice surfaces. This leaves several outstanding issues related to the development and evaluation of SAR altimetry for ice sheets, including improvements to SAR processing algorithms and SAR altimetry waveform retracking procedures. Here we will outline SPICE (Sentinel-3 Performance Improvement for Ice Sheets), a 2 year project which began in September 2015 and is funded by ESA's SEOM (Scientific Exploitation of Operational Missions) programme. This project aims to contribute to the development and understanding of ice sheet SAR altimetry through the emulation of Sentinel-3 data from dedicated CryoSat SAR acquisitions made at several sites in Antarctica. More specifically, the project aims to (1) evaluate and improve the current Delay-Doppler processing and SAR waveform retracking algorithms, (2) evaluate higher level SAR altimeter data, and (3) investigate radar wave interaction with the snowpack. We will provide a broad overview of
NASA Astrophysics Data System (ADS)
Liu, B.; Li, S. C.; Nie, L. C.; Wang, J.; L, X.; Zhang, Q. S.
2012-12-01
Traditional inversion method is the most commonly used procedure for three-dimensional (3D) resistivity inversion, which usually takes the linearization of the problem and accomplish it by iterations. However, its accuracy is often dependent on the initial model, which can make the inversion trapped in local optima, even cause a bad result. Non-linear method is a feasible way to eliminate the dependence on the initial model. However, for large problems such as 3D resistivity inversion with inversion parameters exceeding a thousand, main challenges of non-linear method are premature and quite low search efficiency. To deal with these problems, we present an improved Genetic Algorithm (GA) method. In the improved GA method, smooth constraint and inequality constraint are both applied on the object function, by which the degree of non-uniqueness and ill-conditioning is decreased. Some measures are adopted from others by reference to maintain the diversity and stability of GA, e.g. real-coded method, and the adaptive adjustment of crossover and mutation probabilities. Then a generation method of approximately uniform initial population is proposed in this paper, with which uniformly distributed initial generation can be produced and the dependence on initial model can be eliminated. Further, a mutation direction control method is presented based on the joint algorithm, in which the linearization method is embedded in GA. The update vector produced by linearization method is used as mutation increment to maintain a better search direction compared with the traditional GA with non-controlled mutation operation. By this method, the mutation direction is optimized and the search efficiency is improved greatly. The performance of improved GA is evaluated by comparing with traditional inversion results in synthetic example or with drilling columnar sections in practical example. The synthetic and practical examples illustrate that with the improved GA method we can eliminate
Improved MODIS Dark Target aerosol optical depth algorithm over land: angular effect correction
NASA Astrophysics Data System (ADS)
Wu, Yerong; de Graaf, Martin; Menenti, Massimo
2016-11-01
Aerosol optical depth (AOD) product retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) measurements has greatly benefited scientific research in climate change and air quality due to its high quality and large coverage over the globe. However, the current product (e.g., Collection 6) over land needs to be further improved. The is because AOD retrieval still suffers large uncertainty from the surface reflectance (e.g., anisotropic reflection) although the impacts of the surface reflectance have been largely reduced using the Dark Target (DT) algorithm. It has been shown that the AOD retrieval over dark surface can be improved by considering surface bidirectional distribution reflectance function (BRDF) effects in previous study. However, the relationship of the surface reflectance between visible and shortwave infrared band that applied in the previous study can lead to an angular dependence of the AOD retrieval. This has at least two reasons. The relationship based on the assumption of isotropic reflection or Lambertian surface is not suitable for the surface bidirectional reflectance factor (BRF). However, although the relationship varies with the surface cover type by considering the vegetation index NDVISWIR, this index itself has a directional effect and affects the estimation of the surface reflection, and it can lead to some errors in the AOD retrieval. To improve this situation, we derived a new relationship for the spectral surface BRF in this study, using 3 years of data from AERONET-based Surface Reflectance Validation Network (ASRVN). To test the performance of the new algorithm, two case studies were used: 2 years of data from North America and 4 months of data from the global land. The results show that the angular effects of the AOD retrieval are largely reduced in most cases, including fewer occurrences of negative retrievals. Particularly, for the global land case, the AOD retrieval was improved by the new algorithm compared to the
Improving Performance During Image-Guided Procedures
Duncan, James R.; Tabriz, David
2015-01-01
Objective Image-guided procedures have become a mainstay of modern health care. This article reviews how human operators process imaging data and use it to plan procedures and make intraprocedural decisions. Methods A series of models from human factors research, communication theory, and organizational learning were applied to the human-machine interface that occupies the center stage during image-guided procedures. Results Together, these models suggest several opportunities for improving performance as follows: 1. Performance will depend not only on the operator’s skill but also on the knowledge embedded in the imaging technology, available tools, and existing protocols. 2. Voluntary movements consist of planning and execution phases. Performance subscores should be developed that assess quality and efficiency during each phase. For procedures involving ionizing radiation (fluoroscopy and computed tomography), radiation metrics can be used to assess performance. 3. At a basic level, these procedures consist of advancing a tool to a specific location within a patient and using the tool. Paradigms from mapping and navigation should be applied to image-guided procedures. 4. Recording the content of the imaging system allows one to reconstruct the stimulus/response cycles that occur during image-guided procedures. Conclusions When compared with traditional “open” procedures, the technology used during image-guided procedures places an imaging system and long thin tools between the operator and the patient. Taking a step back and reexamining how information flows through an imaging system and how actions are conveyed through human-machine interfaces suggest that much can be learned from studying system failures. In the same way that flight data recorders revolutionized accident investigations in aviation, much could be learned from recording video data during image-guided procedures. PMID:24921628
MEMS Actuators for Improved Performance and Durability
NASA Astrophysics Data System (ADS)
Yearsley, James M.
Micro-ElectroMechanical Systems (MEMS) devices take advantage of force-scaling at length scales smaller than a millimeter to sense and interact with directly with phenomena and targets at the microscale. MEMS sensors found in everyday devices like cell-phones and cars include accelerometers, gyros, pressure sensors, and magnetic sensors. MEMS actuators generally serve more application specific roles including micro- and nano-tweezers used for single cell manipulation, optical switching and alignment components, and micro combustion engines for high energy density power generation. MEMS rotary motors are actuators that translate an electric drive signal into rotational motion and can serve as rate calibration inputs for gyros, stages for optical components, mixing devices for micro-fluidics, etc. Existing rotary micromotors suffer from friction and wear issues that affect lifetime and performance. Attempts to alleviate friction effects include surface treatment, magnetic and electrostatic levitation, pressurized gas bearings, and micro-ball bearings. The present work demonstrates a droplet based liquid bearing supporting a rotary micromotor that improves the operating characteristics of MEMS rotary motors. The liquid bearing provides wear-free, low-friction, passive alignment between the rotor and stator. Droplets are positioned relative to the rotor and stator through patterned superhydrophobic and hydrophilic surface coatings. The liquid bearing consists of a central droplet that acts as the motor shaft, providing axial alignment between rotor and stator, and satellite droplets, analogous to ball-bearings, that provide tip and tilt stable operation. The liquid bearing friction performance is characterized through measurement of the rotational drag coefficient and minimum starting torque due to stiction and geometric effects. Bearing operational performance is further characterized by modeling and measuring stiffness, environmental survivability, and high
ERIC Educational Resources Information Center
Oosterling, Iris; Roos, Sascha; de Bildt, Annelies; Rommelse, Nanda; de Jonge, Maretha; Visser, Janne; Lappenschaar, Martijn; Swinkels, Sophie; van der Gaag, Rutger Jan; Buitelaar, Jan
2010-01-01
Recently, Gotham et al. ("2007") proposed revised algorithms for the Autism Diagnostic Observation Schedule (ADOS) with improved diagnostic validity. The aim of the current study was to replicate predictive validity, factor structure, and correlations with age and verbal and nonverbal IQ of the ADOS revised algorithms for Modules 1 and 2…
Performance of new GPU-based scan-conversion algorithm implemented using OpenGL.
Steelman, William A; Richard, William D
2011-04-01
A new GPU-based scan-conversion algorithm implemented using OpenGL is described. The compute performance of this new algorithm running on a modem GPU is compared to the performance of three common scan-conversion algorithms (nearest-neighbor, linear interpolation and bilinear interpolation) implemented in software using a modem CPU. The quality of the images produced by the algorithm, as measured by signal-to-noise power, is also compared to the quality of the images produced using these three common scan-conversion algorithms.
Performance of a parallel algorithm for standard cell placement on the Intel Hypercube
NASA Technical Reports Server (NTRS)
Jones, Mark; Banerjee, Prithviraj
1987-01-01
A parallel simulated annealing algorithm for standard cell placement that is targeted to run on the Intel Hypercube is presented. A tree broadcasting strategy that is used extensively in our algorithm for updating cell locations in the parallel environment is presented. Studies on the performance of our algorithm on example industrial circuits show that it is faster and gives better final placement results than the uniprocessor simulated annealing algorithms.
Extreme overbalance perforating improves well performance
Dees, J.M.; Handren, P.J.
1994-01-01
The application of extreme overbalance perforating, by Oryx Energy Co., is consistently outperforming the unpredictable, tubing-conveyed, underbalance perforating method which is generally accepted as the industry standard. Successful results reported from more than 60 Oryx Energy wells, applying this technology, support this claim. Oryx began this project in 1990 to address the less-than-predictable performance of underbalanced perforating. The goal was to improve the initial completion efficiency, translating it into higher profits resulting from earlier product sales. This article presents the concept, mechanics, procedures, potential applications and results of perforating using overpressured well bores. The procedure can also be used in wells with existing perforations if an overpressured surge is used. This article highlights some of the case histories that have used these techniques.
Soft Magnetic Materials for Improved Energy Performance
NASA Astrophysics Data System (ADS)
Willard, Matthew
2012-02-01
A main focus of sustainable energy research has been development of renewable energy technologies (e.g. from wind, solar, hydro, geothermal, etc.) to decrease our dependence on non-renewable energy resources (e.g. fossil fuels). By focusing on renewable energy sources now, we hope to provide enough energy resources for future generations. In parallel with this focus, it is essential to develop technologies that improve the efficiency of energy production, distribution, and consumption, to get the most from these renewable resources. Soft magnetic materials play a central role in power generation, conditioning, and conversion technologies and therefore promoting improvements in the efficiency of these materials is essential for our future energy needs. The losses generated by the magnetic core materials by hysteretic, acoustic, and/or eddy currents have a great impact on efficiency. A survey of soft magnetic materials for energy applications will be discussed with a focus on improvement in performance using novel soft magnetic materials designed for these power applications. A group of premiere soft magnetic materials -- nanocrystalline soft magnetic alloys -- will be highlighted for their potential in addressing energy efficiency. These materials are made up of nanocrystalline magnetic transition metal-rich grains embedded within an intergranular amorphous matrix, obtained by partial devitrification of melt-spun amorphous ribbons. The nanoscale grain size results in a desirable combination of large saturation induction, low coercivity, and moderate resistivity unobtainable in conventional soft magnetic alloys. The random distribution of these fine grains causes a reduction in the net magnetocrystalline anisotropy, contributing to the excellent magnetic properties. Recently developed (Fe,Co,Ni)88Zr7B4Cu1 alloys will be discussed with a focus on the microstructure/magnetic property relationship and their effects on the energy efficiency of these materials for AC
FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals
NASA Astrophysics Data System (ADS)
Wang, P.; Stammes, P.; van der A, R.; Pinardi, G.; van Roozendael, M.
2008-11-01
The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. We compared FRESCO+ and FRESCO effective cloud fractions and cloud pressures using simulated spectra and one month of GOME measured spectra. As expected, FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar/lidar measurements of clouds show that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. The effect of FRESCO+ cloud parameters on O3 and NO2 vertical column density (VCD) retrievals is studied using SCIAMACHY data and ground-based DOAS measurements. We find that the FRESCO+ algorithm has a significant effect on tropospheric NO2 retrievals but a minor effect on total O3 retrievals. The retrieved SCIAMACHY tropospheric NO2 VCDs using FRESCO+ cloud parameters (v1.1) are lower than the tropospheric NO2VCDs which used FRESCO cloud parameters (v1.04), in particular over heavily polluted areas with low clouds. The difference between SCIAMACHY tropospheric NO2 VCDs v1.1 and ground-based MAXDOAS measurements performed in Cabauw, The Netherlands, during the DANDELIONS campaign is about -2.12×1014molec cm-2.
NASA Astrophysics Data System (ADS)
Bai, Danyu
2015-08-01
This paper discusses the flow shop scheduling problem to minimise the total quadratic completion time (TQCT) with release dates in offline and online environments. For this NP-hard problem, the investigation is focused on the performance of two online algorithms based on the Shortest Processing Time among Available jobs rule. Theoretical results indicate the asymptotic optimality of the algorithms as the problem scale is sufficiently large. To further enhance the quality of the original solutions, the improvement scheme is provided for these algorithms. A new lower bound with performance guarantee is provided, and computational experiments show the effectiveness of these heuristics. Moreover, several results of the single-machine TQCT problem with release dates are also obtained for the deduction of the main theorem.
An improved label propagation algorithm based on the similarity matrix using random walk
NASA Astrophysics Data System (ADS)
Zhang, Xian-Kun; Song, Chen; Jia, Jia; Lu, Zeng-Lei; Zhang, Qian
2016-05-01
Community detection based on label propagation algorithm (LPA) has attracted widespread concern because of its high efficiency. But it is difficult to guarantee the accuracy of community detection as the label spreading is random in the algorithm. In response to the problem, an improved LPA based on random walk (RWLPA) is proposed in this paper. Firstly, a matrix measuring similarity among various nodes in the network is obtained through calculation. Secondly, during the process of label propagation, when a node has more than a neighbor label with the highest frequency, not the label of a random neighbor but the label of the neighbor with the highest similarity will be chosen to update. It can avoid label propagating randomly among communities. Finally, we test LPA and the improved LPA in benchmark networks and real-world networks. The results show that the quality of communities discovered by the improved algorithm is improved compared with the traditional algorithm.
An improved method for Daugman's iris localization algorithm.
Ren, Xinying; Peng, Zhiyong; Zeng, Qingning; Peng, Chaonan; Zhang, Jianhua; Wu, Shuicai; Zeng, Yanjun
2008-01-01
Computer-based automatic recognition of persons for security reasons is highly desirable. Iris patterns provide an opportunity for separation of individuals to an extent that would avoid false positives and negatives. The current standard for this science is Daugman's iris localization algorithm. Part of the time required for analysis and comparison with other images relates to eyelid and eyelash positioning and length. We sought to remove the upper and lower eyelids and eyelashes to determine if separation of individuals could still be attained. Our experiments suggest separation can be achieved as effectively and more quickly by removing distracting and variable features while retaining enough stable factors in the iris to enable accurate identification.
Further development of an improved altimeter wind speed algorithm
NASA Technical Reports Server (NTRS)
Chelton, Dudley B.; Wentz, Frank J.
1986-01-01
A previous altimeter wind speed retrieval algorithm was developed on the basis of wind speeds in the limited range from about 4 to 14 m/s. In this paper, a new approach which gives a wind speed model function applicable over the range 0 to 21 m/s is used. The method is based on comparing 50 km along-track averages of the altimeter normalized radar cross section measurements with neighboring off-nadir scatterometer wind speed measurements. The scatterometer winds are constructed from 100 km binned measurements of radar cross section and are located approximately 200 km from the satellite subtrack. The new model function agrees very well with earlier versions up to wind speeds of 14 m/s, but differs significantly at higher wind speeds. The relevance of these results to the Geosat altimeter launched in March 1985 is discussed.
Assessing the performance of data assimilation algorithms which employ linear error feedback
NASA Astrophysics Data System (ADS)
Mallia-Parfitt, Noeleene; Bröcker, Jochen
2016-10-01
Data assimilation means to find an (approximate) trajectory of a dynamical model that (approximately) matches a given set of observations. A direct evaluation of the trajectory against the available observations is likely to yield a too optimistic view of performance, since the observations were already used to find the solution. A possible remedy is presented which simply consists of estimating that optimism, thereby giving a more realistic picture of the "out of sample" performance. Our approach is inspired by methods from statistical learning employed for model selection and assessment purposes in statistics. Applying similar ideas to data assimilation algorithms yields an operationally viable means of assessment. The approach can be used to improve the performance of models or the data assimilation itself. This is illustrated by optimising the feedback gain for data assimilation employing linear feedback.
Assessing the performance of data assimilation algorithms which employ linear error feedback.
Mallia-Parfitt, Noeleene; Bröcker, Jochen
2016-10-01
Data assimilation means to find an (approximate) trajectory of a dynamical model that (approximately) matches a given set of observations. A direct evaluation of the trajectory against the available observations is likely to yield a too optimistic view of performance, since the observations were already used to find the solution. A possible remedy is presented which simply consists of estimating that optimism, thereby giving a more realistic picture of the "out of sample" performance. Our approach is inspired by methods from statistical learning employed for model selection and assessment purposes in statistics. Applying similar ideas to data assimilation algorithms yields an operationally viable means of assessment. The approach can be used to improve the performance of models or the data assimilation itself. This is illustrated by optimising the feedback gain for data assimilation employing linear feedback.
Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms
Helms, Lucas; Clune, Jeff
2017-01-01
Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding. PMID:28334002
An Improved Method of Heterogeneity Compensation for the Convolution / Superposition Algorithm
NASA Astrophysics Data System (ADS)
Jacques, Robert; McNutt, Todd
2014-03-01
Purpose: To improve the accuracy of convolution/superposition (C/S) in heterogeneous material by developing a new algorithm: heterogeneity compensated superposition (HCS). Methods: C/S has proven to be a good estimator of the dose deposited in a homogeneous volume. However, near heterogeneities electron disequilibrium occurs, leading to the faster fall-off and re-buildup of dose. We propose to filter the actual patient density in a position and direction sensitive manner, allowing the dose deposited near interfaces to be increased or decreased relative to C/S. We implemented the effective density function as a multivariate first-order recursive filter and incorporated it into GPU-accelerated, multi-energetic C/S implementation. We compared HCS against C/S using the ICCR 2000 Monte-Carlo accuracy benchmark, 23 similar accuracy benchmarks and 5 patient cases. Results: Multi-energetic HCS increased the dosimetric accuracy for the vast majority of voxels; in many cases near Monte-Carlo results were achieved. We defined the per-voxel error, %|mm, as the minimum of the distance to agreement in mm and the dosimetric percentage error relative to the maximum MC dose. HCS improved the average mean error by 0.79 %|mm for the patient volumes; reducing the average mean error from 1.93 %|mm to 1.14 %|mm. Very low densities (i.e. < 0.1 g / cm3) remained problematic, but may be solvable with a better filter function. Conclusions: HCS improved upon C/S's density scaled heterogeneity correction with a position and direction sensitive density filter. This method significantly improved the accuracy of the GPU based algorithm reaching the accuracy levels of Monte Carlo based methods with performance in a few tenths of seconds per beam. Acknowledgement: Funding for this research was provided by the NSF Cooperative Agreement EEC9731748, Elekta / IMPAC Medical Systems, Inc. and the Johns Hopkins University. James Satterthwaite provided the Monte Carlo benchmark simulations.
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1980-01-01
The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.
Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem.
Tanaka, Shunji
2014-01-01
In this paper efficient exact algorithms are proposed for the planted ( l, d)-motif search problem. This problem is to find all motifs of length l that are planted in each input string with at most d mismatches. The "quorum" version of this problem is also treated in this paper to find motifs planted not in all input strings but in at least q input strings. The proposed algorithms are based on the previous algorithms called qPMSPruneI and qPMS7 that traverse a search tree starting from a l-length substring of an input string. To improve these previous algorithms, several techniques are introduced, which contribute to reducing the computation time for the traversal. In computational experiments, it will be shown that the proposed algorithms outperform the previous algorithms.
NASA Technical Reports Server (NTRS)
Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra
1989-01-01
In part 1 architecture of NETRA is presented. A performance evaluation of NETRA using several common vision algorithms is also presented. Performance of algorithms when they are mapped on one cluster is described. It is shown that SIMD, MIMD, and systolic algorithms can be easily mapped onto processor clusters, and almost linear speedups are possible. For some algorithms, analytical performance results are compared with implementation performance results. It is observed that the analysis is very accurate. Performance analysis of parallel algorithms when mapped across clusters is presented. Mappings across clusters illustrate the importance and use of shared as well as distributed memory in achieving high performance. The parameters for evaluation are derived from the characteristics of the parallel algorithms, and these parameters are used to evaluate the alternative communication strategies in NETRA. Furthermore, the effect of communication interference from other processors in the system on the execution of an algorithm is studied. Using the analysis, performance of many algorithms with different characteristics is presented. It is observed that if communication speeds are matched with the computation speeds, good speedups are possible when algorithms are mapped across clusters.
Computational and performance aspects of PCA-based face-recognition algorithms.
Moon, H; Phillips, P J
2001-01-01
Algorithms based on principal component analysis (PCA) form the basis of numerous studies in the psychological and algorithmic face-recognition literature. PCA is a statistical technique and its incorporation into a face-recognition algorithm requires numerous design decisions. We explicitly state the design decisions by introducing a generic modular PCA-algorithm. This allows us to investigate these decisions, including those not documented in the literature. We experimented with different implementations of each module, and evaluated the different implementations using the September 1996 FERET evaluation protocol (the de facto standard for evaluating face-recognition algorithms). We experimented with (i) changing the illumination normalization procedure; (ii) studying effects on algorithm performance of compressing images with JPEG and wavelet compression algorithms; (iii) varying the number of eigenvectors in the representation; and (iv) changing the similarity measure in the classification process. We performed two experiments. In the first experiment, we obtained performance results on the standard September 1996 FERET large-gallery image sets. In the second experiment, we examined the variability in algorithm performance on different sets of facial images. The study was performed on 100 randomly generated image sets (galleries) of the same size. Our two most significant results are (i) changing the similarity measure produced the greatest change in performance, and (ii) that difference in performance of +/- 10% is needed to distinguish between algorithms.
Integration of Metaheuristics: A Way to Improve Search Performance
NASA Astrophysics Data System (ADS)
See, Phen Chiak; Yew Wong, Kuan; Komarudin, Komarudin
2009-08-01
It is generally stated that hybridizing metaheuristics helps to achieve a better search performance when solving combinatorial optimization problems such as Quadratic Assignment Problems (QAPs). In this paper, the integration of two metaheuristics (Max-Min Ant System and Genetic Algorithm) is used to solve a QAP sample, and the search performance obtained is discussed. It is shown that the collaborative effect between these two algorithms helps to search the solution space more effectively, thus achieving a better quality solution.
Li, Bai
2014-01-01
Gold price forecasting has been a hot issue in economics recently. In this work, wavelet neural network (WNN) combined with a novel artificial bee colony (ABC) algorithm is proposed for this gold price forecasting issue. In this improved algorithm, the conventional roulette selection strategy is discarded. Besides, the convergence statuses in a previous cycle of iteration are fully utilized as feedback messages to manipulate the searching intensity in a subsequent cycle. Experimental results confirm that this new algorithm converges faster than the conventional ABC when tested on some classical benchmark functions and is effective to improve modeling capacity of WNN regarding the gold price forecasting scheme.
An improved label propagation algorithm using average node energy in complex networks
NASA Astrophysics Data System (ADS)
Peng, Hao; Zhao, Dandan; Li, Lin; Lu, Jianfeng; Han, Jianmin; Wu, Songyang
2016-10-01
Detecting overlapping community structure can give a significant insight into structural and functional properties in complex networks. In this Letter, we propose an improved label propagation algorithm (LPA) to uncover overlapping community structure. After mapping nodes into random variables, the algorithm calculates variance of each node and the proposed average node energy. The nodes whose variances are less than a tunable threshold are regarded as bridge nodes and meanwhile changing the given threshold can uncover some latent bridge node. Simulation results in real-world and artificial networks show that the improved algorithm is efficient in revealing overlapping community structures.
Implementation of an institution-wide acute stroke algorithm: Improving stroke quality metrics
Zuckerman, Scott L.; Magarik, Jordan A.; Espaillat, Kiersten B.; Kumar, Nishant Ganesh; Bhatia, Ritwik; Dewan, Michael C.; Morone, Peter J.; Hermann, Lisa D.; O’Duffy, Anne E.; Riebau, Derek A.; Kirshner, Howard S.; Mocco, J.
2016-01-01
Background: In May 2012, an updated stroke algorithm was implemented at Vanderbilt University Medical Center. The current study objectives were to: (1) describe the process of implementing a new stroke algorithm and (2) compare pre- and post-algorithm quality improvement (QI) metrics, specificaly door to computed tomography time (DTCT), door to neurology time (DTN), and door to tPA administration time (DTT). Methods: Our institutional stroke algorithm underwent extensive revision, with a focus on removing variability, streamlining care, and improving time delays. The updated stroke algorithm was implemented in May 2012. Three primary stroke QI metrics were evaluated over four separate 3-month time points, one pre- and three post-algorithm periods. Results: The following data points improved after algorithm implementation: average DTCT decreased from 39.9 to 12.8 min (P < 0.001); average DTN decreased from 34.1 to 8.2 min (P ≤ 0.001), and average DTT decreased from 62.5 to 43.5 min (P = 0.17). Conclusion: A new stroke protocol that prioritized neurointervention at our institution resulted in significant lowering in the DTCT and DTN, with a nonsignificant improvement in DTT. PMID:28144480
A New Algorithm Using the Non-dominated Tree to improve Non-dominated Sorting.
Gustavsson, Patrik; Syberfeldt, Anna
2017-01-19
Non-dominated sorting is a technique often used in evolutionary algorithms to determine the quality of solutions in a population. The most common algorithm is the Fast Non-dominated Sort (FNS). This algorithm, however, has the drawback that its performance deteriorates when the population size grows. The same drawback applies also to other non-dominating sorting algorithms such as the Efficient Non-dominated Sort with Binary Strategy (ENS-BS). An algorithm suggested to overcome this drawback is the Divide-and-Conquer Non-dominated Sort (DCNS) which works well on a limited number of objectives but deteriorates when the number of objectives grows. This paper presents a new, more efficient, algorithm called the Efficient Non-dominated Sort with Non-Dominated Tree (ENS-NDT). ENS-NDT is an extension of the ENS-BS algorithm and uses a novel Non-Dominated Tree (NDTree) to speed up the non-dominated sorting. ENS-NDT is able to handle large population sizes and a large number of objectives more efficiently than existing algorithms for non-dominated sorting. In the paper, it is shown that with ENS-NDT the runtime of multi-objective optimization algorithms such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) can be substantially reduced.
Multiband RF pulses with improved performance via convex optimization.
Shang, Hong; Larson, Peder E Z; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W; Ohliger, Michael A; Pauly, John M; Lustig, Michael; Vigneron, Daniel B
2016-01-01
Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) (13)C MRI, a dualband saturation RF pulse for (1)H MR spectroscopy, and a pre-saturation pulse for HP (13)C study were developed and tested.
Xu, Hongming; Lu, Cheng; Mandal, Mrinal
2014-09-01
In this paper, we propose an efficient method for segmenting cell nuclei in the skin histopathological images. The proposed technique consists of four modules. First, it separates the nuclei regions from the background with an adaptive threshold technique. Next, an elliptical descriptor is used to detect the isolated nuclei with elliptical shapes. This descriptor classifies the nuclei regions based on two ellipticity parameters. Nuclei clumps and nuclei with irregular shapes are then localized by an improved seed detection technique based on voting in the eroded nuclei regions. Finally, undivided nuclei regions are segmented by a marked watershed algorithm. Experimental results on 114 different image patches indicate that the proposed technique provides a superior performance in nuclei detection and segmentation.
An improved fuzzy c-means clustering algorithm based on shadowed sets and PSO.
Zhang, Jian; Shen, Ling
2014-01-01
To organize the wide variety of data sets automatically and acquire accurate classification, this paper presents a modified fuzzy c-means algorithm (SP-FCM) based on particle swarm optimization (PSO) and shadowed sets to perform feature clustering. SP-FCM introduces the global search property of PSO to deal with the problem of premature convergence of conventional fuzzy clustering, utilizes vagueness balance property of shadowed sets to handle overlapping among clusters, and models uncertainty in class boundaries. This new method uses Xie-Beni index as cluster validity and automatically finds the optimal cluster number within a specific range with cluster partitions that provide compact and well-separated clusters. Experiments show that the proposed approach significantly improves the clustering effect.
Genetic algorithm with an improved fitness function for (N)ARX modelling
NASA Astrophysics Data System (ADS)
Chen, Q.; Worden, K.; Peng, P.; Leung, A. Y. T.
2007-02-01
In this article a new fitness function is introduced in an attempt to improve the quality of the auto-regressive with exogenous inputs (ARX) model using a genetic algorithm (GA). The GA is employed to identify the coefficients and the number of time lags of the models of dynamic systems with the new fitness function which is based on the prediction error and the correlation functions between the prediction error and the input and output signals. The new fitness function provides the GA with a better performance in the evolution process. Two examples of the ARX modelling of a linear and a non-linear (NARX) simulated dynamic system are examined using the proposed fitness function.
Jin, Cong; Jin, Shu-Wei
2016-06-01
A number of different gene selection approaches based on gene expression profiles (GEP) have been developed for tumour classification. A gene selection approach selects the most informative genes from the whole gene space, which is an important process for tumour classification using GEP. This study presents an improved swarm intelligent optimisation algorithm to select genes for maintaining the diversity of the population. The most essential characteristic of the proposed approach is that it can automatically determine the number of the selected genes. On the basis of the gene selection, the authors construct a variety of the tumour classifiers, including the ensemble classifiers. Four gene datasets are used to evaluate the performance of the proposed approach. The experimental results confirm that the proposed classifiers for tumour classification are indeed effective.
2014-09-01
Estimating Driver Performance Using Multiple Electroencephalography (EEG)-Based Regression Algorithms by Gregory Apker, Brent Lance, Scott...Proving Ground, MD 21005-5425 ARL-TR-7074 September 2014 Estimating Driver Performance Using Multiple Electroencephalography (EEG)-Based... Electroencephalography (EEG)- Based Regression Algorithms 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory Apker
Mechanical performance improvement of electroactive papers
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Seo, Yung B.; Jung, Eunmi
2001-07-01
Electro-Active Paper (EAPap) is a paper that produces large displacement with small force under electrical excitation. EAPap is made with a chemically treated paper by bonding thin aluminum foils on both sides of the paper to comprise electrodes. When electric voltage is applied on the electrodes the EAPap produces bending displacement. However, the displacement output has been unstable and degraded with time scale. To improve the bending performance of EAPap, different paper fibers-broad-leaf, needle-leaf, bacteria cellulose and Korean traditional paper, and additive chemicals are tested. It was observed that needle-leaf paper exhibits better results then others. By eliminating the effect of adhesive layer and selecting a proper paper fiber, the displacement output has been stable with long time scale. The operational principle of EAPap is, we believe, based on the electrostriction effect associated with intermolecular interaction of the constituents of the paper. To confirm this result, more investigation of the paper quality should be followed in the beginning of paper manufacturing process. Since EAPaps are quite simple to fabricate and lightweight, various applications including flexible speakers, active sound absorbing materials and smart shape control devices can be possible.
Improved performance in polymer - inorganic composite photovoltaics
NASA Astrophysics Data System (ADS)
Breeze, Alison J.
It has become increasingly clear over the past few decades that some form of alternative energy is needed to replace the traditional fossil fuels. I briefly discuss a few of the possible alternative sources, why solar energy is one of the more promising ones, give a short history of the development of the solar cell, and explain the motivations for research into polymer - inorganic composite solar cells. An introduction to conducting and semiconducting polymers, as well as the basics of polymer solar cell operation, is given. I present experimental results on the variation of several parameters such as polymer thickness, TiO2 and polymer morphology, and choice of electrodes for devices of the type ITO/TiO2/photoactive polymer/Au in order to probe the effects of charge transport, carrier mobility, light absorption and direction of the internal field on device efficiency. The results demonstrate that short exciton diffusion lengths, low carrier mobilities, and low absorption are the main factors limiting performance in plain polymer photovoltaics. Nanoparticle - polymer and polymer - polymer blend devices are explored as possible solutions for the first two deficiencies, with the polymer - polymer blend devices achieving the best results with an overall 0.6% power conversion efficiency. Many of the experimental results of polymer photovoltaics can be simulated using a simple model which includes terms for Schottky-like injection, ohmic current leakage, and collected photogenerated current. I discuss both the successes and failures of this model, as well as areas for future improvements.
High performance genetic algorithm for VLSI circuit partitioning
NASA Astrophysics Data System (ADS)
Dinu, Simona
2016-12-01
Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.
Vatsa, Mayank; Singh, Richa; Noore, Afzel
2008-08-01
This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.
Improving the Response of a Wheel Speed Sensor by Using a RLS Lattice Algorithm
Hernandez, Wilmar
2006-01-01
Among the complete family of sensors for automotive safety, consumer and industrial application, speed sensors stand out as one of the most important. Actually, speed sensors have the diversity to be used in a broad range of applications. In today's automotive industry, such sensors are used in the antilock braking system, the traction control system and the electronic stability program. Also, typical applications are cam and crank shaft position/speed and wheel and turbo shaft speed measurement. In addition, they are used to control a variety of functions, including fuel injection, ignition timing in engines, and so on. However, some types of speed sensors cannot respond to very low speeds for different reasons. What is more, the main reason why such sensors are not good at detecting very low speeds is that they are more susceptible to noise when the speed of the target is low. In short, they suffer from noise and generally only work at medium to high speeds. This is one of the drawbacks of the inductive (magnetic reluctance) speed sensors and is the case under study. Furthermore, there are other speed sensors like the differential Hall Effect sensors that are relatively immune to interference and noise, but they cannot detect static fields. This limits their operations to speeds which give a switching frequency greater than a minimum operating frequency. In short, this research is focused on improving the performance of a variable reluctance speed sensor placed in a car under performance tests by using a recursive least-squares (RLS) lattice algorithm. Such an algorithm is situated in an adaptive noise canceller and carries out an optimal estimation of the relevant signal coming from the sensor, which is buried in a broad-band noise background where we have little knowledge of the noise characteristics. The experimental results are satisfactory and show a significant improvement in the signal-to-noise ratio at the system output.
Zhong, Wei; Altun, Gulsah; Harrison, Robert; Tai, Phang C; Pan, Yi
2005-09-01
Information about local protein sequence motifs is very important to the analysis of biologically significant conserved regions of protein sequences. These conserved regions can potentially determine the diverse conformation and activities of proteins. In this work, recurring sequence motifs of proteins are explored with an improved K-means clustering algorithm on a new dataset. The structural similarity of these recurring sequence clusters to produce sequence motifs is studied in order to evaluate the relationship between sequence motifs and their structures. To the best of our knowledge, the dataset used by our research is the most updated dataset among similar studies for sequence motifs. A new greedy initialization method for the K-means algorithm is proposed to improve traditional K-means clustering techniques. The new initialization method tries to choose suitable initial points, which are well separated and have the potential to form high-quality clusters. Our experiments indicate that the improved K-means algorithm satisfactorily increases the percentage of sequence segments belonging to clusters with high structural similarity. Careful comparison of sequence motifs obtained by the improved and traditional algorithms also suggests that the improved K-means clustering algorithm may discover some relatively weak and subtle sequence motifs, which are undetectable by the traditional K-means algorithms. Many biochemical tests reported in the literature show that these sequence motifs are biologically meaningful. Experimental results also indicate that the improved K-means algorithm generates more detailed sequence motifs representing common structures than previous research. Furthermore, these motifs are universally conserved sequence patterns across protein families, overcoming some weak points of other popular sequence motifs. The satisfactory result of the experiment suggests that this new K-means algorithm may be applied to other areas of bioinformatics
Wood, Thomas W.; Heasler, Patrick G.; Daly, Don S.
2010-07-15
Almost all of the "architectures" for radiation detection systems in Department of Energy (DOE) and other USG programs rely on some version of layered detector deployment. Efficacy analyses of layered (or more generally extended) detection systems in many contexts often assume statistical independence among detection events and thus predict monotonically increasing system performance with the addition of detection layers. We show this to be a false conclusion for the ROC curves typical of most current technology gamma detectors, and more generally show that statistical independence is often an unwarranted assumption for systems in which there is ambiguity about the objects to be detected. In such systems, a model of correlation among detection events allows optimization of system algorithms for interpretation of detector signals. These algorithms are framed as optimal discriminant functions in joint signal space, and may be applied to gross counting or spectroscopic detector systems. We have shown how system algorithms derived from this model dramatically improve detection probabilities compared to the standard serial detection operating paradigm for these systems. These results would not surprise anyone who has confronted the problem of correlated errors (or failure rates) in the analogous contexts, but is seems to be largely underappreciated among those analyzing the radiation detection problem – independence is widely assumed and experimental studies typical fail to measure correlation. This situation, if not rectified, will lead to several unfortunate results. Including [1] overconfidence in system efficacy, [2] overinvestment in layers of similar technology, and [3] underinvestment in diversity among detection assets.
Performance evaluation of a routing algorithm based on Hopfield Neural Network for network-on-chip
NASA Astrophysics Data System (ADS)
Esmaelpoor, Jamal; Ghafouri, Abdollah
2015-12-01
Network on chip (NoC) has emerged as a solution to overcome the system on chip growing complexity and design challenges. A proper routing algorithm is a key issue of an NoC design. An appropriate routing method balances load across the network channels and keeps path length as short as possible. This survey investigates the performance of a routing algorithm based on Hopfield Neural Network. It is a dynamic programming to provide optimal path and network monitoring in real time. The aim of this article is to analyse the possibility of using a neural network as a router. The algorithm takes into account the path with the lowest delay (cost) form source to destination. In other words, the path a message takes from source to destination depends on network traffic situation at the time and it is the fastest one. The simulation results show that the proposed approach improves average delay, throughput and network congestion efficiently. At the same time, the increase in power consumption is almost negligible.
NASA Astrophysics Data System (ADS)
Kozynchenko, Alexander I.; Kozynchenko, Sergey A.
2017-03-01
In the paper, a problem of improving efficiency of the particle-particle- particle-mesh (P3M) algorithm in computing the inter-particle electrostatic forces is considered. The particle-mesh (PM) part of the algorithm is modified in such a way that the space field equation is solved by the direct method of summation of potentials over the ensemble of particles lying not too close to a reference particle. For this purpose, a specific matrix ;pattern; is introduced to describe the spatial field distribution of a single point charge, so the ;pattern; contains pre-calculated potential values. This approach allows to reduce a set of arithmetic operations performed at the innermost of nested loops down to an addition and assignment operators and, therefore, to decrease the running time substantially. The simulation model developed in C++ substantiates this view, showing the descent accuracy acceptable in particle beam calculations together with the improved speed performance.
SPICE: Sentinel-3 Performance Improvement for Ice Sheets
NASA Astrophysics Data System (ADS)
Benveniste, Jérôme; Escolà, Roger; Roca, Mònica; Ambrózio, Américo; Restano, Marco; McMillan, Malcolm; Escorihuela, Maria Jose; Shepherd, Andrew; Thibaut, Pierre; Remy, Frederique
2016-07-01
Since the launch of ERS-1 in 1991, polar-orbiting satellite radar altimeters have provided a near continuous record of ice sheet elevation change, yielding estimates of ice sheet mass imbalance at the scale of individual ice sheet basins. One of the principle challenges associated with radar altimetry comes from the relatively large ground footprint of conventional pulse-limited radars, which limits their capacity to make reliable measurements in areas of complex topographic terrain. In recent years, progress has been made towards improving ground resolution, through the implementation of Synthetic Aperture Radar (SAR), or Delay-Doppler, techniques. In 2010, the launch of CryoSat-2 by the European Space Agency heralded the start of a new era of SAR altimetry, although full SAR coverage of the polar ice sheets will only be achieved with the launch of the first Sentinel-3 satellite in February 2016. Because of the heritage of SAR altimetry provided by CryoSat-2, current SAR altimeter processing techniques have been optimized and evaluated for water and sea ice surfaces. This leaves several outstanding issues related to the development and evaluation of SAR altimetry for ice sheets, including improvements to SAR processing algorithms and SAR altimetry waveform retracking procedures. Here we will present interim results from SPICE (Sentinel-3 Performance Improvement for Ice Sheets), a 2 year project that focuses on the expected performance of Sentinel-3 SAR altimetry over the Polar ice sheets. The project, which began in September 2015 and is funded by ESA's SEOM (Scientific Exploitation of Operational Missions) programme, aims to contribute to the development and understanding of ice sheet SAR altimetry through the emulation of Sentinel-3 data from dedicated CryoSat SAR acquisitions made at several sites in Antarctica and Greenland. More specifically, the project aims to (1) evaluate and improve the current Delay-Doppler processing and SAR waveform retracking
Improving canopy sensor algorithms with soil and weather information
Technology Transfer Automated Retrieval System (TEKTRAN)
Nitrogen (N) need to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of ...
Detection algorithm of infrared small target based on improved SUSAN operator
NASA Astrophysics Data System (ADS)
Liu, Xingmiao; Wang, Shicheng; Zhao, Jing
2010-10-01
The methods of detecting small moving targets in infrared image sequences that contain moving nuisance objects and background noise is analyzed in this paper. A novel infrared small target detection algorithm based on improved SUSAN operator is put forward. The algorithm selects double templates for the infrared small target detection: one size is greater than the small target point size and another size is equal to the small target point size. First, the algorithm uses the big template to calculate the USAN of each pixel in the image and detect the small target, the edge of the image and isolated noise pixels; Then the algorithm uses the another template to calculate the USAN of pixels detected in the first step and improves the principles of SUSAN algorithm based on the characteristics of the small target so that the algorithm can only detect small targets and don't sensitive to the edge pixels of the image and isolated noise pixels. So the interference of the edge of the image and isolate noise points are removed and the candidate target points can be identified; At last, the target is detected by utilizing the continuity and consistency of target movement. The experimental results indicate that the improved SUSAN detection algorithm can quickly and effectively detect the infrared small targets.
Using business intelligence to improve performance.
Wadsworth, Tom; Graves, Brian; Glass, Steve; Harrison, A Marc; Donovan, Chris; Proctor, Andrew
2009-10-01
Cleveland Clinic's enterprise performance management program offers proof that comparisons of actual performance against strategic objectives can enable healthcare organization to achieve rapid organizational change. Here are four lessons Cleveland Clinic learned from this initiative: Align performance metrics with strategic initiatives. Structure dashboards for the CEO. Link performance to annual reviews. Customize dashboard views to the specific user.
Performance improvements of differential operators code for MPS method on GPU
NASA Astrophysics Data System (ADS)
Murotani, Kohei; Masaie, Issei; Matsunaga, Takuya; Koshizuka, Seiichi; Shioya, Ryuji; Ogino, Masao; Fujisawa, Toshimitsu
2015-09-01
In the present study, performance improvements of the particle search and particle interaction calculation steps constituting the performance bottleneck in the moving particle simulation method are achieved by developing GPU-compatible algorithms for many core processor architectures. In the improvements of particle search, bucket loops of the cell-linked list are changed to a loop structure having fewer local variables and the linked list and the forward star of particle search algorithms within a bucket are compared. In the particle interaction calculation, the problem of the ratio of particles within the interaction domain to the neighboring particle candidates being quite low is improved. By these improvements, a performance efficiency of 24.7 % can be achieved for the first-order polynomial approximation scheme using NVIDIA Tesla K20, CUDA-6.5, and double-precision floating-point operations.
A novel super-resolution image fusion algorithm based on improved PCNN and wavelet transform
NASA Astrophysics Data System (ADS)
Liu, Na; Gao, Kun; Song, Yajun; Ni, Guoqiang
2009-10-01
Super-resolution reconstruction technology is to explore new information between the under-sampling image series obtained from the same scene and to achieve the high-resolution picture through image fusion in sub-pixel level. The traditional super-resolution fusion methods for sub-sampling images need motion estimation and motion interpolation and construct multi-resolution pyramid to obtain high-resolution, yet the function of the human beings' visual features are ignored. In this paper, a novel resolution reconstruction for under-sampling images of static scene based on the human vision model is considered by introducing PCNN (Pulse Coupled Neural Network) model, which simplifies and improves the input model, internal behavior and control parameters selection. The proposed super-resolution image fusion algorithm based on PCNN-wavelet is aimed at the down-sampling image series in a static scene. And on the basis of keeping the original features, we introduce Relief Filter(RF) to the control and judge segment to overcome the effect of random factors(such as noise, etc) effectively to achieve the aim that highlighting interested object though the fusion. Numerical simulations show that the new algorithm has the better performance in retaining more details and keeping high resolution.
Devi, D Chitra; Uthariaraj, V Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.
Devi, D. Chitra; Uthariaraj, V. Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656
Brain tumor segmentation in MR slices using improved GrowCut algorithm
NASA Astrophysics Data System (ADS)
Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying
2015-12-01
The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.
Mahowald, Natalie
2016-11-29
Soils in natural and managed ecosystems and wetlands are well known sources of methane, nitrous oxides, and reactive nitrogen gases, but the magnitudes of gas flux to the atmosphere are still poorly constrained. Thus, the reasons for the large increases in atmospheric concentrations of methane and nitrous oxide since the preindustrial time period are not well understood. The low atmospheric concentrations of methane and nitrous oxide, despite being more potent greenhouse gases than carbon dioxide, complicate empirical studies to provide explanations. In addition to climate concerns, the emissions of reactive nitrogen gases from soils are important to the changing nitrogen balance in the earth system, subject to human management, and may change substantially in the future. Thus improved modeling of the emission fluxes of these species from the land surface is important. Currently, there are emission modules for methane and some nitrogen species in the Community Earth System Model’s Community Land Model (CLM-ME/N); however, there are large uncertainties and problems in the simulations, resulting in coarse estimates. In this proposal, we seek to improve these emission modules by combining state-of-the-art process modules for emissions, available data, and new optimization methods. In earth science problems, we often have substantial data and knowledge of processes in disparate systems, and thus we need to combine data and a general process level understanding into a model for projections of future climate that are as accurate as possible. The best methodologies for optimization of parameters in earth system models are still being developed. In this proposal we will develop and apply surrogate algorithms that a) were especially developed for computationally expensive simulations like CLM-ME/N models; b) were (in the earlier surrogate optimization Stochastic RBF) demonstrated to perform very well on computationally expensive complex partial differential equations in
Leveraging Structure to Improve Classification Performance in Sparsely Labeled Networks
Gallagher, B; Eliassi-Rad, T
2007-10-22
We address the problem of classification in a partially labeled network (a.k.a. within-network classification), with an emphasis on tasks in which we have very few labeled instances to start with. Recent work has demonstrated the utility of collective classification (i.e., simultaneous inferences over class labels of related instances) in this general problem setting. However, the performance of collective classification algorithms can be adversely affected by the sparseness of labels in real-world networks. We show that on several real-world data sets, collective classification appears to offer little advantage in general and hurts performance in the worst cases. In this paper, we explore a complimentary approach to within-network classification that takes advantage of network structure. Our approach is motivated by the observation that real-world networks often provide a great deal more structural information than attribute information (e.g., class labels). Through experiments on supervised and semi-supervised classifiers of network data, we demonstrate that a small number of structural features can lead to consistent and sometimes dramatic improvements in classification performance. We also examine the relative utility of individual structural features and show that, in many cases, it is a combination of both local and global network structure that is most informative.
NASA Astrophysics Data System (ADS)
Vanhellemont, Filip; Mateshvili, Nina; Blanot, Laurent; Étienne Robert, Charles; Bingen, Christine; Sofieva, Viktoria; Dalaudier, Francis; Tétard, Cédric; Fussen, Didier; Dekemper, Emmanuel; Kyrölä, Erkki; Laine, Marko; Tamminen, Johanna; Zehner, Claus
2016-09-01
The GOMOS instrument on Envisat has successfully demonstrated that a UV-Vis-NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be examined. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algorithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. The AerGOM algorithm differs from the standard GOMOS IPF processor in a number of important ways: more accurate physical laws have been implemented, all retrieval-related covariances are taken into account, and the aerosol extinction spectral model is strongly improved. Retrieval examples demonstrate that the previously observed profile perturbations have disappeared, and the obtained extinction spectra look in general more consistent. We present a detailed validation study in a companion paper; here, to give a first idea of the data quality, a worst-case comparison at 386 nm shows SAGE II-AerGOM correlation coefficients that are up to 1 order of magnitude larger than the ones obtained with the GOMOS IPFv6.01 data set.
Xu, Sai; Zhou, Zhiyan; Lu, Huazhong; Luo, Xiwen; Lan, Yubin
2014-03-19
Principal Component Analysis (PCA) is one of the main methods used for electronic nose pattern recognition. However, poor classification performance is common in classification and recognition when using regular PCA. This paper aims to improve the classification performance of regular PCA based on the existing Wilks Λ-statistic (i.e., combined PCA with the Wilks distribution). The improved algorithms, which combine regular PCA with the Wilks Λ-statistic, were developed after analysing the functionality and defects of PCA. Verification tests were conducted using a PEN3 electronic nose. The collected samples consisted of the volatiles of six varieties of rough rice (Zhongxiang1, Xiangwan13, Yaopingxiang, WufengyouT025, Pin 36, and Youyou122), grown in same area and season. The first two principal components used as analysis vectors cannot perform the rough rice varieties classification task based on a regular PCA. Using the improved algorithms, which combine the regular PCA with the Wilks Λ-statistic, many different principal components were selected as analysis vectors. The set of data points of the Mahalanobis distance between each of the varieties of rough rice was selected to estimate the performance of the classification. The result illustrates that the rough rice varieties classification task is achieved well using the improved algorithm. A Probabilistic Neural Networks (PNN) was also established to test the effectiveness of the improved algorithms. The first two principal components (namely PC1 and PC2) and the first and fifth principal component (namely PC1 and PC5) were selected as the inputs of PNN for the classification of the six rough rice varieties. The results indicate that the classification accuracy based on the improved algorithm was improved by 6.67% compared to the results of the regular method. These results prove the effectiveness of using the Wilks Λ-statistic to improve the classification accuracy of the regular PCA approach. The results
Jackson, Jennifer N; Hass, Chris J; Fregly, Benjamin J
2015-11-01
Patient-specific gait optimizations capable of predicting post-treatment changes in joint motions and loads could improve treatment design for gait-related disorders. To maximize potential clinical utility, such optimizations should utilize full-body three-dimensional patient-specific musculoskeletal models, generate dynamically consistent gait motions that reproduce pretreatment marker measurements closely, and achieve accurate foot motion tracking to permit deformable foot-ground contact modeling. This study enhances an existing residual elimination algorithm (REA) Remy, C. D., and Thelen, D. G., 2009, “Optimal Estimation of Dynamically Consistent Kinematics and Kinetics for Forward Dynamic Simulation of Gait,” ASME J. Biomech. Eng., 131(3), p. 031005) to achieve all three requirements within a single gait optimization framework. We investigated four primary enhancements to the original REA: (1) manual modification of tracked marker weights, (2) automatic modification of tracked joint acceleration curves, (3) automatic modification of algorithm feedback gains, and (4) automatic calibration of model joint and inertial parameter values. We evaluated the enhanced REA using a full-body three-dimensional dynamic skeletal model and movement data collected from a subject who performed four distinct gait patterns: walking, marching, running, and bounding. When all four enhancements were implemented together, the enhanced REA achieved dynamic consistency with lower marker tracking errors for all segments, especially the feet (mean root-mean-square (RMS) errors of 3.1 versus 18.4 mm), compared to the original REA. When the enhancements were implemented separately and in combinations, the most important one was automatic modification of tracked joint acceleration curves, while the least important enhancement was automatic modification of algorithm feedback gains. The enhanced REA provides a framework for future gait optimization studies that seek to predict subject
Query Processing Performance and Searching over Encrypted Data by using an Efficient Algorithm
NASA Astrophysics Data System (ADS)
Sharma, Manish; Chaudhary, Atul; Kumar, Santosh
2013-01-01
Data is the central asset of today's dynamically operating organization and their business. This data is usually stored in database. A major consideration is applied on the security of that data from the unauthorized access and intruders. Data encryption is a strong option for security of data in database and especially in those organizations where security risks are high. But there is a potential disadvantage of performance degradation. When we apply encryption on database then we should compromise between the security and efficient query processing. The work of this paper tries to fill this gap. It allows the users to query over the encrypted column directly without decrypting all the records. It's improves the performance of the system. The proposed algorithm works well in the case of range and fuzzy match queries.
Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan
2016-01-01
An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms’ applications in all E-nose application areas. PMID
NASA Astrophysics Data System (ADS)
Hou, Rui; Yu, Junle
2011-12-01
Optical burst switching (OBS) has been regarded as the next generation optical switching technology. In this paper, the routing problem based on particle swarm optimization (PSO) algorithm in OBS has been studies and analyzed. Simulation results indicate that, the PSO based routing algorithm will optimal than the conversional shortest path first algorithm in space cost and calculation cost. Conclusions have certain theoretical significances for the improvement of OBS routing protocols.
Xie, Lin; Cui, Xiaowei; Zhao, Sihao; Lu, Mingquan
2017-01-01
It is well known that multipath effect remains a dominant error source that affects the positioning accuracy of Global Navigation Satellite System (GNSS) receivers. Significant efforts have been made by researchers and receiver manufacturers to mitigate multipath error in the past decades. Recently, a multipath mitigation technique using dual-polarization antennas has become a research hotspot for it provides another degree of freedom to distinguish the line-of-sight (LOS) signal from the LOS and multipath composite signal without extensively increasing the complexity of the receiver. Numbers of multipath mitigation techniques using dual-polarization antennas have been proposed and all of them report performance improvement over the single-polarization methods. However, due to the unpredictability of multipath, multipath mitigation techniques based on dual-polarization are not always effective while few studies discuss the condition under which the multipath mitigation using a dual-polarization antenna can outperform that using a single-polarization antenna, which is a fundamental question for dual-polarization multipath mitigation (DPMM) and the design of multipath mitigation algorithms. In this paper we analyze the characteristics of the signal received by a dual-polarization antenna and use the maximum likelihood estimation (MLE) to assess the theoretical performance of DPMM in different received signal cases. Based on the assessment we answer this fundamental question and find the dual-polarization antenna’s capability in mitigating short delay multipath—the most challenging one among all types of multipath for the majority of the multipath mitigation techniques. Considering these effective conditions, we propose a dual-polarization sequential iterative maximum likelihood estimation (DP-SIMLE) algorithm for DPMM. The simulation results verify our theory and show superior performance of the proposed DP-SIMLE algorithm over the traditional one using only an
Xie, Lin; Cui, Xiaowei; Zhao, Sihao; Lu, Mingquan
2017-02-13
It is well known that multipath effect remains a dominant error source that affects the positioning accuracy of Global Navigation Satellite System (GNSS) receivers. Significant efforts have been made by researchers and receiver manufacturers to mitigate multipath error in the past decades. Recently, a multipath mitigation technique using dual-polarization antennas has become a research hotspot for it provides another degree of freedom to distinguish the line-of-sight (LOS) signal from the LOS and multipath composite signal without extensively increasing the complexity of the receiver. Numbers of multipath mitigation techniques using dual-polarization antennas have been proposed and all of them report performance improvement over the single-polarization methods. However, due to the unpredictability of multipath, multipath mitigation techniques based on dual-polarization are not always effective while few studies discuss the condition under which the multipath mitigation using a dual-polarization antenna can outperform that using a single-polarization antenna, which is a fundamental question for dual-polarization multipath mitigation (DPMM) and the design of multipath mitigation algorithms. In this paper we analyze the characteristics of the signal received by a dual-polarization antenna and use the maximum likelihood estimation (MLE) to assess the theoretical performance of DPMM in different received signal cases. Based on the assessment we answer this fundamental question and find the dual-polarization antenna's capability in mitigating short delay multipath-the most challenging one among all types of multipath for the majority of the multipath mitigation techniques. Considering these effective conditions, we propose a dual-polarization sequential iterative maximum likelihood estimation (DP-SIMLE) algorithm for DPMM. The simulation results verify our theory and show superior performance of the proposed DP-SIMLE algorithm over the traditional one using only an RHCP
Performance Comparison of Superresolution Array Processing Algorithms. Revised
2007-11-02
OF SUPERRESOLUTION ARRAY PROCESSING ALGORITHMS A.J. BARABELL J. CAPON D.F. DeLONG K.D. SENNE Group 44 J.R. JOHNSON Group 96 PROJECT REPORT...adaptive superresolution direction finding and spatial nulling to support sig- nal copy in the presence of strong cochannel interference. The need for such... superresolution array processing have their origin in spectral estimation for time series. Since the sampling of a function in time is analogous to
Performance Measurement and Analysis of Certain Search Algorithms
1979-05-01
Chaptev 3 extends the worst case tree search model ot Pohl and others to arbitrary heuristic functions, resultlr~g in cost formulas whose arguments...cases tested. 6 Similarly, Nisson, Pohl , and Vanderbrug conjectured that increasing the value of a weighting parameter W in At search will decrease the...algorithm schema [ Pohl 1970a) are essentially the same as A*. The 8-puzzle can be modeled exactly as a collection of points (tile configurations) and
Performance of an Adaptive Matched Filter Using the Griffiths Algorithm
1988-12-01
Simon. Introduction to Adaptive Filters. New York: Macmillan Publishing Company, 1984. 11. Sklar , Bernard . Digital Communications Fundamentals and...York: Harper and Row, 1986. 8. Widrow, Bernard and Samuel D. Stearns. Adaptive Signal Processing. Englewood Cliffs, N.J.: Prentice-Hall, 1985. 9...Fourier Transforms. and Optics. New York: John Wiley and Sons, 1978. 15. Widrow, Bernard and others. "The Complex LMS Algorithm," Proceedings of the IEEE
Performance of a community detection algorithm based on semidefinite programming
NASA Astrophysics Data System (ADS)
Ricci-Tersenghi, Federico; Javanmard, Adel; Montanari, Andrea
2016-03-01
The problem of detecting communities in a graph is maybe one the most studied inference problems, given its simplicity and widespread diffusion among several disciplines. A very common benchmark for this problem is the stochastic block model or planted partition problem, where a phase transition takes place in the detection of the planted partition by changing the signal-to-noise ratio. Optimal algorithms for the detection exist which are based on spectral methods, but we show these are extremely sensible to slight modification in the generative model. Recently Javanmard, Montanari and Ricci-Tersenghi [1] have used statistical physics arguments, and numerical simulations to show that finding communities in the stochastic block model via semidefinite programming is quasi optimal. Further, the resulting semidefinite relaxation can be solved efficiently, and is very robust with respect to changes in the generative model. In this paper we study in detail several practical aspects of this new algorithm based on semidefinite programming for the detection of the planted partition. The algorithm turns out to be very fast, allowing the solution of problems with O(105) variables in few second on a laptop computer.
Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.
Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A
2012-02-01
Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.
Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm.
Wang, Li Jia; Zhang, Hua
2016-01-01
An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feedback update strategy, different weights are assigned to the tracking result and template according to the maximum classifier score. Finally, the presented algorithm is compared with other state-of-the-art algorithms. The experimental results demonstrate that the proposed tracking algorithm runs in real-time and is robust to occlusion and appearance changes.
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia; Coraor, Lee
2000-01-01
The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design. It is organized into three parts. Part I. Data modeling and camera characterization; Part II. Algorithms for detecting airborne obstacles; and Part III. Real time implementation of obstacle detection algorithms on the Datacube MaxPCI architecture. A list of publications resulting from this grant as well as a list of relevant publications resulting from prior NASA grants on this topic are presented.
Jambek, Asral Bahari; Neoh, Siew-Chin
2015-01-01
A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm. PMID:25793009
An improved recommendation algorithm via weakening indirect linkage effect
NASA Astrophysics Data System (ADS)
Chen, Guang; Qiu, Tian; Shen, Xiao-Quan
2015-07-01
We propose an indirect-link-weakened mass diffusion method (IMD), by considering the indirect linkage and the source object heterogeneity effect in the mass diffusion (MD) recommendation method. Experimental results on the MovieLens, Netflix, and RYM datasets show that, the IMD method greatly improves both the recommendation accuracy and diversity, compared with a heterogeneity-weakened MD method (HMD), which only considers the source object heterogeneity. Moreover, the recommendation accuracy of the cold objects is also better elevated in the IMD than the HMD method. It suggests that eliminating the redundancy induced by the indirect linkages could have a prominent effect on the recommendation efficiency in the MD method. Project supported by the National Natural Science Foundation of China (Grant No. 11175079) and the Young Scientist Training Project of Jiangxi Province, China (Grant No. 20133BCB23017).
Using checklists and algorithms to improve qualitative exposure judgment accuracy.
Arnold, Susan F; Stenzel, Mark; Drolet, Daniel; Ramachandran, Gurumurthy
2016-01-01
Most exposure assessments are conducted without the aid of robust personal exposure data and are based instead on qualitative inputs such as education and experience, training, documentation on the process chemicals, tasks and equipment, and other information. Qualitative assessments determine whether there is any follow-up, and influence the type that occurs, such as quantitative sampling, worker training, and implementing exposure and risk management measures. Accurate qualitative exposure judgments ensure appropriate follow-up that in turn ensures appropriate exposure management. Studies suggest that qualitative judgment accuracy is low. A qualitative exposure assessment Checklist tool was developed to guide the application of a set of heuristics to aid decision making. Practicing hygienists (n = 39) and novice industrial hygienists (n = 8) were recruited for a study evaluating the influence of the Checklist on exposure judgment accuracy. Participants generated 85 pre-training judgments and 195 Checklist-guided judgments. Pre-training judgment accuracy was low (33%) and not statistically significantly different from random chance. A tendency for IHs to underestimate the true exposure was observed. Exposure judgment accuracy improved significantly (p <0.001) to 63% when aided by the Checklist. Qualitative judgments guided by the Checklist tool were categorically accurate or over-estimated the true exposure by one category 70% of the time. The overall magnitude of exposure judgment precision also improved following training. Fleiss' κ, evaluating inter-rater agreement between novice assessors was fair to moderate (κ = 0.39). Cohen's weighted and unweighted κ were good to excellent for novice (0.77 and 0.80) and practicing IHs (0.73 and 0.89), respectively. Checklist judgment accuracy was similar to quantitative exposure judgment accuracy observed in studies of similar design using personal exposure measurements, suggesting that the tool could be useful in
Performance Improvement--A People Program.
ERIC Educational Resources Information Center
Sweeney, Jim; Stow, Shirley
1981-01-01
Describes components of the Administrator Performance Evaluation and Teacher Performance Evaluation (APE/TPE) system and delineates the functions and responsibilities of the subcommittees necessary for carrying out the program. (JD)
NASA Astrophysics Data System (ADS)
Li, Yuzhong
Using GA solve the winner determination problem (WDP) with large bids and items, run under different distribution, because the search space is large, constraint complex and it may easy to produce infeasible solution, would affect the efficiency and quality of algorithm. This paper present improved MKGA, including three operator: preprocessing, insert bid and exchange recombination, and use Monkey-king elite preservation strategy. Experimental results show that improved MKGA is better than SGA in population size and computation. The problem that traditional branch and bound algorithm hard to solve, improved MKGA can solve and achieve better effect.
Improving Performance through the Use of Humor.
ERIC Educational Resources Information Center
Adair, Frank A.; Siegel, Laurence
Although the role of humor in relaxation and interpersonal relationships is well documented, its role in increasing performance in the classroom has not been systematically studied. To investigate the effect of appropriately timed humor on performance of a stressful task, 40 college students performed a mathematics test under one of four…
Sootblowing optimization for improved boiler performance
James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J
2013-07-30
A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.
Sootblowing optimization for improved boiler performance
James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.
2012-12-25
A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.
NASA Astrophysics Data System (ADS)
Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.
2015-08-01
We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.
NASA Astrophysics Data System (ADS)
Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.
2015-01-01
We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS) based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically-varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAMP and COSMIC measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction in random errors (standard deviations) of optimized bending angles down to about two-thirds of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; (4) produces realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well characterized and high-quality atmospheric profiles over the entire stratosphere.
An improved distributed routing algorithm for Benes based optical NoC
NASA Astrophysics Data System (ADS)
Zhang, Jing; Gu, Huaxi; Yang, Yintang
2010-08-01
Integrated optical interconnect is believed to be one of the main technologies to replace electrical wires. Optical Network-on-Chip (ONoC) has attracted more attentions nowadays. Benes topology is a good choice for ONoC for its rearrangeable non-blocking character, multistage feature and easy scalability. Routing algorithm plays an important role in determining the performance of ONoC. But traditional routing algorithms for Benes network are not suitable for ONoC communication, we developed a new distributed routing algorithm for Benes ONoC in this paper. Our algorithm selected the routing path dynamically according to network condition and enables more path choices for the message traveling in the network. We used OPNET to evaluate the performance of our routing algorithm and also compared it with a well-known bit-controlled routing algorithm. ETE delay and throughput were showed under different packet length and network sizes. Simulation results show that our routing algorithm can provide better performance for ONoC.
An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments
Yang, Yifei; Tan, Minjia; Dai, Yuewei
2017-01-01
A ship power equipments’ fault monitoring signal usually provides few samples and the data’s feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments. PMID:28182678
Football to Improve Math and Reading Performance
ERIC Educational Resources Information Center
Van Klaveren, Chris; De Witte, Kristof
2015-01-01
Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates "Playing for Success" (PfS), an extended school day program for underachieving…
Improved Algorithm for Analysis of DNA Sequences Using Multiresolution Transformation
Inbamalar, T. M.; Sivakumar, R.
2015-01-01
Bioinformatics and genomic signal processing use computational techniques to solve various biological problems. They aim to study the information allied with genetic materials such as the deoxyribonucleic acid (DNA), the ribonucleic acid (RNA), and the proteins. Fast and precise identification of the protein coding regions in DNA sequence is one of the most important tasks in analysis. Existing digital signal processing (DSP) methods provide less accurate and computationally complex solution with greater background noise. Hence, improvements in accuracy, computational complexity, and reduction in background noise are essential in identification of the protein coding regions in the DNA sequences. In this paper, a new DSP based method is introduced to detect the protein coding regions in DNA sequences. Here, the DNA sequences are converted into numeric sequences using electron ion interaction potential (EIIP) representation. Then discrete wavelet transformation is taken. Absolute value of the energy is found followed by proper threshold. The test is conducted using the data bases available in the National Centre for Biotechnology Information (NCBI) site. The comparative analysis is done and it ensures the efficiency of the proposed system. PMID:26000337
EMMA: an efficient massive mapping algorithm using improved approximate mapping filtering.
Zhang, Xin; Cao, Zhi-Wei; Lin, Zhi-Xin; Wang, Qing-Kang; Li, Yi-Xue
2006-12-01
Efficient massive mapping algorithm (EMMA), an algorithm on efficiently mapping massive cDNAs onto genomic sequences, has recently been developed. The process of mapping massive cDNAs onto genomic sequences has been improved using more approximate mapping filtering based on an enhanced suffix array coupled with a pruned fast hash table, algorithms of block alignment extensions, and k-longest paths. When compared with the classical BLAT software in this field, the computing of EMMA ranges from two to forty-one times faster under similar prediction precisions.
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.
Improvement of wavelet threshold filtered back-projection image reconstruction algorithm
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2014-11-01
Image reconstruction technique has been applied into many fields including some medical imaging, such as X ray computer tomography (X-CT), positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) etc, but the reconstructed effects are still not satisfied because original projection data are inevitably polluted by noises in process of image reconstruction. Although some traditional filters e.g., Shepp-Logan (SL) and Ram-Lak (RL) filter have the ability to filter some noises, Gibbs oscillation phenomenon are generated and artifacts leaded by back-projection are not greatly improved. Wavelet threshold denoising can overcome the noises interference to image reconstruction. Since some inherent defects exist in the traditional soft and hard threshold functions, an improved wavelet threshold function combined with filtered back-projection (FBP) algorithm was proposed in this paper. Four different reconstruction algorithms were compared in simulated experiments. Experimental results demonstrated that this improved algorithm greatly eliminated the shortcomings of un-continuity and large distortion of traditional threshold functions and the Gibbs oscillation. Finally, the availability of this improved algorithm was verified from the comparison of two evaluation criterions, i.e. mean square error (MSE), peak signal to noise ratio (PSNR) among four different algorithms, and the optimum dual threshold values of improved wavelet threshold function was gotten.
NASA Astrophysics Data System (ADS)
Niu, Chaojun; Han, Xiang'e.
2015-10-01
Adaptive optics (AO) technology is an effective way to alleviate the effect of turbulence on free space optical communication (FSO). A new adaptive compensation method can be used without a wave-front sensor. Artificial bee colony algorithm (ABC) is a population-based heuristic evolutionary algorithm inspired by the intelligent foraging behaviour of the honeybee swarm with the advantage of simple, good convergence rate, robust and less parameter setting. In this paper, we simulate the application of the improved ABC to correct the distorted wavefront and proved its effectiveness. Then we simulate the application of ABC algorithm, differential evolution (DE) algorithm and stochastic parallel gradient descent (SPGD) algorithm to the FSO system and analyze the wavefront correction capabilities by comparison of the coupling efficiency, the error rate and the intensity fluctuation in different turbulence before and after the correction. The results show that the ABC algorithm has much faster correction speed than DE algorithm and better correct ability for strong turbulence than SPGD algorithm. Intensity fluctuation can be effectively reduced in strong turbulence, but not so effective in week turbulence.
Enhanced Expectancies Improve Performance Under Pressure
McKay, Brad; Lewthwaite, Rebecca; Wulf, Gabriele
2012-01-01
Beyond skill, beliefs in requisite abilities and expectations can affect performance. This experiment examined effects of induced perceptions of ability to perform well under generic situations of challenge. Participants (N = 31) first completed one block of 20 trials on a throwing accuracy task. They then completed questionnaires ostensibly measuring individual differences in the ability to perform under pressure. Enhanced-expectancy group participants were told that they were well-suited to perform under pressure, while the control group received neutral information. Subsequently, all participants completed another block of 20 trials on the throwing task, with their performance videotaped and under the assumption that they could secure a prize for themselves and a paired participant with successful performance. Both groups had similar accuracy scores on the first trial block. The enhanced-expectancy group significantly increased their throwing accuracy in the higher-pressure situation (second block), whereas the control group showed no change in performance. Furthermore, beliefs regarding performance under challenge predicted throwing accuracy on the second block. The present findings provide evidence that enhancing individuals’ generic expectancies regarding performance under pressure can affect their motor performance. PMID:22291680
NASA Astrophysics Data System (ADS)
Choi, Y. Y.; Suh, M. S.
2015-12-01
National Meteorological Satellite Centre in Republic of Korea retrieves operationally land surface temperature (LST) by applying the split-window LST algorithm (CSW_v1.0) from Communication, Ocean, and Meteorological Satellite (COMS) data. In order to improve COMS LST accuracy, Cho et al. (2015) developed six types of LST retrieval equations (CSW_v2.0) by considering temperature lapse rate and water vapor/aerosol effect. Similar to CSW_v1.0, the LST retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and the root mean square error (RMSE) improved from 1.41 K to 1.39 K. However, CSW_v2.0 showed relatively poor performance, in particular, the temperature lapse rate is certainly large (superadiabatic cases during daytime or strong inversion cases during early morning). In this study, we upgraded the CSW_v2.0 by considering diurnal variations of boundary layer temperature to reduce the relatively large errors under the large lapse rate conditions. To achieve the goals, the diurnal variations of air temperature along with the land surface temperature are included during radiative transfer simulations for the generation of the pseudo-match-up database. The preliminary analysis results showed that RMSE and bias are reduced from 1.39K to 1.14K and from -0.03K to -0.01K. In this presentation, we will show the detailed results of LST retrieval using new algorithms according to the viewing geometry, temperature lapse rate condition, and water vapour amount along with the intercomparison results with MODIS LST data.
NASA Astrophysics Data System (ADS)
Peille, Philippe; Ceballos, Maria Teresa; Cobo, Beatriz; Wilms, Joern; Bandler, Simon; Smith, Stephen J.; Dauser, Thomas; Brand, Thorsten; den Hartog, Roland; de Plaa, Jelle; Barret, Didier; den Herder, Jan-Willem; Piro, Luigi; Barcons, Xavier; Pointecouteau, Etienne
2016-07-01
The X-ray Integral Field Unit (X-IFU) microcalorimeter, on-board Athena, with its focal plane comprising 3840 Transition Edge Sensors (TESs) operating at 90 mK, will provide unprecedented spectral-imaging capability in the 0.2-12 keV energy range. It will rely on the on-board digital processing of current pulses induced by the heat deposited in the TES absorber, as to recover the energy of each individual events. Assessing the capabilities of the pulse reconstruction is required to understand the overall scientific performance of the X-IFU, notably in terms of energy resolution degradation with both increasing energies and count rates. Using synthetic data streams generated by the X-IFU End-to-End simulator, we present here a comprehensive benchmark of various pulse reconstruction techniques, ranging from standard optimal filtering to more advanced algorithms based on noise covariance matrices. Beside deriving the spectral resolution achieved by the different algorithms, a first assessment of the computing power and ground calibration needs is presented. Overall, all methods show similar performances, with the reconstruction based on noise covariance matrices showing the best improvement with respect to the standard optimal filtering technique. Due to prohibitive calibration needs, this method might however not be applicable to the X-IFU and the best compromise currently appears to be the so-called resistance space analysis which also features very promising high count rate capabilities.
Monte Carlo Particle Transport: Algorithm and Performance Overview
Gentile, N; Procassini, R; Scott, H
2005-06-02
Monte Carlo methods are frequently used for neutron and radiation transport. These methods have several advantages, such as relative ease of programming and dealing with complex meshes. Disadvantages include long run times and statistical noise. Monte Carlo photon transport calculations also often suffer from inaccuracies in matter temperature due to the lack of implicitness. In this paper we discuss the Monte Carlo algorithm as it is applied to neutron and photon transport, detail the differences between neutron and photon Monte Carlo, and give an overview of the ways the numerical method has been modified to deal with issues that arise in photon Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Yu, Chunjuan; Fu, Xinghu; Liu, Wenzhe; Bi, Weihong
2015-12-01
In the distributed optical fiber sensing system based on Brillouin scattering, strain and temperature are the main measuring parameters which can be obtained by analyzing the Brillouin center frequency shift. The novel algorithm which combines the cuckoo search algorithm (CS) with the improved differential evolution (IDE) algorithm is proposed for the Brillouin scattering parameter estimation. The CS-IDE algorithm is compared with CS algorithm and analyzed in different situation. The results show that both the CS and CS-IDE algorithm have very good convergence. The analysis reveals that the CS-IDE algorithm can extract the scattering spectrum features with different linear weight ratio, linewidth combination and SNR. Moreover, the BOTDR temperature measuring system based on electron optical frequency shift is set up to verify the effectiveness of the CS-IDE algorithm. Experimental results show that there is a good linear relationship between the Brillouin center frequency shift and temperature changes.
Suppression of emission rates improves sonar performance by flying bats.
Adams, Amanda M; Davis, Kaylee; Smotherman, Michael
2017-01-31
Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat's calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference.
Suppression of emission rates improves sonar performance by flying bats
Adams, Amanda M.; Davis, Kaylee; Smotherman, Michael
2017-01-01
Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat’s calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference. PMID:28139707
MO-FG-204-05: Evaluation of a Novel Algorithm for Improved 4DCT Resolution
Glide-Hurst, C; Briceno, J; Chetty, I. J.; Klahr, P
2015-06-15
Purpose: Accurate tumor motion characterization is critical for increasing the therapeutic ratio of radiation therapy. To accommodate the divergent fan-beam geometry of the scanner, the current 4D-CT algorithm utilizes a larger temporal window to ensure that pixel values are valid throughout the entire FOV. To minimize the impact on temporal resolution, a cos{sup 2} weighting is employed. We propose a novel exponential weighting (“exponential”) 4DCT reconstruction algorithm that has a sharper slope and provides a more optimal temporal resolution. Methods: A respiratory motion platform translated a lung-mimicking Styrofoam slab with several high and low-contrast inserts 2 cm in the superior-inferior direction. Breathing rates (10–15 bpm) and couch pitch (0.06–0.1 A.U.) were varied to assess interplay between parameters. Multi-slice helical 4DCTs were acquired with 0.5 sec gantry rotation and data were reconstructed with cos{sup 2} and exponential weighting. Mean and standard deviation were calculated via region of interest analysis. Intensity profiles evaluated object boundaries. Retrospective raw data reconstructions were performed for both 4DCT algorithms for 3 liver and lung cancer patients. Image quality (temporal blurring/sharpness) and subtraction images were compared between reconstructions. Results: In the phantom, profile analysis revealed that sharper boundaries were obtained with exponential reconstructions at transitioning breathing phases (i.e. mid-inhale or mid-exhale). Reductions in full-width half maximum were ∼1 mm in the superior-inferior direction and appreciable sharpness could be observed in difference maps. This reduction also yielded a slight reduction in target volume between reconstruction algorithms. For patient cases, coronal views showed less blurring at object boundaries and local intensity differences near the tumor and diaphragm with exponential weighted reconstruction. Conclusion: Exponential weighted 4DCT offers potential
Measuring collections effort improves cash performance.
Shutts, Joe
2009-09-01
Having a satisfied work force can lead to an improved collections effort. Hiring the right people and training them ensures employee engagement. Measuring collections effort and offering incentives is key to revenue cycle success.
Can Visual Arts Training Improve Physician Performance?
Katz, Joel T.; Khoshbin, Shahram
2014-01-01
Clinical educators use medical humanities as a means to improve patient care by training more self-aware, thoughtful, and collaborative physicians. We present three examples of integrating fine arts — a subset of medical humanities — into the preclinical and clinical training as models that can be adapted to other medical environments to address a wide variety of perceived deficiencies. This novel teaching method has promise to improve physician skills, but requires further validation. PMID:25125749
Improving Performance Of Industrial Enterprises With CGT
NASA Astrophysics Data System (ADS)
Dolgih, I. N.; Bannova, K. A.; Kuzmina, N. A.; Zdanova, A. B.
2016-04-01
At the present day, a falling in the overall level of efficiency production activities, especially in the machine-building companies makes it necessary to development various actions in the State support, including through the creation consolidated taxation system. Such support will help improve efficiency of activity not only the industrial companies, but also will allow improve economic and social situation in regions where often large engineering factories is city-forming.
NASA Astrophysics Data System (ADS)
Zittersteijn, Michiel; Schildknecht, Thomas; Vananti, Alessandro; Dolado Perez, Juan Carlos; Martinot, Vincent
2016-07-01
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention. This problem is also known as the Multiple Target Tracking (MTT) problem. The complexity of the MTT problem is defined by its dimension S. Current research tends to focus on the S = 2 MTT problem. The reason for this is that for S = 2 the problem has a P-complexity. However, with S = 2 the decision to associate a set of observations is based on the minimum amount of information, in ambiguous situations (e.g. satellite clusters) this will lead to incorrect associations. The S > 2 MTT problem is an NP-hard combinatorial optimization problem. In previous work an Elitist Genetic Algorithm (EGA) was proposed as a method to approximately solve this problem. It was shown that the EGA is able to find a good approximate solution with a polynomial time complexity. The EGA relies on solving the Lambert problem in order to perform the necessary orbit determinations. This means that the algorithm is restricted to orbits that are described by Keplerian motion. The work presented in this paper focuses on the impact that this restriction has on the algorithm performance.
Improving Student Performance Using Nudge Analytics
ERIC Educational Resources Information Center
Feild, Jacqueline
2015-01-01
Providing students with continuous and personalized feedback on their performance is an important part of encouraging self regulated learning. As part of our higher education platform, we built a set of data visualizations to provide feedback to students on their assignment performance. These visualizations give students information about how they…
How Six Sigma Methodology Improved Doctors' Performance
ERIC Educational Resources Information Center
Zafiropoulos, George
2015-01-01
Six Sigma methodology was used in a District General Hospital to assess the effect of the introduction of an educational programme to limit unnecessary admissions. The performance of the doctors involved in the programme was assessed. Ishikawa Fishbone and 5 S's were initially used and Pareto analysis of their findings was performed. The results…
Using Performance Task Data to Improve Instruction
ERIC Educational Resources Information Center
Abbott, Amy L.; Wren, Douglas G.
2016-01-01
Two well-accepted ideas among educators are (a) performance assessment is an effective means of assessing higher-order thinking skills and (b) data-driven instruction planning is a valuable tool for optimizing student learning. This article describes a locally developed performance task (LDPT) designed to measure critical thinking, problem…
Microcellular propagation prediction model based on an improved ray tracing algorithm.
Liu, Z-Y; Guo, L-X; Fan, T-Q
2013-11-01
Two-dimensional (2D)/two-and-one-half-dimensional ray tracing (RT) algorithms for the use of the uniform theory of diffraction and geometrical optics are widely used for channel prediction in urban microcellular environments because of their high efficiency and reliable prediction accuracy. In this study, an improved RT algorithm based on the "orientation face set" concept and on the improved 2D polar sweep algorithm is proposed. The goal is to accelerate point-to-point prediction, thereby making RT prediction attractive and convenient. In addition, the use of threshold control of each ray path and the handling of visible grid points for reflection and diffraction sources are adopted, resulting in an improved efficiency of coverage prediction over large areas. Measured results and computed predictions are also compared for urban scenarios. The results indicate that the proposed prediction model works well and is a useful tool for microcellular communication applications.
Improved delay-leaping simulation algorithm for biochemical reaction systems with delays
NASA Astrophysics Data System (ADS)
Yi, Na; Zhuang, Gang; Da, Liang; Wang, Yifei
2012-04-01
In biochemical reaction systems dominated by delays, the simulation speed of the stochastic simulation algorithm depends on the size of the wait queue. As a result, it is important to control the size of the wait queue to improve the efficiency of the simulation. An improved accelerated delay stochastic simulation algorithm for biochemical reaction systems with delays, termed the improved delay-leaping algorithm, is proposed in this paper. The update method for the wait queue is effective in reducing the size of the queue as well as shortening the storage and access time, thereby accelerating the simulation speed. Numerical simulation on two examples indicates that this method not only obtains a more significant efficiency compared with the existing methods, but also can be widely applied in biochemical reaction systems with delays.
Improvement of Raman lidar algorithm for quantifying aerosol extinction
NASA Technical Reports Server (NTRS)
Russo, Felicita; Whiteman, David; Demoz, Belay; Hoff, Raymond
2005-01-01
Aerosols are particles of different composition and origin and influence the formation of clouds which are important in atmospheric radiative balance. At the present there is high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that aerosol presence in the atmosphere can be highly variable in space and time. Monitoring of the aerosols in the atmosphere is necessary to better understanding many of these uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it is capable to record the scattered intensity as a function of altitude from molecules and aerosols. One lidar method (the Raman lidar) makes use of the different wavelength changes that occur when light interacts with the varying chemistry and structure of atmospheric aerosols. One quantity that is indicative of aerosol presence is the aerosol extinction which quantifies the amount of attenuation (removal of photons), due to scattering, that light undergoes when propagating in the atmosphere. It can be directly measured with a Raman lidar using the wavelength dependence of the received signal. In order to calculate aerosol extinction from Raman scattering data it is necessary to evaluate the rate of change (derivative) of a Raman signal with respect to altitude. Since derivatives are defined for continuous functions, they cannot be performed directly on the experimental data which are not continuous. The most popular technique to find the functional behavior of experimental data is the least-square fit. This procedure allows finding a polynomial function which better approximate the experimental data. The typical approach in the lidar community is to make an a priori assumption about the functional behavior of the data in order to calculate the derivative. It has been shown in previous work that the use of the chi-square technique to determine the most
ERIC Educational Resources Information Center
Guerra-Lopez, Ingrid; Leigh, Hillary N.
2009-01-01
Measurement and evaluation are at the core of reliably improving performance. It is through these central mechanisms that performance improvement professionals are able to demonstrate the true worth of their efforts. However, the true value of the contributions they make is inconclusive. This article presents a content analysis of 10 years' worth…
Partnering through Training and Practice to Achieve Performance Improvement
ERIC Educational Resources Information Center
Lyons, Paul R.
2010-01-01
This article presents a partnership effort among managers, trainers, and employees to spring to life performance improvement using the performance templates (P-T) approach. P-T represents a process model as well as a method of training leading to performance improvement. Not only does it add to our repertoire of training and performance management…
Performance Improvement/HPT Model: Guiding the Process
ERIC Educational Resources Information Center
Dessinger, Joan Conway; Moseley, James L.; Van Tiem, Darlene M.
2012-01-01
This commentary is part of an ongoing dialogue that began in the October 2011 special issue of "Performance Improvement"--Exploring a Universal Performance Model for HPT: Notes From the Field. The performance improvement/HPT (human performance technology) model represents a unifying process that helps accomplish successful change, create…
Industry activities to improve valve performance
Callaway, C.
1996-12-01
Motor-operated valve issues refuse to go away. For over a decade the industry and the NRC have been focusing extraordinary resources on assuring these special components operate when called upon. Now that industry has fixed the design deficiencies, it is focusing on assuring that they perform their safety function within the current licensing basis for the remainder of plant life. NEI supported the efforts by ASME to develop OMN-1 and was encouraged that the industry and the NRC worked together to develop risk and performance based approaches to maintain MOV performance.
Performance of intensity-based non-normalized pointwise algorithms in dynamic speckle analysis.
Stoykova, E; Nazarova, D; Berberova, N; Gotchev, A
2015-09-21
Intensity-based pointwise non-normalized algorithms for 2D evaluation of activity in optical metrology with dynamic speckle analysis are studied and compared. They are applied to a temporal sequence of correlated speckle patterns formed at laser illumination of the object surface. Performance of each algorithm is assessed through the histogram of estimates it produces. A new algorithm is proposed that provides the same quality of the 2D activity map for less computational effort. The algorithms are applied both to synthetic and experimental data.
Improving competitiveness through performance-measurement systems.
Stewart, L J; Lockamy, A
2001-12-01
Parallels exist between the competitive pressures felt by U.S. manufacturers over the past 30 years and those experienced by healthcare providers today. Increasing market deregulation, changing government policies, and growing consumerism have altered the healthcare arena. Responding to similar pressures, manufacturers adopted a strategic orientation driven by customer needs and expectations that led them to achieve high performance levels and surpass their competition. The adoption of integrated performance-measurement systems was instrumental in these firms' success. An integrated performance-measurement model for healthcare organizations can help to blend the organization's strategy with the demands of the contemporary healthcare environment. Performance-measurement systems encourage healthcare organizations to focus on their mission and vision by aligning their strategic objectives and resource-allocation decisions with customer requirements.
Position Accuracy Improvement by Implementing the DGNSS-CP Algorithm in Smartphones
Yoon, Donghwan; Kee, Changdon; Seo, Jiwon; Park, Byungwoon
2016-01-01
The position accuracy of Global Navigation Satellite System (GNSS) modules is one of the most significant factors in determining the feasibility of new location-based services for smartphones. Considering the structure of current smartphones, it is impossible to apply the ordinary range-domain Differential GNSS (DGNSS) method. Therefore, this paper describes and applies a DGNSS-correction projection method to a commercial smartphone. First, the local line-of-sight unit vector is calculated using the elevation and azimuth angle provided in the position-related output of Android’s LocationManager, and this is transformed to Earth-centered, Earth-fixed coordinates for use. To achieve position-domain correction for satellite systems other than GPS, such as GLONASS and BeiDou, the relevant line-of-sight unit vectors are used to construct an observation matrix suitable for multiple constellations. The results of static and dynamic tests show that the standalone GNSS accuracy is improved by about 30%–60%, thereby reducing the existing error of 3–4 m to just 1 m. The proposed algorithm enables the position error to be directly corrected via software, without the need to alter the hardware and infrastructure of the smartphone. This method of implementation and the subsequent improvement in performance are expected to be highly effective to portability and cost saving. PMID:27322284
Position Accuracy Improvement by Implementing the DGNSS-CP Algorithm in Smartphones.
Yoon, Donghwan; Kee, Changdon; Seo, Jiwon; Park, Byungwoon
2016-06-18
The position accuracy of Global Navigation Satellite System (GNSS) modules is one of the most significant factors in determining the feasibility of new location-based services for smartphones. Considering the structure of current smartphones, it is impossible to apply the ordinary range-domain Differential GNSS (DGNSS) method. Therefore, this paper describes and applies a DGNSS-correction projection method to a commercial smartphone. First, the local line-of-sight unit vector is calculated using the elevation and azimuth angle provided in the position-related output of Android's LocationManager, and this is transformed to Earth-centered, Earth-fixed coordinates for use. To achieve position-domain correction for satellite systems other than GPS, such as GLONASS and BeiDou, the relevant line-of-sight unit vectors are used to construct an observation matrix suitable for multiple constellations. The results of static and dynamic tests show that the standalone GNSS accuracy is improved by about 30%-60%, thereby reducing the existing error of 3-4 m to just 1 m. The proposed algorithm enables the position error to be directly corrected via software, without the need to alter the hardware and infrastructure of the smartphone. This method of implementation and the subsequent improvement in performance are expected to be highly effective to portability and cost saving.
A high-performance genetic algorithm: using traveling salesman problem as a case.
Tsai, Chun-Wei; Tseng, Shih-Pang; Chiang, Ming-Chao; Yang, Chu-Sing; Hong, Tzung-Pei
2014-01-01
This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA.
A High-Performance Genetic Algorithm: Using Traveling Salesman Problem as a Case
Tsai, Chun-Wei; Tseng, Shih-Pang; Yang, Chu-Sing
2014-01-01
This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA. PMID:24892038
Improving Children's Working Memory and Classroom Performance
ERIC Educational Resources Information Center
St Clair-Thompson, Helen; Stevens, Ruth; Hunt, Alexandra; Bolder, Emma
2010-01-01
Previous research has demonstrated close relationships between working memory and children's scholastic attainment. The aim of the present study was to explore a method of improving working memory, using memory strategy training. Two hundred and fifty-four children aged five to eight years were tested on measures of the phonological loop,…
Compounds and methods for improving plant performance
Unkefer, Pat J.; Knight, Thomas Joseph
2016-09-20
The invention is directed to methods and compositions for increasing a growth characteristic of a plant, increasing nutrient use efficiency of a plant, or improving a plant's ability to overcome stress comprising applying a composition comprising ketosuccinamate, a derivative thereof, or a salt thereof, to the plant or to a propagation material of the plant.
Traditional Labs + New Questions = Improved Student Performance.
ERIC Educational Resources Information Center
Rezba, Richard J.; And Others
1992-01-01
Presents three typical lab activities involving the breathing rate of fish, the behavior of electromagnets, and tests for water hardness to demonstrate how labs can be modified to teach process skills. Discusses how basic concepts about experimentation are developed and ways of generating and improving science experiments. Includes a laboratory…
AQIP and Accreditation: Improving Quality and Performance
ERIC Educational Resources Information Center
Spangehl, Stephen D.
2012-01-01
For the past 12 years, the Academic Quality Improvement Program (AQIP) has offered an innovative means for colleges and universities to maintain regional accreditation with the Higher Learning Commission (HLC), the only regional U.S. accrediting commission currently providing alternative pathways for maintaining accreditation. Although all HLC…
An improved finger-vein recognition algorithm based on template matching
NASA Astrophysics Data System (ADS)
Liu, Yueyue; Di, Si; Jin, Jian; Huang, Daoping
2016-10-01
Finger-vein recognition has became the most popular biometric identify methods. The investigation on the recognition algorithms always is the key point in this field. So far, there are many applicable algorithms have been developed. However, there are still some problems in practice, such as the variance of the finger position which may lead to the image distortion and shifting; during the identification process, some matching parameters determined according to experience may also reduce the adaptability of algorithm. Focus on above mentioned problems, this paper proposes an improved finger-vein recognition algorithm based on template matching. In order to enhance the robustness of the algorithm for the image distortion, the least squares error method is adopted to correct the oblique finger. During the feature extraction, local adaptive threshold method is adopted. As regard as the matching scores, we optimized the translation preferences as well as matching distance between the input images and register images on the basis of Naoto Miura algorithm. Experimental results indicate that the proposed method can improve the robustness effectively under the finger shifting and rotation conditions.
On the estimation algorithm used in adaptive performance optimization of turbofan engines
NASA Technical Reports Server (NTRS)
Espana, Martin D.; Gilyard, Glenn B.
1993-01-01
The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.
Du, Tingsong; Hu, Yang; Ke, Xianting
2015-01-01
An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA. PMID:26447713
Cosmo-SkyMed Di Seconda Generazione Innovative Algorithms and High Performance SAR Data Processors
NASA Astrophysics Data System (ADS)
Mari, S.; Porfilio, M.; Valentini, G.; Serva, S.; Fiorentino, C. A. M.
2016-08-01
In the frame of COSMO-SkyMed di Seconda Generazione (CSG) programme, extensive research activities have been conducted on SAR data processing, with particular emphasis on high resolution processors, wide field products noise and coregistration algorithms.As regards the high resolution, it is essential to create a model for the management of all those elements that are usually considered as negligible but alter the target phase responses when it is "integrated" for several seconds. Concerning the SAR wide-field products noise removal, one of the major problems is the ability compensate all the phenomena that affect the received signal intensity. Research activities are aimed at developing adaptive- iterative techniques for the compensation of inaccuracies on the knowledge of radar antenna pointing, up to achieve compensation of the order of thousandths of degree. Moreover, several modifications of the image coregistration algortithm have been studied aimed at improving the performences and reduce the computational effort.
Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M
2016-03-01
This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points. PMID:26807579
NASA Astrophysics Data System (ADS)
Hsiao, Feng-Hsiag
2016-10-01
In this study, a novel approach via improved genetic algorithm (IGA)-based fuzzy observer is proposed to realise exponential optimal H∞ synchronisation and secure communication in multiple time-delay chaotic (MTDC) systems. First, an original message is inserted into the MTDC system. Then, a neural-network (NN) model is employed to approximate the MTDC system. Next, a linear differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion derived in terms of Lyapunov's direct method, thus ensuring that the trajectories of the slave system approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Due to GA's random global optimisation search capabilities, the lower and upper bounds of the search space can be set so that the GA will seek better fuzzy observer feedback gains, accelerating feedback gain-based synchronisation via the LMI-based approach. IGA, which exhibits better performance than traditional GA, is used to synthesise a fuzzy observer to not only realise the exponential synchronisation, but also achieve optimal H∞ performance by minimizing the disturbance attenuation level and recovering the transmitted message. Finally, a numerical example with simulations is given in order to demonstrate the effectiveness of our approach.
Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing
2015-01-01
An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.
Ultrasonic Imaging Using a Flexible Array: Improvements to the Maximum Contrast Autofocus Algorithm
NASA Astrophysics Data System (ADS)
Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.
2009-03-01
In previous work, we have presented the maximum contrast autofocus algorithm for estimating unknown imaging parameters, e.g., for imaging through complicated surfaces using a flexible ultrasonic array. This paper details recent improvements to the algorithm. The algorithm operates by maximizing the image contrast metric with respect to the imaging parameters. For a flexible array, the relative positions of the array elements are parameterized using a cubic spline function and the spline control points are estimated by iterative maximisation of the image contrast via simulated annealing. The resultant spline gives an estimate of the array geometry and the profile of the surface that it has conformed to, allowing the generation of a well-focused image. A pre-processing step is introduced to obtain an initial estimate of the array geometry, reducing the time taken for the algorithm to convergence. Experimental results are demonstrated using a flexible array prototype.
NASA Astrophysics Data System (ADS)
Shen, Ting-ao; Li, Hua-nan; Zhang, Qi-xin; Li, Ming
2017-02-01
The convergence rate and the continuous tracking precision are two main problems of the existing adaptive notch filter (ANF) for frequency tracking. To solve the problems, the frequency is detected by interpolation FFT at first, which aims to overcome the convergence rate of the ANF. Then, referring to the idea of negative feedback, an evaluation factor is designed to monitor the ANF parameters and realize continuously high frequency tracking accuracy. According to the principle, a novel adaptive frequency estimation algorithm based on interpolation FFT and improved ANF is put forward. Its basic idea, specific measures and implementation steps are described in detail. The proposed algorithm obtains a fast estimation of the signal frequency, higher accuracy and better universality qualities. Simulation results verified the superiority and validity of the proposed algorithm when compared with original algorithms.
ULTRASONIC IMAGING USING A FLEXIBLE ARRAY: IMPROVEMENTS TO THE MAXIMUM CONTRAST AUTOFOCUS ALGORITHM
Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.
2009-03-03
In previous work, we have presented the maximum contrast autofocus algorithm for estimating unknown imaging parameters, e.g., for imaging through complicated surfaces using a flexible ultrasonic array. This paper details recent improvements to the algorithm. The algorithm operates by maximizing the image contrast metric with respect to the imaging parameters. For a flexible array, the relative positions of the array elements are parameterized using a cubic spline function and the spline control points are estimated by iterative maximisation of the image contrast via simulated annealing. The resultant spline gives an estimate of the array geometry and the profile of the surface that it has conformed to, allowing the generation of a well-focused image. A pre-processing step is introduced to obtain an initial estimate of the array geometry, reducing the time taken for the algorithm to convergence. Experimental results are demonstrated using a flexible array prototype.
NASA Astrophysics Data System (ADS)
Su, Yuanchao; Sun, Xu; Gao, Lianru; Li, Jun; Zhang, Bing
2016-10-01
Endmember extraction is a key step in hyperspectral unmixing. A new endmember extraction framework is proposed for hyperspectral endmember extraction. The proposed approach is based on the swarm intelligence (SI) algorithm, where discretization is used to solve the SI algorithm because pixels in a hyperspectral image are naturally defined within a discrete space. Moreover, a "distance" factor is introduced into the objective function to limit the endmember numbers which is generally limited in real scenarios, while traditional SI algorithms likely produce superabundant spectral signatures, which generally belong to the same classes. Three endmember extraction methods are proposed based on the artificial bee colony, ant colony optimization, and particle swarm optimization algorithms. Experiments with both simulated and real hyperspectral images indicate that the proposed framework can improve the accuracy of endmember extraction.
On the performance of variable forgetting factor recursive least-squares algorithms
NASA Astrophysics Data System (ADS)
Elisei-Iliescu, Camelia; Paleologu, Constantin; Tamaş, Rǎzvan
2016-12-01
The recursive least-squares (RLS) is a very popular adaptive algorithm, which is widely used in many system identification problems. The parameter that crucially influences the performance of the RLS algorithm is the forgetting factor. The value of this parameter leads to a compromise between tracking, misadjustment, and stability. In this paper, we present some insights on the performance of variable forgetting factor RLS (VFF-RLS) algorithms, in the context of system identification. Besides the classical RLS algorithm, we mainly focus on two recently proposed VFF-RLS algorithms. The novelty of the experimental setup is that we use real-world signals provided by Romanian Air Traffic Services Administration, i.e., voice and noise signals corresponding to real communication channels. In this context, the Air Traffic Control (ATC) communication represents a challenging task, usually involving non-stationary environments and stability issues.
Performance evaluation of simple linear iterative clustering algorithm on medical image processing.
Cong, Jinyu; Wei, Benzheng; Yin, Yilong; Xi, Xiaoming; Zheng, Yuanjie
2014-01-01
Simple Linear Iterative Clustering (SLIC) algorithm is increasingly applied to different kinds of image processing because of its excellent perceptually meaningful characteristics. In order to better meet the needs of medical image processing and provide technical reference for SLIC on the application of medical image segmentation, two indicators of boundary accuracy and superpixel uniformity are introduced with other indicators to systematically analyze the performance of SLIC algorithm, compared with Normalized cuts and Turbopixels algorithm. The extensive experimental results show that SLIC is faster and less sensitive to the image type and the setting superpixel number than other similar algorithms such as Turbopixels and Normalized cuts algorithms. And it also has a great benefit to the boundary recall, the robustness of fuzzy boundary, the setting superpixel size and the segmentation performance on medical image segmentation.
Improving Spelling Performance and Spelling Consciousness
ERIC Educational Resources Information Center
Cordewener, Kim A. H.; Verhoeven, Ludo; Bosman, Anna M. T.
2016-01-01
This study examined the immediate and sustained effects of three training conditions on both spelling performance and spelling consciousness of 72 third-grade low- and high-skilled spellers. Spellers were assigned to a strategy-instruction, self-correction, or no-correction condition. The role of spelling ability and word characteristic were also…
Does Negotiation Training Improve Negotiators' Performance?
ERIC Educational Resources Information Center
ElShenawy, Eman
2010-01-01
Purpose: This paper's objective is to test the main effect of negotiation training-level on acquiring negotiation skills. Training level refers to the time a trainee spends in a negotiation training course receiving the standard style and methods of training. Negotiation skills are manifested through trainees' performance after receiving training.…
Does Musical Training Improve School Performance?
ERIC Educational Resources Information Center
Wetter, Olive Emil; Koerner, Fritz; Schwaninger, Adrian
2009-01-01
In a retrospective study, we compared school performance of 53 children practicing music (group 1) with 67 controls not practicing music (group 2). Overall average marks as well as average marks of all school subjects except sports were significantly higher in children who do (group 1) than in those who do not practice music (group 2). In a…