Science.gov

Sample records for algorithms neural networks

  1. Neural Network Algorithm for Particle Loading

    SciTech Connect

    J. L. V. Lewandowski

    2003-04-25

    An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given.

  2. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  3. Pruning Neural Networks with Distribution Estimation Algorithms

    SciTech Connect

    Cantu-Paz, E

    2003-01-15

    This paper describes the application of four evolutionary algorithms to the pruning of neural networks used in classification problems. Besides of a simple genetic algorithm (GA), the paper considers three distribution estimation algorithms (DEAs): a compact GA, an extended compact GA, and the Bayesian Optimization Algorithm. The objective is to determine if the DEAs present advantages over the simple GA in terms of accuracy or speed in this problem. The experiments used a feed forward neural network trained with standard back propagation and public-domain and artificial data sets. The pruned networks seemed to have better or equal accuracy than the original fully-connected networks. Only in a few cases, pruning resulted in less accurate networks. We found few differences in the accuracy of the networks pruned by the four EAs, but found important differences in the execution time. The results suggest that a simple GA with a small population might be the best algorithm for pruning networks on the data sets we tested.

  4. Neural Network-Based Hyperspectral Algorithms

    DTIC Science & Technology

    2016-06-07

    our effort is development of robust numerical inversion algorithms, which will retrieve inherent optical properties of the water column as well as...combination of in-situ and model data of water column variables (IOP’s, depth, bottom type, upwelling radiance, etc.) a neural network non-linear...function approximation model will be used to establish the inverse relationship between upwelling surface radiance and the water column variables, 2

  5. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  6. Recurrent neural networks training with stable bounding ellipsoid algorithm.

    PubMed

    Yu, Wen; de Jesús Rubio, José

    2009-06-01

    Bounding ellipsoid (BE) algorithms offer an attractive alternative to traditional training algorithms for neural networks, for example, backpropagation and least squares methods. The benefits include high computational efficiency and fast convergence speed. In this paper, we propose an ellipsoid propagation algorithm to train the weights of recurrent neural networks for nonlinear systems identification. Both hidden layers and output layers can be updated. The stability of the BE algorithm is proven.

  7. Projection learning algorithm for threshold - controlled neural networks

    SciTech Connect

    Reznik, A.M.

    1995-03-01

    The projection learning algorithm proposed in [1, 2] and further developed in [3] substantially improves the efficiency of memorizing information and accelerates the learning process in neural networks. This algorithm is compatible with the completely connected neural network architecture (the Hopfield network [4]), but its application to other networks involves a number of difficulties. The main difficulties include constraints on interconnection structure and the need to eliminate the state uncertainty of latent neurons if such are present in the network. Despite the encouraging preliminary results of [3], further extension of the applications of the projection algorithm therefore remains problematic. In this paper, which is a continuation of the work begun in [3], we consider threshold-controlled neural networks. Networks of this type are quite common. They represent the receptor neuron layers in some neurocomputer designs. A similar structure is observed in the lower divisions of biological sensory systems [5]. In multilayer projection neural networks with lateral interconnections, the neuron layers or parts of these layers may also have the structure of a threshold-controlled completely connected network. Here the thresholds are the potentials delivered through the projection connections from other parts of the network. The extension of the projection algorithm to the class of threshold-controlled networks may accordingly prove to be useful both for extending its technical applications and for better understanding of the operation of the nervous system in living organisms.

  8. An Improved Back Propagation Neural Network Algorithm on Classification Problems

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd; Ransing, R. S.; Salleh, Mohd Najib Mohd; Ghazali, Rozaida; Hamid, Norhamreeza Abdul

    The back propagation algorithm is one the most popular algorithms to train feed forward neural networks. However, the convergence of this algorithm is slow, it is mainly because of gradient descent algorithm. Previous research demonstrated that in 'feed forward' algorithm, the slope of the activation function is directly influenced by a parameter referred to as 'gain'. This research proposed an algorithm for improving the performance of the back propagation algorithm by introducing the adaptive gain of the activation function. The gain values change adaptively for each node. The influence of the adaptive gain on the learning ability of a neural network is analysed. Multi layer feed forward neural networks have been assessed. Physical interpretation of the relationship between the gain value and the learning rate and weight values is given. The efficiency of the proposed algorithm is compared with conventional Gradient Descent Method and verified by means of simulation on four classification problems. In learning the patterns, the simulations result demonstrate that the proposed method converged faster on Wisconsin breast cancer with an improvement ratio of nearly 2.8, 1.76 on diabetes problem, 65% better on thyroid data sets and 97% faster on IRIS classification problem. The results clearly show that the proposed algorithm significantly improves the learning speed of the conventional back-propagation algorithm.

  9. Metaheuristic Algorithms for Convolution Neural Network

    PubMed Central

    Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent). PMID:27375738

  10. Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.

    1997-01-01

    The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.

  11. Neural-network diagnostic algorithm and smart sensor

    NASA Astrophysics Data System (ADS)

    Banish, Michele R.; Anderson, Roland B.; Ranganath, Heggere S.; Jones, Brian; Kirsch, James C.

    2000-05-01

    Digital image interpretation is the basis of medical diagnoses. Through extensive review of patient data, an algorithm was developed to identify features of diagnostic importance in radiological images. The algorithm is generally applicable. Results from cardiac, lung, and military imagery are reported. The algorithm uses a pulse coupled neural network. It is this neural network that is fabricated on a custom CMOS chip. Each neuron of the pulse coupled neural network accepts an external optical input. The optical input is accomplished by a photo-detector. The neurons communicate laterally through a voltage grid. The communication strength, light sensitivity and other global parameters are under external control. A programmable logic array is on the camera board. Data for a specific neuron is accessed by an addressing scheme typically used for a CCD array. The individual neuron speed ranges from 10 to 50 Mhertz, and is fixed by a digital clock. The current chip is configured to operate at 300 Hertz. The chip logic is a hybrid of analog and digital circuitry to minimize the neuron size, maximize the number of neurons at a fixed cost. The hybrid circuitry also minimized the noise level in the chip.

  12. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm

    PubMed Central

    Wu, Haizhou; Luo, Qifang

    2016-01-01

    Symbiotic organisms search (SOS) is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs). In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared. PMID:28105044

  13. Fusion techniques of fuzzy systems and neural networks, and fuzzy systems and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Takagi, Hideyuki

    1993-12-01

    This paper overviews four combinations of fuzzy logic, neural networks and genetic algorithms: (1) neural networks to auto-design fuzzy systems, (2) employing fuzzy rule structure to construct structured neural networks, (3) genetic algorithms to auto-design fuzzy systems, and (4) a fuzzy knowledge-based system to control genetic parameter dynamically.

  14. Quantum-based algorithm for optimizing artificial neural networks.

    PubMed

    Tzyy-Chyang Lu; Gwo-Ruey Yu; Jyh-Ching Juang

    2013-08-01

    This paper presents a quantum-based algorithm for evolving artificial neural networks (ANNs). The aim is to design an ANN with few connections and high classification performance by simultaneously optimizing the network structure and the connection weights. Unlike most previous studies, the proposed algorithm uses quantum bit representation to codify the network. As a result, the connectivity bits do not indicate the actual links but the probability of the existence of the connections, thus alleviating mapping problems and reducing the risk of throwing away a potential candidate. In addition, in the proposed model, each weight space is decomposed into subspaces in terms of quantum bits. Thus, the algorithm performs a region by region exploration, and evolves gradually to find promising subspaces for further exploitation. This is helpful to provide a set of appropriate weights when evolving the network structure and to alleviate the noisy fitness evaluation problem. The proposed model is tested on four benchmark problems, namely breast cancer and iris, heart, and diabetes problems. The experimental results show that the proposed algorithm can produce compact ANN structures with good generalization ability compared to other algorithms.

  15. Implementation of pattern recognition algorithm based on RBF neural network

    NASA Astrophysics Data System (ADS)

    Bouchoux, Sophie; Brost, Vincent; Yang, Fan; Grapin, Jean Claude; Paindavoine, Michel

    2002-12-01

    In this paper, we present implementations of a pattern recognition algorithm which uses a RBF (Radial Basis Function) neural network. Our aim is to elaborate a quite efficient system which realizes real time faces tracking and identity verification in natural video sequences. Hardware implementations have been realized on an embedded system developed by our laboratory. This system is based on a DSP (Digital Signal Processor) TMS320C6x. The optimization of implementations allow us to obtain a processing speed of 4.8 images (240x320 pixels) per second with a correct rate of 95% of faces tracking and identity verification.

  16. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    PubMed

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks.

  17. Neural network implementations of data association algorithms for sensor fusion

    NASA Technical Reports Server (NTRS)

    Brown, Donald E.; Pittard, Clarence L.; Martin, Worthy N.

    1989-01-01

    The paper is concerned with locating a time varying set of entities in a fixed field when the entities are sensed at discrete time instances. At a given time instant a collection of bivariate Gaussian sensor reports is produced, and these reports estimate the location of a subset of the entities present in the field. A database of reports is maintained, which ideally should contain one report for each entity sensed. Whenever a collection of sensor reports is received, the database must be updated to reflect the new information. This updating requires association processing between the database reports and the new sensor reports to determine which pairs of sensor and database reports correspond to the same entity. Algorithms for performing this association processing are presented. Neural network implementation of the algorithms, along with simulation results comparing the approaches are provided.

  18. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    SciTech Connect

    Musson, John C.; Seaton, Chad; Spata, Mike F.; Yan, Jianxun

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.

  19. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

    PubMed

    Garro, Beatriz A; Vázquez, Roberto A

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.

  20. Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Liming

    The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.

  1. Comparing Bayesian neural network algorithms for classifying segmented outdoor images.

    PubMed

    Vivarelli, F; Williams, C K

    2001-05-01

    In this paper we investigate the Bayesian training of neural networks for region labelling of segmented outdoor scenes; the data are drawn from the Sowerby Image Database of British Aerospace. Neural networks are trained with two Bayesian methods, (i) the evidence framework of MacKay (1992a,b) and (ii) a Markov Chain Monte Carlo method due to Neal (1996). The performance of the two methods is compared to evaluating the empirical learning curves of neural networks trained with the two methods. We also investigate the use of the Automatic Relevance Determination method for input feature selection.

  2. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  3. Optimization of a fermentation medium using neural networks and genetic algorithms.

    PubMed

    Nagata, Yuko; Chu, Khim Hoong

    2003-11-01

    Artificial neural networks and genetic algorithms are used to model and optimize a fermentation medium for the production of the enzyme hydantoinase by Agrobacterium radiobacter. Experimental data reported in the literature were used to build two neural network models. The concentrations of four medium components served as inputs to the neural network models, and hydantoinase or cell concentration served as a single output of each model. Genetic algorithms were used to optimize the input space of the neural network models to find the optimum settings for maximum enzyme and cell production. Using this procedure, two artificial intelligence techniques have been effectively integrated to create a powerful tool for process modeling and optimization.

  4. Digit and command interpretation for electronic book using neural network and genetic algorithm.

    PubMed

    Lam, H K; Leung, Frank H F

    2004-12-01

    This paper presents the interpretation of digits and commands using a modified neural network and the genetic algorithm. The modified neural network exhibits a node-to-node relationship which enhances its learning and generalization abilities. A digit-and-command interpreter constructed by the modified neural networks is proposed to recognize handwritten digits and commands. A genetic algorithm is employed to train the parameters of the modified neural networks of the digit-and-command interpreter. The proposed digit-and-command interpreter is successfully realized in an electronic book. Simulation and experimental results will be presented to show the applicability and merits of the proposed approach.

  5. Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.

    PubMed

    Patra, Tarak K; Meenakshisundaram, Venkatesh; Hung, Jui-Hsiang; Simmons, David S

    2017-02-13

    Machine learning has the potential to dramatically accelerate high-throughput approaches to materials design, as demonstrated by successes in biomolecular design and hard materials design. However, in the search for new soft materials exhibiting properties and performance beyond those previously achieved, machine learning approaches are frequently limited by two shortcomings. First, because they are intrinsically interpolative, they are better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require large pre-existing data sets, which are frequently unavailable and prohibitively expensive to produce. Here we describe a new strategy, the neural-network-biased genetic algorithm (NBGA), for combining genetic algorithms, machine learning, and high-throughput computation or experiment to discover materials with extremal properties in the absence of pre-existing data. Within this strategy, predictions from a progressively constructed artificial neural network are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct simulation or experiment. In effect, this strategy gives the evolutionary algorithm the ability to "learn" and draw inferences from its experience to accelerate the evolutionary process. We test this algorithm against several standard optimization problems and polymer design problems and demonstrate that it matches and typically exceeds the efficiency and reproducibility of standard approaches including a direct-evaluation genetic algorithm and a neural-network-evaluated genetic algorithm. The success of this algorithm in a range of test problems indicates that the NBGA provides a robust strategy for employing informatics-accelerated high-throughput methods to accelerate materials design in the absence of pre-existing data.

  6. GENNET-Toolbox: An Evolving Genetic Algorithm for Neural Network Training

    NASA Astrophysics Data System (ADS)

    Gómez-Garay, Vicente; Irigoyen, Eloy; Artaza, Fernando

    Genetic Algorithms have been used from 1989 for both Neural Network training and design. Nevertheless, the use of a Genetic Algorithm for adjusting the Neural Network parameters can still be engaging. This work presents the study and validation of a different approach to this matter by introducing a Genetic Algorithm designed for Neural Network training. This algorithm features a mutation operator capable of working on three levels (network, neuron and layer) and with the mutation parameters encoded and evolving within each individual. We also explore the use of three types of hybridization: post-training, Lamarckian and Baldwinian. These proposes in combination with the algorithm, show for a fast and powerful tool for Neural Network training.

  7. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks

    PubMed Central

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-01-01

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks. PMID:27754380

  8. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    PubMed

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  9. An Integrated Architecture and Feature Selection Algorithm for Radial Basis Neural Networks

    DTIC Science & Technology

    2002-03-01

    The research contribution of this thesis is the first known integrated architecture and feature selection algorithm for Radial Basis Neural Networks (RBNNs...Additionally, this thesis compares three different classification techniques, Discriminant Analysis (DA), Feed-Forward Neural Networks (FFN) and RBNNs against

  10. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation.

    PubMed

    Vuković, Najdan; Miljković, Zoran

    2013-10-01

    Radial basis function (RBF) neural network is constructed of certain number of RBF neurons, and these networks are among the most used neural networks for modeling of various nonlinear problems in engineering. Conventional RBF neuron is usually based on Gaussian type of activation function with single width for each activation function. This feature restricts neuron performance for modeling the complex nonlinear problems. To accommodate limitation of a single scale, this paper presents neural network with similar but yet different activation function-hyper basis function (HBF). The HBF allows different scaling of input dimensions to provide better generalization property when dealing with complex nonlinear problems in engineering practice. The HBF is based on generalization of Gaussian type of neuron that applies Mahalanobis-like distance as a distance metrics between input training sample and prototype vector. Compared to the RBF, the HBF neuron has more parameters to optimize, but HBF neural network needs less number of HBF neurons to memorize relationship between input and output sets in order to achieve good generalization property. However, recent research results of HBF neural network performance have shown that optimal way of constructing this type of neural network is needed; this paper addresses this issue and modifies sequential learning algorithm for HBF neural network that exploits the concept of neuron's significance and allows growing and pruning of HBF neuron during learning process. Extensive experimental study shows that HBF neural network, trained with developed learning algorithm, achieves lower prediction error and more compact neural network.

  11. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  12. Performance evaluation of a routing algorithm based on Hopfield Neural Network for network-on-chip

    NASA Astrophysics Data System (ADS)

    Esmaelpoor, Jamal; Ghafouri, Abdollah

    2015-12-01

    Network on chip (NoC) has emerged as a solution to overcome the system on chip growing complexity and design challenges. A proper routing algorithm is a key issue of an NoC design. An appropriate routing method balances load across the network channels and keeps path length as short as possible. This survey investigates the performance of a routing algorithm based on Hopfield Neural Network. It is a dynamic programming to provide optimal path and network monitoring in real time. The aim of this article is to analyse the possibility of using a neural network as a router. The algorithm takes into account the path with the lowest delay (cost) form source to destination. In other words, the path a message takes from source to destination depends on network traffic situation at the time and it is the fastest one. The simulation results show that the proposed approach improves average delay, throughput and network congestion efficiently. At the same time, the increase in power consumption is almost negligible.

  13. A Speech Endpoint Detection Algorithm Based on BP Neural Network and Multiple Features

    NASA Astrophysics Data System (ADS)

    Shi, Yong-Qiang; Li, Ru-Wei; Zhang, Shuang; Wang, Shuai; Yi, Xiao-Qun

    Focusing on a sharp decline in the performance of endpoint detection algorithm in a complicated noise environment, a new speech endpoint detection method based on BPNN (back propagation neural network) and multiple features is presented. Firstly, maximum of short-time autocorrelation function and spectrum variance of speech signals are extracted respectively. Secondly, these feature vectors as the input of BP neural network are trained and modeled and then the Genetic Algorithm is used to optimize the BP Neural Network. Finally, the signal's type is determined according to the output of Neural Network. The experiments show that the correct rate of this proposed algorithm is improved, because this method has better robustness and adaptability than algorithm based on maximum of short-time autocorrelation function or spectrum variance.

  14. A stochastic learning algorithm for layered neural networks

    SciTech Connect

    Bartlett, E.B.; Uhrig, R.E.

    1992-12-31

    The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given.

  15. The No-Prop algorithm: a new learning algorithm for multilayer neural networks.

    PubMed

    Widrow, Bernard; Greenblatt, Aaron; Kim, Youngsik; Park, Dookun

    2013-01-01

    A new learning algorithm for multilayer neural networks that we have named No-Propagation (No-Prop) is hereby introduced. With this algorithm, the weights of the hidden-layer neurons are set and fixed with random values. Only the weights of the output-layer neurons are trained, using steepest descent to minimize mean square error, with the LMS algorithm of Widrow and Hoff. The purpose of introducing nonlinearity with the hidden layers is examined from the point of view of Least Mean Square Error Capacity (LMS Capacity), which is defined as the maximum number of distinct patterns that can be trained into the network with zero error. This is shown to be equal to the number of weights of each of the output-layer neurons. The No-Prop algorithm and the Back-Prop algorithm are compared. Our experience with No-Prop is limited, but from the several examples presented here, it seems that the performance regarding training and generalization of both algorithms is essentially the same when the number of training patterns is less than or equal to LMS Capacity. When the number of training patterns exceeds Capacity, Back-Prop is generally the better performer. But equivalent performance can be obtained with No-Prop by increasing the network Capacity by increasing the number of neurons in the hidden layer that drives the output layer. The No-Prop algorithm is much simpler and easier to implement than Back-Prop. Also, it converges much faster. It is too early to definitively say where to use one or the other of these algorithms. This is still a work in progress.

  16. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  17. Study on optimized Elman neural network classification algorithm based on PLS and CA.

    PubMed

    Jia, Weikuan; Zhao, Dean; Shen, Tian; Tang, Yuyang; Zhao, Yuyan

    2014-01-01

    High-dimensional large sample data sets, between feature variables and between samples, may cause some correlative or repetitive factors, occupy lots of storage space, and consume much computing time. Using the Elman neural network to deal with them, too many inputs will influence the operating efficiency and recognition accuracy; too many simultaneous training samples, as well as being not able to get precise neural network model, also restrict the recognition accuracy. Aiming at these series of problems, we introduce the partial least squares (PLS) and cluster analysis (CA) into Elman neural network algorithm, by the PLS for dimension reduction which can eliminate the correlative and repetitive factors of the features. Using CA eliminates the correlative and repetitive factors of the sample. If some subclass becomes small sample, with high-dimensional feature and fewer numbers, PLS shows a unique advantage. Each subclass is regarded as one training sample to train the different precise neural network models. Then simulation samples are discriminated and classified into different subclasses, using the corresponding neural network to recognize it. An optimized Elman neural network classification algorithm based on PLS and CA (PLS-CA-Elman algorithm) is established. The new algorithm aims at improving the operating efficiency and recognition accuracy. By the case analysis, the new algorithm has unique superiority, worthy of further promotion.

  18. Study on Optimized Elman Neural Network Classification Algorithm Based on PLS and CA

    PubMed Central

    Zhao, Dean; Shen, Tian; Zhao, Yuyan

    2014-01-01

    High-dimensional large sample data sets, between feature variables and between samples, may cause some correlative or repetitive factors, occupy lots of storage space, and consume much computing time. Using the Elman neural network to deal with them, too many inputs will influence the operating efficiency and recognition accuracy; too many simultaneous training samples, as well as being not able to get precise neural network model, also restrict the recognition accuracy. Aiming at these series of problems, we introduce the partial least squares (PLS) and cluster analysis (CA) into Elman neural network algorithm, by the PLS for dimension reduction which can eliminate the correlative and repetitive factors of the features. Using CA eliminates the correlative and repetitive factors of the sample. If some subclass becomes small sample, with high-dimensional feature and fewer numbers, PLS shows a unique advantage. Each subclass is regarded as one training sample to train the different precise neural network models. Then simulation samples are discriminated and classified into different subclasses, using the corresponding neural network to recognize it. An optimized Elman neural network classification algorithm based on PLS and CA (PLS-CA-Elman algorithm) is established. The new algorithm aims at improving the operating efficiency and recognition accuracy. By the case analysis, the new algorithm has unique superiority, worthy of further promotion. PMID:25165470

  19. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  20. Study on adaptive PID algorithm of hydraulic turbine governing system based on fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Tang, Liangbao; Bao, Jumin

    2006-11-01

    The conventional hydraulic turbine governing system can't automatically modulate PID parameters according to the dynamic process of the system, the generator speed is unstable and the mains frequency fluctuation results in. To solve the above problem, the fuzzy neural network (FNN) and the adaptive control are combined to design an adaptive PID algorithm based on the fuzzy neural network which can effectively control the hydraulic turbine governing system. Finally, the improved mathematic model is simulated. The simulation results are compared with the conventional hydraulic turbine's. Thus the validity and superiority of the fuzzy neural network PID algorithm have been proved. The simulation results show that the algorithm not only retains the functions of fuzzy control, but also provides the ability to approach to the non-linear system. Also the dynamic process of the system can be reflected more precisely and the on-line adaptive control is implemented. The algorithm is superior to other methods in response and control effect.

  1. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  2. A PC based neural network algorithm for measurement of heart rate variability.

    PubMed

    Foo, T T; Hull, S S; Cheung, J Y

    1995-01-01

    Heart Rate Variability has recently been shown as a viable index to predict sudden cardiac death. The goal of this research is to investigate the use of neural network technique to classify detected QRS complexes into normal and abnormal ones. A single layer perceptron neural network is used for this QRS pattern learning and classification. Results with real data showed that the algorithm gives a 99% correct QRS detection rate.

  3. Elements of an algorithm for optimizing a parameter-structural neural network

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2016-06-01

    The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  4. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  5. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  6. Non-divergence of stochastic discrete time algorithms for PCA neural networks.

    PubMed

    Lv, Jian Cheng; Yi, Zhang; Li, Yunxia

    2015-02-01

    Learning algorithms play an important role in the practical application of neural networks based on principal component analysis, often determining the success, or otherwise, of these applications. These algorithms cannot be divergent, but it is very difficult to directly study their convergence properties, because they are described by stochastic discrete time (SDT) algorithms. This brief analyzes the original SDT algorithms directly, and derives some invariant sets that guarantee the nondivergence of these algorithms in a stochastic environment by selecting proper learning parameters. Our theoretical results are verified by a series of simulation examples.

  7. Investigating the performance of neural network backpropagation algorithms for TEC estimations using South African GPS data

    NASA Astrophysics Data System (ADS)

    Habarulema, J. B.; McKinnell, L.-A.

    2012-05-01

    In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC) estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP), backpropagation with weight delay (BPWD), backpropagation with momentum (BPM) term, backpropagation with chunkwise weight update (BPC) and backpropagation for batch (BPB) training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS) and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS) observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP), which achieves convergence after the least number of iterations during training. In this paper, neural network (NN) models were developed using hourly TEC data (for 8 years: 2000-2007) derived from GPS observations over a receiver station located at Sutherland (SUTH) (32.38° S, 20.81° E), South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN) (33.95° S, 18.47° E) and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.

  8. Adjoint-operators and non-adiabatic learning algorithms in neural networks

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Barhen, J.

    1991-01-01

    Adjoint sensitivity equations are presented, which can be solved simultaneously (i.e., forward in time) with the dynamics of a nonlinear neural network. These equations provide the foundations for a new methodology which enables the implementation of temporal learning algorithms in a highly efficient manner.

  9. Optimized feed-forward neural-network algorithm trained for cyclotron-cavity modeling

    NASA Astrophysics Data System (ADS)

    Mohamadian, Masoumeh; Afarideh, Hossein; Ghergherehchi, Mitra

    2017-01-01

    The cyclotron cavity presented in this paper is modeled by a feed-forward neural network trained by the authors’ optimized back-propagation (BP) algorithm. The training samples were obtained from simulation results that are for a number of defined situations and parameters and were achieved parametrically using MWS CST software; furthermore, the conventional BP algorithm with different hidden-neuron numbers, structures, and other optimal parameters such as learning rate that are applied for our purpose was also used here. The present study shows that an optimized FFN can be used to estimate the cyclotron-model parameters with an acceptable error function. A neural network trained by an optimized algorithm therefore shows a proper approximation and an acceptable ability regarding the modeling of the proposed structure. The cyclotron-cavity parameter-modeling results demonstrate that an FNN that is trained by the optimized algorithm could be a suitable method for the estimation of the design parameters in this case.

  10. A model selection algorithm for a posteriori probability estimation with neural networks.

    PubMed

    Arribas, Juan Ignacio; Cid-Sueiro, Jesús

    2005-07-01

    This paper proposes a novel algorithm to jointly determine the structure and the parameters of a posteriori probability model based on neural networks (NNs). It makes use of well-known ideas of pruning, splitting, and merging neural components and takes advantage of the probabilistic interpretation of these components. The algorithm, so called a posteriori probability model selection (PPMS), is applied to an NN architecture called the generalized softmax perceptron (GSP) whose outputs can be understood as probabilities although results shown can be extended to more general network architectures. Learning rules are derived from the application of the expectation-maximization algorithm to the GSP-PPMS structure. Simulation results show the advantages of the proposed algorithm with respect to other schemes.

  11. An algorithmic approach to adaptive state filtering using recurrent neural networks.

    PubMed

    Parlos, A G; Menon, S K; Atiya, A

    2001-01-01

    Practical algorithms are presented for adaptive state filtering in nonlinear dynamic systems when the state equations are unknown. The state equations are constructively approximated using neural networks. The algorithms presented are based on the two-step prediction-update approach of the Kalman filter. The proposed algorithms make minimal assumptions regarding the underlying nonlinear dynamics and their noise statistics. Non-adaptive and adaptive state filtering algorithms are presented with both off-line and online learning stages. The algorithms are implemented using feedforward and recurrent neural network and comparisons are presented. Furthermore, extended Kalman filters (EKFs) are developed and compared to the filter algorithms proposed. For one of the case studies, the EKF converges but results in higher state estimation errors that the equivalent neural filters. For another, more complex case study with unknown system dynamics and noise statistics, the developed EKFs do not converge. The off-line trained neural state filters converge quite rapidly and exhibit acceptable performance. Online training further enhances the estimation accuracy of the developed adaptive filters, effectively decoupling the eventual filter accuracy from the accuracy of the process model.

  12. Optimal Parameter for the Training of Multilayer Perceptron Neural Networks by Using Hierarchical Genetic Algorithm

    SciTech Connect

    Orozco-Monteagudo, Maykel; Taboada-Crispi, Alberto; Gutierrez-Hernandez, Liliana

    2008-11-06

    This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.

  13. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

  14. Model-based neural network algorithm for coffee ripeness prediction using Helios UAV aerial images

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Ganapol, B. D.; Johnson, L. F.; Herwitz, S.

    2005-10-01

    Over the past few years, NASA has had a great interest in exploring the feasibility of using Unmanned Aerial Vehicles (UAVs), equipped with multi-spectral imaging systems, as long-duration platform for crop monitoring. To address the problem of predicting the ripeness level of the Kauai coffee plantation field using UAV aerial images, we proposed a neural network algorithm based on a nested Leaf-Canopy radiative transport Model (LCM2). A model-based, multi-layer neural network using backpropagation has been designed and trained to learn the functional relationship between the airborne reflectance and the percentage of ripe, over-ripe and under-ripe cherries present in the field. LCM2 was used to generate samples of the desired map. Post-processing analysis and tests on synthetic coffee field data showed that the network has accurately learn the map. A new Domain Projection Technique (DPT) was developed to deal with situations where the measured reflectance fell outside the training set. DPT projected the reflectance into the domain forcing the network to provide a physical solution. Tests were conducted to estimate the error bound. The synergistic combination of neural network algorithms and DPT lays at the core of a more complex algorithm designed to process UAV images. The application of the algorithm to real airborne images shows predictions consistent with post-harvesting data and highlights the potential of the overall methodology.

  15. Accelerated convergence of neural network system identification algorithms via principal component analysis

    NASA Astrophysics Data System (ADS)

    Hyland, David C.; Davis, Lawrence D.; Denoyer, Keith K.

    1998-12-01

    While significant theoretical and experimental progress has been made in the development of neural network-based systems for the autonomous identification and control of space platforms, there remain important unresolved issues associated with the reliable prediction of convergence speed and the avoidance of inordinately slow convergence. To speed convergence of neural identifiers, we introduce the preprocessing of identifier inputs using Principal Component Analysis (PCA) algorithms. Which automatically transform the neural identifier's external inputs so as to make the correlation matrix identity, resulting in enormous improvements in the convergence speed of the neural identifier. From a study of several such algorithms, we developed a new PCA approach which exhibits excellent convergence properties, insensitivity to noise and reliable accuracy.

  16. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  17. Nuclide identification algorithm based on K-L transform and neural networks

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Wei, Yi-Xiang

    2009-01-01

    Traditional spectrum analysis algorithm based on peak search is hard to deal with complex overlapped peaks, especially in bad resolution and high background conditions. This paper described a new nuclide identification method based on the Karhunen-Loeve transform (K-L transform) and artificial neural networks. By the K-L transform and feature extraction, the nuclide gamma spectrum was compacted. The K-L transform coefficients were used as the neural network's input. The linear associative memory and ADALINE were discussed. Lots of experiments and tests showed that the method was credible and practical, especially suitable for fast nuclide identification.

  18. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  19. Optimization of cocoa butter analog synthesis variables using neural networks and genetic algorithm.

    PubMed

    Shekarchizadeh, Hajar; Tikani, Reza; Kadivar, Mahdi

    2014-09-01

    Cocoa butter analog was prepared from camel hump fat and tristearin by enzymatic interesterification in supercritical carbon dioxide (SC-CO2) using immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM) as a biocatalyst. Optimal process conditions were determined using neural networks and genetic algorithm optimization. Response surfaces methodology was used to design the experiments to collect data for the neural network modelling. A general regression neural network model was developed to predict the response of triacylglycerol (TAG) distribution of cocoa butter analog from the process pressure, temperature, tristearin/camel hump fat ratio, water content, and incubation time. A genetic algorithm was used to search for a combination of the process variables for production of most similar cocoa butter analog to the corresponding cocoa butter. The combinations of the process variables during genetic algorithm optimization were evaluated using the neural network model. The pressure of 10 MPa; temperature of 40 °C; SSS/CHF ratio of 0.6:1; water content of 13 % (w/w); and incubation time of 4.5 h were found to be the optimum conditions to achieve the most similar cocoa butter analog to the corresponding cocoa butter.

  20. A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.

    PubMed

    Andrade, Andre; Costa, Marcelo; Paolucci, Leopoldo; Braga, Antônio; Pires, Flavio; Ugrinowitsch, Herbert; Menzel, Hans-Joachim

    2015-01-01

    The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components of the ground reaction force which are used as input information for the neural networks in gender-specific gait classification. The classification performance between MOBJ-LASSO (97.4%) and multi-objective algorithm (MOBJ) (97.1%) is similar, but the MOBJ-LASSO algorithm achieved more improved results than the MOBJ because it is able to eliminate the inputs and automatically select the parameters of the neural network. Thus, it is an effective tool for data mining using neural networks. From 20 inputs used for training, MOBJ-LASSO selected the first and second peaks of the vertical force and the force peak in the antero-posterior direction as the variables that classify the gait patterns of the different genders.

  1. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm.

    PubMed

    Tsai, Jinn-Tsong; Chou, Jyh-Horng; Liu, Tung-Kuan

    2006-01-01

    In this paper, a hybrid Taguchi-genetic algorithm (HTGA) is applied to solve the problem of tuning both network structure and parameters of a feedforward neural network. The HTGA approach is a method of combining the traditional genetic algorithm (TGA), which has a powerful global exploration capability, with the Taguchi method, which can exploit the optimum offspring. The Taguchi method is inserted between crossover and mutation operations of a TGA. Then, the systematic reasoning ability of the Taguchi method is incorporated in the crossover operations to select the better genes to achieve crossover, and consequently enhance the genetic algorithms. Therefore, the HTGA approach can be more robust, statistically sound, and quickly convergent. First, the authors evaluate the performance of the presented HTGA approach by studying some global numerical optimization problems. Then, the presented HTGA approach is effectively applied to solve three examples on forecasting the sunspot numbers, tuning the associative memory, and solving the XOR problem. The numbers of hidden nodes and the links of the feedforward neural network are chosen by increasing them from small numbers until the learning performance is good enough. As a result, a partially connected feedforward neural network can be obtained after tuning. This implies that the cost of implementation of the neural network can be reduced. In these studied problems of tuning both network structure and parameters of a feedforward neural network, there are many parameters and numerous local optima so that these studied problems are challenging enough for evaluating the performances of any proposed GA-based approaches. The computational experiments show that the presented HTGA approach can obtain better results than the existing method reported recently in the literature.

  2. Neural Networks

    DTIC Science & Technology

    1990-01-01

    FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO 11 TITLE (Include Security Classification) NEURAL NETWORKS 12. PERSONAL...SUB-GROUP Neural Networks Optical Architectures Nonlinear Optics Adaptation 19. ABSTRACT (Continue on reverse if necessary and identify by block number...341i Y C-odes , lo iii/(iv blank) 1. INTRODUCTION Neural networks are a type of distributed processing system [1

  3. Two neural network algorithms for designing optimal terminal controllers with open final time

    NASA Technical Reports Server (NTRS)

    Plumer, Edward S.

    1992-01-01

    Multilayer neural networks, trained by the backpropagation through time algorithm (BPTT), have been used successfully as state-feedback controllers for nonlinear terminal control problems. Current BPTT techniques, however, are not able to deal systematically with open final-time situations such as minimum-time problems. Two approaches which extend BPTT to open final-time problems are presented. In the first, a neural network learns a mapping from initial-state to time-to-go. In the second, the optimal number of steps for each trial run is found using a line-search. Both methods are derived using Lagrange multiplier techniques. This theoretical framework is used to demonstrate that the derived algorithms are direct extensions of forward/backward sweep methods used in N-stage optimal control. The two algorithms are tested on a Zermelo problem and the resulting trajectories compare favorably to optimal control results.

  4. Neural network algorithm for image reconstruction using the "grid-friendly" projections.

    PubMed

    Cierniak, Robert

    2011-09-01

    The presented paper describes a development of original approach to the reconstruction problem using a recurrent neural network. Particularly, the "grid-friendly" angles of performed projections are selected according to the discrete Radon transform (DRT) concept to decrease the number of projections required. The methodology of our approach is consistent with analytical reconstruction algorithms. Reconstruction problem is reformulated in our approach to optimization problem. This problem is solved in present concept using method based on the maximum likelihood methodology. The reconstruction algorithm proposed in this work is consequently adapted for more practical discrete fan beam projections. Computer simulation results show that the neural network reconstruction algorithm designed to work in this way improves obtained results and outperforms conventional methods in reconstructed image quality.

  5. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce

    PubMed Central

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  6. Generalized classifier neural network.

    PubMed

    Ozyildirim, Buse Melis; Avci, Mutlu

    2013-03-01

    In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.

  7. On the use of harmony search algorithm in the training of wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  8. Benchmark for Peak Detection Algorithms in Fiber Bragg Grating Interrogation and a New Neural Network for its Performance Improvement

    PubMed Central

    Negri, Lucas; Nied, Ademir; Kalinowski, Hypolito; Paterno, Aleksander

    2011-01-01

    This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. PMID:22163806

  9. Convergence analysis of an augmented algorithm for fully complex-valued neural networks.

    PubMed

    Xu, Dongpo; Zhang, Huisheng; Mandic, Danilo P

    2015-09-01

    This paper presents an augmented algorithm for fully complex-valued neural network based on Wirtinger calculus, which simplifies the derivation of the algorithm and eliminates the Schwarz symmetry restriction on the activation functions. A unified mean value theorem is first established for general functions of complex variables, covering the analytic functions, non-analytic functions and real-valued functions. Based on so introduced theorem, convergence results of the augmented algorithm are obtained under mild conditions. Simulations are provided to support the analysis.

  10. Moving object segmentation algorithm based on cellular neural networks in the H.264 compressed domain

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Chen, Yaowu; Tian, Xiang

    2009-07-01

    A cellular neural network (CNN)-based moving object segmentation algorithm in the H.264 compressed domain is proposed. This algorithm mainly utilizes motion vectors directly extracted from H.264 bitstreams. To improve the robustness of the motion vector information, the intramodes in I-frames are used for smooth and nonsmooth region classification, and the residual coefficient energy of P-frames is used to update the classification results first. Then, an adaptive motion vector filter is used according to interpartition modes. Finally, many CNN models are applied to implement moving object segmentation based on motion vector fields. Experiment results are presented to verify the efficiency and the robustness of this algorithm.

  11. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm

    PubMed Central

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K.

    2016-01-01

    The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process. PMID:26989410

  12. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm.

    PubMed

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K

    2016-01-01

    The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

  13. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  14. Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes

    PubMed Central

    Borgs, Christian; Chayes, Jennifer T.; Ingrosso, Alessandro; Lucibello, Carlo; Saglietti, Luca; Zecchina, Riccardo

    2016-01-01

    In artificial neural networks, learning from data is a computationally demanding task in which a large number of connection weights are iteratively tuned through stochastic-gradient-based heuristic processes over a cost function. It is not well understood how learning occurs in these systems, in particular how they avoid getting trapped in configurations with poor computational performance. Here, we study the difficult case of networks with discrete weights, where the optimization landscape is very rough even for simple architectures, and provide theoretical and numerical evidence of the existence of rare—but extremely dense and accessible—regions of configurations in the network weight space. We define a measure, the robust ensemble (RE), which suppresses trapping by isolated configurations and amplifies the role of these dense regions. We analytically compute the RE in some exactly solvable models and also provide a general algorithmic scheme that is straightforward to implement: define a cost function given by a sum of a finite number of replicas of the original cost function, with a constraint centering the replicas around a driving assignment. To illustrate this, we derive several powerful algorithms, ranging from Markov Chains to message passing to gradient descent processes, where the algorithms target the robust dense states, resulting in substantial improvements in performance. The weak dependence on the number of precision bits of the weights leads us to conjecture that very similar reasoning applies to more conventional neural networks. Analogous algorithmic schemes can also be applied to other optimization problems. PMID:27856745

  15. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    NASA Astrophysics Data System (ADS)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  16. Efficient training algorithms for a class of shunting inhibitory convolutional neural networks.

    PubMed

    Tivive, Fok Hing Chi; Bouzerdoum, Abdesselam

    2005-05-01

    This article presents some efficient training algorithms, based on first-order, second-order, and conjugate gradient optimization methods, for a class of convolutional neural networks (CoNNs), known as shunting inhibitory convolution neural networks. Furthermore, a new hybrid method is proposed, which is derived from the principles of Quickprop, Rprop, SuperSAB, and least squares (LS). Experimental results show that the new hybrid method can perform as well as the Levenberg-Marquardt (LM) algorithm, but at a much lower computational cost and less memory storage. For comparison sake, the visual pattern recognition task of face/nonface discrimination is chosen as a classification problem to evaluate the performance of the training algorithms. Sixteen training algorithms are implemented for the three different variants of the proposed CoNN architecture: binary-, Toeplitz- and fully connected architectures. All implemented algorithms can train the three network architectures successfully, but their convergence speed vary markedly. In particular, the combination of LS with the new hybrid method and LS with the LM method achieve the best convergence rates in terms of number of training epochs. In addition, the classification accuracies of all three architectures are assessed using ten-fold cross validation. The results show that the binary- and Toeplitz-connected architectures outperform slightly the fully connected architecture: the lowest error rates across all training algorithms are 1.95% for Toeplitz-connected, 2.10% for the binary-connected, and 2.20% for the fully connected network. In general, the modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods, the three variants of LM algorithm, and the new hybrid/LS method perform consistently well, achieving error rates of less than 3% averaged across all three architectures.

  17. Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach

    NASA Astrophysics Data System (ADS)

    Di Fenza, Armida; Alagona, Giuliano; Ghio, Caterina; Leonardi, Riccardo; Giolitti, Alessandro; Madami, Andrea

    2007-04-01

    The ability to cross the intestinal cell membrane is a fundamental prerequisite of a drug compound. However, the experimental measurement of such an important property is a costly and highly time consuming step of the drug development process because it is necessary to synthesize the compound first. Therefore, in silico modelling of intestinal absorption, which can be carried out at very early stages of drug design, is an appealing alternative procedure which is based mainly on multivariate statistical analysis such as partial least squares (PLS) and neural networks (NN). Our implementation of neural network models for the prediction of intestinal absorption is based on the correlation of Caco-2 cell apparent permeability ( P app) values, as a measure of intestinal absorption, to the structures of two different data sets of drug candidates. Several molecular descriptors of the compounds were calculated and the optimal subsets were selected using a genetic algorithm; therefore, the method was indicated as Genetic Algorithm-Neural Network (GA-NN). A methodology combining a genetic algorithm search with neural network analysis applied to the modelling of Caco-2 P app has never been presented before, although the two procedures have been already employed separately. Moreover, we provide new Caco-2 cell permeability measurements for more than two hundred compounds. Interestingly, the selected descriptors show to possess physico-chemical connotations which are in excellent accordance with the well known relevant molecular properties involved in the cellular membrane permeation phenomenon: hydrophilicity, hydrogen bonding propensity, hydrophobicity and molecular size. The predictive ability of the models, although rather good for a preliminary study, is somewhat affected by the poor precision of the experimental Caco-2 measurements. Finally, the generalization ability of one model was checked on an external test set not derived from the data sets used to build the models

  18. A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

    PubMed Central

    Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214

  19. A novel user classification method for femtocell network by using affinity propagation algorithm and artificial neural network.

    PubMed

    Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.

  20. C-Mantec: a novel constructive neural network algorithm incorporating competition between neurons.

    PubMed

    Subirats, José L; Franco, Leonardo; Jerez, José M

    2012-02-01

    C-Mantec is a novel neural network constructive algorithm that combines competition between neurons with a stable modified perceptron learning rule. The neuron learning is governed by the thermal perceptron rule that ensures stability of the acquired knowledge while the architecture grows and while the neurons compete for new incoming information. Competition makes it possible that even after new units have been added to the network, existing neurons still can learn if the incoming information is similar to their stored knowledge, and this constitutes a major difference with existing constructing algorithms. The new algorithm is tested on two different sets of benchmark problems: a Boolean function set used in logic circuit design and a well studied set of real world problems. Both sets were used to analyze the size of the constructed architectures and the generalization ability obtained and to compare the results with those from other standard and well known classification algorithms. The problem of overfitting is also analyzed, and a new built-in method to avoid its effects is devised and successfully applied within an active learning paradigm that filter noisy examples. The results show that the new algorithm generates very compact neural architectures with state-of-the-art generalization capabilities.

  1. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.

    2013-03-01

    In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence

  2. Study on recognition algorithm for paper currency numbers based on neural network

    NASA Astrophysics Data System (ADS)

    Li, Xiuyan; Liu, Tiegen; Li, Yuanyao; Zhang, Zhongchuan; Deng, Shichao

    2008-12-01

    Based on the unique characteristic, the paper currency numbers can be put into record and the automatic identification equipment for paper currency numbers is supplied to currency circulation market in order to provide convenience for financial sectors to trace the fiduciary circulation socially and provide effective supervision on paper currency. Simultaneously it is favorable for identifying forged notes, blacklisting the forged notes numbers and solving the major social problems, such as armor cash carrier robbery, money laundering. For the purpose of recognizing the paper currency numbers, a recognition algorithm based on neural network is presented in the paper. Number lines in original paper currency images can be draw out through image processing, such as image de-noising, skew correction, segmentation, and image normalization. According to the different characteristics between digits and letters in serial number, two kinds of classifiers are designed. With the characteristics of associative memory, optimization-compute and rapid convergence, the Discrete Hopfield Neural Network (DHNN) is utilized to recognize the letters; with the characteristics of simple structure, quick learning and global optimum, the Radial-Basis Function Neural Network (RBFNN) is adopted to identify the digits. Then the final recognition results are obtained by combining the two kinds of recognition results in regular sequence. Through the simulation tests, it is confirmed by simulation results that the recognition algorithm of combination of two kinds of recognition methods has such advantages as high recognition rate and faster recognition simultaneously, which is worthy of broad application prospect.

  3. Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design

    NASA Astrophysics Data System (ADS)

    Schaffer, J. David

    2015-06-01

    Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.

  4. Single-Iteration Learning Algorithm for Feed-Forward Neural Networks

    SciTech Connect

    Barhen, J.; Cogswell, R.; Protopopescu, V.

    1999-07-31

    A new methodology for neural learning is presented, whereby only a single iteration is required to train a feed-forward network with near-optimal results. To this aim, a virtual input layer is added to the multi-layer architecture. The virtual input layer is connected to the nominal input layer by a specird nonlinear transfer function, and to the fwst hidden layer by regular (linear) synapses. A sequence of alternating direction singular vrdue decompositions is then used to determine precisely the inter-layer synaptic weights. This algorithm exploits the known separability of the linear (inter-layer propagation) and nonlinear (neuron activation) aspects of information &ansfer within a neural network.

  5. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    PubMed

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  6. SOM Neural Network Fault Diagnosis Method of Polymerization Kettle Equipment Optimized by Improved PSO Algorithm

    PubMed Central

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective. PMID:25152929

  7. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  8. Training the neural networks by electromagnetism-like mechanism based algorithm

    NASA Astrophysics Data System (ADS)

    Jalab, Hamid A.; Shaker, Khalid

    2014-12-01

    Recently, medical data mining has become one of the most popular topics in the data mining community. This is due to the societal importance of the field and also the particular computational challenges posed in this domain of data mining. Early researches concentrated on sequential heuristics and later moved to meta-heuristic approaches due to the ability of these approaches to generate better solutions. The aim of this paper is to introduce the basic principles of a new meta-heuristic algorithm called Electromagnetism-like Mechanism (EMag) for neural network training. EMag simulates the electromagnetism theory of physics by considering each data sample to be an electrical charge. For neural network, EMag simulates the attraction-repulsion mechanism of each weight connection as charge partials to move towards the optimum without being trapped into local minimum. The performance of the proposed algorithm is evaluated in 12 of benchmark classification problems, and the computational results show that the proposed algorithm performs better than the standard back propagation algorithm.

  9. Lung Cancer Classification Employing Proposed Real Coded Genetic Algorithm Based Radial Basis Function Neural Network Classifier

    PubMed Central

    Deepa, S. N.

    2016-01-01

    A proposed real coded genetic algorithm based radial basis function neural network classifier is employed to perform effective classification of healthy and cancer affected lung images. Real Coded Genetic Algorithm (RCGA) is proposed to overcome the Hamming Cliff problem encountered with the Binary Coded Genetic Algorithm (BCGA). Radial Basis Function Neural Network (RBFNN) classifier is chosen as a classifier model because of its Gaussian Kernel function and its effective learning process to avoid local and global minima problem and enable faster convergence. This paper specifically focused on tuning the weights and bias of RBFNN classifier employing the proposed RCGA. The operators used in RCGA enable the algorithm flow to compute weights and bias value so that minimum Mean Square Error (MSE) is obtained. With both the lung healthy and cancer images from Lung Image Database Consortium (LIDC) database and Real time database, it is noted that the proposed RCGA based RBFNN classifier has performed effective classification of the healthy lung tissues and that of the cancer affected lung nodules. The classification accuracy computed using the proposed approach is noted to be higher in comparison with that of the classifiers proposed earlier in the literatures. PMID:28050198

  10. Lung Cancer Classification Employing Proposed Real Coded Genetic Algorithm Based Radial Basis Function Neural Network Classifier.

    PubMed

    Selvakumari Jeya, I Jasmine; Deepa, S N

    2016-01-01

    A proposed real coded genetic algorithm based radial basis function neural network classifier is employed to perform effective classification of healthy and cancer affected lung images. Real Coded Genetic Algorithm (RCGA) is proposed to overcome the Hamming Cliff problem encountered with the Binary Coded Genetic Algorithm (BCGA). Radial Basis Function Neural Network (RBFNN) classifier is chosen as a classifier model because of its Gaussian Kernel function and its effective learning process to avoid local and global minima problem and enable faster convergence. This paper specifically focused on tuning the weights and bias of RBFNN classifier employing the proposed RCGA. The operators used in RCGA enable the algorithm flow to compute weights and bias value so that minimum Mean Square Error (MSE) is obtained. With both the lung healthy and cancer images from Lung Image Database Consortium (LIDC) database and Real time database, it is noted that the proposed RCGA based RBFNN classifier has performed effective classification of the healthy lung tissues and that of the cancer affected lung nodules. The classification accuracy computed using the proposed approach is noted to be higher in comparison with that of the classifiers proposed earlier in the literatures.

  11. Improved Fault Classification in Series Compensated Transmission Line: Comparative Evaluation of Chebyshev Neural Network Training Algorithms.

    PubMed

    Vyas, Bhargav Y; Das, Biswarup; Maheshwari, Rudra Prakash

    2016-08-01

    This paper presents the Chebyshev neural network (ChNN) as an improved artificial intelligence technique for power system protection studies and examines the performances of two ChNN learning algorithms for fault classification of series compensated transmission line. The training algorithms are least-square Levenberg-Marquardt (LSLM) and recursive least-square algorithm with forgetting factor (RLSFF). The performances of these algorithms are assessed based on their generalization capability in relating the fault current parameters with an event of fault in the transmission line. The proposed algorithm is fast in response as it utilizes postfault samples of three phase currents measured at the relaying end corresponding to half-cycle duration only. After being trained with only a small part of the generated fault data, the algorithms have been tested over a large number of fault cases with wide variation of system and fault parameters. Based on the studies carried out in this paper, it has been found that although the RLSFF algorithm is faster for training the ChNN in the fault classification application for series compensated transmission lines, the LSLM algorithm has the best accuracy in testing. The results prove that the proposed ChNN-based method is accurate, fast, easy to design, and immune to the level of compensations. Thus, it is suitable for digital relaying applications.

  12. The algorithm study for using the back propagation neural network in CT image segmentation

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Liu, Jie; Chen, Chen; Li, Ying Qi

    2017-01-01

    Back propagation neural network(BP neural network) is a type of multi-layer feed forward network which spread positively, while the error spread backwardly. Since BP network has advantages in learning and storing the mapping between a large number of input and output layers without complex mathematical equations to describe the mapping relationship, it is most widely used. BP can iteratively compute the weight coefficients and thresholds of the network based on the training and back propagation of samples, which can minimize the error sum of squares of the network. Since the boundary of the computed tomography (CT) heart images is usually discontinuous, and it exist large changes in the volume and boundary of heart images, The conventional segmentation such as region growing and watershed algorithm can't achieve satisfactory results. Meanwhile, there are large differences between the diastolic and systolic images. The conventional methods can't accurately classify the two cases. In this paper, we introduced BP to handle the segmentation of heart images. We segmented a large amount of CT images artificially to obtain the samples, and the BP network was trained based on these samples. To acquire the appropriate BP network for the segmentation of heart images, we normalized the heart images, and extract the gray-level information of the heart. Then the boundary of the images was input into the network to compare the differences between the theoretical output and the actual output, and we reinput the errors into the BP network to modify the weight coefficients of layers. Through a large amount of training, the BP network tend to be stable, and the weight coefficients of layers can be determined, which means the relationship between the CT images and the boundary of heart.

  13. A Circuit-Based Neural Network with Hybrid Learning of Backpropagation and Random Weight Change Algorithms

    PubMed Central

    Yang, Changju; Kim, Hyongsuk; Adhikari, Shyam Prasad; Chua, Leon O.

    2016-01-01

    A hybrid learning method of a software-based backpropagation learning and a hardware-based RWC learning is proposed for the development of circuit-based neural networks. The backpropagation is known as one of the most efficient learning algorithms. A weak point is that its hardware implementation is extremely difficult. The RWC algorithm, which is very easy to implement with respect to its hardware circuits, takes too many iterations for learning. The proposed learning algorithm is a hybrid one of these two. The main learning is performed with a software version of the BP algorithm, firstly, and then, learned weights are transplanted on a hardware version of a neural circuit. At the time of the weight transplantation, a significant amount of output error would occur due to the characteristic difference between the software and the hardware. In the proposed method, such error is reduced via a complementary learning of the RWC algorithm, which is implemented in a simple hardware. The usefulness of the proposed hybrid learning system is verified via simulations upon several classical learning problems. PMID:28025566

  14. A Circuit-Based Neural Network with Hybrid Learning of Backpropagation and Random Weight Change Algorithms.

    PubMed

    Yang, Changju; Kim, Hyongsuk; Adhikari, Shyam Prasad; Chua, Leon O

    2016-12-23

    A hybrid learning method of a software-based backpropagation learning and a hardware-based RWC learning is proposed for the development of circuit-based neural networks. The backpropagation is known as one of the most efficient learning algorithms. A weak point is that its hardware implementation is extremely difficult. The RWC algorithm, which is very easy to implement with respect to its hardware circuits, takes too many iterations for learning. The proposed learning algorithm is a hybrid one of these two. The main learning is performed with a software version of the BP algorithm, firstly, and then, learned weights are transplanted on a hardware version of a neural circuit. At the time of the weight transplantation, a significant amount of output error would occur due to the characteristic difference between the software and the hardware. In the proposed method, such error is reduced via a complementary learning of the RWC algorithm, which is implemented in a simple hardware. The usefulness of the proposed hybrid learning system is verified via simulations upon several classical learning problems.

  15. The fatigue life prediction of aluminium alloy using genetic algorithm and neural network

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike

    2013-09-01

    The behavior of the fatigue life of the industrial materials is very important. In many cases, the material with experiencing fatigue life cannot be avoided, however, there are many ways to control their behavior. Many investigations of the fatigue life phenomena of alloys have been done, but it is high cost and times consuming computation. This paper report the modeling and simulation approaches to predict the fatigue life behavior of Aluminum Alloys and resolves some problems of computation. First, the simulation using genetic algorithm was utilized to optimize the load to obtain the stress values. These results can be used to provide N-cycle fatigue life of the material. Furthermore, the experimental data was applied as input data in the neural network learning, while the samples data were applied for testing of the training data. Finally, the multilayer perceptron algorithm is applied to predict whether the given data sets in accordance with the fatigue life of the alloy. To achieve rapid convergence, the Levenberg-Marquardt algorithm was also employed. The simulations results shows that the fatigue behaviors of aluminum under pressure can be predicted. In addition, implementation of neural networks successfully identified a model for material fatigue life.

  16. Prediction of road traffic death rate using neural networks optimised by genetic algorithm.

    PubMed

    Jafari, Seyed Ali; Jahandideh, Sepideh; Jahandideh, Mina; Asadabadi, Ebrahim Barzegari

    2015-01-01

    Road traffic injuries (RTIs) are realised as a main cause of public health problems at global, regional and national levels. Therefore, prediction of road traffic death rate will be helpful in its management. Based on this fact, we used an artificial neural network model optimised through Genetic algorithm to predict mortality. In this study, a five-fold cross-validation procedure on a data set containing total of 178 countries was used to verify the performance of models. The best-fit model was selected according to the root mean square errors (RMSE). Genetic algorithm, as a powerful model which has not been introduced in prediction of mortality to this extent in previous studies, showed high performance. The lowest RMSE obtained was 0.0808. Such satisfactory results could be attributed to the use of Genetic algorithm as a powerful optimiser which selects the best input feature set to be fed into the neural networks. Seven factors have been known as the most effective factors on the road traffic mortality rate by high accuracy. The gained results displayed that our model is very promising and may play a useful role in developing a better method for assessing the influence of road traffic mortality risk factors.

  17. An augmented extended Kalman filter algorithm for complex-valued recurrent neural networks.

    PubMed

    Goh, Su Lee; Mandic, Danilo P

    2007-04-01

    An augmented complex-valued extended Kalman filter (ACEKF) algorithm for the class of nonlinear adaptive filters realized as fully connected recurrent neural networks is introduced. This is achieved based on some recent developments in the so-called augmented complex statistics and the use of general fully complex nonlinear activation functions within the neurons. This makes the ACEKF suitable for processing general complex-valued nonlinear and nonstationary signals and also bivariate signals with strong component correlations. Simulations on benchmark and real-world complex-valued signals support the approach.

  18. Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Firdaus; Arkeman, Y.; Buono, A.; Hermadi, I.

    2017-01-01

    Translating satellite imagery to a useful data for decision making during this time are usually done manually by human. In this research, we are going to translate satellite imagery by using artificial intelligence method specifically using convolutional neural network and genetic algorithm to become a useful data for decision making, especially for precision agriculture and agroindustry. In this research, we are focused on how to made a sustainable land use planning with 3 objectives. The first is maximizing economic factor. Second is minimizing CO2 emission and the last is minimizing land degradation. Results show that by using artificial intelligence method, can produced a good pareto optimum solutions in a short time.

  19. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.

    PubMed

    Lin, Che-Wei; Yang, Ya-Ting C; Wang, Jeen-Shing; Yang, Yi-Ching

    2012-09-01

    This paper presents a wearable module and neural-network-based activity classification algorithm for energy expenditure estimation. The purpose of our design is first to categorize physical activities with similar intensity levels, and then to construct energy expenditure regression (EER) models using neural networks in order to optimize the estimation performance. The classification of physical activities for EER model construction is based on the acceleration and ECG signal data collected by wearable sensor modules developed by our research lab. The proposed algorithm consists of procedures for data collection, data preprocessing, activity classification, feature selection, and construction of EER models using neural networks. In order to reduce the computational load and achieve satisfactory estimation performance, we employed sequential forward and backward search strategies for feature selection. Two representative neural networks, a radial basis function network (RBFN) and a generalized regression neural network (GRNN), were employed as EER models for performance comparisons. Our experimental results have successfully validated the effectiveness of our wearable sensor module and its neural-network-based activity classification algorithm for energy expenditure estimation. In addition, our results demonstrate the superior performance of GRNN as compared to RBFN.

  20. Adding learning to cellular genetic algorithms for training recurrent neural networks.

    PubMed

    Ku, K W; Mak, M W; Siu, W C

    1999-01-01

    This paper proposes a hybrid optimization algorithm which combines the efforts of local search (individual learning) and cellular genetic algorithms (GA's) for training recurrent neural networks (RNN's). Each weight of an RNN is encoded as a floating point number, and a concatenation of the numbers forms a chromosome. Reproduction takes place locally in a square grid with each grid point representing a chromosome. Two approaches, Lamarckian and Baldwinian mechanisms, for combining cellular GA's and learning have been compared. Different hill-climbing algorithms are incorporated into the cellular GA's as learning methods. These include the real-time recurrent learning (RTRL) and its simplified versions, and the delta rule. The RTRL algorithm has been successively simplified by freezing some of the weights to form simplified versions. The delta rule, which is the simplest form of learning, has been implemented by considering the RNN's as feedforward networks during learning. The hybrid algorithms are used to train the RNN's to solve a long-term dependency problem. The results show that Baldwinian learning is inefficient in assisting the cellular GA. It is conjectured that the more difficult it is for genetic operations to produce the genotypic changes that match the phenotypic changes due to learning, the poorer is the convergence of Baldwinian learning. Most of the combinations using the Lamarckian mechanism show an improvement in reducing the number of generations required for an optimum network; however, only a few can reduce the actual time taken. Embedding the delta rule in the cellular GA's has been found to be the fastest method. It is also concluded that learning should not be too extensive if the hybrid algorithm is to be benefit from learning.

  1. Combining genetic algorithm and Levenberg-Marquardt algorithm in training neural network for hypoglycemia detection using EEG signals.

    PubMed

    Nguyen, Lien B; Nguyen, Anh V; Ling, Sai Ho; Nguyen, Hung T

    2013-01-01

    Hypoglycemia is the most common but highly feared complication induced by the intensive insulin therapy in patients with type 1 diabetes mellitus (T1DM). Nocturnal hypoglycemia is dangerous because sleep obscures early symptoms and potentially leads to severe episodes which can cause seizure, coma, or even death. It is shown that the hypoglycemia onset induces early changes in electroencephalography (EEG) signals which can be detected non-invasively. In our research, EEG signals from five T1DM patients during an overnight clamp study were measured and analyzed. By applying a method of feature extraction using Fast Fourier Transform (FFT) and classification using neural networks, we establish that hypoglycemia can be detected efficiently using EEG signals from only two channels. This paper demonstrates that by implementing a training process of combining genetic algorithm and Levenberg-Marquardt algorithm, the classification results are improved markedly up to 75% sensitivity and 60% specificity on a separate testing set.

  2. A Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  3. A pulse coupled neural network segmentation algorithm for reflectance confocal images of epithelial tissue.

    PubMed

    Harris, Meagan A; Van, Andrew N; Malik, Bilal H; Jabbour, Joey M; Maitland, Kristen C

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard.

  4. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-11-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  5. Optimal field-scale groundwater remediation using neural networks and the genetic algorithm

    SciTech Connect

    Rogers, L.L.; Dowla, F.U.; Johnson, V.M.

    1993-05-01

    We present a new approach for field-scale nonlinear management of groundwater remediation. First, an artificial neural network (ANN) is trained to predict the outcome of a groundwater transport simulation. Then a genetic algorithm (GA) searches through possible pumping realizations, evaluating the fitness of each with a prediction from the trained ANN. Traditional approaches rely on optimization algorithms requiring sequential calls of the groundwater transport simulation. Our approach processes the transport simulations in parallel and ``recycles`` the knowledge base of these simulations, greatly reducing the computational and real-time burden, often the primary impediment to developing field-scale management models. We present results from a Superfund site suggesting that such management techniques can reduce cleanup costs by over a hundred million dollars.

  6. Segmentation algorithm via Cellular Neural/Nonlinear Network: implementation on Bio-inspired hardware platform

    NASA Astrophysics Data System (ADS)

    Karabiber, Fethullah; Vecchio, Pietro; Grassi, Giuseppe

    2011-12-01

    The Bio-inspired (Bi-i) Cellular Vision System is a computing platform consisting of sensing, array sensing-processing, and digital signal processing. The platform is based on the Cellular Neural/Nonlinear Network (CNN) paradigm. This article presents the implementation of a novel CNN-based segmentation algorithm onto the Bi-i system. Each part of the algorithm, along with the corresponding implementation on the hardware platform, is carefully described through the article. The experimental results, carried out for Foreman and Car-phone video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frames/s. Comparisons with existing CNN-based methods show that the conceived approach is more accurate, thus representing a good trade-off between real-time requirements and accuracy.

  7. Supplier selection based on a neural network model using genetic algorithm.

    PubMed

    Golmohammadi, Davood; Creese, Robert C; Valian, Haleh; Kolassa, John

    2009-09-01

    In this paper, a decision-making model was developed to select suppliers using neural networks (NNs). This model used historical supplier performance data for selection of vendor suppliers. Input and output were designed in a unique manner for training purposes. The managers' judgments about suppliers were simulated by using a pairwise comparisons matrix for output estimation in the NN. To obtain the benefit of a search technique for model structure and training, genetic algorithm (GA) was applied for the initial weights and architecture of the network. The suppliers' database information (input) can be updated over time to change the suppliers' score estimation based on their performance. The case study illustrated shows how the model can be applied for suppliers' selection.

  8. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    SciTech Connect

    Rogers, Leah L.

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.

  9. Thermomechanical processing optimization for 304 austenitic stainless steel using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Feng, Wen; Yang, Sen

    2016-12-01

    Thermomechanical processing has an important effect on the grain boundary character distribution. To obtain the optimal thermomechanical processing parameters is the key of grain boundary engineering. In this study, genetic algorithm (GA) based on artificial neural network model was proposed to optimize the thermomechanical processing parameters. In this model, a back-propagation neural network (BPNN) was established to map the relationship between thermomechanical processing parameters and the fraction of low-Σ CSL boundaries, and GA integrated with BPNN (BPNN/GA) was applied to optimize the thermomechanical processing parameters. The validation of the optimal thermomechanical processing parameters was verified by an experiment. Moreover, the microstructures and the intergranular corrosion resistance of the base material (BM) and the materials produced by the optimal thermomechanical processing parameters (termed as the GBEM) were studied. Compared to the BM specimen, the fraction of low-Σ CSL boundaries was increased from 56.8 to 77.9% and the random boundary network was interrupted by the low-Σ CSL boundaries, and the intergranular corrosion resistance was improved in the GBEM specimen. The results indicated that the BPNN/GA model was an effective and reliable means for the thermomechanical processing parameters optimization, which resulted in improving the intergranular corrosion resistance in 304 austenitic stainless steel.

  10. Universal perceptron and DNA-like learning algorithm for binary neural networks: LSBF and PBF implementations.

    PubMed

    Chen, Fangyue; Chen, Guanrong Ron; He, Guolong; Xu, Xiubin; He, Qinbin

    2009-10-01

    Universal perceptron (UP), a generalization of Rosenblatt's perceptron, is considered in this paper, which is capable of implementing all Boolean functions (BFs). In the classification of BFs, there are: 1) linearly separable Boolean function (LSBF) class, 2) parity Boolean function (PBF) class, and 3) non-LSBF and non-PBF class. To implement these functions, UP takes different kinds of simple topological structures in which each contains at most one hidden layer along with the smallest possible number of hidden neurons. Inspired by the concept of DNA sequences in biological systems, a novel learning algorithm named DNA-like learning is developed, which is able to quickly train a network with any prescribed BF. The focus is on performing LSBF and PBF by a single-layer perceptron (SLP) with the new algorithm. Two criteria for LSBF and PBF are proposed, respectively, and a new measure for a BF, named nonlinearly separable degree (NLSD), is introduced. In the sense of this measure, the PBF is the most complex one. The new algorithm has many advantages including, in particular, fast running speed, good robustness, and no need of considering the convergence property. For example, the number of iterations and computations in implementing the basic 2-bit logic operations such as AND, OR, and XOR by using the new algorithm is far smaller than the ones needed by using other existing algorithms such as error-correction (EC) and backpropagation (BP) algorithms. Moreover, the synaptic weights and threshold values derived from UP can be directly used in designing of the template of cellular neural networks (CNNs), which has been considered as a new spatial-temporal sensory computing paradigm.

  11. Application of neural networks and other machine learning algorithms to DNA sequence analysis

    SciTech Connect

    Lapedes, A.; Barnes, C.; Burks, C.; Farber, R.; Sirotkin, K.

    1988-01-01

    In this article we report initial, quantitative results on application of simple neutral networks, and simple machine learning methods, to two problems in DNA sequence analysis. The two problems we consider are: (1) determination of whether procaryotic and eucaryotic DNA sequences segments are translated to protein. An accuracy of 99.4% is reported for procaryotic DNA (E. coli) and 98.4% for eucaryotic DNA (H. Sapiens genes known to be expressed in liver); (2) determination of whether eucaryotic DNA sequence segments containing the dinucleotides ''AG'' or ''GT'' are transcribed to RNA splice junctions. Accuracy of 91.2% was achieved on intron/exon splice junctions (acceptor sites) and 92.8% on exon/intron splice junctions (donor sites). The solution of these two problems, by use of information processing algorithms operating on unannotated base sequences and without recourse to biological laboratory work, is relevant to the Human Genome Project. A variety of neural network, machine learning, and information theoretic algorithms are used. The accuracies obtained exceed those of previous investigations for which quantitative results are available in the literature. They result from an ongoing program of research that applies machine learning algorithms to the problem of determining biological function of DNA sequences. Some predictions of possible new genes using these methods are listed -- although a complete survey of the H. sapiens and E. coli sections of GenBank will be given elsewhere. 36 refs., 6 figs., 6 tabs.

  12. Neural Networks

    NASA Astrophysics Data System (ADS)

    Schwindling, Jerome

    2010-04-01

    This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  13. A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm.

    PubMed

    Dethier, Julie; Nuyujukian, Paul; Eliasmith, Chris; Stewart, Terry; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena

    2011-01-01

    Motor prostheses aim to restore function to disabled patients. Despite compelling proof of concept systems, barriers to clinical translation remain. One challenge is to develop a low-power, fully-implantable system that dissipates only minimal power so as not to damage tissue. To this end, we implemented a Kalman-filter based decoder via a spiking neural network (SNN) and tested it in brain-machine interface (BMI) experiments with a rhesus monkey. The Kalman filter was trained to predict the arm's velocity and mapped on to the SNN using the Neural Engineering Framework (NEF). A 2,000-neuron embedded Matlab SNN implementation runs in real-time and its closed-loop performance is quite comparable to that of the standard Kalman filter. The success of this closed-loop decoder holds promise for hardware SNN implementations of statistical signal processing algorithms on neuromorphic chips, which may offer power savings necessary to overcome a major obstacle to the successful clinical translation of neural motor prostheses.

  14. Application of wavelet neural network model based on genetic algorithm in the prediction of high-speed railway settlement

    NASA Astrophysics Data System (ADS)

    Tang, Shihua; Li, Feida; Liu, Yintao; Lan, Lan; Zhou, Conglin; Huang, Qing

    2015-12-01

    With the advantage of high speed, big transport capacity, low energy consumption, good economic benefits and so on, high-speed railway is becoming more and more popular all over the world. It can reach 350 kilometers per hour, which requires high security performances. So research on the prediction of high-speed railway settlement that as one of the important factors affecting the safety of high-speed railway becomes particularly important. This paper takes advantage of genetic algorithms to seek all the data in order to calculate the best result and combines the advantage of strong learning ability and high accuracy of wavelet neural network, then build the model of genetic wavelet neural network for the prediction of high-speed railway settlement. By the experiment of back propagation neural network, wavelet neural network and genetic wavelet neural network, it shows that the absolute value of residual errors in the prediction of high-speed railway settlement based on genetic algorithm is the smallest, which proves that genetic wavelet neural network is better than the other two methods. The correlation coefficient of predicted and observed value is 99.9%. Furthermore, the maximum absolute value of residual error, minimum absolute value of residual error-mean value of relative error and value of root mean squared error(RMSE) that predicted by genetic wavelet neural network are all smaller than the other two methods'. The genetic wavelet neural network in the prediction of high-speed railway settlement is more stable in terms of stability and more accurate in the perspective of accuracy.

  15. Hybrid Neural Network for Pattern Recognition.

    DTIC Science & Technology

    1997-02-03

    two one-layer neural networks and the second stage comprises a feedforward two-layer neural network . A method for recognizing patterns is also...topological representations of the input patterns using the first and second neural networks. The method further comprises providing a third neural network for...classifying and recognizing the inputted patterns and training the third neural network with a back-propagation algorithm so that the third neural network recognizes at least one interested pattern.

  16. Evaluation of the Use of the Hopfield Neural Network Model as a Nearest-Neighbor Algorithm,

    DTIC Science & Technology

    Neural network models are receiving increasing attention because of their collective computational capabilities. This reprint evaluates the use of...the Hopfield neural network model in optically determining the nearest-neighbor of a binary bipolar test vector from a set of binary bipolar reference

  17. Neural Network Function Classifier

    DTIC Science & Technology

    2003-02-07

    neural network sets. Each of the neural networks in a particular set is trained to recognize a particular data set type. The best function representation of the data set is determined from the neural network output. The system comprises sets of trained neural networks having neural networks trained to identify different types of data. The number of neural networks within each neural network set will depend on the number of function types that are represented. The system further comprises

  18. Program Helps Simulate Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  19. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm.

    PubMed

    Arabasadi, Zeinab; Alizadehsani, Roohallah; Roshanzamir, Mohamad; Moosaei, Hossein; Yarifard, Ali Asghar

    2017-04-01

    Cardiovascular disease is one of the most rampant causes of death around the world and was deemed as a major illness in Middle and Old ages. Coronary artery disease, in particular, is a widespread cardiovascular malady entailing high mortality rates. Angiography is, more often than not, regarded as the best method for the diagnosis of coronary artery disease; on the other hand, it is associated with high costs and major side effects. Much research has, therefore, been conducted using machine learning and data mining so as to seek alternative modalities. Accordingly, we herein propose a highly accurate hybrid method for the diagnosis of coronary artery disease. As a matter of fact, the proposed method is able to increase the performance of neural network by approximately 10% through enhancing its initial weights using genetic algorithm which suggests better weights for neural network. Making use of such methodology, we achieved accuracy, sensitivity and specificity rates of 93.85%, 97% and 92% respectively, on Z-Alizadeh Sani dataset.

  20. Genetic algorithm for the optimization of features and neural networks in ECG signals classification

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu

    2017-01-01

    Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.

  1. Genetic algorithm for the optimization of features and neural networks in ECG signals classification

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu

    2017-01-01

    Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias. PMID:28139677

  2. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    PubMed

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance.

  3. Rule generation from neural networks

    SciTech Connect

    Fu, L.

    1994-08-01

    The neural network approach has proven useful for the development of artificial intelligence systems. However, a disadvantage with this approach is that the knowledge embedded in the neural network is opaque. In this paper, we show how to interpret neural network knowledge in symbolic form. We lay down required definitions for this treatment, formulate the interpretation algorithm, and formally verify its soundness. The main result is a formalized relationship between a neural network and a rule-based system. In addition, it has been demonstrated that the neural network generates rules of better performance than the decision tree approach in noisy conditions. 7 refs.

  4. Calibration of neural networks using genetic algorithms, with application to optimal path planning

    NASA Technical Reports Server (NTRS)

    Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel

    1987-01-01

    Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.

  5. Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm.

    PubMed

    Han, Honggui; Wu, Xiao-Long; Qiao, Jun-Fei

    2014-04-01

    In this paper, a self-organizing fuzzy-neural-network with adaptive computation algorithm (SOFNN-ACA) is proposed for modeling a class of nonlinear systems. This SOFNN-ACA is constructed online via simultaneous structure and parameter learning processes. In structure learning, a set of fuzzy rules can be self-designed using an information-theoretic methodology. The fuzzy rules with high spiking intensities (SI) are divided into new ones. And the fuzzy rules with a small relative mutual information (RMI) value will be pruned in order to simplify the FNN structure. In parameter learning, the consequent part parameters are learned through the use of an ACA that incorporates an adaptive learning rate strategy into the learning process to accelerate the convergence speed. Then, the convergence of SOFNN-ACA is analyzed. Finally, the proposed SOFNN-ACA is used to model nonlinear systems. The modeling results demonstrate that this proposed SOFNN-ACA can model nonlinear systems effectively.

  6. Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, R. H.; Su, G. H.; Qiu, S. Z.; Fukuda, Kenji

    2010-03-01

    In this paper, an artificial neural network (ANN) for predicting critical heat flux (CHF) of concentric-tube open thermosiphon has been trained successfully based on the experimental data from the literature. The dimensionless input parameters of the ANN are density ratio, ρ l/ ρ v; the ratio of the heated tube length to the inner diameter of the outer tube, L/ D i; the ratio of frictional area, d i/( D i + d o); and the ratio of equivalent heated diameter to characteristic bubble size, D he/[ σ/ g( ρ l- ρ v)]0.5, the output is Kutateladze number, Ku. The predicted values of ANN are found to be in reasonable agreement with the actual values from the experiments with a mean relative error (MRE) of 8.46%. New correlations for predicting CHF were also proposed by using genetic algorithm (GA) and succeeded to correlate the existing CHF data with better accuracy than the existing empirical correlations.

  7. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping.

    PubMed

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N; Syahreza, Saumi

    2015-12-30

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted

  8. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping

    PubMed Central

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N.; Syahreza, Saumi

    2015-01-01

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted

  9. Using an Extended Kalman Filter Learning Algorithm for Feed-Forward Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, David J.; Mussa, Yussuf

    2004-01-01

    In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.

  10. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  11. Using neural networks and Dyna algorithm for integrated planning, reacting and learning in systems

    NASA Technical Reports Server (NTRS)

    Lima, Pedro; Beard, Randal

    1992-01-01

    The traditional AI answer to the decision making problem for a robot is planning. However, planning is usually CPU-time consuming, depending on the availability and accuracy of a world model. The Dyna system generally described in earlier work, uses trial and error to learn a world model which is simultaneously used to plan reactions resulting in optimal action sequences. It is an attempt to integrate planning, reactive, and learning systems. The architecture of Dyna is presented. The different blocks are described. There are three main components of the system. The first is the world model used by the robot for internal world representation. The input of the world model is the current state and the action taken in the current state. The output is the corresponding reward and resulting state. The second module in the system is the policy. The policy observes the current state and outputs the action to be executed by the robot. At the beginning of program execution, the policy is stochastic and through learning progressively becomes deterministic. The policy decides upon an action according to the output of an evaluation function, which is the third module of the system. The evaluation function takes the following as input: the current state of the system, the action taken in that state, the resulting state, and a reward generated by the world which is proportional to the current distance from the goal state. Originally, the work proposed was as follows: (1) to implement a simple 2-D world where a 'robot' is navigating around obstacles, to learn the path to a goal, by using lookup tables; (2) to substitute the world model and Q estimate function Q by neural networks; and (3) to apply the algorithm to a more complex world where the use of a neural network would be fully justified. In this paper, the system design and achieved results will be described. First we implement the world model with a neural network and leave Q implemented as a look up table. Next, we use a

  12. A Complexity Theory of Neural Networks

    DTIC Science & Technology

    1990-04-14

    Significant results have been obtained on the computation complexity of analog neural networks , and distribute voting. The computing power and...learning algorithms for limited precision analog neural networks have been investigated. Lower bounds for constant depth, polynomial size analog neural ... networks , and a limited version of discrete neural networks have been obtained. The work on distributed voting has important applications for distributed

  13. Simple Algorithms for Distributed Leader Election in Anonymous Synchronous Rings and Complete Networks Inspired by Neural Development in Fruit Flies.

    PubMed

    Xu, Lei; Jeavons, Peter

    2015-11-01

    Leader election in anonymous rings and complete networks is a very practical problem in distributed computing. Previous algorithms for this problem are generally designed for a classical message passing model where complex messages are exchanged. However, the need to send and receive complex messages makes such algorithms less practical for some real applications. We present some simple synchronous algorithms for distributed leader election in anonymous rings and complete networks that are inspired by the development of the neural system of the fruit fly. Our leader election algorithms all assume that only one-bit messages are broadcast by nodes in the network and processors are only able to distinguish between silence and the arrival of one or more messages. These restrictions allow implementations to use a simpler message-passing architecture. Even with these harsh restrictions our algorithms are shown to achieve good time and message complexity both analytically and experimentally.

  14. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    ERIC Educational Resources Information Center

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  15. Artificial-neural-network-based atmospheric correction algorithm: application to MERIS data

    NASA Astrophysics Data System (ADS)

    Schroeder, Thomas; Fischer, Juergen; Schaale, Michael; Fell, Frank

    2003-05-01

    After the successful launch of the Medium Resolution Imaging Spectrometer (MERIS) on board of the European Space Agency (ESA) Environmental Satellite (ENVISAT) on March 1st 2002, first MERIS data are available for validation purposes. The primary goal of the MERIS mission is to measure the color of the sea with respect to oceanic biology and marine water quality. We present an atmospheric correction algorithm for case-I waters based on the inverse modeling of radiative transfer calculations by artificial neural networks. The proposed correction scheme accounts for multiple scattering and high concentrations of absorbing aerosols (e.g. desert dust). Above case-I waters, the measured near infrared path radiance at Top-Of-Atmosphere (TOA) is assumed to originate from atmospheric processes only and is used to determine the aerosol properties with the help of an additional classification test in the visible spectral region. A synthetic data set is generated from radiative transfer simulations and is subsequently used to train different Multi-Layer-Perceptrons (MLP). The atmospheric correction scheme consists of two steps. First a set of MLPs is used to derive the aerosol optical thickness (AOT) and the aerosol type for each pixel. Second these quantities are fed into a further MLP trained with simulated data for various chlorophyll concentrations to perform the radiative transfer inversion and to obtain the water-leaving radiance. In this work we apply the inversion algorithm to a MERIS Level 1b data track covering the Indian Ocean along the west coast of Madagascar.

  16. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    PubMed Central

    Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883

  17. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend.

    PubMed

    Inthachot, Montri; Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.

  18. Pile-up correction by Genetic Algorithm and Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Kafaee, M.; Saramad, S.

    2009-08-01

    Pile-up distortion is a common problem for high counting rates radiation spectroscopy in many fields such as industrial, nuclear and medical applications. It is possible to reduce pulse pile-up using hardware-based pile-up rejections. However, this phenomenon may not be eliminated completely by this approach and the spectrum distortion caused by pile-up rejection can be increased as well. In addition, inaccurate correction or rejection of pile-up artifacts in applications such as energy dispersive X-ray (EDX) spectrometers can lead to losses of counts, will give poor quantitative results and even false element identification. Therefore, it is highly desirable to use software-based models to predict and correct any recognized pile-up signals in data acquisition systems. The present paper describes two new intelligent approaches for pile-up correction; the Genetic Algorithm (GA) and Artificial Neural Networks (ANNs). The validation and testing results of these new methods have been compared, which shows excellent agreement with the measured data with 60Co source and NaI detector. The Monte Carlo simulation of these new intelligent algorithms also shows their advantages over hardware-based pulse pile-up rejection methods.

  19. Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm

    PubMed Central

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466

  20. Network intrusion detection based on a general regression neural network optimized by an improved artificial immune algorithm.

    PubMed

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.

  1. A feed-forward Hopfield neural network algorithm (FHNNA) with a colour satellite image for water quality mapping

    NASA Astrophysics Data System (ADS)

    Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar

    2016-06-01

    There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.

  2. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-05-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.

  3. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    PubMed Central

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-01-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468

  4. A simulation study for the application of two different neural network control algorithms on an electrohydraulic system

    NASA Astrophysics Data System (ADS)

    İstif, İlyas

    2005-11-01

    This paper studies a servo-valve controlled hydraulic cylinder system which is mostly used in industrial applications such as robotics, computer numerical control (CNC) machines and transportations. The system model consists of combination of two models: The first model involves nonlinear flow equations of the servo-valve, which are widely available in the literature. The second model employed in the system is a tailored asymmetric cylinder model. A fourth order nonlinear system model is then obtained by combining these two models. Two different neural network control algorithms are applied to the system. The first algorithm is "Neural Network Predictive Control (NNPC)," which employs identified neural network model to predict the future output of the system. The second algorithm is "Nonlinear Autoregressive Moving Average (NARMA-L2)" control, which transforms nonlinear system dynamics into linear system dynamics by eliminating the nonlinearities. On the simulation, NNPC and NARMA-L2 control are applied to the system model by using Matlab's Simulik simulation package and position control of the system is realized. A discussion regarding the advantages and disadvantages of the two control algorithms are also provided in the paper.

  5. A Neural Network Based Speech Recognition System

    DTIC Science & Technology

    1990-02-01

    encoder and identifies individual words. This use of neural networks offers two advantages over conventional algorithmic detectors: the detection...environment. Keywords: Artificial intelligence; Neural networks : Back propagation; Speech recognition.

  6. Hybrid artificial neural network genetic algorithm technique for modeling chemical oxygen demand removal in anoxic/oxic process.

    PubMed

    Ma, Yongwen; Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Wang, Yan; Zhang, Huiping

    2011-01-01

    In this paper, a hybrid artificial neural network (ANN) - genetic algorithm (GA) numerical technique was successfully developed to deal with complicated problems that cannot be solved by conventional solutions. ANNs and Gas were used to model and simulate the process of removing chemical oxygen demand (COD) in an anoxic/oxic system. The minimization of the error function with respect to the network parameters (weights and biases) has been considered as training of the network. Real-coded genetic algorithm was used to train the network in an unsupervised manner. Meanwhile the important process parameters, such as the influent COD (COD(in)), reflux ratio (R(r)), carbon-nitrogen ratio (C/N) and the effluent COD (COD(out)) were considered. The result shows that compared with the performance of ANN model, the performance of the GA-ANN (genetic algorithm - artificial neural network) network was found to be more impressive. Using ANN, the mean absolute percentage error (MAPE), mean squared error (MSE) and correlation coefficient (R) were 9.33×10(-4), 2.82 and 0.98596, respectively; while for the GA-ANN, they were converged to be 4.18×10(-4), 1.12 and 0.99476, respectively.

  7. A neural-network-based exponential H∞ synchronisation for chaotic secure communication via improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Hsiao, Feng-Hsiag

    2016-10-01

    In this study, a novel approach via improved genetic algorithm (IGA)-based fuzzy observer is proposed to realise exponential optimal H∞ synchronisation and secure communication in multiple time-delay chaotic (MTDC) systems. First, an original message is inserted into the MTDC system. Then, a neural-network (NN) model is employed to approximate the MTDC system. Next, a linear differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion derived in terms of Lyapunov's direct method, thus ensuring that the trajectories of the slave system approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Due to GA's random global optimisation search capabilities, the lower and upper bounds of the search space can be set so that the GA will seek better fuzzy observer feedback gains, accelerating feedback gain-based synchronisation via the LMI-based approach. IGA, which exhibits better performance than traditional GA, is used to synthesise a fuzzy observer to not only realise the exponential synchronisation, but also achieve optimal H∞ performance by minimizing the disturbance attenuation level and recovering the transmitted message. Finally, a numerical example with simulations is given in order to demonstrate the effectiveness of our approach.

  8. Feature Selection and Classification of Electroencephalographic Signals: An Artificial Neural Network and Genetic Algorithm Based Approach.

    PubMed

    Erguzel, Turker Tekin; Ozekes, Serhat; Tan, Oguz; Gultekin, Selahattin

    2015-10-01

    Feature selection is an important step in many pattern recognition systems aiming to overcome the so-called curse of dimensionality. In this study, an optimized classification method was tested in 147 patients with major depressive disorder (MDD) treated with repetitive transcranial magnetic stimulation (rTMS). The performance of the combination of a genetic algorithm (GA) and a back-propagation (BP) neural network (BPNN) was evaluated using 6-channel pre-rTMS electroencephalographic (EEG) patterns of theta and delta frequency bands. The GA was first used to eliminate the redundant and less discriminant features to maximize classification performance. The BPNN was then applied to test the performance of the feature subset. Finally, classification performance using the subset was evaluated using 6-fold cross-validation. Although the slow bands of the frontal electrodes are widely used to collect EEG data for patients with MDD and provide quite satisfactory classification results, the outcomes of the proposed approach indicate noticeably increased overall accuracy of 89.12% and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.904 using the reduced feature set.

  9. Pattern recognition in lithology classification: modeling using neural networks, self-organizing maps and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sahoo, Sasmita; Jha, Madan K.

    2017-03-01

    Effective characterization of lithology is vital for the conceptualization of complex aquifer systems, which is a prerequisite for the development of reliable groundwater-flow and contaminant-transport models. However, such information is often limited for most groundwater basins. This study explores the usefulness and potential of a hybrid soft-computing framework; a traditional artificial neural network with gradient descent-momentum training (ANN-GDM) and a traditional genetic algorithm (GA) based ANN (ANN-GA) approach were developed and compared with a novel hybrid self-organizing map (SOM) based ANN (SOM-ANN-GA) method for the prediction of lithology at a basin scale. This framework is demonstrated through a case study involving a complex multi-layered aquifer system in India, where well-log sites were clustered on the basis of sand-layer frequencies; within each cluster, subsurface layers were reclassified into four depth classes based on the maximum drilling depth. ANN models for each depth class were developed using each of the three approaches. Of the three, the hybrid SOM-ANN-GA models were able to recognize incomplete geologic pattern more reasonably, followed by ANN-GA and ANN-GDM models. It is concluded that the hybrid soft-computing framework can serve as a promising tool for characterizing lithology in groundwater basins with missing lithologic patterns.

  10. Production of Engineered Fabrics Using Artificial Neural Network-Genetic Algorithm Hybrid Model

    NASA Astrophysics Data System (ADS)

    Mitra, Ashis; Majumdar, Prabal Kumar; Banerjee, Debamalya

    2015-10-01

    The process of fabric engineering which is generally practised in most of the textile mills is very complicated, repetitive, tedious and time consuming. To eliminate this trial and error approach, a new approach of fabric engineering has been attempted in this work. Data sets of construction parameters [comprising of ends per inch, picks per inch, warp count and weft count] and three fabric properties (namely drape coefficient, air permeability and thermal resistance) of 25 handloom cotton fabrics have been used. The weights and biases of three artificial neural network (ANN) models developed for the prediction of drape coefficient, air permeability and thermal resistance were used to formulate the fitness or objective function and constraints of the optimization problem. The optimization problem was solved using genetic algorithm (GA). In both the fabrics which were attempted for engineering, the target and simulated fabric properties were very close. The GA was able to search the optimum set of fabric construction parameters with reasonably good accuracy except in case of EPI. However, the overall result is encouraging and can be improved further by using larger data sets of handloom fabrics by hybrid ANN-GA model.

  11. [Medium optimization for mycelia production of Antrodia camphorata based on artificial neural network-genetic algorithm].

    PubMed

    Lu, Zhenming; He, Zhe; Xu, Hongyu; Shi, Jinsong; Xu, Zhenghong

    2011-12-01

    To illustrate the complex fermentation process of submerged culture of Antrodia camphorata ATCC 200183, we observed the morphology change of this filamentous fungus. Then we used two optimization models namely response surface methodology (RSM) and artificial neural network (ANN) to model the fermentation process of Antrodia camphorata. By genetic algorithm (GA), we optimized the inoculum size and medium components for Antrodia camphorata production. The results show that fitness and prediction accuracy of ANN model was higher when compared to those of RSM model. Using GA, we optimized the input space of ANN model, and obtained maximum biomass of 6.2 g/L at the GA-optimized concentrations of spore (1.76x 10(5) /mL) and medium components (glucose, 29.1 g/L; peptone, 9.3 g/L; and soybean flour, 2.8 g/L). The biomass obtained using the ANN-GA designed medium was (6.1+/-0.2) g/L which was in good agreement with the predicted value. The same optimization process may be used to improve the production of mycelia and bioactive metabolites from potent medicinal fungi by changing the fermentation parameters.

  12. Surface Roughness Optimization of Polyamide-6/Nanoclay Nanocomposites Using Artificial Neural Network: Genetic Algorithm Approach

    PubMed Central

    Moghri, Mehdi; Omidi, Mostafa; Farahnakian, Masoud

    2014-01-01

    During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite. PMID:24578636

  13. Neural Network Studies

    DTIC Science & Technology

    1993-07-01

    basic useful theorems and general rules which apply to neural networks (in ’Overview of Neural Network Theory’), studies of training time as the...The Neural Network , Bayes- Gaussian, and k-Nearest Neighbor Classifiers’), an analysis of fuzzy logic and its relationship to neural network (in ’Fuzzy

  14. A new optimization framework using genetic algorithm and artificial neural network to reduce uncertainties in petroleum reservoir models

    NASA Astrophysics Data System (ADS)

    Maschio, Célio; José Schiozer, Denis

    2015-01-01

    In this article, a new optimization framework to reduce uncertainties in petroleum reservoir attributes using artificial intelligence techniques (neural network and genetic algorithm) is proposed. Instead of using the deterministic values of the reservoir properties, as in a conventional process, the parameters of the probability density function of each uncertain attribute are set as design variables in an optimization process using a genetic algorithm. The objective function (OF) is based on the misfit of a set of models, sampled from the probability density function, and a symmetry factor (which represents the distribution of curves around the history) is used as weight in the OF. Artificial neural networks are trained to represent the production curves of each well and the proxy models generated are used to evaluate the OF in the optimization process. The proposed method was applied to a reservoir with 16 uncertain attributes and promising results were obtained.

  15. Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms.

    ERIC Educational Resources Information Center

    Chen, Hsinchun

    1995-01-01

    Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…

  16. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the 'Extreme Learning Machine' Algorithm.

    PubMed

    McDonnell, Mark D; Tissera, Migel D; Vladusich, Tony; van Schaik, André; Tapson, Jonathan

    2015-01-01

    Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the 'Extreme Learning Machine' (ELM) approach, which also enables a very rapid training time (∼ 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random 'receptive field' sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems.

  17. Parallel genetic algorithm for the design of neural networks: an application to the classification of remotely sensed data

    NASA Astrophysics Data System (ADS)

    Stramaglia, Sebastiano; Satalino, Giuseppe; Sternieri, A.; Anelli, P.; Blonda, Palma N.; Pasquariello, Guido

    1998-10-01

    We consider the problem of classification of remote sensed data from LANDSAT Thematic Mapper images. The data have been acquired in July 1986 on an area locate din South Italy. We compare the performance obtained by feed-forward neural networks designed by a parallel genetic algorithm to determine their topology with the ones obtained by means of a multi-layer perceptron trained with Back Propagation learning rule. The parallel genetic algorithm, implemented on the APE100/Quadrics platform, is based on the coding scheme recently proposed by Sternieri and Anelli and exploits a recently proposed environment for genetic algorithms on Quadrics, called AGAPE. The SASIMD architecture of Quadrics forces the chromosome representation. The coding scheme provides that the connections weights of the neural network are organized as a floating point string. The parallelization scheme adopted is the elitistic coarse grained stepping stone model, with migration occurring only towards neighboring processors. The fitness function depends on the mean square error.After fixing the total number of individuals and running the algorithm on Quadrics architectures with different number of processors, the proposed parallel genetic algorithm displayed a superlinear speedup. We report results obtained on a data set made of 1400 patterns.

  18. A flexible and robust neural network IASI-NH3 retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Whitburn, S.; Van Damme, M.; Clarisse, L.; Bauduin, S.; Heald, C. L.; Hadji-Lazaro, J.; Hurtmans, D.; Zondlo, M. A.; Clerbaux, C.; Coheur, P.-F.

    2016-06-01

    In this paper, we describe a new flexible and robust NH3 retrieval algorithm from measurements of the Infrared Atmospheric Sounding Interferometer (IASI). The method is based on the calculation of a spectral hyperspectral range index (HRI) and subsequent conversion to NH3 columns via a neural network. It is an extension of the method presented in Van Damme et al. (2014a) who used lookup tables (LUT) for the radiance-concentration conversion. The new method inherits the advantages of the LUT-based method while providing several significant improvements. These include the following: (1) Complete temperature and humidity vertical profiles can be accounted for. (2) Third-party NH3 vertical profile information can be used. (3) Reported positive biases of LUT retrieval are reduced, and finally (4) a full measurement uncertainty characterization is provided. A running theme in this study, related to item (2), is the importance of the assumed vertical NH3 profile. We demonstrate the advantages of allowing variable profile shapes in the retrieval. As an example, we analyze how the retrievals change when all NH3 is assumed to be confined to the boundary layer. We analyze different averaging procedures in use for NH3 in the literature, introduced to cope with the variable measurement sensitivity and derive global averaged distributions for the year 2013. A comparison with a GEOS-Chem modeled global distribution is also presented, showing a general good correspondence (within ±3 × 1015 molecules.cm-2) over most of the Northern Hemisphere. However, IASI finds mean columns about 1-1.5 × 1016 molecules.cm-2 (˜50-60%) lower than GEOS-Chem for India and the North China plain.

  19. Leaf-Canopy inversion model though a Neural Network algorithm: Application to coffee cherry estimation using UAV images

    NASA Astrophysics Data System (ADS)

    Ganapol, B. D.; Furfaro, R.; Johnson, L. F.; Herwitz, S. R.

    2003-12-01

    Over the past two years, NASA has had great interest in exploring the economic potential of deploying UAVs (Unmanned Aerial Vehicles) as long-duration platforms equipped with high resolution imaging systems for commercial agricultural applications. In October 2002, a team in the Ecosystem Science and Technology Branch at NASA/Ames Research Center prepared and successfully flew a UAV, equipped with off-the-shelf camera systems, over coffee plantations at Kauai (Hawaii). The idea is to help growers to find the best possible harvesting strategy. The most important information that needs to be conveyed to the growers is the percentage of ripe, unripe and overripe cherries in the field. It is of vital importance to devise a robust and reliable "intelligent "algorithm capable of predicting the amount of ripe cherries present in any digital image coming from the onboard cameras. During the campaign, the two UAV camera systems produced digital images that contain information about the down-looking plantation field. These images need to be processed to extract information concerning the percentage of ripe (yellow) cherries. To date, no robust automated algorithm has been developed to perform this task. Currently, every image is viewed by human eyes on a case by case basis. We propose a neural network algorithm that can automate the process in an intelligent way. Biologically inspired Neural Networks are made of elements called "neurons" that can simulate the brain activity during a learning process. The idea is to design an appropriate neural network that learns the relation between the reflectance coming from an image and the percentage of cherries present in a coffee field. We envision a situation in which reflectance from digital images at different wavebands is processed by a trained neural network and the percentage of the different cherries estimated. The key factor is training the network to recognize the reflectance/cherry percentage relation. Over the past few

  20. Neural networks and MIMD-multiprocessors

    NASA Technical Reports Server (NTRS)

    Vanhala, Jukka; Kaski, Kimmo

    1990-01-01

    Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.

  1. Discrimination of liver cancer in cellular level based on backscatter micro-spectrum with PCA algorithm and BP neural network

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Cheng; Cai, Gan; Dong, Xiaona

    2016-10-01

    The incidence and mortality rate of the primary liver cancer are very high and its postoperative metastasis and recurrence have become important factors to the prognosis of patients. Circulating tumor cells (CTC), as a new tumor marker, play important roles in the early diagnosis and individualized treatment. This paper presents an effective method to distinguish liver cancer based on the cellular scattering spectrum, which is a non-fluorescence technique based on the fiber confocal microscopic spectrometer. Combining the principal component analysis (PCA) with back propagation (BP) neural network were utilized to establish an automatic recognition model for backscatter spectrum of the liver cancer cells from blood cell. PCA was applied to reduce the dimension of the scattering spectral data which obtained by the fiber confocal microscopic spectrometer. After dimensionality reduction by PCA, a neural network pattern recognition model with 2 input layer nodes, 11 hidden layer nodes, 3 output nodes was established. We trained the network with 66 samples and also tested it. Results showed that the recognition rate of the three types of cells is more than 90%, the relative standard deviation is only 2.36%. The experimental results showed that the fiber confocal microscopic spectrometer combining with the algorithm of PCA and BP neural network can automatically identify the liver cancer cell from the blood cells. This will provide a better tool for investigating the metastasis of liver cancers in vivo, the biology metabolic characteristics of liver cancers and drug transportation. Additionally, it is obviously referential in practical application.

  2. Neural network and fuzzy logic based secondary cells charging algorithm development and the controller architecture for implementation

    NASA Astrophysics Data System (ADS)

    Ullah, Muhammed Zafar

    Neural Network and Fuzzy Logic are the two key technologies that have recently received growing attention in solving real world, nonlinear, time variant problems. Because of their learning and/or reasoning capabilities, these techniques do not need a mathematical model of the system, which may be difficult, if not impossible, to obtain for complex systems. One of the major problems in portable or electric vehicle world is secondary cell charging, which shows non-linear characteristics. Portable-electronic equipment, such as notebook computers, cordless and cellular telephones and cordless-electric lawn tools use batteries in increasing numbers. These consumers demand fast charging times, increased battery lifetime and fuel gauge capabilities. All of these demands require that the state-of-charge within a battery be known. Charging secondary cells Fast is a problem, which is difficult to solve using conventional techniques. Charge control is important in fast charging, preventing overcharging and improving battery life. This research work provides a quick and reliable approach to charger design using Neural-Fuzzy technology, which learns the exact battery charging characteristics. Neural-Fuzzy technology is an intelligent combination of neural net with fuzzy logic that learns system behavior by using system input-output data rather than mathematical modeling. The primary objective of this research is to improve the secondary cell charging algorithm and to have faster charging time based on neural network and fuzzy logic technique. Also a new architecture of a controller will be developed for implementing the charging algorithm for the secondary battery.

  3. Genetic algorithm based input selection for a neural network function approximator with applications to SSME health monitoring

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.

    1991-01-01

    A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.

  4. Predicting Tooth Surface Loss Using Genetic Algorithms-Optimized Artificial Neural Networks

    PubMed Central

    Al Haidan, Ali; Abu-Hammad, Osama

    2014-01-01

    Our aim was to predict tooth surface loss in individuals without the need to conduct clinical examinations. Artificial neural networks (ANNs) were used to construct a mathematical model. Input data consisted of age, smoker status, type of tooth brush, brushing, and consumption of pickled food, fizzy drinks, orange, apple, lemon, and dried seeds. Output data were the sum of tooth surface loss scores for selected teeth. The optimized constructed ANN consisted of 2-layer network with 15 neurons in the first layer and one neuron in the second layer. The data of 46 subjects were used to build the model, while the data of 15 subjects were used to test the model. Accepting an error of ±5 scores for all chosen teeth, the accuracy of the network becomes more than 80%. In conclusion, this study shows that modeling tooth surface loss using ANNs is possible and can be achieved with a high degree of accuracy. PMID:25114713

  5. Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter.

    PubMed

    Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo

    2015-09-01

    This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.

  6. [Application of pulse-coupled neural network combined with genetic algorithm on MR images of hypoxic-ischemic encephalopathy].

    PubMed

    Liu, Li; Shi, Haiying; Huo, Liqin; Zhang, Feng; Zheng, Chongxun; You, Jia; He, Xining; Zhang, Jie

    2011-10-01

    This paper is to provide a basis for the establishment of an early diagnostic system for hypoxic-ischemic encephalopathy (HIE) by performing segmentation and feature extraction of lesions on the MR images of neonatal babies with HIE. The segmentation on MR images of HIE based on the genetic algorithm (GA) combined with a pulse-coupled neural network (PCNN) were carried out. There were better segmentation results by using PCNN segmentation based on GA than PCNN segmentation with fixed parameters. The data suggested that a PCNN based on GA could provide effective assistance for diagnosis and research.

  7. A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes

    NASA Astrophysics Data System (ADS)

    Nicolosi, L.; Abt, F.; Blug, A.; Heider, A.; Tetzlaff, R.; Höfler, H.

    2012-01-01

    Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.

  8. Forecasting Jet Fuel Prices Using Artificial Neural Networks.

    DTIC Science & Technology

    1995-03-01

    Artificial neural networks provide a new approach to commodity forecasting that does not require algorithm or rule development. Neural networks have...NeuralWare, more people can take advantage of the power of artificial neural networks . This thesis provides an introduction to neural networks, and reviews

  9. The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm.

    PubMed

    Su, Feng; Yuan, Peijiang; Wang, Yangzhen; Zhang, Chen

    2016-10-01

    Artificial neural networks (ANNs) are powerful computational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT), an important property of ANNs, ensures their reliability when significant portions of a network are lost. In this paper, a fault/noise injection-based (FIB) genetic algorithm (GA) is proposed to construct fault-tolerant ANNs. The FT performance of an FIB-GA was compared with that of a common genetic algorithm, the back-propagation algorithm, and the modification of weights algorithm. The FIB-GA showed a slower fitting speed when solving the exclusive OR (XOR) problem and the overlapping classification problem, but it significantly reduced the errors in cases of single or multiple faults in ANN weights or nodes. Further analysis revealed that the fit weights showed no correlation with the fitting errors in the ANNs constructed with the FIB-GA, suggesting a relatively even distribution of the various fitting parameters. In contrast, the output weights in the training of ANNs implemented with the use the other three algorithms demonstrated a positive correlation with the errors. Our findings therefore indicate that a combination of the fault/noise injection-based method and a GA is capable of introducing FT to ANNs and imply that the distributed ANNs demonstrate superior FT performance.

  10. Noninvasive diagnosis of coronary artery disease using a neural network algorithm.

    PubMed

    Akay, M

    1992-01-01

    This study examines the utility of neural networks for detecting coronary artery disease noninvasively by using the clinical examination variables and extracting useful information from the diastolic heart sounds associated with coronary occlusions. It has been widely reported that coronary stenoses produce sounds due to the turbulent blood flow in these vessels. These complex and highly attenuated signals taken from recordings made in both soundproof and noisy rooms were detected and analyzed to provide feature set based on the poles and power spectral density function (PSD) of the Autoregressive (AR) method after Adaptive Line Enhancement (ALE) method. In addition, some physical examination variables such as sex, age, body weight, smoking condition, diastolic pressure, systolic pressure and derivation from them were included in the feature vector. This feature vector was used as the input pattern to the neural network. The analysis was studied on one hundred recordings (63 abnormal, 37 normals). The network correctly identified 84% of the subjects with coronary artery disease and 89% of the normal subjects.

  11. Interacting neural networks

    NASA Astrophysics Data System (ADS)

    Metzler, R.; Kinzel, W.; Kanter, I.

    2000-08-01

    Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.

  12. Knowledge Discovery in Medical Mining by using Genetic Algorithms and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Srivathsa, P. K.

    2011-12-01

    Medical Data mining could be thought of as the search for relationships and patterns within the medical data, which facilitates the acquisition of useful knowledge for effective medical diagnosis. Consequently, the predictability of disease will become more effective and the early detection of disease certainly facilitates an increased exposure to required patient care with focused treatment, economic feasibility and improved cure rates. So, the present investigation is carried on medical data(PIMA) using DM and GA based Neural Network technique and the results predict that the methodology is not only reliable but also helps in furthering the scope of the subject.

  13. Soy sauce classification by geographic region and fermentation based on artificial neural network and genetic algorithm.

    PubMed

    Xu, Libin; Li, Yang; Xu, Ning; Hu, Yong; Wang, Chao; He, Jianjun; Cao, Yueze; Chen, Shigui; Li, Dongsheng

    2014-12-24

    This work demonstrated the possibility of using artificial neural networks to classify soy sauce from China. The aroma profiles of different soy sauce samples were differentiated using headspace solid-phase microextraction. The soy sauce samples were analyzed by gas chromatography-mass spectrometry, and 22 and 15 volatile aroma compounds were selected for sensitivity analysis to classify the samples by fermentation and geographic region, respectively. The 15 selected samples can be classified by fermentation and geographic region with a prediction success rate of 100%. Furans and phenols represented the variables with the greatest contribution in classifying soy sauce samples by fermentation and geographic region, respectively.

  14. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    PubMed Central

    2010-01-01

    Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and

  15. Nonlinear Neural Network Oscillator.

    DTIC Science & Technology

    A nonlinear oscillator (10) includes a neural network (12) having at least one output (12a) for outputting a one dimensional vector. The neural ... neural network and the input of the input layer for modifying a magnitude and/or a polarity of the one dimensional output vector prior to the sample of...first or a second direction. Connection weights of the neural network are trained on a deterministic sequence of data from a chaotic source or may be a

  16. Development of a remote sensing algorithm for cyanobacterial phycocyanin pigment in the Baltic Sea using neural network approach

    NASA Astrophysics Data System (ADS)

    Riha, Stefan; Krawczyk, Harald

    2011-11-01

    Water quality monitoring in the Baltic Sea is of high ecological importance for all its neighbouring countries. They are highly interested in a regular monitoring of water quality parameters of their regional zones. A special attention is paid to the occurrence and dissemination of algae blooms. Among the appearing blooms the possibly toxicological or harmful cyanobacteria cultures are a special case of investigation, due to their specific optical properties and due to the negative influence on the ecological state of the aquatic system. Satellite remote sensing, with its high temporal and spatial resolution opportunities, allows the frequent observations of large areas of the Baltic Sea with special focus on its two seasonal algae blooms. For a better monitoring of the cyanobacteria dominated summer blooms, adapted algorithms are needed which take into account the special optical properties of blue-green algae. Chlorophyll-a standard algorithms typically fail in a correct recognition of these occurrences. To significantly improve the opportunities of observation and propagation of the cyanobacteria blooms, the Marine Remote Sensing group of DLR has started the development of a model based inversion algorithm that includes a four component bio-optical water model for Case2 waters, which extends the commonly calculated parameter set chlorophyll, Suspended Matter and CDOM with an additional parameter for the estimation of phycocyanin absorption. It was necessary to carry out detailed optical laboratory measurements with different cyanobacteria cultures, occurring in the Baltic Sea, for the generation of a specific bio-optical model. The inversion of satellite remote sensing data is based on an artificial Neural Network technique. This is a model based multivariate non-linear inversion approach. The specifically designed Neural Network is trained with a comprehensive dataset of simulated reflectance values taking into account the laboratory obtained specific optical

  17. Training Neural Networks with Weight Constraints

    DTIC Science & Technology

    1993-03-01

    Hardware implementation of artificial neural networks imposes a variety of constraints. Finite weight magnitudes exist in both digital and analog...optimizing a network with weight constraints. Comparisons are made to the backpropagation training algorithm for networks with both unconstrained and hard-limited weight magnitudes. Neural networks , Analog, Digital, Stochastic

  18. A novel hybrid classification model of genetic algorithms, modified k-Nearest Neighbor and developed backpropagation neural network.

    PubMed

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the

  19. A Novel Hybrid Classification Model of Genetic Algorithms, Modified k-Nearest Neighbor and Developed Backpropagation Neural Network

    PubMed Central

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the

  20. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network

    PubMed Central

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3–11.3 μm; IR2, 11.5–12.5 μm and WV 6.3–7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714

  1. An Improved Cloud Classification Algorithm for China's FY-2C Multi-Channel Images Using Artificial Neural Network.

    PubMed

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  2. A Real-Time and Closed-Loop Control Algorithm for Cascaded Multilevel Inverter Based on Artificial Neural Network

    PubMed Central

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness. PMID:24772025

  3. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  4. Antenna analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  5. Speckle reduction in medical ultrasound: a novel scatterer density weighted nonlinear diffusion algorithm implemented as a neural-network filter.

    PubMed

    Badawi, Ahmed M; Rushdi, Muhammad A

    2006-01-01

    This paper proposes a novel algorithm for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. We propose a nonlinear image diffusion algorithm that incorporates two local parameters of image quality, namely, scatterer density and texture-based contrast in addition to gradient, to weight the nonlinear diffusion process. The scatterer density is proposed to replace the existing traditional measures of quality of the ultrasound diffusion process such as MSE, RMSE, SNR, and PSNR. This novel diffusion filter was then implemented using back propagation neural network for fast parallel processing of volumetric images. The experimental results show that weighting the image diffusion with these parameters produces better noise reduction and produces a better edge detection quality with reasonable computational cost. The proposed filter can be used as a preprocessing phase before applying any ultrasound segmentation or active contour model processes.

  6. Geometrical features assessment of liver's tumor with application of artificial neural network evolved by imperialist competitive algorithm.

    PubMed

    Keshavarz, M; Mojra, A

    2015-05-01

    Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach.

  7. Features extraction of flotation froth images and BP neural network soft-sensor model of concentrate grade optimized by shuffled cuckoo searching algorithm.

    PubMed

    Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia

    2014-01-01

    For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy.

  8. Features Extraction of Flotation Froth Images and BP Neural Network Soft-Sensor Model of Concentrate Grade Optimized by Shuffled Cuckoo Searching Algorithm

    PubMed Central

    Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia

    2014-01-01

    For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210

  9. Neural Network Hurricane Tracker

    DTIC Science & Technology

    1998-05-27

    data about the hurricane and supplying the data to a trained neural network for yielding a predicted path for the hurricane. The system further includes...a device for displaying the predicted path of the hurricane. A method for using and training the neural network in the system is described. In the...method, the neural network is trained using information about hurricanes in a specific geographical area maintained in a database. The training involves

  10. Model-Based Hookload Monitoring and Prediction at Drilling Rigs using Neural Networks and Forward-Selection Algorithm

    NASA Astrophysics Data System (ADS)

    Arnaout, A.; Fruhwirth, R.; Winter, M.; Esmael, B.; Thonhauser, G.

    2012-04-01

    The use of neural networks and advanced machine learning techniques in the oil & gas industry is a growing trend in the market. Especially in drilling oil & gas wells, prediction and monitoring different drilling parameters is an essential task to prevent serious problems like "Kick", "Lost Circulation" or "Stuck Pipe" among others. The hookload represents the weight load of the drill string at the crane hook. It is one of the most important parameters. During drilling the parameter "Weight on Bit" is controlled by the driller whereby the hookload is the only measure to monitor how much weight on bit is applied to the bit to generate the hole. Any changes in weight on bit will be directly reflected at the hookload. Furthermore any unwanted contact between the drill string and the wellbore - potentially leading to stuck pipe problem - will appear directly in the measurements of the hookload. Therefore comparison of the measured to the predicted hookload will not only give a clear idea on what is happening down-hole, it also enables the prediction of a number of important events that may cause problems in the borehole and yield in some - fortunately rare - cases in catastrophes like blow-outs. Heuristic models using highly sophisticated neural networks were designed for the hookload prediction; the training data sets were prepared in cooperation with drilling experts. Sensor measurements as well as a set of derived feature channels were used as input to the models. The contents of the final data set can be separated into (1) features based on rig operation states, (2) real-time sensors features and (3) features based on physics. A combination of novel neural network architecture - the Completely Connected Perceptron and parallel learning techniques which avoid trapping into local error minima - was used for building the models. In addition automatic network growing algorithms and highly sophisticated stopping criterions offer robust and efficient estimation of the

  11. Biomarker Discovery Based on Hybrid Optimization Algorithm and Artificial Neural Networks on Microarray Data for Cancer Classification.

    PubMed

    Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Pirhadi, Shiva; Garshasbi, Masoud

    2015-01-01

    The improvement of high-through-put gene profiling based microarrays technology has provided monitoring the expression value of thousands of genes simultaneously. Detailed examination of changes in expression levels of genes can help physicians to have efficient diagnosing, classification of tumors and cancer's types as well as effective treatments. Finding genes that can classify the group of cancers correctly based on hybrid optimization algorithms is the main purpose of this paper. In this paper, a hybrid particle swarm optimization and genetic algorithm method are used for gene selection and also artificial neural network (ANN) is adopted as the classifier. In this work, we have improved the ability of the algorithm for the classification problem by finding small group of biomarkers and also best parameters of the classifier. The proposed approach is tested on three benchmark gene expression data sets: Blood (acute myeloid leukemia, acute lymphoblastic leukemia), colon and breast datasets. We used 10-fold cross-validation to achieve accuracy and also decision tree algorithm to find the relation between the biomarkers for biological point of view. To test the ability of the trained ANN models to categorize the cancers, we analyzed additional blinded samples that were not previously used for the training procedure. Experimental results show that the proposed method can reduce the dimension of the data set and confirm the most informative gene subset and improve classification accuracy with best parameters based on datasets.

  12. Performing target specific band reduction using artificial neural networks and assessment of its efficacy using various target detection algorithms

    NASA Astrophysics Data System (ADS)

    Yadav, Deepti; Arora, M. K.; Tiwari, K. C.; Ghosh, J. K.

    2016-04-01

    Hyperspectral imaging is a powerful tool in the field of remote sensing and has been used for many applications like mineral detection, detection of landmines, target detection etc. Major issues in target detection using HSI are spectral variability, noise, small size of the target, huge data dimensions, high computation cost, complex backgrounds etc. Many of the popular detection algorithms do not work for difficult targets like small, camouflaged etc. and may result in high false alarms. Thus, target/background discrimination is a key issue and therefore analyzing target's behaviour in realistic environments is crucial for the accurate interpretation of hyperspectral imagery. Use of standard libraries for studying target's spectral behaviour has limitation that targets are measured in different environmental conditions than application. This study uses the spectral data of the same target which is used during collection of the HSI image. This paper analyze spectrums of targets in a way that each target can be spectrally distinguished from a mixture of spectral data. Artificial neural network (ANN) has been used to identify the spectral range for reducing data and further its efficacy for improving target detection is verified. The results of ANN proposes discriminating band range for targets; these ranges were further used to perform target detection using four popular spectral matching target detection algorithm. Further, the results of algorithms were analyzed using ROC curves to evaluate the effectiveness of the ranges suggested by ANN over full spectrum for detection of desired targets. In addition, comparative assessment of algorithms is also performed using ROC.

  13. Studies in Neural Networks

    DTIC Science & Technology

    1991-01-01

    N00014-87-K-0377 TITLE: "Studies in Neural Networks " fl.U Q l~~izie JUL 021991 "" " F.: L9’CO37 "I! c-1(.d Contract No.: N00014-87-K-0377 Final...34) have been very useful, both in understanding the dynamics of neural networks and in engineering networks to perform particular tasks. We have noted...understanding more complex network computation. Interest in applying ideas from biological neural networks to real problems of engineering raises the issues of

  14. Portable dynamic positioning control system on a barge in short-crested waves using the neural network algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Ming-chung; Lee, Zi-yi

    2013-08-01

    This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Proportional-Derivative (PD) controller based on the neural network algorithm is applied to control the thrusters for optimal adjustment of the barge position in waves. In addition to the wave, the current, the wind and the nonlinear drift force are also considered in the calculations. The time domain simulations for the six-degree-of-freedom motions of the barge with the DP system are solved by the 4th order Runge-Kutta method which can compromise the efficiency and the accuracy of the simulations. The technique of the portable alternative DP system developed here can serve as a practical tool to assist those ships without being equipped with the DP facility while the dynamic positioning missions are needed.

  15. Artificial Neural Networks, and Evolutionary Algorithms as a systems biology approach to a data-base on fetal growth restriction.

    PubMed

    Street, Maria E; Buscema, Massimo; Smerieri, Arianna; Montanini, Luisa; Grossi, Enzo

    2013-12-01

    One of the specific aims of systems biology is to model and discover properties of cells, tissues and organisms functioning. A systems biology approach was undertaken to investigate possibly the entire system of intra-uterine growth we had available, to assess the variables of interest, discriminate those which were effectively related with appropriate or restricted intrauterine growth, and achieve an understanding of the systems in these two conditions. The Artificial Adaptive Systems, which include Artificial Neural Networks and Evolutionary Algorithms lead us to the first analyses. These analyses identified the importance of the biochemical variables IL-6, IGF-II and IGFBP-2 protein concentrations in placental lysates, and offered a new insight into placental markers of fetal growth within the IGF and cytokine systems, confirmed they had relationships and offered a critical assessment of studies previously performed.

  16. Implementation of a cellular neural network-based segmentation algorithm on the bio-inspired vision system

    NASA Astrophysics Data System (ADS)

    Karabiber, Fethullah; Grassi, Giuseppe; Vecchio, Pietro; Arik, Sabri; Yalcin, M. Erhan

    2011-01-01

    Based on the cellular neural network (CNN) paradigm, the bio-inspired (bi-i) cellular vision system is a computing platform consisting of state-of-the-art sensing, cellular sensing-processing and digital signal processing. This paper presents the implementation of a novel CNN-based segmentation algorithm onto the bi-i system. The experimental results, carried out for different benchmark video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frame/sec. Comparisons with existing CNN-based methods show that, even though these methods are from two to six times faster than the proposed one, the conceived approach is more accurate and, consequently, represents a satisfying trade-off between real-time requirements and accuracy.

  17. Preparation of agar nanospheres: comparison of response surface and artificial neural network modeling by a genetic algorithm approach.

    PubMed

    Zaki, Mohammad Reza; Varshosaz, Jaleh; Fathi, Milad

    2015-05-20

    Multivariate nature of drug loaded nanospheres manufacturing in term of multiplicity of involved factors makes it a time consuming and expensive process. In this study genetic algorithm (GA) and artificial neural network (ANN), two tools inspired by natural process, were employed to optimize and simulate the manufacturing process of agar nanospheres. The efficiency of GA was evaluated against the response surface methodology (RSM). The studied responses included particle size, poly dispersity index, zeta potential, drug loading and release efficiency. GA predicted greater extremum values for response factors compared to RSM. However, real values showed some deviations from predicted data. Appropriate agreement was found between ANN model predicted and real values for all five response factors with high correlation coefficients. GA was more successful than RSM in optimization and along with ANN were efficient tools in optimizing and modeling the fabrication process of drug loaded in agar nanospheres.

  18. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-01

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  19. Using a neural networks algorithm for high-resolution imaging in pulsed laser radar

    NASA Astrophysics Data System (ADS)

    Joodaki, Mojtaba; Kompa, Guenter; Golam Arshad, Seyed M.; Ahmadi, Vahid; Moravvej-Farshi, Mohammed K.

    2001-11-01

    A new imaging method which can obtain the gray levels directly from the output waveform of Pulsed Laser Radar (PLR) is developed. A simple digital signal processing technique and multi layer perceptrons (MLP) type neural network (NN) have been used to obtain the gray level information from the pulse shapes. The method has been implemented in a real PLR to improve contrast and speed of 2D imaging in PLR. To compare the method with the standard method, a picture consists of 16 gray levels (from 0 for black to 1 for white) with both method has been scanned. Because of the ability of NNs in extracting the information from nonlinear and noisy data and preprocessing of the noisy input pulse shapes to the NN, the average and maximum of errors in the gray levels in comparison with standard method more than 88.5% and 72.6% improved, respectively. Because in this method the effect of the noise is decreased, it is possible to make the imaging with the same resolution as in standard method but with a lower averaging in sampling unit and this dramatically increases speed of the measurements.

  20. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm

    PubMed Central

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-01-01

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation. PMID:27929098

  1. Application of Reinforcement Learning Algorithms for the Adaptive Computation of the Smoothing Parameter for Probabilistic Neural Network.

    PubMed

    Kusy, Maciej; Zajdel, Roman

    2015-09-01

    In this paper, we propose new methods for the choice and adaptation of the smoothing parameter of the probabilistic neural network (PNN). These methods are based on three reinforcement learning algorithms: Q(0)-learning, Q(λ)-learning, and stateless Q-learning. We regard three types of PNN classifiers: the model that uses single smoothing parameter for the whole network, the model that utilizes single smoothing parameter for each data attribute, and the model that possesses the matrix of smoothing parameters different for each data variable and data class. Reinforcement learning is applied as the method of finding such a value of the smoothing parameter, which ensures the maximization of the prediction ability. PNN models with smoothing parameters computed according to the proposed algorithms are tested on eight databases by calculating the test error with the use of the cross validation procedure. The results are compared with state-of-the-art methods for PNN training published in the literature up to date and, additionally, with PNN whose sigma is determined by means of the conjugate gradient approach. The results demonstrate that the proposed approaches can be used as alternative PNN training procedures.

  2. Using Elman recurrent neural networks with conjugate gradient algorithm in determining the anesthetic the amount of anesthetic medicine to be applied.

    PubMed

    Güntürkün, Rüştü

    2010-08-01

    In this study, Elman recurrent neural networks have been defined by using conjugate gradient algorithm in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. The feed forward neural networks are also used for comparison. The conjugate gradient algorithm is compared with back propagation (BP) for training of the neural Networks. The applied artificial neural network is composed of three layers, namely the input layer, the hidden layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. EEG data has been recorded with Nihon Kohden 9200 brand 22-channel EEG device. The international 8-channel bipolar 10-20 montage system (8 TB-b system) has been used in assembling the recording electrodes. EEG data have been recorded by being sampled once in every 2 milliseconds. The artificial neural network has been designed so as to have 60 neurons in the input layer, 30 neurons in the hidden layer and 1 neuron in the output layer. The values of the power spectral density (PSD) of 10-second EEG segments which correspond to the 1-50 Hz frequency range; the ratio of the total power of PSD values of the EEG segment at that moment in the same range to the total of PSD values of EEG segment taken prior to the anesthesia.

  3. Fault Tolerance of Neural Networks

    DTIC Science & Technology

    1994-07-01

    Systematic Ap - proach, Proc. Government Microcircuit Application Conf. (GOMAC), San Diego, Nov. 1986. [10] D.E.Goldberg, Genetic Algorithms in Search...s l m n ttempt to develop fault tolerant neural networks. The lows. Given a well-trained network, we first eliminate temp todevlopfaut tlernt eurl ...both ap - proaches, and this resulted in very slight improve- ments over the addition/deletion procedure. 103 Fisher’s Iris data in average case Fisher’s

  4. Neural Network Classification of Cerebral Embolic Signals

    DTIC Science & Technology

    2007-11-02

    application of new signal processing techniques to the analysis and classification of embolic signals. We applied a Wavelet Neural Network algorithm...to approximate the embolic signals, with the parameters of the wavelet nodes being used to train a Neural Network to classify these signals as resulting from normal flow, or from gaseous or solid emboli.

  5. Evolving Neural Networks for Nonlinear Control.

    DTIC Science & Technology

    1996-09-30

    An approach to creating Amorphous Recurrent Neural Networks (ARNN) using Genetic Algorithms (GA) called 2pGA has been developed and shown to be...effective in evolving neural networks for the control and stabilization of both linear and nonlinear plants, the optimal control for a nonlinear regulator

  6. Self-organization of neural networks

    NASA Astrophysics Data System (ADS)

    Clark, John W.; Winston, Jeffrey V.; Rafelski, Johann

    1984-05-01

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (“brainwashing”) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conductive to the simulation of memory and learning phenomena.

  7. Probabilistic Analysis of Neural Networks

    DTIC Science & Technology

    1990-11-26

    provide an understanding of the basic mechanisms of learning and recognition in neural networks . The main areas of progress were analysis of neural ... networks models, study of network connectivity, and investigation of computer network theory.

  8. Storage capacity and learning algorithms for two-layer neural networks

    NASA Astrophysics Data System (ADS)

    Engel, A.; Köhler, H. M.; Tschepke, F.; Vollmayr, H.; Zippelius, A.

    1992-05-01

    A two-layer feedforward network of McCulloch-Pitts neurons with N inputs and K hidden units is analyzed for N-->∞ and K finite with respect to its ability to implement p=αN random input-output relations. Special emphasis is put on the case where all hidden units are coupled to the output with the same strength (committee machine) and the receptive fields of the hidden units either enclose all input units (fully connected) or are nonoverlapping (tree structure). The storage capacity is determined generalizing Gardner's treatment [J. Phys. A 21, 257 (1988); Europhys. Lett. 4, 481 (1987)] of the single-layer perceptron. For the treelike architecture, a replica-symmetric calculation yields αc~ √K for a large number K of hidden units. This result violates an upper bound derived by Mitchison and Durbin [Biol. Cybern. 60, 345 (1989)]. One-step replica-symmetry breaking gives lower values of αc. In the fully connected committee machine there are in general correlations among different hidden units. As the limit of capacity is approached, the hidden units are anticorrelated: One hidden unit attempts to learn those patterns which have not been learned by the others. These correlations decrease as 1/K, so that for K-->∞ the capacity per synapse is the same as for the tree architecture, whereas for small K we find a considerable enhancement for the storage per synapse. Numerical simulations were performed to explicitly construct solutions for the tree as well as the fully connected architecture. A learning algorithm is suggested. It is based on the least-action algorithm, which is modified to take advantage of the two-layer structure. The numerical simulations yield capacities p that are slightly more than twice the number of degrees of freedom, while the fully connected net can store relatively more patterns than the tree. Various generalizations are discussed. Variable weights from hidden to output give the same results for the storage capacity as does the committee

  9. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  10. Multiobjective optimization design of spinal pedicle screws using neural networks and genetic algorithm: mathematical models and mechanical validation.

    PubMed

    Amaritsakul, Yongyut; Chao, Ching-Kong; Lin, Jinn

    2013-01-01

    Short-segment instrumentation for spine fractures is threatened by relatively high failure rates. Failure of the spinal pedicle screws including breakage and loosening may jeopardize the fixation integrity and lead to treatment failure. Two important design objectives, bending strength and pullout strength, may conflict with each other and warrant a multiobjective optimization study. In the present study using the three-dimensional finite element (FE) analytical results based on an L25 orthogonal array, bending and pullout objective functions were developed by an artificial neural network (ANN) algorithm, and the trade-off solutions known as Pareto optima were explored by a genetic algorithm (GA). The results showed that the knee solutions of the Pareto fronts with both high bending and pullout strength ranged from 92% to 94% of their maxima, respectively. In mechanical validation, the results of mathematical analyses were closely related to those of experimental tests with a correlation coefficient of -0.91 for bending and 0.93 for pullout (P < 0.01 for both). The optimal design had significantly higher fatigue life (P < 0.01) and comparable pullout strength as compared with commercial screws. Multiobjective optimization study of spinal pedicle screws using the hybrid of ANN and GA could achieve an ideal with high bending and pullout performances simultaneously.

  11. A Computational Method for Optimizing Experimental Environments for Phellinus igniarius via Genetic Algorithm and BP Neural Network

    PubMed Central

    Li, Zhongwei; Sun, Beibei; Xin, Yuezhen; Wang, Xun

    2016-01-01

    Flavones, the secondary metabolites of Phellinus igniarius fungus, have the properties of antioxidation and anticancer. Because of the great medicinal value, there are large demands on flavones for medical use and research. Flavones abstracted from natural Phellinus can not meet the medical and research need, since Phellinus in the natural environment is very rare and is hard to be cultivated artificially. The production of flavones is mainly related to the fermentation culture of Phellinus, which made the optimization of culture conditions an important problem. Some researches were made to optimize the fermentation culture conditions, such as the method of response surface methodology, which claimed the optimal flavones production was 1532.83 μg/mL. In order to further optimize the fermentation culture conditions for flavones, in this work a hybrid intelligent algorithm with genetic algorithm and BP neural network is proposed. Our method has the intelligent learning ability and can overcome the limitation of large-scale biotic experiments. Through simulations, the optimal culture conditions are obtained and the flavones production is increased to 2200 μg/mL. PMID:27595102

  12. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

    PubMed

    Le, Trong-Ngoc; Bao, Pham The; Huynh, Hieu Trung

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the "ground truth." Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  13. A Hardware-Implementation-Friendly Pulse-Coupled Neural Network Algorithm for Analog Image-Feature-Generation Circuits

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Shibata, Tadashi

    2007-04-01

    Pulse-coupled neural networks (PCNNs) are biologically inspired algorithms that have been shown to be highly effective for image feature generation. However, conventional PCNNs are software-oriented algorithms that are too complicated to implement as very-large-scale integration (VLSI) hardware. To employ PCNNs in image-feature-generation VLSIs, a hardware-implementation-friendly PCNN is proposed here. By introducing the concepts of exponentially decaying output and a one-branch dendritic tree, the new PCNN eliminates the large number of convolution operators and floating-point multipliers in conventional PCNNs without compromising its performance at image feature generation. As an analog VLSI implementation of the new PCNN, an image-feature-generation circuit is proposed. By employing floating-gate metal-oxide-semiconductor (MOS) technology, the circuit achieves a full voltage-mode implementation of the PCNN in a compact structure. Inheriting the merits of the PCNN, the circuit is capable of generating rotation-independent and translation-independent features for input patterns, which has been verified by SPICE simulation.

  14. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    PubMed Central

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960

  15. New algorithm for centroiding in elongated spots for Shack-Hartmann wavefront sensors using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Mello, A. T.; Kanaan, A.; Guzmán, D.

    2014-10-01

    To recover the resolution lost in a ground-based telescopes due to the atmospheric turbulence, it is necessary to use a technique known as Adaptive Optics (AO). The next generation of telescopes will have primary mirrors of more than 30 meter in diameter and will require AO systems from the ground up (Nelson et al. 2006). There are a number of challenges to implement an AO system at these scales. One of these challenges is the accurate measurement of the aberrated wavefronts using a laser guide star and a Shack-Hartmann wavefront sensor. Due to the diameter of the telescope and the use of the sodium layer in the upper atmosphere as photon return for the laser guide stars, the image of the guide star will appear elongated in the wavefront sensor. Typical centroiding algorithms such as Center of Gravity do not perform well under these conditions (Thomas et al. 2008). We present a new technique based on artificial neural networks for measuring the spot position with better accuracy than existing methods. Simulation results confirms that the new algorithm incurs in smaller errors with respect to other centroiding techniques in use.

  16. A Computational Method for Optimizing Experimental Environments for Phellinus igniarius via Genetic Algorithm and BP Neural Network.

    PubMed

    Li, Zhongwei; Sun, Beibei; Xin, Yuezhen; Wang, Xun; Zhu, Hu

    2016-01-01

    Flavones, the secondary metabolites of Phellinus igniarius fungus, have the properties of antioxidation and anticancer. Because of the great medicinal value, there are large demands on flavones for medical use and research. Flavones abstracted from natural Phellinus can not meet the medical and research need, since Phellinus in the natural environment is very rare and is hard to be cultivated artificially. The production of flavones is mainly related to the fermentation culture of Phellinus, which made the optimization of culture conditions an important problem. Some researches were made to optimize the fermentation culture conditions, such as the method of response surface methodology, which claimed the optimal flavones production was 1532.83 μg/mL. In order to further optimize the fermentation culture conditions for flavones, in this work a hybrid intelligent algorithm with genetic algorithm and BP neural network is proposed. Our method has the intelligent learning ability and can overcome the limitation of large-scale biotic experiments. Through simulations, the optimal culture conditions are obtained and the flavones production is increased to 2200 μg/mL.

  17. Neural networks in astronomy.

    PubMed

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  18. Critical Branching Neural Networks

    ERIC Educational Resources Information Center

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  19. Satellite image analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  20. A neural network for bounded linear programming

    SciTech Connect

    Culioli, J.C.; Protopopescu, V.; Britton, C.; Ericson, N. )

    1989-01-01

    The purpose of this paper is to describe a neural network implementation of an algorithm recently designed at ORNL to solve the Transportation and the Assignment Problems, and, more generally, any explicitly bounded linear program. 9 refs.

  1. Neural Networks: A Primer

    DTIC Science & Technology

    1991-05-01

    capture underlying relationships directly from observed behavior is one of the primary capabilities of neural networks. 29 Back P’ropagation Approximailon...model complex behavior patterns. Particularly in areas traditionally addressed by regression and other functional based techniques, neural networks...to.be determined directly from the observed behavior of a system or sample of individuals. This ability should prove important in personnel analysis and

  2. Investigating methods of improving SSM/I and OKEAN sea ice inversion parameters using MLP neural networks with different learning algorithms.

    NASA Astrophysics Data System (ADS)

    Belchansky, G.; Alpatsky, I.; Mordvintsev, I.; Douglas, D.

    Investigating new methods to estimate sea-ice geophysical parameters using multisensor satellite data is critical for global change studies. The most widely used and consistent data to study sea ice at global scale are SMMR and SSM/I passive microwave measurements available since 1978. However, comparisons with LANDSAT, AVHRR and ERS-1 SAR have demonstrated substantial seasonal and regional differences in SSM/I ice parameter estimates (Belchansky and Douglas, 2000, 2002). This report presents investigating methods of improving SSM/I and OKEAN sea ice inversion parameters using MLP neural networks, and compare the sea ice classification results from different neural networks and linear mixture model. Efficiency of four sea ice type inversion (classification) algorithms utilizing SSM/I, OKEAN-01, ERS and RADARSAT satellite data were compared and investigated. The first one applied different linear mixture models (NASA Team, Bootstrap, and OKEAN). The second, third and fourth algorithms applied the modified MLP neural networks with different learning algorithms based, respectively, on 1) error back propagation and simulated annealing (Kirkpatrick, 1983); 2) dynamic learning and polynomial basis function (Chen et al., 1996); and 3) dynamic learning and two-step optimization. Both last algorithms used the Kalman filtering technique. Our studies demonstrated that both modified MLP neural networks with dynamic learning were more efficient (in terms of learning time, accuracy, and ability to generalize the selected learning data) than modified MLP neural network with learning algorithms based on the error back propagation and simulated annealing for simple approximation problems. MY sea ice and albedo inversion from SSM/I brightness temperatures and respective OKEAN learning data sets demonstrated that these algorithms caused over-fitting in comparison with the MLP neural network with the error back propagation and simulated annealing. Therefore, for MY sea ice inversion

  3. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.

    PubMed

    Wu, Jingheng; Mei, Juan; Wen, Sixiang; Liao, Siyan; Chen, Jincan; Shen, Yong

    2010-07-30

    Based on the quantitative structure-activity relationships (QSARs) models developed by artificial neural networks (ANNs), genetic algorithm (GA) was used in the variable-selection approach with molecule descriptors and helped to improve the back-propagation training algorithm as well. The cross validation techniques of leave-one-out investigated the validity of the generated ANN model and preferable variable combinations derived in the GAs. A self-adaptive GA-ANN model was successfully established by using a new estimate function for avoiding over-fitting phenomenon in ANN training. Compared with the variables selected in two recent QSAR studies that were based on stepwise multiple linear regression (MLR) models, the variables selected in self-adaptive GA-ANN model are superior in constructing ANN model, as they revealed a higher cross validation (CV) coefficient (Q(2)) and a lower root mean square deviation both in the established model and biological activity prediction. The introduced methods for validation, including leave-multiple-out, Y-randomization, and external validation, proved the superiority of the established GA-ANN models over MLR models in both stability and predictive power. Self-adaptive GA-ANN showed us a prospect of improving QSAR model.

  4. Programming neural networks

    SciTech Connect

    Anderson, J.A.; Markman, A.B.; Viscuso, S.R.; Wisniewski, E.J.

    1988-09-01

    Neural networks ''compute'' though not in the way that traditional computers do. One must accept their weaknesses to use their strengths. The authors present several applications of a particular non-linear network (the BSB model) to illustrate some of the peculiarities inherent in this architecture.

  5. A Novel Approach for Blast-Induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network

    PubMed Central

    Marto, Aminaton; Jahed Armaghani, Danial; Tonnizam Mohamad, Edy; Makhtar, Ahmad Mahir

    2014-01-01

    Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches. PMID:25147856

  6. Enhanced antibiotic production by Streptomyces sindenensis using artificial neural networks coupled with genetic algorithm and Nelder-Mead downhill simplex.

    PubMed

    Tripathi, C K M; Khan, Mahvish; Praveen, Vandana; Khan, Saif; Srivastava, Akanksha

    2012-07-01

    Antibiotic production with Streptomyces sindenensis MTCC 8122 was optimized under submerged fermentation conditions by artificial neural network (ANN) coupled with genetic algorithm (GA) and Nelder-Mead downhill simplex (NMDS). Feed forward back-propagation ANN was trained to establish the mathematical relationship among the medium components and length of incubation period for achieving maximum antibiotic yield. The optimization strategy involved growing the culture with varying concentrations of various medium components for different incubation periods. Under non-optimized condition, antibiotic production was found to be 95 microgram/ml, which nearly doubled (176 microgram/ml) with the ANN-GA optimization. ANN-NMDS optimization was found to be more efficacious, and maximum antibiotic production (197 microgram/ml) was obtained by cultivating the cells with (g/l) fructose 2.7602, MgSO4 1.2369, (NH4)2PO4 0.2742, DL-threonine 3.069%, and soyabean meal 1.952%, for 9.8531 days of incubation, which was roughly 12% higher than the yield obtained by ANN coupled with GA under the same conditions.

  7. Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm

    PubMed Central

    Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd.; Gital, Abdulsalam Ya’u; Shuib, Liyana; Abubakar, Adamu I.; Rahman, Muhammad Zubair; Herawan, Tutut

    2015-01-01

    Background Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. Methods/Findings The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. Conclusion An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks—hence, reducing global warming. The policy implications are discussed in the paper. PMID:26305483

  8. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.

    PubMed

    Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu

    2015-08-01

    This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties.

  9. Prediction of Pharmacokinetic Parameters Using a Genetic Algorithm Combined with an Artificial Neural Network for a Series of Alkaloid Drugs

    PubMed Central

    Zandkarimi, Majid; Shafiei, Mohammad; Hadizadeh, Farzin; Darbandi, Mohammad Ali; Tabrizian, Kaveh

    2014-01-01

    An important goal for drug development within the pharmaceutical industry is the application of simple methods to determine human pharmacokinetic parameters. Effective computing tools are able to increase scientists’ ability to make precise selections of chemical compounds in accordance with desired pharmacokinetic and safety profiles. This work presents a method for making predictions of the clearance, plasma protein binding, and volume of distribution for alkaloid drugs. The tools used in this method were genetic algorithms (GAs) combined with artificial neural networks (ANNs) and these were applied to select the most relevant molecular descriptors and to develop quantitative structure-pharmacokinetic relationship (QSPkR) models. Results showed that three-dimensional structural descriptors had more influence on QSPkR models. The models developed in this study were able to predict systemic clearance, volume of distribution, and plasma protein binding with normalized root mean square error (NRMSE) values of 0.151, 0.263, and 0.423, respectively. These results demonstrate an acceptable level of efficiency of the developed models for the prediction of pharmacokinetic parameters. PMID:24634842

  10. Universal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementation.

    PubMed

    Chen, Fangyue; Chen, Guanrong; He, Qinbin; He, Guolong; Xu, Xiubin

    2009-08-01

    Implementing linearly nonseparable Boolean functions (non-LSBF) has been an important and yet challenging task due to the extremely high complexity of this kind of functions and the exponentially increasing percentage of the number of non-LSBF in the entire set of Boolean functions as the number of input variables increases. In this paper, an algorithm named DNA-like learning and decomposing algorithm (DNA-like LDA) is proposed, which is capable of effectively implementing non-LSBF. The novel algorithm first trains the DNA-like offset sequence and decomposes non-LSBF into logic XOR operations of a sequence of LSBF, and then determines the weight-threshold values of the multilayer perceptron (MLP) that perform both the decompositions of LSBF and the function mapping the hidden neurons to the output neuron. The algorithm is validated by two typical examples about the problem of approximating the circular region and the well-known n-bit parity Boolean function (PBF).

  11. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  12. VLSI Cells Placement Using the Neural Networks

    SciTech Connect

    Azizi, Hacene; Zouaoui, Lamri; Mokhnache, Salah

    2008-06-12

    The artificial neural networks have been studied for several years. Their effectiveness makes it possible to expect high performances. The privileged fields of these techniques remain the recognition and classification. Various applications of optimization are also studied under the angle of the artificial neural networks. They make it possible to apply distributed heuristic algorithms. In this article, a solution to placement problem of the various cells at the time of the realization of an integrated circuit is proposed by using the KOHONEN network.

  13. Tomography using neural networks

    NASA Astrophysics Data System (ADS)

    Demeter, G.

    1997-03-01

    We have utilized neural networks for fast evaluation of tomographic data on the MT-1M tokamak. The networks have proven useful in providing the parameters of a nonlinear fit to experimental data, producing results in a fraction of the time required for performing the nonlinear fit. Time required for training the networks makes the method worth applying only if a substantial amount of data are to be evaluated.

  14. Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network

    SciTech Connect

    Wang Xiaojia; Mao Qirong; Zhan Yongzhao

    2008-11-06

    There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction.

  15. The Adaptive Kernel Neural Network

    DTIC Science & Technology

    1989-10-01

    A neural network architecture for clustering and classification is described. The Adaptive Kernel Neural Network (AKNN) is a density estimation...classification layer. The AKNN retains the inherent parallelism common in neural network models. Its relationship to the kernel estimator allows the network to

  16. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    PubMed Central

    Wang, Jie-Sheng; Han, Shuang

    2015-01-01

    For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:26583034

  17. Hyperbolic Hopfield neural networks.

    PubMed

    Kobayashi, M

    2013-02-01

    In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.

  18. Neural networks and applications tutorial

    NASA Astrophysics Data System (ADS)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  19. Nested neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1988-01-01

    Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.

  20. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the ‘Extreme Learning Machine’ Algorithm

    PubMed Central

    McDonnell, Mark D.; Tissera, Migel D.; Vladusich, Tony; van Schaik, André; Tapson, Jonathan

    2015-01-01

    Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the ‘Extreme Learning Machine’ (ELM) approach, which also enables a very rapid training time (∼ 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random ‘receptive field’ sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems. PMID:26262687

  1. Optimization of auto-induction medium for G-CSF production by Escherichia coli using artificial neural networks coupled with genetic algorithm.

    PubMed

    Tian, H; Liu, C; Gao, X D; Yao, W B

    2013-03-01

    Granulocyte colony-stimulating factor (G-CSF) is a cytokine widely used in cancer patients receiving high doses of chemotherapeutic drugs to prevent the chemotherapy-induced suppression of white blood cells. The production of recombinant G-CSF should be increased to meet the increasing market demand. This study aims to model and optimize the carbon source of auto-induction medium to enhance G-CSF production using artificial neural networks coupled with genetic algorithm. In this approach, artificial neural networks served as bioprocess modeling tools, and genetic algorithm (GA) was applied to optimize the established artificial neural network models. Two artificial neural network models were constructed: the back-propagation (BP) network and the radial basis function (RBF) network. The root mean square error, coefficient of determination, and standard error of prediction of the BP model were 0.0375, 0.959, and 8.49 %, respectively, whereas those of the RBF model were 0.0257, 0.980, and 5.82 %, respectively. These values indicated that the RBF model possessed higher fitness and prediction accuracy than the BP model. Under the optimized auto-induction medium, the predicted maximum G-CSF yield by the BP-GA approach was 71.66 %, whereas that by the RBF-GA approach was 75.17 %. These predicted values are in agreement with the experimental results, with 72.4 and 76.014 % for the BP-GA and RBF-GA models, respectively. These results suggest that RBF-GA is superior to BP-GA. The developed approach in this study may be helpful in modeling and optimizing other multivariable, non-linear, and time-variant bioprocesses.

  2. An implementation of the Levenberg-Marquardt algorithm for simultaneous-energy-gradient fitting using two-layer feed-forward neural networks

    NASA Astrophysics Data System (ADS)

    Nguyen-Truong, Hieu T.; Le, Hung M.

    2015-06-01

    We present in this study a new and robust algorithm for feed-forward neural network (NN) fitting. This method is developed for the application in potential energy surface (PES) construction, in which simultaneous energy-gradient fitting is implemented using the well-established Levenberg-Marquardt (LM) algorithm. Three fitting examples are demonstrated, which include the vibrational PES of H2O, reactive PESs of O3 and ClOOCl. In the three testing cases, our new LM implementation has been shown to work very efficiently. Not only increasing fitting accuracy, it also offers two other advantages: less training iterations are utilized and less data points are required for fitting.

  3. Advances in Artificial Neural Networks - Methodological Development and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  4. A Feed-forward Neural Network Algorithm to Detect Thermal Lesions Induced by High Intensity Focused Ultrasound in Tissue.

    PubMed

    Rangraz, Parisa; Behnam, Hamid; Shakhssalim, Naser; Tavakkoli, Jahan

    2012-10-01

    Non-invasive ultrasound surgeries such as high intensity focused ultrasound have been developed to treat tumors or to stop bleeding. In this technique, incorporation of a suitable imaging modality to monitor and control the treatments is essential so several imaging methods such as X-ray, Magnetic resonance imaging and ultrasound imaging have been proposed to monitor the induced thermal lesions. Currently, the only ultrasound imaging technique that is clinically used for monitoring this treatment is standard pulse-echo B-mode ultrasound imaging. This paper describes a novel method for detecting high intensity focused ultrasound-induced thermal lesions using a feed forward neural-network. This study was carried on in vitro animal tissue samples. Backscattered radio frequency signals were acquired in real-time during treatment in order to detect induced thermal lesions. Changes in various tissue properties including tissue's attenuation coefficient, integrated backscatter, scaling parameter of Nakagami distribution, frequency dependent scatterer amplitudes and tissue vibration derived from the backscattered radio frequency data acquired 10 minutes after treatment regarding to before treatment were used in this study. These estimated parameters were used as features of the neural network. Estimated parameters of two sample tissues including two thermal lesions and their segmented B-mode images were used along with the pathological results as training data for the neural network. The results of the study shows that the trained feed forward neural network could effectively detect thermal lesions in vitro. Comparing the estimated size of the thermal lesion (9.6 mm × 8.5 mm) using neural network with the actual size of that from physical examination (10.1 mm × 9 mm) shows that we could detect high intensity focused ultrasound thermal lesions with the difference of 0.5 mm × 0.5 mm.

  5. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM).

    PubMed

    Fernandez, Michael; Caballero, Julio; Fernandez, Leyden; Sarai, Akinori

    2011-02-01

    Many articles in "in silico" drug design implemented genetic algorithm (GA) for feature selection, model optimization, conformational search, or docking studies. Some of these articles described GA applications to quantitative structure-activity relationships (QSAR) modeling in combination with regression and/or classification techniques. We reviewed the implementation of GA in drug design QSAR and specifically its performance in the optimization of robust mathematical models such as Bayesian-regularized artificial neural networks (BRANNs) and support vector machines (SVMs) on different drug design problems. Modeled data sets encompassed ADMET and solubility properties, cancer target inhibitors, acetylcholinesterase inhibitors, HIV-1 protease inhibitors, ion-channel and calcium entry blockers, and antiprotozoan compounds as well as protein classes, functional, and conformational stability data. The GA-optimized predictors were often more accurate and robust than previous published models on the same data sets and explained more than 65% of data variances in validation experiments. In addition, feature selection over large pools of molecular descriptors provided insights into the structural and atomic properties ruling ligand-target interactions.

  6. Neural networks in psychiatry.

    PubMed

    Hulshoff Pol, Hilleke; Bullmore, Edward

    2013-01-01

    Over the past three decades numerous imaging studies have revealed structural and functional brain abnormalities in patients with neuropsychiatric diseases. These structural and functional brain changes are frequently found in multiple, discrete brain areas and may include frontal, temporal, parietal and occipital cortices as well as subcortical brain areas. However, while the structural and functional brain changes in patients are found in anatomically separated areas, these are connected through (long distance) fibers, together forming networks. Thus, instead of representing separate (patho)-physiological entities, these local changes in the brains of patients with psychiatric disorders may in fact represent different parts of the same 'elephant', i.e., the (altered) brain network. Recent developments in quantitative analysis of complex networks, based largely on graph theory, have revealed that the brain's structure and functions have features of complex networks. Here we briefly introduce several recent developments in neural network studies relevant for psychiatry, including from the 2013 special issue on Neural Networks in Psychiatry in European Neuropsychopharmacology. We conclude that new insights will be revealed from the neural network approaches to brain imaging in psychiatry that hold the potential to find causes for psychiatric disorders and (preventive) treatments in the future.

  7. Neural networks counting chimes.

    PubMed Central

    Amit, D J

    1988-01-01

    It is shown that the ideas that led to neural networks capable of recalling associatively and asynchronously temporal sequences of patterns can be extended to produce a neural network that automatically counts the cardinal number in a sequence of identical external stimuli. The network is explicitly constructed, analyzed, and simulated. Such a network may account for the cognitive effect of the automatic counting of chimes to tell the hour. A more general implication is that different electrophysiological responses to identical stimuli, at certain stages of cortical processing, do not necessarily imply synaptic modification, a la Hebb. Such differences may arise from the fact that consecutive identical inputs find the network in different stages of an active temporal sequence of cognitive states. These types of networks are then situated within a program for the study of cognition, which assigns the detection of meaning as the primary role of attractor neural networks rather than computation, in contrast to the parallel distributed processing attitude to the connectionist project. This interpretation is free of homunculus, as well as from the criticism raised against the cognitive model of symbol manipulation. Computation is then identified as the syntax of temporal sequences of quasi-attractors. PMID:3353371

  8. Evolving Neural Network Pattern Classifiers

    DTIC Science & Technology

    1994-05-01

    This work investigates the application of evolutionary programming for automatically configuring neural network architectures for pattern...evaluating a multitude of neural network model hypotheses. The evolutionary programming search is augmented with the Solis & Wets random optimization

  9. Mathematical Theory of Neural Networks

    DTIC Science & Technology

    1994-08-31

    This report provides a summary of the grant work by the principal investigators in the area of neural networks . The topics covered deal with...properties) for nets; and the use of neural networks for the control of nonlinear systems.

  10. A Neural-Network Clustering-Based Algorithm for Privacy Preserving Data Mining

    NASA Astrophysics Data System (ADS)

    Tsiafoulis, S.; Zorkadis, V. C.; Karras, D. A.

    The increasing use of fast and efficient data mining algorithms in huge collections of personal data, facilitated through the exponential growth of technology, in particular in the field of electronic data storage media and processing power, has raised serious ethical, philosophical and legal issues related to privacy protection. To cope with these concerns, several privacy preserving methodologies have been proposed, classified in two categories, methodologies that aim at protecting the sensitive data and those that aim at protecting the mining results. In our work, we focus on sensitive data protection and compare existing techniques according to their anonymity degree achieved, the information loss suffered and their performance characteristics. The ℓ-diversity principle is combined with k-anonymity concepts, so that background information can not be exploited to successfully attack the privacy of data subjects data refer to. Based on Kohonen Self Organizing Feature Maps (SOMs), we firstly organize data sets in subspaces according to their information theoretical distance to each other, then create the most relevant classes paying special attention to rare sensitive attribute values, and finally generalize attribute values to the minimum extend required so that both the data disclosure probability and the information loss are possibly kept negligible. Furthermore, we propose information theoretical measures for assessing the anonymity degree achieved and empirical tests to demonstrate it.

  11. Seismic velocity estimation from well log data with genetic algorithms in comparison to neural networks and multilinear approaches

    NASA Astrophysics Data System (ADS)

    Aleardi, Mattia

    2015-06-01

    Predicting missing log data is a useful capability for geophysicists. Geophysical measurements in boreholes are frequently affected by gaps in the recording of one or more logs. In particular, sonic and shear sonic logs are often recorded over limited intervals along the well path, but the information these logs contain is crucial for many geophysical applications. Estimating missing log intervals from a set of recorded logs is therefore of great interest. In this work, I propose to estimate the data in missing parts of velocity logs using a genetic algorithm (GA) optimisation and I demonstrate that this method is capable of extracting linear or exponential relations that link the velocity to other available logs. The technique was tested on different sets of logs (gamma ray, resistivity, density, neutron, sonic and shear sonic) from three wells drilled in different geological settings and through different lithologies (sedimentary and intrusive rocks). The effectiveness of this methodology is demonstrated by a series of blind tests and by evaluating the correlation coefficients between the true versus predicted velocity values. The combination of GA optimisation with a Gibbs sampler (GS) and subsequent Monte Carlo simulations allows the uncertainties in the final predicted velocities to be reliably quantified. The GA method is also compared with the neural networks (NN) approach and classical multilinear regression. The comparisons show that the GA, NN and multilinear methods provide velocity estimates with the same predictive capability when the relation between the input logs and the seismic velocity is approximately linear. The GA and NN approaches are more robust when the relations are non-linear. However, in all cases, the main advantages of the GA optimisation procedure over the NN approach is that it directly provides an interpretable and simple equation that relates the input and predicted logs. Moreover, the GA method is not affected by the disadvantages

  12. Finding Risk Groups by Optimizing Artificial Neural Networks on the Area under the Survival Curve Using Genetic Algorithms

    PubMed Central

    Kalderstam, Jonas; Edén, Patrik; Ohlsson, Mattias

    2015-01-01

    We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN) are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups. Estimated patient risk can influence treatment choices, and is important for study stratification. A common approach is to sort the patients according to a prognostic index and then group them along the quartile limits. The Cox proportional hazards model (Cox) is one example of this approach. Another method of doing risk grouping is recursive partitioning (Rpart), which constructs a decision tree where each branch point maximizes the statistical separation between the groups. ANN, Cox, and Rpart are compared on five publicly available data sets with varying properties. Cross-validation, as well as separate test sets, are used to validate the models. Results on the test sets show comparable performance, except for the smallest data set where Rpart’s predicted risk groups turn out to be inverted, an example of crossing survival curves. Cross-validation shows that all three models exhibit crossing of some survival curves on this small data set but that the ANN model manages the best separation of groups in terms of median survival time before such crossings. The conclusion is that optimizing the area under the survival curve is a viable approach to identify risk groups. Training ANNs to optimize this area combines two key strengths from both prognostic indices and Rpart. First, a desired minimum group size can be specified, as for a prognostic index. Second, the ability to utilize non-linear effects among the covariates, which Rpart is also able to do. PMID:26352405

  13. Neural Network Communications Signal Processing

    DTIC Science & Technology

    1994-08-01

    This final technical report describes the research and development- results of the Neural Network Communications Signal Processing (NNCSP) Program...The objectives of the NNCSP program are to: (1) develop and implement a neural network and communications signal processing simulation system for the...purpose of exploring the applicability of neural network technology to communications signal processing; (2) demonstrate several configurations of the

  14. Neural Networks for Speech Application.

    DTIC Science & Technology

    1987-11-01

    This is a general introduction to the reemerging technology called neural networks , and how these networks may provide an important alternative to...traditional forms of computing in speech applications. Neural networks , sometimes called Artificial Neural Systems (ANS), have shown promise for solving

  15. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  16. Improved Autoassociative Neural Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2003-01-01

    Improved autoassociative neural networks, denoted nexi, have been proposed for use in controlling autonomous robots, including mobile exploratory robots of the biomorphic type. In comparison with conventional autoassociative neural networks, nexi would be more complex but more capable in that they could be trained to do more complex tasks. A nexus would use bit weights and simple arithmetic in a manner that would enable training and operation without a central processing unit, programs, weight registers, or large amounts of memory. Only a relatively small amount of memory (to hold the bit weights) and a simple logic application- specific integrated circuit would be needed. A description of autoassociative neural networks is prerequisite to a meaningful description of a nexus. An autoassociative network is a set of neurons that are completely connected in the sense that each neuron receives input from, and sends output to, all the other neurons. (In some instantiations, a neuron could also send output back to its own input terminal.) The state of a neuron is completely determined by the inner product of its inputs with weights associated with its input channel. Setting the weights sets the behavior of the network. The neurons of an autoassociative network are usually regarded as comprising a row or vector. Time is a quantized phenomenon for most autoassociative networks in the sense that time proceeds in discrete steps. At each time step, the row of neurons forms a pattern: some neurons are firing, some are not. Hence, the current state of an autoassociative network can be described with a single binary vector. As time goes by, the network changes the vector. Autoassociative networks move vectors over hyperspace landscapes of possibilities.

  17. Modeling and optimization of microbial hyaluronic acid production by Streptococcus zooepidemicus using radial basis function neural network coupling quantum-behaved particle swarm optimization algorithm.

    PubMed

    Liu, Long; Sun, Jun; Xu, Wenbo; Du, Guocheng; Chen, Jian

    2009-01-01

    Hyaluronic acid (HA) is a natural biopolymer with unique physiochemical and biological properties and finds a wide range of applications in biomedical and cosmetic fields. It is important to increase HA production to meet the increasing HA market demand. This work is aimed to model and optimize the amino acids addition to enhance HA production of Streptococcus zooepidemicus with radial basis function (RBF) neural network coupling quantum-behaved particle swarm optimization (QPSO) algorithm. In the RBF-QPSO approach, RBF neural network is used as a bioprocess modeling tool and QPSO algorithm is applied to conduct the optimization with the established RBF neural network black model as the objective function. The predicted maximum HA yield was 6.92 g/L under the following conditions: arginine 0.062 g/L, cysteine 0.036 g/L, and lysine 0.043 g/L. The optimal amino acids addition allowed HA yield increased from 5.0 g/L of the control to 6.7 g/L in the validation experiments. Moreover, the modeling and optimization capacity of the RBF-QPSO approach was compared with that of response surface methodology (RSM). It was indicated that the RBF-QPSO approach gave a slightly better modeling and optimization result compared with RSM. The developed RBF-QPSO approach in this work may be helpful for the modeling and optimization of the other multivariable, nonlinear, time-variant bioprocesses.

  18. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging.

  19. Pricing financial derivatives with neural networks

    NASA Astrophysics Data System (ADS)

    Morelli, Marco J.; Montagna, Guido; Nicrosini, Oreste; Treccani, Michele; Farina, Marco; Amato, Paolo

    2004-07-01

    Neural network algorithms are applied to the problem of option pricing and adopted to simulate the nonlinear behavior of such financial derivatives. Two different kinds of neural networks, i.e. multi-layer perceptrons and radial basis functions, are used and their performances compared in detail. The analysis is carried out both for standard European options and American ones, including evaluation of the Greek letters, necessary for hedging purposes. Detailed numerical investigation show that, after a careful phase of training, neural networks are able to predict the value of options and Greek letters with high accuracy and competitive computational time.

  20. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  1. A new formulation for feedforward neural networks.

    PubMed

    Razavi, Saman; Tolson, Bryan A

    2011-10-01

    Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization.

  2. Predicting Car Production using a Neural Network

    DTIC Science & Technology

    2003-04-24

    World Almanac Education Group, 2003 [8] E. Petroutsos, Mastering Visual Basic .NET, SYBEX Inc., 2002 [9] D. E. Rumelhart, J. L. McClelland, Parallel...In this example, 100,000 cycles (epochs) were used to train it. The initial weights were randomly selected from values between 1 and -1. Visual ... basic .NET was used to program the neural network [8]. The neural network algorithm followed the steps outlined in [9]. As stated above, a 3 layer

  3. Neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

  4. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  5. Improving the accuracy of low level quantum chemical calculation for absorption energies: the genetic algorithm and neural network approach.

    PubMed

    Gao, Ting; Shi, Li-Li; Li, Hai-Bin; Zhao, Shan-Shan; Li, Hui; Sun, Shi-Ling; Su, Zhong-Min; Lu, Ying-Hua

    2009-07-07

    The combination of genetic algorithm and back-propagation neural network correction approaches (GABP) has successfully improved the calculation accuracy of absorption energies. In this paper, the absorption energies of 160 organic molecules are corrected to test this method. Firstly, the GABP1 is introduced to determine the quantitative relationship between the experimental results and calculations obtained by using quantum chemical methods. After GABP1 correction, the root-mean-square (RMS) deviations of the calculated absorption energies reduce from 0.32, 0.95 and 0.46 eV to 0.14, 0.19 and 0.18 eV for B3LYP/6-31G(d), B3LYP/STO-3G and ZINDO methods, respectively. The corrected results of B3LYP/6-31G(d)-GABP1 are in good agreement with experimental results. Then, the GABP2 is introduced to determine the quantitative relationship between the results of B3LYP/6-31G(d)-GABP1 method and calculations of the low accuracy methods (B3LYP/STO-3G and ZINDO). After GABP2 correction, the RMS deviations of the calculated absorption energies reduce to 0.20 and 0.19 eV for B3LYP/STO-3G and ZINDO methods, respectively. The results show that the RMS deviations after GABP1 and GABP2 correction are similar for B3LYP/STO-3G and ZINDO methods. Thus, the B3LYP/6-31G(d)-GABP1 is a better method to predict absorption energies and can be used as the approximation of experimental results where the experimental results are unknown or uncertain by experimental method. This method may be used for predicting absorption energies of larger organic molecules that are unavailable by experimental methods and by high-accuracy theoretical methods with larger basis sets. The performance of this method was demonstrated by application to the absorption energy of the aldehyde carbazole precursor.

  6. Neural networks for triggering

    SciTech Connect

    Denby, B. ); Campbell, M. ); Bedeschi, F. ); Chriss, N.; Bowers, C. ); Nesti, F. )

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  7. Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection.

    PubMed

    Franco, Vanina G; Perín, Juan C; Mantovani, Víctor E; Goicoechea, Héctor C

    2006-01-15

    An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determination was calculated by analysing spiked real fermentation samples (recoveries ca. 115%).

  8. High-performance neural networks. [Neural computers

    SciTech Connect

    Dress, W.B.

    1987-06-01

    The new Forth hardware architectures offer an intermediate solution to high-performance neural networks while the theory and programming details of neural networks for synthetic intelligence are developed. This approach has been used successfully to determine the parameters and run the resulting network for a synthetic insect consisting of a 200-node ''brain'' with 1760 interconnections. Both the insect's environment and its sensor input have thus far been simulated. However, the frequency-coded nature of the Browning network allows easy replacement of the simulated sensors by real-world counterparts.

  9. Constructive Autoassociative Neural Network for Facial Recognition

    PubMed Central

    Fernandes, Bruno J. T.; Cavalcanti, George D. C.; Ren, Tsang I.

    2014-01-01

    Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network). CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature. PMID:25542018

  10. Stimulated Photorefractive Optical Neural Networks

    DTIC Science & Technology

    1992-12-15

    This final report describes research in optical neural networks performed under DARPA sponsorship at Hughes Aircraft Company during the period 1989...in photorefractive crystals. This approach reduces crosstalk and improves the utilization of the optical input device. Successfully implemented neural ... networks include the Perceptron, Bidirectional Associative Memory, and multi-layer backpropagation networks. Up to 104 neurons, 2xl0(7) weights, and

  11. Optical Neural Network Classifier Architectures

    DTIC Science & Technology

    1998-04-01

    We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and...function neural network based on a previously demonstrated binary-input version. The greyscale-input capability broadens the range of applications for...a reduced feature set of multiwavelet images to improve training times and discrimination capability of the neural network . The design uses a joint

  12. Analysis of Simple Neural Networks

    DTIC Science & Technology

    1988-12-20

    ANALYSIS OF SThlPLE NEURAL NETWORKS Chedsada Chinrungrueng Master’s Report Under the Supervision of Prof. Carlo H. Sequin Department of... Neural Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...and guidJ.nce. I have learned a great deal from his teaching, knowledge, and criti- cism. 1. MOTIVATION ANALYSIS OF SIMPLE NEURAL NETWORKS Chedsada

  13. Neural Networks For Robot Control

    DTIC Science & Technology

    2001-04-17

    following: (a) Application of artificial neural networks (multi-layer perceptrons, MLPs) for 2D planar robot arm by using the dynamic backpropagation...methods for the adjustment of parameters; and optimization of the architecture; (b) Application of artificial neural networks in controlling closed...studies in controlling dynamic robot arms by using neural networks in real-time process; (2) Research of optimal architectures used in closed-loop systems in order to compare with adaptive and robust control.

  14. Trimaran Resistance Artificial Neural Network

    DTIC Science & Technology

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  15. Knowledge learning on fuzzy expert neural networks

    NASA Astrophysics Data System (ADS)

    Fu, Hsin-Chia; Shann, J.-J.; Pao, Hsiao-Tien

    1994-03-01

    The proposed fuzzy expert network is an event-driven, acyclic neural network designed for knowledge learning on a fuzzy expert system. Initially, the network is constructed according to a primitive (rough) expert rules including the input and output linguistic variables and values of the system. For each inference rule, it corresponds to an inference network, which contains five types of nodes: Input, Membership-Function, AND, OR, and Defuzzification Nodes. We propose a two-phase learning procedure for the inference network. The first phase is the competitive backpropagation (CBP) training phase, and the second phase is the rule- pruning phase. The CBP learning algorithm in the training phase enables the network to learn the fuzzy rules as precisely as backpropagation-type learning algorithms and yet as quickly as competitive-type learning algorithms. After the CBP training, the rule-pruning process is performed to delete redundant weight connections for simple network structures and yet compatible retrieving performance.

  16. Neural Networks, Reliability and Data Analysis

    DTIC Science & Technology

    1993-01-01

    Neural network technology has been surveyed with the intent of determining the feasibility and impact neural networks may have in the area of...automated reliability tools. Data analysis capabilities of neural networks appear to be very applicable to reliability science due to similar mathematical...tendencies in data.... Neural networks , Reliability, Data analysis, Automated reliability tools, Automated intelligent information processing, Statistical neural network.

  17. [Artificial neural networks in Neurosciences].

    PubMed

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  18. Accelerating Learning By Neural Networks

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  19. Fast curve fitting using neural networks

    NASA Astrophysics Data System (ADS)

    Bishop, C. M.; Roach, C. M.

    1992-10-01

    Neural networks provide a new tool for the fast solution of repetitive nonlinear curve fitting problems. In this article we introduce the concept of a neural network, and we show how such networks can be used for fitting functional forms to experimental data. The neural network algorithm is typically much faster than conventional iterative approaches. In addition, further substantial improvements in speed can be obtained by using special purpose hardware implementations of the network, thus making the technique suitable for use in fast real-time applications. The basic concepts are illustrated using a simple example from fusion research, involving the determination of spectral line parameters from measurements of B iv impurity radiation in the COMPASS-C tokamak.

  20. Study on the idity fuzzy neural network controller based on improved genetic algorithm of intelligent temperature control system in vegetable greenhouse

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Yuan, Hongbo; Zhou, Yuhong; Wang, Nan

    2009-07-01

    In order to create the environment that the suitable crop grows, direct against the characteristic of the system of the greenhouse. The aim of the research was to study the intelligent temperature control system in vegetable greenhouse. Based on computer automatic control ,a kind of intelligent temperature control system in vegetable greenhouse was designed. The design thought of systematic hardwares such as temperature collection system, temperature display, control system, heater control circuit in the heater were expounded in detail The control algorithm of the system was improved and system simulation was made by using MATLAB finally. The control algorithm of the system was improved by a new fuzzy neural network controller. The stimulation curve showed that the system had better controlling and tracking performances ,higher accuracy of controlling the temperature. And this system and host epigyny computer could constitute the secondary computer control system which was favorable for realizing the centralized management of the production.

  1. Synthesis of zinc oxide nanoparticles-chitosan for extraction of methyl orange from water samples: Cuckoo optimization algorithm-artificial neural network

    NASA Astrophysics Data System (ADS)

    Khajeh, Mostafa; Golzary, Ali Reza

    2014-10-01

    In this work, zinc nanoparticles-chitosan based solid phase extraction has been developed for separation and preconcentration of trace amount of methyl orange from water samples. Artificial neural network-cuckoo optimization algorithm has been employed to develop the model for simulation and optimization of this method. The pH, volume of elution solvent, mass of zinc oxide nanoparticles-chitosan, flow rate of sample and elution solvent were the input variables, while recovery of methyl orange was the output. The optimum conditions were obtained by cuckoo optimization algorithm. At the optimum conditions, the limit of detections of 0.7 μg L-1was obtained for the methyl orange. The developed procedure was then applied to the separation and preconcentration of methyl orange from water samples.

  2. Synthesis of zinc oxide nanoparticles-chitosan for extraction of methyl orange from water samples: cuckoo optimization algorithm-artificial neural network.

    PubMed

    Khajeh, Mostafa; Golzary, Ali Reza

    2014-10-15

    In this work, zinc nanoparticles-chitosan based solid phase extraction has been developed for separation and preconcentration of trace amount of methyl orange from water samples. Artificial neural network-cuckoo optimization algorithm has been employed to develop the model for simulation and optimization of this method. The pH, volume of elution solvent, mass of zinc oxide nanoparticles-chitosan, flow rate of sample and elution solvent were the input variables, while recovery of methyl orange was the output. The optimum conditions were obtained by cuckoo optimization algorithm. At the optimum conditions, the limit of detections of 0.7μgL(-1)was obtained for the methyl orange. The developed procedure was then applied to the separation and preconcentration of methyl orange from water samples.

  3. Computational inference of neural information flow networks.

    PubMed

    Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich D

    2006-11-24

    Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.

  4. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    SciTech Connect

    Bornholdt, S.; Graudenz, D.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  5. Neural Networks for the Calculation of Bandwidth of Rectangular Microstrip Antennas

    DTIC Science & Technology

    2003-07-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014210 TITLE: Neural Networks for the Calculation of Bandwidth of...NO. 2, JULY 2003, SI: NEURAL NETWORK APPLICATIONS IN ELECTROMAGNETICS NEURAL NETWORKS FOR THE CALCULATION OF BANDWIDTH OF RECTANGULAR MICROSTRIP... NEURAL NETWORKS FOR BANDWIDTH CALCULATION OF MICROSTRIP ANTENNAS 111 learning algorithms, conjugate gradient of Fletcher- Reeves (CGFR) [53], Levenberg

  6. Neural network error correction for solving coupled ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

    1992-01-01

    A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

  7. Privacy-preserving backpropagation neural network learning.

    PubMed

    Chen, Tingting; Zhong, Sheng

    2009-10-01

    With the development of distributed computing environment , many learning problems now have to deal with distributed input data. To enhance cooperations in learning, it is important to address the privacy concern of each data holder by extending the privacy preservation notion to original learning algorithms. In this paper, we focus on preserving the privacy in an important learning model, multilayer neural networks. We present a privacy-preserving two-party distributed algorithm of backpropagation which allows a neural network to be trained without requiring either party to reveal her data to the other. We provide complete correctness and security analysis of our algorithms. The effectiveness of our algorithms is verified by experiments on various real world data sets.

  8. Identification and Discrimination of Brands of Fuels by Gas Chromatography and Neural Networks Algorithm in Forensic Research

    PubMed Central

    Ugena, L.; Moncayo, S.; Manzoor, S.; Rosales, D.

    2016-01-01

    The detection of adulteration of fuels and its use in criminal scenes like arson has a high interest in forensic investigations. In this work, a method based on gas chromatography (GC) and neural networks (NN) has been developed and applied to the identification and discrimination of brands of fuels such as gasoline and diesel without the necessity to determine the composition of the samples. The study included five main brands of fuels from Spain, collected from fifteen different local petrol stations. The methodology allowed the identification of the gasoline and diesel brands with a high accuracy close to 100%, without any false positives or false negatives. A success rate of three blind samples was obtained as 73.3%, 80%, and 100%, respectively. The results obtained demonstrate the potential of this methodology to help in resolving criminal situations. PMID:27375919

  9. Dynamic interactions in neural networks

    SciTech Connect

    Arbib, M.A. ); Amari, S. )

    1989-01-01

    The study of neural networks is enjoying a great renaissance, both in computational neuroscience, the development of information processing models of living brains, and in neural computing, the use of neurally inspired concepts in the construction of intelligent machines. This volume presents models and data on the dynamic interactions occurring in the brain, and exhibits the dynamic interactions between research in computational neuroscience and in neural computing. The authors present current research, future trends and open problems.

  10. Algorithms for radio networks with dynamic topology

    NASA Astrophysics Data System (ADS)

    Shacham, Nachum; Ogier, Richard; Rutenburg, Vladislav V.; Garcia-Luna-Aceves, Jose

    1991-08-01

    The objective of this project was the development of advanced algorithms and protocols that efficiently use network resources to provide optimal or nearly optimal performance in future communication networks with highly dynamic topologies and subject to frequent link failures. As reflected by this report, we have achieved our objective and have significantly advanced the state-of-the-art in this area. The research topics of the papers summarized include the following: efficient distributed algorithms for computing shortest pairs of disjoint paths; minimum-expected-delay alternate routing algorithms for highly dynamic unreliable networks; algorithms for loop-free routing; multipoint communication by hierarchically encoded data; efficient algorithms for extracting the maximum information from event-driven topology updates; methods for the neural network solution of link scheduling and other difficult problems arising in communication networks; and methods for robust routing in networks subject to sophisticated attacks.

  11. Technology Assessment of Neural Networks

    DTIC Science & Technology

    1989-02-13

    Unlike a Von Neumann type of computer which needs to be programmed to carry out an information-processing function, neural networks are promised as...trainable through a series of trials to learn how to process information. An assessment of the current, near-term (1995), and long-term (2010) trends in Neural Networks is given.

  12. Phase Detection Using Neural Networks.

    DTIC Science & Technology

    1997-03-10

    A likelihood of detecting a reflected signal characterized by phase discontinuities and background noise is enhanced by utilizing neural networks to...identify coherency intervals. The received signal is processed into a predetermined format such as a digital time series. Neural networks perform

  13. Neural network applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Alspector, Joshua

    1994-01-01

    Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.

  14. Neural Networks for the Beginner.

    ERIC Educational Resources Information Center

    Snyder, Robin M.

    Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…

  15. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  16. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  17. Complex Chebyshev-polynomial-based unified model (CCPBUM) neural networks

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1998-03-01

    In this paper, we propose complex Chebyshev Polynomial Based unified model neural network for the approximation of complex- valued function. Based on this approximate transformable technique, we have derived the relationship between the single-layered neural network and multi-layered perceptron neural network. It is shown that the complex Chebyshev Polynomial Based unified model neural network can be represented as a functional link network that are based on Chebyshev polynomial. We also derived a new learning algorithm for the proposed network. It turns out that the complex Chebyshev Polynomial Based unified model neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional complex feedforward/recurrent neural network.

  18. Neural Network Development Tool (NETS)

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1990-01-01

    Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.

  19. Design and implementation of a hybrid genetic algorithm and artificial neural network system for predicting the sizes of unerupted canines and premolars.

    PubMed

    Moghimi, S; Talebi, M; Parisay, I

    2012-08-01

    The aim of this study was to develop a novel hybrid genetic algorithm and artificial neural network (GA-ANN) system for predicting the sizes of unerupted canines and premolars during the mixed dentition period. This study was performed on 106 untreated subjects (52 girls, 54 boys, aged 13-15 years). Data were obtained from dental cast measurements. A hybrid GA-ANN algorithm was developed to find the best reference teeth and the most accurate mapping function. Based on a regression analysis, the strongest correlation was observed between the sum of the mesiodistal widths of the mandibular canines and premolars and the mesiodistal widths of the mandibular first molars and incisors (r = 0.697). In the maxilla, the highest correlation was observed between the sum of the mesiodistal widths of the canines and premolars and the mesiodistal widths of the mandibular first molars and maxillary central incisors (0.742). The hybrid GA-ANN algorithm selected the mandibular first molars and incisors and the maxillary central incisors as the reference teeth for predicting the sum of the mesiodistal widths of the canines and premolars. The prediction error rates and maximum rates of over/underestimation using the hybrid GA-ANN algorithm were smaller than those using linear regression analyses.

  20. Livermore Big Artificial Neural Network Toolkit

    SciTech Connect

    Essen, Brian Van; Jacobs, Sam; Kim, Hyojin; Dryden, Nikoli; Moon, Tim

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  1. Neurale Netwerken en Radarsystemen (Neural Networks and Radar Systems)

    DTIC Science & Technology

    1989-08-01

    general issues in cognitive science", Parallel distributed processing, Vol 1: Foundations, Rumelhart et al. 1986 pp 110-146 THO rapport Pagina 151 36 D.E...34Neural networks (part 2)",Expert Focus, IEEE Expert, Spring 1988. 61 J.A. Anderson, " Cognitive and Psychological Computations with Neural Models", IEEE...Pagina 154 69 David H. Ackley, Geoffrey E. Hinton and Terrence J. Sejnowski, "A Learning Algorithm for Boltzmann machines", cognitive science 9, 147-169

  2. Estimates on compressed neural networks regression.

    PubMed

    Zhang, Yongquan; Li, Youmei; Sun, Jianyong; Ji, Jiabing

    2015-03-01

    When the neural element number n of neural networks is larger than the sample size m, the overfitting problem arises since there are more parameters than actual data (more variable than constraints). In order to overcome the overfitting problem, we propose to reduce the number of neural elements by using compressed projection A which does not need to satisfy the condition of Restricted Isometric Property (RIP). By applying probability inequalities and approximation properties of the feedforward neural networks (FNNs), we prove that solving the FNNs regression learning algorithm in the compressed domain instead of the original domain reduces the sample error at the price of an increased (but controlled) approximation error, where the covering number theory is used to estimate the excess error, and an upper bound of the excess error is given.

  3. Optimized intelligent control of a 2-degree of freedom robot for rehabilitation of lower limbs using neural network and genetic algorithm

    PubMed Central

    2013-01-01

    Background There is an increasing trend in using robots for medical purposes. One specific area is rehabilitation. Rehabilitation is one of the non-drug treatments in community health which means the restoration of the abilities to maximize independence. It is a prolonged work and costly labor. On the other hand, by using the flexible and efficient robots in rehabilitation area, this process will be more useful for handicapped patients. Methods In this study, a rule-based intelligent control methodology is proposed to mimic the behavior of a healthy limb in a satisfactory way by a 2-DOF planar robot. Inverse kinematic of the planar robot will be solved by neural networks and control parameters will be optimized by genetic algorithm, as rehabilitation progress. Results The results of simulations are presented by defining a physiotherapy simple mode on desired trajectory. MATLAB/Simulink is used for simulations. The system is capable of learning the action of the physiotherapist for each patient and imitating this behaviour in the absence of a physiotherapist that can be called robotherapy. Conclusions In this study, a therapeutic exercise planar 2-DOF robot is designed and controlled for lower-limb rehabilitation. The robot manipulator is controlled by combination of hybrid and adaptive controls. Some safety factors and stability constraints are defined and obtained. The robot is stopped when the safety factors are not satisfied. Kinematics of robot is estimated by an MLP neural network and proper control parameters are achieved using GA optimization. PMID:23945420

  4. Nonlinear system identification and control based on modular neural networks.

    PubMed

    Puscasu, Gheorghe; Codres, Bogdan

    2011-08-01

    A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.

  5. Neural networks for calibration tomography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur

    1993-01-01

    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.

  6. Scalable photonic neural networks for real-time pattern classification

    NASA Astrophysics Data System (ADS)

    Goldstein, Adam Arthur

    1997-11-01

    With the rapid advancement of photonic technology in recent years, the potential exists for the incorporation of photonic neural-network research into the development of opto-electronic real-time pattern classification systems. In this dissertation we present three classes of photonic neural-network models that were designed to be compatible with this emerging technology: (1) photonic neural networks based upon probability density estimation, (2) photorefractive neural-network models, and (3) vertically stacked photonic neural networks that utilize hybridized CMOS/GaAs chips and diffractive optical elements. In each case, we show how previously developed neural-network learning algorithms and/or architectures must be adapted in order to allow an efficient photonic implementation. For class (1), we show that conventional 'k-Nearest Neighbors' (k-NN) probability density estimation is not suitable for an analog photonic neural-network hardware implementation, and we introduce a new probability density estimation algorithm called 'Continuous k-Nearest Neighbors' (C-kNN) that is suitable. For class (2), we show that the diffraction-efficiency decay inherent to photorefractive grating formation adversely affects outer-product neural-network learning algorithms, and we introduce a gain and exposure scheduling technique that resolves the incompatibility. For class (3), the use of compact diffractive optical interconnections constrains the corresponding neural-network weights to be fixed and locally connected. We introduce a 3-D Photonic Multichip- Module (3-D PMCM) neural-network architecture that utilizes a fixed diffractive optical layer in conjunction with a programmable electronic layer, to obtain a multi- layer neural network capable of real-time pattern recognition tasks. The design and fabrication of key components of the 3-D PMCM neural-network architecture are presented, together with simulation results for the application of detecting and locating the eyes in an

  7. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  8. Application of artificial neural networks to composite ply micromechanics

    NASA Technical Reports Server (NTRS)

    Brown, D. A.; Murthy, P. L. N.; Berke, L.

    1991-01-01

    Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.

  9. A space-time neural network

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Shelton, Robert O.

    1991-01-01

    Introduced here is a novel technique which adds the dimension of time to the well known back propagation neural network algorithm. Cited here are several reasons why the inclusion of automated spatial and temporal associations are crucial to effective systems modeling. An overview of other works which also model spatiotemporal dynamics is furnished. A detailed description is given of the processes necessary to implement the space-time network algorithm. Several demonstrations that illustrate the capabilities and performance of this new architecture are given.

  10. Neural Networks for Readability Analysis.

    ERIC Educational Resources Information Center

    McEneaney, John E.

    This paper describes and reports on the performance of six related artificial neural networks that have been developed for the purpose of readability analysis. Two networks employ counts of linguistic variables that simulate a traditional regression-based approach to readability. The remaining networks determine readability from "visual…

  11. Collective Computation of Neural Network

    DTIC Science & Technology

    1990-03-15

    Sciences, Beijing ABSTRACT Computational neuroscience is a new branch of neuroscience originating from current research on the theory of computer...scientists working in artificial intelligence engineering and neuroscience . The paper introduces the collective computational properties of model neural...vision research. On this basis, the authors analyzed the significance of the Hopfield model. Key phrases: Computational Neuroscience , Neural Network, Model

  12. Identification of Some Zeolite Group Minerals by Application of Artificial Neural Network and Decision Tree Algorithm Based on SEM-EDS Data

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan

    2016-04-01

    Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 -3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for the

  13. Artificial Neural Network Analysis System

    DTIC Science & Technology

    2007-11-02

    Target detection, multi-target tracking and threat identification of ICBM and its warheads by sensor fusion and data fusion of sensors in a fuzzy neural network system based on the compound eye of a fly.

  14. The holographic neural network: Performance comparison with other neural networks

    NASA Astrophysics Data System (ADS)

    Klepko, Robert

    1991-10-01

    The artificial neural network shows promise for use in recognition of high resolution radar images of ships. The holographic neural network (HNN) promises a very large data storage capacity and excellent generalization capability, both of which can be achieved with only a few learning trials, unlike most neural networks which require on the order of thousands of learning trials. The HNN is specially designed for pattern association storage, and mathematically realizes the storage and retrieval mechanisms of holograms. The pattern recognition capability of the HNN was studied, and its performance was compared with five other commonly used neural networks: the Adaline, Hamming, bidirectional associative memory, recirculation, and back propagation networks. The patterns used for testing represented artificial high resolution radar images of ships, and appear as a two dimensional topology of peaks with various amplitudes. The performance comparisons showed that the HNN does not perform as well as the other neural networks when using the same test data. However, modification of the data to make it appear more Gaussian distributed, improved the performance of the network. The HNN performs best if the data is completely Gaussian distributed.

  15. An Artificial Neural Network Embedded Position and Orientation Determination Algorithm for Low Cost MEMS INS/GPS Integrated Sensors

    PubMed Central

    Chiang, Kai-Wei; Chang, Hsiu-Wen; Li, Chia-Yuan; Huang, Yun-Wen

    2009-01-01

    Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. Direct geo-referencing is the determination of the time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using Global Positioning System (GPS) and Inertial Navigation System (INS) using an Inertial Measurement Unit (IMU). They are usually integrated in such a way that the GPS receiver is the main position sensor, while the IMU is the main orientation sensor. The Kalman Filter (KF) is considered as the optimal estimation tool for real-time INS/GPS integrated kinematic position and orientation determination. An intelligent hybrid scheme consisting of an Artificial Neural Network (ANN) and KF has been proposed to overcome the limitations of KF and to improve the performance of the INS/GPS integrated system in previous studies. However, the accuracy requirements of general mobile mapping applications can’t be achieved easily, even by the use of the ANN-KF scheme. Therefore, this study proposes an intelligent position and orientation determination scheme that embeds ANN with conventional Rauch-Tung-Striebel (RTS) smoother to improve the overall accuracy of a MEMS INS/GPS integrated system in post-mission mode. By combining the Micro Electro Mechanical Systems (MEMS) INS/GPS integrated system and the intelligent ANN-RTS smoother scheme proposed in this study, a cheaper but still reasonably accurate position and orientation determination scheme can be anticipated. PMID:22574034

  16. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample

    PubMed Central

    Lyden, Kate; Kozey-Keadle, Sarah; Staudenmayer, John

    2011-01-01

    Previous work from our laboratory provided a “proof of concept” for use of artificial neural networks (nnets) to estimate metabolic equivalents (METs) and identify activity type from accelerometer data (Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P, J Appl Physiol 107: 1330–1307, 2009). The purpose of this study was to develop new nnets based on a larger, more diverse, training data set and apply these nnet prediction models to an independent sample to evaluate the robustness and flexibility of this machine-learning modeling technique. The nnet training data set (University of Massachusetts) included 277 participants who each completed 11 activities. The independent validation sample (n = 65) (University of Tennessee) completed one of three activity routines. Criterion measures were 1) measured METs assessed using open-circuit indirect calorimetry; and 2) observed activity to identify activity type. The nnet input variables included five accelerometer count distribution features and the lag-1 autocorrelation. The bias and root mean square errors for the nnet MET trained on University of Massachusetts and applied to University of Tennessee were +0.32 and 1.90 METs, respectively. Seventy-seven percent of the activities were correctly classified as sedentary/light, moderate, or vigorous intensity. For activity type, household and locomotion activities were correctly classified by the nnet activity type 98.1 and 89.5% of the time, respectively, and sport was correctly classified 23.7% of the time. Use of this machine-learning technique operates reasonably well when applied to an independent sample. We propose the creation of an open-access activity dictionary, including accelerometer data from a broad array of activities, leading to further improvements in prediction accuracy for METs, activity intensity, and activity type. PMID:21885802

  17. The labeled systems of multiple neural networks.

    PubMed

    Nemissi, M; Seridi, H; Akdag, H

    2008-08-01

    This paper proposes an implementation scheme of K-class classification problem using systems of multiple neural networks. Usually, a multi-class problem is decomposed into simple sub-problems solved independently using similar single neural networks. For the reason that these sub-problems are not equivalent in their complexity, we propose a system that includes reinforced networks destined to solve complicated parts of the entire problem. Our approach is inspired from principles of the multi-classifiers systems and the labeled classification, which aims to improve performances of the networks trained by the Back-Propagation algorithm. We propose two implementation schemes based on both OAO (one-against-all) and OAA (one-against-one). The proposed models are evaluated using iris and human thigh databases.

  18. A neural network based speech recognition system

    NASA Astrophysics Data System (ADS)

    Carroll, Edward J.; Coleman, Norman P., Jr.; Reddy, G. N.

    1990-02-01

    An overview is presented of the development of a neural network based speech recognition system. The two primary tasks involved were the development of a time invariant speech encoder and a pattern recognizer or detector. The speech encoder uses amplitude normalization and a Fast Fourier Transform to eliminate amplitude and frequency shifts of acoustic clues. The detector consists of a back-propagation network which accepts data from the encoder and identifies individual words. This use of neural networks offers two advantages over conventional algorithmic detectors: the detection time is no more than a few network time constants, and its recognition speed is independent of the number of the words in the vocabulary. The completed system has functioned as expected with high tolerance to input variation and with error rates comparable to a commercial system when used in a noisy environment.

  19. Computationally Efficient Neural Network Intrusion Security Awareness

    SciTech Connect

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  20. VLSI implementation of neural networks.

    PubMed

    Wilamowski, B M; Binfet, J; Kaynak, M O

    2000-06-01

    Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.

  1. Modeling the Hot Deformation Behaviors of As-Extruded 7075 Aluminum Alloy by an Artificial Neural Network with Back-Propagation Algorithm

    NASA Astrophysics Data System (ADS)

    Quan, Guo-zheng; Zou, Zhen-yu; Wang, Tong; Liu, Bo; Li, Jun-chao

    2017-01-01

    In order to investigate the hot deformation behaviors of as-extruded 7075 aluminum alloy, the isothermal compressive tests were conducted at the temperatures of 573, 623, 673 and 723 K and the strain rates of 0.01, 0.1, 1 and 10 s-1 on a Gleeble 1500 thermo-mechanical simulator. The flow behaviors showing complex characteristics are sensitive to strain, strain rate and temperature. The effects of strain, temperature and strain rate on flow stress were analyzed and dynamic recrystallization (DRX)-type softening characteristics of the flow behaviors with single peak were identified. An artificial neural network (ANN) with back-propagation (BP) algorithm was developed to deal with the complex deformation behavior characteristics based on the experimental data. The performance of ANN model has been evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). A comparative study on Arrhenius-type constitutive equation and ANN model for as-extruded 7075 aluminum alloy was conducted. Finally, the ANN model was successfully applied to the development of processing map and implanted into finite element simulation. The results have sufficiently articulated that the well-trained ANN model with BP algorithm has excellent capability to deal with the complex flow behaviors of as-extruded 7075 aluminum alloy and has great application potentiality in hot deformation processes.

  2. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Zhanyong; Lu, Feng; He, Hong-di; Lu, Qing-Chang; Wang, Dongsheng; Peng, Zhong-Ren

    2015-03-01

    At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA-WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.

  3. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    PubMed

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2016-07-14

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  4. Porosity Log Prediction Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier

    2016-08-01

    Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.

  5. Program PSNN (Plasma Spectroscopy Neural Network)

    SciTech Connect

    Morgan, W.L.; Larsen, J.T.

    1993-08-01

    This program uses the standard ``delta rule`` back-propagation supervised training algorithm for multi-layer neural networks. The inputs are line intensities in arbitrary units, which are then normalized within the program. The outputs are T{sub e}(eV), N{sub e}(cm{sup {minus}3}), and a fractional ionization, which in our testing using H- and He-like spectra, was N(He)/[N(H) + N(He)].

  6. Membership generation using multilayer neural network

    NASA Technical Reports Server (NTRS)

    Kim, Jaeseok

    1992-01-01

    There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.

  7. Fuzzy logic and neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  8. Neural networks: Application to medical imaging

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  9. Automatic target identification using neural networks

    NASA Astrophysics Data System (ADS)

    Abdallah, Mahmoud A.; Samu, Tayib I.; Grissom, William A.

    1995-10-01

    Neural network theories are applied to attain human-like performance in areas such as speech recognition, statistical mapping, and target recognition or identification. In target identification, one of the difficult tasks has been the extraction of features to be used to train the neural network which is subsequently used for the target's identification. The purpose of this paper is to describe the development of an automatic target identification system using features extracted from a specific class of targets. The extracted features were the graphical representations of the silhouettes of the targets. Image processing techniques and some Fast Fourier Transform (FFT) properties were implemented to extract the features. The FFT eliminates variations in the extracted features due to rotation or scaling. A Neural Network was trained with the extracted features using the Learning Vector Quantization paradigm. An identification system was set up to test the algorithm. The image processing software was interfaced with MATLAB Neural Network Toolbox via a computer program written in C language to automate the target identification process. The system performed well as at classified the objects used to train it irrespective of rotation, scaling, and translation. This automatic target identification system had a classification success rate of about 95%.

  10. Application of artificial neural networks in nonlinear analysis of trusses

    NASA Technical Reports Server (NTRS)

    Alam, J.; Berke, L.

    1991-01-01

    A method is developed to incorporate neural network model based upon the Backpropagation algorithm for material response into nonlinear elastic truss analysis using the initial stiffness method. Different network configurations are developed to assess the accuracy of neural network modeling of nonlinear material response. In addition to this, a scheme based upon linear interpolation for material data, is also implemented for comparison purposes. It is found that neural network approach can yield very accurate results if used with care. For the type of problems under consideration, it offers a viable alternative to other material modeling methods.

  11. Quantum neural networks: Current status and prospects for development

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  12. Neural network for image segmentation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.; Prasad, Lakshman; Schlei, Bernd R.

    2000-10-01

    Image analysis is an important requirement of many artificial intelligence systems. Though great effort has been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is natural to turn to mammalian vision systems for guidance because they are the best known performers of visual tasks. The pulse- coupled neural network (PCNN) model of the cat visual cortex has proven to have interesting properties for image processing. This article describes the PCNN application to the processing of images of heterogeneous materials; specifically PCNN is applied to image denoising and image segmentation. Our results show that PCNNs do well at segmentation if we perform image smoothing prior to segmentation. We use PCNN for obth smoothing and segmentation. Combining smoothing and segmentation enable us to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose optimal selection can be difficult and can vary even for the same problem. This approach makes image processing based on PCNN more automatic in our application and also results in better segmentation.

  13. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.

    PubMed

    Ghaedi, M; Zeinali, N; Ghaedi, A M; Teimuori, M; Tashkhourian, J

    2014-05-05

    In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH=7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R(2)) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the

  14. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Zeinali, N.; Ghaedi, A. M.; Teimuori, M.; Tashkhourian, J.

    In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH = 7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R2) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the

  15. Efficient Training of Recurrent Neural Network with Time Delays.

    PubMed

    Marom, Emanuel; Saad, David; Cohen, Barak

    1997-01-01

    Training recurrent neural networks to perform certain tasks is known to be difficult. The possibility of adding synaptic delays to the network properties makes the training task more difficult. However, the disadvantage of tough training procedure is diminished by the improved network performance. During our research of training neural networks with time delays we encountered a robust method for accomplishing the training task. The method is based on adaptive simulated annealing algorithm (ASA) which was found to be superior to other training algorithms. It requires no tuning and is fast enough to enable training to be held on low end platforms such as personal computers. The implementation of the algorithm is presented over a set of typical benchmark tests of training recurrent neural networks with time delays. Copyright 1996 Elsevier Science Ltd.

  16. Character Recognition Using Genetically Trained Neural Networks

    SciTech Connect

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of

  17. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  18. Combination of artificial neural network and genetic algorithm method for modeling of methylene blue adsorption onto wood sawdust from water samples.

    PubMed

    Khajeh, Mostafa; Sarafraz-Yazdi, Ali; Natavan, Zahra Bameri

    2016-03-01

    The aim of this research was to develop a low price and environmentally friendly adsorbent with abundant of source to remove methylene blue (MB) from water samples. Sawdust solid-phase extraction coupled with high-performance liquid chromatography was used for the extraction and determination of MB. In this study, an experimental data-based artificial neural network model is constructed to describe the performance of sawdust solid-phase extraction method for various operating conditions. The pH, time, amount of sawdust, and temperature were the input variables, while the percentage of extraction of MB was the output. The optimum operating condition was then determined by genetic algorithm method. The optimized conditions were obtained as follows: 11.5, 22.0 min, 0.3 g, and 26.0°C for pH of the solution, extraction time, amount of adsorbent, and temperature, respectively. Under these optimum conditions, the detection limit and relative standard deviation were 0.067 μg L(-1) and <2.4%, respectively. The Langmuir and Freundlich adsorption models were applied to describe the isotherm constant and for the removal and determination of MB from water samples.

  19. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    PubMed

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population.

  20. Modeling of dispersive liquid-liquid microextraction for determination of essential oil from Borago officinalis L. by using combination of artificial neural network and genetic algorithm method.

    PubMed

    Khajeh, Mostafa; Moghaddam, Zahra Safaei; Bohlooli, Mousa; Khajeh, Ahmad

    2015-01-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography was applied for the extraction and determination of essential oil constituents of the Borago officinalis L. In this study, an experimental data-based artificial neural network (ANN) model was constructed to describe the performance of DLLME method for various operating conditions. The volume of extraction and dispersive solvents, extraction time and salt effect were the input variables of this process, whereas the extraction efficiency was the output. The ANN method was found to be capable of modeling this procedure accurately. The overall agreement between the experimental data and ANN predictions was satisfactory showing a determination coefficient of 0.982. The optimum operating condition was then determined by the genetic algorithm method. The optimal conditions were 248 µL volume of extraction solvent, 260 µL volume of dispersive solvent, 2.5 min extraction time and 0.16 mol L(-1) of salt. The limit of detection and linear dynamic range were 0.15-24.0 and 1.2-1,800 ng mL(-1), respectively. The main components of the essential oil were δ-cadinene (31.02%), carvacrol (24.91%), α-pinene (20.89%) and α-cadinol (16.47%).

  1. Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm.

    PubMed

    Jacob, Samuel; Banerjee, Rintu

    2016-08-01

    A novel approach to overcome the acidification problem has been attempted in the present study by codigesting industrial potato waste (PW) with Pistia stratiotes (PS, an aquatic weed). The effectiveness of codigestion of the weed and PW was tested in an equal (1:1) proportion by weight with substrate concentration of 5g total solid (TS)/L (2.5gPW+2.5gPS) which resulted in enhancement of methane yield by 76.45% as compared to monodigestion of PW with a positive synergistic effect. Optimization of process parameters was conducted using central composite design (CCD) based response surface methodology (RSM) and artificial neural network (ANN) coupled genetic algorithm (GA) model. Upon comparison of these two optimization techniques, ANN-GA model obtained through feed forward back propagation methodology was found to be efficient and yielded 447.4±21.43LCH4/kgVSfed (0.279gCH4/kgCODvs) which is 6% higher as compared to the CCD-RSM based approach.

  2. Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: Artificial neural network-genetic algorithm and response surface methodology.

    PubMed

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Asfaram, Arash; Mehrabi, Fatemeh; Bazrafshan, Ali Akbar; Ghaedi, Abdol Mohammad

    2016-11-01

    In this study, ultrasound assisted dispersive solid-phase micro extraction combined with spectrophotometry (USA-DSPME-UV) method based on activated carbon modified with Fe2O3 nanoparticles (Fe2O3-NPs-AC) was developed for pre-concentration and determination of safranin O (SO). It is known that the efficiency of USA-DSPME-UV method may be affected by pH, amount of adsorbent, ultrasound time and eluent volume and the extent and magnitude of their contribution on response (in term of main and interaction part) was studied by using central composite design (CCD) and artificial neural network-genetic algorithms (ANN-GA). Accordingly by adjustment of experimental conditions suggested by ANN-GA at pH 6.5, 1.1mg of adsorbent, 10min ultrasound and 150μL of eluent volume led to achievement of best operation performance like low LOD (6.3ngmL(-1)) and LOQ (17.5ngmL(-1)) in the range of 25-3500ngmL(-1). In following stage, the SO content in real water and wastewater samples with recoveries between 93.27-99.41% with RSD lower than 3% was successfully determined.

  3. Signal Approximation with a Wavelet Neural Network

    DTIC Science & Technology

    1992-12-01

    specialized electronic devices like the Intel Electronically Trainable Analog Neural Network (ETANN) chip. The WNN representation allows the...accurately approximated with a WNN trained with irregularly sampled data. Signal approximation, Wavelet neural network .

  4. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  5. Neural networks in the process industries

    SciTech Connect

    Ben, L.R.; Heavner, L.

    1996-12-01

    Neural networks, or more precisely, artificial neural networks (ANNs), are rapidly gaining in popularity. They first began to appear on the process-control scene in the early 1990s, but have been a research focus for more than 30 years. Neural networks are really empirical models that approximate the way man thinks neurons in the human brain work. Neural-net technology is not trying to produce computerized clones, but to model nature in an effort to mimic some of the brain`s capabilities. Modeling, for the purposes of this article, means developing a mathematical description of physical phenomena. The physics and chemistry of industrial processes are usually quite complex and sometimes poorly understood. Our process understanding, and our imperfect ability to describe complexity in mathematical terms, limit fidelity of first-principle models. Computational requirements for executing these complex models are a further limitation. It is often not possible to execute first-principle model algorithms at the high rate required for online control. Nevertheless, rigorous first principle models are commonplace design tools. Process control is another matter. Important model inputs are often not available as process measurements, making real-time application difficult. In fact, engineers often use models to infer unavailable measurements. 5 figs.

  6. Analysis and Design of Neural Networks

    DTIC Science & Technology

    1992-01-01

    The training problem for feedforward neural networks is nonlinear parameter estimation that can be solved by a variety of optimization techniques...Much of the literature of neural networks has focused on variants of gradient descent. The training of neural networks using such techniques is known to...be a slow process with more sophisticated techniques not always performing significantly better. It is shown that feedforward neural networks can

  7. Radar System Classification Using Neural Networks

    DTIC Science & Technology

    1991-12-01

    This study investigated methods of improving the accuracy of neural networks in the classification of large numbers of classes. A literature search...revealed that neural networks have been successful in the radar classification problem, and that many complex problems have been solved using systems...of multiple neural networks . The experiments conducted were based on 32 classes of radar system data. The neural networks were modelled using a program

  8. Neural network computer simulation of medical aerosols.

    PubMed

    Richardson, C J; Barlow, D J

    1996-06-01

    Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols.

  9. Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine

    NASA Astrophysics Data System (ADS)

    Bahrami, Saeed; Doulati Ardejani, Faramarz; Baafi, Ernest

    2016-05-01

    In this study, hybrid models are designed to predict groundwater inflow to an advancing open pit mine and the hydraulic head (HH) in observation wells at different distances from the centre of the pit during its advance. Hybrid methods coupling artificial neural network (ANN) with genetic algorithm (GA) methods (ANN-GA), and simulated annealing (SA) methods (ANN-SA), were utilised. Ratios of depth of pit penetration in aquifer to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the HH in the observation wells to the distance of observation wells from the centre of the pit were used as inputs to the networks. To achieve the objective two hybrid models consisting of ANN-GA and ANN-SA with 4-5-3-1 arrangement were designed. In addition, by switching the last argument of the input layer with the argument of the output layer of two earlier models, two new models were developed to predict the HH in the observation wells for the period of the mining process. The accuracy and reliability of models are verified by field data, results of a numerical finite element model using SEEP/W, outputs of simple ANNs and some well-known analytical solutions. Predicted results obtained by the hybrid methods are closer to the field data compared to the outputs of analytical and simple ANN models. Results show that despite the use of fewer and simpler parameters by the hybrid models, the ANN-GA and to some extent the ANN-SA have the ability to compete with the numerical models.

  10. GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles

    NASA Astrophysics Data System (ADS)

    Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith

    2016-08-01

    The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.

  11. Artificial neural networks in medicine

    SciTech Connect

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  12. Semantic Interpretation of An Artificial Neural Network

    DTIC Science & Technology

    1995-12-01

    success for stock market analysis/prediction is artificial neural networks. However, knowledge embedded in the neural network is not easily translated...interpret neural network knowledge. The first, called Knowledge Math, extends the use of connection weights, generating rules for general (i.e. non-binary

  13. Model Of Neural Network With Creative Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  14. How Neural Networks Learn from Experience.

    ERIC Educational Resources Information Center

    Hinton, Geoffrey E.

    1992-01-01

    Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…

  15. Application of Improved SOM Neural Network in Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Jiang, Xueying; Liu, Kean; Yan, Jiegou; Chen, Wenhui

    For the false alarm rate, false negative rate, training time and other issues of SOM neural network algorithm, the author Gives an improved anomaly detection SOM algorithm---FPSOM through the introduction of the learning rate, which can adaptively learn the original sample space, better reflects the status of the original data. At the same time, combined with the artificial neural network, The author also gives the intelligent detection model and the model of the training module, designed the main realization of FPSOM neural network algorithm, and finally simulation experiments were carried out in KDDCUP data sets. The experiments show that the new algorithm is better than SOM which can greatly shorten the training time, and effectively improve the detection rate and reduce the false positive rate.

  16. Characteristic Functions and Process Identification by Neural Networks.

    PubMed

    Vilela Mendes, Rui; Dente, Joaquim A.

    1997-11-01

    Principal component analysis (PCA) algorithms use neural networks to extract the eigenvectors of the correlation matrix from the data. However, if the process is non-Gaussian, PCA algorithms or their higher order generalisations provide only incomplete or misleading information on the statistical properties of the data. To handle such situations we propose neural network algorithms, with an hybrid (supervised and unsupervised) learning scheme, which constructs the characteristic function of the probability distribution and the transition functions of the stochastic process. Illustrative examples are presented, which include Cauchy and Lévy-type processes.

  17. EEG Artifact Removal Using a Wavelet Neural Network

    NASA Technical Reports Server (NTRS)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  18. Failure behavior identification for a space antenna via neural networks

    NASA Technical Reports Server (NTRS)

    Sartori, Michael A.; Antsaklis, Panos J.

    1992-01-01

    By using neural networks, a method for the failure behavior identification of a space antenna model is investigated. The proposed method uses three stages. If a fault is suspected by the first stage of fault detection, a diagnostic test is performed on the antenna. The diagnostic test results are used by the second and third stages to identify which fault occurred and to diagnose the extent of the fault, respectively. The first stage uses a multilayer perceptron, the second stage uses a multilayer perceptron and neural networks trained with the quadratic optimization algorithm, a novel training procedure, and the third stage uses backpropagation trained neural networks.

  19. Real-Time Adaptive Color Segmentation by Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2004-01-01

    Artificial neural networks that would utilize the cascade error projection (CEP) algorithm have been proposed as means of autonomous, real-time, adaptive color segmentation of images that change with time. In the original intended application, such a neural network would be used to analyze digitized color video images of terrain on a remote planet as viewed from an uninhabited spacecraft approaching the planet. During descent toward the surface of the planet, information on the segmentation of the images into differently colored areas would be updated adaptively in real time to capture changes in contrast, brightness, and resolution, all in an effort to identify a safe and scientifically productive landing site and provide control feedback to steer the spacecraft toward that site. Potential terrestrial applications include monitoring images of crops to detect insect invasions and monitoring of buildings and other facilities to detect intruders. The CEP algorithm is reliable and is well suited to implementation in very-large-scale integrated (VLSI) circuitry. It was chosen over other neural-network learning algorithms because it is better suited to realtime learning: It provides a self-evolving neural-network structure, requires fewer iterations to converge and is more tolerant to low resolution (that is, fewer bits) in the quantization of neural-network synaptic weights. Consequently, a CEP neural network learns relatively quickly, and the circuitry needed to implement it is relatively simple. Like other neural networks, a CEP neural network includes an input layer, hidden units, and output units (see figure). As in other neural networks, a CEP network is presented with a succession of input training patterns, giving rise to a set of outputs that are compared with the desired outputs. Also as in other neural networks, the synaptic weights are updated iteratively in an effort to bring the outputs closer to target values. A distinctive feature of the CEP neural

  20. Neural and Cognitive Modeling with Networks of Leaky Integrator Units

    NASA Astrophysics Data System (ADS)

    Graben, Peter beim; Liebscher, Thomas; Kurths, Jürgen

    After reviewing several physiological findings on oscillations in the electroencephalogram (EEG) and their possible explanations by dynamical modeling, we present neural networks consisting of leaky integrator units as a universal paradigm for neural and cognitive modeling. In contrast to standard recurrent neural networks, leaky integrator units are described by ordinary differential equations living in continuous time. We present an algorithm to train the temporal behavior of leaky integrator networks by generalized back-propagation and discuss their physiological relevance. Eventually, we show how leaky integrator units can be used to build oscillators that may serve as models of brain oscillations and cognitive processes.

  1. Correcting wave predictions with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Makarynskyy, O.; Makarynska, D.

    2003-04-01

    The predictions of wind waves with different lead times are necessary in a large scope of coastal and open ocean activities. Numerical wave models, which usually provide this information, are based on deterministic equations that do not entirely account for the complexity and uncertainty of the wave generation and dissipation processes. An attempt to improve wave parameters short-term forecasts based on artificial neural networks is reported. In recent years, artificial neural networks have been used in a number of coastal engineering applications due to their ability to approximate the nonlinear mathematical behavior without a priori knowledge of interrelations among the elements within a system. The common multilayer feed-forward networks, with a nonlinear transfer functions in the hidden layers, were developed and employed to forecast the wave characteristics over one hour intervals starting from one up to 24 hours, and to correct these predictions. Three non-overlapping data sets of wave characteristics, both from a buoy, moored roughly 60 miles west of the Aran Islands, west coast of Ireland, were used to train and validate the neural nets involved. The networks were trained with error back propagation algorithm. Time series plots and scatterplots of the wave characteristics as well as tables with statistics show an improvement of the results achieved due to the correction procedure employed.

  2. Functional expansion representations of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1992-01-01

    In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.

  3. Automated Defect Classification Using AN Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Chady, T.; Caryk, M.; Piekarczyk, B.

    2009-03-01

    The automated defect classification algorithm based on artificial neural network with multilayer backpropagation structure was utilized. The selected features of flaws were used as input data. In order to train the neural network it is necessary to prepare learning data which is representative database of defects. Database preparation requires the following steps: image acquisition and pre-processing, image enhancement, defect detection and feature extraction. The real digital radiographs of welded parts of a ship were used for this purpose.

  4. Automatic detection of intruders using a neural network

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Novo, Pedro; Pais, Cassiano P.; Rodrigues, Fernando C.; Rego, Toste

    1992-09-01

    A system is presented that applies a neural network to a video surveillance system. It consists of a pre-processing unit that extract high level information from images and introduces it in the neural network. This system can learn in operational conditions while under the supervision of an unskilled operator. It uses the error backpropagation learning algorithm in a multilayer perceptron structure. The results obtained show that the system performs well, and with a high degree of efficiency.

  5. AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK

    SciTech Connect

    Chady, T.; Caryk, M.; Piekarczyk, B.

    2009-03-03

    The automated defect classification algorithm based on artificial neural network with multilayer backpropagation structure was utilized. The selected features of flaws were used as input data. In order to train the neural network it is necessary to prepare learning data which is representative database of defects. Database preparation requires the following steps: image acquisition and pre-processing, image enhancement, defect detection and feature extraction. The real digital radiographs of welded parts of a ship were used for this purpose.

  6. Neural networks for atmospheric retrievals

    NASA Technical Reports Server (NTRS)

    Motteler, Howard E.; Gualtieri, J. A.; Strow, L. Larrabee; Mcmillin, Larry

    1993-01-01

    We use neural networks to perform retrievals of temperature and water fractions from simulated clear air radiances for the Atmospheric Infrared Sounder (AIRS). Neural networks allow us to make effective use of the large AIRS channel set, and give good performance with noisy input. We retrieve surface temperature, air temperature at 64 distinct pressure levels, and water fractions at 50 distinct pressure levels. Using 728 temperature and surface sensitive channels, the RMS error for temperature retrievals with 0.2K input noise is 1.2K. Using 586 water and temperature sensitive channels, the mean error with 0.2K input noise is 16 percent. Our implementation of backpropagation training for neural networks on the 16,000-processor MasPar MP-1 runs at a rate of 90 million weight updates per second, and allows us to train large networks in a reasonable amount of time. Once trained, the network can be used to perform retrievals quickly on a workstation of moderate power.

  7. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms

    NASA Astrophysics Data System (ADS)

    Helama, S.; Makarenko, N. G.; Karimova, L. M.; Kruglun, O. A.; Timonen, M.; Holopainen, J.; Meriläinen, J.; Eronen, M.

    2009-03-01

    Tree-rings tell of past climates. To do so, tree-ring chronologies comprising numerous climate-sensitive living-tree and subfossil time-series need to be "transferred" into palaeoclimate estimates using transfer functions. The purpose of this study is to compare different types of transfer functions, especially linear and nonlinear algorithms. Accordingly, multiple linear regression (MLR), linear scaling (LSC) and artificial neural networks (ANN, nonlinear algorithm) were compared. Transfer functions were built using a regional tree-ring chronology and instrumental temperature observations from Lapland (northern Finland and Sweden). In addition, conventional MLR was compared with a hybrid model whereby climate was reconstructed separately for short- and long-period timescales prior to combining the bands of timescales into a single hybrid model. The fidelity of the different reconstructions was validated against instrumental climate data. The reconstructions by MLR and ANN showed reliable reconstruction capabilities over the instrumental period (AD 1802-1998). LCS failed to reach reasonable verification statistics and did not qualify as a reliable reconstruction: this was due mainly to exaggeration of the low-frequency climatic variance. Over this instrumental period, the reconstructed low-frequency amplitudes of climate variability were rather similar by MLR and ANN. Notably greater differences between the models were found over the actual reconstruction period (AD 802-1801). A marked temperature decline, as reconstructed by MLR, from the Medieval Warm Period (AD 931-1180) to the Little Ice Age (AD 1601-1850), was evident in all the models. This decline was approx. 0.5°C as reconstructed by MLR. Different ANN based palaeotemperatures showed simultaneous cooling of 0.2 to 0.5°C, depending on algorithm. The hybrid MLR did not seem to provide further benefit above conventional MLR in our sample. The robustness of the conventional MLR over the calibration

  8. [Research on QSPR for n-octanol-water partition coefficients of organic compounds based on genetic algorithms-support vector machine and genetic algorithms-radial basis function neural networks].

    PubMed

    Qi, Jun; Niu, Jun-Feng; Wang, Li-Li

    2008-01-01

    A modified method to develop quantitative structure-property relationship (QSPR) models of organic compounds was proposed based on genetic algorithm (GA) and support vector machine (SVM) (GA-SVM). GA was used to perform the variable selection, and SVM was used to construct QSPR models. GA-SVM was applied to develop the QSPR models for n-octanol-water partition coefficients ( Kow) of 38 typical organic compounds in food industry. 5 descriptors (molecular weights, Hansen polarity, boiling point, percent oxygen and percent hydrogen) were selected in the QSPR model. The coefficient of multiple determination (R2), the sum of squares due to error (SSE) and the root mean squared error (RMSE) values between the measured values and predicted values of the model developed by GA-SVM are 0.999, 0.048 and 0.036, respectively, indicating good predictive capability for lgKow values of these organic compounds. Based on leave-one-out cross validation, the QSPR model constructed by GA-SVM showed good robustness (SSE = 0.295, RMSE = 0.089, R2 = 0.995). Moreover, the models developed by GA-SVM were compared with the models constructed by genetic algorithm-radial basis function neural network (GA-RBFNN) and linear method. The models constructed by GA-SVM show the optimal predictive capability and robustness in the comparison, which illustrates GA-SVM is the optimal method for developing QSPR models for lgKow values of these organic compounds.

  9. A convolutional neural network neutrino event classifier

    DOE PAGES

    Aurisano, A.; Radovic, A.; Rocco, D.; ...

    2016-09-01

    Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology withoutmore » the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.« less

  10. A convolutional neural network neutrino event classifier

    SciTech Connect

    Aurisano, A.; Radovic, A.; Rocco, D.; Himmel, A.; Messier, M. D.; Niner, E.; Pawloski, G.; Psihas, F.; Sousa, A.; Vahle, P.

    2016-09-01

    Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.

  11. A convolutional neural network neutrino event classifier

    NASA Astrophysics Data System (ADS)

    Aurisano, A.; Radovic, A.; Rocco, D.; Himmel, A.; Messier, M. D.; Niner, E.; Pawloski, G.; Psihas, F.; Sousa, A.; Vahle, P.

    2016-09-01

    Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.

  12. Cascade Back-Propagation Learning in Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2003-01-01

    The cascade back-propagation (CBP) algorithm is the basis of a conceptual design for accelerating learning in artificial neural networks. The neural networks would be implemented as analog very-large-scale integrated (VLSI) circuits, and circuits to implement the CBP algorithm would be fabricated on the same VLSI circuit chips with the neural networks. Heretofore, artificial neural networks have learned slowly because it has been necessary to train them via software, for lack of a good on-chip learning technique. The CBP algorithm is an on-chip technique that provides for continuous learning in real time. Artificial neural networks are trained by example: A network is presented with training inputs for which the correct outputs are known, and the algorithm strives to adjust the weights of synaptic connections in the network to make the actual outputs approach the correct outputs. The input data are generally divided into three parts. Two of the parts, called the "training" and "cross-validation" sets, respectively, must be such that the corresponding input/output pairs are known. During training, the cross-validation set enables verification of the status of the input-to-output transformation learned by the network to avoid over-learning. The third part of the data, termed the "test" set, consists of the inputs that are required to be transformed into outputs; this set may or may not include the training set and/or the cross-validation set. Proposed neural-network circuitry for on-chip learning would be divided into two distinct networks; one for training and one for validation. Both networks would share the same synaptic weights.

  13. The application of fuzzy neural network in distribution center location

    NASA Astrophysics Data System (ADS)

    Li, Yongpan; Liu, Yong

    2013-03-01

    In this paper, the establishment of the fuzzy neural network model for logistics distribution center location applied the fuzzy method to the input value of BP algorithm and took the experts' evaluation value as the expected output. At the same time, using the network learning to get the optimized selection and furthermore get a more accurate evaluation to the programs of location.

  14. Learning Process of a Stochastic Feed-Forward Neural Network

    NASA Astrophysics Data System (ADS)

    Fujiki, Sumiyoshi; Fujiki, Nahomi

    1995-03-01

    A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network by minimizing a relative entropic measure, and a learning equation similar to that of the Boltzmann machine is obtained. The learning of the network actually shows a similar result to that of the Boltzmann machine in the classification problems of AND and XOR, by numerical experiments.

  15. Visual grammars and their neural networks

    NASA Astrophysics Data System (ADS)

    Mjolsness, Eric

    1992-07-01

    We exhibit a systematic way to derive neural nets for vision problems. It involves formulating a vision problem as Bayesian inference or decision on a comprehensive model of the visual domain given by a probabilistic grammar. A key feature of this grammar is the way in which it eliminates model information, such as object labels, as it produces an image; correspondence problems and other noise removal tasks result. The neural nets that arise most directly are generalized assignment networks. Also there are transformations which naturally yield improved algorithms such as correlation matching in scale space and the Frameville neural nets for high-level vision. Networks derived this way generally have objective functions with spurious local minima; such minima may commonly be avoided by dynamics that include deterministic annealing, for example recent improvements to Mean Field Theory dynamics. The grammatical method of neural net design allows domain knowledge to enter from all levels of the grammar, including `abstract' levels remote from the final image data, and may permit new kinds of learning as well.

  16. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  17. A scale-free neural network for modelling neurogenesis

    NASA Astrophysics Data System (ADS)

    Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-11-01

    In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.

  18. Pattern recognition, neural networks, and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Bezdek, James C.

    1991-03-01

    We write about the relationship between numerical patten recognition and neural-like computation networks. Extensive research that proposes the use of neural models for a wide variety of applications has been conducted in the past few years. Sometimes justification for investigating the potential of neural nets (NNs) is obvious. On the other hand, current enthusiasm for this approach has also led to the use of neural models when the apparent rationale for their use has been justified by what is best described as 'feeding frenzy'. In this latter instance there is at times concomitant lack of concern about many 'side issues' connected with algorithms (e.g., complexity, convergence, stability, robustness and performance validation) that need attention before any computational model becomes part of an operation system. These issues are examined with a view towards guessing how best to integrate and exploit the promise of the neural approach with there efforts aimed at advancing the art and science of pattern recognition and its applications in fielded systems in the next decade.

  19. Recognition of In-Ear Microphone Speech Data Using Multi-Layer Neural Networks

    DTIC Science & Technology

    2006-03-01

    types, namely, the recurrent network [ Hopfield , 1982], and the backpropagation algorithm [Rumelhart, McClelland, 1986]. In particular, the discovery... Network Design, Campus Publishing Service, University of Colorado, Boulder, Colorado, 1996. Hopfield , J. J., “Neural networks and physical systems...MICROPHONE SPEECH DATA USING MULTI-LAYER NEURAL NETWORKS by Gokhan Bulbuller March 2006 Thesis Advisor: Monique P. Fargues Co

  20. An annealed chaotic maximum neural network for bipartite subgraph problem.

    PubMed

    Wang, Jiahai; Tang, Zheng; Wang, Ronglong

    2004-04-01

    In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.

  1. Macro cell placement with neural net algorithms

    NASA Astrophysics Data System (ADS)

    Storti-Gajani, Giancarlo

    Placement of VLSI (Very Large Scale Integration) macro cells is one of the hard problems encountered in the process of integrated circuits design. Since the problem is essentially NP-complete a solution must be searched for with the aid of heuristics using, maybe, non deterministic strategies. A new algorithm for cell preplacement based on neural nets that may be very well extended to find solution of the final placement problem is presented. Simulations for the part of the algorithm concerning preplacement are carried out on several different examples giving always a sharply decreasing cost function (where cost is evaluated essentially on total length of wires given a rectangular boundary). The direct mapping between neural units and VLSI blocks that is adopted in the algorithm makes the extension to the final placement problem quite simple. Simulation programs are implemented in a interpreted mathematical simulation language and a C language implementation is currently under way.

  2. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    PubMed

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-05

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  3. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Shojaeipour, E.; Ghaedi, A. M.; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1 g), contact time (1-40 min) and initial MG concentration (5, 10, 20, 70 and 100 mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R2) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8 mg/g at 25 °C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20 min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  4. Further results in multiset processing with neural networks.

    PubMed

    McGregor, Simon

    2008-08-01

    This paper presents new experimental results on the variadic neural network (VNN) [McGregor, S. (2007). Neural network processing for multiset data. In Proceedings: Vol. 4668. Artificial neural networks - ICANN 2007, 17th international conference (pp. 460-470). Springer]. The inputs to a variadic network are an arbitrary-length list of n-tuples of real numbers, where n is fixed, and the function computed by the network is unaffected by permutation of the inputs. This paper describes improvements in the training algorithm for the variadic perceptron, based on a constructive cascade topology, and performance of the improved networks on geometric problems inspired by vector graphics. Further development may allow practical application of these or similar networks to vector graphics processing and statistical analysis.

  5. The next generation of neural network chips

    SciTech Connect

    Beiu, V.

    1997-08-01

    There have been many national and international neural networks research initiatives: USA (DARPA, NIBS), Canada (IRIS), Japan (HFSP) and Europe (BRAIN, GALA TEA, NERVES, ELENE NERVES 2) -- just to mention a few. Recent developments in the field of neural networks, cognitive science, bioengineering and electrical engineering have made it possible to understand more about the functioning of large ensembles of identical processing elements. There are more research papers than ever proposing solutions and hardware implementations are by no means an exception. Two fields (computing and neuroscience) are interacting in ways nobody could imagine just several years ago, and -- with the advent of new technologies -- researchers are focusing on trying to copy the Brain. Such an exciting confluence may quite shortly lead to revolutionary new computers and it is the aim of this invited session to bring to light some of the challenging research aspects dealing with the hardware realizability of future intelligent chips. Present-day (conventional) technology is (still) mostly digital and, thus, occupies wider areas and consumes much more power than the solutions envisaged. The innovative algorithmic and architectural ideals should represent important breakthroughs, paving the way towards making neural network chips available to the industry at competitive prices, in relatively small packages and consuming a fraction of the power required by equivalent digital solutions.

  6. Artificial Neural Network applied to lightning flashes

    NASA Astrophysics Data System (ADS)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  7. Network traffic anomaly prediction using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea

    2017-03-01

    As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.

  8. Terminal attractors in neural networks

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1989-01-01

    A new type of attractor (terminal attractors) for content-addressable memory, associative memory, and pattern recognition in artificial neural networks operating in continuous time is introduced. The idea of a terminal attractor is based upon a violation of the Lipschitz condition at a fixed point. As a result, the fixed point becomes a singular solution which envelopes the family of regular solutions, while each regular solution approaches such an attractor in finite time. It will be shown that terminal attractors can be incorporated into neural networks such that any desired set of these attractors with prescribed basins is provided by an appropriate selection of the synaptic weights. The applications of terminal attractors for content-addressable and associative memories, pattern recognition, self-organization, and for dynamical training are illustrated.

  9. Fiber optic Adaline neural networks

    NASA Astrophysics Data System (ADS)

    Ghosh, Anjan K.; Trepka, Jim; Paparao, Palacharla

    1993-02-01

    Optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators has been discussed recently. We describe the design of a single layer fiber optic Adaline neural network which can be used as a bit pattern classifier. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The new optical neural network described in this paper is designed for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the optically implemented Adaline in the presence of errors in the hardware, and we studied methods for improving the convergence rate of the Adaline.

  10. Gradient calculations for dynamic recurrent neural networks: a survey.

    PubMed

    Pearlmutter, B A

    1995-01-01

    Surveys learning algorithms for recurrent neural networks with hidden units and puts the various techniques into a common framework. The authors discuss fixed point learning algorithms, namely recurrent backpropagation and deterministic Boltzmann machines, and nonfixed point algorithms, namely backpropagation through time, Elman's history cutoff, and Jordan's output feedback architecture. Forward propagation, an on-line technique that uses adjoint equations, and variations thereof, are also discussed. In many cases, the unified presentation leads to generalizations of various sorts. The author discusses advantages and disadvantages of temporally continuous neural networks in contrast to clocked ones continues with some "tricks of the trade" for training, using, and simulating continuous time and recurrent neural networks. The author presents some simulations, and at the end, addresses issues of computational complexity and learning speed.

  11. Prototype neural network pattern recognition testbed

    NASA Astrophysics Data System (ADS)

    Worrell, Steven W.; Robertson, James A.; Varner, Thomas L.; Garvin, Charles G.

    1991-02-01

    Recent successes ofneural networks has led to an optimistic outlook for neural network applications to image processing(IP). This paperpresents a general architecture for performing comparative studies of neural processing and more conventional IF techniques as well as hybrid pattern recognition (PR) systems. Two hybrid PR systems have been simulated each of which incorporate both conventional and neural processing techniques.

  12. Neural Network for Visual Search Classification

    DTIC Science & Technology

    2007-11-02

    neural network used to perform visual search classification. The neural network consists of a Learning vector quantization network (LVQ) and a single layer perceptron. The objective of this neural network is to classify the various human visual search patterns into predetermined classes. The classes signify the different search strategies used by individuals to scan the same target pattern. The input search patterns are quantified with respect to an ideal search pattern, determined by the user. A supervised learning rule,

  13. The LILARTI neural network system

    SciTech Connect

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  14. Design of Neural Networks for Fast Convergence and Accuracy

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1998-01-01

    A novel procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed to provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component spacecraft design changes and measures of its performance. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The design algorithm attempts to avoid the local minima phenomenon that hampers the traditional network training. A numerical example is performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  15. PAC learning algorithms for functions approximated by feedforward networks

    SciTech Connect

    Rao, N.S.V.; Protopopescu, V.

    1996-06-01

    The authors present a class of efficient algorithms for PAC learning continuous functions and regressions that are approximated by feedforward networks. The algorithms are applicable to networks with unknown weights located only in the output layer and are obtained by utilizing the potential function methods of Aizerman et al. Conditions relating the sample sizes to the error bounds are derived using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.

  16. FPGA implementation of a pyramidal Weightless Neural Networks learning system.

    PubMed

    Al-Alawi, Raida

    2003-08-01

    A hardware architecture of a Probabilistic Logic Neuron (PLN) is presented. The suggested model facilitates the on-chip learning of pyramidal Weightless Neural Networks using a modified probabilistic search reward/penalty training algorithm. The penalization strategy of the training algorithm depends on a predefined parameter called the probabilistic search interval. A complete Weightless Neural Network (WNN) learning system is modeled and implemented on Xilinx XC4005E Field Programmable Gate Array (FPGA), allowing its architecture to be configurable. Various experiments have been conducted to examine the feasibility and performance of the WNN learning system. Results show that the system has a fast convergence rate and good generalization ability.

  17. 3-D flame temperature field reconstruction with multiobjective neural network

    NASA Astrophysics Data System (ADS)

    Wan, Xiong; Gao, Yiqing; Wang, Yuanmei

    2003-02-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.

  18. Gossip algorithms in quantum networks

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2017-01-01

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.

  19. Neural network based decomposition in optimal structural synthesis

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Berke, L.

    1992-01-01

    The present paper describes potential applications of neural networks in the multilevel decomposition based optimal design of structural systems. The generic structural optimization problem of interest, if handled as a single problem, results in a large dimensionality problem. Decomposition strategies allow for this problem to be represented by a set of smaller, decoupled problems, for which solutions may either be obtained with greater ease or may be obtained in parallel. Neural network models derived through supervised training, are used in two distinct modes in this work. The first uses neural networks to make available efficient analysis models for use in repetitive function evaluations as required by the optimization algorithm. In the second mode, neural networks are used to represent the coupling that exists between the decomposed subproblems. The approach is illustrated by application to the multilevel decomposition-based synthesis of representative truss and frame structures.

  20. A neural network model for credit risk evaluation.

    PubMed

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  1. Temporal solar irradiance variability analysis using neural networks

    NASA Astrophysics Data System (ADS)

    Tebabal, Ambelu; Damtie, Baylie; Nigussie, Melessew

    A feed-forward neural network which can account for nonlinear relationship was used to model total solar irradiance (TSI). A single layer feed-forward neural network with Levenberg-marquardt back-propagation algorithm have been implemented for modeling daily total solar irradiance from daily photometric sunspot index, and core-to-wing ratio of Mg II index data. In order to obtain the optimum neural network for TSI modeling, the root mean square error (RMSE) and mean absolute error (MAE) have been taken into account. The modeled and measured TSI have the correlation coefficient of about R=0.97. The neural networks (NNs) model output indicates that reconstructed TSI from solar proxies (photometric sunspot index and Mg II) can explain 94% of the variance of TSI. This modeled TSI using NNs further strengthens the view that surface magnetism indeed plays a dominant role in modulating solar irradiance.

  2. An Adaptive-PSO-Based Self-Organizing RBF Neural Network.

    PubMed

    Han, Hong-Gui; Lu, Wei; Hou, Ying; Qiao, Jun-Fei

    2016-10-24

    In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

  3. Comparison of Gompertz and neural network models of broiler growth.

    PubMed

    Roush, W B; Dozier, W A; Branton, S L

    2006-04-01

    Neural networks offer an alternative to regression analysis for biological growth modeling. Very little research has been conducted to model animal growth using artificial neural networks. Twenty-five male chicks (Ross x Ross 308) were raised in an environmental chamber. Body weights were determined daily and feed and water were provided ad libitum. The birds were fed a starter diet (23% CP and 3,200 kcal of ME/kg) from 0 to 21 d, and a grower diet (20% CP and 3,200 kcal of ME/ kg) from 22 to 70 d. Dead and female birds were not included in the study. Average BW of 18 birds were used as the data points for the growth curve to be modeled. Training data consisted of alternate-day weights starting with the first day. Validation data consisted of BW at all other age periods. Comparison was made between the modeling by the Gompertz nonlinear regression equation and neural network modeling. Neural network models were developed with the Neuroshell Predictor. Accuracy of the models was determined by mean square error (MSE), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and bias. The Gompertz equation was fit for the data. Forecasting error measurements were based on the difference between the model and the observed values. For the training data, the lowest MSE, MAD, MAPE, and bias were noted for the neural-developed neural network. For the validation data, the lowest MSE and MAD were noted with the genetic algorithm-developed neural network. Lowest bias was for the neural-developed network. As measured by bias, the Gompertz equation underestimated the values whereas the neural- and genetic-developed neural networks produced little or no overestimation of the observed BW responses. Past studies have attempted to interpret the biological significance of the estimates of the parameters of an equation. However, it may be more practical to ignore the relevance of parameter estimates and focus on the ability to predict responses.

  4. Neural network modeling of emotion

    NASA Astrophysics Data System (ADS)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  5. Resource constrained design of artificial neural networks using comparator neural network

    NASA Technical Reports Server (NTRS)

    Wah, Benjamin W.; Karnik, Tanay S.

    1992-01-01

    We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.

  6. Devices and circuits for nanoelectronic implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Turel, Ozgur

    Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.

  7. Feature Extraction Using an Unsupervised Neural Network

    DTIC Science & Technology

    1991-05-03

    A novel unsupervised neural network for dimensionality reduction which seeks directions emphasizing distinguishing features in the data is presented. A statistical framework for the parameter estimation problem associated with this neural network is given and its connection to exploratory projection pursuit methods is established. The network is shown to minimize a loss function (projection index) over a

  8. Neural-Network Computer Transforms Coordinates

    NASA Technical Reports Server (NTRS)

    Josin, Gary M.

    1990-01-01

    Numerical simulation demonstrated ability of conceptual neural-network computer to generalize what it has "learned" from few examples. Ability to generalize achieved with even simple neural network (relatively few neurons) and after exposure of network to only few "training" examples. Ability to obtain fairly accurate mappings after only few training examples used to provide solutions to otherwise intractable mapping problems.

  9. Spatial analysis using unsupervised neural networks

    NASA Astrophysics Data System (ADS)

    Murnion, Shane D.

    1996-11-01

    Site selection case studies are often used in training exercises or demonstrations to illustrate the advantages of using a geographical information system (GIS). A typical site selection case study might answer the question "where should I locate a new convenience store?" Current GIS can solve spatial analysis problems that are well defined efficiently. Unfortunately many "real world" problems are poorly defined, for example combinatorial spatial optimisation problems. In these problems the value of any solution depends on a number of factors, each of which must be changed and tested to generate an optimum solution. The large number of possible combinations that must be examined can render such problems insoluble using conventional analysis techniques. In this paper an example of a combinatorial spatial optimisation problem, which is nonpolynomial complete in nature, is examined. The problem can be defined as finding the optimum location for multiple retail sites, where the chosen retail sites will compete with each other for customers. It is shown that a solution can be determined using a relatively unsophisticated unsupervised Hopfield neural network algorithm. The neural network solution is generated within an efficient time-frame and it is shown that counter-intuitively, the algorithm becomes more efficient as the complexity of the problem increases.

  10. Neural networks for convex hull computation.

    PubMed

    Leung, Y; Zhang, J S; Xu, Z B

    1997-01-01

    Computing convex hull is one of the central problems in various applications of computational geometry. In this paper, a convex hull computing neural network (CHCNN) is developed to solve the related problems in the N-dimensional spaces. The algorithm is based on a two-layered neural network, topologically similar to ART, with a newly developed adaptive training strategy called excited learning. The CHCNN provides a parallel online and real-time processing of data which, after training, yields two closely related approximations, one from within and one from outside, of the desired convex hull. It is shown that accuracy of the approximate convex hulls obtained is around O[K(-1)(N-1/)], where K is the number of neurons in the output layer of the CHCNN. When K is taken to be sufficiently large, the CHCNN can generate any accurate approximate convex hull. We also show that an upper bound exists such that the CHCNN will yield the precise convex hull when K is larger than or equal to this bound. A series of simulations and applications is provided to demonstrate the feasibility, effectiveness, and high efficiency of the proposed algorithm.

  11. Optical implementation of neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Guo, Ruyan

    2002-12-01

    An adaptive optical neuro-computing (ONC) using inexpensive pocket size liquid crystal televisions (LCTVs) had been developed by the graduate students in the Electro-Optics Laboratory at The Pennsylvania State University. Although this neuro-computing has only 8×8=64 neurons, it can be easily extended to 16×20=320 neurons. The major advantages of this LCTV architecture as compared with other reported ONCs, are low cost and the flexibility to operate. To test the performance, several neural net models are used. These models are Interpattern Association, Hetero-association and unsupervised learning algorithms. The system design considerations and experimental demonstrations are also included.

  12. Neural network-based sensor signal accelerator.

    SciTech Connect

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  13. Demonstrations of Neural Network Computations Involving Students

    PubMed Central

    May, Christopher J.

    2010-01-01

    David Marr famously proposed three levels of analysis (implementational, algorithmic, and computational) for understanding information processing systems such as the brain. While two of these levels are commonly taught in neuroscience courses (the implementational level through neurophysiology and the computational level through systems/cognitive neuroscience), the algorithmic level is typically neglected. This leaves an explanatory gap in students’ understanding of how, for example, the flow of sodium ions enables cognition. Neural networks bridge these two levels by demonstrating how collections of interacting neuron-like units can give rise to more overtly cognitive phenomena. The demonstrations in this paper are intended to facilitate instructors’ introduction and exploration of how neurons “process information.” PMID:23493501

  14. Oil reservoir properties estimation using neural networks

    SciTech Connect

    Toomarian, N.B.; Barhen, J.; Glover, C.W.; Aminzadeh, F.

    1997-02-01

    This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.

  15. Adaptive optimization and control using neural networks

    SciTech Connect

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  16. Neural Network Retinal Model Real Time Implementation

    DTIC Science & Technology

    1992-09-02

    addresses the specific needs of vision processing. The goal of this SBIR Phase I project has been to take a significant neural network vision...application and to map it onto dedicated hardware for real time implementation. The neural network was already demonstrated using software simulation on a...general purpose computer. During Phase 1, HNC took a neural network model of the retina and, using HNC’s Vision Processor (ViP) prototype hardware

  17. Neural Network False Alarm Filter. Volume 1.

    DTIC Science & Technology

    1994-12-01

    This effort identified, developed and demonstrated a set of approaches for applying neural network learning techniques to the development of a real... neural network models, 9 fault report causes and 12 common groups of BIT techniques was identified. From this space, 4 unique, high-potential...of their strengths and weaknesses were performed along with cost/ benefit analyses. This study concluded that the best candidates for neural network insert

  18. A Neural Network Object Recognition System

    DTIC Science & Technology

    1990-07-01

    useful for exploring different neural network configurations. There are three main computation phases of a model based object recognition system...segmentation, feature extraction, and object classification. This report focuses on the object classification stage. For segmentation, a neural network based...are available with the current system. Neural network based feature extraction may be added at a later date. The classification stage consists of a

  19. Neural Networks Applied to Signal Processing

    DTIC Science & Technology

    1989-09-01

    DTIC FILE COpy NAVAL POSTGRADUATE SCHOOL . Monterey, California Lf 0 (0 V’ STATES 4 THESIS NEURAL NETWORKS APPLIED TO SIGNAL PROCESSING by Mark D...FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO NO NO ACCESSION NO. 11. TITLE (Include Security Classification) NEURAL NETWORKS APPLIED TO...for public release; distribution is unlimited Neural Networks Applied to Signal Processing by Mark D. Baehre Captain, United States Army B.S., United

  20. A Complexity Theory of Neural Networks

    DTIC Science & Technology

    1991-08-09

    Significant progress has been made in laying the foundations of a complexity theory of neural networks . The fundamental complexity classes have been...identified and studied. The class of problems solvable by small, shallow neural networks has been found to be the same class even if (1) probabilistic...behaviour (2)Multi-valued logic, and (3)analog behaviour, are allowed (subject to certain resonable technical assumptions). Neural networks can be

  1. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  2. Feedback neural networks for ARTIST ionogram processing

    NASA Astrophysics Data System (ADS)

    Galkin, Ivan A.; Reinisch, Bodo W.; Ososkov, Gennadii A.; Zaznobina, Elena G.; Neshyba, Steven P.

    1996-09-01

    Modern pattern recognition techniques are applied to achieve high quality automatic processing of Digisonde ionograms. An artificial neural network (ANN) was found to be a promising technique for ionospheric echo tracing. A modified rotor model was tested to construct the Hopfield ANN with the mean field theory updating scheme. Tests of the models against various ionospheric data showed that the modified rotor model gives good results where conventional tracing techniques have difficulties. Use of the ANN made it possible to implement a robust scheme of trace interpretation that considers local trace inclination angles available after ANN completes tracing. The interpretation scheme features a new algorithm for ƒ0F1 identification that estimates an α angle for the trace segments in the vicinity of the critical frequency ƒ0F1. First results from off-line tests suggest the potential of implementing new operational autoscaling software in the worldwide Digisonde network.

  3. Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock.

    PubMed

    Arab, Mohammad M; Yadollahi, Abbas; Shojaeiyan, Abdolali; Ahmadi, Hamed

    2016-01-01

    One of the major obstacles to the micropropagation of Prunus rootstocks has, up until now, been the lack of a suitable tissue culture medium. Therefore, reformulation of culture media or modification of the mineral content might be a breakthrough to improve in vitro multiplication of G × N15 (garnem). We found artificial neural network in combination of genetic algorithm (ANN-GA) as a very precise and powerful modeling system for optimizing the culture medium, So that modeling the effects of MS mineral salts ([Formula: see text], [Formula: see text], [Formula: see text], Ca(2+), K(+), [Formula: see text], Mg(2+), and Cl(-)) on in vitro multiplication parameters (the number of microshoots per explant, average length of microshoots, weight of calluses derived from the base of stem explants, and quality index of plantlets) of G × N15. Showed high R(2) correlation values of 87, 91, 87, and 74 between observed and predicted values were found for these four growth parameters, respectively. According to the ANN-GA results, among the input variables, [Formula: see text] and [Formula: see text] had the highest values of VSR in data set for the parameters studied. The ANN-GA showed that the best proliferation rate was obtained from medium containing (mM) 27.5 [Formula: see text], 14 [Formula: see text], 5 Ca(2+), 25.9 K(+), 0.7 Mg(2+), 1.1 [Formula: see text], 4.7 [Formula: see text], and 0.96 Cl(-). The performance of the medium optimized by ANN-GA, denoted as YAS (Yadollahi, Arab and Shojaeiyan), was compared to that of standard growth media for all Prunus rootstock, including the Murashige and Skoog (MS) medium, (specific media) EM, Quoirin and Lepoivre (QL) medium, and woody plant medium (WPM) Prunus. With respect to shoot length, shoot number per cultured explant and productivity (number of microshoots × length of microshoots), YAS was found to be superior to other media for in vitro multiplication of G × N15 rootstocks. In addition, our results indicated that by

  4. Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock

    PubMed Central

    Arab, Mohammad M.; Yadollahi, Abbas; Shojaeiyan, Abdolali; Ahmadi, Hamed

    2016-01-01

    One of the major obstacles to the micropropagation of Prunus rootstocks has, up until now, been the lack of a suitable tissue culture medium. Therefore, reformulation of culture media or modification of the mineral content might be a breakthrough to improve in vitro multiplication of G × N15 (garnem). We found artificial neural network in combination of genetic algorithm (ANN-GA) as a very precise and powerful modeling system for optimizing the culture medium, So that modeling the effects of MS mineral salts (NH4+, NO3-, PO42-, Ca2+, K+, SO42-, Mg2+, and Cl−) on in vitro multiplication parameters (the number of microshoots per explant, average length of microshoots, weight of calluses derived from the base of stem explants, and quality index of plantlets) of G × N15. Showed high R2 correlation values of 87, 91, 87, and 74 between observed and predicted values were found for these four growth parameters, respectively. According to the ANN-GA results, among the input variables, NH4+ and NO3- had the highest values of VSR in data set for the parameters studied. The ANN-GA showed that the best proliferation rate was obtained from medium containing (mM) 27.5 NO3-, 14 NH4+, 5 Ca2+, 25.9 K+, 0.7 Mg2+, 1.1 PO42-, 4.7 SO42-, and 0.96 Cl−. The performance of the medium optimized by ANN-GA, denoted as YAS (Yadollahi, Arab and Shojaeiyan), was compared to that of standard growth media for all Prunus rootstock, including the Murashige and Skoog (MS) medium, (specific media) EM, Quoirin and Lepoivre (QL) medium, and woody plant medium (WPM) Prunus. With respect to shoot length, shoot number per cultured explant and productivity (number of microshoots × length of microshoots), YAS was found to be superior to other media for in vitro multiplication of G × N15 rootstocks. In addition, our results indicated that by using ANN-GA, we were able to determine a suitable culture medium formulation to achieve the best in vitro productivity. PMID:27807436

  5. Learning in stochastic neural networks for constraint satisfaction problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Adorf, Hans-Martin

    1989-01-01

    Researchers describe a newly-developed artificial neural network algorithm for solving constraint satisfaction problems (CSPs) which includes a learning component that can significantly improve the performance of the network from run to run. The network, referred to as the Guarded Discrete Stochastic (GDS) network, is based on the discrete Hopfield network but differs from it primarily in that auxiliary networks (guards) are asymmetrically coupled to the main network to enforce certain types of constraints. Although the presence of asymmetric connections implies that the network may not converge, it was found that, for certain classes of problems, the network often quickly converges to find satisfactory solutions when they exist. The network can run efficiently on serial machines and can find solutions to very large problems (e.g., N-queens for N as large as 1024). One advantage of the network architecture is that network connection strengths need not be instantiated when the network is established: they are needed only when a participating neural element transitions from off to on. They have exploited this feature to devise a learning algorithm, based on consistency techniques for discrete CSPs, that updates the network biases and connection strengths and thus improves the network performance.

  6. Neural network architecture for crossbar switch control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry P.; Walters, Stephen M.

    1991-01-01

    A Hopfield neural network architecture for the real-time control of a crossbar switch for switching packets at maximum throughput is proposed. The network performance and processing time are derived from a numerical simulation of the transitions of the neural network. A method is proposed to optimize electronic component parameters and synaptic connections, and it is fully illustrated by the computer simulation of a VLSI implementation of 4 x 4 neural net controller. The extension to larger size crossbars is demonstrated through the simulation of an 8 x 8 crossbar switch controller, where the performance of the neural computation is discussed in relation to electronic noise and inhomogeneities of network components.

  7. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  8. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.

    1998-01-01

    A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.

  9. Advances in neural networks research: an introduction.

    PubMed

    Kozma, Robert; Bressler, Steven; Perlovsky, Leonid; Venayagamoorthy, Ganesh Kumar

    2009-01-01

    The present Special Issue "Advances in Neural Networks Research: IJCNN2009" provides a state-of-art overview of the field of neural networks. It includes 39 papers from selected areas of the 2009 International Joint Conference on Neural Networks (IJCNN2009). IJCNN2009 took place on June 14-19, 2009 in Atlanta, Georgia, USA, and it represents an exemplary collaboration between the International Neural Networks Society and the IEEE Computational Intelligence Society. Topics in this issue include neuroscience and cognitive science, computational intelligence and machine learning, hybrid techniques, nonlinear dynamics and chaos, various soft computing technologies, intelligent signal processing and pattern recognition, bioinformatics and biomedicine, and engineering applications.

  10. Electronic neural networks for global optimization

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.

    1990-01-01

    An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.

  11. Optical implementation of the Hopfield neural network with matrix gratings

    NASA Astrophysics Data System (ADS)

    Yeh, Sheng L.; Lo, Rong C.; Shi, Cha Y.

    2004-02-01

    We propose a new method for the optical implementation of the Hopfield neural network with a universal tool. The tool is a matrix grating constituted with a group of element gratings. The algorithms for designing a matrix grating are proposed, and a matrix grating is created to execute recognition experiments by use of the Hopfield neural network. The experimental results demonstrate that the proposed method performs well. The stability of the light efficiencies of different optical components used in optical networks is also considered.

  12. Neural Network Modeling of Degradation of Solar Cells

    SciTech Connect

    Gupta, Himanshu; Ghosh, Bahniman; Banerjee, Sanjay K.

    2011-05-25

    Neural network modeling has been used to predict the degradation in conversion efficiency of solar cells in this work. The model takes intensity of light, temperature and exposure time as inputs and predicts the conversion efficiency of the solar cell. Backpropagation algorithm has been used to train the network. It is found that the neural network model satisfactorily predicts the degradation in efficiency of the solar cell with exposure time. The error in the computed results, after comparison with experimental results, lies in the range of 0.005-0.01, which is quite low.

  13. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  14. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  15. Neural networks for nuclear spectroscopy

    SciTech Connect

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  16. Flow Control Using Neural Networks

    DTIC Science & Technology

    2007-11-02

    FEB 93 - 31 DEC 96 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS FLOW CONTROL USING NEURAL NETWORKS F49620-93-1-0135 61102F 6. AUTHOR(S) 2307/BS THORWALD...OFFICE OF SCIENTIFIC RESEARCH (AFOSRO AGENCY REPORT NUMBER 110 DUNCAN AVENUE, ROOM B115 BOLLING AFB DC 20332- 8050 11. SUPPLEMENTARY NOTES 12a...signals. Figure 5 shows a time series for an actuator that performs a ramp motion in the streamwise direction over about 1 % of the TS period and remains

  17. Neural Network Classifies Teleoperation Data

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Giancaspro, Antonio; Losito, Sergio; Pasquariello, Guido

    1994-01-01

    Prototype artificial neural network, implemented in software, identifies phases of telemanipulator tasks in real time by analyzing feedback signals from force sensors on manipulator hand. Prototype is early, subsystem-level product of continuing effort to develop automated system that assists in training and supervising human control operator: provides symbolic feedback (e.g., warnings of impending collisions or evaluations of performance) to operator in real time during successive executions of same task. Also simplifies transition between teleoperation and autonomous modes of telerobotic system.

  18. Widrow-cellular neural network and optoelectronic implementation

    NASA Astrophysics Data System (ADS)

    Bal, Abdullah

    A new type of optoelectronic cellular neural network has been developed by providing the capability of coefficients adjusment of cellular neural network (CNN) using Widrow based perceptron learning algorithm. The new supervised cellular neural network is called Widrow-CNN. Despite the unsupervised CNN, the proposed learning algorithm allows to use the Widrow-CNN for various image processing applications easily. Also, the capability of CNN for image processing and feature extraction has been improved using basic joint transform correlation architecture. This hardware application presents high speed processing capability compared to digital applications. The optoelectronic Widrow-CNN has been tested for classic CNN feature extraction problems. It yields the best results even in case of hard feature extraction problems such as diagonal line detection and vertical line determination.

  19. The Laplacian spectrum of neural networks.

    PubMed

    de Lange, Siemon C; de Reus, Marcel A; van den Heuvel, Martijn P

    2014-01-13

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these "conventional" graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks.

  20. Neural networks for perceptual processing: from simulation tools to theories.

    PubMed

    Gurney, Kevin

    2007-03-29

    Neural networks are modelling tools that are, in principle, able to capture the input-output behaviour of arbitrary systems that may include the dynamics of animal populations or brain circuits. While a neural network model is useful if it captures phenomenologically the behaviour of the target system in this way, its utility is amplified if key mechanisms of the model can be discovered, and identified with those of the underlying system. In this review, we first describe, at a fairly high level with minimal mathematics, some of the tools used in constructing neural network models. We then go on to discuss the implications of network models for our understanding of the system they are supposed to describe, paying special attention to those models that deal with neural circuits and brain systems. We propose that neural nets are useful for brain modelling if they are viewed in a wider computational framework originally devised by Marr. Here, neural networks are viewed as an intermediate mechanistic abstraction between 'algorithm' and 'implementation', which can provide insights into biological neural representations and their putative supporting architectures.

  1. Three dimensional living neural networks

    NASA Astrophysics Data System (ADS)

    Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.

    2015-08-01

    We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.

  2. Neural Network Controlled Visual Saccades

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey D.; Grogan, Timothy A.

    1989-03-01

    The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.

  3. Neural Networks for Signal Processing and Control

    NASA Astrophysics Data System (ADS)

    Hesselroth, Ted Daniel

    Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual

  4. Finite-sample based learning algorithms for feedforward networks

    SciTech Connect

    Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.

    1995-04-01

    We discuss two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by FeedForward Networks (FFN). The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can also be directly applied to concept learning problems. A main distinguishing feature of the this work is that the sample sizes are based on explicit algorithms rather than information-based methods.

  5. An artificial neural network based groundwater flow and transport simulator

    SciTech Connect

    Krom, T.D.; Rosbjerg, D.

    1998-07-01

    Artificial neural networks are investigated as a tool for the simulation of contaminant loss and recovery in three-dimensional heterogeneous groundwater flow and contaminant transport modeling. These methods have useful applications in expert system development, knowledge base development and optimization of groundwater pollution remediation. The numerical model runs used to develop the artificial neural networks can be re-used to develop artificial neural networks to address alternative optimization problems or changed formulations of the constraints and or objective function under optimization. Artificial neural networks have been analyzed with the goal of estimating objectives which normally require the use of traditional flow and transport codes: such as contaminant recovery, contaminant loss (unrecovered) and remediation failure. The inputs to the artificial neutral networks are variable pumping withdrawal rates at fairly unconstrained 3-D locations. A forward-feed backwards error propagation artificial neural network architecture is used. The significance of the size of the training set, network architecture, and network weight optimization algorithm with respect to the estimation accuracy and objective are shown to be important. Finally, the quality of the weight optimization is studied via cross-validation techniques. This is demonstrated to be a useful method for judging training performance for strongly under-described systems.

  6. Hand Gesture Recognition Using Neural Networks.

    DTIC Science & Technology

    1996-05-01

    inherent in the model. The high gesture recognition rates and quick network retraining times found in the present study suggest that a neural network approach to gesture recognition be further evaluated.

  7. A biomimetic adaptive algorithm and low-power architecture for implantable neural decoders.

    PubMed

    Rapoport, Benjamin I; Wattanapanitch, Woradorn; Penagos, Hector L; Musallam, Sam; Andersen, Richard A; Sarpeshkar, Rahul

    2009-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat.

  8. Two-stage neural algorithm for defect detection and characterization uses an active thermography

    NASA Astrophysics Data System (ADS)

    Dudzik, Sebastian

    2015-07-01

    In the paper a two-stage neural algorithm for defect detection and characterization is presented. In order to estimate the defect depth two neural networks trained on data obtained using an active thermography were employed. The first stage of the algorithm is developed to detect the defect by a classification neural network. Then the defects depth is estimated using a regressive neural network. In this work the results of experimental investigations and simulations are shown. Further, the sensitivity analysis of the presented algorithm was conducted and the impacts of emissivity error and the ambient temperature error on the depth estimation errors were studied. The results were obtained using a test sample made of material with a low thermal diffusivity.

  9. A Neural Network Model of Retrieval-Induced Forgetting

    ERIC Educational Resources Information Center

    Norman, Kenneth A.; Newman, Ehren L.; Detre, Greg

    2007-01-01

    Retrieval-induced forgetting (RIF) refers to the finding that retrieving a memory can impair subsequent recall of related memories. Here, the authors present a new model of how the brain gives rise to RIF in both semantic and episodic memory. The core of the model is a recently developed neural network learning algorithm that leverages regular…

  10. Extrapolation limitations of multilayer feedforward neural networks

    NASA Technical Reports Server (NTRS)

    Haley, Pamela J.; Soloway, Donald

    1992-01-01

    The limitations of backpropagation used as a function extrapolator were investigated. Four common functions were used to investigate the network's extrapolation capability. The purpose of the experiment was to determine whether neural networks are capable of extrapolation and, if so, to determine the range for which networks can extrapolate. The authors show that neural networks cannot extrapolate and offer an explanation to support this result.

  11. Problem Specific applications for Neural Networks

    DTIC Science & Technology

    1988-12-01

    97 iv List Of Figures Figure Page 1. Neural Network Models ...... ............. 2 2. A Single - Layer Perceptron ..... ........... 4...the network is in use. Three of the most well-known neural networks are the single - layer perceptron , the multi-layer perceptron, and the Kohonen self...three of these networks can accept discrete (binary) or continuous inputs (5:6). 3 Single-Laver Perceptron. The single - layer perceptron (shown in Figure 2

  12. Drift chamber tracking with neural networks

    SciTech Connect

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  13. Relabeling exchange method (REM) for learning in neural networks

    NASA Astrophysics Data System (ADS)

    Wu, Wen; Mammone, Richard J.

    1994-02-01

    The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.

  14. Deep Recurrent Neural Networks for Supernovae Classification

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  15. Coherence resonance in bursting neural networks.

    PubMed

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal-a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  16. The DSFPN, a new neural network for optical character recognition.

    PubMed

    Morns, L P; Dlay, S S

    1999-01-01

    A new type of neural network for recognition tasks is presented in this paper. The network, called the dynamic supervised forward-propagation network (DSFPN), is based on the forward only version of the counterpropagation network (CPN). The DSFPN, trains using a supervised algorithm and can grow dynamically during training, allowing subclasses in the training data to be learnt in an unsupervised manner. It is shown to train in times comparable to the CPN while giving better classification accuracies than the popular backpropagation network. Both Fourier descriptors and wavelet descriptors are used for image preprocessing and the wavelets are proven to give a far better performance.

  17. Multidisciplinary Studies of Integrated Neural Network Systems

    DTIC Science & Technology

    1994-03-01

    They accomplish this by partitioning the system into functional sub-units in a quasi-hierarchical structure of neural network modules. We studied...three specific examples of this system integration strategy and modeled their operation for the purpose of creating new neural network architectures and

  18. Neural Network Research: A Personal Perspective,

    DTIC Science & Technology

    1988-03-01

    These vision preprocessor and ART autonomous classifier examples are just two of the many neural network architectures now being developed by...computational theories with natural realizations as real-time adaptive neural network architectures with promising properties for tackling some of the

  19. Neural Network Based Helicopter Low Airspeed Indicator

    DTIC Science & Technology

    1996-10-24

    This invention relates generally to virtual sensors and, more particularly, to a means and method utilizing a neural network for estimating...helicopter airspeed at speeds below about 50 knots using only fixed system parameters (i.e., parameters measured or determined in a reference frame fixed relative to the helicopter fuselage) as inputs to the neural network .

  20. Online guidance updates using neural networks

    NASA Astrophysics Data System (ADS)

    Filici, Cristian; Sánchez Peña, Ricardo S.

    2010-02-01

    The aim of this article is to present a method for the online guidance update for a launcher ascent trajectory that is based on the utilization of a neural network approximator. Generation of training patterns and selection of the input and output spaces of the neural network are presented, and implementation issues are discussed. The method is illustrated by a 2-dimensional launcher simulation.

  1. Neural network based architectures for aerospace applications

    NASA Technical Reports Server (NTRS)

    Ricart, Richard

    1987-01-01

    A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.

  2. Isolated Speech Recognition Using Artificial Neural Networks

    DTIC Science & Technology

    2007-11-02

    In this project Artificial Neural Networks are used as research tool to accomplish Automated Speech Recognition of normal speech. A small size...the first stage of this work are satisfactory and thus the application of artificial neural networks in conjunction with cepstral analysis in isolated word recognition holds promise.

  3. Neural network classification - A Bayesian interpretation

    NASA Technical Reports Server (NTRS)

    Wan, Eric A.

    1990-01-01

    The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.

  4. Radiation Behavior of Analog Neural Network Chip

    NASA Technical Reports Server (NTRS)

    Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.

    1996-01-01

    A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.

  5. Neural Networks for Handwritten English Alphabet Recognition

    NASA Astrophysics Data System (ADS)

    Perwej, Yusuf; Chaturvedi, Ashish

    2011-04-01

    This paper demonstrates the use of neural networks for developing a system that can recognize hand-written English alphabets. In this system, each English alphabet is represented by binary values that are used as input to a simple feature extraction system, whose output is fed to our neural network system.

  6. A Survey of Neural Network Publications.

    ERIC Educational Resources Information Center

    Vijayaraman, Bindiganavale S.; Osyk, Barbara

    This paper is a survey of publications on artificial neural networks published in business journals for the period ending July 1996. Its purpose is to identify and analyze trends in neural network research during that period. This paper shows which topics have been heavily researched, when these topics were researched, and how that research has…

  7. Applications of Neural Networks in Finance.

    ERIC Educational Resources Information Center

    Crockett, Henry; Morrison, Ronald

    1994-01-01

    Discusses research with neural networks in the area of finance. Highlights include bond pricing, theoretical exposition of primary bond pricing, bond pricing regression model, and an example that created networks with corporate bonds and NeuralWare Neuralworks Professional H software using the back-propagation technique. (LRW)

  8. Adaptive Neurons For Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  9. Neural networks applications to control and computations

    NASA Technical Reports Server (NTRS)

    Luxemburg, Leon A.

    1994-01-01

    Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.

  10. Neural network payload estimation for adaptive robot control.

    PubMed

    Leahy, M R; Johnson, M A; Rogers, S K

    1991-01-01

    A concept is proposed for utilizing artificial neural networks to enhance the high-speed tracking accuracy of robotic manipulators. Tracking accuracy is a function of the controller's ability to compensate for disturbances produced by dynamical interactions between the links. A model-based control algorithm uses a nominal model of those dynamical interactions to reduce the disturbances. The problem is how to provide accurate dynamics information to the controller in the presence of payload uncertainty and modeling error. Neural network payload estimation uses a series of artificial neural networks to recognize the payload variation associated with a degradation in tracking performance. The network outputs are combined with a knowledge of nominal dynamics to produce a computationally efficient direct form of adaptive control. The concept is validated through experimentation and analysis on the first three links of a PUMA-560 manipulator. A multilayer perceptron architecture with two hidden layers is used. Integration of the principles of neural network pattern recognition and model-based control produces a tracking algorithm with enhanced robustness to incomplete dynamic information. Tracking efficacy and applicability to robust control algorithms are discussed.

  11. NNIC—neural network image compressor for satellite positioning system

    NASA Astrophysics Data System (ADS)

    Danchenko, Pavel; Lifshits, Feodor; Orion, Itzhak; Koren, Sion; Solomon, Alan D.; Mark, Shlomo

    2007-04-01

    We have developed an algorithm, based on novel techniques of data compression and neural networks for the optimal positioning of a satellite. The algorithm is described in detail, and examples of its application are given. The heart of this algorithm is the program NNIC—neural network image compressor. This program was developed for compression color and grayscale images with artificial neural networks (ANNs). NNIC applies three different methods for compression. Two of them are based on neural networks architectures—multilayer perceptron and kohonen network. The third is based on a widely used method of discrete cosine transform, the basis for the JPEG standard. The program also serves as a tool for determining numerical and visual quality parameters of compression and comparison between different methods. A number of advantages and disadvantages of the compression using ANNs were discovered in the course of the present research, some of them presented in this report. The thrust of the report is the discussion of ANNs implementation problems for modern platforms, such as a satellite positioning system that include intensive image flowing and processing.

  12. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Ziaul Huque

    2007-08-31

    This is the final technical report for the project titled 'Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks'. The aim of the project was to develop an efficient chemistry model for combustion simulations. The reduced chemistry model was developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) was used via a new network topology known as Non-linear Principal Components Analysis (NPCA). A commonly used Multilayer Perceptron Neural Network (MLP-NN) was modified to implement NPCA-NN. The training rate of NPCA-NN was improved with the GEneralized Regression Neural Network (GRNN) based on kernel smoothing techniques. Kernel smoothing provides a simple way of finding structure in data set without the imposition of a parametric model. The trajectory data of the reaction mechanism was generated based on the optimization techniques of genetic algorithm (GA). The NPCA-NN algorithm was then used for the reduction of Dimethyl Ether (DME) mechanism. DME is a recently discovered fuel made from natural gas, (and other feedstock such as coal, biomass, and urban wastes) which can be used in compression ignition engines as a substitute for diesel. An in-house two-dimensional Computational Fluid Dynamics (CFD) code was developed based on Meshfree technique and time marching solution algorithm. The project also provided valuable research experience to two graduate students.

  13. Introduction to Concepts in Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  14. Analog Delta-Back-Propagation Neural-Network Circuitry

    NASA Technical Reports Server (NTRS)

    Eberhart, Silvio

    1990-01-01

    Changes in synapse weights due to circuit drifts suppressed. Proposed fully parallel analog version of electronic neural-network processor based on delta-back-propagation algorithm. Processor able to "learn" when provided with suitable combinations of inputs and enforced outputs. Includes programmable resistive memory elements (corresponding to synapses), conductances (synapse weights) adjusted during learning. Buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in layers of electronic neurons in accordance with delta-back-propagation algorithm.

  15. A neural network for the identification of measured helicopter noise

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.; O'Brien, W. F.

    1991-01-01

    The results of a preliminary study of the components of a novel acoustic helicopter identification system are described. The identification system uses the relationship between the amplitudes of the first eight harmonics in the main rotor noise spectrum to distinguish between helicopter types. Two classification algorithms are tested; a statistically optimal Bayes classifier, and a neural network adaptive classifier. The performance of these classifiers is tested using measured noise of three helicopters. The statistical classifier can correctly identify the helicopter an average of 67 percent of the time, while the neural network is correct an average of 65 percent of the time. These results indicate the need for additional study of the envelope of harmonic amplitudes as a component of a helicopter identification system. Issues concerning the implementation of the neural network classifier, such as training time and structure of the network, are discussed.

  16. Reducing Wind Tunnel Data Requirements Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Jorgenson, Charles C.; Norgaard, Magnus

    1997-01-01

    The use of neural networks to minimize the amount of data required to completely define the aerodynamic performance of a wind tunnel model is examined. The accuracy requirements for commercial wind tunnel test data are very severe and are difficult to reproduce using neural networks. For the current work, multiple input, single output networks were trained using a Levenberg-Marquardt algorithm for each of the aerodynamic coefficients. When applied to the aerodynamics of a 55% scale model of a U.S. Air Force/ NASA generic fighter configuration, this scheme provided accurate models of the lift, drag, and pitching-moment coefficients. Using only 50% of the data acquired during, the wind tunnel test, the trained neural network had a predictive accuracy equal to or better than the accuracy of the experimental measurements.

  17. Segmented-memory recurrent neural networks.

    PubMed

    Chen, Jinmiao; Chaudhari, Narendra S

    2009-08-01

    Conventional recurrent neural networks (RNNs) have difficulties in learning long-term dependencies. To tackle this problem, we propose an architecture called segmented-memory recurrent neural network (SMRNN). A symbolic sequence is broken into segments and then presented as inputs to the SMRNN one symbol per cycle. The SMRNN uses separate internal states to store symbol-level context, as well as segment-level context. The symbol-level context is updated for each symbol presented for input. The segment-level context is updated after each segment. The SMRNN is trained using an extended real-time recurrent learning algorithm. We test the performance of SMRNN on the information latching problem, the "two-sequence problem" and the problem of protein secondary structure (PSS) prediction. Our implementation results indicate that SMRNN performs better on long-term dependency problems than conventional RNNs. Besides, we also theoretically analyze how the segmented memory of SMRNN helps learning long-term temporal dependencies and study the impact of the segment length.

  18. D Coordinate Transformation Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Konakoglu, B.; Cakır, L.; Gökalp, E.

    2016-10-01

    Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.

  19. Pruning artificial neural networks using neural complexity measures.

    PubMed

    Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F

    2008-10-01

    This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.

  20. Adaptive evolutionary artificial neural networks for pattern classification.

    PubMed

    Oong, Tatt Hee; Isa, Nor Ashidi Mat

    2011-11-01

    This paper presents a new evolutionary approach called the hybrid evolutionary artificial neural network (HEANN) for simultaneously evolving an artificial neural networks (ANNs) topology and weights. Evolutionary algorithms (EAs) with strong global search capabilities are likely to provide the most promising region. However, they are less efficient in fine-tuning the search space locally. HEANN emphasizes the balancing of the global search and local search for the evolutionary process by adapting the mutation probability and the step size of the weight perturbation. This is distinguishable from most previous studies that incorporate EA to search for network topology and gradient learning for weight updating. Four benchmark functions were used to test the evolutionary framework of HEANN. In addition, HEANN was tested on seven classification benchmark problems from the UCI machine learning repository. Experimental results show the superior performance of HEANN in fine-tuning the network complexity within a small number of generations while preserving the generalization capability compared with other algorithms.

  1. A local and iterative neural reconstruction algorithm for cone-beam data

    NASA Astrophysics Data System (ADS)

    Gallo, Ignazio

    2010-04-01

    This work presents a new neural algorithm designed for the reconstruction of tomographic images from Cone Beam data. The main objective of this work is the search of a new reconstruction method, able to work locally, more robust in presence of noisy data and in situations with a small number of projections. This study should be intended as the first step to evaluate the potentialities of the proposed algorithm. The algorithm is iterative and based on a set of neural networks that are working locally and sequentially. All the x-rays passing through a cell of the volume to be reconstructed, give origin to a neural network which is a single-layer perceptron network. The network does not need a training set but uses the line integral of a single x-ray as ground-truth of each output neuron. The neural network uses a gradient descent algorithm in order to minimize a local cost function by varying the value of the cells to be reconstructed. The proposed strategy was first evaluated in conditions where the quality and quantity of input data varies widely, using a the Shepp-Logan Phantom. The algorithm was also compared with the iterative ART algorithm and the well known filtered backprojection method. The results show how the proposed algorithm is much more accurate even in the presence of noise and under conditions of lack of data. In situations with little noise the reconstruction, after a few iterations, is almost identical to the original.

  2. Biologically relevant neural network architectures for support vector machines.

    PubMed

    Jändel, Magnus

    2014-01-01

    Neural network architectures that implement support vector machines (SVM) are investigated for the purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal for storing and retrieving support vectors. Several different CQM-based neural architectures are examined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architectures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception has evolved as an internalized motor programme.

  3. A Novel Fuzzy Neural Network Estimator for Predicting Hypoglycaemia in Insulin-Induced Subjects

    DTIC Science & Technology

    2007-11-02

    functions and use of Hopfield neural network architecture to compensate for large time delays due to autonomic system response. By addressing these issues...This paper describes the design of a novel fuzzy neural network estimator algorithm (FNNE) for predicting the glycaemia profile and onset of... network estimator (FNNE) algorithm which is used for predicting glycaemic profiles and hypoglycaemia episodes in insulin- induced subjects. This FNNE

  4. Enhancing neural-network performance via assortativity

    SciTech Connect

    Franciscis, Sebastiano de; Johnson, Samuel; Torres, Joaquin J.

    2011-03-15

    The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations - assortativity - on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.

  5. Enhancing neural-network performance via assortativity.

    PubMed

    de Franciscis, Sebastiano; Johnson, Samuel; Torres, Joaquín J

    2011-03-01

    The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations--assortativity--on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.

  6. Time series prediction using artificial neural network for power stabilization

    SciTech Connect

    Puranik, G.; Philip, T.; Nail, B.

    1996-12-31

    Time series prediction has been applied to many business and scientific applications. Prominent among them are stock market prediction, weather forecasting, etc. Here, this technique has been applied to forecast plasma torch voltages to stabilize power using a backpropagation, a model of artificial neural network. The Extended-Delta-Bar-Delta algorithm is used to improve the convergence rate of the network and also to avoid local minima. Results from off-line data was quite promising to use in on-line.

  7. Design development of a neural network-based telemetry monitor

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.

    1992-01-01

    This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.

  8. Natural and Unnatural Oil Layers on the Surface of the Gulf of Mexico Detected and Quantified in Synthetic Aperture RADAR Images with Texture Classifying Neural Network Algorithms

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Garcia-Pineda, O. G.; Morey, S. L.; Huffer, F.

    2011-12-01

    Effervescent hydrocarbons rise naturally from hydrocarbon seeps in the Gulf of Mexico and reach the ocean surface. This oil forms thin (~0.1 μm) layers that enhance specular reflectivity and have been widely used to quantify the abundance and distribution of natural seeps using synthetic aperture radar (SAR). An analogous process occurred at a vastly greater scale for oil and gas discharged from BP's Macondo well blowout. SAR data allow direct comparison of the areas of the ocean surface covered by oil from natural sources and the discharge. We used a texture classifying neural network algorithm to quantify the areas of naturally occurring oil-covered water in 176 SAR image collections from the Gulf of Mexico obtained between May 1997 and November 2007, prior to the blowout. Separately we also analyzed 36 SAR images collections obtained between 26 April and 30 July, 2010 while the discharged oil was visible in the Gulf of Mexico. For the naturally occurring oil, we removed pollution events and transient oceanographic effects by including only the reflectance anomalies that that recurred in the same locality over multiple images. We measured the area of oil layers in a grid of 10x10 km cells covering the entire Gulf of Mexico. Floating oil layers were observed in only a fraction of the total Gulf area amounting to 1.22x10^5 km^2. In a bootstrap sample of 2000 replications, the combined average area of these layers was 7.80x10^2 km^2 (sd 86.03). For a regional comparison, we divided the Gulf of Mexico into four quadrates along 90° W longitude, and 25° N latitude. The NE quadrate, where the BP discharge occurred, received on average 7.0% of the total natural seepage in the Gulf of Mexico (5.24 x10^2 km^2, sd 21.99); the NW quadrate received on average 68.0% of this total (5.30 x10^2 km^2, sd 69.67). The BP blowout occurred in the NE quadrate of the Gulf of Mexico; discharged oil that reached the surface drifted over a large area north of 25° N. Performing a

  9. Sunspot prediction using neural networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James; Baffes, Paul

    1990-01-01

    The earliest systematic observance of sunspot activity is known to have been discovered by the Chinese in 1382 during the Ming Dynasty (1368 to 1644) when spots on the sun were noticed by looking at the sun through thick, forest fire smoke. Not until after the 18th century did sunspot levels become more than a source of wonderment and curiosity. Since 1834 reliable sunspot data has been collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Naval Observatory. Recently, considerable effort has been placed upon the study of the effects of sunspots on the ecosystem and the space environment. The efforts of the Artificial Intelligence Section of the Mission Planning and Analysis Division of the Johnson Space Center involving the prediction of sunspot activity using neural network technologies are described.

  10. Wavelet differential neural network observer.

    PubMed

    Chairez, Isaac

    2009-09-01

    State estimation for uncertain systems affected by external noises is an important problem in control theory. This paper deals with a state observation problem when the dynamic model of a plant contains uncertainties or it is completely unknown. Differential neural network (NN) approach is applied in this uninformative situation but with activation functions described by wavelets. A new learning law, containing an adaptive adjustment rate, is suggested to imply the stability condition for the free parameters of the observer. Nominal weights are adjusted during the preliminary training process using the least mean square (LMS) method. Lyapunov theory is used to obtain the upper bounds for the weights dynamics as well as for the mean squared estimation error. Two numeric examples illustrate this approach: first, a nonlinear electric system, governed by the Chua's equation and second the Lorentz oscillator. Both systems are assumed to be affected by external perturbations and their parameters are unknown.

  11. Learning algorithms for feedforward networks based on finite samples

    SciTech Connect

    Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.

    1994-09-01

    Two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by feedforward networks, are discussed. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.

  12. Mesh deformation based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej

    2011-09-01

    In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.

  13. Sleep scoring using artificial neural networks.

    PubMed

    Ronzhina, Marina; Janoušek, Oto; Kolářová, Jana; Nováková, Marie; Honzík, Petr; Provazník, Ivo

    2012-06-01

    Rapid development of computer technologies leads to the intensive automation of many different processes traditionally performed by human experts. One of the spheres characterized by the introduction of new high intelligence technologies substituting analysis performed by humans is sleep scoring. This refers to the classification task and can be solved - next to other classification methods - by use of artificial neural networks (ANN). ANNs are parallel adaptive systems suitable for solving of non-linear problems. Using ANN for automatic sleep scoring is especially promising because of new ANN learning algorithms allowing faster classification without decreasing the performance. Both appropriate preparation of training data as well as selection of the ANN model make it possible to perform effective and correct recognizing of relevant sleep stages. Such an approach is highly topical, taking into consideration the fact that there is no automatic scorer utilizing ANN technology available at present.

  14. Neural network training as a dissipative process.

    PubMed

    Gori, Marco; Maggini, Marco; Rossi, Alessandro

    2016-09-01

    This paper analyzes the practical issues and reports some results on a theory in which learning is modeled as a continuous temporal process driven by laws describing the interactions of intelligent agents with their own environment. The classic regularization framework is paired with the idea of temporal manifolds by introducing the principle of least cognitive action, which is inspired by the related principle of mechanics. The introduction of the counterparts of the kinetic and potential energy leads to an interpretation of learning as a dissipative process. As an example, we apply the theory to supervised learning in neural networks and show that the corresponding Euler-Lagrange differential equations can be connected to the classic gradient descent algorithm on the supervised pairs. We give preliminary experiments to confirm the soundness of the theory.

  15. Tampa Electric Neural Network Sootblowing

    SciTech Connect

    Mark A. Rhode

    2002-09-30

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, online, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce {sub x} emissions and improve heat rate

  16. Tampa Electric Neural Network Sootblowing

    SciTech Connect

    Mark A. Rhode

    2004-09-30

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate around

  17. Tampa Electric Neural Network Sootblowing

    SciTech Connect

    Mark A. Rhode

    2004-03-31

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing co-funding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate around

  18. Tampa Electric Neural Network Sootblowing

    SciTech Connect

    Mark A. Rhode

    2003-12-31

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate

  19. Neural networks for damage identification

    SciTech Connect

    Paez, T.L.; Klenke, S.E.

    1997-11-01

    Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the durations of use cycles establish a need for in-service health monitoring. Numerous studies have proposed measures of structural response for the identification of structural damage, but few have suggested systematic techniques to guide the decision as to whether or not damage has occurred based on real data. Such techniques are necessary because in field applications the environments in which systems operate and the measurements that characterize system behavior are random. This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.

  20. Vibration monitoring of EDF rotating machinery using artificial neural networks

    SciTech Connect

    Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E. . Dept. of Nuclear Engineering); Hamon, L.; Lefevre, F. . Direction des Etudes et Recherches)

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging.