Science.gov

Sample records for alh84001 martian meteorite

  1. Magnetic tests for magnetosome chains in Martian meteorite ALH84001.

    PubMed

    Weiss, Benjamin P; Kim, Soon Sam; Kirschvink, Joseph L; Kopp, Robert E; Sankaran, Mohan; Kobayashi, Atsuko; Komeili, Arash

    2004-06-01

    Transmission electron microscopy studies have been used to argue that magnetite crystals in carbonate from Martian meteorite ALH84001 have a composition and morphology indistinguishable from that of magnetotactic bacteria. It has even been claimed from scanning electron microscopy imaging that some ALH84001 magnetite crystals are aligned in chains. Alignment of magnetosomes in chains is perhaps the most distinctive of the six crystallographic properties thought to be collectively unique to magnetofossils. Here we use three rock magnetic techniques, low-temperature cycling, the Moskowitz test, and ferromagnetic resonance, to sense the bulk composition and crystallography of millions of ALH84001 magnetite crystals. The magnetic data demonstrate that although the magnetite is unusually pure and fine-grained in a manner similar to terrestrial magnetofossils, most or all of the crystals are not arranged in chains.

  2. The age of the carbonates in martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Borg, L. E.; Connelly, J. N.; Nyquist, L. E.; Shih, C. Y.; Wiesmann, H.; Reese, Y.

    1999-01-01

    The age of secondary carbonate mineralization in the martian meteorite ALH84001 was determined to be 3.90 +/- 0.04 billion years by rubidium-strontium (Rb-Sr) dating and 4.04 +/- 0.10 billion years by lead-lead (Pb-Pb) dating. The Rb-Sr and Pb-Pb isochrons are defined by leachates of a mixture of high-graded carbonate (visually estimated as approximately 5 percent), whitlockite (trace), and orthopyroxene (approximately 95 percent). The carbonate formation age is contemporaneous with a period in martian history when the surface is thought to have had flowing water, but also was undergoing heavy bombardment by meteorites. Therefore, this age does not distinguish between aqueous and impact origins for the carbonates.

  3. Origins of Magnetite Nanocrystals in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Mckay, David S.; Gibson, Everett K.; Wentworth, Susan J.

    2009-01-01

    The Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks. These carbonate disks are believed to have precipitated 3.9 Ga ago at beginning of the Noachian epoch on Mars during which both the oldest extant Martian surfaces were formed, and perhaps the earliest global oceans. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of mag- netite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. For example, the magnetites might have already been present in the aqueous fluids from which the carbonates were believed to have been deposited. We have sought to resolve between these hypotheses through the detailed characterized of the compo- sitional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded. Extensive use of focused ion beam milling techniques has been utilized for sample preparation. We then compared our observations with those from experimental thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios. We conclude that the vast majority of the nanocrystal magnetites present in the car- bonate disks could not have formed by any of the currently proposed thermal decomposition scenarios. Instead, we find there is considerable evidence in support of an alternative allochthonous origin for the magnetite unrelated to any shock or thermal processing of the carbonates.

  4. The temperature of formation of carbonate in Martian meteorite ALH84001: constraints from cation diffusion

    SciTech Connect

    Hutcheon, I D; Kent, A; Phinney, D L; Ryerson, F J

    1999-08-13

    An important test of the hypothesis that Martian meteorite ALH84001 contains fossil remnants of an ancient Martian biota is the thermal history of the carbonate rosettes associated with the proposed biomarkers. If carbonates formed at temperatures over {approximately} 110 C (the limit for terrestrial life), it is unlikely that these minerals are associated with a terrestrial-like biota.

  5. A search for endogenous amino acids in martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Glavin, D. P.; McDonald, G. D.; Becker, L.

    1998-01-01

    Trace amounts of glycine, serine, and alanine were detected in the carbonate component of the martian meteorite ALH84001 by high-performance liquid chromatography. The detected amino acids were not uniformly distributed in the carbonate component and ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine consists primarily of the L enantiomer, low concentrations (<0.1 parts per million) of endogenous D-alanine may be present in the ALH84001 carbonates. The amino acids present in this sample of ALH84001 appear to be terrestrial in origin and similar to those in Allan Hills ice, although the possibility cannot be ruled out that minute amounts of some amino acids such as D-alanine are preserved in the meteorite.

  6. Nanophase Magnetite and Pyrrhotite in ALH84001 Martian Meteorite: Evidence for an Abiotic Origin

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Lauer, H. V., Jr. III; Ming, D. W.; Morris, R. V.

    2006-01-01

    The nanophase magnetite crystals in the black rims of pancake-shaped carbonate globules of the Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al.that they are biogenic in origin. A subpopulation of these magnetite crystals are reported to conform to a unique elongated shape called "truncated hexa-octahedral" or "THO" by Thomas-Keprta et al. They claim these THO magnetite crystals can only be produced by living bacteria thus forming a biomarker in the meteorite. In contrast, thermal decomposition of Fe-rich carbonate has been suggested as an alternate hypothesis for the elongated magnetite formation in ALH84001 carbonates. The experimental and observational evidence for the inorganic formation of nanophase magnetite and pyrrhotite in ALH84001 by decomposition of Fe-rich carbonate in the presence of pyrite are provided.

  7. Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001.

    PubMed

    Kazmierczak, Józef; Kempe, Stephan

    2003-04-01

    Modern carbonate globules, located in cracks of submerged volcanic rocks and in calcareous pinnacles in alkaline (sodic) Lake Van, Turkey, appear to be analogues for the approximately 3.9 billion-year-old carbonate globules in Martian meteorite ALH84001. These terrestrial globules have similar diameters and are chemically and mineralogically zoned. Furthermore, they display surface and etching structures similar to those described from ALH84001, which were interpreted as fossilized microbial forms. These terrestrial carbonates formed at low temperatures where Ca-rich groundwaters enter the lake. Chemical, mineralogical, microbiological, and biomolecular methods were used in an attempt to decipher the process responsible for the genesis of these structures. Although the exact mode of formation of Lake Van carbonates remains an enigma, their similarity to the Martian globules indicates that the ALH84001 carbonates may have formed in similar setting on ancient Mars.

  8. A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1995-01-01

    ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystallization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones). Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all mineral species present. The temperature of metamorphism was at least 875 C, based on mineral thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated identically in all globules, The second shock event produced microfault offsets of carbonate stratigraphy and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex, multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features. It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or

  9. Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Brearley, A. J.; Lauer, H. V., Jr.; Treiman, A. H.; Zolensky, M. E.; Schwandt, C. S.; Lofgren, G. E.

    2004-01-01

    Magnetite crystals produced by terrestrial magnetotactic bacterium MV-1 are elongated on a [111] crystallographic axis, in a so-called truncated hexa-Octahedral shape. This morphology has been proposed to constitute a biomarker (i.e., formed only in biogenic processes). A subpopulation of magnetite crystals associated with carbonate globules in Martian meteorite ALH84001 is reported to have this morphology, and the observation has been taken as evidence for biological activity on Mars. In this study, we present evidence for the exclusively inorganic origin of [111]-elongated magnetite crystals in ALH84001. We report three-dimensional(3-D) morphologies for approx.1000 magnetite crystals extracted from: (1) thermal decomposition products of Fe-rich carbonate produced by inorganic hydrothermal precipitation in laboratory experiments; (2) carbonate globules in Martian meteoriteeALH84001; and (3) cells of magnetotactic bacterial strain MV-1. The 3-D morphologies were derived by fitting 3-D shape models to two-dimensional bright-field transmission-electron microscope (TEAM) images obtained at a series of viewing angles. The view down the {110} axes closest to the [111] elongation axis of magnetite crystals ([111]x{110) not equal to 0) provides a 2-D projection that uniquely discriminates among the three [111]-elongated magnetite morphologies found in these samples: [111]-elongated truncated hexaoctahedron ([111]-THO), [111]-elongated cubo-octahedron ([111]-ECO), and [111]-elongated simple octahedron ([111]-ESO). All [111] -elongated morphologies are present in the three types of sample, but in different proportions. In the ALH84001 Martian meteorite and in our inorganic laboratory products, the most common [111]-elongated magnetite crystal morphology is [111]-ECO. In contrast, the most common morphology for magnetotactic bacterial strain MV-1 is [111]-THO. These results show that: (1) the morphology of [111]-elongated magnetite crystals associated with the carbonate

  10. Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001

    NASA Astrophysics Data System (ADS)

    Scott, Edward R. D.

    1999-02-01

    A review of the mineralogical, isotopic, and chemical properties of the carbonates and associated submicrometer iron oxides and sulfides in Martian meteorite ALH84001 provides minimal evidence for microbial activity. Some magnetites resemble those formed by magnetotactic microorganisms but cubic crystals <50 nm in size and elongated grains <25 nm long are too small to be single-domain magnets and are probably abiogenic. Magnetites with shapes that are clearly unique to magnetotactic bacteria appear to be absent in ALH84001. Magnetosomes have not been reported in plutonic rocks and are unlikely to have been transported in fluids through fractures and uniformly deposited where abiogenic magnetite was forming epitaxially on carbonate. Submicrometer sulfides and magnetites probably formed during shock heating. Carbonates have correlated variations in Ca, Mg, and 18O/16O, magnetite-rich rims, and they appear to be embedded in pyroxene and plagioclase glass. Carbonates with these features have not been identified in carbonaceous chondrites and terrestrial rocks, suggesting that the ALH84001 carbonates have a unique origin. Carbonates and hydrated minerals in ALH84001, like secondary phases in other Martian meteorites, have O and H isotopic ratios favoring formation from fluids that exchanged with the Martian atmosphere. I propose that carbonates originally formed in ALH84001 from aqueous fluids and were subsequently shock heated and vaporized. The original carbonates were probably dolomite-magnesite-siderite assemblages that formed in pores at interstitial sites with minor sulfate, chloride, and phyllosilicates. These phases, like many other volatile-rich phases in Martian meteorites, may have formed as evaporite deposits from intermittent floods.

  11. Morphological Evidence for an Exclusively Inorganic Origin for Magnetite in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Brearley, A. J.; Lauer, H. V., Jr.; Treiman, A.; Zolensky, M. E.; Schwandt, C. S.; Lofgren, G. E.; McKay, G. A.

    2003-01-01

    The origin of magnetite crystals in Martian Meteorite ALH84001 is the focus of a debate about the possibility of past (and present) life on Mars. McKay et al. originally suggested that some of the magnetite crystals associated with carbonate globules in Martian Meteorite ALH84001 are biogenic in ori-gin, because they are single magnetic domain, free of crystalline defects, chemically pure, and coexist with other metastable phases in apparent disequilibrium. Thomas-Keprta et al. reported that a subpopulation of magnetite crystals (approx. 25%) associated with carbonate globules in ALH84001 and magnetite crystals produced by magnetotactic bacterial strain MV-1 have similar morphologies with crystal elongation along the [111] crystallographic axis that they describe as "truncated hexa-octahedral" ([111-THO]) magnetite. Along with several other properties, the [111]-THO morphology has been proposed to constitute a biomarker (i.e., formed only in biogenic processes), so that the presence of [111]-THO magnetite in ALH84001 may be evidence for past life on Mars.

  12. Hosts of hydrogen in ALH 84001: Evidence for hydrous martian salts in the oldest martian meteorite?

    NASA Astrophysics Data System (ADS)

    Eiler, John M.; Kitchen, Nami; Leshin, Lauri; Strausberg, Melissa

    2002-03-01

    The Martian meteorite, ALH84001, contains D-rich hydrogen of plausible Martian origin (Leshin et al. 1996). The phase identity of the host(s) of this hydrogen are not well known and could include organic matter (McKay et al., 1996), phlogopite (Brearley 2000), glass (Mittlefehldt 1994) and/or other, unidentified components of this rock. Previous ion microprobe studies indicate that much of the hydrogen in ALH84001 as texturally associated with concretions of nominally anhydrous carbonates, glass and oxides (Boctor et al., 1998; Sugiura and Hoshino, 2000). We examined the physical and chemical properties of the host(s) of this hydrogen by stepped pyrolysis of variously pre-treated sub-samples. A continuous-flow method of water reduction and mass spectrometry (Eiler and Kitchen 2001) was used to permit detailed study of the small amounts of this hydrogen-poor sample available for study. We find that the host(s) of D-rich hydrogen released from ALH84001 at relatively low temperatures (~500 deg C) is soluble in orthophosphoric and dilute hydrochloric acids and undergoes near-complete isotopic exchange with water within hours at temperatures of 200 to 300 deg C. These characteristics are most consistent with the carrier phase(s) being a hydrous salt (e.g., carbonate, sulfate or halide); the thermal stability of this material is inconsistent with many examples of such minerals (e.g., gypsum) and instead suggests one or more relatively refractory hydrous carbonates (e.g., hydromagnesite). Hydrous salts (particularly hydrous carbonates) are common on the earth only in evaporite, sabkha, and hydrocryogenic-weathering environments; we suggest that much (if not all) of the 'Martian' hydrogen in ALH84001 was introduced in analogous environments on or near the martian surface rather than through biological activity or hydrothermal alteration of silicates in the crust.

  13. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001.

    PubMed

    Steele, A; Goddard, D; Beech, I B; Tapper, R C; Stapleton, D; Smith, J R

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  14. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  15. ALH84001, a cumulate orthopyroxenite member of the Martian meteorite clan

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1994-01-01

    ALH84001, originally classified as a diogenite, is a coarse-grained, cataclastic, orthopyroxenite meteorite related to the martian (SNC) meteorites. The orthopyroxene is relatively uniform in composition, with a mean composition of Wo3.3En69.4Fs27.3. Minor phases are euhedral to subhedral chromite and interstitial maskelynite, An31.1Ab63.2Or5.7, with accessory augite, Wo42.2En45.1Fs12.7, apatite, pyrite and carbonates, Cc11.5Mg58.0Sd29.4Rd1.1. The pyroxenes and chromites in ALH84001 are similar in composition to these phases in EETA79001 lithology a megacrysts but are more homogeneous. Maskelynite is similar in composition to feldspars in the nakhlites and Chassigny. Two generations of carbonates are present, early (pre-shock) strongly zoned carbonates and late (post-shock) carbonates. The high Ca content of both types of carbonates indicates that they were formed at moderately high temperature, possibly approximately 700 C. ALH84001 has a slightly LREE-depleted pattern with La 0.67x and Lu 1.85x CI abundances and with a negative Eu anomaly (Eu/Sm 0.56x CI). The uniform pyroxene composition is unusual for martian meteorites, and suggests that ALH84001 cooled more slowly than did the shergottites, nakhlites of Chassigny. The nearly monomineralic composition, coarse-grain size, homogeneous orthopyroxene and chromite compositions, the interstitial maskelynite and apatite, and the REE pattern suggest that ALH84001 is a cumulate orthopyroxenite containing minor trapped, intercumulus material.

  16. Magnetofossils in Terrestrial Samples and Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    ThomasKeptra, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.

    2001-01-01

    Here we compare magnetite crystals produced by terrestrial magnetotactic bacteria strain MV-1 with a subpopulation of magnetites from ALH84001. We find both to be chemically and physically identical-specifically, both are single-domain, chemically pure, and exhibit an unusual crystal habit we describe as truncated hexa-octahedral. On Earth such truncated hexa-octahedral magnetites are only known to be produced by magnetotactic bacteria. We suggest that the observation of truncated hexa-octahedral magnetites in ALH84001 are both consistent with, and in the absence of terrestrial inorganic analogs, likely formed by biogenic processes. Additional information is contained in the original extended abstract.

  17. Hydrothermal Origin for Carbonate Globules in Martian Meteorite ALH84001: A Terrestrial Analogue from Spitsbergen (Norway)

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Amundsen, Hans E. F.; Blake, David F.; Bunch, Ted

    2002-01-01

    Carbonate minerals in the ancient Martian meteorite ALH84001 are the only known solid phases that bear witness to the processing of volatile and biologically critical compounds (CO2, H2O) on early Mars. Similar carbonates have been found in xenoliths and their host basalts from Quaternary volcanic centers in northern Spitsbergen (Norway). These carbonates were deposited by hot (i.e., hydrothermal) waters associated with the volcanic activity. By analogy with the Spitsbergen carbonates, the ALH84001 carbonates were probably also deposited by hot water. Hydrothermal activity was probably common and widespread on Early Mars, which featured abundant basaltic rocks, water as ice or liquid, and heat from volcanos and asteroid impacts. On Earth, descendants of the earliest life forms still prefer hydrothermal environments, which are now shown to have been present on early Mars.

  18. First evidence for infiltration metasomatism in a martian meteorite, ALH 84001

    NASA Astrophysics Data System (ADS)

    Wadhwa, M.; Crozaz, G.

    1994-07-01

    ALH 84001, originally classified as a diogenite, was recently recognized by Mittlefehldt as a new member of the clan of martian meteorites. It is a coarse-grained orthopyroxenite with same O isotopic composition as the nakhlites. Most of this meteorite consists of orthopyroxene grains; it also contains maskelynite, chromite, and accessory minerals including apatite, augite, pyrite, and Mg-Ca-Mn-Fe carbonates. With the ion microprobe, we measured the concentrations of Rare Earth Elements (REEs) and other selected minor and trace elements in individual grains of orthopyroxene, maskelynite, and apatite. Although in all SNCs phosphate is the mineral with the highest REE concentrations, it is not the major REE carrier in ALH 84001. Using the most appropriate partition coefficients for these minerals in SNCs, we estimated the compositions of the metals that may have been in equilibrium with the 'average' orthopyroxene, the apatite, and the maskelynite. The orthopyroxene equilibrium melt is slightly LREE depleted, whereas the apatite and maskelynite equilibrium melts have higher REE concentrations and are strikingly LREE enriched. We tried unsuccessfully to derive the apatite and maskelynite melts from the orthopyroxene melt by fractional crystallization. We therefore suggest that an infiltrating fluid enriched in LREE is responsible for the formation of the apatite and maskelynite that occur as interstitial grains in ALH 84001. The similarity of REE patterns for the parent melts of ALH 84001, Shergotty, and Zagami seems to indicate that the new SNC meteorite is more closely related to these two shergottites than to any of the other meteorites thought to have come from Mars.

  19. Experimental Shock Decomposition of Siderite and the Origin of Magnetite in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Bell, Mary Sue

    2007-01-01

    Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron-carbonate were initiated. Naturally occurring siderite was first characterized by electron microprobe (EMP), transmission electron microscopy (TEM), Mossbauer spectroscopy, and magnetic susceptibility measurements to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten-alloy holders (W=90%, Ni=6%, Cu=4%) to further insure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Previously reported results of TEM analyses on 49 GPa experiments indicated the presence of nano-phase spinel-structured iron oxide. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are greater than 50% Fe sup(+2) in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of single-domain, superparamagnetic sizes (approx. 50 100 nm), compositions (100% magnetite to 80% magnetite-20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) or magnetites grown naturally by MV1 magnetotactic bacteria, and as the magnetites in Martian meteorite ALH84001. Fritz et al. (2005) previously concluded that ALH84001 experienced approx. 32 GPa pressure and a resultant thermal pulse of approx. 100 - 110 C. However, ALH84001 contains evidence of local temperature excursions high enough to 1 melt feldspar, pyroxene, and a silica-rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to greater than 470 C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH84001 could be a product of shock devolatilization of

  20. Bacterial mineralization patterns in basaltic aquifers: implications for possible life in martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; McKay, D. S.; Wentworth, S. J.; Stevens, T. O.; Taunton, A. E.; Allen, C. C.; Coleman, A.; Gibson, E. K. Jr; Romanek, C. S.

    1998-01-01

    To explore the formation and preservation of biogenic features in igneous rocks, we have examined the organisms in experimental basaltic microcosms using scanning and transmission electron microscopy. Four types of microorganisms were recognized on the basis of size, morphology, and chemical composition. Some of the organisms mineralized rapidly, whereas others show no evidence of mineralization. Many mineralized cells are hollow and do not contain evidence of microstructure. Filaments, either attached or no longer attached to organisms, are common. Unattached filaments are mineralized and are most likely bacterial appendages (e.g., prosthecae). Features similar in size and morphology to unattached, mineralized filaments are recognized in martian meteorite ALH84001.

  1. Truncated Hexa-Octahedral Magnetite Crystals in Martian Meteorite ALH84001: Evidence of Biogenic Activity on Early Mars

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K.; Clemett, S. J.; Schwartz, C.; McIntosh, J. R.; Bazylinski, D. A.; Kirschvink, J.; McKay, D. S.; Gibson, E. K.; Vali, H.; Romanek, C. S.

    2004-01-01

    The landmark paper by McKay et al. [1] cited four lines of evidence associated with the Martian meteorite ALH84001 to support the hypothesis that life existed on Mars approximately 4 Ga ago. Now, more than five years later, attention has focused on the ALH84001 magnetite grains embedded within carbonate globules in the ALH84001 meteorite. We have suggested that up to approx.25% of the ALH84001 magnetite crystals are products of biological activity [e.g., 2]. The remaining magnetites lack sufficient characteristics to constrain their origin. The papers of Thomas Keprta et al. were criticized arguing that the three dimensional structure of ALH84001 magnetite crystals can only be unambiguously determined using electron tomographic techniques. Clemett et al. [3] confirmed that magnetites produced by magnetotactic bacteria strain MV-I display a truncated hexa-octahedral geometry using electron tomography and validated the use of the multi-tilt classical transmission microscopy technique used by [2]. Recently the geometry of the purported martian biogenic magnetites was shown be identical to that for MV-1 magnetites using electron tomography [6].

  2. Search for Past Life on Mars: Possible Relict Biogenic Activity in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Gibson, Everett K., Jr.; Thomas-Keprta, Kathie L.; Vali, Hojatollah; Romanek, Christopher S.; Clemett, Simon J.; Chillier, Xavier D. F.; Maechling, Claude R.; Zare, Richard N.

    1996-01-01

    Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest the PAHs are indigenous to the meteorite. High resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globules show that the globules contain fine-grained, secondary phases of single-domain magnetite and Fe-monosulfides. The carbonate globules are similar in texture and size to some terrestrial bacterially induced carbonate precipitates. Although inorganic formation is possible, formation of the globules by biogenic processes could explain many of the observed features including the PAHs. The PAHs, the carbonate globules, and their associated secondary mineral phases and textures could thus be fossil remains of a past martian biota.

  3. Origin of Magnetite Crystals in Martian Meteorite ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K.L.; Clemett, S.J.; McKay, D.S.; Gibson, E. K.; Wentworth, S. J.

    2010-01-01

    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks which are believed to have precipitated approx.3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these Fe3O4 are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of Fe3O4 and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded [1]. We focus this discussion on the composition of ALH84001 magnetites and then compare these observations with those from our thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios.

  4. Polycyclic Aromatic Hydrocarbons in the Martian (SNC) Meteorite ALH 84001: Hydrocarbons from Mars, Terrestrial Contaminants, or Both?

    NASA Astrophysics Data System (ADS)

    Thomas, K. L.; Clemett, S. J.; Romanek, C. S.; Macheling, C. R.; Gibson, E. K.; McKay, D. S.; Score, R.; Zare, R. N.

    1995-09-01

    Previous work has shown that pre-terrestrial polycyclic aromatic hydrocarbons (PAHs) exist in interplanetary dust particles (IDPs) and certain meteorites [1-3]. We previously reported the first observation of PAHs in the newest member of the SNC group, Allan Hills 84001 [4] and determined that particular types of organic compounds are indigenous to ALH 84001 because they are associated with certain mineralogical features [4]. We also analyzed two diogenites from Antarctica: one showed no evidence for aromatic hydrocarbons while the other contained PAHs with the same major peaks as those in ALH 84001[4]. PAHs in the diogenite meteorite are not associated with mineral features on the analyzed surface and the most abundant PAHs in the diogenite are lower by a factor of 3 than those in ALH 84001. Furthermore, ALH 84001 contains a number of minor PAHs not found in the diogenite or typical terrestrial soils [4]. In this study we are analyzing a more complete group of Antarctic and non-Antarctic meteorites, including SNCs, to determine: (1) PAHs abundance and diversity in Antarctic meteorites and (2) the contribution of PAHs in SNCs from martian and, possibly, terrestrial sources. ALH 84001 is an unusual orthopyroxenite which contains abundant carbonate spheroids which are ~100-200 micrometers in diameter and range in composition from magnesite to ferroan magnesite [5-7]. These spheroids are not the result of terrestrial contamination: oxygen isotopic compositions indicate that the carbonates probably precipitated from a low-temperature fluid within the martian crust [5] and carbon isotopic abundances are consistent with martian atmospheric CO2 as the carbon source [5]. PAHs may coexist with other low-temperature carbon-bearing phases in a subsurface martian environment. Samples: We are analyzing freshly-fractured meteorite samples, or chips, which have been extracted from the internal regions of the following meteorites: ALH 84001 (crush and uncrush zones), EETA79001

  5. The origin of organic matter in the Martian meteorite ALH84001.

    PubMed

    Becker, L; Popp, B; Rust, T; Bada, J L

    1999-03-30

    Stable carbon isotope measurements of the organic matter associated with the carbonate globules and the bulk matrix material in the ALH84001 Martian meteorite indicate that two distinct sources are present in the sample. The delta 13C values for the organic matter associated with the carbonate globules averaged -26% and is attributed to terrestrial contamination. In contrast, the delta 13C values for the organic matter associated with the bulk matrix material yielded a value of -15%. The only common sources of carbon on the Earth that yield similar delta 13C values, other then some diagenetically altered marine carbonates, are C4 plants. A delta 13C value of -15%, on the other hand, is consistent with a kerogen-like component, the most ubiquitous form of organic matter found in carbonaceous chondrites such as the Murchison meteorite. Examination of the carbonate globules and bulk matrix material using laser desorption mass spectrometry (LDMS) indicates the presence of a high molecular weight organic component which appears to be extraterrestrial in origin, possibly derived from the exogenous delivery, of meteoritic or cometary debris to the surface of Mars.

  6. Oxygen Isotopic Constraints on the Genesis of Carbonates from Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Leshin, Laurie A.; McKeegan, Kevin D.; Carpenter, Paul K.; Harvey, Ralph P.

    1998-01-01

    Ion microprobe oxygen isotopic measurements of a chemically diverse suite of carbonates from Martian meteorite ALH84001 are reported. The delta(sup 18)O values are highly variable, ranging from +5.4 to + 25.3%, and are correlated with major element compositions of the carbonate. The earliest forming (Ca-rich) carbonates have the lowest delta(sup 18)O values and the late-forming (Mg-rich) carbonates have the highest delta(sup 18)O values. Two models are presented which can explain the isotopic variations. The carbonates could have formed in a water rich environment at relatively low, but highly variable temperatures. In this open-system case the lower limit to the temperature variation is approx. 125 C, with fluctuations of over 250 C possible within the constraints of the model. Alternatively, the data can be explained by a closed-system model in which the carbonates precipitated from a limited amount of CO2-rich fluid. This scenario can reproduce the isotopic variations observed at a range of temperatures, including relatively high temperatures (less than 500 C). Thus the oxygen isotopic compositions do not provide unequivocal evidence for formation of the carbonates at low temperature. Although more information is needed in order to distinguish between the models, neither of the implied environments is consistent with biological activity. Thus, we suggest that features associated with the carbonates which have been interpreted to be the result of biological activity were most probably formed by inorganic processes.

  7. Isotope Geochemistry of Possible Terrestrial Analogue for Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Mojzsis, Stephen J.

    2000-01-01

    We have studied the microdomain oxygen and carbon isotopic compositions by SIMS of complex carbonate rosettes from spinel therzolite xenoliths, hosted by nepheline basanite, from the island of Spitsbergen (Norway). The Quaternary volcanic rocks containing the xenoliths erupted into a high Arctic environment and through relatively thick continental crust containing carbonate rocks. We have attempted to constrain the sources of the carbonates in these rocks by combined O-18/O-16 and C-13/C-12 ratio measurements in 25 micron diameter spots of the carbonate and compare them to previous work based primarily on trace-element distributions. The origin of these carbonates can be interpreted in terms of either contamination by carbonate country rock during ascent of the xenoliths in the host basalt, or more probably by hydrothermal processes after emplacement. The isotopic composition of these carbonates from a combined delta.18O(sub SMOW) and delta.13C(sub PDB) standpoint precludes a primary origin of these minerals from the mantle. Here a description is given of the analysis procedure, standardization of the carbonates, major element compositions of the carbonates measured by electron microprobe, and their correlated C and O isotope compositions as measured by ion microprobe. Since these carbonate rosettes may represent a terrestrial analogue to the carbonate "globules" found in the martian meteorite ALH84001 interpretations for the origin of the features found in the Spitsbergen may be of interest in constraining the origin of these carbonate minerals on Mars.

  8. Hydrogeological Interpretation of Candidate Origin Sites for Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; McKay, Chris; Cuzzi, Jeffrey N. (Technical Monitor)

    1996-01-01

    Barlow (this meeting) has identified two potential source craters for the martian meteorite ALH84001. The craters are at 11.7 deg S, 243.3 deg W (Mare Tyrrhenum site) and 14.0 deg S, 343.5 deg W (Sinus Sabaeus site). As noted by Barlow, both craters lie in the heavily cratered terrain (HCT) and are adjacent to fluvial valleys, Here I explore the fluvial history of these areas based upon the surrounding valley morphology. The most prominent valley network at the Sabaeus site is Evros Vallis. This wide, flat-floored valley is approximately 600 km long with an average width of 2.5 km and a depth of 220 m. The eroded volume of the entire Evros network is approximately 6 x 10(exp 11) cc. This is typical for networks located in the heavily cratered terrain (e.g. Warrego and Parana Valles). Evros is also an isolated valley system. No similar networks are found in the surrounding terrain. Thus it is unlikely that Evros formed as a result of widespread rainfall. A localized water source, such as discharge of a hydrothermal system or localized melting of snowfall, seems more consistent Previous modeling has demonstrated that only hydrothermal systems associated with high permeability subsurfaces can discharge sufficient water to form a valley network. The bulk of the discharge from such systems is consequently low temperature, slightly heated water Precipitation of calcium carbonate by low temperature fluids is consistent with most interpretations of the geochemistry of ALH84001. Available imagery at the Tyrrhenum site is of lesser quality. While eroded units of the HCT are nearby, there are no comparable well developed valley networks at this site. Erosion is instead manifested predominantly as gullies on slopes. This style of erosion suggests that water was not present at this site for the length of time as at the more integrated Sabaeus site. The superposition of fluidized ejecta blankets suggests however that ground water or ground ice was still present at this locality

  9. Bacterial mineralization patterns in basaltic aquifers: Implications for possible life in Martian meteorite ALH84001

    SciTech Connect

    Thomas-Keprta, K.L.; Wentworth, S.J.; Allen, C.C.; McKay, D.S.; Gibson, E.K. Jr.; Stevens, T.O.; Taunton, A.E.; Coleman, A.; Romanek, C.S.

    1998-11-01

    To explore the formation and preservation of biogenic features in igneous rocks, the authors have examined the organisms in experimental basaltic microcosms using scanning and transmission electron microscopy. Four types of microorganisms were recognized on the basis of size, morphology, and chemical composition. Some of the organisms mineralized rapidly, whereas others show no evidence of mineralization. Many mineralized cells are hollow and do not contain evidence of microstructure. Filaments, either attached or no longer attached to organisms, are common. Unattached filaments are mineralized and are most likely bacterial appendages (e.g., prosthecae). Features similar in size and morphology to unattached, mineralized filaments are recognized in martial meteorite ALH84001.

  10. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism.

    PubMed

    Treiman, Allan H

    2003-01-01

    Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).

  11. Micro-Spectroscopy as a Tool for Detecting Micron-Scale Mineral Variations Across a Rock Surface: An Example Using a Thin Section of Martian Meteorite ALH 84001

    NASA Technical Reports Server (NTRS)

    Dalton, J. Brad; Bishop, Janice L.

    2003-01-01

    Imaging spectroscopy is a powerful tool for mineral detection across broad spatial regions. A prototype micro-imaging spectrometer at NASA Ames is tested in this study on a scale of tens to hundreds of microns across rock surfaces. Initial measurements were performed in the visible spectral region on a thin section of martian meteorite ALH 84001.

  12. Truncated Hexa-Octahedral Magnetites: Biosignatures in Terrestrial Samples and Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Wentworth, Susan J.; Vali, H.; Gibson, Everett K.

    2001-01-01

    We suggest that the observation of truncated hexa-octahedral magnetites in ALH84001 are both consistent with, and in the absence of terrestrial inorganic analogs, likely formed by biogenic processes. Additional information is contained in the original extended abstract.

  13. Carbon- and Sulfur-bearing Minerals in the Martian Meteorite ALH 84001

    NASA Astrophysics Data System (ADS)

    Romanek, C. S.; Thomas, K. L.; Gibson, E. K., Jr.; McKay, D. S.; Socki, R. A.

    1995-09-01

    % Fe), with trace amounts of a cathodoluminescence (CL) activator (bright orange CL requires an activator, Mn or REE, and <2000 ppm Fe [5]). Thin black rims are composed primarily of fine-grained magnetite grains (5 - 50 nm dia.) bound in a Fe-rich carbonate matrix. Sulfur, which is present in some EDS spectra, may be a co-precipitate in the carbonate structure (up to 2 mol% S in carbonate [6]) and a distinct Fe-S-O phase (50 nm dia.), suggesting that sulfur may occurs as an oxidized species (e.g., SO4). Black spheroids are composed of material similar in composition to thin black rims. Finally, vug-filling aggregates are composed almost entirely of Fe-monosulfide, which is documented for the first time in this meteorite. Discussion: Considerable debate exists as to the origin of C- and S-bearing minerals in ALH 84001 [1-4]. When spheroids are dissolved by acid etching, fracture pathways are exposed in the underlying matrix, suggesting that carbonate precipitated along fault traces. Flattened spheroid morphologies support this interpretation as aggregate growth is limited normal to fracture surfaces. The trend of Fe-Ca rich carbonate cores and Fe-S rich rims, and the occurrence of late-stage vug-filling sulfides is consistent with progressive Fe- and S-reduction of subsurface fluids. If the precipitation sequence occurred in an environment containing sulfate, as suggested by the presence of Fe-S-O grains, and Eh (oxidizing potential) was sufficiently high during Fe-reduction, sulfur may have remained in an oxidized state during initial carbonate precipitation [7]. With the progressive reduction of Fe-oxides and precipitation of carbonate Eh would have fallen, initiating the process of sulfate reduction and the precipitation of Fe-monosulfide as a late-stage pore-filling mineral. As such, the complex geochemistry and mineralogy observed in the C- and S-bearing minerals of ALH 84001 can be explained by Eh-pH dependent reactions that occur at relatively low temperatures

  14. Formation of "Chemically Pure" Magnetite from Mg-Fe-Carbonates Implications for the Exclusively Inorganic Origin of Magnetite and Sulfides in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Lauer, H. V., Jr.; Morris, R. V.; Trieman, A. H.; McKay, G. A.

    2006-01-01

    Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates.

  15. Carbonate Globules from Spitsbergen, Norway: Terrestrial Analogs of the Carbonates in Martian Meteorite ALH84001?

    NASA Technical Reports Server (NTRS)

    De, Subarnarek; Bunch, Ted; Treiman, Allan H.; Amundsen, Hans E. F.; Blake, David F.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Pleistocene volcanic centers in NW Spitsbergen, Norway host one of the world's richest occurrences of mantle xenoliths. The xenoliths comprise varieties of spinel lherzolites and pyroxenites. Some of these xenoliths (and their host basalts) contain 10-100 micrometer globules of ankedtic-magnesitic carbonates (AMC). In composition, mineralogy and petrology the AMC globules from Spitsbergen are strikingly similar to the carbonate globules in ALH84001. The AMC globules occur within interstitial quenched glass and as fracture fillings, although we have not seen replacement fabrics analogous to carbonate rosettes replacing glass in ALH84001. Siderite/ankerite forms the core of these concentrically zoned globules while rims are predominantly magnesite. Clay minerals can occasionally be found within and around the globules. Aside from the clay minerals, the principal mineralogical difference between the AMCs and the ALH84001 carbonate rosettes is the presence of concentrated zones of nanophase magnetite in the rosettes, notably absent in the AMCs. However, carbonate globules containing nanophase magnetite have been produced inorganically by hydrothermal precipitation of carbonates and subsequent heating. We heated Spitsbergen AMC at 585 C in a reducing atmosphere to determine whether magnetite could be produced. Optical micrographs of the heated Spitsbergen AMC show dark concentric zones within the AMC. High resolution SEM images of those areas reveal 150-200 nm euhedral crystals that exhibit various morphologies including octahedra and elongated prisms. EDS analyses of areas where the crystals occur contain Fe, O, and minor Si, and P. However, the probe integrates over volumes of material, which also include the surrounding matrix. We have begun TEM observations of both the heated and unheated Spitsbergen AMC to characterize the microstructures of the carbonates, establish the presence/absence of magnetite and determine the relationship of the clay minerals to the

  16. Isotopic Constraints on the Genesis of Carbonates in Martian Meteorite ALH 84001

    NASA Technical Reports Server (NTRS)

    Leshin, Laurie A.

    1999-01-01

    Oxygen isotopic analyses in approximately 20 micrometer spots in a chemically diverse suite of carbonates from ALH 84001 show highly variable delta(exp 18)O values from +5.4 to +25.3%. The isotopic data are correlated with the major element composition of the carbonate. The earliest forming (Ca-rich) carbonates have the lowest delta(exp 18)O values and the late-forming Mg-rich carbonates have the highest delta(exp 18)O values. Two models that can explain the isotopic variation were investigated. The carbonates could have formed in a water-rich environment at relatively low, but highly variable temperatures. In this open-system case the lower limit to the temperature variation is approximately 125 C, with fluctuations of over 250 C possible within the constraints of the model, depending on fluid composition. Alternatively the data can be explained by a closed-system model in which carbonates precipitated from a limited amount of a CO2-rich fluid. This scenario can reproduce the range of isotopic values observed, even at relatively high temperatures (greater than 500 C). Thus, the oxygen isotopic compositions do not provide unequivocal evidence for formation of the carbonates at low temperature. Neither of these scenarios is consistent with a biological origin of the carbonates and their associated features. Olivine from ALH 84001 occurs as clusters within orthopyroxene adjacent to fractures containing disrupted carbonate globules and feldspathic shock glass. The inclusions are irregular in shape and range in size from approximately 40 micrometers to submicrometer. The olivine exhibits a limited range of chemical composition from Fo(sub 65) to Fo(sub 66). We measured delta(exp 18)O values of the olivine to be +5.1 +/- 1.4%, indistinguishable within uncertainty from the host orthopyroxene. The data suggest that the olivine formed at high temperature (greater than 800 C), and is probably unrelated to carbonate formation. Instead the olivine probably formed by

  17. A Hypothesis for the Abiotic and Non-Martian Origins of Putative Signs of Ancient Martian Life in ALH84001

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    2001-01-01

    Putative evidence of martian life in ALH84001 can be explained by abiotic and non-martian processes consistent with the meteorite's geological history. Additional information is contained in the original extended abstract.

  18. Formation of Carbonate Minerals in Martian Meteorite ALH 84001 from Cool Water Near the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2011-12-01

    Carbonate minerals in the Allan Hills 84001 meteorite are important because they ought to contain information about the chemistry and temperature of the water they formed in. They are also an important part of testing the idea that the meteorite contains evidence of past life on Mars. Hypotheses for the origin of the carbonates are impressively varied. A key test of the ideas is to determine the temperature at which the carbonates formed. Estimates up to now range from a bit below freezing to 700 oC, too big a range to test anything! To address the problem Itay Halevy, Woodward Fischer, and John Eiler (Caltech) used an approach that involves "clumped" isotope thermometry, which makes comparisons among different isotopic compositions of extracted CO2. This allowed the investigators to use the isotopic abundances of both carbon and oxygen. The results indicate that the carbonates formed at 18 ± 4 oC from a shallow subsurface (upper few meters to tens of meters) pool of water that was gradually evaporating. The wet episode did not last long, leading Halevy and his colleagues to conclude that the environment may have been too transient for life to have emerged here from scratch. On the other hand, if life already existed on the Martian surface this wet near-surface environment would have provided a happy home. An impact blasted the Martian home of ALH 84001, causing a transient heating event, perhaps disturbing the isotopic record...or perhaps not because the event was so short. In any case, the clumped isotope thermometry approach seems to have given a good measurement of the temperature at which the carbonate minerals formed.

  19. Study of a possible magnetite biosignature in Martian meteorite ALH84001: Implications for the biological toxicology of Mars

    NASA Astrophysics Data System (ADS)

    Thomas-Keprta, Kathie Louise

    "Why do we have such a longstanding fascination with Mars? Very simply put, it's about life. The search for life elsewhere in our Solar System has been a major driver for exploring Mars, pretty much since we began seriously looking at that planet."1 The major objective of this work is to describe signs of possible life, that is biosignatures, in rocks from Mars if indeed they are present. Biosignatures are specific identifiable properties that result from living things; they may be implanted in the environment and may persist even if the living thing is no longer present. Over 100 mineral biosignatures have been discussed in the literature; however, only one, magnetite, is addressed by this study. Magnetite is found in many rock types on earth and in meteorites. Previous studies of terrestrial magnetite have used few properties, such as size and chemical composition, to determine one of the modes of origins for magnetite (e.g., biogenic, inorganic). This study has established a rigorous set of six criteria for the identification of intracellularly precipitated biogenic magnetite. These criteria have been applied to a subpopulation of magnetites embedded within carbonates in Martian meteorite ALH84001. These magnetites are found to be chemically and physically indistinguishable from those produced by magnetotactic bacteria strain MV-1, hence, they were likely formed by biogenic processes on ancient Mars. These criteria may be also used to distinguish origins for magnetites from terrestrial samples with complex or unknown histories. The presence of purported past life on early Mars suggests that, if life once began it may still exist today, possibly in oases in the Martian subsurface. Future manned missions should consider potential hazards of an extant biological environment(s) on Mars. 1 Quote attributed to Jack Farmer of Arizona State University in discussing NASA's program of Mars Exploration (see "Deciphering Mars: Follow the Water," Astrobiology Magazine Sept

  20. Geochemical evidence for mixing of three components in martian orthopyroxenite ALH 84001. [Abstract only

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Lindstrom, M. M.

    1994-01-01

    ALH 84001, a ferroan martian orthopyroxenite, originally consisted of three petrographically defined components: a cumulus assemblage of orthopyroxene + chromite, a trapped melt assemblage of orthopyroxene(?) + chromite + maskelynite + apatite + augite +/- pyrite, and a metasomatic assemblage of carbonate +/- pyrite. We present the results of Instrumental Neutron Activation Analysis (INAA) study of five bulk samples of ALH 84001, combined with Scanning Ion Mass Spectrometer (SIMS) data on the orthopyroxene, in order to attempt to set limits on the geochemical characteristics of the latter two components, and therefore on the petrogenesis of ALH 84001. The INAA data support the petrographic observations, suggesting that there are at least three components in ALH 84001. We will assume that each of the three geochemically required components can be equated with one of the petrographically observed components. Both trapped melt and metasomatic components in ALH 84001 have higher Na than orthopyroxene based on compositions of maskelynite, apatite, and carbonate. For the metasomatic component, we will assume its Na content is that of carbonate, while for a trapped melt component, we will use a typical Na content inferred for martian meteorite parent melts, approximately 1 wt% Na2O. Under these assumptions, we can set limits on the Light Rare Earth Elements/Heavy Rare Earth Elements (LREE/HREE) ratios of the components, and use this information to compare the petrogenesis of ALH 84001 with other martian meteorites. The above calculations assume that the bulk samples are representative of different portions of ALH 84001. We will also evaluate the possible heterogeneous distribution of mineral phases in the bulk samples as the cause of compositional heterogeneity in our samples.

  1. Biomarkers in ALH84001???

    NASA Technical Reports Server (NTRS)

    Treiman, Allen H.

    1999-01-01

    D. McKay and colleagues suggested that four sets of features in ALH84001 were biomarkers, signs of an ancient martian biota that once inhabited the meteorite. Subsequent work has not validated their hypothesis; each suggested biomarker has been found to be ambiguous or immaterial. Nor has their hypothesis been disproved. Rather, it is now one of many hypotheses about the alteration of ALH84001. Additional information is contained in the original extended abstract.

  2. Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite.

    PubMed

    Warren, P H

    1998-07-25

    High-temperature models for origin of the carbonates in Martian meteorite ALH84001 are implausible. The impact metasomatism model, invoking reaction between CO2 rich fluid and the host orthopyroxenite, requires conversion of olivine into orthopyroxene, yet olivine in ALH84001 shows no depletion in carbonate-rich areas; or else conversion of orthopyroxene into silica, which should have yielded a higher silica/carbonate ratio. The impact melt model implies that the fracture-linked carbonates, as products of melt injection, should appear as continuous planar veins, but in many areas they do not. Both vapor deposition and impact melting seem inconsistent with the zoned poikilotopic texture of many large carbonates. The popular hydrothermal model is inconsistent with the virtual absence of secondary hydrated silicates in ALH84001. Prior brecciation should have facilitated alteration. Hydrothermal fluids would be warm, and rate of hydration of mafic silicates obeys an Arrhenius law, at least up to approximately 100 degrees C. Most important, hydrothermal episodes tend to last for many years. Many areas of the ancient Martian crust show evidence for massive flooding. I propose that the carbonates formed as evaporite deposits from floodwaters that percolated through the fractures of ALH84001, but only briefly, as evaporation and groundwater flow caused the water table to quickly recede beneath the level of this rock during the later stages of the flood episode. The setting might have been a layer of megaregolith beneath a surface catchment of pooled floodwater, analogous to a playa lake. Carbonate precipitation would occur in response to evaporative concentration of the water. To explain the scarcity of sulfates in ALH84001, the water table must be assumed to recede quickly relative to the rate of evaporation. During the period when ALH84001 was above the water table, evaporation would have slowed, as the evaporation front passed beneath the surface of the debris layer

  3. The Carbonates in ALH 84001 Record the Evolution of the Martian Atmosphere Through Multiple Formation Events

    NASA Technical Reports Server (NTRS)

    Shaheen, R.; Niles, P. B.; Corrgan, C.

    2012-01-01

    Current Martian conditions restrict the presence of liquid water due to low temperatures (approx 210K), a thin atmosphere (approx 7mb), and intense UV radiation. However, past conditions on Mars may have been different with the possibility that the ancient Martian climate was warm and wet with a dense CO2 atmosphere. The cycling of carbon on Mars through atmospheric CO2 and carbonate minerals is critical for deciphering its climate history. In particular stable isotopes contained in carbonates can provide information of their origin and formation environment as well as possibly hinting at the composition of global reservoirs such as atmospheric CO2. Martian meteorite ALH 84001 contains widely studied carbonate rosettes that have been dated to approx. 3.9 Ga and have been used to interpret climatic conditions present at that time. However, there is mount-ing evidence for multiple episodes of carbonate formation in ALH 84001 with potentially distinct isotopic compositions. This study seeks to tease out these different carbonate assemblages using stepped phosphoric acid dissolution and analysis of carbon and triple oxygen stable isotopes. In addition, we report SIMS analyses of the delta O-18 several petrographically unusual carbonate phases in the meteorite.

  4. Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere.

    PubMed

    Shaheen, Robina; Niles, Paul B; Chong, Kenneth; Corrigan, Catherine M; Thiemens, Mark H

    2015-01-13

    Carbonate minerals provide critical information for defining atmosphere-hydrosphere interactions. Carbonate minerals in the Martian meteorite ALH 84001 have been dated to ∼ 3.9 Ga, and both C and O-triple isotopes can be used to decipher the planet's climate history. Here we report Δ(17)O, δ(18)O, and δ(13)C data of ALH 84001 of at least two varieties of carbonates, using a stepped acid dissolution technique paired with ion microprobe analyses to specifically target carbonates from distinct formation events and constrain the Martian atmosphere-hydrosphere-geosphere interactions and surficial aqueous alterations. These results indicate the presence of a Ca-rich carbonate phase enriched in (18)O that formed sometime after the primary aqueous event at 3.9 Ga. The phases showed excess (17)O (0.7‰) that captured the atmosphere-regolith chemical reservoir transfer, as well as CO2, O3, and H2O isotopic interactions at the time of formation of each specific carbonate. The carbon isotopes preserved in the Ca-rich carbonate phase indicate that the Noachian atmosphere of Mars was substantially depleted in (13)C compared with the modern atmosphere.

  5. Siderophile Trace Elements in ALH 84001 and Other Achondrites: A Temporal Increase of Oxygen Fugacity in the Martian Mantle?

    NASA Astrophysics Data System (ADS)

    Warren, P. H.; Kallemeyn, G. W.

    1995-09-01

    We have employed neutron activation, including radiochemical NAA, to investigate SNC/martian meteorites ALH 77005, ALH 84001 and LEW 88516, along with 15 eucrites. Our data for 10 manifestly monomict eucrites confirm previous indications [e.g., 1] that compositionally pristine eucrites are generally extremely siderophile-poor, although for several of the most extremely siderophile-depleted eucrites we find slight enhancements in Re/Os (Figure). Our RNAA data are the first for highly siderophile elements in polymict eucrites, and show a broad similarity with lunar polymict breccias. In general, our data (e.g., Ga/Al = 4.3x10^-4) confirm SNC affinity [2] for ALH84001. However, siderophile concentrations are, by SNC standards, extraordinarily low: Ni = 5.8 micrograms/g and (in pg/g) Au = 9.4, Ir = 80, Os = 10.2, and Re = 1.66+/-0.25(1-s); Ge (1080 ng/g) is typical for SNCs. Like terrestrial basalts [1], other SNCs have relatively constant Re, ranging from 28 (Lafayette [3]) to 102 pg/g (ALH 77005) among seven analyzed meteorites of various types, in which Os ranges from <2.3 to 4400 pg/g. A plot of Os vs. Re/Os (Figure) shows that ALH 84001 has 23x lower Re than expected for a young SNC of similar Os content. On Earth, Re generally behaves as a mildly incompatible element, whereas Os behaves as a strongly compatible element. A plausible explanation for this divergence [1] is that Re is more prone to enter higher oxidation states, such as Re^4+, which would tend to behave like W^4+. This model is consistent with the Os-like behavior of Re in the highly reduced lunar and eucritic environments, and Birck and Allegre [1] interpret the typically intermediate Re contents of SNCs as suggestive of origin from a mantle source region at intermediate fO(sub)2 (they also considered, but rejected, an implausible "contamination" model). Extended to ALH 84001, this model implies that the mantle source was at a substantially (roughly 1.7 log(sub)10 units) lower fO2 than the analogous

  6. Carbon and nitrogen in ALH 84001

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Wright, I. P.; Douglas, C.; Pillinger, C. T.

    1994-07-01

    Reclassification of ALH 84001 as an orthopyroxenite related to SNCs brings the total number of martian meteorites to 10. Preliminary descriptions of ALH 84001 and the more detailed analysis that followed highlighted the presence of abundant Fe, Mg-carbonates distributed heterogeneously throughout the specimen. Previous studies of SNCs identified four discrete carbon-bearing components: materials that combusted at temperatures usually associated with organics, carbonates, magmatic carbon, and trapped martian atmospheric carbon dioxide. The isotopic compositions of these species are distinctive, and have been used to constrain the operation of martian surficial processes. Given the relatively high carbonate abundance in ALH 84001, detailed isotopic analyses of the specimen will undoubtedly provide further information on the formation mechanisms of these minerals. Nitrogen analysis could identify the presence of any N-bearing salts and trapped atmospheric species. This abstract reports the first results from analysis of carbon in ALH 84001. A high-resolution stepped combustion of 5.099 mg of powdered ALH 84001 was performed. The most outstanding feature of the analysis was the release of almost 50% of the total C across a narrow temperature range from 450-525 C, with (delta)C-13 is approximately +40%. The enrichment C-13 in carbonates from ALH 84001 indicates beyond any doubt that these salts are truly indigenous to the meteorite, rather than an Antarctic weathering product. Wright et al. defined a linear relationship between yield and C isotopic composition of carbonate in SNCs; the datum from ALH 84001 extends this association. For the carbonate to be formed by interaction of martian atmospheric CO2 with regolith material, reaction would need to have occurred at temperatures around 100 C. Such a high temperature is unlikely on the martian surface, and therefore the carbonates more probably formed in a hydrothermal environment.

  7. Alteration minerals, fluids, and gases on early Mars: Predictions from 1-D flow geochemical modeling of mineral assemblages in meteorite ALH 84001

    NASA Astrophysics Data System (ADS)

    Melwani Daswani, Mohit; Schwenzer, Susanne P.; Reed, Mark H.; Wright, Ian P.; Grady, Monica M.

    2016-11-01

    Clay minerals, although ubiquitous on the ancient terrains of Mars, have not been observed in Martian meteorite Allan Hills (ALH) 84001, which is an orthopyroxenite sample of the early Martian crust with a secondary carbonate assemblage. We used a low-temperature (20 °C) one-dimensional (1-D) transport thermochemical model to investigate the possible aqueous alteration processes that produced the carbonate assemblage of ALH 84001 while avoiding the coprecipitation of clay minerals. We found that the carbonate in ALH 84001 could have been produced in a process, whereby a low-temperature ( 20 °C) fluid, initially equilibrated with the early Martian atmosphere, moved through surficial clay mineral and silica-rich layers, percolated through the parent rock of the meteorite, and precipitated carbonates (thereby decreasing the partial pressure of CO2) as it evaporated. This finding requires that before encountering the unweathered orthopyroxenite host of ALH 84001, the fluid permeated rock that became weathered during the process. We were able to predict the composition of the clay minerals formed during weathering, which included the dioctahedral smectite nontronite, kaolinite, and chlorite, all of which have been previously detected on Mars. We also calculated host rock replacement in local equilibrium conditions by the hydrated silicate talc, which is typically considered to be a higher temperature hydrothermal phase on Earth, but may have been a common constituent in the formation of Martian soils through pervasive aqueous alteration. Finally, goethite and magnetite were also found to precipitate in the secondary alteration assemblage, the latter associated with the generation of H2. Apparently, despite the limited water-rock interaction that must have led to the formation of the carbonates 3.9 Ga ago, in the vicinity of the ALH 84001 source rocks, clay formation would have been widespread.

  8. Field Emission Gun Scanning Electron (FEGSEM) and Transmission Electron (TEM) Microscopy of Phyllosilicates in Martian Meteorites ALH84001, Nakhla, and Shergotty

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Wentworth, Susan J.; McKay, David S.; Gibson, Everett K.

    2000-01-01

    Here we document the occurrence of phyllosilicates and alteration phases in three martian meteorites, suggest formation conditions required for phyllosilicate formation and speculate on the extent of fluid:rock interactions during the past history of Mars.

  9. Trapped Ar isotopes in meteorite ALH 84001 indicate Mars did not have a thick ancient atmosphere

    NASA Astrophysics Data System (ADS)

    Cassata, William S.; Shuster, David L.; Renne, Paul R.; Weiss, Benjamin P.

    2012-09-01

    Water is not currently stable in liquid form on the martian surface due to the present mean atmospheric pressure of ∼7 mbar and mean global temperature of ∼220 K. However, geomorphic features and hydrated mineral assemblages suggest that Mars’ climate was once warmer and liquid water flowed on the surface. These observations may indicate a substantially more massive atmosphere in the past, but there have been few observational constraints on paleoatmospheric pressures. Here we show how the 40Ar/36Ar ratios of trapped gases within martian meteorite ALH 84001 constrain paleoatmospheric pressure on Mars during the Noachian era [∼4.56-3.8 billion years (Ga)]. Our model indicates that atmospheric pressures did not exceed ∼1.5 bar during the first 400 million years (Ma) of the Noachian era, and were <400 mbar by 4.16 Ga. Such pressures of CO2 are only sufficient to stabilize liquid water on Mars’ surface at low latitudes during seasonally warm periods. Other greenhouse gases like SO2 and water vapor may have played an important role in intermittently stabilizing liquid water at higher latitudes following major volcanic eruptions or impact events.

  10. ALH84001: The Key to Unlocking Secrets About Mars-15 Years and Counting

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.

    2011-01-01

    From the December 27, 1984 discovery of ALH84001, and its subsequent identification as a sample of Mars in 1993, mystery and debate has surrounded the meteorite [1]. With the realization that the ALH84001 sample was a orthopyroxenite and one of the oldest SNC meteorites (approx.4.09 Ga) [2] available to study, important and critical information about the Martian hydrosphere and atmosphere along with the early history and evolution of the planet could be obtained by studying the unique carbonate globules (approx.3.9 Ga) in the sample [3]. The initial work showed the carbonate globules were deposited within fractures and cracks in the host-orthopyroxene by low-temperature aqueous fluids [4]. Ideas that the carbonates were formed at temperatures [5] approaching 800 C were ruled out by later experiments [6]. The 1996 announcement by McKay et al. [7] that ALH84001 contained features which could be interpreted as having a biogenic origin generated considerable excitement and criticism. The NASA Administrator Dan Golden said the 1996 ALH84001 announcement saved NASAs Mars planetary exploration program and injected $6 billion dollars over five years into the scientific research and analysis efforts [8]. All of the original four lines of evidence for possible biogenic features within ALH84001 offered by McKay et al. have withstood the test of time. Criticism has been directed at the interpretation of the 1996 analytical data. Research has expanded to other SNC meteorites. Despite the numerous attacks on the ideas, the debate continues after 15 years. The 2009 paper by Thomas-Keprta et al. [9] on the origins of a suite of magnetites within the ALH84001 has offered strong arguments that some of the magnetites can only be formed by biogenic processes and not from thermal decomposition or shock events which happened to the meteorite. NASA s Astrobiology Institute was formed from the foundation laid by the ALH84001 hypothesis of finding life beyond the Earth. The strong

  11. Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin.

    PubMed

    Friedmann, E I; Wierzchos, J; Ascaso, C; Winklhofer, M

    2001-02-27

    The presence of magnetite crystal chains, considered missing evidence for the biological origin of magnetite in ALH84001 [Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., Clemett, S. J., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., Jr., & Romanek, C. S. (2000) Geochim. Cosmochim. Acta 64, 4049-4081], is demonstrated by high-power stereo backscattered scanning electron microscopy. Five characteristics of such chains (uniform crystal size and shape within chains, gaps between crystals, orientation of elongated crystals along the chain axis, flexibility of chains, and a halo that is a possible remnant of a membrane around chains), observed or inferred to be present in magnetotactic bacteria but incompatible with a nonbiological origin, are shown to be present. Although it is unlikely that magnetotactic bacteria were ever alive in ALH84001, decomposed remains of such organisms could have been deposited in cracks in the rock while it was still on the surface on Mars.

  12. Search for Unique Organic Biomarkers in ALH84001

    NASA Technical Reports Server (NTRS)

    Zare, Richard N.

    1999-01-01

    Four goals were outlined for this project. These were: [1] to reproduce the measurement of polycyclic aromatic hydrocarbons (PAHS) in ALH84001 with both a higher spatial resolution and sensitivity than has been previously reported; [2] to extend such measurements to include other members of the Martian SNC (Shergotties, Nahklites, and Chassigny) meteorite clan, in particular the Antarctic Martian meteorite EETA79001; [3] to address issues of potential organic contamination, because at present very little is known about the effect of terrestrial weathering in the Antarctic environment as it pertains to perturbing an indigenous organic distribution within a meteoritic matrix; and [4] to diversify the range of organic compounds studied to include species that can serve as unique biological markers - "molecular fossils" - derived from once living organisms. In order to achieve this, three specific goals were outlined for the funding period 06/01/97 to 02/28/98. They were: [1] to investigate the effects of terrestrial weathering and organic contamination of meteoritic samples collected from Antarctica; [2] to reproduce and extend upon the measurements of PAHs in ALH84001 with the aim of establishing or refuting the indigeneity of these species; and [3] to extend the analysis of organic compounds in ALH84001 and EETA79001 to address compounds that are considered to be more biologically relevant than PAHS. All three were successfully accomplished, as detailed in the previous performance report. In brief, however, the results achieved were to establish that the PAHs found in ALH84001 were indigenous and not due to contamination, and to determine that a novel and sensitive technique in meteoritic work, capillary zone electrophoresis (CE), could indeed detect amino acids, a potential class of biomarker.

  13. Exposure histories of ALH 84001 and ALHA 77005

    NASA Astrophysics Data System (ADS)

    Nishiizumi, K.; Caffee, M. W.; Finkel, R. C.

    1994-07-01

    From cosmogenic nuclide studies of SNC meteorites exposure histories, ejection conditions from the hypothesized martian parent body, and genetic relationships between SNC meteorites were determined. Previous studies show ablation to have been very low in at least three shergottites, ALHA 77005, Shergotty, and EETA 79001. This suggests that the atmospheric entry velocity and/or entry angle of shergottites must have been much lower than of ordinary chondrites. We report the results of cosmogenic radionuclides in the newly classified SNC meteorite ALH 84001 and additional studies of ALHA 77005. Be-10 (half-life = 1.5 m.y.) and Cl-36 (0.30 m.y.) results are presented for these two meteorites along with previous measurements of the shergottite LEW 88516. Aluminum-26 (0.71 m.y.) measurements are in progress. We received two chips on opposite sides of ALH 84001. Two subsamples, at depths of 0.5-3.5 mm and 7-9 mm, from fusion crust were separated from ALH 84001,97. The C-14 terrestrial age is 6.5 +/- 1.3 k.y. The noble gas exposure age is reported to be 14 +/- 2 m.y. The Be-10 and Cl-36 concentrations in three subsamples are nearly constant. A reasonable interpretation is that there are no SCR (solar cosmic ray) effects at these sample depths. The Be-10 production rate is estimated to be 21-24 atom/min-kg based on recovered size and over 3 cm of ablation depth. The Be-10 concentration indicates that ALH 84001 was exposed to cosmic rays 4-7 m.y. in a 4 pi geometry. The Be-10 exposure age is significantly shorter than noble gas exposure age. Three of the subsamples of ALHA 77005 measured for cosmogenic radionuclides are aliquots from the noble gas study. Chemical analysis and Al-26 measurements for these three subsamples are in progress.

  14. Sulfide isotopic compositions in shergottites and ALH84001, and possible implications for life on Mars

    SciTech Connect

    Greenwood, J.P.; McSween, H.Y. Jr.; Riciputi, L.R.

    1997-10-01

    The shergottite and ALH84001 meteorites hold keys for understanding geologic and possibly biologic processes on Mars. Recently, it has been proposed that carbonates in ALH84001, and the Fe-sulfides they contain, are products of extraterrestrial biogenic activity. Here we report ion microprobe analyses of sulfides in shergottites and ALH84001. The sulfur isotope ratios of igneous pyrrhotites in shergottites (mean {delta}{sup 34}S{sub CDT}: Shergotty = -0.4{per_thousand}, Zagami = +2.7{per_thousand}, EETA79001A = 1.9{per_thousand}, EETA79001B = -1.7{per_thousand}, LEW88516 = -1.9{per_thousand}, QUE94201 = +0.8{per_thousand}) are similar to those of terrestrial ocean-floor basalts, suggesting that the sulfur isotopic composition of the Martian mantle may be similar to that of the mantle of the Earth. The sulfur isotopic systematics of ALH84001 sulfides are distinct from the shergottites. Measured sulfur isotope ratios of eight pyrite grains ({delta}{sup 34}S{sub CDT} = +2.0 to +7.3{per_thousand}) in crushed zones confirm previously reported analyses of isotopically heavy sulfides and are indistinguishable from an Fe-sulfide zone within a carbonate globule ({delta}{sup 34}S{sub CDT} = +6.0{per_thousand}). Analyses of synthesized, fine-grained mixtures of sulfide, carbonate, and magnetite indicate than the measured sulfur isotope ratio is independent of the presence of carbonate and magnetite in the sputtered volume, confirming the accuracy of the analysis of the fine-grained sulfide in the carbonate globule. Terrestrial biogenic sulfate reduction typically results in light isotopic enrichments. The similarity of {delta}{sup 34}S values of the sulfides in ALH84001 imply that the Fe-sulfide zones within ALH84001 carbonates are probably not the result of bacterial reduction of sulfate. 38 refs., 3 figs., 1 tab.

  15. Amino Acids in the Antarctic Martian Meteorite MIL03346

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Aubrey, A.; Dworkin, J. P.; Botta, O.; Bada, J. L.

    2005-01-01

    The report by McKay et al. that the Martian meteorite ALH84001 contains evidence for life on Mars remains controversial. Of central importance is whether ALH84001 and other Antarctic Martian meteorites contain endogenous organic compounds. In any investigation of organic compounds possibly derived from Mars it is important to focus on compounds that play an essential role in biochemistry as we know it and that have properties such as chirality which can be used to distinguish between biotic versus abiotic origins. Amino acids are one of the few compounds that fulfill these requirements. Previous analyses of the Antarctic Martian meteorites ALH84001 and EETA79001 have shown that these meteorites contain low levels of terrestrial amino acid contamination derived from Antarctic ice meltwater. Here we report preliminary amino acid investigations of a third Antarctic Martian meteorite MIL03346 which was discovered in Antarctica during the 2003-04 ANSMET season. Additional information is included in the original extended abstract

  16. ALH84001: The Key to Unlocking Secrets About Mars-15 Years and Counting

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.

    2011-01-01

    From the December 27, 1984 discovery of ALH84001, and its subsequent identification as a sample of Mars in 1993, mystery and debate has surrounded the meteorite. With the realization that the ALH84001 sample was a orthopyroxenite and one of the oldest SNC meteorites (4.09 Ga) available to study, important and critical information about the Martian hydrosphere and atmosphere along with the early history and evolution of the planet could be obtained by studying the unique carbonate globules (3.9 Ga) in the sample. The initial work showed the carbonate globules were deposited within fractures and cracks in the host-orthopyroxene by low-temperature aqueous fluids. Ideas that the carbonates were formed at temperatures approaching 800oC were ruled out by later experiments. The 1996 announcement by McKay et al. that ALH84001 contained features which could be interpreted as having a biogenic origin generated considerable excitement and criticism. The NASA Administrator Dan Golden said the 1996 ALH84001 announcement saved NASA s Mars planetary exploration program and injected $6 billion dollars over five years into the scientific research and analysis efforts. All of the original four lines of evidence for possible biogenic features within ALH84001 offered by McKay et al. have withstood the test of time. Criticism has been directed at the interpretation of the 1996 analytical data. Research has expanded to other SNC meteorites. Despite the numerous attacks on the ideas, the debate continues after 15 years. The 2009 paper by Thomas-Keprta et al. on the origins of a suite of magnetites within the ALH84001 has offered strong arguments that some of the magnetites can only be formed by biogenic processes and not from thermal decomposition or shock events which happened to the meteorite. NASA s Astrobiology Institute was formed from the foundation laid by the ALH84001 hypothesis of finding life beyond the Earth. The strong astrobiology outreach programs have expanded because of

  17. LU-HF Age and Isotope Systematics of ALH84001

    NASA Technical Reports Server (NTRS)

    Righter, M.; Lapen, T. J.; Brandon, A. D.; Beard, B. L.; Shafer, J. T.; Peslier, A. H.

    2009-01-01

    Allan Hills (ALH) 84001 is an orthopyroxenite that is unique among the Martian meteorites in having the oldest inferred crystallization age (approx..4.5 to 4.0 Gyr) [e.g., 1-6 and references therein 7]. Its ancient origin makes this stone a critical constraint on early history of Mars, in particular the evolution of different planetary crust and mantle reservoirs. However, because there is significant variability in reported crystallization ages, determination of initial isotope compositions is imprecise making assessment of planetary reservoirs difficult. Here we report a new Lu-Hf mineral isochron age, initial Hf-176/Hf-177 isotope composition, and inferred Martian mantle source compositions for ALH84001 that place constraints on longlived source reservoirs for the enriched shergottite suite of Martian meteorites including Shergotty, Zagami, NWA4468, NWA856, RBT04262, LAR06319, and Los Angeles. Sm-Nd isotope analyses are under way for the same mineral aliquots analyzed for Lu-Hf. The Lu-Hf system was utilized because Lu and Hf are both lithophile and refractory and are not easily redistributed during short-lived thermal pulses associated with shock metamorphism. Moreover, chromite has relatively modest Hf concentrations with very low Lu/Hf ratios [9] yielding tight constraints on initial Hf-176/Hf-177 isotope compositions

  18. Workshop on the Issue Martian Meteorites: Where do we Stand and Where are we Going?

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The presentations in this workshop discuss the composition of Martian meteorites. Many of the talks were on a specific meteorite, i.e., Allan Hills 84001 (ALH84001). The discovery earlier of carbonates in ALH84001 lead some researchers to suggest that there was evidence of martian life. Other possible explanations for this phenomena are given. Other papers discuss methods to sterilize martian samples, the existence of water on Mars, the facilities of the Meteorite Processing Laboratory at Johnson Space Center, comparative analyses of geologic processes and the gathering of meteorites.

  19. The Origin of Magnetite Crystals in ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Wentworth, S. J.; McKay, D. S.; Gibson, E. K., Jr.

    2012-01-01

    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks believed to have formed approx 3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships between the carbonate disks, their associated magnetites and the orthopyroxene matrix in which they are embedded. Comparison of these results with experimental thermal decomposition studies of sideritic carbonates conducted under a range of heating scenarios suggests that the magnetite nanocrystals in the ALH84001 carbonate disks are not the products of thermal decomposition.

  20. Covariant C and O Isotope Trends in Some Terrestrial Carbonates and ALH 84001: Possible Linkage Through Similar Formation Processes

    NASA Technical Reports Server (NTRS)

    Volk, Kathryn E.; Niles, Paul B.; Socki, Richard A.

    2011-01-01

    Carbonate minerals found on the surface of Mars and in martian meteorites indicate that liquid water has played a significant role in the planet's history. These findings have raised questions regarding the history of the martian hydrosphere and atmosphere as well as the possibility of life. Sunset Crater, Arizona is a dry environment with relatively high evaporation and brief periods of precipitation. This environment resembles Mars and may make Sunset Crater a good analog to martian carbonates. In this study we sought to identify discrete micro-scale isotopic variation within the carbonate crusts in Sunset Crater to see if they resembled the micro-scale isotope variation found in ALH 84001 carbonates. Sunset Crater carbonate formation may be used as a martian analog and ultimately provide insight into carbonate formation in ALH 84001.

  1. Mineral Biomarkers in Martian Meteorite Allan Hills 84001?

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Bazylinski, D. A.; Wentworth, S. J.; McKay, D. S.; Golden, D. C.; Gibson, E. K., Jr.; Romanek, C. S.

    1998-01-01

    The occurrence of fine-grained magnetite in the Fe-rich rims surrounding carbonate globules in the martian meteorite ALH84001, originally described in , have been proposed as fossil remains of primitive martian organisms. Here we report observations on size and shape distributions of magnetites from ALH84001 and compare them to biogenic and inorganic magnetite crystals of terrestrial origin. While some magnetite morphology is not unequivocally diagnostic for its biogenicity, such as cubodial forms of magnetite, which are common in inorganically formed magnetites, other morphologies of magnetite (parallel-epiped or elongated prismatic and arrowhead forms) are more likely signatures of biogenic activity. Some ALH 84001 magnetite particles described below have unique morphology and length-to-width ratios that are indistinguishable from a variety of terrestrial biogenic magnetite and distinct from all known inorganic forms of magnetite.

  2. Martian Meteorite Ages and Implications for Martian Cratering History

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.

    2006-01-01

    New radiometrically determined ages of Martian meteorites add to the growing number with crystallization ages < 1.4 Ga. The observation of mainly geologically young ages for the Martian meteorites, the only exception being the 4.5 Ga ALH84001 [1], is paradoxical when viewed in context of a Martian surface thought to be mostly much older as inferred from the surface density of meteorite craters [2]. There appears to be at least a twofold difference between the observed ages of Martian meteorites and their expected ages as inferred from the ages of Martian surfaces obtained from crater densities.

  3. Determination of the Three-Dimensional Morphology of ALH84001 and Biogenic MV-1 Magnetite: Comparison of Results from Electron Tomography and Classical Transmission Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Schwartz, Cindy; Morphew, Mary; McIntosh, J. Richard; Bazylinski, Dennis A.; Kirschvink, Joseph L.; Wentworth, Susan J.; McKay, David S.; Vali, Hojatollah

    2004-01-01

    Dated at approximately 3.9 billion years of age, carbonate disks, found within fractures of the host rock of Martian meteorite ALH84001, have been interpreted as secondary minerals that formed at low temperature in an aqueous medium. Heterogeneously distributed within these disks are magnetite nanocrystals that are of Martian origin. Approximately one quarter of these magnetites have morphological and chemical similarities to magnetite particles produced by magnetotactic bacteria strain MV-1, which are ubiquitous in aquatic habitats on Earth. Moreover, these types of magnetite particles are not known or expected to be produced by abiotic means either through geological processes or synthetically in the laboratory. The remaining three quarters of the ALH84001 magnetites are likely products of multiple processes including, but not limited to, precipitation from a hydrothermal fluid, thermal decomposition of the carbonate matrix in which they are embedded, and extracellular formation by dissimilatory Fe-reducing bacteria. We have proposed that the origins of magnetites in ALH84001 can be best explained as the products of multiple processes, one of which is biological. Recently the three-dimensional (3-D) external morphology of the purported biogenic fraction of the ALH84001 magnetites has been the subject of considerable debate. We report here the 3-D geometry of biogenic magnetite crystals extracted from MV-1 and of those extracted from ALH84001 carbonate disks using a combination of high resolution classical and tomographic transmission electron microscopy (TEM). We focus on answering the following questions: (1) which technique provides adequate information to deduce the 3-D external crystal morphology?; and, (2) what is the precise 3-D geometry of the ALH84001 and MV-1 magnetites?

  4. Microdistributions of Rb and Sr in ALH84001 carbonates: Chronological implications for secondary alteration on Mars

    SciTech Connect

    Wadhwa, M.; Sutton, S.R.; Flynn, G.J.

    2005-04-22

    Concentrations of Rb and Sr were analyzed on the micron-scale in various compositional zones of the ALH84001 carbonates. Implications of the measured Rb/Sr ratios for the chronology of these carbonates are discussed. ALH84001 is unique among the Martian meteorites in that it has an ancient crystallization age of {approx}4.5 Ga defined by Sm-Nd isotope systematics. Another aspect that differentiates this Martian meteorite from the others is the presence of Ca-Fe-Mg carbonates (modal abundance {approx}1%) that are thought to have been precipitated during alteration in a near-surface environment. Precise age dating of these carbonates is important since it could provide constraints on the timing of surficial secondary alteration processes on Mars. However, this has been a challenging problem owing to the relatively small abundance of the carbonates in ALH84001 and because these carbonates are difficult to separate from the other minerals in the rock by physical and chemical means. Previous investigations have attempted to separate the carbonates by leaching of carbonate-rich mineral fractions. The single 'bulk carbonate' fraction analyzed by Wadhwa and Lugmair was characterized by a low {sup 87}Rb/{sup 86}Sr ratio of {approx}0.05, the lowest of any mineral in ALH84001, and the corresponding Rb-Sr age estimate ({approx}1.39 Ga) was dependent on the assumption of isotopic equilibrium between the carbonates and plagioclase. As pointed out by Borg et al., such an assumption may not be assured and, therefore, they obtained multiple carbonate-rich leachates with a range of {sup 87}Rb/{sup 86}Sr ratios (0.12-2.62) from which they estimated an age of {approx}3.9 Ga. Although these authors performed painstaking chemical characterization to determine contributions in the leachates from minerals such as phosphates and silicates, it is nevertheless difficult to positively rule out contributions from other as yet unidentified phases. Therefore, the goal of the present

  5. The Microbiological Contamination of Meteorites: A Null Hypothesis

    NASA Technical Reports Server (NTRS)

    Steele, A.; Toporski, J. K. W.; Westall, F. W.; Thomas-Keprta, K.; Gibson, E. K.; Avci, R.; Whitby, C.; McKay, D. S.; Griffin, C.

    2000-01-01

    Using 4 different techniques we have studied 9 meteorites including the Martian meteorites ALH84001 and Nakhla for terrestrial contamination in all 9 we have found evidence of terrestrial microorganisms.

  6. High-Resolution Multiple Sulfur Isotope Studies of Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Mojzsis, S. J.

    2000-01-01

    Sensitive, high resolution measurements of S-32, S-31, and S-34 in individual pyrite grains in martian meteorite ALH84001 by an in situ ion microprobe multi-collection technique reveal mass-independent anomalies in Delta.S-33 (Delta.S-33 = delta.S-33 - 0.516delta.S-34) in addition to the lowest 634S found in an extraterrestrial material. Low delta.S-34 values in two pyrite grains intimately associated with carbonate in ALH84001 can be explained by the sensitivity of sulfur to fractionations in the geologic environment. Anomalies in Delta.S-33 recorded in ALH84001 pyrites probably formed by gas-phase reactions in the early martian atmosphere (>4 Ga). The discovery of clearly resolvable Delta-S33 anomalies in 2 of 12 ALH84001 pyrites analyzed in their petrographic context in thin section, is considered strong evidence for crust-atmosphere exchange and the global cycling of volatile sulfur species on early Mars. These results corroborate previous measurements by Farquhar and co-workers who used a different technique that measures that bulk Delta.S-33 values of martian meteorites. These independent techniques, and their results, suggest that sulfur affected by mass-independent fractionation is common on Mars.

  7. Martian Meteorites Record Surface Temperatures on Mars

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2005-07-01

    Using published data for argon (Ar) released when Martian meteorites are heated, David Shuster (California Institute of Technology, now at Berkeley Geochronology Center, Berkeley, CA) and Benjamin Weiss (Massachusetts Institute of Technology) show that the nakhlite group of Martian meteorites and unique Martian meteorite ALH 84001 were probably not heated above about 0 degree C for most of their histories. This indicates that the surface of Mars has been cold for almost four billion years. If a warm, wet environment existed on Mars (inferred from previous studies of surface features and geochemical parameters), it occurred before four billion years ago.

  8. Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Bazylinski, D. A.; Kirschvink, J. L.; McKay, D. S.; Wentworth, S. J.; Vali, H.; Gibson, E. K. Jr; McKay, M. F.; Romanek, C. S.

    2001-01-01

    McKay et al. [(1996) Science 273, 924-930] suggested that carbonate globules in the meteorite ALH84001 contained the fossil remains of Martian microbes. We have characterized a subpopulation of magnetite (Fe(3)O(4)) crystals present in abundance within the Fe-rich rims of these carbonate globules. We find these Martian magnetites to be both chemically and physically identical to terrestrial, biogenically precipitated, intracellular magnetites produced by magnetotactic bacteria strain MV-1. Specifically, both magnetite populations are single-domain and chemically pure, and exhibit a unique crystal habit we describe as truncated hexa-octahedral. There are no known reports of inorganic processes to explain the observation of truncated hexa-octahedral magnetites in a terrestrial sample. In bacteria strain MV-1 their presence is therefore likely a product of Natural Selection. Unless there is an unknown and unexplained inorganic process on Mars that is conspicuously absent on the Earth and forms truncated hexa-octahedral magnetites, we suggest that these magnetite crystals in the Martian meteorite ALH84001 were likely produced by a biogenic process. As such, these crystals are interpreted as Martian magnetofossils and constitute evidence of the oldest life yet found.

  9. Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures.

    PubMed

    Thomas-Keprta, K L; Clemett, S J; Bazylinski, D A; Kirschvink, J L; McKay, D S; Wentworth, S J; Vali, H; Gibson, E K; McKay, M F; Romanek, C S

    2001-02-27

    McKay et al. [(1996) Science 273, 924-930] suggested that carbonate globules in the meteorite ALH84001 contained the fossil remains of Martian microbes. We have characterized a subpopulation of magnetite (Fe(3)O(4)) crystals present in abundance within the Fe-rich rims of these carbonate globules. We find these Martian magnetites to be both chemically and physically identical to terrestrial, biogenically precipitated, intracellular magnetites produced by magnetotactic bacteria strain MV-1. Specifically, both magnetite populations are single-domain and chemically pure, and exhibit a unique crystal habit we describe as truncated hexa-octahedral. There are no known reports of inorganic processes to explain the observation of truncated hexa-octahedral magnetites in a terrestrial sample. In bacteria strain MV-1 their presence is therefore likely a product of Natural Selection. Unless there is an unknown and unexplained inorganic process on Mars that is conspicuously absent on the Earth and forms truncated hexa-octahedral magnetites, we suggest that these magnetite crystals in the Martian meteorite ALH84001 were likely produced by a biogenic process. As such, these crystals are interpreted as Martian magnetofossils and constitute evidence of the oldest life yet found.

  10. Mineralization of Bacteria in Terrestrial Basaltic Rocks: Comparison With Possible Biogenic Features in Martian Meteorite Allan Hills 84001

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; McKay, D. S.; Wentworth, S. J.; Stevens, T. O.; Taunton, A. E.; Allen, C. C.; Gibson, E. K., Jr.; Romanek, C. S.

    1998-01-01

    The identification of biogenic features altered by diagenesis or mineralization is important in determining whether specific features in terrestrial rocks and in meteorites may have a biogenic origin. Unfortunately, few studies have addressed the formation of biogenic features in igneous rocks, which may be important to these phenomena, including the controversy over possible biogenic features in basaltic martian meteorite ALH84001. To explore the presence of biogenic features in igneous rocks, we examined microcosms growing in basaltic small-scale experimental growth chambers or microcosms. Microbial communities were harvested from aquifers of the Columbia River Basalt (CRB) group and grown in a microcosm containing unweathered basalt chips and groundwater (technique described in. These microcosms simulated natural growth conditions in the deep subsurface of the CRB, which should be a good terrestrial analog for any putative martian subsurface ecosystem that may have once included ALH84001. Here we present new size measurements and photomicrographs comparing the putative martian fossils to biogenic material in the CRB microcosms. The range of size and shapes of the biogenic features on the CRB microcosm chips overlaps with and is similar to those on ALH84001 chips. Although this present work does not provide evidence for the biogenicity of ALH84001 features, we believe that, based on criteria of size, shape, and general morphology, a biogenic interpretation for the ALH84001 features remains plausible.

  11. Evidence for a Second Generation of Magnesite in Martian Meteorite Allan Hills 84001

    NASA Technical Reports Server (NTRS)

    Corrigan, C. M.; Harvey, R. P.

    2003-01-01

    Single-stage formation mechanisms for carbonate and other secondary minerals in ALH84001 are rapidly being revised to include multiple stages of carbonate growth and later thermal and mechanical events including alteration. In an effort to confirm some of these more complex histories we have been studying carbonate-bearing regions within this meteorite. Magnesitic carbonates found in contact with unique 'slab' carbonates in two thin sections of ALH84001 show indications of being of a later generation. The results of our observations help clarify the origins of the carbonate and related minerals in ALH84001, and how these minerals can be used to understand the history of interactions between the martian crust and its volatile inventory.

  12. Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/ 39Ar thermochronometry of Martian meteorites

    NASA Astrophysics Data System (ADS)

    Cassata, William S.; Shuster, David L.; Renne, Paul R.; Weiss, Benjamin P.

    2010-12-01

    The thermal histories of Martian meteorite are important for the interpretation of petrologic, geochemical, geochronological, and paleomagnetic constraints that they provide on the evolution of Mars. In this paper, we quantify 40Ar/ 39Ar ages and Ar diffusion kinetics of Martian meteorites Allan Hills (ALH) 84001, Nakhla, and Miller Range (MIL) 03346. We constrain the thermal history of each meteorite and discuss the resulting implications for their petrology, paleomagnetism, and geochronology. Maskelynite in ALH 84001 yields a 40Ar/ 39Ar isochron age of 4163 ± 35 Ma, which is indistinguishable from recent Pb-Pb ( Bouvier et al., 2009a) and Lu-Hf ages ( Lapen et al., 2010). The high precision of this result arises from clear resolution of a reproducible trapped 40Ar/ 36Ar component in maskelynite in ALH 84001 ( 40Ar/ 36Ar = 632 ± 90). The maskelynite 40Ar/ 39Ar age predates the Late Heavy Bombardment and likely represents the time at which the original natural remanent magnetization (NRM) component observed in ALH 84001 was acquired. Nakhla and MIL 03346 yield 40Ar/ 39Ar isochron ages of 1332 ± 24 and 1339 ± 8 Ma, respectively, which we interpret to date crystallization. Multi-phase, multi-domain diffusion models constrained by the observed Ar diffusion kinetics and 40Ar/ 39Ar age spectra suggest that localized regions within both ALH 84001 and Nakhla were intensely heated for brief durations during shock events at 1158 ± 110 and 913 ± 9 Ma, respectively. These ages may date the marginal melting of pyroxene in each rock, mobilization of carbonates and maskelynite in ALH 84001, and NRM overprints observed in ALH 84001. The inferred peak temperatures of the shock heating events (>1400 °C) are sufficient to mobilize Ar, Sr, and Pb in constituent minerals, which may explain some of the dispersion observed in 40Ar/ 39Ar, Rb-Sr, and U-Th-Pb data toward ages younger than ˜4.1 Ga. The data also place conservative upper bounds on the long-duration residence

  13. Bulk and Stable Isotopic Compositions of Carbonate Minerals in Martian Meteorite Allan Hills 84001: No Proof of High Formation Temperature

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Romanek, Christopher S.

    1998-01-01

    Understanding the origin of carbonate minerals in the Martian meteorite Allan Hills (ALH) 84001 is crucial to evaluating the hypothesis that they contain traces of ancient Martian life. Using arguments based on chemical equilibria among carbonates and fluids, an origin at greater than 650 C (inimical to life) has been proposed. However, the bulk and stable isotopic compositions of the carbonate minerals are open to multiple interpretations and so lend no particular support to a high-temperature origin. Other methods (possibly less direct) will have to be used to determine the formation temperature of the carbonates in ALH 84001.

  14. New Insights into the Origin of Magnetite Crystals in ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keptra, Katie L.; Clemett, S. J.; Wentworth S. J.; Mckay, D. S.; Gibson, E. K., Jr.

    2010-01-01

    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks believed to have formed approx.3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose ori gins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated: that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships between the carbonate disks, their associated magnetites and the orthopyroxene matrix in which they are embedded [1]. Comparison of these results with experimental thermal decomposition studies of sideritic carbonates conducted under a range of heating scenarios suggests that the magnetite nanocrystals in the ALH84001 carbonate disks are not the products of thermal decomposition.

  15. New insights into the origin of magnetite crystals in ALH84001 carbonate disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Wentworth, S. J.; McKay, D. S.; Gibson, E. K.

    2009-01-01

    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks which are believed to have precipitated approximately 3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these Fe3O4 are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of Fe3O4 and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded. We focus this discussion on the composition of ALH84001 magnetites and then compare these observations with those from experimental thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios.

  16. A younger age for ALH84001 and its geochemical link to shergottite sources in Mars.

    PubMed

    Lapen, T J; Righter, M; Brandon, A D; Debaille, V; Beard, B L; Shafer, J T; Peslier, A H

    2010-04-16

    Martian meteorite ALH84001 (ALH) is the oldest known igneous rock from Mars and has been used to constrain its early history. Lutetium-hafnium (Lu-Hf) isotope data for ALH indicate an igneous age of 4.091 +/- 0.030 billion years, nearly coeval with an interval of heavy bombardment and cessation of the martian core dynamo and magnetic field. The calculated Lu/Hf and Sm/Nd (samarium/neodymium) ratios of the ALH parental magma source indicate that it must have undergone extensive igneous processing associated with the crystallization of a deep magma ocean. This same mantle source region also produced the shergottite magmas (dated 150 to 570 million years ago), possibly indicating uniform igneous processes in Mars for nearly 4 billion years.

  17. Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice

    SciTech Connect

    Becker, L. |; Glavin, D.P.; Bada, J.L.

    1997-01-01

    Recent analyses of the carbonate globules present in the Martian meteorite ALH84001 have detected polycyclic aromatic hydrocarbons (PAHs) at the ppm level. The distribution of PAHs observed in ALH84001 was interpreted as being inconsistent with a terrestrial origin and were claimed to be indigenous to the meteorite, perhaps derived from an ancient martian biota. We have examined PAHs in the Antarctic shergottite EETA79001, which is also considered to be from Mars, as well as several Antarctic carbonaceous chondrites. We have found that many of the same PAHs detected in the ALH84001 carbonate globules are present in Antarctic carbonaceous chondrites and in both the matrix and carbonate (druse) component of EETA79001. We also investigated PAHs in polar ice and found that carbonate is an effective scavenger of PAHs in ice meltwater. Moreover, the distribution of PAHs in the carbonate extract of Antarctic Allan Hills ice is remarkably similar to that found in both EETA79001 and ALH84001. The reported presence of L-amino acids of apparent terrestrial origin in the EETA79001 druse material suggests that this meteorite is contaminated with terrestrial organics probably derived from Antarctic ice meltwater that had percolated through the meteorite. Our data suggests that the PAHs observed in both ALH84001 and EETA79001 are derived from either the exogenous delivery of organics to Mars or extraterrestrial and terrestrial PAHs present in the ice meltwater or, more likely, from a mixture of these sources. It would appear that PAHs are not useful biomarkers in the search for extinct or extant life on Mars. 33 refs., 3 figs., 1 tab.

  18. High Resolution Chemical Study of ALH84001

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Douglas, Susanne; Kuhlman, Kimberly R.

    2001-01-01

    We have studied the chemistry of a sample of the SNC meteorite ALH84001 using an environmental scanning electron microscope (ESEM) with an energy dispersive chemical analytical detector and a focused ion beam secondary ion mass spectrometer (FIB-SIMS). Here we present the chemical data, both spectra and images, from two techniques that do not require sample preparation with a conductive coating, thus eliminating the possibility of preparation-induced textural artifacts. The FIB-SIMS instrument includes a column optimized for SEM with a quadrupole type mass spectrometer. Its spatial and spectral resolution are 20 nm and 0.4 AMU, respectively. The spatial resolution of the ESEM for chemical analysis is about 100 nm. Limits of detection for both instruments are mass dependent. Both the ESEM and the FIB-SIMS instrument revealed contrasting surficial features; crumbled, weathered appearance of the matrix in some regions as well as a rather ubiquitous presence of euhedral halite crystals, often associated with cracks or holes in the surface of the rock. Other halogen elements present in the vicinity of the NaCl crystals include K and Br. In this report, elemental inventories are shown as mass spectra and as X-ray maps.

  19. The Hydrological Cycle on Mars as Inferred from the Multi O-isotopic Composition of Carbonates in ALH84001

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Niles, P. B.; Chong, K.; Thiemens, M. H.

    2011-12-01

    Carbonate minerals provide valuable record of the atmosphere in which they are formed. This work utilizes C and O triple isotopic compositions of the carbonate minerals found in ALH84001 to explore the interaction between atmosphere-hydrosphere and lithosphere. The origin of carbonates found in the Martian meteorite ALH84001 (<1%) is heavily debated with low temperature aqueous precipitation, biogenic production, evaporative processes, high temperature reactions, and impact induced melting and reprecipitation are all candidate processes. These carbonates are heterogeneous chemically (Mg, Ca and Fe-Mn rich) and isotopically (δ13CPDB = +27 to 46 %; δ18OVSMOW = +9.5 to 20.6%) on micrometer scales. Our stepped phosphoric acid dissolution experiments released CO2 from multiple phases of Martian carbonate in the rock (12h acid digestion at 25o C for Ca rich phase and 3h acid digestion at 150oC for Mg rich phase). Both Ca and Mg rich phases showed 0.7% excess 17O (Δ17O = δ17O - 0.52δ18O) in contrast to terrestrial carbonate minerals formed by surficial weathering of the meteorite with no oxygen isotopic anomaly Δ17O ≈ 0 (one hour acid digestion at 25o C). The newly identified Ca-rich carbonate phase is 18O enriched (δ18O = +25%) in contrast to all of the other Ca-rich carbonates previously described. It also contains excess 17O (Δ17O = 0.7%) indicating incorporation of oxygen from an atmospheric source of Martian origin. These oxygen isotope characteristics differentiate this phase from the more commonly described carbonate globules or rosettes and suggest formation from separate aqueous event. This is confirmed by the carbon isotope composition of this new carbonate phase (δ13C= +20%) which differs from the other Martian carbonates in the meteorite and from terrestrial sources. This difference may be an evidence of the long term evolution of carbon isotopes in the atmosphere of Mars. The discovery of highly enriched (O isotopes) Ca-rich phase of Martian

  20. Statistical Analyses Comparing Prismatic Magnetite Crystals in ALH84001 Carbonate Globules with those from the Terrestrial Magnetotactic Bacteria Strain MV-1

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Wentworth, Susan J.; Vali, H.; Gibson, Everett K.

    2000-01-01

    Here we use rigorous mathematical modeling to compare ALH84001 prismatic magnetites with those produced by terrestrial magnetotactic bacteria, MV-1. We find that this subset of the Martian magnetites appears to be statistically indistinguishable from those of MV-1.

  1. FTIR Analysis of Water in Pyroxene and Plagioclase in ALH 84001 and Nakhlites

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.; Cintala, M. J.; Montes, R.; Cardenas, F.

    2016-01-01

    Determining the volatile budget of the interior of Mars is crucial for our understanding of that planet's formation, geodynamics, cooling history and the origin of its volcanism and atmosphere as well as its potential for life. Surficial water is evident from spacecraft and rover data in polar caps and the atmosphere, in the presence of river channels, and in the detection of water-bearing minerals. Meteorites, however, are our best candidates for estimating the amount of water present at depth, even if all are crustal samples. The last 10 years have seen a blooming of studies measuring water and halogens in Martian meteorites. The bulk of these studies target phosphate, a typically late-stage phase in the igneous Martian meteorites that potentially would concentrate incompatible element hydrogen (H quantified traditionally as "water", i.e., H2O concentrations in weight) near the end of the crystallization sequence. However, determining the amount of water, F, and Cl in the magma from which a phosphate crystallized from is not straightforward and in most instances not possible. On the other hand, phosphates have turned out to be very useful in identifying hydrothermal processes that could have added water while or after the magma flowed and crystallized. Another caveat of analyzing Martian meteorite phases for water is that shocked phases such as maskelynite and impact melts appear to have incorporated water from the Martian atmosphere, as evidenced by high H isotope ((delta)D) signatures, and therefore their water concentrations cannot be interpreted in terms of deep planetary processes. The best candidates for estimating the water content of the Martian interior have been melt inclusions (glass or amphibole-bearing) which the enclosing mineral (usually olivine) would have prevented from exchanging volatiles with the surroundings after crystallization. Even some of these, however, have high (delta)D, meaning they were affected by H exchange via impact events or

  2. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  3. Nature of Reduced Carbon in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K., Jr.; McKay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.; White, L. M.

    2012-01-01

    Martian meteorites provide important information on the nature of reduced carbon components present on Mars throughout its history. The first in situ analyses for carbon on the surface of Mars by the Viking landers yielded disappointing results. With the recognition of Martian meteorites on Earth, investigations have shown carbon-bearing phases exist on Mars. Studies have yielded presence of reduced carbon, carbonates and inferred graphitic carbon phases. Samples ranging in age from the first approximately 4 Ga of Mars history [e.g. ALH84001] to nakhlites with a crystallization age of 1.3 Ga [e.g. Nakhla] with aqueous alteration processes occurring 0.5-0.7 Ga after crystallizaton. Shergottites demonstrate formation ages around 165-500 Ma with younger aqueous alterations events. Only a limited number of the Martian meteorites do not show evidence of significance terrestrial alterations. Selected areas within ALH84001, Nakhla, Yamato 000593 and possibly Tissint are suitable for study of their indigenous reduced carbon bearing phases. Nakhla possesses discrete, well-defined carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of Nakhla's organic phases the presence of pre-terrestrial organics is now recognized. The reduced carbon-bearing phases appear to have been deposited during preterrestrial aqueous alteration events that produced clays. In addition, the microcrystalline layers of Nakhla's iddingsite have discrete units of salt crystals suggestive of evaporation processes. While we can only speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to understand the role of Martian carbon as seen in the Martian meteorites with obvious implications for astrobiology and the pre-biotic evolution of Mars. In any case, our observations strongly suggest that reduced organic carbon exists as micrometer- size, discrete structures

  4. X-ray microprobe measurements of the chemical compositions of ALH84001 carbonate globules

    SciTech Connect

    Flynn, G.J.; Sutton, S.R.; Keller, L.P.

    2004-01-28

    We measured minor element contents of carbonate from ALH84001 and report trends in tbe Ca, V, Mn and Sr in carbonate and the associated magnetite bands. McKay et al. suggested that carbonate globules in the ALH84001 meteorite from Mars contained evidence consistent with the development of bacterial life early in the history of Mars. This result provoked an extensive study of the ALH84001 meteorite. More recently Thomas-Keprta et al. have published a study showing that the magnetite associated with carbonate rims are of the size and shape produced by terrestrial bacteria. This paper has revived interest in ALH84001. The typical ALH84001 carbonate globule consists of four regions: a core of Fe-rich carbonate, a thin magnetite-rich band, a rim of Mn-rich carbonate, and another thin magnetite-rich band. Trace element analysis of each of these phases may allow us to address several important questions about these carbonates: (1) The origin of the magnetite-rich bands in the ALH84001 carbonate globules. If the magnetites are derived from the underlying carbonate through thermal decomposition (as proposed by Golden et al.), then we expect to see 'inherited' trace elements in these magnetite bands. (2) The origin of the rim carbonate, by determining whether the carbonate in the core has the same trace elements as the rim carbonates. (3) The age of the rim carbonate. Borg et al. dated the formation of the rim carbonate using the Rb/Sr chronometer. Borg et al. performed their measurements on an aliquot of what they called a high-Rb, low-Sr carbonate separate from the rim. We previously measured the trace element contents of chips from core and rim carbonates from an ALH84001 carbonate globule using an X-Ray Microprobe on Beamline X26A at the National Synchrotron Light Source. These measurements showed the rim carbonate had a very low Rb content, with Sr>>Rb, inconsistent with the {approx}5 ppm Rb reported by Borg et al. in the sample they dated by the Rb/Sr chronometer. The

  5. Thermal Decomposition of an Impure (Roxbury) Siderite: Relevance to the Presence of Chemically Pure Magnetite Crystals in ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Clemett, S.J.; Wentworth, S.J.

    2009-01-01

    The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure magnetite present in the carbonate disks in Martian meteorite ALH84001 could have formed by the thermal decomposition of the impure carbonate matrix in which they are embedded; second, the chemical purity of magnetite has been previously used to identify biogenic magnetite; and, third, previous studies of thermal decomposition of impure (Mg,Ca,Mn)-siderites, which have been investigated under a wide variety of conditions by numerous researchers, invariably yields a mixed metal oxide phase as the product and not chemically pure magnetite. The explanation for this observation is that these siderites all possess the same crystallographic structure (Calcite; R3c) so solid solutions between these carbonates are readily formed and can be viewed on an atomic scale as two chemically different but structurally similar lattices.

  6. Cosmic-ray exposure histories of Martian meteorites studied from neutron capture reactions of Sm and Gd isotopes

    NASA Astrophysics Data System (ADS)

    Hidaka, Hiroshi; Yoneda, Shigekazu; Nishiizumi, Kunihiko

    2009-11-01

    The isotopic compositions of Sm and Gd in twelve Martian meteorites, ALH 77005, ALH 84001, DaG 735, Dhofar 019, EET 79001, Lafayette, Los Angeles, Nakhla, SaU 005, Y 000593, Y 000749 and Zagami, were determined to quantify the neutron capture records of individual meteorite specimens. Seven of these twelve samples, ALH 84001, Y 000749, DaG 735, Dhofar 019, EET 79001, SaU 005 and Zagami, showed significant isotopic shifts of 150Sm/ 149Sm and/or 158Gd/ 157Gd corresponding to neutron fluences of (0.7-3.4) × 10 15 n cm - 2 . Among these seven meteorites, the neutron fluences of ALH 84001, Y 000749, and Dhofar 019 apparently correlated with their cosmic-ray exposure ages, indicating that most of the irradiation took place while the meteoroids were small bodies in space after the ejection from Mars. However, our results suggest an accumulation of their inherited irradiation occurred on Mars. On the other hand, the exposure histories of the other four meteorites (basaltic shergottites), DaG 735, EET 79001, SaU 005, and Zagami, cannot be explained as single- or multistage irradiations in space, or as a single irradiation on the Martian surface. The mixing between basaltic lava with a significantly irradiated Martian regolith is a reasonable interpretation of the excess neutron capture records observed in these four basaltic shergottites.

  7. A Younger Age for the Oldest Martian Meteorite

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2010-05-01

    The Allan Hills (ALH) 84001 Martian meteorite is famous for containing fiercely-disputed evidence for fossil life. Equally important to many cosmochemists, the meteorite also contains important information about the construction of the Martian crust by magmas derived from the interior, and the subsequent modification of those igneous rocks by large impacts and circulating water. A surprising feature of ALH 84001 has been its extremely ancient age, 4.50 billion years, as determined by samarium-neodymium (Sm-Nd) and rubidium-strontium (Rb-Sr) isotopic dating. If correct, the ancient age implies that the magma in which ALH 84001 formed intruded the primordial crust, perhaps forming in a deep ocean of magma that surrounded Mars during its initial differentiation into metallic core, rocky mantle, and primary crust. New age determinations by Thomas Lapen (University of Houston) and colleagues there and at the Johnson Space Center, the Lunar and Planetary Institute, the University of Wisconsin, and the University of Brussels, Belgium, indicate that the rock crystallized in a magma 4.091 billion years ago. They used lutetium-hafnium (Lu-Hf) isotopes in determining the new age. This isotopic system has the advantage of not being affected as readily by impact heating and water alteration as are Sm-Nd and Rb-Sr. The new age is consistent with igneous activity throughout Martian history and with a period of heavy bombardment between 4.2 and 4.1 billion years as inferred from the ages of large impact basins on Mars.

  8. Evidence for life in a martian meteorite?

    PubMed

    McSween, H Y

    1997-07-01

    The controversial hypothesis that the ALH84001 meteorite contains relics of ancient martian life has spurred new findings, but the question has not yet been resolved. Organic matter probably results, at least in part, from terrestrial contamination by Antarctic ice meltwater. The origin of nanophase magnetites and sulfides, suggested, on the basis of their sizes and morphologies, to be biogenic remains contested, as does the formation temperature of the carbonates that contain all of the cited evidence for life. The reported nonfossils may be magnetite whiskers and platelets, probably grown from a vapor. New observations, such as the possible presence of biofilms and shock metamorphic effects in the carbonates, have not yet been evaluated. Regardless of the ultimate conclusion, this controversy continues to help define strategies and sharpen tools that will be required for a Mars exploration program focused on the search for life.

  9. Microbial Alteration of Maskelynite: Implications for ALH 84001

    NASA Technical Reports Server (NTRS)

    VanCleave, K. A.; Robbins, L. L.; Bell, M. S.

    2000-01-01

    To assess the origin of Fe and Mg-enriched carbonates associated with maskelynite in ALH 84001, we are conducting experiments involving the microbial alteration of feldspathic glass and any microbially-induced precipitation which results during this process.

  10. Isotopic Composition of Trapped and Cosmogenic Noble Gases in Several Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Garrison, Daniel H.; Bogard, Donald D.

    1997-01-01

    Isotopic abundances of the noble gases were measured in the following Martian meteorites: two shock glass inclusions from EET79001, shock vein glass from Shergotty and Y793605, and whole rock samples of ALH84001 and QUE94201. These glass samples, when combined with literature data on a separate single glass inclusion from EET79001 and a glass vein from Zagami, permit examination of the isotopic composition of Ne, Ar, Kr, and Xe trapped from the Martian atmosphere in greater detail. The isotopic composition of Martian Ne, if actually present in these glasses, remains poorly defined. The Ar-40/Ar-36 ratio of Martian atmospheric Ar may be much less than the ratio measured by Viking and possibly as low as approx. 1900. The atmospheric Ar-36/Ar-38 ratio is less than or equal to 4.0. Martian atmospheric Kr appears to be enriched in lighter isotopes by approx. 0.4%/amu compared to both solar wind Kr and to the Martian composition previously reported. The Martian atmospheric Ar-36/Xe-132 and Kr-84/Xe-132 Xe elemental ratios are higher than those reported by Viking by factors of approx. 3.3 and approx. 2.5, respectively. Cosmogenic gases indicate space exposure ages of 13.9 +/- 1 Myr for ALH84001 and 2.7 +/- 0.6 Myr for QUE94201. Small amounts of Ne-21 produced by energetic solar protons may be present in QUE94201, but are not present in ALH84001 or Y793605. The space exposure age for Y793605 is 4.9 +/- 0.6 Myr and appears to be distinctly older than the ages for basaltic shergottites.

  11. Hydrothermal Origin for Carbonate Globules in ALH84001 by Analogy with Similar Carbonates from Spitsbergen (Norway)

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Amundsen, H. E. F.; Blake, D. F.; Bunch, T.

    2002-01-01

    Basalts and xenoliths from Spitsbergen (Norway) contain carbonate globules nearly identical to those in ALH84001. The Spitsbergen globules formed from hydrothermal waters by analogy, so did those in ALH84001. Additional information is contained in the original extended abstract.

  12. Northwest Africa 8159: New Type of Martian Meteorite

    NASA Astrophysics Data System (ADS)

    Agee, C. B.; Muttik, N.; Ziegler, K. G.; Walton, E. L.; Herd, C. D. K.; McCubbin, F. M.; Santos, A. R.; Simon, J. I.

    2014-12-01

    Up until recently the orthopyroxenite ALH 84001 and basaltic breccia NWA 7034 were the only martian meteorites that did not fit within the common SNC types. However with the discovery of Northwest Africa (NWA) 8159, the diversity is expanded further with a third unique non-SNC meteorite type. The existence of meteorite types beyond the narrow range seen in SNCs is what might be expected from a random cratering sampling of a volcanically long-lived and geologically complex planet such as Mars. NWA 8159, a fine-grained, augite basalt, is a new type of martian meteorite, with SNC-like oxygen isotopes and Fe/Mn values, but having several characteristics that make it distinct from other known martian meteorite types. NWA 8159 is the only martian basalt type known to have augite as the sole pyroxene phase in its mineralogy. NWA 8159 is unique among martian meteorites in that it possesses both crystalline plagioclase and shock amorphized plagioclase, often observed within a single grain, the bracketing of plagioclase amorphization places the estimated peak shock pressures at >15 GPa and <23 GPa. Magnetite in NWA 8159 is exceptionally pure, whereas most martian meteorites contain solid-solution titano-magnetites, and this pure magnetite is a manifestation of the highest oxygen fugacity (fO2) yet observed in a martian meteorite. Although NWA 8159 has the highest fO2 of martian meteorites, it has a pronounced light rare earth (LREE) depletion pattern similar to that of very low fO2 basaltic shergottites such as QUE 94201. Thus NWA 8159 displays a striking exception to well documented correlation between fO2 and LREE patterns in SNC meteorites. Finally, NWA 8159 stands apart from other martian meteorites in that it has an an early Amazonian age that is not represented in the SNCs, ALH 84001, or the NWA 7034 pairing group. NWA 8159 appears to be from an eruptive flow or shallow intrusion that is petrologically distinct from shergottite basalts, and its crystallization age

  13. Covariant C and O Isotope Trends in Arctic Carbonate Crusts and ALH 84001: Potential Biomarker or Indicator of Cryogenic Formation Environment?

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Blake, Weston; Leveille, Richard

    2009-01-01

    This work seeks to use the chemical, isotopic, and mineralogical characteristics of secondary carbonate minerals produced during brief aqueous events to identify the conditions of the aqueous environment in which they formed. Liquid water near the surface of Mars is subject to either rapid freezing and/or evaporation. These processes are also active on Earth, and produce secondary minerals that have complex chemical, mineralogical, and isotopic textures and compositions that can include covariant relationships between Delta C-13 (sub VPDB) and delta O-18 (sub VSMOW). The extremely well studied four billion year old carbonates preserved in martian meteorite ALH 84001 also show covariant delta C-13 and delta O-18 compositions, but these variations are manifested on a micro-scale in a single thin section while the variation observed so far in terrestrial carbonates is seen between different hand samples.

  14. Organic Carbon Exists in Mars Meteorites: Where is it on the Martian Surface?

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Clemett, S. J.; Gibson, E. K., Jr.; Thomas-Keprta, K. L.; Wentworth, S. J.

    2010-01-01

    The search for organic carbon on Mars has been a major challenge. The first attempt was the Viking GC-MS in situ experiment which gave inconclusive results at two sites oil. After the discovery that the SNC meteorites were from Mars, reported C isotopic compositional information which suggested a reduced C component present in the Martian meteorites reported the presence of reduced C components (i.e., polycyclic aromatic hydrocarbons) associated with the carbonate globules in ALH84001. Jull et al. noted in Nakhla there was acid insoluble C component present with more than 75% of its C lacking any C-14, which is modern-day terrestrial carbon. This C fraction was believed to be either indigenous martian or ancient meteoritic carbon. Fisk et al. have shown textural evidence along with C-enriched areas within fractures in Nakhla and ALH84001. Westall et al. have shown the presence of a large irregular fragment of organic material completely embedded within a chip of ALH84001. Interior samples from the Naklnla SNC made available by the British Museum of Natural History, were analyzed. Petrographic examination of Nakhla showed evidence of fractures (approx.0.5 microns wide) filled with dark brown to black dendritic material with characteristics similar to those observed by. Iddingsite is also present along fractures in olivine. Fracture filling and dendritic material was examined by SEM-EDX, TEM-EDX, Focused Electron Beam microscopy, Laser Raman Spectroscopy, Nano-SIMS Ion Micro-probe, and Stepped-Combustion Static Mass Spectrometry. Observations from the first three techniques are discussed.

  15. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Vali, Hojatollah; Gibson, Everett K., Jr.; Romanek, Christopher S.

    2005-01-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. A prerequisite is that a detailed characterization of the chemical and physical properties of the carbonate be established. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy. Our results suggest that the formation of ALH84001 carbonate assemblages were produced by considerably more complex process(es) than simple aqueous precipitation followed by partial thermal decomposition as proposed by other investigators [e.g., 1-3].

  16. Alteration Products and Secondary Minerals in Martian Meteorite Allan Hills 84001

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Thomas-Keprta, K. L.; McKay, D. S.

    1998-01-01

    The martian meteorites contain alteration products and secondary minerals that are a critical part of understanding their near-surface histories on both Mars and Earth. In some martian meteorites, suspected martian preterrestrial alteration products can be distinguished from terrestrial weathering effects Using scanning electron microscopy (SEM), field emission SEM (FE-SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray analysis (EDS), we are studying natural fracture surfaces of ALH 84001 chips, including samples from both the interior and the exterior of the meteorite. Exterior samples include fusion crust surfaces, which are important in determining the extent of terrestrial weathering of meteorites. The focus of this study is weathering features and secondary minerals other than the distinctive carbonate globules that continue to be studied by many researchers.

  17. Candidates source regions of martian meteorites as identified by OMEGA/MEx

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Quantin, C.; Bibring, J.-P.; Bishop, J. L.; Dyar, M. D.

    2015-09-01

    The objective of this study is to identify and map spectral analogues of some key martian meteorites (basaltic shergottites Los Angeles, Shergotty, QUE 94201, lherzolitic shergottite ALH A77005, Nakhla, Chassigny and the orthopyroxenite ALH 84001) in order to localize terrain candidates for their source regions. We develop a best fit procedure to reproduce the near-infrared (NIR) spectral properties of the martian surface as seen by the hyperspectral imaging spectrometer OMEGA/MEx from the NIR spectra of the martian meteorites. The fitting process is tested and validated, and Root Mean Square (RMS) global maps for each meteorite are obtained. It is found that basaltic shergottites have NIR spectral properties the most representative of the martian surface with the best spectral analogues found in early Hesperian volcanic provinces. Sites with spectral properties similar to those of ALH A77005 are scarce. They are mainly localized in olivine-bearing regions such as Nili Fossae and small Noachian/early Hesperian terrains. The only plausible source region candidate for Chassigny is the Nili Patera caldera dated to 1.6 Ga. Widespread spectral analogues for the ALH 84001 meteorite are found northeast of Syrtis Major and northwest of the Hellas basin. While this distribution is in agreement with the low-calcium-pyroxene-rich composition and old age (4.1 Ga) of this meteorite, the modal mineralogy of these candidates is not consistent with that of this meteorite. No convincing spectral analogue is found for the Amazonian-aged Nakhla meteorite suggesting that its olivine/high-calcium-pyroxene-rich composition could be representative of the Amazonian terrains buried under dust. Finally, some young rayed craters are proposed as possible candidates for source craters of the studied martian meteorites.

  18. Investigations into an unknown organism on the martian meteorite Allan Hills 84001.

    PubMed

    Steele, A; Goddard, D T; Stapleton, D; Toporski, J K; Peters, V; Bassinger, V; Sharples, G; Wynn-Williams, D D; McKay, D S

    2000-03-01

    Examination of fracture surfaces near the fusion crust of the martian meteorite Allan Hills (ALH) 84001 have been conducted using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and has revealed structures strongly resembling mycelium. These structures were compared with similar structures found in Antarctic cryptoendolithic communities. On morphology alone, we conclude that these features are not only terrestrial in origin but probably belong to a member of the Actinomycetales, which we consider was introduced during the Antarctic residency of this meteorite. If true, this is the first documented account of terrestrial microbial activity within a meteorite from the Antarctic blue ice fields. These structures, however, do not bear any resemblance to those postulated to be martian biota, although they are a probable source of the organic contaminants previously reported in this meteorite.

  19. Scanning Electron Microscopy Investigation of a Sample Depth Profile Through the Martian Meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Toporski, Jan; Steele, Andrew; Westall, Frances; McKay, David S.

    2000-01-01

    The ongoing scientific debate as to whether or not the Martian meteorite ALH84001 contained evidence of possible biogenic activities showed the need to establish consistent methods to ascertain the origin of such evidence. To distinguish between terrestrial organic material/microbial contaminants and possible indigenous microbiota within meteorites is therefore crucial. With this in mind a depth profile consisting of four samples from a new sample allocation of Martian meteorite Nakhla was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray analysis. SEM imaging of freshly broken fractured chips revealed structures strongly recent terrestrial microorganisms, in some cases showing evidence of active growth. This conclusion was supported by EDX analysis, which showed the presence of carbon associated with these structures, we concluded that these structures represent recent terrestrial contaminants rather than structures indigenous to the meteorite. Page

  20. Investigations into an unknown organism on the martian meteorite Allan Hills 84001

    NASA Technical Reports Server (NTRS)

    Steele, A.; Goddard, D. T.; Stapleton, D.; Toporski, J. K.; Peters, V.; Bassinger, V.; Sharples, G.; Wynn-Williams, D. D.; McKay, D. S.

    2000-01-01

    Examination of fracture surfaces near the fusion crust of the martian meteorite Allan Hills (ALH) 84001 have been conducted using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and has revealed structures strongly resembling mycelium. These structures were compared with similar structures found in Antarctic cryptoendolithic communities. On morphology alone, we conclude that these features are not only terrestrial in origin but probably belong to a member of the Actinomycetales, which we consider was introduced during the Antarctic residency of this meteorite. If true, this is the first documented account of terrestrial microbial activity within a meteorite from the Antarctic blue ice fields. These structures, however, do not bear any resemblance to those postulated to be martian biota, although they are a probable source of the organic contaminants previously reported in this meteorite.

  1. Possible Meteorites in the Martian Hills

    NASA Technical Reports Server (NTRS)

    2006-01-01

    From its winter outpost at 'Low Ridge' inside Gusev Crater, NASA's Mars Exploration Rover Spirit took this spectacular, color mosaic of hilly, sandy terrain and two potential iron meteorites. The two light-colored, smooth rocks about two-thirds of the way up from the bottom of the frame have been labeled 'Zhong Shan' and 'Allan Hills.'

    The two rocks' informal names are in keeping with the rover science team's campaign to nickname rocks and soils in the area after locations in Antarctica. Zhong Shang is an Antarctic base that the People's Republic of China opened on Feb. 26, 1989, at the Larsemann Hills in Prydz Bay in East Antarctica. Allan Hills is a location where researchers have found many Martian meteorites, including the controversial ALH84001, which achieved fame in 1996 when NASA scientists suggested that it might contain evidence for fossilized extraterrestrial life. Zhong Shan was the given name of Dr. Sun Yat-sen (1866-1925), known as the 'Father of Modern China.' Born to a peasant family in Guangdong, Sun moved to live with his brother in Honolulu at age 13 and later became a medical doctor. He led a series of uprisings against the Qing dynasty that began in 1894 and eventually succeeded in 1911. Sun served as the first provisional president when the Republic of China was founded in 1912.

    The Zhong Shan and Allan Hills rocks, at the left and right, respectively, have unusual morphologies and miniature thermal emission spectrometer signatures that resemble those of a rock known as 'Heat Shield' at the Meridiani site explored by Spirit's twin, Opportunity. Opportunity's analyses revealed Heat Shield to be an iron meteorite.

    Spirit acquired this approximately true-color image on the rover's 872nd Martian day, or sol (June 16, 2006), using exposures taken through three of the panoramic camera's filters, centered on wavelengths of 600 nanometers, 530 nanometers, and 480 nanometers.

  2. The provenance and formation of reduced carbon phases on Mars from the study of Martian meteorites.

    NASA Astrophysics Data System (ADS)

    Steele, A.; McCubbin, F. M.; Fries, M.

    2015-12-01

    Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance. Indeed, the question of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade includ- ing the Mars Science Laboratory and Mars 2020. Sev- eral Martian meteorites contain organic carbon (i.e., macromolecular reduced carbon-rich material, not nec- essarily related to biota), but there is little agreement on its origins. Initial hypotheses for the origin of this organic carbon included: terrestrial contamination; chondritic meteoritic input; thermal decomposition of Martian carbonate minerals; direct precipitation from cooling aqueous fluids; and the remains of ancient Martian biota. We report on results from the analysis of 14 martian meteorites and show the distribution of organic phases throughout the samples analyzed. We will present formation scearios for each of the types of organic matter discovered. These studies when combined show 4 possible pools of reduced carbon on Mars. 1) impact generated graphite in the Tissint meteorite, 2) secondary hydrothermal generated graphite in ALH 84001, 3) primary igneous reduced carbon in 12 Martian meteorites associated with spinel inclusions in olivine and pyroxene 4) and potentially primary hydrothermally formed organic carbon / nitrogen containing organic species in the maskelynite phases of the Tissint meteorite. These studies show that Mars has produced reduced carbon / organic carbon via several mechanisms and reveal that the building blocks of life, if not life itself, are present on Mars.

  3. What Were the Major Factors That Controlled Mineralogical Similarities and Differences of Basaltic, Lherzolitic and Clinopyroxentic Martian Meteorites Within Each Group

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Miyamoto, M.; McKay, G. A.

    1998-01-01

    Twelve martian meteorites that have been re- covered so far are classified into five groups (basalt, lherzolite, clinopyroxenite, dunite, and orthopyroxenite) mainly from petrology and chemistry. Among them, the dunite and orthopyroxenite groups consist of only one meteorite each (dunite: Chassigny, orthopyroxenite: ALH 84001). The basalt group is the largest group and consists of four meteorites (Shergotty, Zagani, EETA 79001, and QUE 94201). The lherzolitic and clinopyroxenitic groups include three meteorites each (Lherzolite: ALH 77005, LEW 88516, and Y793605, clinopyroxenite: Nakhla, Governador Valadares, and Lafayette). These meteorites within each group are generally similar to the others, but none of them is paired with the others. In this abstract, we discuss the major factors that controlled mineralogical similarities and differences of basaltic, lherzolitic, and clinopyroxenitic meteorites within each group. This may help in understanding their petrogenesis and original locations on Mars in general.

  4. Carbonates in Martian Meteorites - A Reappraisal

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Wright, I. P.; Douglas, C.; Pillinger, C. T.

    1995-09-01

    The occurrence of carbonates in martian meteorites was first established after acid dissolution and stepped combustion analyses of whole-rock Nakhla [1]. The release of CO2 after a 24 hr. reaction with 100% H3PO4 at 25 degrees C was taken to imply that the carbonate mineral present was calcite, a proposal subsequently confirmed by petrographic examination [2]. The isotopic composition of the carbon comprising the calcite was enriched in 13C (isotopically heavy) with delta^(l3)C ~ +12 per mil. An extended period of acid attack, also at 25 degrees C, released small quantities of even more 13C-enriched CO2 (delta^(13)C ~ +49 per mil), but the isotopic data were considered uncertain, and thus little significance was attached to the result, beyond the suggestion that some carbonate was perhaps dolomite or iron-bearing. Now, however, following the analysis of Fe-Mg-rich carbonates in ALH 84001 [3-5], it is apparent that previously-reported data might underestimate the abundance and delta^(13)C of carbonates in SNCs [6], and that a much higher proportion might occur as siderite or dolomite end-members. Iron- and magnesium-rich carbonates are only partially attacked at 25 degrees C, even after extended exposure to H3PO4 [7]. Given that the delta^(13)C of carbonates in SNCs has been used to deduce both environmental conditions on Mars [4, 6], and the evolution of the martian atmosphere [8], it is desirable that correct delta^(l3)c values are known. We have undertaken a reappraisal of the chemical and isotopic composition of carbonates in martian meteorites, by a programme of high resolution stepped combustion analyses and high temperature (75 degrees C) acid dissolution . Carbonates in most martian meteorites are extremely fine-grained. and therefore not easv to identify by traditional optical microscopic methods; it is not possible to determine readily the mineralogical composition of the grains. Comparison of combustion data from SNCs with that from pure materials allows

  5. An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorite through cooling of magmatic and impact-generated gases.

    PubMed

    Zolotov MYu; Shock, E L

    2000-05-01

    Thermodynamic calculations of metastable equilibria were used to evaluate the potential for abiotic synthesis of aliphatic and polycyclic aromatic hydrocarbons (PAHs) in the martian meteorite Allan Hills (ALH) 84001. The calculations show that PAHs and normal alkanes could form metastably from CO, CO2, and H2 below approximately 250-300 degrees C during rapid cooling of trapped magmatic or impact-generated gases. Depending on temperature, bulk composition, and oxidation-reduction conditions, PAHs and normal alkanes can form simultaneously or separately. Moreover, PAHs can form at lower H/C ratios, higher CO/CO2 ratios, and higher temperatures than normal alkanes. Dry conditions with H/C ratios less than approximately 0.01-0.001 together with high CO/CO2 ratios also favor the formation of unalkylated PAHs. The observed abundance of PAHs, their low alkylation, and a variable but high aromatic to aliphatic ratio in ALH 84001 all correspond to low H/C and high CO/CO2 ratios in magmatic and impact gases and can be used to deduce spatial variations of these ratios. Some hydrocarbons could have been formed from trapped magmatic gases, especially if the cooling was fast enough to prevent reequilibration. We propose that subsequent impact heating(s) in ALH 84001 could have led to dissociation of ferrous carbonates to yield fine-grain magnetite, formation of a CO-rich local gas phase, reduction of water vapor to H2, reequilibration of the trapped magmatic gases, aromatization of hydrocarbons formed previously, and overprinting of the synthesis from magmatic gases, if any. Rapid cooling and high-temperature quenching of CO-, H2-rich impact gases could have led to magnetite-catalyzed hydrocarbon synthesis.

  6. An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorite through cooling of magmatic and impact-generated gases

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    2000-01-01

    Thermodynamic calculations of metastable equilibria were used to evaluate the potential for abiotic synthesis of aliphatic and polycyclic aromatic hydrocarbons (PAHs) in the martian meteorite Allan Hills (ALH) 84001. The calculations show that PAHs and normal alkanes could form metastably from CO, CO2, and H2 below approximately 250-300 degrees C during rapid cooling of trapped magmatic or impact-generated gases. Depending on temperature, bulk composition, and oxidation-reduction conditions, PAHs and normal alkanes can form simultaneously or separately. Moreover, PAHs can form at lower H/C ratios, higher CO/CO2 ratios, and higher temperatures than normal alkanes. Dry conditions with H/C ratios less than approximately 0.01-0.001 together with high CO/CO2 ratios also favor the formation of unalkylated PAHs. The observed abundance of PAHs, their low alkylation, and a variable but high aromatic to aliphatic ratio in ALH 84001 all correspond to low H/C and high CO/CO2 ratios in magmatic and impact gases and can be used to deduce spatial variations of these ratios. Some hydrocarbons could have been formed from trapped magmatic gases, especially if the cooling was fast enough to prevent reequilibration. We propose that subsequent impact heating(s) in ALH 84001 could have led to dissociation of ferrous carbonates to yield fine-grain magnetite, formation of a CO-rich local gas phase, reduction of water vapor to H2, reequilibration of the trapped magmatic gases, aromatization of hydrocarbons formed previously, and overprinting of the synthesis from magmatic gases, if any. Rapid cooling and high-temperature quenching of CO-, H2-rich impact gases could have led to magnetite-catalyzed hydrocarbon synthesis.

  7. New Meteorite Type NWA 8159 Augite Basalt: Specimen from a Previously Unsampled Location on Mars?

    NASA Technical Reports Server (NTRS)

    Agee, C. B.; Muttik, N.; Ziegler, K.; Walton, E. L.; Herd, C. D. K.; McCubbin, F. M.; Santos, A. R.; Simon, J. I.; Peters, T. J.; Tappa, M. J.; Sanborn, M. E.; Yin, Q.-Z.

    2014-01-01

    Up until recently the orthopyroxenite ALH 84001, a singleton martian meteorite type, was the only sample that did not fit within the common SNC types. However with the discovery of the unique basaltic breccia NWA 7034 pairing group [1] the diversity of martian meteorites beyond SNC types was expanded, and now with Northwest Africa (NWA) 8159, and its possible pairing NWA 7635 [2], the diversiy is expanded further with a third unique non-SNC meteorite type. The existence of meteorite types beyond the narrow range seen in SNCs is what might be expected from a random cratering sampling of a geologically long-lived and complex planet such as Mars.

  8. Olivine and Carbonate Globules in ALH84001: A Terrestrial Analog, and Implications for Water on Mars

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.

    2005-01-01

    Carbonate globules in ALH84001 are associated with small olivine grains an unexpected finding because the olivines equilibrated at high T while the carbonate is chemically zoned and unequilibrated. A possible explanation comes from a terrestrial analog on Spitsbergen (Norway), where some carbonate globules grew in cavities left by aqueous dissolution of olivine. For ALH84001, the same process may have acted, with larger olivines dissolved out and smaller ones shielded inside orthopyroxene. Carbonate would have been deposited in holes where the olivine had been. Later shocks crushed remaining void space, and mobilized feldspathic glass around the carbonates.

  9. Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4 °C in a near-surface aqueous environment

    PubMed Central

    Halevy, Itay; Fischer, Woodward W.; Eiler, John M.

    2011-01-01

    Despite evidence for liquid water at the surface of Mars during the Noachian epoch, the temperature of early aqueous environments has been impossible to establish, raising questions of whether the surface of Mars was ever warmer than today. We address this problem by determining the precipitation temperature of secondary carbonate minerals preserved in the oldest known sample of Mars’ crust—the approximately 4.1 billion-year-old meteorite Allan Hills 84001 (ALH84001). The formation environment of these carbonates, which are constrained to be slightly younger than the crystallization age of the rock (i.e., 3.9 to 4.0 billion years), has been poorly understood, hindering insight into the hydrologic and carbon cycles of earliest Mars. Using “clumped” isotope thermometry we find that the carbonates in ALH84001 precipitated at a temperature of approximately 18 °C, with water and carbon dioxide derived from the ancient Martian atmosphere. Furthermore, covarying carbonate carbon and oxygen isotope ratios are constrained to have formed at constant, low temperatures, pointing to deposition from a gradually evaporating, subsurface water body—likely a shallow aquifer (meters to tens of meters below the surface). Despite the mild temperatures, the apparently ephemeral nature of water in this environment leaves open the question of its habitability. PMID:21969543

  10. Martian Meteorite Chronology and Effects of Impact Metamorphism (Invited)

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Blichert-Toft, J.; Albarede, F.

    2009-12-01

    Martian (SNC) meteorites provide important clues to processes of alteration or shock at the surface of the planet as many of them contain secondary phases and/or high-pressure assemblages, which are the products of aqueous alteration and impact events, respectively. They include gabbros (shergottites), pyroxenites (nakhlites), and dunites (chassignites), and a single orthopyroxenite, ALH 84001. Pb-Pb isotope systematics of Martian meteorites favor three groups of formation ages: 4.3 Ga for depleted shergottites, 4.1 Ga for ALH 84001 and intermediate and enriched shergottites, and 1.3 Ga for nakhlites and Chassigny [1]. This contrasts with the young mineral isochron ages obtained by Ar-Ar dating or phosphate-based chronometers (e.g., U-Pb, Sm-Nd). In addition to Pb-Pb isotope systematics [1], we have obtained preliminary Sm-Nd and Lu-Hf mineral isochron data for the shergottite NWA 480 and find an age of ~345 Ma in contrast to its ~4.1 Ga Pb-Pb age. For the nakhlites MIL 03346 and Yamato-000593, we find Sm-Nd and Lu-Hf ages at ~1335 Ma, consistent with their ~1.3 Ga Pb-Pb age. Hence, all shergottites unambiguously show evidence of resetting events, which is not the case for nakhlites. We interpret the young ages indicated by shergottite Rb-Sr, Sm-Nd, Lu-Hf, and U-Pb internal isochrons as recent resetting by fluids, impacts, or both. Internal isochrons date the last closure, whether initial cooling or late resetting, of the chronometric system in coexisting minerals. Problems arise in part because the carriers of the parent and daughter nuclides have been wrongly assigned to major rather than accessory minerals, and in part because, with the exception of the Pb-Pb chronometer, the rock samples have been strongly leached and, hence, the parent and daughter nuclides became fractionated in the process. The Rb-Sr, U-Pb, Sm-Nd, and Lu-Hf mineral isochrons of shergottites show young age clusters around 180, 350, 475, and 575 Ma. Each cluster of young mineral isochron ages

  11. The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology.

    PubMed

    Vecht, A; Ireland, T G

    2000-08-01

    A simple synthesis of various forms of calcium carbonate with spherical and 'floral' morphologies is reported. Vaterite formation occurs at approximately 25 degrees C, aragonite at approximately 70 degrees C and calcite at about approximately 80 degrees C. These are produced when CO2 is reacted with an aqueous solution of calcium chloride in the presence of ammonia. These conditions may have existed at the surface of Mars in the past, leading us to conclude that such mineral formations may be common there. Although the initial phases are modified over time with changing temperature and pressure conditions, they still influence the final morphology of the carbonates observed. A comparison of these structures with those found in the Martian meteorite ALH84001 suggests, but does not confirm, a non-biogenic origin for the ALH84001 carbonates.

  12. Comparing Meteorite and Spacecraft Noble Gas Measurements to Trace Processes in the Martian Crust and Atmosphere

    NASA Astrophysics Data System (ADS)

    Swindle, T. D.

    2014-12-01

    Our knowledge of the noble gas abundances and isotopic compositions in the Martian crust and atmosphere come from two sources, measurements of meteorites from Mars and in situ measurements by spacecraft. Measurements by the Viking landers had large uncertainties, but were precise enough to tie the meteorites to Mars. Hence most of the questions we have are currently defined by meteorite measurements. Curiosity's SAM has confirmed that the Ar isotopic composition of the atmosphere is highly fractionated, presumably representing atmospheric loss that can now be modeled with more confidence. What turns out to be a more difficult trait to explain is the fact that the ratio of Kr/Xe in nakhlites, chassignites and ALH84001 is distinct from the atmospheric ratio, as defined by measurements from shergottites. This discrepancy has been suggested to be a result of atmosphere/groundwater/rock interaction, polar clathrate formation, or perhaps local temperature conditions. More detailed atmospheric measurements, along with targeted simulation experiments, will be needed to make full use of this anomaly.

  13. Olivine in Martian Meteorite Allan Hills 84001: Evidence for a High-Temperature Origin and Implications for Signs of Life

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Leshin, L. A.; Adcock, C. T.

    1999-01-01

    Olivine from Martian meteorite Allan Hills (ALH) 84001 occurs as clusters within orthopyroxene adjacent to fractures containing disrupted carbonate globules and feldspathic shock glass. The inclusions are irregular in shape and range in size from approx. 40 microns to submicrometer. Some of the inclusions are elongate and boudinage-like. The olivine grains are in sharp contact with the enclosing orthopyroxene and often contain small inclusions of chromite The olivine exhibits a very limited range of composition from Fo(sub 65) to Fo(sub 66) (n = 25). The delta(sup 18)O values of the olivine and orthopyroxene analyzed by ion microprobe range from +4.3 to +5.3% and are indistinguishable from each other within analytical uncertainty. The mineral chemistries, O-isotopic data, and textural relationships indicate that the olivine inclusions were produced at a temperature greater than 800 C. It is unlikely that the olivines formed during the same event that gave rise to the carbonates in ALH 84001, which have more elevated and variable delta(sup 18)O values, and were probably formed from fluids that were not in isotopic equilibrium with the orthopyroxene or olivine The reactions most likely instrumental in the formation of olivine could be either the dehydration of hydrous silicates that formed during carbonate precipitation or the reduction of orthopyroxene and spinel If the olivine was formed by either reaction during a postcarbonate beating event, the implications are profound with regards to the interpretations of McKay et al. Due to the low diffusion rates in carbonates, this rapid, high-temperature event would have resulted in the preservation of the fine-scale carbonate zoning' while partially devolatilizing select carbonate compositions on a submicrometer scale. This may have resulted in the formation of the minute magnetite grains that McKay et al attributed to biogenic activity.

  14. The Shergottite Age Paradox and the Relative Probabilities of Ejecting Martian Meteorites of Differing Ages

    NASA Technical Reports Server (NTRS)

    Borg, L. E.; Shih, C.-Y.; Nyquist, L. E.

    1998-01-01

    The apparent paradox that the majority of impacts yielding Martian meteorites appear to have taken place on only a few percent of the Martian surface can be resolved if all the shergottites were ejected in a single event rather than in multiple events as expected from variations in their cosmic ray exposure and crystallization ages. If the shergottite-ejection event is assigned to one of three craters in the vicinity of Olympus Mons that were previously identified as candidate source craters for the SNC (Shergottites, Nakhlites, Chassigny) meteorites, and the nakhlite event to another candidate crater in the vicinity of Ceraunius Tholus, the implied ages of the surrounding terranes agree well with crater density ages. EN,en for high cratering rates (minimum ages), the likely origin of the shergottites is in the Tharsis region, and the paradox of too many meteorites from too little terrane remains for multiple shergottite-ejection events. However, for high cratering rates it is possible to consider sources for the nakhlltes which are away from the Tharsis region. The meteorite-yielding impacts may have been widely dispersed with sources of the young SNC meteorites in the northern plains, and the source of the ancient orthopyroxenite, ALH84001, in the ancient southern uplands. Oblique-impact craters can be identified with the sources of the nakhlites and the orthopyroxenite,, respectively, in the nominal cratering rate model, and with the shergottites and orthopyroxenite, respectively, in the high cratering rate model. Thus, oblique impacts deserve renewed attention as an ejection mechanism for Martian meteorites.

  15. Coordinated In Situ Nanosims Analyses of H-C-O Isotopes in ALH 84001 Carbonates

    NASA Technical Reports Server (NTRS)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2016-01-01

    The surface geology and geomorphology of Mars indicate that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. This study reports the hydrogen, carbon, and oxygen isotope compositions of the ancient atmosphere/hydrosphere of Mars based on in situ ion microprobe analyses of approximately 4 Ga-old carbonates in Allan Hills (ALH) 84001. The ALH 84001 carbonates are the most promising targets because they are thought to have formed from fluid that was closely associated with the Noachian atmosphere. While there are a number of carbon and oxygen isotope studies of the ALH 84001 carbonates, in situ hydrogen isotope analyses of these carbonates are limited and were reported more than a decade ago. Well-documented coordinated in situ analyses of carbon, oxygen and hydrogen isotopes provide an internally consistent dataset that can be used to constrain the nature of the Noachian atmosphere/hydrosphere and may eventually shed light on the hypothesis of ancient watery Mars.

  16. Possible Meteorites in the Martian Hills (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    From its winter outpost at 'Low Ridge' inside Gusev Crater, NASA's Mars Exploration Rover Spirit took this spectacular, color mosaic of hilly, sandy terrain and two potential iron meteorites. The two light-colored, smooth rocks about two-thirds of the way up from the bottom of the frame have been labeled 'Zhong Shan' and 'Allan Hills.'

    The two rocks' informal names are in keeping with the rover science team's campaign to nickname rocks and soils in the area after locations in Antarctica. Zhong Shang is an Antarctic base that the People's Republic of China opened on Feb. 26, 1989, at the Larsemann Hills in Prydz Bay in East Antarctica. Allan Hills is a location where researchers have found many Martian meteorites, including the controversial ALH84001, which achieved fame in 1996 when NASA scientists suggested that it might contain evidence for fossilized extraterrestrial life. Zhong Shan was the given name of Dr. Sun Yat-sen (1866-1925), known as the 'Father of Modern China.' Born to a peasant family in Guangdong, Sun moved to live with his brother in Honolulu at age 13 and later became a medical doctor. He led a series of uprisings against the Qing dynasty that began in 1894 and eventually succeeded in 1911. Sun served as the first provisional president when the Republic of China was founded in 1912.

    The Zhong Shan and Allan Hills rocks, at the left and right, respectively, have unusual morphologies and miniature thermal emission spectrometer signatures that resemble those of a rock known as 'Heat Shield' at the Meridiani site explored by Spirit's twin, Opportunity. Opportunity's analyses revealed Heat Shield to be an iron meteorite.

    Spirit acquired this false-color image on the rover's 872nd Martian day, or sol (June 16, 2006), using exposures taken through three of the panoramic camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers. The image is presented in false color to emphasize differences among

  17. Hydrogen in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.; Hervig, R.; Irving, T.

    2017-01-01

    Most volatile studies of Mars have targeted its surface via spacecraft and rover data, and have evidenced surficial water in polar caps and the atmosphere, in the presence of river channels, and in the detection of water bearing minerals. The other focus of Martian volatile studies has been on Martian meteorites which are all from its crust. Most of these studies are on hydrous phases like apatite, a late-stage phase, i.e. crystallizing near the end of the differentiation sequence of Martian basalts and cumulates. Moreover, calculating the water content of the magma a phosphate crystallized from is not always possible, and yet is an essential step to estimate how much water was present in a parent magma and its source. Water, however, is primarily dissolved in the interiors of differentiated planets as hydrogen in lattice defects of nominally anhydrous minerals (olivine, pyroxene, feldspar) of the crust and mantle. This hydrogen has tremendous influence, even in trace quantities, on a planet's formation, geodynamics, cooling history and the origin of its volcanism and atmosphere as well as its potential for life. Studies of hydrogen in nominally anhydrous phases of Martian meteorites are rare. Measuring water contents and hydrogen isotopes in well-characterized nominally anhydrous minerals of Martian meteorites is the goal of our study. Our work aims at deciphering what influences the distribution and origin of hydrogen in Martian minerals, such as source, differentiation, degassing and shock.

  18. Chalcophile elements in Martian meteorites indicate low sulfur content in the Martian interior and a volatile element-depleted late veneer

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Becker, Harry

    2017-04-01

    It is generally believed that the Martian mantle and core are rich in sulfur and that shergottites originated from sulfide-saturated magma. However, recent work suggests that the high FeO contents would require very high S concentrations in shergottite parent magmas at sulfide saturation. Here we combine new and published data on chalcophile elements in shergottites, nakhlites and ALH84001 to constrain the sulfide saturation state of the parent magmas and the chalcophile element concentrations in their mantle sources. Regardless of the MgO content and the long-term depletion history of incompatible lithophile elements as indicated by initial ε143Nd, different groups of shergottites display limited variations in ratios of Pt, Pd, Re, Cu, S, Se and Te. The emplacement of most shergottites within the crust and limited variations of ratios of chalcophile elements with substantial differences in volatility during eruption (e.g., Cu/S, Cu/Se and Pt/Re) indicate little degassing losses of S, Se, Te and Re from shergottites. Limited variations in ratios of elements with very different sulfide-silicate melt partition coefficients and negative correlations of chalcophile elements with MgO require a sulfide-undersaturated evolution of the parent magmas from mantle source to emplacement in the crust, consistent with the FeO-based argument. Sulfide petrography and the komatiite-like fractionation of platinum group elements (PGE) in shergottites also support this conclusion. The absence of accumulated sulfides in the ancient Martian cumulate ALH84001 results in very low contents of PGE, Re, Cu, Se and Te in this meteorite, hinting that sulfide-undersaturated magmas may have occurred throughout the Martian geological history. The negative correlation of Cu and MgO contents in shergottites suggests approximately 2 ± 0.4 (1s) μg/g Cu in the Martian mantle. The ratios of Cu, S, Se and Te indicate 360 ± 120 μg/g (1s) S, 100 ± 27 ng/g (1s) Se and 0.50 ± 0.25 ng/g (1s) Te in the

  19. Analyses at High Spatial Resolution of Organic Molecules in Extraterrestrial Samples: Two-Step Laser Mass Spectrometry: Search for Polycyclic Aromatic Hydrocarbons in Antarctic Meteorite and Micrometeorite Samples

    NASA Technical Reports Server (NTRS)

    Zare, Richard N.

    1998-01-01

    Perhaps the best way to summarize the past three-year grant period is to cite the publications and present a brief synopsis of each: 1. "Indigenous Polycyclic Aromatic Hydrocarbon Molecules in Circumstellar Graphite Grains." Bulk C-12/C-13 isotope ratios observed in some graphite grains extracted from primitive meteorites point strongly to a circumstellar origin. By applying our technique of microprobe two-step laser desorption laser ionization mass spectrometry ((mu)L(sup 2)MS) to individual circumstellar graphite grains we have measured the C-12/C-13 isotope ratio of various polycyclic aromatic hydrocarbons (PAHS) found in these grains. 2. "Deuterium Enrichments in Cluster IDPS," Large enrichments in the D/H isotope ratios in IDPs likely arise from the preservation of presolar molecules. 3. "Evidence for thermalization of surface-disorder molecules at heating rates of 10(exp 8) K/s". A careful study of the ((mu)L(sup 2)MS) of aniline-d(sub 7) from a single-crystal surface (0001) of sapphire (al2O3) shows that all measured properties are consistent with a thermal mechanism for desorption. 4. "Search for past life on Mars; possible relic biogenic activity in Martian meteorite ALH 84001. The authors examined the Martian meteorite ALH 84001 and found several lines of evidence compatible with existence of past primitive (single-cell) life on early Mars. 5. "Microprobe two-step laser mass spectrometry as an analytical tool for meteorite samples". THis paper presents a comprehensive review of (mu)L(sup 2)MS and how this technique can be applied to meteoritic samples. 6. "Indigenous polycyclic aromatic hydrocarbons in circumstellar graphite grains from primitive meteorites". The C-12/C-13 isotope ratios were measured for PAHs in a total of 89 spherical graphite grains. 7. "Observation of indigenous polycyclic aromatic hydrocarbons in "Giant" carbonaceous antarctic micrometeorites." The (mu)L(sup 2)MS method was used to establish the nature and distribution of PAHs in

  20. Peering Through a Martian Veil: ALHA84001 Sm-Nd Age Revisited

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, Chi-Yu

    2013-01-01

    The ancient Martian orthopyroxenite ALH84001experienced a complex history of impact and aqueous alteration events. Here we summarize Sm-147-Nd-143 and Sm-146-Nd-142 analyses performed at JSC. Further, using REE data, we model the REE abundance pattern of the basaltic magma parental to ALH84001 cumulus orthopyroxene. We find the Sm-146-Nd-142 isotopic data to be consistent with isotopic evolution in material having the modeled Sm/Nd ratio from a time very close to the planet's formation to igneous crystallization of ALH84001 as inferred from the Sm-Nd studies.

  1. Carbonates in ALH 84001: Part of the Story of Water on Mars

    NASA Astrophysics Data System (ADS)

    Corrigan, C. M.

    2004-07-01

    Carbonate-rich regions in ALH 84001 are complicated. There are familiar forms of carbonate as well as fascinating textural forms previously unreported including carbonate rosettes, planiform "slab" carbonates, distinct "post-slab" magnesium carbonates (magnesite), and carbonates interstitial to feldspathic glass and orthopyroxene. Slab carbonates reveal portions of the carbonate growth sequence not seen in the rosettes and suggest that initial nucleating compositions were rich in calcium. They formed in two major stages. The first stage involved growth of the rosettes and slab carbonates. This step was controlled by the rate of crystal nucleation, how fast the ingredients were delivered to the growing crystals, and how much fluid was available. Cosmochemists call this type of growth "kinetically controlled." Next, an alteration event formed the magnesite-siderite (iron carbonate) layers on the exterior surfaces of the carbonate. Post-slab magnesite, intimately associated with silica glass, is compositionally similar to the magnesite in these secondary exterior layers, but represents a later generation of carbonate growth. Formation of feldspathic glasses had little or no thermal effect on carbonates, as indicated by the lack of thermal decomposition or any compositional changes associated with glass/carbonate contacts. The carbonates tell an important story about water in the ancient crust of Mars. The presence of numerous, distinct generations of carbonate formation and relatively clear fracture chronology within carbonate further suggest that interactions between ALH 84001 and the crustal fluids of Mars were discontinuous and occurred only a few times over its 4.5 Ga history. The reactivation and remobilization of fluids (causing events such as formation of magnesite-siderite-magnesite layers and precipitation of post-slab magnesite) and the fracturing within the rock were almost certainly driven by impacts. The evidence for punctuated, impact-driven interaction

  2. Three-Dimensional Morphological Analysis of ALH84001 Magnetite Using Electron Tomography

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Shimmin, Joel; Morphew, Mary; McIntosh, J. Richard; Bazylinski, Dennis A.; Kirschvink, Joseph L.; Wentworth, Susan J.; McKay, David S.; Vali, Hojatollah

    2003-01-01

    We report here the crystal morphologies of MV-1 and ALH84001 magnetites as calculated by back-projection using electron tomography. In the present study, we used a 300 keV TEM with a field emission gun (Tecnai F-30 from FEI Inc.), equipped with a 2048 x 2048 pixel CCD camera from Gatan Inc. to image magnetite crystals over tilt ranges of approx. +/- 72 deg in 2 deg tilt intervals. The images were aligned for back-projection, either manually, or through the use of fiducial 5 nm Au spheres affixed to the specimen prior to microscopy. Three-dimensional (3-D) reconstructions were computed using weighted back-projection of the tilted views. The tomograms were viewed and analyzed as a series of slices 1.0 nm thick, taken parallel to the specimen-supporting grid, using the IMOD software package. The shape of each magnetite crystal was determined by defining the external contour of a given magnetite in each slice and assembling a stack of these contours in 3-D. To aid in visualization, the stacked contour array was reduced to an optimal mesh by Delaunay triangulation. The surface normal to each of the triangles in the mesh was calculated and the triangle faces colored according to the orientation of that surface normal relative to the principal crystallographic axis of magnetite. Green surfaces correspond to {111} orientations, blue surfaces to {100} orientations, and red surfaces to {110} orientations. Triangles whose surface normal did not correspond to one of the principal axes were colored gray. Within the experimental and numerical uncertainties of the deconvolution, the tomographic reconstruction of both MV-1 and ALH84001 magnetites are equivalent and correspond to a truncated hexa-octahedral morphology.

  3. An Adulterated Martian Meteorite

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    1999-07-01

    Martian meteorite, Elephant Moraine EETA79001, is composed of two distinct rock types. Scientists have thought that both formed from magmas, hence are igneous rocks and contain important information about the interior of Mars, the nature of lava flows on its surface, and the timing of igneous events on Mars. All that is now open to question, as a group of investigators at Lockheed Martin Space Operations and the Johnson Space Center led by David Mittlefehldt (Lockheed) has shown that one of the rock types making up EETA79001, designated lithology A, is almost certainly a melted mixture of other rocks. Mittlefehldt and coworkers suggest that formation by impact melting is the most likely explanation for the chemical and mineralogical features seen in the rock. If confirmed by other investigations, this may change the way we view the igneous evolution of Mars.

  4. Organic Carbon Exists in Mars Meteorites: where is it on the Martian Surface?

    NASA Astrophysics Data System (ADS)

    McKay, David; Clemett, Simon; Gibson, Everett; Thomas-Keprta, Kathie; Wentworth, Susan

    The search for organic carbon on Mars has been a major challenge. The first attempt was the Viking GC-MS in situ experiment which gave inconclusive results at two sites on Mars [1]. After the discovery that the SNC meteorites were from Mars [2], [3-5] reported C isotopic compositional information which suggested a reduced C component present in the Martian meteorites. [6 7] reported the presence of reduced C components (i.e., polycyclic aromatic hydrocarbons) associated with the carbonate globules in ALH84001. Jull et al. [8] noted in Nakhla there was an acid insoluble C component present with more than 75% of its C lacking any 14 C, which is modern-day terrestrial carbon. This C fraction was believed to be either indigenous martian or ancient meteoritic carbon. Fisk et al. [9, 10] have shown textural evidence along with C-enriched areas within fractures in Nakhla and ALH84001. Westall et al. [11] have shown the presence of a large irregular fragment of organic material completely embedded within a chip of ALH84001. Interior samples from the Nakhla SNC made available by the British Museum of Natural His-tory, were analyzed. Petrographic examination [12] of Nakhla showed evidence of fractures ( 0.5 m wide) filled with dark brown to black dendritic material with characteristics similar to those observed by [10]. Iddingsite is also present along fractures in olivine. Fracture filling and dendritic material was examined by SEM-EDX, TEM-EDX, Focused Electron Beam mi-croscopy, Laser Raman Spectroscopy, Nano-SIMS Ion Micro-probe, and Stepped-Combustion Static Mass Spectrometry. Observations from the first three techniques are discussed in [12 and 13]. Nano-SIMS Ion Microprobe studies of the C-bearing fractures, containing the optically dark dendritic material, show direct correlation between C- and CN- abundances. Ion abun-dances for epoxy are distinct from those of the dendritic material[12] . Laser Raman Spectrometry was utilized to examine the optically dark dendritic

  5. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  6. Martian Alteration in Unique Meteorite NWA 8159?

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Simpson, S.; Mark, D.; Lee, M. R.

    2016-08-01

    This study aims to determine if the olivine alteration in martian meteorite NWA 8159 has a martian origin. If so, the unique nature of this meteorite presents evidence for aqueous processes at a new time and location on the martian surface.

  7. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    PubMed

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  8. What we have learned about Mars from SNC meteorites

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occured early at approximately 4.5 GA, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in Shergottite-Nakhlite-Chassignite (SNC) meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived form these metorites than from observations of martian flow morphology, although the sampled range of magma compositions islimited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contridictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the

  9. What we have learned about Mars from SNC meteorites

    NASA Astrophysics Data System (ADS)

    McSween, Harry Y., Jr.

    1994-11-01

    The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occured early at approximately 4.5 GA, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in Shergottite-Nakhlite-Chassignite (SNC) meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived form these metorites than from observations of martian flow morphology, although the sampled range of magma compositions islimited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contridictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the

  10. Evolution of the martian mantle as recorded by igneous rocks

    NASA Astrophysics Data System (ADS)

    Balta, J. B.; McSween, H. Y.

    2013-12-01

    Martian igneous rocks provide our best window into the current state of the martian mantle and its evolution after accretion and differentiation. Currently, those rocks have been examined in situ by rovers, characterized in general from orbiting spacecraft, and analyzed in terrestrial laboratories when found as meteorites. However, these data have the potential to bias our understanding of martian magmatism, as most of the available meteorites and rover-analyzed rocks come from the Amazonian (<2 Ga) and Hesperian (~3.65 Ga) periods respectively, while igneous rocks from the Noachian (>3.8 Ga) have only been examined by orbiters and as the unique meteorite ALH 84001. After initial differentiation, the main planetary-scale changes in the structure of Mars which impact igneous compositions are cooling of the planet and thickening of the crust with time. As the shergottite meteorites give ages <500 Ma1, they might be expected to represent thick-crust, recent volcanism. Using spacecraft measurements of volcanic compositions and whole rock compositions of meteorites, we demonstrate that the shergottite meteorites do not match the composition of the igneous rocks composing the young volcanoes on Mars, particularly in their silica content, and no crystallization or crustal contamination trend reproduces the volcanoes from a shergottite-like parent magma. However, we show that the shergottite magmas do resemble older martian rocks in composition and mineralogy. The Noachian-aged meteorite ALH 84001 has similar radiogenic-element signatures to the shergottites and may derive from a similar mantle source despite the age difference2. Thus, shergottite-like magmas may represent melting of mantle sources that were much more abundant early in martian history. We propose that the shergottites represent the melting products of an originally-hydrous martian mantle, containing at least several hundred ppm H2O. Dissolved water can increase the silica content of magmas and thus

  11. Life on Mars: Evidence from Martian Meteorites

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Thomas-Keptra, Katie L.; Clemett, Simon J.; Gibson, Everett K., Jr.; Spencer, Lauren; Wentworth, Susan J.

    2009-01-01

    New data on martian meteorite 84001 as well as new experimental studies show that thermal or shock decomposition of carbonate, the leading alternative non-biologic explanation for the unusual nanophase magnetite found in this meteorite, cannot explain the chemistry of the actual martian magnetites. This leaves the biogenic explanation as the only remaining viable hypothesis for the origin of these unique magnetites. Additional data from two other martian meteorites show a suite of biomorphs which are nearly identical between meteorites recovered from two widely different terrestrial environments (Egyptian Nile bottomlands and Antarctic ice sheets). This similarity argues against terrestrial processes as the cause of these biomorphs and supports an origin on Mars for these features.

  12. Martian soil component in impact glasses in a Martian meteorite.

    PubMed

    Rao, M N; Borg, L E; McKay, D S; Wentworth, S J

    1999-11-01

    Chemical compositions of impact melt glass veins, called Lithology C (Lith C) in Martian meteorite EET79001 were determined by electron microprobe analysis. A large enrichment of S, and significant enrichments of Al, Ca, and Na were observed in Lith C glass compared to Lithology A (Lith A). The S enrichment is due to mixing of plagioclase- enriched Lith A material with Martian soil, either prior to or during impact on Mars. A mixture of 87% Lith A, 7% plagioclase, and 6% Martian soil reproduces the average elemental abundances observed in Lith C. Shock melting of such a mixture of plagioclase-enriched, fine-grained Lith A host rock and Martian soil could yield large excesses of S (observed in this study) and Martian atmospheric noble gases (found by Bogard et al., 1983) in Lith C. These mixing proportions can be used to constrain the elemental abundance of phosphorus in Martian soil.

  13. Phosphates and Carbon in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Mojzsis, Stephen J.

    2000-01-01

    This paper proposes tests for exobiological examination of samples prior to obtaining martian rocks of known provenance via future sample-return missions. If we assume that all of the secondary minerals in martian meteorite ET79001 were indeed cogenetic and originate from Mars, we list conclusions that can be drawn that are of exobiological interest. This work serves as a preamble for the subsequent work listed below.

  14. The Chlorine Isotope Composition of Martian Meteorites

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Shearer, C. K.; Agee, C.; Burger, P. V.; McKeegan, K. D.

    2014-11-01

    The Cl isotope composition of martian meteorites range from -3.8 to +8.6 per mil. Ol-phyric shergottites are lightest; crustally contaminated samples are heaviest, basaltic shergottites are in-between. The system is explained as two component mixing.

  15. Lunar and Planetary Science XXXV: Martian Meteorites: Chemical Weathering

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Martian Meteorites: Chemical Weathering" included the following reports:Chemical Weathering Records of Martian Soils Preserved in the Martian Meteorite EET79001; Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results; A Survey of Olivine Alteration Products Using Raman Spectroscopy; and Rb-Sr and Sm-Nd Isotope Systematics of Shergottite NWA 856: Crystallization Age and Implications for Alteration of Hot Desert SNC Meteorites.

  16. The Germanium Dichotomy in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Yang, S.; Righter, K.; Zanda, B.; Hewins, R. H.

    2016-01-01

    Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.

  17. Lunar and martian meteorite delivery services

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1994-01-01

    Launch mechanisms for lunar and martian meteorites have been investigated, by integrating physical modeling constraints, geochemical cosmic-ray exposure (CRE) constraints, and petrologic constraints. The potential source region for lunar meteorites is remarkably small compared to the final crater volume. CRE constraints indicate that most launches start at depths of less than or equal to 3.2 m, and cratering theory implies derivation of suitably accelerated objects from a subvolume with diameter only about 0.3 x the final crater diameter. The shallow depth provenance is probably related to shock-wave interference, enhanced by the lunar regolith's extremely low compressional wave velocity. CRE constraints alone imply that four to five separate launch events are represented among the eight well-studied lunar meteorites. Most of the lunar meteorites are regolith breccias, which tend to show only limited compositional diversity within any kilometer-scale region of the Moon. Several others are polymict breccias, which also show relatively subdued compositional diversity, compared to igneous rocks. The observed diversity among these samples in terms of abundances of mare basalt and KREEP, and in Mg/(Mg + Fe) ratio, implies that among eight well-studied lunar meteorites only two potential source craters pairings are plausible: between Asuka-881757 + Y-793169 (most probable) and between Y-793274 + EET875721. Altogether, these eight lunar meteorites apparently represent at least six separate source craters, including three in the past 10(exp 5) years and five in the past 10(exp 6) years. CRE constraints imply that SNC meteorites are launched from systematically greater than lunar meteorites. SNCs are also systematically bigger, and all nine well-studied SNCs are uncommonly young (by martian standards) mafic igneous rocks. Comparison between Viking and Apollo results reveals that rocks the size of common meteorites are remarkably scarce in the martian regolith, probably due

  18. Amino acids in the Martian meteorite Nakhla.

    PubMed

    Glavin, D P; Bada, J L; Brinton, K L; McDonald, G D

    1999-08-03

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  19. Amino acids in the Martian meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Brinton, K. L.; McDonald, G. D.

    1999-01-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  20. Amino Acids in the Martian Meteorite Nakhla

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.

    1999-08-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β -alanine, and γ -amino-n-butyric acid (γ -ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  1. Evidence for methane in Martian meteorites

    PubMed Central

    Blamey, Nigel J. F.; Parnell, John; McMahon, Sean; Mark, Darren F.; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R. M.; Banerjee, Neil R.; Flemming, Roberta L.

    2015-01-01

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity. PMID:26079798

  2. Evidence for methane in Martian meteorites

    NASA Astrophysics Data System (ADS)

    Blamey, Nigel J. F.; Parnell, John; McMahon, Sean; Mark, Darren F.; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R. M.; Banerjee, Neil R.; Flemming, Roberta L.

    2015-06-01

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  3. Evidence for methane in Martian meteorites.

    PubMed

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  4. Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks.

    PubMed

    Gillet, P h; Barrat, J A; Heulin, T h; Achouak, W; Lesourd, M; Guyot, F; Benzerara, K

    2000-02-15

    We present a study of the textural signature of terrestrial weathering and related biological activity in the Tatahouine meteorite. Scanning and transmission electron microscopy images obtained on the weathered samples of the Tatahouine meteorite and surrounding soil show two types of bacteria-like forms lying on mineral surfaces: (1) rod-shaped forms (RSF) about 70-80 nm wide and ranging from 100 nm to 600 nm in length; (2) ovoid forms (OVF) with diameters between 70 and 300 nm. They look like single cells surrounded by a cell wall. Only Na, K, C, O and N with traces of P and S are observed in the bulk of these objects. The chemical analyses and electron diffraction patterns confirm that the RSF and OVF cannot be magnetite or other iron oxides, iron hydroxides, silicates or carbonates. The sizes of the RSF and OVF are below those commonly observed for bacteria but are very similar to some bacteria-like forms described in the Martian meteorite ALH84001. All the previous observations strongly suggest that they are bacteria or their remnants. This conclusion is further supported by microbiological experiments in which pleomorphic bacteria with morphology similar to the OVF and RSF objects are obtained from biological culture of the soil surrounding the meteorite pieces. The present results show that bacteriomorphs of diameter less than 100 nm may in fact represent real bacteria or their remnants.

  5. Curation of US Martian Meteorites Collected in Antarctica

    NASA Technical Reports Server (NTRS)

    Lindstrom, M.; Satterwhite, C.; Allton, J.; Stansbury, E.

    1998-01-01

    To date the ANSMET field team has collected five martian meteorites (see below) in Antarctica and returned them for curation at the Johnson Space Center (JSC) Meteorite Processing Laboratory (MPL). ne meteorites were collected with the clean procedures used by ANSMET in collecting all meteorites: They were handled with JSC-cleaned tools, packaged in clean bags, and shipped frozen to JSC. The five martian meteorites vary significantly in size (12-7942 g) and rock type (basalts, lherzolites, and orthopyroxenite). Detailed descriptions are provided in the Mars Meteorite compendium, which describes classification, curation and research results. A table gives the names, classifications and original and curatorial masses of the martian meteorites. The MPL and measures for contamination control are described.

  6. Searching for the Meteoritic Contribution to Martian Soils and Sediments

    NASA Astrophysics Data System (ADS)

    Clark, B. C.

    2015-07-01

    Martian soils and surface sediments will contain contributions from meteoritic (and IDP) input, with multiple important consequences. Determination of this input must interpret in situ measurements which focus on trace elements and evolved gases.

  7. Halogen and Cl isotopic systematics in Martian phosphates: Implications for the Cl cycle and surface halogen reservoirs on Mars

    NASA Astrophysics Data System (ADS)

    Bellucci, J. J.; Whitehouse, M. J.; John, T.; Nemchin, A. A.; Snape, J. F.; Bland, P. A.; Benedix, G. K.

    2017-01-01

    The Cl isotopic compositions and halogen (Cl, F, Br, and I) abundances in phosphates from eight Martian meteorites, spanning most rock types and ages currently available, have been measured in situ by Secondary Ion Mass Spectrometry (SIMS). Likewise, the distribution of halogens has been documented by x-ray mapping. Halogen concentrations range over several orders of magnitude up to some of the largest concentrations yet measured in Martian samples or on the Martian surface, and the inter-element ratios are highly variable. Similarly, Cl isotope compositions exhibit a larger range than all pristine terrestrial igneous rocks. Phosphates in ancient (>4 Ga) meteorites (orthopyroxenite ALH 84001 and breccia NWA 7533) have positive δ37Cl anomalies (+1.1 to + 2.5 ‰). These samples also exhibit explicit whole rock and grain scale evidence for hydrothermal or aqueous activity. In contrast, the phosphates in the younger basaltic Shergottite meteorites (<600 Ma) have negative δ37Cl anomalies (-0.2 to - 5.6 ‰). Phosphates with the largest negative δ37Cl anomalies display zonation in which the rims of the grains are enriched in all halogens and have significantly more negative δ37Cl anomalies suggestive of interaction with the surface of Mars during the latest stages of basalt crystallization. The phosphates with no textural, major element, or halogen enrichment evidence for mixing with this surface reservoir have an average δ37Cl of - 0.6 ‰, supporting a similar initial Cl isotope composition for Mars, the Earth, and the Moon. Oxidation and reduction of chlorine are the only processes known to strongly fractionate Cl isotopes, both positively and negatively, and perchlorate has been detected in weight percent concentrations on the Martian surface. The age range and obvious mixing history of the phosphates studied here suggest perchlorate formation and halogen cycling via brines, which have been documented on the Martian surface, has been active throughout Martian

  8. SNC meteorites and their implications for reservoirs of Martian volatiles

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1993-01-01

    The SNC meteorites and the measurements of the Viking landers provide our only direct information about the abundance and isotopic composition of Martian volatiles. Indirect measurements include spectroscopic determinations of the D/H ratio of the Martian atmosphere. A personal view of volatile element reservoirs on Mars is presented, largely as inferred from the meteoritic evidence. This view is that the Martian mantle has had several opportunities for dehydration and is most likely dry, although not completely degassed. Consequently, the water contained in SNC meteorites was most likely incorporated during ascent through the crust. Thus, it is possible that water can be decoupled from other volatile/incompatible elements, making the SNC meteorites suspect as indicators of water inventories on Mars.

  9. Martian meteorite launch: high-speed ejecta from small craters.

    PubMed

    Head, James N; Melosh, H Jay; Ivanov, Boris A

    2002-11-29

    We performed high-resolution computer simulations of impacts into homogeneous and layered martian terrain analogs to try to account for the ages and characteristics of the martian meteorite collection found on Earth. We found that craters as small as approximately 3 kilometers can eject approximately 10(7) decimeter-sized fragments from Mars, which is enough to expect those fragments to appear in the terrestrial collection. This minimum crater diameter is at least four times smaller than previous estimates and depends on the physical composition of the target material. Terrain covered by a weak layer such as an impact-generated regolith requires larger, therefore rarer, impacts to eject meteorites. Because older terrain is more likely to be mantled with such material, we estimate that the martian meteorites will be biased toward younger ages, which is consistent with the meteorite collection.

  10. Lunar and Planetary Science XXXV: Martian Meteorites: Petrology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Martian Meteorites: Petrology: included the following reports:Volatile Behavior in Lunar and Terrestrial Basalts During Shock: Implications for Martian Magmas; Problems with a Low-Pressure Tholeiitic Magmatic History for the Chassigny Dunite; Fast Cooling History of the Chassigny Martian Meteorite; Rehomogenized Interstitial and Inclusion Melts in Lherzolitic Shergottite ALH 77005: Petrologic Significance; Compositional Controls on the Formation of Kaersutite Amphibole in Shergottite Meteorites; Chemical Characteristics of an Olivine-Phyric Shergottite, Yamato 980459; Pb-Hf-Sr-Nd Isotopic Systematics and Age of Nakhlite NWA 998; Noble Gases in Two Samples of EETA 79001 (Lith. A); Experimental Constraints on the Iron Content of the Martian Mantle; and Mars as the Parent Body for the CI Carbonaceous Chondrites: New Data.

  11. Timescales of shock processes in chondritic and martian meteorites.

    PubMed

    Beck, P; Gillet, Ph; El Goresy, A; Mostefaoui, S

    2005-06-23

    The accretion of the terrestrial planets from asteroid collisions and the delivery to the Earth of martian and lunar meteorites has been modelled extensively. Meteorites that have experienced shock waves from such collisions can potentially be used to reveal the accretion process at different stages of evolution within the Solar System. Here we have determined the peak pressure experienced and the duration of impact in a chondrite and a martian meteorite, and have combined the data with impact scaling laws to infer the sizes of the impactors and the associated craters on the meteorite parent bodies. The duration of shock events is inferred from trace element distributions between coexisting high-pressure minerals in the shear melt veins of the meteorites. The shock duration and the associated sizes of the impactor are found to be much greater in the chondrite (approximately 1 s and 5 km, respectively) than in the martian meteorite (approximately 10 ms and 100 m). The latter result compares well with numerical modelling studies of cratering on Mars, and we suggest that martian meteorites with similar, recent ejection ages (10(5) to 10(7) years ago) may have originated from the same few square kilometres on Mars.

  12. Evidence from Hydrogen Isotopes in Meteorites for a Subsurface Hydrogen Reservoir on Mars

    NASA Technical Reports Server (NTRS)

    Usui, Tomohiro; Alexander, Conel M. O'D.; Wang, Jianhua; Simon, Justin I.; Jones, John H.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have conducted in situ hydrogen isotope (D/H) analyses of quenched and impact glasses in three Martian meteorites (Yamato 980459, EETA79001, LAR 06319) by Cameca ims-6f at Digital Terrain Models (DTM) following the methods of [1]. The hydrogen isotope analyses provide evidence for the existence of a distinct but ubiquitous water/ice reservoir (D/H = 2-3 times Earth's ocean water: Standard Mean Ocean Water (SMOW)) that lasted from at least the time when the meteorites crystallized (173-472 Ma) to the time they were ejected by impacts (0.7-3.3 Ma), but possibly much longer [2]. The origin of this reservoir appears to predate the current Martian atmospheric water (D/H equals approximately 5-6 times SMOW) and is unlikely to be a simple mixture of atmospheric and primordial water retained in the Martian mantle (D/H is approximately equal to SMOW [1]). Given the fact that this intermediate-D/H reservoir (2-3 times SMOW) is observed in a diverse range of Martian materials with different ages (e.g., SNC (Shergottites, Nakhlites, Chassignites) meteorites, including shergottites such as ALH 84001; and Curiosity surface data [3]), we conclude that this intermediate-D/H reservoir is likely a global surficial feature that has remained relatively intact over geologic time. We propose that this reservoir represents either hydrated crust and/or ground ice interbedded within sediments. Our results corroborate the hypothesis that a buried cryosphere accounts for a large part of the initial water budget of Mars.

  13. Terrestrial microbes in martian and chondritic meteorites

    NASA Astrophysics Data System (ADS)

    Airieau, S.; Picenco, Y.; Andersen, G.

    2007-08-01

    Introduction: The best extraterrestrial analogs for microbiology are meteorites. The chemistry and mineralogy of Asteroid Belt and martian (SNC) meteorites are used as tracers of processes that took place in the early solar system. Meteoritic falls, in particular those of carbonaceous chondrites, are regarded as pristine samples of planetesimal evolution as these rocks are primitive and mostly unprocessed since the formation of the solar system 4.56 billion years ago. Yet, questions about terrestrial contamination and its effects on the meteoritic isotopic, chemical and mineral characteristics often arise. Meteorites are hosts to biological activity as soon as they are in contact with the terrestrial biosphere, like all rocks. A wide biodiversity was found in 21 chondrites and 8 martian stones, and was investigated with cell culture, microscopy techniques, PCR, and LAL photoluminetry. Some preliminary results are presented here. The sample suite included carbonaceous chondrites of types CR, CV, CK, CO, CI, and CM, from ANSMET and Falls. Past studies documented the alteration of meteorites by weathering and biological activity [1]-[4]. Unpublished observations during aqueous extraction for oxygen isotopic analysis [5], noted the formation of biofilms in water in a matter of days. In order to address the potential modification of meteoritic isotopic and chemical signatures, the culture of microbial contaminating species was initiated in 2005, and after a prolonged incubation, some of the species obtained from cell culture were analyzed in 2006. The results are preliminary, and a systematic catalog of microbial contaminants is developing very slowly due to lack of funding. Methods: The primary method was cell culture and PCR. Chondrites. Chondritic meteorite fragments were obtained by breaking stones of approximately one gram in sterile mortars. The core of the rocks, presumably less contaminated than the surface, was used for the present microbial study, and the

  14. A Pb isotopic resolution to the Martian meteorite age paradox

    NASA Astrophysics Data System (ADS)

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Kielman, R. B.; Bland, P. A.; Benedix, G. K.

    2016-01-01

    Determining the chronology and quantifying various geochemical reservoirs on planetary bodies is fundamental to understanding planetary accretion, differentiation, and global mass transfer. The Pb isotope compositions of individual minerals in the Martian meteorite Chassigny have been measured by Secondary Ion Mass Spectrometry (SIMS). These measurements indicate that Chassigny has mixed with a Martian reservoir that evolved with a long-term 238U/204Pb (μ) value ∼ two times higher than those inferred from studies of all other Martian meteorites except 4.428 Ga clasts in NWA7533. Any significant mixing between this and an unradiogenic reservoir produces ambiguous trends in Pb isotope variation diagrams. The trend defined by our new Chassigny data can be used to calculate a crystallization age for Chassigny of 4.526 ± 0.027 Ga (2σ) that is clearly in error as it conflicts with all other isotope systems, which yield a widely accepted age of 1.39 Ga. Similar, trends have also been observed in the Shergottites and have been used to calculate a >4 Ga age or, alternatively, attributed to terrestrial contamination. Our new Chassigny data, however, argue that the radiogenic component is Martian, mixing occurred on the surface of Mars, and is therefore likely present in virtually every Martian meteorite. The presence of this radiogenic reservoir on Mars resolves the paradox between Pb isotope data and all other radiogenic isotope systems in Martian meteorites. Importantly, Chassigny and the Shergottites are likely derived from the northern hemisphere of Mars, while NWA 7533 originated from the Southern hemisphere, implying that the U-rich reservoir, which most likely represents some form of crust, must be widespread. The significant age difference between SNC meteorites and NWA 7533 is also consistent with an absence of tectonic recycling throughout Martian history.

  15. 'Bounce' and Martian Meteorite of the Same Mold

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These two sets of bar graphs compare the elemental compositions of six martian rocks: 'Bounce,' located at Meridiani Planum; EETA79001-B, a martian meteorite found in Antarctica in 1979; a rock found at the Mars Pathfinder landing site; Shergotty, a martian meteorite that landed in India in 1865; 'Adirondack,' located at Gusev Crater; and 'Humphrey,' also located at Gusev Crater. The graph on the left compares magnesium/iron ratios in the rocks, and the graph on the right compares aluminum/calcium ratios. The results illustrate the diversity of rocks on Mars and indicate that Bounce probably shares origins with the martian meterorite EETA79001-B. The Bounce data was taken on sol 68 by the alpha particle X-ray spectrometer on Mars Exploration Rover Opportunity.

  16. LU-HF Age of Martian Meteorite Larkman Nunatek 06319

    NASA Technical Reports Server (NTRS)

    Shafer, J. T.; Brandon, A. D.; Lapen, T. J.; Righter, M.; Beard, B.; Peslier, A. H.

    2009-01-01

    Lu-Hf isotopic data were collected on mineral separates and bulk rock powders of LAR 06319, yielding an age of 197+/- 29 Ma. Sm-Nd isotopic data and in-situ LA-ICP-MS data from a thin section of LAR 06319 are currently being collected and will be presented at the 2009 LPSC. These new data for LAR 06319 extend the existing data set for the enriched shergottite group. Martian meteorites represent the only opportunity for ground truth investigation of the geochemistry of Mars [1]. At present, approximately 80 meteorites have been classified as Martian based on young ages and distinctive isotopic signatures [2]. LAR 06319 is a newly discovered (as part of the 2006 ANSMET field season) martian meteorite that represents an important opportunity to further our understanding of the geochemical and petrological constraints on the origin of Martian magmas. Martian meteorites are traditionally categorized into the shergottite, nakhlite, and chassignite groups. The shergottites are further classified into three distinct isotopic groups designated depleted, intermediate, and enriched [3,4] based on the isotope systematics and compositions of their source(s).

  17. If a Meteorite of Martian Sandstone Hit You on the Head Would You Recognize It?

    NASA Astrophysics Data System (ADS)

    Ashley, G. M.; Delaney, J. S.

    1999-03-01

    Martian meteorites are igneous but Mars is Earthlike with sediments, igneous and maybe sedimentary rocks. Sedimentary meteorites should occur in proportion to the igneous/sedimentary ratio. Sedimentary meteorites would impact climatology and the search for life on Mars.

  18. Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.; Anand, M.; Moser, D. E.; Delhaye, T.; Shearer, C. K.; Agee, C. B.

    2014-01-01

    The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.

  19. Pyroxenes in Martian meteorites as petrogenetic indicators

    NASA Technical Reports Server (NTRS)

    McKay, Gordon; Le, L.; Mikouchi, T.; Makishima, J.; Schwandt, C.

    2006-01-01

    Pyroxenes in Martian meteorites are important recorders of petrogenetic processes. Understanding the details of pyroxene major and minor element compositional variations can provide important insights into those processes. A combination of careful petrographic analysis of natural samples and experimental crystallization studies can lead to better understanding of the processes that gave rise to these samples on Mars. In addition, experimentally determined major, minor and trace element partition coefficients are important for using natural pyroxenes to estimate the compositions of the melts from which they crystallized and the oxidation conditions that prevailed during crystallization. We will report on minor element (Al, Ti, Cr) zoning in nakhlite pyroxenes and in synthetic pyroxenes that we have grown for the purposes of determining pyroxene/melt partition coefficients for Sr and REE. The natural pyroxenes have patchy Al zoning that, by analogy with our experimental pyroxenes, we interpret as sector zoning. The irregular patchy nature of the zoning is probably the result of the vagaries of growth kinetics and local environment during crystal growth. More slowly cooled nakhlites have the most distinct bimodal zoning, with one mode having Al2O3 around 0.5-0.6 wt%, and the other around 0.9 %. Average Al content increases with increasing cooling rate. This feature is puzzling, since the cumulus pyroxenes were almost certainly present at the time of eruption. Al and Ti are strongly correlated, but Cr is completely decoupled from those elements. The synthetic pyroxenes are distinctly sector zoned in Al and Ti, and the sector-to-sector variation in Al within a single crystal has important effects on trace element partition coefficients. Trivalent REE are strongly correlated with Al, while divalent elements (Sr, Eu+2) show a significantly weaker correlation. For example, as the Al2O3 content varies from 0.3 to 0.6 wt % from one sector to another, D(Gd) increases by

  20. Ne-20/Ne-22 in the Martian Atmosphere: New Evidence from Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Park, J.; Nyquist, L. E.; Herzog, G. F.; Nagao, K.; Mikouchi, T.; Kusakabe, M.

    2017-01-01

    Analyses of Ne trapped in "pods" of impact melt in the Elephant Moraine 79001 (EET 79001) Martian meteorite led to suggest (Ne-20/Ne-22) approx.10 in the Martian atmosphere (MA). In contrast, obtained trapped (Ne-20/Ne-22)Tr approx.7 from an impact melt vein in Yamato 793605 (Y-793605) and concluded that the isotopic composition of Martian Ne remained poorly defined. A "pyroxene-rich" separate from Dhofar 378 (Dho 378) analyzed gave a comparatively high trapped Ne concentration and (Ne-20/Ne-22) = 7.3+/-0.2 in agreement with the Y-793605 value. We explore the hypothesis that Martian Ne was trapped in the Dho 378 meteorite in a manner similar to entrapment of terrestrial Ne in tektites strengthening the "Martian atmosphere" interpretation. We also report new data for Northwest Africa 7034 (NWA 7034) that are consistent with the Ne data for Dho 378.

  1. Mapping the Iron Oxidation State in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Martin, A. M.; Treimann, A. H.; Righter, K.

    2017-01-01

    Several types of Martian igneous meteorites have been identified: clinopyroxenites (nakhlites), basaltic shergottites, peridotitic shergottites, dunites (chassignites) and orthopyroxenites [1,2]. In order to constrain the heterogeneity of the Martian mantle and crust, and their evolution through time, numerous studies have been performed on the iron oxidation state of these meteorites [3,4,5,6,7,8,9]. The calculated fO2 values all lie within the FMQ-5 to FMQ+0.5 range (FMQ representing the Fayalite = Magnetite + Quartz buffer); however, discrepancies appear between the various studies, which are either attributed to the choice of the minerals/melts used, or to the precision of the analytical/calculation method. The redox record in volcanic samples is primarily related to the oxidation state in the mantle source(s). However, it is also influenced by several deep processes: melting, crystallization, magma mixing [10], assimilation and degassing [11]. In addition, the oxidation state in Martian meteorites is potentially affected by several surface processes: assimilation of sediment/ crust during lava flowing at Mars' surface, low temperature micro-crystallization [10], weathering at the surface of Mars and low temperature reequilibration, impact processes (i.e. high pressure phase transitions, mechanical mixing, shock degassing and melting), space weathering, and weathering on Earth (at atmospheric conditions different from Mars). Decoding the redox record of Martian meteorites, therefore, requires large-scale quantitative analysis methods, as well as a perfect understanding of oxidation processes.

  2. Isotopic Evidence for a Martian Regolith Component in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Sutton, S.

    2009-01-01

    Noble gas measurements in gas-rich impact-melt (GRIM) glasses in EET79001 shergottite showed that their elemental and isotopic composition is similar to that of the Martian atmosphere [1-3]. The GRIM glasses contain large amounts of Martian atmospheric gases. Those measurements further suggested that the Kr isotopic composition of Martian atmosphere is approximately similar to that of solar Kr. The (80)Kr(sub n) - (80)Kr(sub M) mixing ratio in the Martian atmosphere reported here is approximately 3%. These neutron-capture reactions presumably occurred in the glass-precursor regolith materials containing Sm- and Br- bearing mineral phases near the EET79001/ Shergotty sites on Mars. The irradiated materials were mobilized into host rock voids either during shock-melting or possibly by earlier aeolian / fluvial activity.

  3. The source crater of martian shergottite meteorites.

    PubMed

    Werner, Stephanie C; Ody, Anouck; Poulet, François

    2014-03-21

    Absolute ages for planetary surfaces are often inferred by crater densities and only indirectly constrained by the ages of meteorites. We show that the <5 million-year-old and 55-km-wide Mojave Crater on Mars is the ejection source for the meteorites classified as shergottites. Shergottites and this crater are linked by their coinciding meteorite ejection ages and the crater formation age and by mineralogical constraints. Because Mojave formed on 4.3 billion-year-old terrain, the original crystallization ages of shergottites are old, as inferred by Pb-Pb isotope ratios, and the much-quoted shergottite ages of <600 million years are due to resetting. Thus, the cratering-based age determination method for Mars is now calibrated in situ, and it shifts the absolute age of the oldest terrains on Mars backward by 200 million years.

  4. Sublimation: A Mechanism for the Enrichment of Organics in Antarctic Ice

    NASA Technical Reports Server (NTRS)

    Becker, Luann; McDonald, Gene D.; Glavin, Daniel P.; Bada, Jeffrey L.; Bunch, Theodore E.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Recent analyses of the carbonate globules present in the Martian meteorite ALH84001 have detected polycyclic aromatic hydrocarbons (PAHs) at the ppm level. The distribution of PAHs observed in ALH84001 was interpreted as being inconsistent with a terrestrial origin and were claimed to be indigenous to the meteorite, perhaps derived from an ancient Martian biota. However, Becker et al., have examined PAHs in the Martian meteorite EETA79001, in several Antarctic carbonaceous chondrites and Antarctic Allan Hills Ice and detected many of the same PAHs found in ALH84001. The reported presence of L-amino acids of apparent terrestrial origin in the EETA79001 druse material, suggests that this meteorite is contaminated with terrestrial/extraterrestrial organics probably derived from Antarctic ice meltwater that had percolated through the meteorite. The detection of PAHs and L-amino acids in these Martian meteorites suggests that despite storage in the Antarctic ice, selective changes of certain chemical and mineralogical phases has occurred.

  5. Exposure and Terrestrial Histories of New Lunar and Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Hillegonds, D. J.; McHargue, L. R.; Jull, A. J. T.

    2004-01-01

    Cosmogenic nuclide studies of lunar and Martian meteorites have contributed significantly to our understanding of these objects. By measuring a combination of cosmogenic stable- and radionuclides, we can determine a number of important properties of those meteorites. Most lunar meteorites have complex cosmic ray exposure histories, having been exposed both at some depth on the lunar surface (2 irradiation) before their ejection and as small bodies in space (4 irradiation) during transport from the Moon to the Earth. On the other hand, we have not observed evidence of complex exposure history for any Martian meteorites, so far. These exposures were then followed by residence on Earth s surface, a time commonly referred to as the terrestrial age. In addition to their complement of galactic cosmic ray (GCR) produced nuclides some lunar and Martian meteorites contain nuclides produced by solar cosmic rays (SCR). Unraveling the complex history of these objects requires the measurement of at least four cosmogenic nuclides. The specific goals of these measurements are to constrain or set limits on the following shielding or exposure parameters: (1) the depth of the sample at the time of ejection from the Moon or Mars; (2) the transit time (4 exposure age) from ejection off the lunar or Martian surface to the time of capture by the Earth and (3) the terrestrial residence time. The sum of the transit time and residence time yield an ejection age. The ejection age, in conjunction with the sample depth on the Moon or Mars, can then be used to model impact and ejection mechanisms.

  6. Water in Pyroxene and Olivine from Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.

    2012-01-01

    Water in the interior of terrestrial planets can be dissolved in fluids or melts and hydrous phases, but can also be locked as protons attached to structural oxygen in lattice defects in nominally anhydrous minerals (NAM) like olivine, pyroxene, or feldspar [1-3]. Although these minerals contain only tens to hundreds of ppm H2O, this water can amount to at least one ocean in mass when added at planetary scales because of the modal dominance of NAM in the mantle and crust [4]. Moreover these trace amounts of water can have drastic effects on melting temperature, rheology, electrical and heat conductivity, and seismic wave attenuation [5]. There is presently a debate on how much water is present in the martian mantle. Secondary ionization mass spectrometry (SIMS) studies of NAM [6], amphiboles and glass in melt inclusions [7-10], and apatites [11, 12] from Martian meteorites report finding as much water as in the same phases from Earth's igneous rocks. Most martian hydrous minerals, however, generally have the relevant sites filled with Cl and F instead of H [13, 14], and experiments using Cl [15] in parent melts can reproduce Martian basalt compositions as well as those with water [16]. We are in the process of analyzing Martian meteorite minerals by Fourier transform infrared spectrometry (FTIR) in order to constrain the role of water in this planet s formation and magmatic evolution

  7. Hydrogen isotopic composition of the Martian mantle inferred from the newest Martian meteorite fall, Tissint

    NASA Astrophysics Data System (ADS)

    Mane, P.; Hervig, R.; Wadhwa, M.; Garvie, L. A. J.; Balta, J. B.; McSween, H. Y.

    2016-11-01

    The hydrogen isotopic composition of planetary reservoirs can provide key constraints on the origin and history of water on planets. The sources of water and the hydrological evolution of Mars may be inferred from the hydrogen isotopic compositions of mineral phases in Martian meteorites, which are currently the only samples of Mars available for Earth-based laboratory investigations. Previous studies have shown that δD values in minerals in the Martian meteorites span a large range of -250 to +6000‰. The highest hydrogen isotope ratios likely represent a Martian atmospheric component: either interaction with a reservoir in equilibrium with the Martian atmosphere (such as crustal water), or direct incorporation of the Martian atmosphere due to shock processes. The lowest δD values may represent those of the Martian mantle, but it has also been suggested that these values may represent terrestrial contamination in Martian meteorites. Here we report the hydrogen isotopic compositions and water contents of a variety of phases (merrillites, maskelynites, olivines, and an olivine-hosted melt inclusion) in Tissint, the latest Martian meteorite fall that was minimally exposed to the terrestrial environment. We compared traditional sample preparation techniques with anhydrous sample preparation methods, to evaluate their effects on hydrogen isotopes, and find that for severely shocked meteorites like Tissint, the traditional sample preparation techniques increase water content and alter the D/H ratios toward more terrestrial-like values. In the anhydrously prepared Tissint sample, we see a large range of δD values, most likely resulting from a combination of processes including magmatic degassing, secondary alteration by crustal fluids, shock-related fractionation, and implantation of Martian atmosphere. Based on these data, our best estimate of the δD value for the Martian depleted mantle is -116 ± 94‰, which is the lowest value measured in a phase in the

  8. Formation and Evolution of Mars Inferred from Martian Meteorites

    NASA Astrophysics Data System (ADS)

    Borg, L. E.; Symes, S.

    2011-12-01

    The return of samples from Mars has been a long standing NASA objective that, if achieved, would dramatically change our view of the formation and evolution of the terrestrial planets, as well as the physical and chemical conditions in the solar system at the time when life formed on Earth. Significant insight into Mars has been gleaned from the >50 martian meteorites that have landed on Earth. These meteorites fall into 3 categories: First, 165 to 570 Ma basalts and basaltic cumulates, second 1.3 Ga clinopyroxenites and dunites, and third a >4 Ga orthopyroxenite. The basaltic meteorites form a continuum between those with geochemical and isotopic characteristics indicating derivation from depleted and enriched sources. This is most easily explained as mixing between a depleted mantle reservoir and a poorly constrained enriched reservoir in the mantle or crust. Like some basalts. the clinopyroxenites/dunites are slightly enriched in incompatible elements relative to chondrites, but cannot be related to the basaltic meteorites by any simple process. This is most clearly supported by their vastly different short-lived isotopic compositions (e.g. 182W and 142Nd) compared to the basalts. Although all samples have undergone some low temperature alteration on Mars, the orthopyroxenite has undergone significantly more. These observations led to several fundamental conclusions: (1) the young ages indicate the planet is geologically active at present, (2) non-chondritic 182W and 142Nd suggest core formation and silicate differentiation occurred <5 Ma and <25Ma after CAIs, respectively, (3) preservation of isotopic anomalies in short-lived isotopic systems requires geochemical reservoirs on Mars to remain isolated for much of Mars history, (4) basalt geochemical relationships indicate these reservoirs mixed recently during basalt genesis and that these samples are closely related, and (5) water based alteration present in the meteorites occurred throughout martian history

  9. Cryogenic Origin for Mars Analog Carbonates in the Bockfjord Volcanic Complex Svalbard (Norway)

    NASA Technical Reports Server (NTRS)

    Amundsen, H. E. F.; Benning, L.; Blake, D. F.; Fogel, M.; Ming, D.; Skidmore, M.; Steele, A.

    2011-01-01

    The Sverrefjell and Sigurdfjell eruptive centers in the Bockfjord Volcanic Complex (BVC) on Svalbard (Norway) formed by subglacial eruptions ca. 1 Ma ago. These eruptive centers carry ubiquitous magnesian carbonate deposits including dolomitemagnesite globules similar to those in the Martian meteorite ALH84001. Carbonates in mantle xenoliths are dominated by ALH84001 type carbonate globules that formed during quenching of CO2-rich mantle fluids. Lava hosted carbonates include ALH84001 type carbonate globules occurring throughout lava vesicles and microfractures and massive carbonate deposits associated with vertical volcanic vents. Massive carbonates include < or equal 5 cm thick magnesite deposits protruding downwards into clear blue ice within volcanic vents and carbonate cemented lava breccias associated with volcanic vents. Carbonate cements comprise layered deposits of calcite, dolomite, huntite, magnesite and aragonite associated with ALH84001 type carbonate globules lining lava vesicles. Combined Mossbauer, XRD and VNIR data show that breccia carbonate cements at Sverrefjell are analog to Comanche carbonates at Gusev crater.

  10. Characterization of Spitsbergen Disks by Transmission Electron Microscopy and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Le, L.; Ross, K.; McKay, David S.; Gibson, E. K., Jr.

    2010-01-01

    'Carbonate disks' found in the fractures and pores spaces of peridotite xenoliths and basalts from the island of Spitsbergen in the Norwegian Svalbard archipelago have been suggested to be "The best (and best documented) terrestrial analogs for the [Martian meteorite] ALH84001 carbonate globules ..." Previous studies have indicated that Spitsbergen carbonates show broadly comparable internal layering and mineral compositions to ALH84001 carbonate-magnetite disks. We report here for the first time, the detailed mineral characterization of Spitsbergen carbonates and their spatial relationship to the host mineral assemblages in the xenolith, using high resolution TEM (as used previously for ALH84001 carbonate disks). These studies were conducted in concert with complementary Raman and SEM analysis of the same samples. Our results indicate that there are significant chemical and physical differences between the disks in Spitsbergen and the carbonates present in ALH84001.

  11. Hydrogen Isotopic Systematics of Nominally Anhydrous Phases in Martian Meteorites

    NASA Astrophysics Data System (ADS)

    Tucker, Kera

    Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the martian mantle and contain phases that potentially record the evolution of the H 2O content and isotopic composition of the interior of the planet over time. Examined here are the hydrogen isotopic compositions of Nominally Anhydrous Phases (NAPs) in eight martian meteorites (five shergottites and three nakhlites) using Secondary Ion Mass Spectrometry (SIMS). This study presents a total of 113 individual analyses of H2O contents and hydrogen isotopic compositions of NAPs in the shergottites Zagami, Los Angeles, QUE 94201, SaU 005, and Tissint, and the nakhlites Nakhla, Lafayette, and Yamato 000593. The hydrogen isotopic variation between and within meteorites may be due to one or more processes including: interaction with the martian atmosphere, magmatic degassing, subsolidus alteration (including shock), and/or terrestrial contamination. Taking into consideration the effects of these processes, the hydrogen isotope composition of the martian mantle may be similar to that of the Earth. Additionally, this study calculated upper limits on the H2O contents of the shergottite and nakhlite parent melts based on the measured minimum H2O abundances in their maskelynites and pyroxenes, respectively. These calculations, along with some petrogenetic assumptions based on previous studies, were subsequently used

  12. Geochemistry and setting of Martian weathering: The Lafayette meteorite

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Barrett, R. A.; Gooding, J. L.

    1992-01-01

    Lafayette, one of the SNC (martian) meteorites, contains preterrestrial alteration materials rich in smectite and ferric oxides. The compositions and textures of the veinlets suggest that they were formed in episodic alteration events by waters that contained a relatively small load of dissolved salts. The Lafayette achondrite, one of the nakhlites of probable martian origin, is an igneous rock consisting mostly of augite and olivine, with interstitial feldspar, sulfides (pyrite), high-Si glass, and other phases. Like Nakhla itself, Lafayette contains veinlets of hydrous alteration materials. We studied thin sections of sample ME2116 (Field Museum, Chicago), using scanning and transmission electron microscopy (SEM and TEM) with energy dispersive X-ray spectrometry (EDS).

  13. Water in SNC meteorites: evidence for a martian hydrosphere.

    PubMed

    Karlsson, H R; Clayton, R N; Gibson, E K; Mayeda, T K

    1992-03-13

    The Shergotty-Nakhla-Chassigny (SNC) meteorites, purportedly of martian origin, contain 0.04 to 0.4 percent water by weight. Oxygen isotopic analysis can be used to determine whether this water is extraterrestrial or terrestrial. Such analysis reveals that a portion of the water is extraterrestrial and furthermore was not in oxygen isotopic equilibrium with the host rock. Lack of equilibrium between water and host rock implies that the lithosphere and hydrosphere of the SNC parent body formed two distinct oxygen isotopic reservoirs. If Mars was the parent body, the maintenance of two distinct reservoirs may result from the absence of plate tectonics on the planet.

  14. Water in SNC meteorites - Evidence for a Martian hydrosphere

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.; Gibson, Everett K., Jr.; Mayeda, Toshiko K.

    1992-01-01

    The Shergotty-Nakhla-Chassigny (SNC) meteorites, purportedly of Martian origin, contain 0.04 to 0.4 percent water by weight. Oxygen isotopic analysis can be used to determine whether this water is extraterrestrial or terrestrial. Such analysis reveals that a portion of the water is extraterrestrial and furthermore was not in oxygen isotopic equilibrium with the host rock. Lack of equilibrium between water and host rock implies that the lithosphere and hydrosphere of the SNC parent body formed two distinct oxygen isotopic reservoirs. If Mars was the parent body, the maintenance of two distinct reservoirs may result from the absence of plate tectonics on the planet.

  15. Peology and Geochemistry of New Paired Martian Meteorites 12095 and LAR 12240

    NASA Technical Reports Server (NTRS)

    Funk, R. C.; Brandon, A. D.; Peslier, A.

    2015-01-01

    The meteorites LAR 12095 and LAR 12240 are believed to be paired Martian meteorites and were discovered during the Antarctic Search for Meteorites (ANSMET) 2012-2013 Season at Larkman Nunatak. The purpose of this study is to characterize these olivine-phyric shergottites by analyzing all mineral phases for major, minor and trace elements and examining their textural relationships. The goal is to constrain their crystallization history and place these shergottites among other Martian meteorites in order to better understand Martian geological history.

  16. Rare-Earth minerals in Martian Meteorite NWA 7034/7533: Evidence for Fluid-Rock Interaction in Martian Crust

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Ma, C.; Chen, Y.; Beckett, J.; Guan, Y.

    2015-07-01

    Previously, we reported finding of monazite, chevikinite-perrierite and xenotime in the ‘Black Beauty’ meteorite (NWA 7034/7533). Here, we show textural and compositional evidence of these minerals that suggest hydrothermal fluids in martian crust.

  17. Organic Carbon Features Identified in the Nakhla Martian Meteorite

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.; Gibson, E. K., Jr.; Le, L.; Rahman, Z.; Wentworth, S. J.

    2011-01-01

    We report, for the first time, the identification of specific carbonaceous phases, present within iddingsite alteration zones of the Nakhla meteorite that possess discrete, well defined, structurally coherent morphologies. These structures bear superficial similarity to the carbonaceous nanoglobules [1] found in primitive chondrites interplanetary dust particles, although they are an order-of-magnitude larger in size. Introduction: It has been known for many years that some members of the Martian meteorite clan contain organic matter [e.g., 2-4]. Based on both isotopic measurements [5] and circumstantial observations [4] (e.g., the similarity organic signatures present in both Antarctic finds and non-Antarctic falls) a credible argument has been made for a preterrestrial origin for the majority of these organics. The Nakhla meteorite is of particular interest in that it has been shown to contain both an acid-labile organic fraction as well as an acid-insoluble high molecular weight organic component [4]. Pyrolysis-gas chromatography-mass spectrometry of the latter component indicates it to be composed of aromatic and alkyl-aromatic functionalities bound into a macromolecule phase through ether linkages [4]. However, the spatial, textural and mineralogical associations of this carbonaceous macromolecular material have remained elusive [6].

  18. Life on Mars: chemical arguments and clues from Martian meteorites.

    PubMed

    Brack, A; Pillinger, C T

    1998-08-01

    Primitive terrestrial life-defined as a chemical system able to transfer its molecular information via self-replication and to evolve-probably originated from the evolution of reduced organic molecules in liquid water. Several sources have been proposed for the prebiotic organic molecules: terrestrial primitive atmosphere (methane or carbon dioxide), deep-sea hydrothermal systems, and extraterrestrial meteoritic and cometary dust grains. The study of carbonaceous chondrites, which contain up to 5% by weight of organic matter, has allowed close examination of the delivery of extraterrestrial organic material. Eight proteinaceous amino acids have been identified in the Murchison meteorite among more than 70 amino acids. Engel reported that L-alanine was surprisingly more abundant than D-alanine in the Murchison meteorite. Cronin also found excesses of L-enantiomers for nonprotein amino acids. A large collection of micrometeorites has been recently extracted from Antarctic old blue ice. In the 50- to 100-micron size range, carbonaceous micrometeorites represent 80% of the samples and contain 2% of carbon, on average. They might have brought more carbon than that involved in the present surficial biomass. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars, attesting the presence of an atmosphere capable of deccelerating C-rich micrometeorites. Therefore, primitive life may have developed on Mars as well and fossilized microorganisms may still be present in the near subsurface. The Viking missions to Mars in 1976 did not find evidence of either contemporary or past life, but the mass spectrometer on the lander aeroshell determined the atmospheric composition, which has allowed a family of meteorites to be identified as Martian. Although these samples are essentially volcanic in origin, it has been recognized that some of them contain carbonate inclusions and even veins that have a carbon isotopic

  19. Identification of Iron-Bearing Phases on the Martian Surface and in Martian Meteorites and Analogue Samples by Moessbauer Spectroscopy

    NASA Technical Reports Server (NTRS)

    Klingelhoefer, G.; Agresti, D. G.; Schroeder, C.; Rodionov, D.; Yen, A.; Ming, Doug; Morris, Richard V.

    2007-01-01

    The Moessbauer spectrometers on the Mars Exploration Rovers (MER) Spirit (Gusev Crater) and Opportunity (Meridiani Planum) have each analyzed more than 100 targets during their ongoing missions (>1050 sols). Here we summarize the Fe-bearing phases identified to date and compare the results to Moessbauer analyses of martian meteorites and lunar samples. We use lunar samples as martian analogues because some, particularly the low-Ti Apollo 15 mare basalts, have bulk chemical compositions that are comparable to basaltic martian meteorites [1,2]. The lunar samples also provide a way to study pigeonite-rich samples. Pigeonite is a pyroxene that is not common in terrestrial basalts, but does often occur on the Moon and is present in basaltic martian meteorites

  20. Characterization of Martian Soil Fines Fraction in SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; McKay, D. S.

    2003-01-01

    Some impact-melt glasses in shergottite meteorites contain large abundances of martian atmospheric noble gases with high (129)Xe/(132)Xe ratios, accompanied by varying (87)Sr/(86)Sr (initial) ratios. These glasses contain Martian Soil Fines (MSF) probably from young volcanic terrains such as Tharsis or Elysium Mons. The composition of the MSF bearing samples is different from the average bulk composition of the host rock. These samples show the following charecteristics: a) simultaeneous enrichment of the felsic component and depletion of the mafic component relative to the host phase and b) significant secondary sulfur/sulfate excesses over the host material. The degree of enrichment and associated depletion varies from one sample to another. Earlier, we found large enrichments of felsic (Al, Ca, Na and K) component and depletion of mafic (Fe, Mg, Mn and Ti) component in several impact melt glass veins and pods of samples ,77 ,78 , 18, and ,20A in EET79001 accompanied by large sulfur/sulfate excesses. Based on these results, we proposed a model where the comminution of basaltic rocks takes place by meteoroid bombardment on the martian surface, leading to the generation of fine-grained soil near the impact sites. This fine-grained soil material is subsequently mobilized by saltation and deflation processes on Mars surface due to pervasive aeolian activity. This movement results in mechanical fractionation leading to the felsic enrichment and mafic depletion in the martian dust. We report, here, new data on an impact-melt inclusion ,507 (PAPA) from EET79001, Lith B and ,506 (ALPHA) from EET79001, Lith A and compare the results with those obtained on Shergotty impact melt glass (DBS).

  1. Martian carbon dioxide: Clues from isotopes in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Karlsson, H. R.; Clayton, R. N.; Mayeda, T. K.; Jull, A. J. T.; Gibson, E. K., Jr.

    1993-01-01

    Attempts to unravel the origin and evolution of the atmosphere and hydrosphere on Mars from isotopic data have been hampered by the impreciseness of the measurements made by the Viking Lander and by Earth-based telescopes. The SNC meteorites which are possibly pieces of the Martian surface offer a unique opportunity to obtain more precise estimates of the planet's volatile inventory and isotopic composition. Recently, we reported results on oxygen isotopes of water extracted by pyrolysis from samples of Shergotty, Zagami, Nakhla, Chassigny, Lafayette, and EETA-79001. Now we describe complementary results on the stable isotopic composition of carbon dioxide extracted simultaneously from those same samples. We will also report on C-14 abundances obtained by accelerator mass spectrometry (AMS) for some of these CO2 samples.

  2. Lead in Martian Meteorites-- Observations and Inconsistencies: I. Chassigny

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Simon, J. I.; Usui, T.

    2017-01-01

    The history of Pb isotope analyses of the martian meteorites (SNC) and their interpretations is laden with difficulties. Two different analytical groups have interpreted their ancient (= 4 Ga) shergottite Pb ages as primary [1-5]. A Nakhla age of approximately 4.3 Ga has been interpreted to be primary as well [2]. This is in stark contrast to the young (= 1.4 Ga) crystallization ages defined by the Rb-Sr, Sm-Nd, Lu-Hf, and KAr systems [6]. Possibly, a better interpretation for the ancient Pb ages is that they reflect the formation times of the various SNC source regions [7]. A difficulty in dealing with Pb is that terrestrial contamination is ubiquitous, unlike the other chronometer systems noted above. This issue is complicated by the fact that radioactive decay causes localized mineral damage. So washing and leaching to remove Pb contamination tends to remove in situ radiogenic Pb. This issue is further compounded because U and Th are often concentrated in phosphates and other minor phases, so the leaching process tends to remove these, especially phosphates. Another difficulty is that it is not clear whether the observed Pb isotopic variation in leachates, residues, and ion-microprobe analyses is due to terrestrial or to indigenous martian Pb contamination [e.g., 8]. A third difficulty is that the shergottites on the one hand, and the nakhlites and chassignites on the other, appear to have come from separate source regions with different chemical compositions [e.g., 7]. Thus, it is expected that their Pb isotopic characteristics would be different. And even if all these meteorite types came from the same source region, their igneous ages differ considerably. The nakhlites and chassignites are 1.4 Ga and the shergottites are = 600 Ma [e.g., 6]. This age difference alone should assure that the two distinct SNC groups have differing Pb isotopic signatures.

  3. Los Angeles: The Most Differentiated Basaltic Martian Meteorite

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Warren, Paul H.; Greenwood, James P.; Verish, Robert S.; Leshin, Laurie A.; Hervig, Richard L.; Clayton, Robert N.; Mayeda, Toshiko K.

    2000-01-01

    Los Angeles is a new martian meteorite that expands the compositional range of basaltic shergottites. Compared to Shergotty, Zagami, QUE94201, and EET79001-B, Los Angeles is more differentiated, with higher concentrations of incompatible elements (e.g., La) and a higher abundance of late-stage phases such as phosphates and K-rich feldspathic glass. The pyroxene crystallization trend starts at compositions more ferroan than in other martian basaits. Trace elements indicate a greater similarity to Shergotty and Zagami than to QUE94201 or EET79001-B, but the Mg/Fe ratio is low even compared to postulated parent melts of Shergotty and Zagami. Pyroxene in Los Angeles has 0.7-4-microns-thick exsolution lamellae, approx. 10 times thicker than those in Shergotty and Zaganii. Opaque oxide compositions suggest a low equilibration temperature at an oxygen fugacity near the fayafite-magnetitequartz buffer. Los Angeles cooled more slowly than Shergotty and Zagami. Slow cooling, coupled with the ferroan bulk composition, produced abundant fine-grained intergrowths of fayalite, hedenbergite, and silica, by the breakdown of pyroxferroite. Shock effects in Los Angeles include maskelynitized plagioclase, pyroxene with mosaic extinction, and rare fault zones. One such fault ruptured a previously decomposed zone of pyroxferroite. Although highly differentiated, the bulk composition of Los Angeles is not close to the low-Ca/Si composition or the globally wind-stirred soil of Mars.

  4. Petrology and Geochemistry of New Paired Martian Meteorites Larkman Nunatak 12240 and Larkman Nunatak 12095

    NASA Astrophysics Data System (ADS)

    Funk, R. C.; Peslier, A. H.; Brandon, A. D.; Humayun, M.

    2016-08-01

    Two of the latest Martian meteorites found in Antarctica, paired olivine-phyric shergottites LAR 12240 and LAR 12095, are described in order to decipher their petrological context, and place constraints on the geological history of Mars.

  5. Tissint martian meteorite: a fresh look at the interior, surface, and atmosphere of Mars.

    PubMed

    Aoudjehane, H Chennaoui; Avice, G; Barrat, J-A; Boudouma, O; Chen, G; Duke, M J M; Franchi, I A; Gattacceca, J; Grady, M M; Greenwood, R C; Herd, C D K; Hewins, R; Jambon, A; Marty, B; Rochette, P; Smith, C L; Sautter, V; Verchovsky, A; Weber, P; Zanda, B

    2012-11-09

    Tissint (Morocco) is the fifth martian meteorite collected after it was witnessed falling to Earth. Our integrated mineralogical, petrological, and geochemical study shows that it is a depleted picritic shergottite similar to EETA79001A. Highly magnesian olivine and abundant glass containing martian atmosphere are present in Tissint. Refractory trace element, sulfur, and fluorine data for the matrix and glass veins in the meteorite indicate the presence of a martian surface component. Thus, the influence of in situ martian weathering can be unambiguously distinguished from terrestrial contamination in this meteorite. Martian weathering features in Tissint are compatible with the results of spacecraft observations of Mars. Tissint has a cosmic-ray exposure age of 0.7 ± 0.3 million years, consistent with those of many other shergottites, notably EETA79001, suggesting that they were ejected from Mars during the same event.

  6. Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H. (Editor); Herd, Christopher D. K. (Editor)

    2002-01-01

    Geochemical and petrologic studies of the Martian meteorites (nicknamed the SNCs) have proliferated in the past few years, from a wealth of new samples and the perfection of new analytical methods. An intriguing result from these studies is that the chemical and isotopic compositions of the Martian meteorites, all basalts or derived from basaltic magma, can be modeled as mixtures of a limited number of components. These mixing components were the focus of the workshop.

  7. Nakhla: a Martian Meteorite with Indigenous Organic Carbonaceous Features

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Gibson, E. K.; Thomas-Keprta, K. L.; Clemett, S. J.; Le, L.; Rahman, Z.; Wentworth, S. J.

    2011-01-01

    The Nakhla meteorite possesses discrete, well defined, structurally coherent morphologies of carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of organic phases the presence of pre-terrestrial organics is now recognized. Within the microcrystalline layers of Nakhla s iddingsite, discrete clusters of salt crystals are present. These salts are predominantly halite (NaCl) with minor MgCl2 crystals. Some CaSO4, likely gypsum, appears to be partially intergrown with some of the halite. EDX mapping shows discrete C-rich features are interspersed among these crystals. A hollow semi-spherical bowl structure ( 3 m ) has been identified and analyzed after using a focused ion beam (FIB) to cut a transverse TEM thin section of the feature and the underlying iddingsite. TEM/EDX analysis reveals that the feature is primarily carbonaceous containing C with lesser amounts of Si, S, Ca, Cl, F, Na, and minor Mn and Fe; additionally a small peak consistent with N, which has been previously seen in Nakhla carbonaceous matter, is also present. Selected area electron diffraction (SAED) shows that this C-rich material is amorphous (lacking any long-range crystallographic order) and is not graphite or carbonate. Micro-Raman spectra acquired from the same surface from which the FIB section was extracted demonstrate a typical kerogen-like D and G band structure with a weak absorption peak at 1350 and a stronger peak at 1600/cm. The C-rich feature is intimately associated with both the surrounding halite and underlying iddingsite matrix. Both iddingsite and salts are interpreted as having formed as evaporate assemblages from progressive evaporation of water bodies on Mars. This assemblage, sans the carbonaceous moieties, closely resembles iddingsite alteration features previously described which were interpreted as indigenous Martian assemblages. These distinctive macromolecular carbonaceous structures in Nakhla may represent

  8. Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA).

  9. Evidence From Hydrogen Isotopes in Meteorites for a Martian Permafrost

    NASA Technical Reports Server (NTRS)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Fluvial landforms on Mars suggest that it was once warm enough to maintain persistent liquid water on its surface. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have investigated the evolution of surface water/ ice and its interaction with the atmosphere by measurements of hydrogen isotope ratios (D/H: deuterium/ hydrogen) of martian meteorites. Hydrogen is a major component of water (H2O) and its isotopes fractionate significantly during hydrological cycling between the atmosphere, surface waters, ground ice, and polar cap ice. Based on in situ ion microprobe analyses of three geochemically different shergottites, we reported that there is a water/ice reservoir with an intermediate D/H ratio (delta D = 1,000?2500 %) on Mars. Here we present the possibility that this water/ice reservoir represents a ground-ice/permafrost that has existed relatively intact over geologic time.

  10. Contribution of Organic Material to the Stable Isotope Composition of Some Terrestrial Carbonates as Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Bissada, K. K.

    2005-01-01

    Understanding the isotopic geochemistry of terrestrial carbonate formation is essential to understanding the evolution of the Martian atmosphere, hydrosphere, and potential biosphere. Carbonate minerals, in particular, are important secondary minerals for interpreting past aqueous environments, as illustrated by the carbonates present in ALH84001 [1]. Models for the history of Mars suggest that the planet was warmer, wetter, and possessed a greater atmospheric pressure within the first billion years as compared to present conditions [2],[3],[4], and likely had an active hydrologic cycle. Morse and Marion [5] point out that associated with this hydrologic cycle would be the active chemical weathering of silicate minerals and thus consumption of atmospheric CO2 and deposition of carbonate and silica. It is during this warmer and wetter period of Martian history that surface and/or near-surface conditions would be most favorable for harboring possible microbiological life. Carbonates within ALH84001 offer evidence that fluids were present at 3.9 Gy on Mars [6]. A more through understanding of the effects of aqueous weathering and the potential contribution of organic compounds on the isotopic composition of Martian carbonate minerals can be gained by studying some terrestrial occurrences of carbonate rocks.

  11. Volatile/mobile trace elements in meteoritic, non-lunar basalts: Guides to Martian sample contents

    NASA Technical Reports Server (NTRS)

    Lipschutz, M. E.; Paul, R. L.

    1988-01-01

    A variety of genetic processes on or in extraterrestrial objects can be examined by study of volatile/mobile trace elements. Doubtless, considerable efforts will be expended on determining these elements in returned Martian samples. The purpose is to estimate levels of such elements expected to be present in returned Martian samples. Some ideas about Martian genesis were already advanced from the volatile/mobile element contents in SNC meteorites, assuming that Mars was their parent body. Even is Mars and the SNC meteorite parent body are identical, compositional ranges for returned Martian samples should exceed those of SNC meteorites. It is expected, therefore, that Martian samples returned from locations other than Polar regions will have indigenous volatile/mobile element contents within howardite-diogenite ranges. Elements with strong lithophile tendences may be more abundant, as they are in many lunar samples. Most of these elements should be at ppb levels except for Co, Ga, Zn, and Rb, which should lie at ppm levels. If Martian volcanism was accompanied by fumarolic emanations, it should be reflected in occasional huge enrichments of mobile trance elements, as in lunar meteorite Y 791197. During collection and transport Earthward, samples must be contained under conditions appropriate to ppb concentrations. Materials must be used that will not cause contamination which occurred during the Apollo program, where indium from seals contaminated many samples.

  12. Ferric saponite and serpentine in the nakhlite martian meteorites

    NASA Astrophysics Data System (ADS)

    Hicks, L. J.; Bridges, J. C.; Gurman, S. J.

    2014-07-01

    Transmission electron microscopy and Fe-K X-ray absorption spectroscopy have been used to determine structure and ferric content of the secondary phase mineral assemblages in the nakhlite martian meteorites, NWA 998, Lafayette, Nakhla, GV, Y 000593, Y 000749, MIL 03346, NWA 817, and NWA 5790. The secondary phases are a rapidly cooled, metastable assemblage that has preserved Mg# and Ca fractionation related to distance from the fluid source, for most of the nakhlites, though one, NWA 5790, appears not to have experienced a fluid pathway. All nine nakhlite samples have also been analysed with scanning electron microscopy, electron probe micro analysis, Bright Field high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction. By measuring the energy position of the Fe-K XANES 1s → 3d pre-edge transition centroid we calculate the ferric content of the minerals within the nakhlite meteorites. The crystalline phyllosilicates and amorphous silicate of the hydrothermal deposits filling the olivine fractures are found to have variable Fe3+/ΣFe values ranging from 0.4 to 0.9. In Lafayette, the central silicate gel parts of the veins are more ferric than the phyllosilicates around it, showing that the fluid became increasingly oxidised. The mesostasis of Lafayette and NWA 817 also have phyllosilicate, which have a higher ferric content than the olivine fracture deposits, with Fe3+/ΣFe values of up to 1.0. Further study, via TEM analyses, reveal the Lafayette and NWA 817 olivine phyllosilicates to have 2:1 T-O-T lattice structure with a the d001-spacing of 0.96 nm, whereas the Lafayette mesostasis phyllosilicates have 1:1 T-O structure with d001-spacings of 0.7 nm. Based on our analyses, the phyllosilicate found within the Lafayette olivine fractures is trioctahedral ferric saponite (Ca0.2K0.1)∑0.3(Mg2.6Fe2+1.3Fe3+1.7Mn0.1)∑5.7[(Si6.7AlIV0.9Fe3+0.4)∑8.0O20](OH)4·nH2O, and that found in the mesostasis fractures is an Fe

  13. Evaporite mineral assemblages in the nakhlite (martian) meteorites

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Grady, M. M.

    2000-03-01

    A mineralogical study of the three nakhlite (martian) meteorites has revealed that they contain evaporite mineral assemblages. Lafayette has Ca-siderite and clay minerals (smectite/illite) along fractures within olivine; Governador Valadares contains clay mineral veins in olivine, with siderite, gypsum and anhydrite in interstitial areas; Nakhla has clay and gypsum veins in olivine, with Mg-, Mn-rich siderite, anhydrite and halite in interstitial sites. Minor goethite is also present in the three meteorites. Lafayette siderite has the range of compositions (mol%) CaCO 3 21.6-36.8, MnCO 3 4.2-35.3, MgCO 3 0.1-1.6, FeCO 3 27.4-67.0; Governador Valadares has CaCO 3 3.6-11.1, MnCO 3 1.1-2.1, MgCO 3 9.0-29.2, FeCO 3 64.3-77.8; Nakhla has CaCO 3 0.1-5.7, MnCO 3 1.0-39.9, MgCO 3 2.0-40.9, FeCO 3 23.2-87.0. Trace element abundances for clay, siderite and gypsum are all similar with LREE, Y>HREE, Zr, Nb and La 0.9-95×CI; Y 0.2-2.4×CI. This pattern of abundances reflects the trace element contents of the parent fluid, which in turn were derived through dissolution of LREE-enriched feldspathic mesostasis. The close similarities in silicate petrography and radiometric ages determined by other workers for these olivine clinopyroxenites suggests that the parent rocks were close to one another on Mars and therefore the same fluid may have been responsible for the precipitation of the evaporite mineral assemblages. Lafayette contains the mineral assemblage and siderite composition which are least soluble in water and Nakhla contains the most soluble minerals and carbonate composition. On the basis of our new data we consider a new model of progressive evaporation from a Na-Mg-Fe-Ca-SO 4-Cl-H 2O-HCO 3- acidic brine in an area of enclosed drainage (e.g. crater or low-lying flood plain) on Mars. Partial dissolution of near-surface rocks by the acidic brine released Fe, Mg and trace elements from mesostasis and olivine into the fluid. The Lafayette assemblage was formed where >25

  14. Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites

    NASA Astrophysics Data System (ADS)

    Bogard, D. D.; Nyquist, L. E.; Johnson, P.

    1984-09-01

    Three meteorites belonging to the rare group of SNC achondrites, which may have originated in the planet Mars, have been subjected to noble gas isotopic concentration measurements. The elemental and isotopic ratios obtained are unlike those for any other noble gas components except those obtained in analyses of the Martian atmosphere by Viking spacecraft. It is hypothesized that the Kr and Xe gases represent a portion of the Martian atmosphere which was shock-implanted in the case of Elephant Moraine A79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. If the SNC meteorites were ejected from Mars at the shergottite shock age of about 180 My ago, they must have been objects more than 6 m in diameter which experienced at least three space collisions to initiate cosmic ray exposure.

  15. Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Nyquist, L. E.; Johnson, P.

    1984-01-01

    Three meteorites belonging to the rare group of SNC achondrites, which may have originated in the planet Mars, have been subjected to noble gas isotopic concentration measurements. The elemental and isotopic ratios obtained are unlike those for any other noble gas components except those obtained in analyses of the Martian atmosphere by Viking spacecraft. It is hypothesized that the Kr and Xe gases represent a portion of the Martian atmosphere which was shock-implanted in the case of Elephant Moraine A79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. If the SNC meteorites were ejected from Mars at the shergottite shock age of about 180 My ago, they must have been objects more than 6 m in diameter which experienced at least three space collisions to initiate cosmic ray exposure.

  16. New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks.

    PubMed

    Ascaso, C; Wierzchos, J

    2002-12-01

    Microbial life in the harsh conditions of Antarctica's cold desert may be considered an analogue of potential life on early Mars. In order to explore the development and survival of this epilithic and endolithic form of microbial life, our most sophisticated, state-of-the-art visualization technologies have to be used to their full potential. The study of any ecosystem requires a knowledge of its components and the processes that take place within it. If we are to understand the structure and function of each component of the microecosystems that inhabit lithic substrates, we need to be able to quantify and identify the microorganisms present in each lithobiontic ecological niche and to accurately characterize the mineralogical features of these hidden microhabitats. Once we have established the techniques that will allow us to observe and identify these microorganisms and mineral substrates in situ, and have confirmed the presence of water, the following questions can be addressed: How are the microorganisms organized in the fissures or cavities? Which microorganisms are present and how many are there? Additional questions that logically follow include: What are the existing water relationships in the microhabitat and what effects do the microorganisms have on the mineral composition? Mechanical and chemical changes in minerals and mineralization of microbial cells can give rise to physical and/or chemical traces (biomarkers) and to microbial fossil formation. In this report, we describe the detection of chains of magnetite within the Martian meteorite ALH84001, as an example of the potential use of SEM-BSE in the search for plausible traces of life on early Mars.

  17. SNC Meteorites, Organic Matter and a New Look at Viking

    NASA Technical Reports Server (NTRS)

    Warmflash, David M.; Clemett, Simon J.; McKay, David S.

    2001-01-01

    Recently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR

  18. The chlorine isotopic composition of Martian meteorites 1: Chlorine isotope composition of Martian mantle and crustal reservoirs and their interactions

    NASA Astrophysics Data System (ADS)

    Williams, J. T.; Shearer, C. K.; Sharp, Z. D.; Burger, P. V.; McCubbin, F. M.; Santos, A. R.; Agee, C. B.; McKeegan, K. D.

    2016-11-01

    The Martian meteorites record a wide diversity of environments, processes, and ages. Much work has been done to decipher potential mantle sources for Martian magmas and their interactions with crustal and surface environments. Chlorine isotopes provide a unique opportunity to assess interactions between Martian mantle-derived magmas and the crust. We have measured the Cl-isotopic composition of 17 samples that span the range of known ages, Martian environments, and mantle reservoirs. The 37Cl of the Martian mantle, as represented by the olivine-phyric shergottites, NWA 2737 (chassignite), and Shergotty (basaltic shergottite), has a low value of approximately -3.8‰. This value is lower than that of all other planetary bodies measured thus far. The Martian crust, as represented by regolith breccia NWA 7034, is variably enriched in the heavy isotope of Cl. This enrichment is reflective of preferential loss of 35Cl to space. Most basaltic shergottites (less Shergotty), nakhlites, Chassigny, and Allan Hills 84001 lie on a continuum between the Martian mantle and crust. This intermediate range is explained by mechanical mixing through impact, fluid interaction, and assimilation-fractional crystallization.

  19. Magnetite biomineralization and ancient life on Mars.

    PubMed

    Frankel, R B; Buseck, P R

    2000-04-01

    Certain chemical and mineral features of the Martian meteorite ALH84001 were reported in 1996 to be probable evidence of ancient life on Mars. In spite of new observations and interpretations, the question of ancient life on Mars remains unresolved. Putative biogenic, nanometer magnetite has now become a leading focus in the debate.

  20. Evolution of water reservoirs on Mars: Constraints from hydrogen isotopes in martian meteorites

    NASA Astrophysics Data System (ADS)

    Kurokawa, H.; Sato, M.; Ushioda, M.; Matsuyama, T.; Moriwaki, R.; Dohm, J. M.; Usui, T.

    2014-05-01

    Martian surface morphology implies that Mars was once warm enough to maintain persistent liquid water on its surface. While the high D/H ratios (˜6 times the Earth's ocean water) of the current martian atmosphere suggest that significant water has been lost from the surface during martian history, the timing, processes, and the amount of the water loss have been poorly constrained. Recent technical developments of ion-microprobe analysis of martian meteorites have provided accurate estimation of hydrogen isotope compositions (D/H) of martian water reservoirs at the time when the meteorites formed. Based on the D/H data from the meteorites, this study demonstrates that the water loss during the pre-Noachian (>41-99 m global equivalent layers, GEL) was more significant than in the rest of martian history (>10-53 m GEL). Combining our results with geological and geomorphological evidence for ancient oceans, we propose that undetected subsurface water/ice (≃100-1000 m GEL) should exist, and it exceeds the observable present water inventory (≃20-30 m GEL) on Mars.

  1. Fractionated (Martian) Noble Gases — EFA, Experiments and Meteorites

    NASA Astrophysics Data System (ADS)

    Schwenzer, S. P.; Barnes, G.; Bridges, J. C.; Bullock, M. A.; Chavez, C. L.; Filiberto, J.; Herrmann, S.; Hicks, L. J.; Kelley, S. P.; Miller, M. A.; Moore, J. M.; Ott, U.; Smith, H. D.; Steer, E. D.; Swindle, T. D.; Treiman, A. H.

    2016-08-01

    Noble gases are tracers for physical processes, including adsorption, dissolution and secondary mineral formation. We examine the Martian fractionated atmosphere through literature, terrestrial analogs and experiments.

  2. Magnetotactic bacteria on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Friedmann, E. Imre; Frankel, Richard B.; Bazylinski, Dennis A.

    2003-01-01

    Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.

  3. Magnetotactic bacteria on Earth and on Mars.

    PubMed

    McKay, Christopher P; Friedmann, E Imre; Frankel, Richard B; Bazylinski, Dennis A

    2003-01-01

    Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.

  4. Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the conference on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites, September 11-12, 2002, in Houston, Texas. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  5. The Tissint Martian meteorite as evidence for the largest impact excavation.

    PubMed

    Baziotis, Ioannis P; Liu, Yang; DeCarli, Paul S; Melosh, H Jay; McSween, Harry Y; Bodnar, Robert J; Taylor, Lawrence A

    2013-01-01

    High-pressure minerals in meteorites provide clues for the impact processes that excavated, launched and delivered these samples to Earth. Most Martian meteorites are suggested to have been excavated from 3 to 7 km diameter impact craters. Here we show that the Tissint meteorite, a 2011 meteorite fall, contains virtually all the high-pressure phases (seven minerals and two mineral glasses) that have been reported in isolated occurrences in other Martian meteorites. Particularly, one ringwoodite (75 × 140 μm(2)) represents the largest grain observed in all Martian samples. Collectively, the ubiquitous high-pressure minerals of unusually large sizes in Tissint indicate that shock metamorphism was widely dispersed in this sample (~25 GPa and ~2,000 °C). Using the size and growth kinetics of the ringwoodite grains, we infer an initial impact crater with ~90 km diameter, with a factor of 2 uncertainty. These energetic conditions imply alteration of any possible low-T minerals in Tissint.

  6. Insights into the Martian Regolith from Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Boyce, Jeremy W.; Szabo, Timea; Santos, Alison R.; Domokos, Gabor; Vazquez, Jorge; Moser, Desmond E.; Jerolmack, Douglas J.; Keller, Lindsay P.; Tartese, Romain

    2015-01-01

    Everything we know about sedimentary processes on Mars is gleaned from remote sensing observations. Here we report insights from meteorite Northwest Africa (NWA) 7034, which is a water-rich martian regolith breccia that hosts both igneous and sedimentary clasts. The sedimentary clasts in NWA 7034 are poorly-sorted clastic siltstones that we refer to as protobreccia clasts. These protobreccia clasts record aqueous alteration process that occurred prior to breccia formation. The aqueous alteration appears to have occurred at relatively low Eh, high pH conditions based on the co-precipitation of pyrite and magnetite, and the concomitant loss of SiO2 from the system. To determine the origin of the NWA 7034 breccia, we examined the textures and grain-shape characteristics of NWA 7034 clasts. The shapes of the clasts are consistent with rock fragmentation in the absence of transport. Coupled with the clast size distribution, we interpret the protolith of NWA 7034 to have been deposited by atmospheric rainout resulting from pyroclastic eruptions and/or asteroid impacts. Cross-cutting and inclusion relationships and U-Pb data from zircon, baddelleyite, and apatite indicate NWA 7034 lithification occurred at 1.4-1.5 Ga, during a short-lived hydrothermal event at 600-700 C that was texturally imprinted upon the submicron groundmass. The hydrothermal event caused Pb-loss from apatite and U-rich metamict zircons, and it caused partial transformation of pyrite to submicron mixtures of magnetite and maghemite, indicating the fluid had higher Eh than the fluid that caused pyrite-magnetite precipitation in the protobreccia clasts. NWA 7034 also hosts ancient 4.4 Ga crustal materials in the form of baddelleyites and zircons, providing up to a 2.9 Ga record of martian geologic history. This work demonstrates the incredible value of sedimentary basins as scientific targets for Mars sample return missions, but it also highlights the importance of targeting samples that have not been

  7. New Martian Meteorite Is One of the Most Oxidized Found to Date

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Shafer, John T.; Brandon, Alan D.; Irving, Anthony J.

    2014-01-01

    As of 2013, about 60 meteorites from the planet Mars have been found and are being studied. Each time a new Martian meteorite is found, a wealth of new information comes forward about the red planet. The most abundant type of Martian meteorite is a shergottite; its lithologies are broadly similar to those of Earth basalts and gabbros; i.e., crustal igneous rocks. The entire suite of shergottites is characterized by a range of trace element, isotopic ratio, and oxygen fugacity values that mainly reflect compositional variations of the Martian mantle from which these magmas came. A newly found shergottite, NWA 5298, was the focus of a study performed by scientists within the Astromaterials Research and Exploration Science (ARES) Directorate at the Johnson Space Center (JSC) in 2012. This sample was found in Morocco in 2008. Major element analyses were performed in the electron microprobe (EMP) laboratory of ARES at JSC, while the trace elements were measured at the University of Houston by laser inductively coupled plasma mass spectrometry (ICPMS). A detailed analysis of this stone revealed that this meteorite is a crystallized magma that comes from the enriched end of the shergottite spectrum; i.e., trace element enriched and oxidized. Its oxidation comes in part from its mantle source and from oxidation during the magma ascent. It represents a pristine magma that did not mix with any other magma or see crystal accumulation or crustal contamination on its way up to the Martian surface. NWA 5298 is therefore a direct, albeit evolved, melt from the Martian mantle and, for its lithology (basaltic shergottite), it represents the oxidized end of the shergottite suite. It is thus a unique sample that has provided an end-member composition for Martian magmas.

  8. Possible Evidence for Life in ALH84001

    NASA Technical Reports Server (NTRS)

    McKay, David; Gibson, Everett K., Jr.; Thomas-Keprta, Kathie

    1999-01-01

    Since our original paper Science in August 1996, considerable new data has appeared from laboratories throughout the world, and our own team has had a chance to examine the sample in greater detail. The following summary touches on our original data and interpretation, and points out new data from us and from other groups, and the resulting changes and refinements in interpretations which we have made during the past three years.

  9. The Nakhla Martian Meteorite is a Cumulate Igenous Rock. Comment on "Glass-Bearing Inclusions in Nakhla (SNC Meteorite) Augite: Heterogeneously Trapped Phases"

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.

    2003-01-01

    All the properties of the Nakhla Martian meteorite suggest that it is a cumulate igneous rock, formed from a basaltic parental magma. Anomalous magmatic inclusions in Nakhla s augite grains can be explained by disequilibrium processes during crystal growth, and have little significance in the geological history of the meteorite.

  10. Martian Pyroxenes in the Shergottite Meteorites; Zagami, SAU005, DAG476 and EETA79001

    NASA Astrophysics Data System (ADS)

    Stephen, N.; Benedix, G. K.; Bland, P.; Hamilton, V. E.

    2010-12-01

    The geology and surface mineralogy of Mars is characterised using remote sensing techniques such as thermal emission spectroscopy (TES) from instruments on a number of spacecraft currently orbiting Mars or gathered from roving missions on the Martian surface. However, the study of Martian meteorites is also important in efforts to further understand the geological history of Mars or to interpret mission data as they are believed to be the only available samples that give us direct clues as to Martian igneous processes [1]. We have recently demonstrated that the spectra of Martian-specific minerals can be determined using micro-spectroscopy [2] and that these spectra can be reliably obtained from thin sections of Martian meteorites [3]. Accurate modal mineralogy of these meteorites is also important [4]. In this study we are using a variety of techniques to build upon previous studies of these particular samples in order to fully characterise the nature of the 2 common pyroxenes found in Martian Shergottites; pigeonite and augite [5], [6]. Previous studies have shown that the Shergottite meteorites are dominated by pyroxene (pigeonite and augite in varying quantities) [4], [5], commonly but not always olivine, plagioclase or maskelynite/glass and also hydrous minerals, which separate the Martian meteorites from other achondrites [7]. Our microprobe study of meteorites Zagami, EETA79001, SAU005 and DAG476 in thin-section at the Natural History Museum, London shows a chemical variability within both the pigeonite and augite composition across individual grains in all thin sections; variation within either Mg or Ca concentration varies from core to rim within the grains. This variation can also be seen in modal mineralogy maps using SEM-derived element maps and the Photoshop® technique previously described [4], and in new micro-spectroscopy data, particularly within the Zagami meteorite. New mineral spectra have been gathered from the Shergottite thin-sections by

  11. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere.

    PubMed

    Keppler, Frank; Vigano, Ivan; McLeod, Andy; Ott, Ulrich; Früchtl, Marion; Röckmann, Thomas

    2012-05-30

    Almost a decade after methane was first reported in the atmosphere of Mars there is an intensive discussion about both the reliability of the observations--particularly the suggested seasonal and latitudinal variations--and the sources of methane on Mars. Given that the lifetime of methane in the Martian atmosphere is limited, a process on or below the planet's surface would need to be continuously producing methane. A biological source would provide support for the potential existence of life on Mars, whereas a chemical origin would imply that there are unexpected geological processes. Methane release from carbonaceous meteorites associated with ablation during atmospheric entry is considered negligible. Here we show that methane is produced in much larger quantities from the Murchison meteorite (a type CM2 carbonaceous chondrite) when exposed to ultraviolet radiation under conditions similar to those expected at the Martian surface. Meteorites containing several per cent of intact organic matter reach the Martian surface at high rates, and our experiments suggest that a significant fraction of the organic matter accessible to ultraviolet radiation is converted to methane. Ultraviolet-radiation-induced methane formation from meteorites could explain a substantial fraction of the most recently estimated atmospheric methane mixing ratios. Stable hydrogen isotope analysis unambiguously confirms that the methane released from Murchison is of extraterrestrial origin. The stable carbon isotope composition, in contrast, is similar to that of terrestrial microbial origin; hence, measurements of this signature in future Mars missions may not enable an unambiguous identification of biogenic methane.

  12. An assessment of the meteoritic contribution to the Martian soil

    SciTech Connect

    Flynn, G.J. ); McKay, D.S. )

    1990-08-30

    The addition of meteoritic material to the Mars soils should perturb their chemical compositions, as has been detected for soils on the Moon and sediments on Earth. Using the measured mass influx at Earth and estimates of the Mars/Earth flux ratio, the authors estimate the continuous, planet-wide meteoritic mass influx on Mars to be between 2,700 and 59,000 t/yr. If distributed uniformly into a soil with a mean planetary production rate of 1 m/b.y., consistent with radar estimates of the soil depth overlaying a bouldered terrain in the Tharsis region, their estimated mass influx would produce a meteoritic concentration in the Mars soil ranging from 2 to 29% by mass. Analysis of the Viking X ray fluorescence data indicates that the Mars soil composition is inconsistent with typical basaltic rock fragments but can be fit by a mixture of 60% basaltic rock fragments and 40% meteoritic material. The meteoritic influx they calculate is sufficient to provide most or all of the material required by the Clark and Baird model. Particles in the mass range from 10{sup {minus}7} to 10{sup {minus}3} g, about 60-1,200 {mu}m in diameter, contribute 80% of the total mass flux of meteoritic material in the 10{sup {minus}13} to 10{sup 6} g mass range at Earth. On Earth atmospheric entry all but the smallest particles (generally {le} 50 {mu}m in diameter) in the 10{sup {minus}7} to 10{sup {minus}3} g mass range are heated sufficiently to melt or vaporize. Mars, because of its lower escape velocity and larger atmospheric scale height, is a much more favorable site for unmelted survival of micrometeorites on atmospheric deceleration. They calculate that a significant fraction of particles throughout the 60-1,200 {mu}m diameter range will survive Mars atmospheric entry unmelted.

  13. In Situ Mars Compositions Determined by Alpha Particle X-Ray Spectrometry (APXS): Overview and Comparison with Martian Meteorite Dataset

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; Gellert, R.; Spray, J. G.; Schmidt, M. E.; Izawa, M.; MSL APXS Team

    2016-08-01

    APXS instruments have flown on every rover mission to Mars. This work provides an overview of the diverse in situ chemistry encountered, with emphasis on MSL Curiosity mission results, and compares this with the martian meteorite data set.

  14. Comparison of the LEW88516 and ALHA77005 martian meteorites: Similar but distinct

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.; McKay, G. A.; Bogard, D. D.; Mittlefehldt, D. W.; Wang, M.-S.; Keller, L.; Lipschutz, M. E.; Lindstrom, M. M.; Garrison, D.

    1994-09-01

    By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (ater plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo64 to Fo70, (avg. Fo67), more ferroan and with more variation than in ALHA77005 (Fo69 to Fo73). Pyroxene compositions fall between En77Wo4 and En65Wo15 and in clusters near En63Wo9 and En53Wo33, on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is it nonchondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of Ar-40 and Xe-129 from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to

  15. The provenance, formation, and implications of reduced carbon phases in Martian meteorites

    NASA Astrophysics Data System (ADS)

    Steele, Andrew; McCubbin, Francis M.; Fries, Marc D.

    2016-11-01

    This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life-detection studies.

  16. MN Carbonates in the Martian Meteorite Nakhla: Possible Evidence of Brine Evaporation

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.; McKay, D. S.; Wentworth, S. J.

    2003-01-01

    The importance of secondary phases in martian meteorites lies in their potential to provide clues about the martian environments responsible for their formation. During this study, we analyzed a number of carbonate-bearing fracture surfaces from the Nakhla meteorite. Here we describe the physical and chemical properties of several manganese-calcium-rich siderites. Additionally, we describe a potential model for the formation and alteration of these carbonates, and we suggest constraints on the conditions responsible for their precipitation. Nakhla is an olivine-bearing clinopyroxenite with minor amounts of feldspar, FeS, and Fe oxides. Secondary mineral assemblages include vein filling clay with embedded iron oxides, a calcium sulfate, amorphous silica, chlorapatite, halite and carbonates. Bridges and Grady suggested that the carbonates in Nakhla formed from brine evaporation. Isotope studies of the Mn rich siderite are also consistent with formation from hydrothermal fluids with an upper T constraint of 170 C.

  17. Amphibole in Martian Meteorites: Composition and Implication for Volatile Content of Parental Magma

    NASA Astrophysics Data System (ADS)

    Williams, K. B.; Sonzogni, Y.; Treiman, A. H.

    2013-12-01

    Titanium-rich amphibole is present in melt inclusions in many martian (SNC) meteorites, suggesting that martian magmas contained water. Amphibole has been reported in melt inclusions within olivine grains in chassignites [1-3], and occurs in melt inclusions within pigeonite grains in most shergottites [4-10]. This study focuses on a comparison of amphibole compositions in two olivine-phyric shergottites: Tissint and Elephant Moraine (EETA) 79001, Lithology A. While amphibole (commonly of kaersutitic composition) is rare in martian meteorites, the mineral is widespread and may be useful in constraining volatile abundances in the martian mantle. Amphibole incorporates hydroxyl into its mineral structure on its O(3) site, which can also contain F-, Cl-, and O2-. Previous chemical analyses of amphiboles in martian meteorites show low halogen abundances, implying high proportions of OH- and/or O2- in the O(3) site [6, 11]. Presence of O2- on O(3) is not considered in this study, even though oxy-kaersutite can be stable at 1 bar pressure [11, 12]. Our chemical data on amphibole in martian meteorites will expand the current compositional database and provide amphibole water content estimates that can then be used to constrain the water content of the parental magma. Amphiboles were identified in polished thin sections of Tissint and EETA79001A by their yellow-orange to light brown pleochroism. Consistent with previous observations of amphibole in shergottites [4-10], the amphiboles are present only in melt inclusions in the cores of pigeonite grains, and never in augite, olivine, or mesostasis. The amphibole grains are subhedral, and range up to 15 μm in diameter. Amphibole formulae were calculated from chemical analyses by normalizing to 23 O, assuming that all iron is ferrous, and assuming that halogens and hydroxyl fully occupy the O(3) site (i.e., F-+Cl-+OH-= 2). Variability in iron oxidation and the possibility of internal amphibole dehydrogenation provide

  18. Habitability Conditions Constrained by Martian Meteorites: Implications for Microbial Colonization and Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Shivak, J. N.; Banerjee, N.; Flemming, R. L.

    2013-12-01

    We report the results of a comparative study of the crustal environmental conditions recorded by several Martian meteorites (Nakhla, Los Angeles, and Zagami). Though no samples have yet been returned from Mars, numerous meteorites are known and these provide the only samples of the Martian crust currently available for study. Terrestrial basalts and other mafic igneous rocks are analogous in many ways to much of the Martian crust, as evidenced by the composition of known Martian meteorites and measurements from planetary missions [1]. Microorganisms are known to thrive in the terrestrial geosphere and make use of many different substrates within rock in the subsurface of the Earth [2]. The action of aqueous solutions in the Martian crust has been well established through the study of alteration mineral assemblages present in many Martian meteorites, such as the nakhlites [3]. Aqueous activity in terrestrial chemolithoautotrophic habitats provides numerous energy and nutrient sources for microbes [4], suggesting the potential for habitable endolithic environments in Martian rocks. Fayalite in Nakhla has experienced extensive aqueous alteration to reddish-brown 'iddingsite' material within a pervasive fracture system. Textural imaging shows the replacement of primary olivine with various alteration phases and infiltration of this alteration front into host grains. Geochemical analysis of the alteration material shows the addition of iron and silica and removal of magnesium during alteration. Novel In situ Micro-XRD and Raman Spectroscopy of this material reveals a new assemblage consisting of iron oxides, smectite clays, carbonates, and a minor serpentine component. The alteration mineral assemblage here differs from several that have been previously reported [4] [5], allowing for a reevaluation of the environmental conditions during fluid action. Los Angeles and Zagami show no evidence of aqueous activity, though their primary basaltic mineralogies show many

  19. PYTi-NiCr Signatures in the Columbia Hills are Present in Certain Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Gellert, R.; Ming, D. W.; Morris, R. V.; Mittlefehldt, D. W.; Squyres, S. W.

    2006-01-01

    Uniquely high levels of phosphorus and titanium were observed in several samples [1-3] by the APXS x-ray fluorescence measurements as the MER Spirit rover climbed Husband Hill (Columbia Hills, Gusev crater, Mars). A careful study of many such samples and their geochemical variability has revealed additional elements in this pattern, and that the derived multi-element signature is also unambiguously manifested in several martian meteorites.

  20. Putative indigenous carbon-bearing alteration features in martian meteorite Yamato 000593.

    PubMed

    White, Lauren M; Gibson, Everett K; Thomas-Keprta, Kathie L; Clemett, Simon J; McKay, David S

    2014-02-01

    We report the first observation of indigenous carbonaceous matter in the martian meteorite Yamato 000593. The carbonaceous phases are heterogeneously distributed within secondary iddingsite alteration veins and present in a range of morphologies including areas composed of carbon-rich spheroidal assemblages encased in multiple layers of iddingsite. We also observed microtubular features emanating from iddingsite veins penetrating into the host olivine comparable in shape to those interpreted to have formed by bioerosion in terrestrial basalts.

  1. Petrology and Geochemistry of New Paired Martian Meteorites Larkman Nunatak 12240 and Larkman Nunatak 12095

    NASA Technical Reports Server (NTRS)

    Funk, R. C.; Peslier, A. H.; Brandon, A. D.; Humayun, M.

    2016-01-01

    Two of the latest Martian meteorites found in Antarctica, paired olivine-phyric shergottites LAR 12240 and LAR 12095, are described in order to decipher their petrological context, and place constraints on the geological history of Mars. This project identifies all phases found in LAR 12240 and 12095 and analyzes them for major and trace elements. The textural relationships among these phases are examined in order to develop a crystallization history of the magma(s) that formed these basalts.

  2. Origin and age of the earliest Martian crust from meteorite NWA 7533.

    PubMed

    Humayun, M; Nemchin, A; Zanda, B; Hewins, R H; Grange, M; Kennedy, A; Lorand, J-P; Göpel, C; Fieni, C; Pont, S; Deldicque, D

    2013-11-28

    The ancient cratered terrain of the southern highlands of Mars is thought to hold clues to the planet's early differentiation, but until now no meteoritic regolith breccias have been recovered from Mars. Here we show that the meteorite Northwest Africa (NWA) 7533 (paired with meteorite NWA 7034) is a polymict breccia consisting of a fine-grained interclast matrix containing clasts of igneous-textured rocks and fine-grained clast-laden impact melt rocks. High abundances of meteoritic siderophiles (for example nickel and iridium) found throughout the rock reach a level in the fine-grained portions equivalent to 5 per cent CI chondritic input, which is comparable to the highest levels found in lunar breccias. Furthermore, analyses of three leucocratic monzonite clasts show a correlation between nickel, iridium and magnesium consistent with differentiation from impact melts. Compositionally, all the fine-grained material is alkalic basalt, chemically identical (except for sulphur, chlorine and zinc) to soils from Gusev crater. Thus, we propose that NWA 7533 is a Martian regolith breccia. It contains zircons for which we measured an age of 4,428 ± 25 million years, which were later disturbed 1,712 ± 85 million years ago. This evidence for early crustal differentiation implies that the Martian crust, and its volatile inventory, formed in about the first 100 million years of Martian history, coeval with earliest crust formation on the Moon and the Earth. In addition, incompatible element abundances in clast-laden impact melt rocks and interclast matrix provide a geochemical estimate of the average thickness of the Martian crust (50 kilometres) comparable to that estimated geophysically.

  3. Ar-Ar Dating of Martian Meteorite, Dhofar 378: An Early Shock Event?

    NASA Technical Reports Server (NTRS)

    Park, J.; Bogard, D. D.

    2006-01-01

    Martian meteorite, Dhofar 378 (Dho378) is a basaltic shergottite from Oman, weighing 15 g, and possessing a black fusion crust. Chemical similarities between Dho378 and the Los Angeles 001 shergottite suggests that they might have derived from the same Mars locale. The plagioclase in other shergottites has been converted to maskelenite by shock, but Dho378 apparently experienced even more intense shock heating, estimated at 55-75 GPa. Dho378 feldspar (approximately 43 modal %) melted, partially flowed and vesiculated, and then partially recrystallized. Areas of feldspathic glass are appreciably enriched in K, whereas individual plagioclases show a range in the Or/An ratio of approximately 0.18-0.017. Radiometric dating of martian shergottites indicate variable formation times of 160-475 Myr, whereas cosmic ray exposure (CRE) ages of shergottites indicate most were ejected from Mars within the past few Myr. Most determined Ar-39-Ar-40 ages of shergottites appear older than other radiometric ages because of the presence of large amounts of martian atmosphere or interior Ar-40. Among all types of meteorites and returned lunar rocks, the impact event that initiated the CRE age very rarely reset the Ar-Ar age. This is because a minimum time and temperature is required to facilitate Ar diffusion loss. It is generally assumed that the shock-texture characteristics in martian meteorites were produced by the impact events that ejected the rocks from Mars, although the time of these shock events (as opposed to CRE ages) are not directly dated. Here we report Ar-39-Ar-40 dating of Dho378 plagioclase. We suggest that the determined age dates the intense shock heating event this meteorite experienced, but that it was not the impact that initiated the CRE age.

  4. Distinctive Carbonates in Five Martian Meteorites: Search for Water on Mars

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Bailey, Jake; McKay, David S.; Thomas-Keprta, Kathie L.; Velbel, Michael

    2003-01-01

    Recently published results from Mars orbital data strongly support both the idea that large bodies of water were present at the surface in the past and the possibility that significant amounts of water ice are currently present in the regolith just below the planet's surface. These new findings increase the significance of the evidence in martian meteorites that some low-temperature aqueous alteration and secondary mineral deposition occurred on Mars.

  5. A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars

    NASA Astrophysics Data System (ADS)

    Ash, R. D.; Knott, S. F.; Turner, G.

    1996-03-01

    ANALYSES of meteorites that originated on Mars provide important insights into the geological and atmospheric evolution of the planet. Such analyses have hitherto been restricted to relatively young martian rocks1 (the oldest martian meteorites have an age of approximately 1.3 billion years). But the recently recognized2 martian meteorite, Allan Hills 84001, which is distinct from the other martian meteorites2-4, shows evidence for a much older age5,6. Here we report an analysis of the shock-alteration history of this meteorite based on argon isotope dating, from which we derive a shock age of 4.0 +/- 0.1 billion years. The age and geological history of this meteorite suggest that it came from the heavily cratered Noachian-age terrains of Mars's southern hemisphere, and it may thus provide an absolute chronology for this region of the planet, independent of that inferred from the cratering record. The shock age of the meteorite also coincides with that of the so-called Lunar Cataclysm (a relatively short period during which many of the craters on the Moon are believed to have formed), supporting the idea7 that intense bombardment was widespread throughout the inner Solar System between 3.9 and 4.1 billion years ago.

  6. Trace Element Geochemistry of Martian Iddingsite in the Lafayette Meteorite

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Lindstrom, David J.

    1997-01-01

    The Lafayette meteorite contains abundant iddingsite, a fine-grained intergrowth of smectite clay, ferrihydrite, and ionic salt minerals. Both the meteorite and iddingsite formed on Mars. Samples of iddingsite, olivine, and augite pyroxene were extracted from Lafayette and analyzed for trace elements by instrumental neutron activation. Our results are comparable to independent analyses by electron and ion microbeam methods. Abundances of most elements in the iddingsite do not covary significantly. The iddingsite is extremely rich in Hg, which is probably terrestrial contamination. For the elements Si, Al, Fe, Mn, Ni, Co, and Zn, the composition of the iddingsite is close to a mixture of approximately 50% Lafayette olivine + approximately 40% Lafayette siliceous glass + approximately 1O% water. Concordant behavior among these elements is not compatible with element fractionations between smectite and water, but the hydrous nature and petrographic setting of the iddingsite clearly suggest an aqueous origin. These inferences are both consistent, however, with deposition of the iddingsite originally as a silicate gel, which then crystallized (neoformed) nearly isochemically. The iddingsite contains significantly more magnesium than implied by the model, which may suggest that the altering solutions were rich in Mg(2+).

  7. Thermal decomposition rate of MgCO3 as an inorganic astrobiological matrix in meteorites

    NASA Astrophysics Data System (ADS)

    Bisceglia, E.; Longo, G. Micca; Longo, S.

    2017-04-01

    Carbonate minerals, likely of hydrothermal origins and included into orthopyroxenite, have been extensively studied in the ALH84001 meteorite. In this meteorite, nanocrystals comparable with those produced by magnetotactic bacteria have been found into a carbonate matrix. This leads naturally to a discussion of the role of such carbonates in panspermia theories. In this context, the present work sets the basis of a criterion to evaluate whether a carbonate matrix in a meteor entering a planetary atmosphere would be able to reach the surface. As a preliminary step, the composition of carbonate minerals in the ALH84001 meteorite is reviewed; in view of the predominance of Mg in these carbonates, pure magnesite (MgCO3) is proposed as a mineral model. This mineral is much more sensitive to high temperatures reached during an entry process, compared with silicates, due to facile decomposition into MgO and gaseous carbon dioxide (CO2). A most important quantity for further studies is therefore the decomposition rate expressed as CO2 evaporation rate J (molecules/m2 s). An analytical expression for J(T) is given using the Langmuir law, based on CO2 pressure in equilibrium with MgCO3 and MgO at the surface temperature T. Results suggest that carbonate minerals rich in magnesium may offer much better thermal protection to embedded biological matter than silicates and significantly better than limestone, which was considered in previous studies, in view of the heat absorbed by their decomposition even at moderate temperatures. This first study can be extended in the future to account for more complex compositions, including Fe and Ca.

  8. New Bulk Sulfur Measurements of Martian Meteorites - Implications for Sulfur Cycle on Mars

    NASA Astrophysics Data System (ADS)

    Ding, S.; Dasgupta, R.; Lee, C.; Wadhwa, M.

    2013-12-01

    Magmatic degassing was likely critical in giving rise to a thick atmosphere of ancient Mars and SO2 and H2S could have been key greenhouse gases. How much S was released depends on (1) the S content of the mantle-derived magma and (2) the magmatic sulfur budget of the basaltic crust. While the former is estimated by S content of basaltic melts at sulfide saturation (SCSS) [1,2], assuming mantle-derived magma is sulfide saturated, it is unclear how much S gets trapped during crystallization of basalts in the crust versus how much is released to the atmosphere. S content of the martian crust can be estimated from martian meteorites, yet bulk S concentration data of martian meteorites is limited [3]. Further, most martian meteorites contain cumulus minerals and some have experienced secondary alteration (weathering/ impact effects), which could either deplete or enrich S in these samples. To better constrain the degassing of S from the martian interior, we measured bulk S contents of 7 martian meteorites via high mass-resolution solution ICP-MS [4]. Basaltic shergottites Los Angeles, Zagami and NWA 856 have S contents of 2865×224, 1954×91 and 1584×10 ppm, respectively while clinopyroxenites Nakhla and NWA 998 give values of 690×60 and 253×42 ppm S. Olivine-phyric shergottites NWA 1068 and Tissint have intermediate S contents of 1280×48 and 2120×68 ppm. The meteorites have lower S contents than the predicted SCSS of ~3500-4500 ppm [2] along liquid line of descent for a liquid similar to Yamato 980459 at 1 GPa, estimated using alphaMELTS. Taking into account the possible proportion of inter-cumulus liquid (f= 6-70 wt.%) in the analyzed meteorites estimated by previous studies, the degassed S could be as low as ~300-1900 ppm (estimated by the difference between the SCSS×f and the S in the meteorites). However, nakhlite Nakhla and basaltic shergottites NWA 856 and Zagami show higher S than the calculated SCSS×f. In these two meteorites, sulfides occur as

  9. Evidence for Microfossils in Ancient Rocks and Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, A. Y.; Zhmur, S. I.; Gorlenko, V. M.

    1998-01-01

    The McKay et all. detection of chemical biomarkers and possible microfossils in an ancient meteorite from Mars (ALH84001) stimulated research in several areas of importance to the newly emerging field of Astrobiology. Their report resulted in a search for additional evidence of microfossils in ancient terrestrial rocks and meteorites. These studies of ancient rocks and meteorites were conducted independently (and later collaboratively) in the United States and Russia using the SEM, Environmental Scanning Electron Microscope (ESEM), and Field Emission Scanning Electron Microscope (FESEM). We have encountered in-situ in freshly broken carbonaceous chondrites a large number of complex microstructures that appear to be lithified microbial forms. The meteoritic microstructures have characteristics similar to the lithified remains of filamentous cyanobacteria and bacterial microfossils we have found in ancient phosphorites, ancient graphites and oil shales. Energy Dispersive Spectroscopy (EDS) and Link microprobe analysis shows the possible microfossils have a distribution of chemical elements characteristic of the meteorite rock matrix, although many exhibit a superimposed carbon enhancement. We have concluded that the mineralized bodies encountered embedded in the rock matrix of freshly fractured meteoritic surfaces can not be dismissed as recent surface contaminants. Many of the forms found in-situ in the Murchison, Efremovka, and Orgueil carbonaceous meteorites are strikingly similar to microfossils of coccoid bacteria, cyanobacteria and fungi such as we have found in the Cambrian phosphorites of Khubsugul, Mongolia and high carbon Phanerozoic and Precambrian rocks of the Siberian and Russian Platforms.

  10. Chemical Weathering Records of Martian Soils Preserved in the Martian Meteorite EET79001

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Wentworth, S. J.; McKay, D. S.

    2004-01-01

    Impact-melt glasses, rich in Martian atmospheric gases, contain Martian soil fines (MSF) mixed with other coarse-grained regolith fractions which are produced during impact bombardment on Mars surface. An important characteristic of the MSF fraction is the simultaneous enrichment of felsic component accompanied by the depletion of mafic component relative to the host phase in these glasses. In addition, these glasses yield large sulfur abundances due to the occurrence of secondary mineral phases such as sulfates produced during acid-sulfate weathering of the regolith material near the Martian surface. Sulfurous gases released into atmosphere by volcanoes on Mars are oxidized to H2SO4 which deposit back on the surface of Mars as aerosol particles. Depending on the water availability, sulfuric acids dissolve into solutions which aggressively decompose the Fe-Mg silicates in the Martian regolith. During chemical weathering, structural elements such as Fe, Mg and Ca (among others) are released into the transgressing solutions. These solutions leach away the soluble components of Mg, Ca and Na, leaving behind insoluble iron as Fe3(+) hydroxysulfate mixed with poorly crystalline hydroxide- precipitates under oxidizing conditions. In this study, we focus on the elemental distribution of FeO and SO3 in the glass veins of EET79001, 507 sample, determined by Electron Microprobe and FE SEM measurements at JSC. This glass sample is an aliquot of a bigger glass inclusion ,104 analysed by where large concentrations of Martian atmospheric noble gases are found.

  11. Martian Surface Composition From Multiple Datasets, Part II: Chemical Analysis of Global Mineral Distributions from MGS-TES

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Rogers, D.

    2010-12-01

    Koeppen and Hamilton [2008, JGR-Planets] produced global mineral maps of Mars from Thermal Emission Spectrometer (TES) data using a library of mineral and amorphous phase spectra and a linear least squares fitting algorithm. Here we will use known or estimated bulk chemistries of the phases in the Koeppen and Hamilton [2008] spectral library, along with each phase's modeled abundance in the TES data from that work, to calculate effective bulk chemistry for Martian dark regions at a spatial resolution of ~3x6 km. By doing this, we are able to analyze global bulk chemical variation as well as enable direct comparisons between TES data and chemical/elemental abundance maps (e.g., wt.% SiO2) produced using data collected by the Gamma Ray Spectrometer. A second chemical analysis also makes use of the Koeppen and Hamilton [2008] global mineral maps and focuses on the spatial variations in solid solution chemistry among feldspars, pyroxenes, high silica phases (e.g., silica, phyllosilicates, zeolites), and sulfates. Koeppen and Hamilton [2008] demonstrated that there is a range of Mg-Fe olivine compositions on Mars and that there are distinct geographic distributions of those phases, pointing to spatial variations in geologic processes. We use the same methodology to search for correlations between geography (e.g., geologic unit, latitude), elevation, and chemical (solid solution) composition. Preliminary analyses of pyroxene chemical variation reveal that globally, low-Ca pyroxenes are dominated by the clinopyroxene pigeonite and that among orthopyroxenes, Mg-rich phases (enstatite) are virtually never identified and phases with greater proportions of Fe (bronzite and hypersthene) are identified in distinct geographic and/or geologic terrains. Only the distribution of hypersthene (the composition of pyroxene in the Martian meteorite ALH 84001) correlates with the OMEGA-mapped distribution of low-Ca pyroxene suggesting that OMEGA-based maps of high-Ca pyroxene may include

  12. Studies of Magmatic Inclusions in the Basaltic Martian Meteorites Shergotty, Zagami, EETA 79001 and QUE 94201

    NASA Technical Reports Server (NTRS)

    Harvey, Ralph P.; McKay, Gordon A.

    1997-01-01

    Currently there are 12 meteorites thought by planetary scientists to be martian samples, delivered to the Earth after violent impacts on that planet's surface. Of these 12 specimens, 4 are basaltic: Shergotty, Zagami, EETA 79001 and QUE 94201. Basalts are particularly important rocks to planetary geologists- they are the most common rocks found on the surfaces of the terrestrial planets, representing volcanic activity of their parent worlds. In addition, because they are generated by partial melting of the mantle and/or lower crust, they can serve as guide posts to the composition and internal processes of a planet. Consequently these four meteorites can serve as 'ground-truth' representatives of the predominant volcanic surface rocks of Mars, and offer researchers a glimpse of the magmatic history of that planet. Unfortunately, unraveling the parentage of a basaltic rock is not always straightforward. While many basalts are simple, unaltered partial melts of the mantle, others have undergone secondary processes which change the original parental chemistry, such as assimilation of other crustal rocks, mixing with other magmas, accumulation, re-equilibration between mineral species after crystallization, loss of late-stage magmatic fluids and alteration by metamorphic or metasomatic processes. Fortunately, magmatic inclusions can trap the evolving magmatic liquid, isolating it from many of these secondary processes and offering a direct look at the magma during different stages of development. These inclusions form when major or minor phases grow skeletally, surrounding small amounts of the parental magma within pockets in the growing crystal. The inclusion as a whole (usually consisting of glass with enclosed crystals) continues to represent the composition of the parental magma at the time the melt pocket closed, even when the rock as a whole evolves under changing conditions. The four basaltic martian meteorites contain several distinct generations of melt

  13. The Martian sources of the SNC meteorites (two, not one), and what can and can't be learned from the SNC meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.

    1993-01-01

    The SNC meteorites, which almost certainly originate in the Martian crust, have been inferred to come from a single impact crater site, but no known crater fits all criteria. Formation at two separate sites (S from one, NC from the other) is more consistent with the sum of petrologic, geochronologic, and cosmochronologic data. If the source craters for the SNC meteorites can be located, Mars science will advance considerably. However, many significant questions cannot be answered by the SNC meteorites. These questions await a returned sample.

  14. Light lithophile elements in pyroxenes of Northwest Africa (NWA) 817 and other Martian meteorites: Implications for water in Martian magmas

    NASA Astrophysics Data System (ADS)

    Treiman, Allan H.; Musselwhite, Donald S.; Herd, Christopher D. K.; Shearer, Charles K.

    2006-06-01

    Zoning patterns of light lithophile elements (the LLE: Li, Be, and B) in pyroxenes of some Martian basaltic meteorites have been used to suggest that the parent basalts were saturated in water and exsolved an aqueous fluid phase. Here, we examine LLE zoning in the augites of a quickly cooled Martian basalt that was not water-saturated—the Northwest Africa (NWA) 817 nakhlite. Analyses for LLE were by secondary ion mass spectrometry (SIMS), supported by EMP analyses of major and minor elements. In NWA 817, zoning of Be and B is consistent with igneous fractionations while Li abundances are effectively constant across wide ranges in abundance of other incompatible elements (Be, B, Ti, and Fe*). The lack of strong zoning in Li can be ascribed to intracrystalline diffusion, despite the rapid cooling of NWA 817. Most other nakhlites, notably Nakhla and Lafayette, cooled more slowly than did NWA 817 [Treiman, A.H., 2005. The nakhlite Martian meteorites: augite-rich igneous rock from Mars. Chem. Erde65, 203-270]. In them Li abundances are constant across augite, as are abundances of other elements. In Nakhla pyroxenes, all the LLE have effectively constant abundances across significant ranges in Fe* and Ti abundance. Lafayette is more equilibrated still, and shows constant abundances of LLE and nearly constant Fe*. A pyroxene in the NWA480 shergottite has constant Li abundances, and was interpreted to represent mineral fractionation coupled with exsolution of aqueous fluid. A simple quantitative model of this process requires that the partitioning of Li between basalt and aqueous fluid, LiDaq/bas, be 15 times larger than its experimentally determined value. Thus, its seems unlikely that the Li zoning pattern in NWA480 augite represents exsolution of aqueous fluid. Late igneous or sub-solidus diffusion seems more likely as is suggested by Li isotopic studies [Beck, P., Chaussidon, M., Barrat, J.-A., Gillet, Ph., Bohn, M., 2005. An ion-microprobe study of lithium isotopes

  15. Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon

    NASA Astrophysics Data System (ADS)

    Moser, D. E.; Chamberlain, K. R.; Tait, K. T.; Schmitt, A. K.; Darling, J. R.; Barker, I. R.; Hyde, B. C.

    2013-07-01

    Invaluable records of planetary dynamics and evolution can be recovered from the geochemical systematics of single meteorites. However, the interpreted ages of the ejected igneous crust of Mars differ by up to four billion years, a conundrum due in part to the difficulty of using geochemistry alone to distinguish between the ages of formation and the ages of the impact events that launched debris towards Earth. Here we solve the conundrum by combining in situ electron-beam nanostructural analyses and U-Pb (uranium-lead) isotopic measurements of the resistant micromineral baddeleyite (ZrO2) and host igneous minerals in the highly shock-metamorphosed shergottite Northwest Africa 5298 (ref. 8), which is a basaltic Martian meteorite. We establish that the micro-baddeleyite grains pre-date the launch event because they are shocked, cogenetic with host igneous minerals, and preserve primary igneous growth zoning. The grains least affected by shock disturbance, and which are rich in radiogenic Pb, date the basalt crystallization near the Martian surface to 187 +/- 33 million years before present. Primitive, non-radiogenic Pb isotope compositions of the host minerals, common to most shergottites, do not help us to date the meteorite, instead indicating a magma source region that was fractionated more than four billion years ago to form a persistent reservoir so far unique to Mars. Local impact melting during ejection from Mars less than 22 +/- 2 million years ago caused the growth of unshocked, launch-generated zircon and the partial disturbance of baddeleyite dates. We can thus confirm the presence of ancient, non-convecting mantle beneath young volcanic Mars, place an upper bound on the interplanetary travel time of the ejected Martian crust, and validate a new approach to the geochronology of the inner Solar System.

  16. Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon.

    PubMed

    Moser, D E; Chamberlain, K R; Tait, K T; Schmitt, A K; Darling, J R; Barker, I R; Hyde, B C

    2013-07-25

    Invaluable records of planetary dynamics and evolution can be recovered from the geochemical systematics of single meteorites. However, the interpreted ages of the ejected igneous crust of Mars differ by up to four billion years, a conundrum due in part to the difficulty of using geochemistry alone to distinguish between the ages of formation and the ages of the impact events that launched debris towards Earth. Here we solve the conundrum by combining in situ electron-beam nanostructural analyses and U-Pb (uranium-lead) isotopic measurements of the resistant micromineral baddeleyite (ZrO2) and host igneous minerals in the highly shock-metamorphosed shergottite Northwest Africa 5298 (ref. 8), which is a basaltic Martian meteorite. We establish that the micro-baddeleyite grains pre-date the launch event because they are shocked, cogenetic with host igneous minerals, and preserve primary igneous growth zoning. The grains least affected by shock disturbance, and which are rich in radiogenic Pb, date the basalt crystallization near the Martian surface to 187 ± 33 million years before present. Primitive, non-radiogenic Pb isotope compositions of the host minerals, common to most shergottites, do not help us to date the meteorite, instead indicating a magma source region that was fractionated more than four billion years ago to form a persistent reservoir so far unique to Mars. Local impact melting during ejection from Mars less than 22 ± 2 million years ago caused the growth of unshocked, launch-generated zircon and the partial disturbance of baddeleyite dates. We can thus confirm the presence of ancient, non-convecting mantle beneath young volcanic Mars, place an upper bound on the interplanetary travel time of the ejected Martian crust, and validate a new approach to the geochronology of the inner Solar System.

  17. Modern atmospheric signatures in 4.4 Ga Martian meteorite NWA 7034

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Ott, U.; Herrmann, S.; Agee, C. B.

    2014-08-01

    The NWA 7034 Martian basaltic breccia, dated at ˜4.4 Ga, represents an entirely new type of Martian meteorite. However, due to the unique make-up of NWA 7034 compared to other Martian meteorite types (including its anomalous oxygen isotope ratios), noble gas analyses - a key tool for Martian meteorite identification - are important to confirm its Martian origin. Here, we report the first noble gas results for NWA 7034, which show the presence of a trapped component that resembles the current Martian atmosphere. This trapped component is also similar in composition to trapped gases found in the much younger shergottites (˜150-600 Ma). Our formation ages for the sample suggest events at ˜1.6 Ga (K-Ar), and ˜170 Ma (U-Th/He), which are considerably younger than those observed by Rb-Sr (2.1 Ga), and Sm-Nd (4.4 Ga; zircons ˜4.4 Ga). However, our K-Ar age is similar to a disturbance in the U-Pb zircon data at ˜1.7 Ga, which could hint that both chronometers have been subjected to disturbance by a common process or event. The U-Th/He age of ˜170 Ma could relate to complete loss of radiogenic 4He at this time, and is a similar age to the crystallisation age of most shergottites. While this may be coincidental, it could indicate that a single event is responsible for both shergottite formation and NWA 7034 thermal metamorphism. As for cosmic ray exposure ages, our favoured age is ˜5 Ma, which is outside the ranges for other Martian meteorite groups, and may suggest a distinct ejection event. NWA 7034 shows evidence for neutron capture on Br, which has caused elevations in Kr isotopes 80Kr and 82Kr. These elevated abundances indicate significant shielding, and could relate to either a large meteoroid size, and/or shielding in relation to a regolithic origin. We have also applied similar neutron capture corrections to Ar and Xe data, which further refine the likelihood of a modern atmospheric component, though such corrections remain speculative. Cosmogenic production

  18. Putative Indigenous Carbon-Bearing Alteration Features in Martian Meteorite Yamato 000593

    PubMed Central

    Gibson, Everett K.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; McKay, David S.

    2014-01-01

    Abstract We report the first observation of indigenous carbonaceous matter in the martian meteorite Yamato 000593. The carbonaceous phases are heterogeneously distributed within secondary iddingsite alteration veins and present in a range of morphologies including areas composed of carbon-rich spheroidal assemblages encased in multiple layers of iddingsite. We also observed microtubular features emanating from iddingsite veins penetrating into the host olivine comparable in shape to those interpreted to have formed by bioerosion in terrestrial basalts. Key Words: Meteorite—Yamato 000593—Mars—Carbon. Astrobiology 14, 170–181. PMID:24552234

  19. Remote Laser Induced Breakdown Spectroscopy (LIBS) of Martian Meteorites and Other Basaltic Samples

    NASA Astrophysics Data System (ADS)

    Clegg, S. M.; Thompson, J. R.; Wiens, R. C.; Barefield, J. E.; Vaniman, D. T.; Newsom, H. E.

    2005-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a rapid and quantitative analytical tool for elemental analysis in terrestrial1 and Martian environments. LIBS is one of two instruments comprising the "ChemCam" package recently selected for the Mars Science Laboratory (MSL) Rover Mission scheduled to launch in 2009. LIBS will be the first active remote sensing instrument to fly on a NASA rover, designed to interrogate samples to a distance of 9 m. In preparation for the MSL mission, we are working to improve our ability to extract quantitative results under the Martian environment. We recently completed a study in which we extracted quantitative elemental concentrations and calculated the oxide concentrations from two Martian basaltic shergottite meteorites, Dar al Gani (DaG) 476 and Zagami. The current LIBS laboratory setup involves ablating some material from the sample surface with a focused Nd:YAG (1064nm) laser. The ablated material produces a supersonically expanding plasma of electronically excited atoms. A dispersive spectrometer and an ICCD camera are used to record the spectral signatures emitted from the electronically excited atoms. In our experimental set-up, samples were placed at a distance of 5.4 m from the instrument in a vacuum chamber filled with 7 Torr CO2 to simulate the Martian atmosphere. Terrestrial basalt standards were used to generate calibration curves for all of the major elements and some of the minor and trace species including Si, Fe, Mg, Ca, Ti, Al, and Na. First, two blind basalt standards were analyzed and their compositions were found to match the actual compositions within the uncertainty of the measurement, being correctly distinguished from other available basalt standards. Next, LIBS was used to distinguish between two different basaltic Martian meteorites. Using 14 analysis spots of ~400 μm diameter on DaG 476 and 9 analysis spots on Zagami, LIBS distinguished the olivine-phyric (DaG 476) from the basaltic (Zagami

  20. Exsolution and shock microstructures of igneous pyroxene clasts in the Northwest Africa 7533 Martian meteorite

    NASA Astrophysics Data System (ADS)

    Leroux, Hugues; Jacob, Damien; Marinova, Maya; Hewins, Roger H.; Zanda, Brigitte; Pont, Sylvain; Lorand, Jean-Pierre; Humayun, Munir

    2016-05-01

    Northwest Africa (NWA) 7533 is a Martian regolith breccia. This meteorite (and its pairings) offers a good opportunity to study (near-) surface processes that occurred on early Mars. Here, we have conducted a transmission electron microscope study of medium- and coarse-grained (a few tens to hundreds of micrometers) Ca-rich pyroxene clasts in order to define their thermal and shock histories. The pyroxene grains have a high-temperature (magmatic) origin as revealed by the well-developed pigeonite-augite exsolution microstructure. Exsolution lamella characteristics (composition, thickness, and spacing) indicate a moderately slow cooling. Some of the pyroxene clasts display evidence for local decomposition into magnetite and silica at the submicron scale. This phase decomposition may have occurred at high temperature and occurred at high oxygen fugacity at least 2-3 log units above the QFM buffer, after the formation of the exsolution lamellae. This corresponds to oxidizing conditions well above typical Martian magmatic conditions. These oxidizing conditions seem to have prevailed early and throughout most of the history of NWA 7533. The shock microstructure consists of (100) mechanical twins which have accommodated plastic deformation. Other pyroxene shock indicators are absent. Compared with SNC meteorites that all suffered significant shock metamorphism, NWA 7533 appears only mildly shocked. The twin microstructure is similar from one clast to another, suggesting that the impact which generated the (100) twins involved the compacted breccia and that the pyroxene clasts were unshocked when they were incorporated into the NWA 7533 breccia.

  1. Transmission Electron Microscope Studies of Martian 'Iddingsite' in the Nakhlite Meteorite MIL 090032

    NASA Astrophysics Data System (ADS)

    Hallis, L.; Ishii, H.; Bradley, J. P.; Taylor, J.

    2012-12-01

    As with the other nakhlites, MIL 090032 contains iddingsite-like alteration veins in the olivine phenocrysts that reportedly originated on Mars[1]. These 'iddingsite' veins have been analysed in a number of the nakhlite meteorites[2], and the presence of hydrous silicate gel, smectite clays, siderite, Fe-oxides, gypsum and carbonate have been reported. The presence and proportion of these phases in the different nakhlites appears to relate to the composition and concentration of the martian brine that flowed through each, thus supporting the theory that the nakhlite secondary alteration phases were produced by an evaporation sequence on the surface of Mars[3]. We analyzed these martian 'iddingsite' veins in MIL 090032 with the aim of placing it and its three paired meteorites within the nakhlite alteration sequence. By expanding our knowledge of this alteration sequence, we will gain extra insight into the conditions on the martian surface at the time these 'iddingsite' veins formed (<1.3 Ga). We utilized the 80-300 kV aberration-corrected FEI Titan (Scanning) Transmission Electron Microscope (S-TEM) system at Lawrence Livermore National Laboratory to analyse a ~15×8μm Focused Ion Beam (FIB) section of an 'iddingsite' vein in MIL 090032. To allow the electrons to be transmitted through the FIB section, it was milled down to ~150 nm thickness. Our initial TEM data indicate this FIB section contains hydrous amorphous silicate gel towards the center, with areas of phyllosilicate (possibly nontronite) interspersed within this central zone. Towards the outer edge of the vein jarosite and then gypsum sulfates were present. At the very edge only partially broken down olivine was observed. The presence of phyllosilicate and silicate gel in this vein suggests the 'iddingsite' in MIL 090032 was produced by water-rich brine, and the abundance of sulfates suggests the brine was enriched in sulfur. This assemblage of minerals is most in line with that of the 'iddingsite

  2. Attempts to comprehend Martian surface processes through interpretation of the oxygen isotopic compositions of carbonates in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Pillinger, C. T.; Grady, Monica M.

    1992-01-01

    The SNC meteorites are known to contain trace quantities of a variety of secondary minerals such as carbonates, sulfates, and aluminosilicates. Since these constituents are thought to be mostly preterrestrial in origin, their study has the potential to provide rigorous constraints on the nature of martian weathering processes. However, this line of investigation is potentially complicated by the presence within the meteorite samples of any additional weathering products produced by terrestrial processes. Examination of such terrestrial components is important since weathering processes that affect meteorite samples following their fall to Earth might have some bearing on the nature of analogous processes at the surface of Mars. It is obviously necessary to try and distinguish which secondary components in SNC meteorites are terrestrial in origin from those that are preterrestrial. Herein consideration is made of the stable isotopic compositions of weathering products in two SNC meteorites: EET A79001 (a sample collected from Antarctica) and Nakhla (a fall from Egypt, 1911).

  3. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Brennecka, Gregory A.; Symes, Steven J. K.

    2016-02-01

    High precision Sm-Nd isotopic analyses have been completed on a suite of 11 martian basaltic meteorites in order to better constrain the age of silicate differentiation on Mars associated with the formation of their mantle sources. These data are used to evaluate the merits and disadvantages of various mathematical approaches that have been employed in previous work on this topic. Ages determined from the Sm-Nd isotopic systematics of individual samples are strongly dependent on the assumed Nd isotopic composition of the bulk planet. This assumption is problematic given differences observed between the Nd isotopic composition of Earth and chondritic meteorites and the fact that these materials are both commonly used to represent bulk planetary Nd isotopic compositions. Ages determined from the slope of 146Sm-142Nd whole rock isochrons are not dependent on the assumed 142Nd/144Nd ratio of the planet, but require the sample suite to be derived from complementary, contemporaneously-formed reservoirs. In this work, we present a mathematical expression that defines the age of formation of the source regions of such a suite of samples that is based solely on the slope of a 143Nd-142Nd whole rock isochron and is also independent of any a priori assumptions regarding the bulk isotopic composition of the planet. This expression is also applicable to mineral isochrons and has been used to successfully calculate 143Nd-142Nd model crystallization ages of early refractory solids as well as lunar samples. This permits ages to be obtained using only Nd isotopic measurements without the need for 147Sm/144Nd isotope dilution determinations. When used in conjunction with high-precision Nd isotopic measurements completed on martian meteorites this expression yields an age of formation of the martian basaltic meteorite source regions of 4504 ± 6 Ma. Because the Sm-Nd model ages for the formation of martian source regions are commonly interpreted to record the age at which large scale

  4. Petrogenesis of Igneous-Textured Clasts in Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    Santos, A. R.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.

    2016-01-01

    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that samples a variety of materials from the martian crust. Several previous studies have identified multiple types of igneous-textured clasts within the breccia [1-3], and these clasts have the potential to provide insight into the igneous evolution of Mars. One challenge presented by studying these small rock fragments is the lack of field context for this breccia (i.e., where on Mars it formed), so we do not know how many sources these small rock fragments are derived from or the exact formation his-tory of these sources (i.e., are the sources mantle de-rived melt or melts contaminated by a meteorite impactor on Mars). Our goal in this study is to examine specific igneous-textured clast groups to determine if they are petrogenetically related (i.e., from the same igneous source) and determine more information about their formation history, then use them to derive new insights about the igneous history of Mars. We will focus on the basalt clasts, FTP clasts (named due to their high concentration of iron, titanium, and phosphorous), and mineral fragments described by [1] (Fig. 1). We will examine these materials for evidence of impactor contamination (as proposed for some materials by [2]) or mantle melt derivation. We will also test the petrogenetic models proposed in [1], which are igneous processes that could have occurred regardless of where the melt parental to the clasts was formed. These models include 1) derivation of the FTP clasts from a basalt clast melt through silicate liquid immiscibility (SLI), 2) derivation of the FTP clasts from a basalt clast melt through fractional crystallization, and 3) a lack of petrogenetic relationship between these clast groups. The relationship between the clast groups and the mineral fragments will also be explored.

  5. The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites

    SciTech Connect

    Symes, S; Borg, L; Shearer, C; Irving, A

    2007-04-05

    Samarium-neodymium isotopic analyses of unleached and acid-leached mineral fractions from the recently identified olivine-bearing shergottite Northwest Africa 1195 yield a crystallization age of 348 {+-} 19 Ma and an {var_epsilon}{sub Nd}{sup 143} value of +40.1 {+-} 1.3. Maskelynite fractions do not lie on the Sm-Nd isochron and appear to contain a martian surface component with low {sup 147}Sm/{sup 144}Nd and {sup 143}Nd/{sup 144}Nd ratios that was added during shock. The Rb-Sr system is disturbed and does not yield an isochron. Terrestrial Sr appears to have affected all of the mineral fractions, although a maximum initial {sup 87}Sr/{sup 86}Sr ratio of 0.701614 {+-} 16 is estimated by passing a 348 Ma reference isochron through the maskelynite fraction that is least affected by contamination. The high initial {var_epsilon}{sub Nd}{sup 143} value and the low initial {sup 87}Sr/{sup 86}Sr ratio, combined with the geologically young crystallization age, indicate that Northwest Africa 1195 is derived from a source region characterized by a long-term incompatible element depletion. The age and initial Sr and Nd isotopic compositions of Northwest Africa 1195 are very similar to those of Queen Alexandra Range 94201, indicating these samples were derived from source regions with nearly identical Sr-Nd isotopic systematics. These similarities suggest that these two meteorites share a close petrogenetic relationship and might have been erupted from a common volcano. The meteorites Yamato 980459, Dar al Gani 476, Sayh al Uhaymir 005/008, and Dhofar 019 also have relatively old ages between 474-575 Ma and trace element and/or isotopic systematics that are indicative of derivation from incompatible-element-depleted sources. This suggests that the oldest group of meteorites is more closely related to one another than they are to the younger meteorites that are derived from less incompatible-element-depleted sources. Closed-system fractional crystallization of this suite of

  6. Formation of a Martian Pyroxenite: A Comparative Study of the Nakhlite Meteorites and Theo's Flow

    NASA Technical Reports Server (NTRS)

    Friedman, R. C.; Taylor, G. J.; Treiman, A. H.

    1999-01-01

    The unusual composition of the nakhlites, a group of pyroxenitic martian meteorites with young ages, presents an opportunity to learn about nonbasaltic magmatic activity on another planet. However, the limited number of these meteorites makes unraveling their history difficult. A promising terrestrial analog for the formation of the nakhlites is Theo's Flow in Ontario, Canada. This atypical, 120 m-thick flow differentiated in place, forming distinct layered lithologies of peridotite, pyroxenite, and gabbro. Theo's pyroxenite and the nakhlites share strikingly similar petrographies, with concentrated euhedral to subhedral augite grains set in a plagioclase-rich matrix. These two suites of rocks also share specific petrologic features, mineral and whole-rock compositional features, and size and spatial distributions of cumulus grains. The numerous similarities suggest that the nakhlites formed by a similar mechanism in a surface lava flow or shallow intrusion. Their formation could have involved settling of crystals in a phenocryst-laden flow or in situ nucleation and growth of pyroxenes in an ultramafic lava flow. The latter case is more likely and requires steady-state nucleation and growth of clusters of pyroxene grains (and olivine in the nakhlites), circulating in a strongly convecting melt pool, followed by settling and continued growth in a thickening cumulate pile. Trapped pockets of intercumulus liquid in the pile gradually evolved, finally growing Fe-enriched rims on cumulus grains. With sufficient evolution, the melt reached plagioclase supersaturation, causing rapid growth of plagioclase sprays and late-stage mesostasis growth.

  7. Carbonaceous structures in the Tissint Martian Meteorite: evidence of a biogenetic origin

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.

    2015-09-01

    We report for the first time in situ observations of 5-50μm spherical carbonaceous structures in the Tissint Martian meteorite comprising of pyrite (FeS2) cores and carbonaceous outer coatings. The structures are characterized as smooth immiscible spheres with curved boundaries occasionally following the contours of the pyrite inclusion. The structures bear striking resemblance to similar-sized immiscible carbonaceous spheres found in hydrothermal calcite vein deposits in the Mullaghwornia Quarry in central Ireland. Similar structures have been reported in Proterozoic and Ordovician sandstones from Canada as well as in a variety of astronomical sources including carbonaceous chondrites, chondritic IDPs and primitive chondritic meteorites. SEM and X-Ray elemental mapping confirmed the presence of organic carbon filling the crack and cleavage space in the pyroxene substrate, with further evidence of pyrite acting as an attractive substrate for the collection of organic matter. The detection of precipitated carbon collecting around pyrite grains is at variance with an igneous origin as proposed for the reduced organic component in Tissint, and is more consistent with a biogenetic origin.

  8. Sayh al Uhaymir 094 a new martian meteorite from the Oman desert

    NASA Astrophysics Data System (ADS)

    Gnos, E.; Hofmann, B.; Franchi, I. A.; Al-Kathiri, A.; Hauser, M.; Moser, L.

    2003-04-01

    The new martian meteorite Sayh al Uhaymir 094 was found in february 2001 during a joint meteorite search campaign of the University of Berne, the Natural History Museum Bern, and the Ministry of Commerce and Industry, Sultanate of Oman. The martian meteorite is a 223.3 g partially crusted, strongly to very strongly shocked melanocratic olivine-porphyric rock of the shergottite group showing a microgabbroic texture. The rock consists of 52.0 58.2 vol% prismatic pigeonite (En60-68Fs20-27Wo7-9) and augite (En46-49Fs15-16Wo28-31), oxydized olivine (Fo65-69;22.1 31%), completely isotropic interstitial plagioclase glass (maskelynite; 8.6 13.0%), chromite and titanian magnesian chromite (0.9 1.0%), traces of ilmenite (ilm80-86), pyrrhotite (Fe92-100; 0.1 0.2%), merrillite, Ca9Na(Mg,Fe)(PO4)7, (<< 0.1%). Shock melt pockets (4.8 6.7%) consist of green basaltic to basaltic andesite glass that is devitrified into a brown to black product along the boundaries to the primary minerals. The average maximum dimensions of minerals are: olivine (1.5 mm), pyroxene (0.3 mm) and maskelynite (0.3 mm). Melt inclusions in olivine are common and account for 0.1 0.6% of the rock. X-ray tomography revealed that the specimen contains approximately 0.4 vol% of shock-melt associated vesicles, up to 3 mm in size, which show a preferred orientation. Fluidization of the maskelynite, melting and recrystallization of pyroxene, olivine and pyrrhotite indicate shock stage S6. Terrestrial weathering resulted in calcite-veining and minor oxidation of sulfides. The modal composition is similar to some basaltic shergottites, with the exception that neither mesostasis nor titanomagnetite nor apatite are present and that all phases show little zonation. The restricted mineral composition, predominance of chromite among the oxides, and abundance of olivine indicate affinities to the ultramafic shergottites.

  9. (U-Th)/He ages of phosphates from Zagami and ALHA77005 Martian meteorites: Implications to shock temperatures

    NASA Astrophysics Data System (ADS)

    Min, Kyoungwon; Farah, Annette E.; Lee, Seung Ryeol; Lee, Jong Ik

    2017-01-01

    Shock conditions of Martian meteorites provide crucial information about ejection dynamics and original features of the Martian rocks. To better constrain equilibrium shock temperatures (Tequi-shock) of Martian meteorites, we investigated (U-Th)/He systematics of moderately-shocked (Zagami) and intensively shocked (ALHA77005) Martian meteorites. Multiple phosphate aggregates from Zagami and ALHA77005 yielded overall (U-Th)/He ages 92.2 ± 4.4 Ma (2σ) and 8.4 ± 1.2 Ma, respectively. These ages correspond to fractional losses of 0.49 ± 0.03 (Zagami) and 0.97 ± 0.01 (ALHA77005), assuming that the ejection-related shock event at ∼3 Ma is solely responsible for diffusive helium loss since crystallization. For He diffusion modeling, the diffusion domain radius is estimated based on detailed examination of fracture patterns in phosphates using a scanning electron microscope. For Zagami, the diffusion domain radius is estimated to be ∼2-9 μm, which is generally consistent with calculations from isothermal heating experiments (1-4 μm). For ALHA77005, the diffusion domain radius of ∼4-20 μm is estimated. Using the newly constrained (U-Th)/He data, diffusion domain radii, and other previously estimated parameters, the conductive cooling models yield Tequi-shock estimates of 360-410 °C and 460-560 °C for Zagami and ALHA77005, respectively. According to the sensitivity test, the estimated Tequi-shock values are relatively robust to input parameters. The Tequi-shock estimates for Zagami are more robust than those for ALHA77005, primarily because Zagami yielded intermediate fHe value (0.49) compared to ALHA77005 (0.97). For less intensively shocked Zagami, the He diffusion-based Tequi-shock estimates (this study) are significantly higher than expected from previously reported Tpost-shock values. For intensively shocked ALHA77005, the two independent approaches yielded generally consistent results. Using two other examples of previously studied Martian meteorites

  10. The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites

    NASA Astrophysics Data System (ADS)

    Symes, Steven J. K.; Borg, Lars E.; Shearer, Charles K.; Irving, Anthony J.

    2008-03-01

    Samarium-neodymium isotopic analyses of unleached and acid-leached mineral fractions from the recently identified olivine-bearing shergottite Northwest Africa 1195 yield a crystallization age of 347 ± 13 Ma and an ɛNd143 value of +40.1 ± 0.9. Maskelynite fractions do not lie on the Sm-Nd isochron and appear to contain a martian surface component with low 147Sm/ 144Nd and 143Nd/ 144Nd ratios that was added during shock. The Rb-Sr system is disturbed and does not yield an isochron. Terrestrial Sr appears to have affected all of the mineral fractions, although a maximum initial 87Sr/ 86Sr ratio of 0.7016 is estimated by passing a 347 Ma reference line through the maskelynite fraction that is least affected by contamination. The high initial ɛNd143 value and the low initial 87Sr/ 86Sr ratio, combined with the geologically young crystallization age, indicate that Northwest Africa 1195 is derived from a source region characterized by a long-term incompatible-element depletion. The age and initial Sr and Nd isotopic compositions of Northwest Africa 1195 are very similar to those of Queen Alexandra Range 94201, indicating these samples were derived from source regions with similar Sr-Nd isotopic systematics. These similarities suggest that these two meteorites share a close petrogenetic relationship and might have been erupted from a common volcano. The meteorites Yamato 980459, Dar al Gani 476, Sayh al Uhaymir 005/008, and Dhofar 019 also have relatively old ages between 474 and 575 Ma and trace element and/or isotopic systematics that are indicative of derivation from incompatible-element-depleted sources. This suggests that the oldest group of meteorites is more closely related to one another than they are to the younger meteorites that are derived from less incompatible-element-depleted sources. Closed-system fractional crystallization of this suite of meteorites is modeled with the MELTS algorithm using the bulk composition of Yamato 980459 as a parent. These

  11. A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Callahan, Michael P.; Burton, Aaron S.; Elsila, Jamie E.; Baker, Eleni M.; Smith, Karen E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-05-01

    The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of β-alanine and γ-amino-n-butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight-chained amine-terminal n-ω-amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of -24‰ ± 6‰ for β-alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n-ω-amino acids may be due to a high temperature Fischer-Tropsch-type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.

  12. A Search for Amino Acids and Nucleobases in the Martian Meteorite Roberts Massif 04262 Using Liquid Chromatography-Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Burton, Aaron S.; Elsila, Jamie E.; Baker, Eleni M.; Smith, Karen E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of beta-alanine and gamma-amino-eta-butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight-chained amine-terminal eta-omega-amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites. A carbon isotope ratio of -24(0/00) +/- 6(0/00) for beta-alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of eta-omega-amino acids may be due to a high temperature Fischer-Tropschtype synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.

  13. Carbonates in fractures of Martian meteorite Allan Hills 84001: petrologic evidence for impact origin

    NASA Technical Reports Server (NTRS)

    Scott, E. R.; Krot, A. N.; Yamaguchi, A.

    1998-01-01

    Carbonates in Martian meteorite Allan Hills 84001 occur as grains on pyroxene grain boundaries, in crushed zones, and as disks, veins, and irregularly shaped grains in healed pyroxene fractures. Some carbonate disks have tapered Mg-rich edges and are accompanied by smaller, thinner and relatively homogeneous, magnesite microdisks. Except for the microdisks, all types of carbonate grains show the same unique chemical zoning pattern on MgCO3-FeCO3-CaCO3 plots. This chemical characteristic and the close spatial association of diverse carbonate types show that all carbonates formed by a similar process. The heterogeneous distribution of carbonates in fractures, tapered shapes of some disks, and the localized occurrence of Mg-rich microdisks appear to be incompatible with growth from an externally derived CO2-rich fluid that changed in composition over time. These features suggest instead that the fractures were closed as carbonates grew from an internally derived fluid and that the microdisks formed from a residual Mg-rich fluid that was squeezed along fractures. Carbonate in pyroxene fractures is most abundant near grains of plagioclase glass that are located on pyroxene grain boundaries and commonly contain major or minor amounts of carbonate. We infer that carbonates in fractures formed from grain boundary carbonates associated with plagiociase that were melted by impact and dispersed into the surrounding fractured pyroxene. Carbonates in fractures, which include those studied by McKay et al. (1996), could not have formed at low temperatures and preserved mineralogical evidence for Martian organisms.

  14. Ar-40/Ar-39 Studies of Martian Meteorite RBT 04262 and Terrestrial Standards

    NASA Technical Reports Server (NTRS)

    Park, J.; Herzog, G. F.; Turrin, B.; Lindsay, F. N.; Delaney, J. S.; Swisher, C. C., III; Nagao, K.; Nyquist, L. E.

    2014-01-01

    Park et al. recently presented an Ar-40/Ar-39 dating study of maskelynite separated from the Martian meteorite RBT 04262. Here we report an additional study of Ar-40/Ar-39 patterns for smaller samples, each consisting of only a few maskelynite grains. Considered as a material for Ar-40/Ar-39 dating, the shock-produced glass maskelynite has both an important strength (relatively high K concentration compared to other mineral phases) and some potentially problematic weaknesses. At Rutgers, we have been analyzing small grains consisting of a single phase to explore local effects that might be averaged and remain hidden in larger samples. Thus, to assess the homogeneity of the RBT maskelynite and for comparison with the results of, we analyzed six approx. 30 microgram samples of the same maskelynite separate they studied. Furthermore, because most Ar-40/Ar-39 are calculated relative to the age of a standard, we present new Ar-40/Ar-39 age data for six standards. Among the most widely used standards are sanidine from Fish Canyon (FCs) and various hornblendes (hb3gr, MMhb-1, NL- 25), which are taken as primary standards because their ages have been determined by independent, direct measurements of K and A-40.

  15. Observations from a 4-year contamination study of a sample depth profile through Martian meteorite Nakhla.

    PubMed

    Toporski, Jan; Steele, Andrew

    2007-04-01

    Morphological, compositional, and biological evidence indicates the presence of numerous well-developed microbial hyphae structures distributed within four different sample splits of the Nakhla meteorite obtained from the British Museum (allocation BM1913,25). By examining depth profiles of the sample splits over time, morphological changes displayed by the structures were documented, as well as changes in their distribution on the samples, observations that indicate growth, decay, and reproduction of individual microorganisms. Biological staining with DNA-specific molecular dyes followed by epifluorescence microscopy showed that the hyphae structures contain DNA. Our observations demonstrate the potential of microbial interaction with extraterrestrial materials, emphasize the need for rapid investigation of Mars return samples as well as any other returned or impactor-delivered extraterrestrial materials, and suggest the identification of appropriate storage conditions that should be followed immediately after samples retrieved from the field are received by a handling/curation facility. The observations are further relevant in planetary protection considerations as they demonstrate that microorganisms may endure and reproduce in extraterrestrial materials over long (at least 4 years) time spans. The combination of microscopy images coupled with compositional and molecular staining techniques is proposed as a valid method for detection of life forms in martian materials as a first-order assessment. Time-resolved in situ observations further allow observation of possible (bio)dynamics within the system.

  16. Practicability of In Situ K-Ar Age Dating by Martian Landers; A Study of Mars Analogs and Meteorites

    NASA Astrophysics Data System (ADS)

    Park, Jisun; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.

    2009-12-01

    Purpose of this noble gas investigation was to evaluate the feasibility of in situ K-Ar radiometric age dating of Martian surface rocks by future robotic missions, such as the Mars Science Laboratory(MSL), under constraints inherent to the Martian surface and lander design. The MSL Sample Analysis at Mars(SAM) instrument has the capability to measure noble gas compositions of Martain rocks and atmosphere. We evaluate requirements for SAM to obtain adequate noble gas abundances and compositions within the current instrumental operating conditions. In particular, maximum furnace temperature is limited to 1100ºC or lower due to power supply constraints. As a simulation experiment, we analyzed three Martian shergottites and terrestrial MORB, under the same conditions afforded SAM on the Martian surface. Our results suggest that SAM noble gas recoveries might be sufficient for K-Ar age determinations. Comparing these results with previous experiments performed on Martian meteorites at NASA-JSC, we can asses the capability of Mars lander designs with a variety of Martian rock types. The noble gas composition of Martian meteorites can be difficult to interpret due to the combined signals of in situ 40K decay, shock implanted 40Ar from Martian atmosphere[2,3], and 40Ar inherited from parent magma[4,5]. These components should also be considered in interpreting lander data. A possible advantage for landers is that K concentrations reported from the Martian surface are variable and possibly quite high, a desirable trait for K-Ar age dating. Spirit APXS reports 3000-7000ppm K for most locations but in some areas, concentrations as high as 25000ppm have been observed[6,7]. [1] Bogard (2009) MaPS44, 3-14; [2] Bogard and Johnson (1983) Science221,651-654 [3] Marti et al. (1995) Science267, 1981-1984; [4] Bogard and Park (2008) MAPS43, 1113-1126. [5] Bogard et al. (2009) MAPS44, 905-923. [6] Ming et al. (2006) JGR111, E02S12. [7] Ming D.W. et al. (2008) JGR113, E12S39.

  17. P Isotope Data of SNC Meteorites and Implications on the Age of the Martian Surface

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.; Jotter, R.; Kubny, A.; Zartman, R.

    SNC meteorites might originate from the Martian surface. However, these meteorites have experienced a relative young metamorphosis which obscures their origin. Pb isotopes seem to be the best way to look through these young disturbances. A major fraction of the U and Th in the SNCs is not a primary constituent but was introduced at the time of disturbance and resides in the phosphates. By contrast, the Pb in the silicate minerals seems to have remained essentially in isotopic equilibration with the U and Th in the mineral since the time of original crystallization. The main cause of any scatter in the determined initial composition is probably due to the addition of terrestrial Pb, although some minor in situ isotopic disturbance cannot be ruled out. Our best values for the initial isotopic ratios of Shergotty, Zagami, and Los Angeles will be shown. The parent body formed and differentiated at 4.55 Ga, and the various meteorite source lithologies evolved isotopically undisturbed until 0.45 Ga (Los Angeles with a µ =238 U/204 Pb of ˜4, Zagami with a µ of ˜4.5, and Shergotty with a µ of ˜5). At ˜0.45 Ga the "young event" affected each of these meteorites and the initial Pb ratios, after being corrected for subsequent in situ growth of radiogenic Pb, are scattering on a fossilized 0.45 Ga geochron. Additional insight is gained from isotopic data for the Nakhlites, including several that have been newly found and analyzed. All Nakhlites appear to have been derived from an isotopic uniform reservoir, and share a well-defined "young event" age of 1.25 Ga. Of particular note is the fact that their initial Pb isotopic composition does not plot on the modern geochron, but instead to the right of it. If experiencing only a single stage evolution prior to 1.25 Ga, its initial Pb should actually plot on a fossilized 1.25 Ga geochron considerably to the left of the modern geochron. Only a relatively recent increase of the U/Pb ratio in the Nakhlite reservoir could

  18. Constraints on the Martian cratering rate imposed by the SNC meteorites and Vallis Marineris layered deposits

    NASA Technical Reports Server (NTRS)

    Brandenburg, J. E.

    1993-01-01

    Following two independent lines of evidence -- estimates of the age and formation time of a portion of the Martian geologic column exposed in the layered deposits and the crystallization and ejection ages of the SNC meteorites -- it appears that the Martian cratering rate must be double the lunar rate or even higher. This means models such as NHII or NHIII (Neukum and Hiller models II and III), which estimate the Martian cratering rate as being several times lunar are probably far closer to reality on Mars than lunar rates. The effect of such a shift is profound: Mars is transformed from a rather Moon-like place into a planet with vigorous dynamics, multiple large impacts, erosion, floods, and volcanism throughout its history. A strong shift upward in cratering rates on Mars apparently solves some glaring problems; however, it creates others. The period of time during which Earth-like atmospheric conditions existed, the liquid water era on Mars, persists in NHIII up to only 0.5 b.y. ago. Scenarios of extended Earth-like conditions on Mars have been discounted in the past because they would have removed many of the craters from the early bombardment era found in the south. It does appear that some process of crater removal was quite vigorous in the north during Mars' past. Evidence exists that the northern plains may have been the home of long-lived seas or perhaps even a paleo-ocean, so models exist for highly localized destruction of craters in the north. However, the question of how the ancient crater population could be preserved in the south under a long liquid-water era found in any high-cratering-rate models is a serious question that must be addressed. It does appear to be a higher-order problem because it involves low-energy dynamics acting in localized areas, i.e., erosion of craters in the south of Mars, whereas the two problems with the low-cratering-rate models involve high-energy events acting over large areas: the formation of the Vallis Marineris

  19. Constraints on the Martian cratering rate imposed by the SNC meteorites and Vallis Marineris layered deposits

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. E.

    Following two independent lines of evidence -- estimates of the age and formation time of a portion of the Martian geologic column exposed in the layered deposits and the crystallization and ejection ages of the SNC meteorites -- it appears that the Martian cratering rate must be double the lunar rate or even higher. This means models such as NHII or NHIII (Neukum and Hiller models II and III), which estimate the Martian cratering rate as being several times lunar are probably far closer to reality on Mars than lunar rates. The effect of such a shift is profound: Mars is transformed from a rather Moon-like place into a planet with vigorous dynamics, multiple large impacts, erosion, floods, and volcanism throughout its history. A strong shift upward in cratering rates on Mars apparently solves some glaring problems; however, it creates others. The period of time during which Earth-like atmospheric conditions existed, the liquid water era on Mars, persists in NHIII up to only 0.5 b.y. ago. Scenarios of extended Earth-like conditions on Mars have been discounted in the past because they would have removed many of the craters from the early bombardment era found in the south. It does appear that some process of crater removal was quite vigorous in the north during Mars' past. Evidence exists that the northern plains may have been the home of long-lived seas or perhaps even a paleo-ocean, so models exist for highly localized destruction of craters in the north. However, the question of how the ancient crater population could be preserved in the south under a long liquid-water era found in any high-cratering-rate models is a serious question that must be addressed. It does appear to be a higher-order problem because it involves low-energy dynamics acting in localized areas, i.e., erosion of craters in the south of Mars, whereas the two problems with the low-cratering-rate models involve high-energy events acting over large areas: the formation of the Vallis Marineris

  20. A new Martian meteorite from Morocco: the nakhlite North West Africa 817

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Barrat, J. A.; Jambon, A.; Lorand, J. P.; Gillet, Ph.; Javoy, M.; Joron, J. L.; Lesourd, M.

    2002-02-01

    North West Africa (NWA 817) is a single stone of 104 g found in the Sahara (Morocco) by meteorite hunters in November 2000. The meteorite is an unbrecciated, medium-grained olivine-bearing clinopyroxenite with a cumulate texture. It consists of zoned euhedral subcalcic augite (Wo 42En 38-22Fs 20-36), olivine spanning a wide range of compositions (from Fa 56 in the core to Fa 86) with rare magmatic inclusions and an intercumulus mesostasis made of Fe-bearing albitic plagioclase, Si-rich glass, Ti-magnetite with unusual skeletal growth morphologies containing ilmenite exsolutions, acicular pyroxene, olivine and cristobalite. Trace minerals are sulfide droplets and Cl-apatite. Mineral modes (in vol%) are augite 69%, olivine 10%, mesostasis 20% and Fe-Ti oxides 1%. Pervasive alteration produced a reddish clay mineral (hydrous ferrous silicate) in both olivine crystals and the mesostasis. The major element composition of NWA 817 is very similar to that of the other nakhlites: high FeO, MgO and CaO concentrations reflect the abundance of cumulus augite and olivine. Key element ratios such as FeO/MnO (=37), Na/Al (=0.40), K/La (=449), Ga/Al (=3.9×10 -4) and oxygen isotopic composition (Δ 17O=+0.37‰) are clear evidence for a Martian origin. The incompatible trace element pattern as in Nakhla displays a strong light rare earth element enrichment relative to chondrite (La n/Yb n=4.89). However, when compared to the other nakhlites, NWA 817 has specific features: (1) a higher modal proportion of mesostasis; (2) quench textures of Ti-magnetite and Fe-rich clinopyroxene; (3) more Mg-rich olivine core compositions whereas the augite core composition is identical for all nakhlites; (4) a stronger Fe enrichment toward crystal rims of these cumulus minerals. The intercumulus minerals (Ti-magnetite with skeletal growth morphology, acicular chains of clinopyroxene and Fe 3+-rich feldspar) indicate rapid crystallization in response to a high degree of undercooling at the end of

  1. Gypsum, jarosite, and hydrous iron-phosphate in Martian meteorite Roberts Massif 04262: Implications for sulfate geochemistry on Mars.

    NASA Astrophysics Data System (ADS)

    Greenwood, J. P.

    2008-12-01

    Gypsum has been identified on Mars by MEX OMEGA [1] and jarosite identified via MER-B lander [2] and both minerals are examples of the importance of calcium and iron sulfates in Martian weathering processes. The weathering of Martian basalt to form Ca and iron sulfates should be an important process on Mars. Martian jarosite has been identified in MIL 03346 [3] and Ca-sulfate has been identified in EETA 79001 [4], but both phases have yet to be identified in the same Martian sample. In Roberts Massif 04262, an olivine-phyric shergottite, iron-sulfide and calcium-phosphate minerals are undergoing reaction (dissolution and reprecipitation?) to form gypsum, jarosite, and an iron-phosphate phase, presumably during the meteorite's residence in Antarctica. If true, then an acidic and oxidizing fluid was present in this meteorite, due to the formation of jarosite which requires fluid of this type to form [5]. The weathering of iron-sulfides on Earth to form acidic and oxidizing fluids is common, thus this can be reconciled with the formation of an acidic fluid in a basic rock. Presumably, under more extensive weathering of silicate minerals in Martian basalt, the pH would be raised to values where jarosite would not be stable. While the weathering of RBT 04262 is likely occurring in Antarctica, a similar susceptibility of the apatite and pyrrhotite to incipient weathering on Mars may be expected. Oxidizing crustal fluids on Mars may attack iron- sulfides first in Martian basalts. The weathering of iron-sulfides leads to increasing acidity of fluids, which would enhance the dissolution of the calcium-phosphate minerals [6]. The formation of jarosite, gypsum, and iron-phosphate minerals during the early stages of weathering of Martian basalts may be an important process on Mars globally. [1] Gendrin, A. et al. (2005) Science, 307, 1587-1591. [2] Klingelhöfer et al. (2004) Science, 306, 1740- 1745. [3] Vicenzi E. P. et al. (2007) LPSC XXXVIII, Abstract 2335. [4] Gooding J

  2. Significance of the cosmogenic argon correction in deciphering the 40Ar/39Ar ages of the Nakhlite (Martian) meteorites

    NASA Astrophysics Data System (ADS)

    Cohen, B. E.; Cassata, W.; Mark, D. F.; Tomkinson, T.; Lee, M. R.; Smith, C. L.

    2015-12-01

    All meteorites contain variable amounts of cosmogenic 38Ar and 36Ar produced during extraterrestrial exposure, and in order to calculate reliable 40Ar/39Ar ages this cosmogenic Ar must be removed from the total Ar budget. The amount of cosmogenic Ar has usually been calculated from the step-wise 38Ar/36Ar, minimum 36Ar/37Ar, or average 38Arcosmogenic/37Ar from the irradiated meteorite fragment. However, if Cl is present in the meteorite, then these values will be disturbed by Ar produced during laboratory neutron irradiation of Cl. Chlorine is likely to be a particular issue for the Nakhlite group of Martian meteorites, which can contain over 1000 ppm Cl [1]. An alternative method for the cosmogenic Ar correction uses the meteorite's exposure age as calculated from an un-irradiated fragment and step-wise production rates based on the measured Ca/K [2]. This calculation is independent of the Cl concentration. We applied this correction method to seven Nakhlites, analyzed in duplicate or triplicate. Selected samples were analyzed at both Lawrence Livermore National Laboratory and SUERC to ensure inter-laboratory reproducibility. We find that the cosmogenic argon correction of [2] has a significant influence on the ages calculated for individual steps, particularly for those at lower temperatures (i.e., differences of several tens of million years for some steps). The lower-temperature steps are more influenced by the alternate cosmogenic correction method of [2], as these analyses yielded higher concentrations of Cl-derived 38Ar. As a result, the Nakhlite data corrected using [2] yields step-heating spectra that are flat or nearly so across >70% of the release spectra (in contrast to downward-stepping spectra often reported for Nakhlite samples), allowing for the calculation of precise emplacement ages for these meteorites. [1] Cartwright J. A. et al. (2013) GCA, 105, 255-293. [2] Cassata W. S., and Borg L. E. (2015) 46th LPSC, Abstract #2742.

  3. The Northwest Africa (NWA) 5790 meteorite: A mesostasis-rich nakhlite with little or no Martian aqueous alteration

    NASA Astrophysics Data System (ADS)

    Tomkinson, Tim; Lee, Martin R.; Mark, Darren F.; Dobson, Katherine J.; Franchi, Ian A.

    2015-02-01

    Northwest Africa (NWA) 5790 is the most recently discovered member of the nakhlite group. Its mineralogy differs from the other nakhlites with a high abundance mesostasis (38.1 ± 3.6 vol%) and scarcity of olivine (4.0 ± 2.2 vol%). Furthermore, zoning of augite phenocrysts, and other petrographic and chemical characteristics suggest that NWA 5790 samples the chilled margin of its parent lava flow/sill. NWA 5790 contains calcite and rare clay minerals that are evidence for its exposure to liquid water. The calcite forms a cement to coatings of dust on the outer surface of the find and extends into the interior of the meteorite within veins. The presence of microbial remains within the coating confirms that the dust and its carbonate cement are terrestrial in origin, consistent with the carbon and oxygen isotope composition of the calcite. The clay minerals are finely crystalline and comprise ~0.003 vol% of the meteorite. δD values of the clay minerals range from -212 ± 109‰ to -96 ± 132‰, and cannot be used to distinguish between a terrestrial or Martian origin. As petrographic results are also not definitive, we conclude that secondary minerals produced by Martian groundwaters are at best very rare within NWA 5790. The meteorite has therefore sampled a region of the lava flow/sill with little or no exposure to the aqueous solutions that altered other nakhlites. This isolation could relate to the scarcity of olivine in NWA 5790 because dissolution of olivine in other nakhlites by Martian groundwaters enhanced their porosity and permeability, and provided solutes for secondary minerals.

  4. Isotope Variations in Terrestrial Carbonates and Thermal Springs as Biomarkers: Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Bissada, K. K.

    2006-01-01

    Stable isotope measurements of carbonate minerals contained within ALH84001 [1] suggest that fluids were present at 3.9 Gy on Mars [2, 3, 4, 5]. Both oxygen and carbon isotopes provide independent means of deciphering paleoenvironmental conditions at the time of carbonate mineral precipitation. In terrestrial carbonate rocks oxygen isotopes not only indicate the paleotemperature of the precipitating fluid, but also provide clues to environmental conditions that affected the fluid chemistry. Carbon isotopes, on the other hand, can indicate the presence or absence of organic compounds during precipitation (i.e. biogenically vs. thermogenically-generated methane), thus serving as a potential biomarker. We have undertaken a study of micro scale stable isotope variations measured in some terrestrial carbonates and the influence of organic compounds associated with the formation of these carbonates. Preliminary results indicate that isotope variations occur within narrow and discrete intervals, providing clues to paleoenvironmental conditions that include both biological and non-biological activity. These results carry implications for deciphering Martian isotope data and therefore potential biological prospecting on the planet Mars. Recently, Fourier Transform Spectrometer observations have detected methane occurring in the Martian atmosphere [6] that could be attributed to a possible biogenic source. Indeed, Mars Express has detected the presence of methane in the Martian atmosphere [7], with evidence indicating that methane abundances are greatest above those basins with high water concentrations.

  5. Martian Volatiles and Isotopic Signatures

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.

    1997-01-01

    Data on martian volatiles gathered from Viking atmosphere measurements, modest groundbased spectra, shock-implanted atmospheric gases in martian (SNC) meteorites, trapped mantle gases in martian meteorites, and volatile-rich solid phases in martian meteorites, are presented. Atmospheric volatiles, surface volatiles, and isotopic chronologies are discussed, along with energetic particle interactions.

  6. The History of Allan Hills 84001 Revised: Multiple Shock Events

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1998-01-01

    The geologic history of Martian meteorite Allan Hills (ALH) 84001 is more complex than previously recognized, with evidence for four or five crater-forming impacts onto Mars. This history of repeated deformation and shock metamorphism appears to weaken some arguments that have been offered for and against the hypothesis of ancient Martian life in ALH 84001. Allan Hills 84001 formed originally from basaltic magma. Its first impact event (I1) is inferred from the deformation (D1) that produced the granular-textured bands ("crush zones") that transect the original igneous fabric. Deformation D1 is characterized by intense shear and may represent excavation or rebound flow of rock beneath a large impact crater. An intense thermal metamorphism followed D1 and may be related to it. The next impact (I2) produced fractures, (Fr2) in which carbonate "pancakes" were deposited and produced feldspathic glass from some of the igneous feldspars and silica. After I2, carbonate pancakes and globules were deposited in Fr2 fractures and replaced feldspathic glass and possibly crystalline silicates. Next, feldspars, feldspathic glass, and possibly some carbonates were mobilized and melted in the third impact (I3). Microfaulting, intense fracturing, and shear are also associated with 13. In the fourth impact (I4), the rock was fractured and deformed without significant heating, which permitted remnant magnetization directions to vary across fracture surfaces. Finally, ALH 84001 was ejected from Mars in event I5, which could be identical to I4. This history of multiple impacts is consistent with the photogeology of the Martian highlands and may help resolve some apparent contradictions among recent results on ALH 84001. For example, the submicron rounded magnetite grains in the carbonate globules could be contemporaneous with carbonate deposition, whereas the elongate magnetite grains, epitaxial on carbonates, could be ascribed to vapor-phase deposition during I3.

  7. A Parent Magma for the Nakhla Martian Meteorite: Reconciliation of Estimates from 1-Bar Experiments, Magmatic Inclusions in Olivine, and Magmatic Inclusions in Augite

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Goodrich, Cyrena Anne

    2001-01-01

    The composition of the parent magma for the Nakhla (martian) meteorite has been estimated from mineral-melt partitioning and from magmatic inclusions in olivine and in augite. These independent lines of evidence have converged on small range of likely compositions. Additional information is contained in the original extended abstract.

  8. Using vanadium in spinel as a sensor of oxygen fugacity in meteorites: Applications to Mars, Vesta, and other asteroids.

    SciTech Connect

    Righter, K.; Sutton, S.; Danielson, L.; Pando, K.; Le, L.; Newville, M.

    2009-03-23

    Some meteorites do not contain mineral assemblages required to apply traditional oxy-barometers. Here we introduce a technique using vanadium X-ray absorption features in spinels to characterize the oxygen fugacity of meteoritic dunites, pyroxenites, and chondrites. Igneous and metamorphic rocks commonly contain a mineral assemblage that allows oxygen fugacity to be calculated or constrained such as FeTi oxides, olivine-opx-spinel, or some other oxybarometer. Some rocks, however, contain a limited mineral assemblage and do not provide constraints on fO{sub 2} using mineral equilibria. Good examples of the latter are orthopyroxenites or dunites, such as diogenites, ALH 84001, chassignites, or brachinites. In fact it is no surprise that the fO{sub 2} of many of these samples is not well known, other than being 'reduced' and below the metal saturation value. In order to bridge this gap in our understanding, we have initiated a study of V in chromites in natural meteorite samples. Because the V pre-edge peak intensity and energy in chromites varies with fO{sub 2}, and this has been calibrated over a large fO{sub 2} range, we can apply this relation to rocks for which we otherwise have no fO{sub 2} constraints.

  9. Mars Life? - Microscopic Tube-like Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This high-resolution scanning electron microscope image shows an unusual tube-like structural form that is less than 1/100th the width of a human hair in size found in meteorite ALH84001, a meteorite believed to be of Martian origin. Although this structure is not part of the research published in the Aug. 16 issue of the journal Science, it is located in a similar carbonate glob in the meteorite. This structure will be the subject of future investigations that could confirm whether or not it is fossil evidence of primitive life on Mars 3.6 billion years ago.

  10. Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics

    NASA Astrophysics Data System (ADS)

    Kounaves, Samuel P.; Carrier, Brandi L.; O'Neil, Glen D.; Stroble, Shannon T.; Claire, Mark W.

    2014-02-01

    The results from the Viking mission in the mid 1970s provided evidence that the martian surface contained oxidants responsible for destroying organic compounds. In 2008 the Phoenix Wet Chemistry Lab (WCL) found perchlorate (ClO4-) in three soil samples at concentrations from 0.5 to 0.7 wt%. The detection of chloromethane (CH3Cl) and dichloromethane (CH2Cl2) by the Viking pyrolysis gas chromatograph-mass spectrometer (GC-MS) may have been a result of ClO4- at that site oxidizing either terrestrial organic contaminates or, if present, indigenous organics. Recently, the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) Curiosity directly measured the presence of CH3Cl, CH2Cl2 and, along with measurements of HCl and oxygen, indirectly indicate the presence of ClO4-. However, except for Phoenix, no other direct measurement of the ClO4- anion in martian soil or rock has been made. We report here ion chromatographic (IC) and isotopic analyses of a unique sawdust portion of the martian meteorite EETA79001 that show the presence by mass of 0.6 ± 0.1 ppm ClO4-, 1.4 ± 0.1 ppm ClO3-, and 16 ± 0.2 ppm NO3- at a quantity and location within the meteorite that is difficult to reconcile with terrestrial contamination. The sawdust sample consists of basaltic material with a minor salt-rich inclusion in a mass ratio of ∼300:1, thus the salts may be 300 times more concentrated within the inclusion than the whole sample. The molar ratios of NO3-:ClO4- and Cl:ClO4-, are very different for EETA79001 at ∼40:1 and 15:1, respectively, than the Antarctic soils and ice near where the meteorite was recovered at ∼10,000:1 and 5000:1, respectively. In addition, the isotope ratios for EETA79001 with δ15N = -10.48 ± 0.32‰ and δ18O = +51.61 ± 0.74‰ are significantly different from that of the nearby Miller Range blue ice with δ15N = +102.80 ± 0.14‰ and δ18O = +43.11 ± 0.64‰. This difference is notable, because if the meteorite had been

  11. The chlorine isotope composition of Martian meteorites 2. Implications for the early solar system and the formation of Mars

    NASA Astrophysics Data System (ADS)

    Sharp, Zachary; Williams, Jeffrey; Shearer, Charles; Agee, Carl; McKeegan, Kevin

    2016-11-01

    We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured δ37Cl values range from -3.8 to +8.6‰. The olivine-phyric shergottites are the isotopically lightest samples, with δ37Cl mostly ranging from -4 to -2‰. Samples with evidence for a crustal component have positive δ37Cl values, with an extreme value of 8.6‰. Most of the basaltic shergottites have intermediate δ37Cl values of -1 to 0‰, except for Shergotty, which is similar to the olivine-phyric shergottites. We interpret these data as due to mixing of a two-component system. The first component is the mantle value of -4 to -3‰. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl-enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high δ37Cl value for the Martian surface, similar to what is seen in other volatile systems. The basaltic shergottites are a mixture of the other two endmembers. The low δ37Cl value of primitive Mars is different from Earth and most chondrites, both of which are close to 0‰. We are not aware of any parent-body process that could lower the δ37Cl value of the Martian mantle to -4 to -3‰. Instead, we propose that this low δ37Cl value represents the primordial bulk composition of Mars inherited during accretion. The higher δ37Cl values seen in many chondrites are explained by later incorporation of 37Cl-enriched HCl-hydrate.

  12. Reassessing the cooling rate and geologic setting of Martian meteorites MIL 03346 and NWA 817

    NASA Astrophysics Data System (ADS)

    Richter, Frank; Chaussidon, Marc; Mendybaev, Ruslan; Kite, Edwin

    2016-06-01

    Lithium concentration and isotopic fractionation profiles across augite grains from two Martian meteorites - MIL 03346 and NWA 817 - were used to determine their thermal history and implications for their geologic setting. The iron-magnesium zoning and associated magnesium isotopic fractionation of olivine grains from NWA 817 were also measured and provide a separate estimate of the cooling rate. The observed correlation of concentration with isotopic fractionation provides the essential evidence that the zoning of these grains was in fact due to diffusion and thus can be used as a measure of their cooling rate. The diffusion rate of lithium in augite depends on the oxygen fugacity, which has to be taken into account when determining a cooling rate based on the lithium zoning. The Fe-Mg exchange in olivine is much less sensitive to oxygen fugacity, but it is significantly anisotropic and for this reason we determined the direction relative to crystallographic axes of the line along which the Fe-Mg zoning was measured. We found that the cooling rate of NWA 817 determined from the lithium zoning in augite grains and that based on the Fe-Mg zoning of olivines are in good agreement at an oxygen fugacity close to that of quartz-fayalite-magnetite oxygen buffer. The cooling rate of MIL 03346 was found to be resolvably faster than that of NWA 817 - of the order of 1 °C/h for the former and of the order of 0.2 °C/h for the latter. An important observation regarding the history of MIL 03346 and NWA 817 is that the lithium and Fe-Mg zoning are only observed where the augite or olivine is in contact with the mesostasis, which implies that they were already about 80% crystallized at the time diffusion began. The augite and olivine core compositions while very homogeneous are not in equilibrium with each other, which we interpret to imply that prior to the rapid cooling there must have been a protracted period of the order of years above the solidus, during which the much

  13. Metal-saturated sulfide assemblages in NWA 2737: Evidence for impact-related sulfur devolatilization in Martian meteorites

    NASA Astrophysics Data System (ADS)

    Lorand, Jean-Pierre; Barrat, Jean-Alix; Chevrier, Vincent; Sautter, Violaine; Pont, Sylvain

    2012-11-01

    Abstract-NWA 2737, a <span class="hlt">Martian</span> <span class="hlt">meteorite</span> from the Chassignite subclass, contains minute amounts (0.010 ± 0.005 vol%) of metal-saturated Fe-Ni sulfides. These latter bear evidence of the strong shock effects documented by abundant Fe nanoparticles and planar defects in Northwest Africa (NWA) 2737 olivine. A Ni-poor troilite (Fe/S = 1.0 ± 0.01), sometimes Cr-bearing (up to 1 wt%), coexists with micrometer-sized taenite/tetrataenite-type native Ni-Fe alloys (Ni/Fe = 1) and Fe-Os-Ir-(Ru) alloys a few hundreds of nanometers across. The troilite has exsolved flame-like pentlandite (Fe/Fe + Ni = 0.5-0.6). Chalcopyrite is almost lacking, and no pyrite has been found. As a hot desert find, NWA 2737 shows astonishingly fresh sulfides. The composition of troilite coexisting with Ni-Fe alloys is completely at odds with Chassigny and Nahkla sulfides (pyrite + metal-deficient monoclinic-type pyrrhotite). It indicates strongly reducing crystallization conditions (close to IW), several log units below the fO2 conditions inferred from chromites compositions and accepted for Chassignites (FMQ-1 log unit). It is proposed that reduction in sulfides into base and precious metal alloys is operated via sulfur degassing, which is supported by the highly resorbed and denticulated shape of sulfide blebs and their spongy textures. Shock-related S degassing may be responsible for considerable damages in magmatic sulfide structures and sulfide assemblages, with concomitant loss of magnetic properties as documented in some other <span class="hlt">Martian</span> <span class="hlt">meteorites</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2256033J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2256033J"><span><span class="hlt">Meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenniskens, Peter</p> <p>2015-08-01</p> <p><span class="hlt">Meteorites</span> have long been known to offer a unique window into planetary formation processes at the time of solar system formation and into the materials that rained down on Earth at the time of the origin of life. Their material properties determine the impact hazard of Near Earth Asteroids. Some insight into how future laboratory studies of <span class="hlt">meteorites</span> and laboratory astrophysics simulations of relevant physical processes can help address open questions in these areas and generate new astronomical observations, comes from what was learned from the recent laboratory studies of freshly fallen <span class="hlt">meteorites</span>. The rapid recovery of Almahata Sitta (a polymict Ureilite), Sutter's Mill (a CM chondrite regolith breccia), Novato (an L6 chondrite), and Chelyabinsk (an LL5 chondrite) each were followed by the creation of a <span class="hlt">meteorite</span> consortium, which grew to over 50 researchers in the case of Chelyabinsk. New technologies were used to probe the organic content of the <span class="hlt">meteorites</span> as well as their magnetic signatures, isotopic abundances, trapped noble gasses, and cosmogenic radio nucleides, amongst others. This has resulted in fascinating insight into the nature of the Ureilite parent body, the likely source region of the CM chondrites in the main asteroid belt, and the collisional environment of the CM parent body. This work has encouraged follow-up in the hope of catching more unique materials. Rapid response efforts are being developed that aim to recover <span class="hlt">meteorites</span> as pristinely as possible from falls for which the approach orbit was measured. A significant increase in the number of known approach orbits for different <span class="hlt">meteorite</span> types will help tie <span class="hlt">meteorite</span> types to their asteroid family source regions. Work so far suggests that future laboratory studies may recognize multiple source regions for iron-rich ordinary chondrites, for example. Hope is that these source regions will give insight into the material properties of impacting asteroids. At least some future laboratory</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013M%26PS...48..165H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013M%26PS...48..165H"><span>Alteration assemblages in the Miller Range and Elephant Moraine regions of Antarctica: Comparisons between terrestrial igneous rocks and <span class="hlt">Martian</span> <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hallis, L. J.</p> <p>2013-02-01</p> <p>The weathering products present in igneous terrestrial Antarctic samples were analyzed, and compared with those found in the four Miller Range nakhlite <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. The aim of these comparisons was to determine which of the alteration phases in the Miller Range nakhlites are produced by terrestrial weathering, and what effect rock composition has on these phases. Antarctic terrestrial samples MIL 05031 and EET 96400, along with the Miller Range nakhlites MIL 03346 and 090032, were found to contain secondary alteration assemblages at their externally exposed surfaces. Despite the difference in primary mineralogy, the assemblages of these rocks consist mostly of sulfates (jarosite in MIL 05031, jarosite and gypsum in EET 96400) and iddingsite-like Fe-clay. As neither of the terrestrial samples contains sulfur-bearing primary minerals, and these minerals are rare in the Miller Range nakhlites, it appears that SO42-, possibly along with some of the Na+, K+, and Ca+ in these phases, was sourced from wind-blown sea spray and biogenic emissions from the southern ocean. Cl enrichment in the terrestrially derived "iddingsite" of MIL 05031 and MIL 03346, and the presence of halite at the exterior edge of MIL 090032, can also be explained by this process. However, jarosite within and around the olivine-bound melt inclusions of MIL 090136 is present in the interior of the <span class="hlt">meteorite</span> and, therefore, is probably the product of preterrestrial weathering on Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016M%26PS...51..663S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016M%26PS...51..663S"><span>Ni/S/Cl systematics and the origin of impact-melt glasses in <span class="hlt">Martian</span> <span class="hlt">meteorite</span> Elephant Moraine 79001</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schrader, Christian M.; Cohen, Barbara A.; Donovan, John J.; Vicenzi, Edward P.</p> <p>2016-04-01</p> <p><span class="hlt">Martian</span> <span class="hlt">meteorite</span> Elephant Moraine A79001 (EET 79001) has received considerable attention for the unusual composition of its shock melt glass, particularly its enrichment in sulfur relative to the host shergottite. It has been hypothesized that <span class="hlt">Martian</span> regolith was incorporated into the melt or, conversely, that the S-enrichment stems from preferential melting of sulfide minerals in the host rock during shock. We present results from an electron microprobe study of EET 79001 including robust measurements of major and trace elements in the shock melt glass (S, Cl, Ni, Co, V, and Sc) and minerals in the host rock (Ni, Co, and V). We find that both S and major element abundances can be reconciled with previous hypotheses of regolith incorporation and/or excess sulfide melt. However, trace element characteristics of the shock melt glass, particularly Ni and Cl abundances relative to S, cannot be explained either by the incorporation of regolith or sulfide minerals. We therefore propose an alternative hypothesis whereby, prior to shock melting, portions of EET 79001 experienced acid-sulfate leaching of the mesostasis, possibly groundmass feldspar, and olivine, producing Al-sulfates that were later incorporated into the shock melt, which then quenched to glass. Such activity in the <span class="hlt">Martian</span> near-surface is supported by observations from the Mars Exploration Rovers and laboratory experiments. Our preimpact alteration model, accompanied by the preferential survival of olivine and excess melting of feldspar during impact, explains the measured trace element abundances better than either the regolith incorporation or excess sulfide melting hypothesis does.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007828','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007828"><span>Carbonate Cements from the Sverrefjell and Sigurdfjell Volcanoes, Svalbard Norway: Analogs for <span class="hlt">Martian</span> Carbonates</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blake, D. F.; Treiman, A. H.; Morris, R.; Bish, D.; Amundsen, H.E.F.; Steele, A.</p> <p>2011-01-01</p> <p>The Sverrefjell and Sigurdfjell volcanic complexes erupted at 1Ma on Svalbard, Norway. Sverrefjell is a cone of cinders, pillow lavas and dikes; Sigurdfjell is elongate in outcrop and may represent a fissure eruption [1]. The lavas of both volcanos were volatile rich. The volcanos erupted under ice and were subsequently dissected by glaciation (glacial eratics are present on most of Sverrefjell, even on its summit). Eruption beneath an ice sheet is inferred, based on the presence of pillow lavas from near sea level to 1000 m above sea level. Sverrefjell contains the largest fraction of ultramafic xenoliths of any volcanic complex in the world, in places accounting for as much as 50% of the volume of the outcrop. The Sverrefjell and Sigurdfell volcanos contain carbonate cements of several varieties: (1) Amundsen [2] reported Mg-Fe-rich carbonate in sub-mm globules in basalts and ultramafic xenoliths from the volcanos. These globules are the best terrestrial analogs to the carbonate globules in the Mars <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> [3]. (2) Thick (1-3 cm) coatings of carbonate cement drape the walls of vertical volcanic pipes or conduits on the flanks and near the present summit of Sverrefjell. Similar occurrences are found on Sigurdfjell. (3) Breccia-filled pipes or vents occur on Sverrefjell and Siggurdfjell in which the breccia fragments are cemented by carbonate. The fragments themselves commonly contain carbonate globules similar to those found in the basalts and ultramafic xenoliths.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26PSL.451..251L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26PSL.451..251L"><span>Rare-earth-element minerals in <span class="hlt">martian</span> breccia <span class="hlt">meteorites</span> NWA 7034 and 7533: Implications for fluid-rock interaction in the <span class="hlt">martian</span> crust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yang; Ma, Chi; Beckett, John R.; Chen, Yang; Guan, Yunbin</p> <p>2016-10-01</p> <p>Paired <span class="hlt">martian</span> breccia <span class="hlt">meteorites</span>, Northwest Africa (NWA) 7034 and 7533, are the first <span class="hlt">martian</span> rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 ± 0.4Ga (2σ), 1.1 ± 0.5Ga (2σ), and 2.8 ± 0.7Ga (2σ), confirming a <span class="hlt">martian</span> origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 °C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and -(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010045010&hterms=Evaporites&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEvaporites','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010045010&hterms=Evaporites&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEvaporites"><span>Weathering of <span class="hlt">Martian</span> Evaporites</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wentworth, S. J.; Velbel, M. A.; Thomas-Keprta, K. L.; Longazo, T. G.; McKay, D. S.</p> <p>2001-01-01</p> <p>Evaporites in <span class="hlt">martian</span> <span class="hlt">meteorites</span> contain weathering or alteration features that may provide clues about the <span class="hlt">martian</span> near-surface environment over time. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940028733','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940028733"><span>Carbonates, surfates, phosphates, nitrates, and organic materials: Their association in a <span class="hlt">Martian</span> <span class="hlt">meteorite</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wright, I. P.; Grady, M. M.; Pillinger, C. T.</p> <p>1993-01-01</p> <p>The debate concerning the evolution of CO2 on Mars continues. It would appear that in order to explain the valley networks and other relict fluvial landforms it is necessary to accept that liquid water was once present at the surface of Mars. This in turn requires, at some point in the planet's history, a higher surface temperature than exists today, proposition explained traditionally by an early dense CO2, atmosphere. However, there are a number of problems with this notion: for instance, CO2 alone is not an efficient greenhouse gas because of its tendency to form clouds. Moreover, if there was an early dense CO2 atmosphere, it is necessary to explain where the elemental constituents now reside. There are two possibilities for the latter, namely loss to outer space of atmospheric CO2 or the formation of vast carbonate deposits. While some models of atmospheric loss predict that up to 0.4 bar of CO2 could be removed from the <span class="hlt">Martian</span> surface, this is still not enough to account for the original atmospheric inventory, usually considered to have been in the range of 1-5 bar. Thus, most models of the evolution of the <span class="hlt">Martian</span> surface require removal of CO2 from the atmosphere and into carbonate deposits. However, as yet, the evidence for the existence of carbonates on Mars is fairly scant. This is an issue that would have been resolved by results obtained from Mars Observer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870038381&hterms=shocking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dshocking','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870038381&hterms=shocking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dshocking"><span>Shock-implanted noble gases - An experimental study with implications for the origin of <span class="hlt">Martian</span> gases in shergottite <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bogard, Donald D.; Horz, Friedrich; Johnson, Pratt H.</p> <p>1986-01-01</p> <p>The shock-implantation of gases is studied by artificially shocking whole rock and power samples of terrestrial basalt to pressures of 2-40 GPa. Ar, Kr, Xe, and Ne were implanted into the silicate. It is observed that the amount of implanted gas is linearly proportional to its partial pressure over a pressure range of 0.0001 to 0.1 atmosphere. The fractionation effect in the implanted gas and the gas diffusion properties are examined. The amounts of gas that would have been implanted with 100 percent efficiency are calculated from the measured porosities of the power samples and are compared to observed abundances. It is determined that the implantation efficiencies are approximately 0.5 percent at 2 GPa, 7 percent at 5 GPa, and greater than 50 percent at both 20 and 35 GPa. The experimental data correlate with the shock implantation of <span class="hlt">Martian</span> gases without mass fractionation into the shock-melted phase of <span class="hlt">meteorite</span> EETA 79001.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P31B1709S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P31B1709S"><span>EBSD analysis of the Shergottite <span class="hlt">Meteorites</span>: New developments within the technique and their implication on what we know about the preferred orientation of <span class="hlt">Martian</span> minerals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephen, N.; Benedix, G. K.; Bland, P.; Berlin, J.; Salge, T.; Goran, D.</p> <p>2011-12-01</p> <p>What we know about the geology and mineralogy of the <span class="hlt">Martian</span> surface has been characterised by both the use of remote sensing techniques and the analysis of <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. Various techniques are employed to conduct these analyses including crystallographic, geochemical and spectral measurements, all of which enable us to infer a geological history for these rocks. Several references have been made to the potential for preferred orientation of crystals within the Shergottites [1] and their implication for the cooling history of the respective magmas on Mars [2]. We have already shown that a preferred orientation of the two pyroxenes, augite and pigeonite, can be seen in the Zagami <span class="hlt">meteorite</span> using electron back-scatter diffraction (EBSD) analysis [3]. However, when compared to previous modal studies of the same <span class="hlt">meteorites</span> [4], it becomes apparent that the current EBSD datasets for <span class="hlt">Martian</span> <span class="hlt">meteorites</span> are incomplete. Indexing of some minerals can be hampered by the lack of available matches within library databases for EBSD, or become difficult to resolve between minerals where crystallographic differences between similar minerals fall below the technical limitations of the instrument [3]. Recent advances in EBSD technologies combined with the simultaneous acquisition of energy-dispersive spectra (EDS) however now allow us to determine a more comprehensive set of analyses in a much shorter period of time, fully resolving even similar minerals where areas have been left with no indexing previously [5]. Preliminary investigations suggest that the new technology can successfully index >90% of the sample. The most recent EBSD analyses potentially reveals previously unseen fabrics in the <span class="hlt">meteorites</span> alongside the EDS hyper-spectral imaging helping to resolve any unknown or questionable phases within them. In this study we will present new data from an investigation using EDS alongside EBSD analysis on 2 Shergottite <span class="hlt">meteorites</span>, SAU 005 and Zagami, to further resolve</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011731','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011731"><span>Sm-Nd and Rb-Sr Isotopic Systematics of a Heavily Shocked <span class="hlt">Martian</span> <span class="hlt">Meteorite</span> Tissint and Petrogenesis of Depleted Shergottites</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shih, C.-Y.; Nyquist, L. E.; Park, J.; Agee, Carl B.</p> <p>2014-01-01</p> <p>Tissint is a very fresh <span class="hlt">Martian</span> <span class="hlt">meteorite</span> that fell near the town of Tissint in Morocco on July 18, 2011. It contains abundant olivine megacrysts (23%) in a fine-grained matrix of pyroxene (55%), maskelynitized plagioclase (15%), opaques (4%) and melt pockets (3%) and is petrographically similar to lithologies A and C of picritic shergottite EETA 79001 [1,2]. The presence of 2 types of shock-induced glasses and all 7 high-pressure mineral phases that were ever found in melt pockets of <span class="hlt">Martian</span> <span class="hlt">meteorites</span> suggests it underwent an intensive shock metamorphism of 25 GPa and 2000 C localized in melt pockets [2]. Mineral textures suggest that olivines, pyroxenes and plagioclases probably did not experience such hightemperature. Earlier determinations of its age yielded 596+/-23 Ma [3] and 616+/-67 Ma [4], respectively, for the Sm-Nd system and 583+/-86 Ma for the Lu-Hf system [4], in agreement with the 575+/-18 Ma age of the oldest olivine-phyric depleted shergottite Dho 019 [5]. However, the exposure ages of Tissint (1 Ma [1, 6, 7]) and Dho 019 (20 Ma [8]) are very different requiring two separate ejection events. These previously determined Sm-Nd and Lu-Hf ages are older than the Ar-Ar maskelynite plateau age of 524+/-15 Ma [9], reversing the pattern usually observed for <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. In order to clarify these age issues and place models for Tissint's petrogenesis on a firm basis, we present new Rb-Sr and Sm- Nd isotopic results for Tissint, and discuss (a) the shock effects on them and the Ar-Ar chronometer, (b) correlation of the determined ages with those of other depleted shergottites, and (c) the petrogenesis of depleted shergottites. Since the <span class="hlt">meteorite</span> is a recent fall, terrestrial contamination is expected to be minimal, but, the strong shock metamorphism might be expected to compromise the equilibrium of the isotopic systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090010192','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090010192"><span>Using Vanadium in Spinel as a Sensor of Oxygen Fugacity in <span class="hlt">Meteorites</span>: Applications to Mars, Vesta, and Other Asteroids</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Righter, K.; Sutton, S.; Danielson, L.; Le, L.; Newville, M.; Pando, K.</p> <p>2009-01-01</p> <p>Igneous and metamorphic rocks commonly contain a mineral assemblage that allows oxygen fugacity to be calculated or constrained such as FeTi oxides, olivine-opx-spinel, or some other oxybarometer [1]. Some rocks, however, contain a limited mineral assemblage and do not provide constraints on fO2 using mineral equilibria. Good examples of the latter are orthopyroxenites or dunites, such as diogenites, <span class="hlt">ALH</span> <span class="hlt">84001</span>, chassignites, or brachinites. In fact it is no surprise that the fO2 of many of these samples is not well known, other than being "reduced" and below the metal saturation value. In order to bridge this gap in our understanding, we have initiated a study of V in chromites in natural <span class="hlt">meteorite</span> samples. Because the V pre-edge peak intensity and energy in chromites varies with fO2 (Fig. 1) [2], and this has been calibrated over a large fO 2 range, we can apply this relation to rocks for which we otherwise have no fO2 constraints.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16551224','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16551224"><span>Amino acid distribution in <span class="hlt">meteorites</span>: diagenesis, extraction methods, and standard metrics in the search for extraterrestrial biosignatures.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McDonald, Gene D; Storrie-Lombardi, Michael C</p> <p>2006-02-01</p> <p>The relative abundance of the protein amino acids has been previously investigated as a potential marker for biogenicity in <span class="hlt">meteoritic</span> samples. However, these investigations were executed without a quantitative metric to evaluate distribution variations, and they did not account for the possibility of interdisciplinary systematic error arising from inter-laboratory differences in extraction and detection techniques. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and stochastic probabilistic artificial neural networks (ANNs) were used to compare the distributions for nine protein amino acids previously reported for the Murchison carbonaceous chondrite, Mars <span class="hlt">meteorites</span> (<span class="hlt">ALH</span><span class="hlt">84001</span>, Nakhla, and EETA79001), prebiotic synthesis experiments, and terrestrial biota and sediments. These techniques allowed us (1) to identify a shift in terrestrial amino acid distributions secondary to diagenesis; (2) to detect differences in terrestrial distributions that may be systematic differences between extraction and analysis techniques in biological and geological laboratories; and (3) to determine that distributions in <span class="hlt">meteoritic</span> samples appear more similar to prebiotic chemistry samples than they do to the terrestrial unaltered or diagenetic samples. Both diagenesis and putative interdisciplinary differences in analysis complicate interpretation of <span class="hlt">meteoritic</span> amino acid distributions. We propose that the analysis of future samples from such diverse sources as <span class="hlt">meteoritic</span> influx, sample return missions, and in situ exploration of Mars would be less ambiguous with adoption of standardized assay techniques, systematic inclusion of assay standards, and the use of a quantitative, probabilistic metric. We present here one such metric determined by sequential feature extraction and normalization (PCA), information-driven automated exploration of classification possibilities (HCA), and prediction of classification accuracy (ANNs).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100036629','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100036629"><span>Evidence for Differential Comminution/Aeolian Sorting and Chemical Weathering of <span class="hlt">Martian</span> Soils Preserved in Mars <span class="hlt">Meteorite</span> EET79001</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rao, M. N.; McKay, David S.</p> <p>2004-01-01</p> <p>Impact-melt glasses containing <span class="hlt">Martian</span> atmospheric gases in Mars <span class="hlt">meteorite</span> EET79001 are formed from <span class="hlt">Martian</span> soil fines that had undergone meteoroid-comminution and aeolian sorting accompanied by chemical weathering near Mars surface. Using SiO2 and SO3 as proxy for silicates and salts respectively in Mars soils, we find that SiO2 and SO3 correlate negatively with FeO and MgO and positively with Al2O3 and CaO in these glasses, indicating that the mafic and felsic components are depleted and enriched relative to the bulk host (Lith A/B) respectively as in the case of Moon soils. Though the overall pattern of mineral fractionation is similar between the soil fines on Mars and Moon, the magnitudes of the enrichments/depletions differ between these sample-suites because of pervasive aeolian activity on Mars. In addition to this mechanical processing, the <span class="hlt">Martian</span> soil fines, prior to impact-melting, have undergone acid-sulfate dissolution under oxidizing/reducing conditions. The S03 content in EET79001,507 (Lith B) glass is approx.18% compared to < 2% in EET79001, 506 (Lith A). SiO2 and SO3 negatively correlate with each other in ,507 glasses similar to Pathfinder soils. The positive correlation found between FeO and SO3 in ,507 glasses as well as Pathfinder rocks and soils is consistent with the deposition of ferric-hydroxysulfate on regolith grains in an oxidizing environment. As in the case of Pathfinder soils, the Al 2O3 vs SiO2 positive correlation and FeO VS S102 negative correlation observed in ,507 glasses indicate that SiO2 from the regolith is mobilized as soluble silicic acid at low pH. The large off-set in the end-member FeO abundance ( SO3=0) between Pathfinder soil-free rock and sulfur-free rock in ,507 glass precursors suggests that the soils comprising the ,507 glasses contain much larger proportion of fine-grained <span class="hlt">Martian</span> soil fraction that registers strong mafic depletion relative to Lith B. This inference is strongly supported by the Al2O3 - SO3</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007846','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007846"><span>Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; <span class="hlt">Martian</span> <span class="hlt">Meteorites</span>, Carbonaceous Chondrites and Standard Rocks</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.</p> <p>2011-01-01</p> <p>Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the <span class="hlt">Martian</span> surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of <span class="hlt">meteoritic</span> and planetary materials. We present here results for several standard rocks and <span class="hlt">meteorites</span>, including <span class="hlt">Martian</span> <span class="hlt">meteorites</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050172173','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050172173"><span>Modeling Chemical and Isotopic Variations in Lab Formed Hydrothermal Carbonates</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niles, P. B.; Leshin, L. A.; Golden, D. C.; Socki, R. A.; Guan, Y.; Ming, D. W.</p> <p>2005-01-01</p> <p>Chemical and mineralogical data (e.g. [1]) from Mars suggest that the history of liquid water on the planet was more sporadic in nature than long-lived. The non-equilibrium chemical and isotopic compositions of the carbonates preserved in the <span class="hlt">martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> are direct evidence of ancient secondary minerals that have not undergone significant diagenesis or stabilization processes typical of long-lived aqueous systems on Earth. Thus secondary minerals and sediments on Mars may primarily record the characteristics of the aqueous environment in which they formed without being significantly overprinted by subsequent diagenetic processes during burial.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeCoA.154...49L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeCoA.154...49L"><span>Formation of iddingsite veins in the <span class="hlt">martian</span> crust by centripetal replacement of olivine: Evidence from the nakhlite <span class="hlt">meteorite</span> Lafayette</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, M. R.; Tomkinson, T.; Hallis, L. J.; Mark, D. F.</p> <p>2015-04-01</p> <p>The Lafayette <span class="hlt">meteorite</span> is an olivine clinopyroxenite that crystallized on Mars ∼1300 million years ago within a lava flow or shallow sill. Liquid water entered this igneous rock ∼700 million years later to produce a suite of secondary minerals, collectively called 'iddingsite', that occur as veins within grains of augite and olivine. The deuterium/hydrogen ratio of water within these secondary minerals shows that the aqueous solutions were sourced from one or more near-surface reservoirs. Several petrographically distinct types of veins can be recognised by differences in their width, shape, and crystallographic orientation. Augite and olivine both contain veins of a very fine grained hydrous Fe- and Mg-rich silicate that are ∼1-2 μm in width and lack any preferred crystallographic orientation. These narrow veins formed by cementation of pore spaces that had been opened by fracturing and probably in response to shock. The subset of olivine-hosted veins whose axes lie parallel to (0 0 1) have serrated walls, and formed by widening of the narrow veins by interface coupled dissolution-precipitation. Widening started by replacement of the walls of the narrow precursor veins by Fe-Mg silicate, and a crystallographic control on the trajectory of the dissolution-precipitation front created micrometre-scale {1 1 1} serrations. The walls of many of the finely serrated veins were subsequently replaced by siderite, and the solutions responsible for carbonation of olivine also partially recrystallized the Fe-Mg silicate. Smectite was the last mineral to form and grew by replacement of siderite. This mineralization sequence shows that Lafayette was exposed to two discrete pulses of aqueous solutions, the first of which formed the Fe-Mg silicate, and the second mediated replacement of vein walls by siderite and smectite. The similarity in size, shape and crystallographic orientation of iddingsite veins in the Lafayette <span class="hlt">meteorite</span> and in terrestrial basalts demonstrates a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015M%26PS...50..326W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015M%26PS...50..326W"><span>Petrography and composition of <span class="hlt">Martian</span> regolith breccia <span class="hlt">meteorite</span> Northwest Africa 7475</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wittmann, Axel; Korotev, Randy L.; Jolliff, Bradley L.; Irving, Anthony J.; Moser, Desmond E.; Barker, Ivan; Rumble, Douglas</p> <p>2015-02-01</p> <p>The Northwest Africa (NWA) 7475 <span class="hlt">meteorite</span> is one of the several stones of paired regolith breccias from Mars based on petrography, oxygen isotope, mineral compositions, and bulk rock compositions. Its inventory of lithic clasts is dominated by vitrophyre impact melts that were emplaced while they were still molten. Other clast types include crystallized impact melt rocks, evolved plutonic rocks, possible basalts, contact metamorphosed rocks, and siltstones. Impact spherules and vitrophyre shards record airborne transport, and accreted dust rims were sintered on most clasts, presumably during residence in an ejecta plume. The clast assemblage records at least three impact events, one that formed an impact melt sheet on Mars ≤4.4 Ga ago, a second that assembled NWA 7475 from impactites associated with the impact melt sheet at 1.7-1.4 Ga, and a third that launched NWA 7475 from Mars ~5 Ma ago. Mildly shocked pyroxene and plagioclase constrain shock metamorphic conditions during launch to >5 and <15 GPa. The mild postshock-heating that resulted from these shock pressures would have been insufficient to sterilize this water-bearing lithology during launch. Magnetite, maghemite, and pyrite are likely products of secondary alteration on Mars. Textural relationships suggest that calcium-carbonate and goethite are probably of terrestrial origin, yet trace element chemistry indicates relatively low terrestrial alteration. Comparison of Mars Odyssey gamma-ray spectrometer data with the Fe and Th abundances of NWA 7475 points to a provenance in the ancient southern highlands of Mars. Gratteri crater, with an age of ~5 Ma and an apparent diameter of 6.9 km, marks one possible launch site of NWA 7475.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030111577&hterms=titanium+carbonate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtitanium%2Bcarbonate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030111577&hterms=titanium+carbonate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtitanium%2Bcarbonate"><span>Fe-Ti-Cr-Oxides in <span class="hlt">Martian</span> <span class="hlt">Meteorite</span> EETA79001 Studied by Point-counting Procedure Using Raman Spectroscopy</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Alian; Kuebler, Karla E.; Jolliff, Bradley L.; Haskin, Larry A.</p> <p>2003-01-01</p> <p>Fe-Ti-Cr-Oxide minerals contain much information about rock petrogenesis and alteration. Among the most important in the petrology of common intrusive and extrusive rocks are those of the FeO-TiO2-Cr2O3 compositional system chromite, ulv spinel-magnetite, and ilmenite-hematite. These minerals retain memories of oxygen fugacity. Their exsolution into companion mineral pairs give constraints on formation temperature and cooling rate. Laser Raman spectroscopy is anticipated to be a powerful technique for characterization of materials on the surface of Mars. A Mars Microbeam Raman Spectrometer (MMRS) is under development. It combines a micro sized laser beam and an automatic point-counting mechanism, and so can detect minor minerals or weak Raman-scattering phases such as Fe- Ti-Cr-oxides in mixtures (rocks & soils), and provide information on grain size and mineral mode. Most Fe-Ti-Cr-oxides produce weaker Raman signals than those from oxyanionic minerals, e.g. carbonates, sulfates, phosphates, and silicates, partly because most of them are intrinsically weaker Raman scatters, and partly because their dark colors limit the penetration depth of the excitation laser beam (visible wavelength) and of the Raman radiation produced. The purpose of this study is to show how well the Fe-Ti-Cr-oxides can be characterized by on-surface planetary exploration using Raman spectroscopy. We studied the basic Raman features of common examples of these minerals using well-characterized individual mineral grains. The knowledge gained was then used to study the Fe-Ti-Cr-oxides in <span class="hlt">Martian</span> <span class="hlt">meteorite</span> EETA79001, especially effects of compositional and structural variations on their Raman features.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002M%26PS...37..835G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002M%26PS...37..835G"><span>Sayh al Uhaymir 094: A new <span class="hlt">martian</span> <span class="hlt">meteorite</span> from the Oman desert</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gnos, E.; Hofmann, B.; Franchi, I. A.; Al-Kathiri, A.; Hauser, M.; Moser, L.</p> <p>2002-06-01</p> <p>Sayh al Uhaymir (SaU) 094 is a 223.3 g, partially crusted, strongly to very strongly shocked melanocratic olivine-porphyric rock of the shergottite group showing a microgabbroic texture. The rock consists of pyroxene (52.0-58.2 vol%)-dominantly prismatic pigeonite (En60-68Fs20-27Wo7-9) associated with minor augite (En46-49Fs15-16Wo28-31)-brown (shock-oxidized) olivine (Fo65-69; 22.1-31%), completely isotropic interstitial plagioclase glass (maskelynite; An50-64Or0.3-0.9; 8.6-13.0%), chromite and titanian magnesian chromite (0.9-1.0%), traces of ilmenite (Ilm80-86), pyrrhotite (Fe92-100; 0.1-0.2%), merrillite (<<0.1%), and pockets (4.8-6.7%) consisting of green basaltic to basaltic andesitic shock glass that is partially devitrified into a brown to black product along boundaries with the primary minerals. The average maximum dimensions of minerals are: olivine (1.5 mm), pyroxene (0.3 mm) and maskelynite (0.3 mm). Primary melt inclusions in olivine and chromite are common and account for 0.1-0.6% of the rock. X-ray tomography revealed that the specimen contains ~0.4 vol% of shock-melt associated vesicles, up to 3 mm in size, which show a preferred orientation. Fluidization of the maskelynite, melting and recrystallization of pyroxene, olivine and pyrrhotite indicate shock stage S6. Minor terrestrial weathering resulted in calcite-veining and minor oxidation of sulfides. The <span class="hlt">meteorite</span> is interpreted as paired with SaU 005/008/051. The modal composition is similar to Dar al Gani 476/489/670/735/876, with the exception that neither mesostasis nor titanomagnetite nor apatite are present and that all phases show little zonation. The restricted mineral composition, predominance of chromite among the oxides, and abundance of olivine indicate affinities to the lherzolitic shergottites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060013610&hterms=burial&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dburial','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060013610&hterms=burial&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dburial"><span>Mineralogy of nakhlite <span class="hlt">Martian</span> <span class="hlt">meteorites</span>: Implications for their relative burial depths</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mikouchi, T.; McKay, Gordon; Miyamoto, M.</p> <p>2006-01-01</p> <p>Nakhlites are <span class="hlt">Martian</span> cumulate rocks mainly composed of augite with variable amounts of olivine and groundmass (mesostasis). Currently seven samples are known: Nakhla (Nak), Governador Valadares (GV), Lafayette (Laf), NWA817, Y000593 (Y), NWA998 and MIL03346 (MIL). All the nakhlites show a similar unbrecciated cumulate texture, and their identical crystallization and exposure ages suggest that they originated from the same igneous body on Mars and were ejected by the same impact event. It is important to study difference of their mineralogy to reconstruct the igneous body from which nakhlites originated. Augite grains in all nakhlites have a nearly identical core composition (En39Fs22Wo39) and have thin Fe-rich rims. These Fe-rich rims are zoned to Ca-poor pyroxene compositions and the degree of chemical zoning varies from one sample to another. NWA998 has the most Mg-rich edge composition. The edge composition becomes more Fe-rich in the order of Laf, Nak/GV, Y and NWA817. Unlike other samples, the Fe-rich edge of MIL augite is zoned to the hedenbergite composition. Olivine grains in all samples except Laf and NWA998 show extensive chemical zoning whose degree is clearly related to the chemical zoning of pyroxenes. MIL and NWA817 have the widest compositional ranges (Fa54-93). Y has a slightly narrower compositional range of Fa58-85. Nak and GV have even narrower ranges (Fa58-72). In contrast to these samples, olivines in Laf and NWA998 are homogeneous (Fa66-67 and Fa61-62, respectively). Such chemical zoning (Fa and Ca) can be used to quantitatively estimate their cooling rates (burial depths) because it was clearly formed by interaction with the intercumulus melt. The obtained burial depths are 1-2 m for NWA817, 4 m for MIL, 7 m for Y, approx.10 m for Nak and GV, and >30 m for Laf and NWA998. This order is clearly related to the degree of pyroxene chemical zoning. The abundance and mineralogy of nakhlite groundmass are also consistent with this order. In Nak, GV</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013M%26PS...48..493L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013M%26PS...48..493L"><span>The Ksar Ghilane 002 shergottite—The 100th registered <span class="hlt">Martian</span> <span class="hlt">meteorite</span> fragment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Llorca, Jordi; Roszjar, Julia; Cartwright, Julia A.; Bischoff, Addi; Ott, Ulrich; Pack, Andreas; Merchel, Silke; Rugel, Georg; Fimiani, Leticia; Ludwig, Peter; Casado, José V.; Allepuz, David</p> <p>2013-03-01</p> <p>We report on the discovery of a new shergottite from Tunisia, Ksar Ghilane (KG) 002. This single stone, weighing 538 g, is a coarse-grained basaltic shergottite, mainly composed of maskelynitized plagioclase (approximately 52 vol%) and pyroxene (approximately 37 vol%). It also contains Fe-rich olivine (approximately 4.5 vol%), large Ca-phosphates, including both merrillites and Cl-apatites (approximately 3.4 vol%), minor amounts of silica or SiO2-normative K-rich glass, pyrrhotite, Ti-magnetite, ilmenite, and accessory baddeleyite. The largest crystals of pyroxene and plagioclase reach sizes of approximately 4 to 5 mm. Pyroxenes (Fs26-96En5-50Wo2-41). They typically range from cores of about Fs29En41Wo30 to rims of about Fs68En14Wo17. Maskelynite is Ab41-49An39-58Or1-7 in composition, but some can be as anorthitic as An93. Olivine (Fa91-96) occurs mainly within symplectitic intergrowths, in paragenesis with ilmenite, or at neighboring areas of symplectites. KG 002 is heavily shocked (S5) as indicated by mosaic extinction of pyroxenes, maskelynitized plagioclase, the occurrence of localized shock melt glass pockets, and low radiogenic He concentration. Oxygen isotopes confirm that it is a normal member of the SNC suite. KG 002 is slightly depleted in LREE and shows a positive Eu anomaly, providing evidence for complex magma genesis and mantle processes on Mars. Noble gases with a composition thought to be characteristic for <span class="hlt">Martian</span> interior is a dominant component. Measurements of 10Be, 26Al, and 53Mn and comparison with Monte Carlo calculations of production rates indicate that KG 002 has been exposed to cosmic rays most likely as a single meteoroid body of 35-65 cm radius. KG 002 strongly resembles Los Angeles and NWA 2800 basaltic shergottites in element composition, petrography, and mineral chemistry, suggesting a possible launch-pairing. The similar CRE ages of KG 002 and Los Angeles may suggest an ejection event at approximately 3.0 Ma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030110601&hterms=clean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dclean','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030110601&hterms=clean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dclean"><span>Comparison of Synchrotron MicroXANES Determination of Fe(3+)/Sigma Fe with Moessbauer Values for Clean Mineral Separates of Pyroxene from <span class="hlt">Martian</span> <span class="hlt">Meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Delaney, J. S.; Dyar, M. D.</p> <p>2003-01-01</p> <p>The oxidation state of Fe in <span class="hlt">Martian</span> <span class="hlt">meteorites</span> is a parameter of great interest and the ability to determine this value in micrometer scale samples is important. Intense, tunable x-ray sources at large synchrotron storage rings are being exploited to examine the Fe K-absorption edge with energy resolution of approx. 1-1.5eV in spots of 10x15 microns on thin sections of a wide variety of materials including several <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. Synchrotron microXANES (SmX) spectroscopy is the technique that provides the most flexible capability for investigating Fe(3+)/Sigma Fe. Variation of Fe(3+)/Sigma Fe is manifested as a function of the energy of the pre-edge to the Fe absorption edge produced by the sample. SmX is at present the only technique that can be used with conventional polished thin sections. Data for a broad spectrum of minerals have been produced and indicate that SmX can be used with a large variety of samples types.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017M%26PS...52..333B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017M%26PS...52..333B"><span>The variability of ruthenium in chromite from chassignite and olivine-phyric shergottite <span class="hlt">meteorites</span>: New insights into the behavior of PGE and sulfur in <span class="hlt">Martian</span> magmatic systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baumgartner, Raphael J.; Fiorentini, Marco L.; Baratoux, David; Ferrière, Ludovic; Locmelis, Marek; Tomkins, Andrew; Sener, Kerim A.</p> <p>2017-02-01</p> <p>The <span class="hlt">Martian</span> <span class="hlt">meteorites</span> comprise mantle-derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum-group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine-phyric shergottites, determined using laser-ablation ICP-MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of <span class="hlt">Martian</span> mantle-derived melts. The new data reveal distinctive differences between the two <span class="hlt">meteorite</span> groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to 160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine-phyric shergottites Yamato-980459 (Y-980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru-rich ( 1-4 ppb) parental melt for this <span class="hlt">meteorite</span> group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru-depleted signature of chromite and ulvöspinel from the olivine-phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum-group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11543071','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11543071"><span>Exposure of Allan Hills 84001 and other achondrites on the Antarctic ice.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krahenbuhl, U; Noll, K; Dobeli, M; Grambole, D; Herrmann, F; Tobler, L</p> <p>1998-07-01</p> <p>The enrichment of F on Antarctic <span class="hlt">meteorites</span> is the result of their exposure to the atmosphere, and its measurement allows a subdivision of the terrestrial age into a duration of exposure on the ice and the time a <span class="hlt">meteorite</span> was enclosed by the ice. In many cases, the periods of surface exposure are only small fractions of the terrestrial ages of <span class="hlt">meteorites</span> collected in Antarctica. The enrichment of F on the surfaces of Antarctic achondrites was investigated by means of nuclear reaction analysis (NRA): scanning proton beams with an energy of 2.7 and 3.4 MeV were used to induce the reactions 19F(p, alpha gamma)16O and 19F(p,p gamma)19F, respectively. Gamma signals proportional to the F content were measured. The following Antarctic achondrites were investigated: <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span> <span class="hlt">84001</span>; diogenite ALHA77256; the eucrites ALHA81011 and ALHA78132; and in addition, the H5 chondrite ALHA79025. For <span class="hlt">ALH</span> <span class="hlt">84001</span>, our data indicate a period of exposure on the ice of <500 years. Thus, this specimen was enclosed in the ice >95% of its terrestrial age of 13 000 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P51E3990A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P51E3990A"><span>Thirteen Iron <span class="hlt">Meteorites</span> Found at Gale Crater, Meridiani Planum, and Gusev Crater — Exogenic Witnesses to Weathering Processes Near the <span class="hlt">Martian</span> Equator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashley, J.</p> <p>2014-12-01</p> <p>At least 20 <span class="hlt">meteorites</span> and <span class="hlt">meteorite</span> candidates have now been found by science teams at three Mars rover landing sites, all within 15 degrees of the <span class="hlt">martian</span> equator. Thirteen of these are iron <span class="hlt">meteorites</span>, comprising 65% of the population — an order of magnitude greater abundance than found among witnessed iron falls in Earth-based collections (~6%). Chondritic <span class="hlt">meteorites</span>, which comprise some 86% of Earth-based falls, are conspicuously absent from the Mars inventory. The reasons for this disproportion may involve a) post-fall environmental resistance differences favoring iron survivability; b) fragmentation from impact shock (and possibly internal weathering stresses associated with oxide production in desert environments [1]); combined with c) selection biases arising from residual chondritic fragments appearing less conspicuous. Impact features along rover traverses often show evidence of dark materials likely to be impactor fragments [e.g., 2], which could represent the missing chondritic fraction. The reactivity of reduced (metallic) iron to aqueous alteration, combined with the near equatorial and widely distributed locations of these rocks, makes them particularly useful to the assessment of climate models arguing for geologically recent ice at the <span class="hlt">martian</span> equator. Exposure histories involving alternating wind/water cycles are imprinted on several Meridiani irons, for example [3]. Evidence for oxide coating removal demonstrates the current epoch to be one of coating destruction, not production, showing that atmospheric exposure alone is insufficient to produce the coating. Cavernous weathering is likely associated with acidic corrosion, while evidence of aeolian scouring is found in Widmanstätten patterns, sharp-crested scallops, regmaglypt enlargement, and abundant pitting. Further study of these features could help constrain wind direction and velocity during epochs of sculpting [e.g., 4], and assist in exposure age estimation. References: [1] Ashley J. W</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P54B..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P54B..06G"><span>Comparison of Laser Induced Breakdown Spectroscopy (LIBS) on <span class="hlt">Martian</span> <span class="hlt">Meteorite</span> NWA 7034 to ChemCam Observations at Gale Crater, Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordon, S.; Newsom, H. E.; Agee, C. B.; Santos, A. R.; Clegg, S. M.; Wiens, R. C.; Lasue, J.; Sautter, V.</p> <p>2014-12-01</p> <p>The ChemCam instrument on board the Mars Science Laboratory (MSL) Curiosity rover uses laser-induced breakdown spectroscopy (LIBS) to analyze rock and soil targets on Mars from up to 7 m away. The Nd:KGW laser can shoot up to 1000 shots at one location and profile up to 1 mm depth into a rock. Identical LIBS instrumentation is located at Los Alamos National Laboratory and was used to analyze <span class="hlt">martian</span> <span class="hlt">meteorite</span> NWA 7034, a non-SNC basaltic breccia whose bulk composition matches the <span class="hlt">martian</span> surface. Initial LIBS analysis of NWA 7034 included observations on two basaltic clasts in the <span class="hlt">meteorite</span>. Electron microprobe analysis (EPMA) was performed on the two clasts for comparison with elemental compositions measured using LIBS. The two instruments give similar compositions of major oxides within the error of both techniques. EPMA analysis was also completed on three light-toned clasts and a dark-toned clast in the <span class="hlt">meteorite</span>. The light-toned clasts have Al/Si vs. (Fe+Mg)/Si compositions ranging from felsic to mafic, and the dark-toned clast shows a mafic composition. A Sammon's map was created to compare LIBS data for NWA 7034 and ChemCam targets Stark, Crestaurum, Link, Portage, Jake_M, Mara, Thor_Lake, Coronation, Pearson, and Prebble. This nonlinear statistical mapping technique is used for clustering assessment of LIBS data in two dimensions. The map shows NWA 7034 clustering in its own location, and the closest similar ChemCam rock targets are La_Reine and Ashuamipi, which are both coarse grained targets that have a mafic component consistent with augite. The most similar ChemCam soil targets are the Crestaurum and Portage. Creation of maps with a greater number of targets will show more of the similarities between NWA 7034 and ChemCam target rocks and soils. Further analysis will compare NWA 7034 LIBS data, data from the paired <span class="hlt">meteorite</span> NWA 7533, and a variety of ChemCam targets that are similar in morphology and texture.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080026212','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080026212"><span>The Role of CO2 in Aqueous Alteration of Ultra-Mafic Rocks and the Formation of MF-,FE-Rich Aqueous Solutons on Early Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niles, Paul B.; Yu, M.; Zolotov, M. Yu.; Leshin, L. A.</p> <p>2006-01-01</p> <p>An adequate understanding of water on Mars that moves beyond the simplistic "warmwet" vs. "cold-dry" dichotomy must include strong constraints on the variables: water/rock ratio, time, temperature, and chemical composition. By constraining these variables first on local, then regional and global scales we will be capable of precisely targeting landed missions to definitively understand the history of water on Mars and the possible existence of life. Data from remote sensing of Mars, landed missions, and <span class="hlt">martian</span> <span class="hlt">meteorites</span> indicate that secondary minerals formed from aqueous fluids on Mars are predominately Fe- and Mg-rich. The unique Mg-, Fe-rich carbonates in the <span class="hlt">ALH</span> <span class="hlt">84001</span> <span class="hlt">meteorite</span> provide an excellent opportunity to provide strong constraints on an Fe-, Mg-rich aqueous system on early Mars. This work seeks to use the unusual chemical compositions of the <span class="hlt">ALH</span> <span class="hlt">84001</span> carbonates as a constraint for the composition of their formation fluid. These constraints can be used to better understand aqueous processes at a critical time in <span class="hlt">martian</span> history.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940017205','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940017205"><span>Wet inside and out? Constraints on water in the <span class="hlt">Martian</span> mantle and on outgassed water, based on melt inclusions in SNC <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcsween, H. Y., Jr.; Harvey, R. P.</p> <p>1993-01-01</p> <p>Constraints on the volatile inventory and outgassing history of Mars are critical to understanding the origin of ancient valley systems and paleoclimates. Planetary accretion models for Mars allow either a volatile-rich or volatile-poor mantle, depending on whether the accreted materials were fully oxidized or whether accretion was homogeneous so that water was lost through reaction with metallic iron. The amount of water that has been outgassed from the interior is likewise a contentious subject, and estimates of globally distributed water based on various geochemical and geological measurements vary from a few meters to more than a thousand meters. New data on SNC <span class="hlt">meteorites</span>, which are thought to be <span class="hlt">Martian</span> igneous rocks, provide constraints on both mantle and outgassed water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100036456','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100036456"><span>Microbial Contamination of Allende and Murchison Carbonaceous Chondrites; Developing a Protocol for Life Detection in Extraterrestrial Materials Using Biotechnology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steele, A.; Whitby, C.; Griffin, C.; Toporski, J. K. W.; Westall, F.; Saunders, J. R.; McKay, D. S.</p> <p>2001-01-01</p> <p>The arguments used to refute the McKay et al., (1996) hypothesis of possible <span class="hlt">Martian</span> life in <span class="hlt">ALH</span><span class="hlt">84001</span> failed to use contamination of the <span class="hlt">meteorite</span> as a source. This has worrying implications for our ability to detect terrestrial microbiota in <span class="hlt">meteorites</span> and therefore any potential extraterrestrial biosignatures in both <span class="hlt">meteorites</span> and possible returned samples. We report on imaging and microbial culturing of both Allende and Murchison carbonaceous chondrites and on the use of molecular biology techniques on a sample of Allende. Contaminating fungi and bacteria were observed (in the case of Murchison) and cultured from both <span class="hlt">meteorites</span>. DNA was successfully extracted and subsequent PCR showed the presence of both bacterial and fungal DNA although no Archaea were detected. These results show that it is possible to use molecular biological techniques on very small quantities (300 mg) of extraterrestrial material.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000094538&hterms=anaerobic+bacterium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Danaerobic%2Bbacterium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000094538&hterms=anaerobic+bacterium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Danaerobic%2Bbacterium"><span>Alteration of Rock Fragments from Columbia River Basalt Microcosms</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Velbel, Michael A.; McKay, David S.; Stevens, Todd O.</p> <p>1999-01-01</p> <p>During an earlier study, microorganisms were grown microcosms consisting of sterilized chips of Columbia River Basalt (CRB) and natural CRB ground water with its natural microflora; environmental conditions simulated a deep subsurface, anaerobic, dark environment. Subsequent scanning and transmission electron microscope (SEM and TEM) studies revealed the presence of several types of bacteria and biofilm, some of which were mineralized. Some of these biological features are very similar to possible biogenic features found in two <span class="hlt">meteorites</span> from Mars, <span class="hlt">ALH</span><span class="hlt">84001</span> (found in Antarctica) and Nakhla (observed to fall in Egypt). Both <span class="hlt">ALH</span><span class="hlt">84001</span> and Nakhla contain traces of low-temperature aqueous alteration of silicates, oxides, and sulfides. The goals of this study are to use high-resolution field-emission SEM (FE-SEM) to examine the CRB samples for evidence of alteration features similar to those in the <span class="hlt">martian</span> <span class="hlt">meteorites</span>, to determine the extent of alteration during the CRB microcosm experiments, and to determine whether effects of biological activity can be distinguished from inorganic effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012LPI....43.1010P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012LPI....43.1010P"><span>Experimental <span class="hlt">Martian</span> Eclogite with a QUE 94201 Composition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papike, J. J.; Burger, P. V.; Shearer, C. K.; McCubbin, F. M.; Elardo, S. M.</p> <p>2012-03-01</p> <p>High-pressure techniques were used to synthesize a <span class="hlt">martian</span> eclogite based on the composition of <span class="hlt">martian</span> <span class="hlt">meteorite</span> QUE 94201. The resultant eclogite may be representative of <span class="hlt">martian</span> melts whose ascent has been arrested in the upper mantle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130009928','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130009928"><span>Shock Experiments on Basalt - Ferric Sulfate Mixes at 21 GPa & 49 GPa and their Relevance to <span class="hlt">Martian</span> <span class="hlt">Meteorite</span> Impact Glasses</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rao, M. N.; Ross, D. K.; See, T. H.; Nyquist, L. E.; Sutton, S.; Asimow, P.</p> <p>2013-01-01</p> <p>Large abundance of <span class="hlt">Martian</span> atmospheric gases and neutron-induced isotopic excesses as well as Rb-Sr isotopic variations determined in some impact glasses in basaltic shergottites (e.g., Shergotty #DBS, Zagami #H1 and EET79001 #27, #8 and #104) provide definitive evidence for the occurrence of a <span class="hlt">Martian</span> regolith component in their constituent mineral assemblages. Some of these glass-es, known as gas-rich impact-melts (GRIM), contain numerous micron-sized iron sulfide blebs along with minor amounts of iron sulfate particulates. As these GRIM glasses contain a <span class="hlt">Martian</span> regolith component and as iron sulfates (but not sulfides) are found to occur abundantly on the Mars surface, we suggested that the sulfide blebs in GRIMs were likely generated by shock-reduction of the parental iron sulfate bearing regolith material that had been incorporated into the cavities/crevices of basaltic host rock prior to the impact event on Mars. To test whether the sulfates could be reduced to sulfides by impact shock, we carried out laboratory shock experiments on a basalt plus ferric sulfate mixture at 49 GPa at the Caltech Shock Wave Laboratory and at 21 GPa at Johnson Space Center (JSC) Experimental Impact Laboratory. The experimental details and the preliminary results for the Caltech 49 GPa experiment were presented at LPSC last year. Here, we report the results for the 21 GPa experiment at JSC and compare these results to obtain further insight into the mechanism of the bleb formation in the GRIM glasses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4297357','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4297357"><span>Dating the <span class="hlt">Martian</span> <span class="hlt">meteorite</span> Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Scott Anderson, F; Levine, Jonathan; Whitaker, Tom J</p> <p>2015-01-01</p> <p>RATIONALE The geologic history of the Solar System builds on an extensive record of impact flux models, crater counts, and ∼270 kg of lunar samples analyzed in terrestrial laboratories. However, estimates of impactor flux may be biased by the fact that most of the dated Apollo samples were only tenuously connected to an assumed geologic context. Moreover, uncertainties in the modeled cratering rates are significant enough to lead to estimated errors for dates on Mars and the Moon of ∼1 Ga. Given the great cost of sample return missions, combined with the need to sample multiple terrains on multiple planets, we have developed a prototype instrument that can be used for in situ dating to better constrain the age of planetary samples. METHODS We demonstrate the first use of laser ablation resonance ionization mass spectrometry for 87Rb-87Sr isochron dating of geological specimens. The demands of accuracy and precision have required us to meet challenges including regulation of the ambient temperature, measurement of appropriate backgrounds, sufficient ablation laser intensity, avoidance of the defocusing effect of the plasma created by ablation pulses, and shielding of our detector from atoms and ions of other elements. RESULTS To test whether we could meaningfully date planetary materials, we have analyzed a piece of the <span class="hlt">Martian</span> <span class="hlt">meteorite</span> Zagami. In each of four separate measurements we obtained 87Rb-87Sr isochron ages for Zagami consistent with its published age, and, in both of two measurements that reached completion, we obtained better than 200 Ma precision. Combining all our data into a single isochron with 581 spot analyses gives an 87Rb-87Sr age for this specimen of 360 ±90 Ma. CONCLUSIONS Our analyses of the Zagami <span class="hlt">meteorite</span> represent the first successful application of resonance ionization mass spectrometry to isochron geochronology. Furthermore, the technique is miniaturizable for spaceflight and in situ dating on other planetary bodies. © 2014 The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3076842','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3076842"><span>Natural dissociation of olivine to (Mg,Fe)SiO3 perovskite and magnesiowüstite in a shocked <span class="hlt">Martian</span> <span class="hlt">meteorite</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miyahara, Masaaki; Ohtani, Eiji; Ozawa, Shin; Kimura, Makoto; El Goresy, Ahmed; Sakai, Takeshi; Nagase, Toshiro; Hiraga, Kenji; Hirao, Naohisa; Ohishi, Yasuo</p> <p>2011-01-01</p> <p>We report evidence for the natural dissociation of olivine in a shergottite at high-pressure and high-temperature conditions induced by a dynamic event on Mars. Olivine (Fa34-41) adjacent to or entrained in the shock melt vein and melt pockets of <span class="hlt">Martian</span> <span class="hlt">meteorite</span> olivine-phyric shergottite Dar al Gani 735 dissociated into (Mg,Fe)SiO3 perovskite (Pv)+magnesiowüstite (Mw), whereby perovskite partially vitrified during decompression. Transmission electron microscopy observations reveal that microtexture of olivine dissociation products evolves from lamellar to equigranular with increasing temperature at the same pressure condition. This is in accord with the observations of synthetic samples recovered from high-pressure and high-temperature experiments. Equigranular (Mg,Fe)SiO3 Pv and Mw have 50–100 nm in diameter, and lamellar (Mg,Fe)SiO3 Pv and Mw have approximately 20 and approximately 10 nm in thickness, respectively. Partitioning coefficient, KPv/Mw = [FeO/MgO]/[FeO/MgO]Mw, between (Mg,Fe)SiO3 Pv and Mw in equigranular and lamellar textures are approximately 0.15 and approximately 0.78, respectively. The dissociation of olivine implies that the pressure and temperature conditions recorded in the shock melt vein and melt pockets during the dynamic event were approximately 25 GPa but 700 °C at least. PMID:21444781</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080026354','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080026354"><span>Observation and Analysis of In Situ Carbonaceous Matter in Naklha. Part 2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gibson, E. K., Jr.; Clemett, S. J.; Thomas-Kerpta, K. L.; McKay, D. S.; Wentworth, S. J.; Robert, F.; Verchovsky, A. B.; Wright, I. P.; Pillinger, C. T.; Rice, T.; VanLeer, B.</p> <p>2006-01-01</p> <p>The search for indigenous carbon components on Mars has been a challenge. The first attempt was the Viking GC-MS in situ experiment which gave inconclusive results at two sites on Mars [1]. After the discovery that the SNC <span class="hlt">meteorites</span> were from Mars [2], [3-5] reported C isotopic compositional information which suggested a reduced C component present in the <span class="hlt">martian</span> <span class="hlt">meteorites</span>. [6 & 7] reported the presence of reduced C components (i.e., polycyclic aromatic hydrocarbons) associated with the carbonate globules in <span class="hlt">ALH</span><span class="hlt">84001</span>. Jull et al. [8] noted in Nakhla there was an acid insoluble C component present with more than 75% of its C lacking any C-14, which is modern-day carbon. This C fraction was believed to be either indigenous <span class="hlt">martian</span> or ancient <span class="hlt">meteoritic</span> carbon. Fisk et al. [9, 10] have shown textural evidence along with C-enriched areas within fractures in Nakhla and <span class="hlt">ALH</span><span class="hlt">84001</span>. To further understand the nature of possible indigenous reduced C components, we have carried out a variety of measurements on <span class="hlt">martian</span> <span class="hlt">meteorites</span>. For this presentation we will discuss only the Nakhla results. Interior samples from the Nakhla SNC <span class="hlt">meteorite</span>, recently made available by the British Museum of Natural History, were analyzed. Petrographic examination [11, McKay et al., this volume] of Nakhla showed evidence of fractures (approx.0.5 micron wide) filled with dark brown to black dendritic material [Fig. 1] with characteristics similar to those observed by [10]. Iddingsite is also present along fractures in olivine. Fracture filling and dendritic material was examined by SEM-EDX, TEM-EDX, Focused Electron Beam microscopy, Laser Raman Spectroscopy, Nano-SIMS Ion Micro-probe, and Stepped-Combustion Static Mass Spectrometry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996LPI....27..705K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996LPI....27..705K"><span>QUE94201, a New <span class="hlt">Martian</span> <span class="hlt">Meteorite</span> that May Represent a Bulk Melt Rather than a Cumulate Fraction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kring, D. A.; Gleason, J. D.; Hill, D. H.; Jull, A. J. T.; Boynton, W. V.</p> <p>1996-03-01</p> <p>QUE94201 is a new mafic achondrite dominated by pyroxene and plagioclase. Petrologic and geochemical analyses of a bulk chip (,16) and thin-section (,7) indicate the sample is a basaltic gabbro that is related to previously described basaltic and lherzolitic shergottites of suspected <span class="hlt">martian</span> origin. However, unlike the cumulate fractions represented by other shergottites, QUE94201 is a plutonic rock that fractionally crystallized in what appears (petrographically) to be a closed system. QUE94201 contains more Fe-rich pyroxene and more bulk Al, Ti, and P than other shergottites, including lithology B of EETA79001, and thus appears to be more evolved. However, QUE94201 is also more LREE-depleted than other shergottites which suggests it has not assimilated as much of the LREE-enriched mantle component thought to have affected the compositions of other shergottites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040051165','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040051165"><span>Aqueous Chemical Modeling of Sedimentation on Early Mars with Application to Surface-Atmosphere Evolution</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Catling, David C.</p> <p>2004-01-01</p> <p>This project was to investigate models for aqueous sedimentation on early Mars from fluid evaporation. Results focused on three specific areas: (1) First, a fluid evaporation model incorporating iron minerals was developed to compute the evaporation of a likely solution on early Mars derived from the weathering of mafic rock. (2) Second, the fluid evaporation model was applied to salts within <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, specifically salts in the nakhlites and <span class="hlt">ALH</span><span class="hlt">84001</span>. Evaporation models were found to be consistent with the mineralogy of salt assemblages-anhydrite, gypsum, Fe-Mg-Ca carbonates, halite, clays-- and the concentric chemical fractionation of Ca-to Mg-rich carbonate rosettes in <span class="hlt">ALH</span><span class="hlt">84001</span>. We made progress in further developing our models of fluid concentration by contributing to updating the FREZCHEM model. (3) Third, theoretical investigation was done to determine the thermodynamics and kinetics involved in the formation of gray, crystalline hematite. This mineral, of probable ancient aqueous origin, has been observed in several areas on the surface of Mars by the Thermal Emission Spectrometer on Mars Global Surveyor. The "Opportunity" Mars Exploration Rover has also detected gray hematite at its landing site in Meridiani Planum. We investigated how gray hematite can be formed via atmospheric oxidation, aqueous precipitation and subsequent diagenesis, or hydrothermal processes. We also studied the geomorphology of the Aram Chaos hematite region using Mars Orbiter Camera (MOC) images.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012M%26PSA..75.5133O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012M%26PSA..75.5133O"><span>UV-Radiation Induced Methane Emission from Murchison - Possible Implications for Methane in the <span class="hlt">Martian</span> Atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ott, U.; Keppler, F.; Vigano, I.; McLeod, A.; Früchtl, M.; Röckmann, T.</p> <p>2012-09-01</p> <p>Exposure of the Murchison <span class="hlt">meteorite</span> to UV radiation releases large quantities of methane. Acting on <span class="hlt">meteoritic</span> debris on the <span class="hlt">Martian</span> surface, the process may be of importance for the <span class="hlt">Martian</span> atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRE..118..347K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRE..118..347K"><span>A combined electron microprobe (EMP) and Raman spectroscopic study of the alteration products in <span class="hlt">Martian</span> <span class="hlt">meteorite</span> MIL 03346</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuebler, K. E.</p> <p>2013-03-01</p> <p>We examine the secondary alteration products in MIL 03346 using Raman spectroscopic and electron microprobe traverses. Discussion focuses on the single olivine in ,177 supplemented with observations from ,168 and ,169. Traverses start at the rim and progress into the interior. Dark brown, nearly opaque, laihunite [Fe2+Fe3+2(SiO4)2] is present as overgrowths, and 20-50 µm veins of reddish-brown stilpnomelane [(K,Na,Ca)4(Ti0.1,Al2.3,Fe3+35.5,Mn0.8,Mg9.3) (Si63Al9)(O,OH)206∗n(H2O)] occur inside the olivine. Stilpnomelane crosscuts and postdates the laihunite; veins are in sharp contact with the host olivine but lined by ~5 µm films of jarosite [KFe3+3(SO4)2(OH)6] from a later generation of alteration. An interstitial laihunite also hosts stilpnomelane. The most recent secondary phases are gypsum and bassanite in our X-ray maps of ,168 and ,169. Ca-sulfates were not observed in X-ray maps of ,177 but were detected in our Raman point count. All sulfates are believed to be <span class="hlt">Martian</span>. The groundmass of MIL indicates rapid cooling from elevated temperatures with fO2 near QFM. Reports of laihunite synthesis by olivine oxidation at elevated temperatures (100-800°C) suggest the overgrowths formed during consolidation. In terrestrial rocks, stilpnomelane is a product of late diagenesis to garnet-grade metamorphism. In MIL, stilpnomelane appears to be a secondary phase formed at the lower end of this stability range, at conditions akin to diagenesis. Raman spectra indicate that the stilpnomelane, jarosite, and Ca-sulfates are hydrated. The stilpnomelane contains Cl- and was followed by jarosite, a product of acid alteration, and the deposition of Ca-sulfates and halide salts from more neutral chloride solutions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeCoA.187..279C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeCoA.187..279C"><span>A new approach to cosmogenic corrections in 40Ar/39Ar chronometry: Implications for the ages of <span class="hlt">Martian</span> <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cassata, W. S.; Borg, L. E.</p> <p>2016-08-01</p> <p>Anomalously old 40Ar/39Ar ages are commonly obtained from Shergottites and are generally attributed to uncertainties regarding the isotopic composition of the trapped component and/or the presence of excess 40Ar. Old ages can also be obtained if inaccurate corrections for cosmogenic 36Ar are applied. Current methods for making the cosmogenic correction require simplifying assumptions regarding the spatial homogeneity of target elements for cosmogenic production and the distribution of cosmogenic nuclides relative to trapped and reactor-derived Ar isotopes. To mitigate uncertainties arising from these assumptions, a new cosmogenic correction approach utilizing the exposure age determined on an un-irradiated aliquot and step-wise production rate estimates that account for spatial variations in Ca and K is described. Data obtained from NWA 4468 and an unofficial pairing of NWA 2975, which yield anomalously old ages when corrected for cosmogenic 36Ar using conventional techniques, are used to illustrate the efficacy of this new approach. For these samples, anomalous age determinations are rectified solely by the improved cosmogenic correction technique described herein. Ages of 188 ± 17 and 184 ± 17 Ma are obtained for NWA 4468 and NWA 2975, respectively, both of which are indistinguishable from ages obtained by other radioisotopic systems. For other Shergottites that have multiple trapped components, have experienced diffusive loss of Ar, or contain excess Ar, more accurate cosmogenic corrections may aid in the interpretation of anomalous ages. The trapped 40Ar/36Ar ratios inferred from inverse isochron diagrams obtained from NWA 4468 and NWA 2975 are significantly lower than the <span class="hlt">Martian</span> atmospheric value, and may represent upper mantle or crustal components.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P31A2028A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P31A2028A"><span>Craters of the Moon National Monument as a Terrestrial Mars Analog: Examination of Mars Analog Phosphate Minerals, Phosphate Mineral Shock-Recovery Experiments, and Phosphate Minerals in <span class="hlt">Martian</span> <span class="hlt">Meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adcock, C. T.; Hausrath, E.; Tschauner, O. D.; Udry, A.</p> <p>2015-12-01</p> <p><span class="hlt">Martian</span> analogs, <span class="hlt">meteorites</span>, and data from unmanned missions have greatly advanced our understanding of <span class="hlt">martian</span> surface and near-surface processes. In particular, terrestrial analogs allow us to investigate Mars-relevant geomorphic, geochemical, petrogenetic, and hydrologic processes, as well as potential habitability. Craters of the Moon National Monument (COTM), located on the Snake River Plain of Idaho in the United States, represents a valuable phosphate-rich Mars analog, allowing us to examine phosphate minerals, important as volatile indicators and potential nutrient providers, under Mars-relevant conditions. COTM is in an arid to semi-arid environment with sub-freezing lows much of the year. Though wetter than present day Mars (24 - 38 cm MAP) [1], COTM may be analogous to a warmer and wetter past Mars. The area is also the locale of numerous lava flows, a number of which have been dated (2,000 to >18,000 y.b.p.) [2]. The flows have experienced weathering over time and thus represent a chronosequence with application to weathering on Mars. The flows have unusual chemistries, including high average phosphate contents (P2O5 1.75 wt% n=23 flows) [2], close to those in rocks analyzed at Gusev Crater, Mars (P2O5 1.79 wt% n=18 rocks) [3]. The Mars-like high phosphorus contents indicate a potential petrogenetic link and are also of astrobiological interest. Further, current samples of Mars phosphate minerals are limited to <span class="hlt">meteorites</span> which have been heavily shocked - COTM represents a potential pre-shock and geochemical analog to Mars. We investigated weathering on COTM basalts and shock effects on Mars-relevant phosphate minerals. We used scanning electron microscopy, backscattered electron imagery, and X-Ray analysis/mapping to investigate COTM thin sections. Synchrotron diffraction was used to investigate <span class="hlt">martian</span> <span class="hlt">meteorites</span> and laboratory shocked Mars/COTM-relevant minerals for comparison. Results of our investigations indicate porosity development correlates</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015M%26PS...50.1661R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015M%26PS...50.1661R"><span>The <span class="hlt">Meteoritical</span> Bulletin, No. 101</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruzicka, Alex; Grossman, Jeffrey; Bouvier, Audrey; Herd, Christopher D. K.; Agee, Carl B.</p> <p>2015-09-01</p> <p><span class="hlt">Meteoritical</span> Bulletin 101 contains 2639 <span class="hlt">meteorites</span> accepted by the Nomenclature Committee in 2012, including 1 fall (Battle Mountain), with 2308 ordinary chondrites, 156 carbonaceous chondrites, 63 HED achondrites, 17 relict <span class="hlt">meteorites</span>, 16 Rumuruti chondrites, 15 enstatite chondrites, 15 ureilites, 10 iron <span class="hlt">meteorites</span>, 9 lunar <span class="hlt">meteorites</span>, 9 primitive achondrites, 8 ungrouped achondrites, 7 mesosiderites, 4 <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, and 2 Pallasites, and with 1812 from Antarctica, 437 from Asia, 301 from Africa, 43 from South America, 21 from Europe (including Russia), 21 from North America, 3 from Oceania, and 1 from unknown. Information about approved <span class="hlt">meteorites</span> can be obtained from the <span class="hlt">Meteoritical</span> Bulletin Database (MBD) available on line at <url href="http://www.lpi.usra.edu/meteor/">http://www.lpi.usra.edu/meteor/.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.107..299W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.107..299W"><span>Shock metamorphism of Elephant Moraine A79001: Implications for olivine-ringwoodite transformation and the complex thermal history of heavily shocked <span class="hlt">Martian</span> <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walton, Erin L.</p> <p>2013-04-01</p> <p>Lithology A of <span class="hlt">Martian</span> <span class="hlt">meteorite</span> Elephant Moraine (EET) A79001 contains fragments entrained within a 100 μm-thick shear-induced shock vein. These fragments, the shock vein matrix and walls of olivine along the vein, as well as shock deformation and transformation in rock-forming minerals in the bulk rock, were investigated using scanning electron microscopy, the electron microprobe and Raman spectroscopy. The presence of ringwoodite, the spinel-structured high-pressure (Mg,Fe)2SiO4 polymorph, has been confirmed in EETA79001 for the first time. Ringwoodite occurs within and around the shock vein, exhibiting granular and lamellar textures. In both textures ringwoodite consists of ˜500 nm size distinct grains. Ringwoodite lamellae are 115 nm to 1.3 μm wide. Planar fractures in olivine provided sites for heterogeneous nucleation of ringwoodite. Analyses performed on the largest grains (⩾1 μm) show that ringwoodite is consistently higher in iron (Fa27.4-32.4) relative to surrounding olivine (Fa25.1-267.7), implying that there was Fe-Mg exchange during their transformation, and therefore their growth was diffusion-controlled. In the shock environment, diffusion takes place dynamically, i.e., with concurrent deformation and grain size reduction. This results in enhanced diffusion rates (⩾10-8 m2/s) over nm - μm distances. Shock deformation in host rock minerals including strong mosaicism, pervasive fracturing, polysynthetic twinning (pyroxene only), extensive shock melting, local transformation of olivine to ringwoodite, and complete transformation of plagioclase to maskelynite in the bulk rock, indicate that EETA79001 was strongly shocked. The short shock duration (0.01 s) combined with a complex thermal history, resulted in crystallization of the 100 μm thick shock vein in EETA79001 during the pressure release, and partial back-transformation of ringwoodite to olivine. Based on the pressure stabilities of clinopyroxene + ringwoodite, crystallization at the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040065785&hterms=deep+learning&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddeep%2Blearning','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040065785&hterms=deep+learning&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddeep%2Blearning"><span>Lunar and Planetary Science XXXV: Astrobiology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>The presentations in this session are: 1. A Prototype Life Detection Chip 2. The Geology of Atlantis Basin, Mars, and Its Astrobiological Interest 3. Collecting Bacteria Together with Aerosols in the <span class="hlt">Martian</span> Atmosphere by the FOELDIX Experimental Instrument Developed with a Nutrient Detector Pattern: Model Measurements of Effectivity 4. 2D and 3D X-ray Imaging of Microorganisms in <span class="hlt">Meteorites</span> Using Complexity Analysis to Distinguish Field Images of Stromatoloids from Surrounding Rock Matrix in 3.45 Ga Strelley Pool Chert, Western Australia 4. Characterization of Two Isolates from Andean Lakes in Bolivia Short Time Scale Evolution of Microbiolites in Rapidly Receding Altiplanic Lakes: Learning How to Recognize Changing Signatures of Life 5. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode 6. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence 7. Microbial D/H Fractionation in Extraterrestrial Materials: Application to Micrometeorites and Mars 8. Carbon Isotope Characteristics of Spring-fed Iron-precipitating Microbial Mats 9. Amino Acid Survival Under Ambient <span class="hlt">Martian</span> Surface UV Lighting Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions 10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods 11. Thermal Decomposition of Siderite-Pyrite Assemblages: Implications for Sulfide Mineralogy in <span class="hlt">Martian</span> <span class="hlt">Meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> Carbonate Globules 12. Determination of the Three-Dimensional Morphology of <span class="hlt">ALH</span><span class="hlt">84001</span> and Biogenic MV-1 Magnetite: Comparison of Results from Electron Tomography and Classical Transmission Electron Microscopy 13. On the Possibility of a Crypto-Biotic Crust on Mars Based on Northern and Southern Ringed Polar Dune Spots 14. Comparative Planetology of the Terrestrial Inner Planets: Implications for Astrobiology 15. A Possible Europa Exobiology 16. A Possible Biogeochemical Model for Titan</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015M%26PS...50.1662R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015M%26PS...50.1662R"><span>The <span class="hlt">Meteoritical</span> Bulletin, No. 102</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruzicka, Alex; Grossman, Jeffrey; Bouvier, Audrey; Herd, Christopher D. K.; Agee, Carl B.</p> <p>2015-09-01</p> <p><span class="hlt">Meteoritical</span> Bulletin 102 contains 3141 <span class="hlt">meteorites</span> including 12 falls (Boumdeid (2003), Boumdeid (2011), Braunschweig, Chelyabinsk, Dongyang, Draveil, Heyetang, Indian Butte, Katol, Ladkee, Ouadangou, Xining), with 2611 ordinary chondrites, 264 HED achondrites, 124 carbonaceous chondrites, 30 ureilites, 20 <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, 16 primitive achondrites, 16 Rumuruti chondrites, 15 mesosiderites, 12 iron <span class="hlt">meteorites</span>, 10 lunar <span class="hlt">meteorites</span>, 9 enstatite chondrites, 4 enstatite achondrites, 4 Pallasites, 4 ungrouped achondrites, and 2 angrites, and with 1708 from Antarctica, 956 from Africa, 294 from South America, 126 from Asia, 47 from North America, 6 from Europe (including Russia), and 4 from Oceania. Information about approved <span class="hlt">meteorites</span> can be obtained from the <span class="hlt">Meteoritical</span> Bulletin Database (MBD) available on line at <url href="http://www.lpi.usra.edu/meteor/">http://www.lpi.usra.edu/meteor/.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014me13.conf...57J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014me13.conf...57J"><span>Recent documented <span class="hlt">meteorite</span> falls, a review of <span class="hlt">meteorite</span> - asteroid links</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenniskens, P.</p> <p>2014-07-01</p> <p>Since the previous Meteoroids 2010 meeting, 25 confirmed <span class="hlt">meteorite</span> falls have been reported, and one additional <span class="hlt">meteorite</span> was linked tentatively to an observed fireball. All but two of those are classified as ordinary chondrites. Sutter's Mill is a rare carbonaceous chondrite, while <span class="hlt">Martian</span> <span class="hlt">meteorite</span> Tissint is a Shergotite. For 18 of these falls the associated fireball was observed, but only four provided a pre-atmospheric orbit derived from video and photographic records. Results were published for Sutter's Mill, Novato, and Chelyabinsk, providing insight into the asteroid belt source regions for CM2, L and LL type chondrites, respectively. Proposed <span class="hlt">meteorite</span>-asteroid links are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20522738','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20522738"><span>Identification of carbonate-rich outcrops on Mars by the Spirit rover.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morris, Richard V; Ruff, Steven W; Gellert, Ralf; Ming, Douglas W; Arvidson, Raymond E; Clark, Benton C; Golden, D C; Siebach, Kirsten; Klingelhöfer, Göstar; Schröder, Christian; Fleischer, Iris; Yen, Albert S; Squyres, Steven W</p> <p>2010-07-23</p> <p>Decades of speculation about a warmer, wetter Mars climate in the planet's first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater. Its composition approximates the average composition of the carbonate globules in <span class="hlt">martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span> <span class="hlt">84001</span>. The Gusev carbonate probably precipitated from carbonate-bearing solutions under hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian era.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.P51A1405J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.P51A1405J"><span>Non-chemically Pure Magnetites Produced from Thermal Decomposition of Ankerites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiménez López, C.; Romanek, C.; Rodríguez-Navarro, A.; Pérez-González, T.; Rodríguez Navarro, C.</p> <p>2008-12-01</p> <p>It has been claimed that chemically pure magnetites (Fe3O4) can be obtained from thermal decomposition of (Fe, Mg, Ca)CO3 (Golden et al., 2004). Such an observation is critical, since it opens the possibility of an inorganic way of formation of the magnetites found on <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span>. Such a chemical purity is one of the parameters used, so far, to recognize bacterial origin of natural magnetites (Thomas-Keptra et al., 2001), since it has been demonstrated that biologically-controlled magnetites are chemically pure (Bazylinski and Frankel, 2004) . However, while Golden et al. (2004) obtained pure magnetite from an almost pure precursor, the ankerite cores in <span class="hlt">ALH</span><span class="hlt">84001</span> in which magnetites are embedded are far from being chemically pure, since they contain considerable amounts of Ca and Mg (Kopp and Humayun, 2003). In this study we have performed several experiments to analyze the chemical purity of magnetites produced by thermal decomposition of four ankerite samples sinthetized in the laboratory, and containing different amounts of Ca, Fe and Mg. Such a thermal decomposition was achieved by two procedures: (1) by heating the samples at 470°C under CO2 pressure and (2) by decomposing the ankerite "in situ" under the TEM (Transmission electron Microscopy) electron beam. Magnetite produced by the first procedure was analyzed by XRD to determine whether or not the resulting solid was a mixture of oxides or rather a solid solution of (Ca, Fe and Mg)oxide. Magnetites formed by the two methods were studied by High Resolution TEM. The chemical composition of about 20 crystals of each experiment was analyzed by EDAX. Under our experimental conditions, ankerites decomposed in magnetite crystals of about 5 nanometers in size. Magentite crystals arranged to keep the morphology of the precursor. Our results confirm that any of these magnetites is chemically pure, but rather, each one of them is a solid solution of Ca and Mg. Therefore, chemically pure magnetites</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013688','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013688"><span><span class="hlt">Martian</span> Igneous Geochemistry: The Nature of the <span class="hlt">Martian</span> Mantle</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mittlefehldt, D. W.; Elkins-Tanton, L. T.; Peng, Z. X.; Herrin, J. S.</p> <p>2012-01-01</p> <p>Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of <span class="hlt">martian</span> <span class="hlt">meteorites</span> to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most <span class="hlt">martian</span> <span class="hlt">meteorites</span> contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. <span class="hlt">Martian</span> <span class="hlt">meteorites</span> form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA07269&hterms=Basketball&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DBasketball','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA07269&hterms=Basketball&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DBasketball"><span>Iron <span class="hlt">Meteorite</span> on Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p><p/> NASA's Mars Exploration Rover Opportunity has found an iron <span class="hlt">meteorite</span> on Mars, the first <span class="hlt">meteorite</span> of any type ever identified on another planet. The pitted, basketball-size object is mostly made of iron and nickel. Readings from spectrometers on the rover determined that composition. Opportunity used its panoramic camera to take the images used in this approximately true-color composite on the rover's 339th <span class="hlt">martian</span> day, or sol (Jan. 6, 2005). This composite combines images taken through the panoramic camera's 600-nanometer (red), 530-nanometer (green), and 480-nanometer (blue) filters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70026875','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70026875"><span>The <span class="hlt">Meteoritical</span> Bulletin, No. 88, 2004 July</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Russell, S.S.; Folco, L.; Grady, M.M.; Zolensky, M.E.; Jones, R.; Righter, K.; Zipfel, J.; Grossman, J.N.</p> <p>2004-01-01</p> <p>The <span class="hlt">Meteoritical</span> Bulletin No. 88 lists information for 1610 newly classified <span class="hlt">meteorites</span>, comprising 753 from Antarctica, 302 from Africa, 505 from Asia (495 of which are from Oman), 40 from North America, 5 from South America, 4 from Europe, and 1 of unknown origin. Information is provided for 9 falls (Alby sur Che??ran, Al Zarnkh, Devgaon, Kamioka, Kendrapara, Maromandia, New Orleans, Sivas, and Villalbeto de la Pen??a). Noteworthy specimens include a eucrite fall (Alby sur Che??ran), 6 <span class="hlt">martian</span> <span class="hlt">meteorites</span>, 13 lunar <span class="hlt">meteorites</span>, and 12 irons including one weighing 3 metric ions (Dronino). ?? <span class="hlt">Meteoritical</span> Society, 2004.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000041375&hterms=history+water+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhistory%2Bwater%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000041375&hterms=history+water+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhistory%2Bwater%2Bearth"><span>The Geologic History of Mars: An Astrobiology Perspective</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gibson, Everett K.; Westall, Frances; McKay, David S.; Thomas-Keprta, Kathie; Socki, Richard A.</p> <p>2000-01-01</p> <p>Fourteen SNC <span class="hlt">meteorites</span> contain information which must be incorporated with recent spaceflight data for developing Mars' geologic history. SNCs have crystallization ages of 4500 to 160 m.y. Tle oldest <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> contains information on the Noachian period of Mars' history. There are no <span class="hlt">meteorites</span> from the Hesperian period and the remaining 13 <span class="hlt">meteorites</span> fall into two age groups within the Amazonian: The nakhlites around 1300 m.y. and the shergottites between 800-160 m.y. Oxygen isotopic analysis of <span class="hlt">Martian</span> samples shows two distinct O2 reservoirs throughout <span class="hlt">Martian</span> history indicating late additions of volatiles and a lack of plate tectonics prior to 3.9 Gy. Evidence for percolation of aqueous brines through impact-produced fractures in the rocky surface is contained in the 3.9 Gy-old <span class="hlt">ALH</span><span class="hlt">84001</span> carbonate deposits. These carbonates precipitated at approx. 100 C. At this time life had already evolved on Earth. Early Mars could have hosted life similar to the bacteria that inhabited early Earth. Potential microorganisms could have been transported into fractures by carbonate-bearing waters and their remains could have become incorporated into the precipitated carbonate. Since Mars had a weak magnetic field at this time, it can be hypothesized that some of the <span class="hlt">Martian</span> microorganisms may have been similar to terrestrial magnetotactic bacteria. Over geologic time episodic cratering, and tectonic events have occurred on Mars along with the periodic release of subsurface waters which may have produced clays within SNC <span class="hlt">meteorites</span>. The geochemical data contained within SNC <span class="hlt">meteorites</span> complements previous observational data and the recent Mars Global Surveyor data to provide a geological and environmental history which spans almost the entire lifespan on Mars. One of the outstanding features of this model is the possible creation of an early (about 4 Gy) volatile reservoir distinct from the outgassed Mars volatiles, and the persistence of this reservoir throughout most</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060040570&hterms=Multivariate+analysis&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DMultivariate%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060040570&hterms=Multivariate+analysis&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DMultivariate%2Banalysis"><span>Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McDonald, G.; Storrie-Lombardi, M.; Nealson, K.</p> <p>1999-01-01</p> <p>The amino acid distributions in the Murchison carbonaceous chondrite, Mars <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span>, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70023756','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70023756"><span>The <span class="hlt">Meteoritical</span> Bulletin, no. 85, 2001 September</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grossman, J.N.; Zipfel, J.</p> <p>2001-01-01</p> <p><span class="hlt">Meteoritical</span> Bulletin No. 85 lists information for 1376 newly classified <span class="hlt">meteorites</span>, comprising 658 from Antarctica, 409 from Africa, 265 from Asia (262 of which are from Oman), 31 from North America, 7 from South America, 3 from Australia, and 3 from Europe. Information is provided for 11 falls (Dergaon, Dunbogan, Gujba, Independence, Itqiy, Mora??vka, Oued el Hadjar, Sayama, Sologne, Valera, and Worden). Noteworthy non-Antarctic specimens include 5 <span class="hlt">martian</span> <span class="hlt">meteorites</span> (Dar al Gani 876, Northwest Africa 480 and 817, and Sayh al Uhaymir 051 and 094); 6 lunar <span class="hlt">meteorites</span> (Dhofar 081, 280, and 287, and Northwest Africa 479, 482, and 773); an ungrouped enstatite-rich <span class="hlt">meteorite</span> (Itqiy); a Bencubbin-like <span class="hlt">meteorite</span> (Gujba); 9 iron <span class="hlt">meteorites</span>; and a wide variety of other interesting stony <span class="hlt">meteorites</span>, including CH, CK, CM, CO, CR, CV, R, enstatite, and unequilibrated ordinary chondrites, primitive achondrites, HED achondrites, and ureilites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016M%26PS...51..407W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016M%26PS...51..407W"><span>Noble gases in 18 <span class="hlt">Martian</span> <span class="hlt">meteorites</span> and angrite Northwest Africa 7812—Exposure ages, trapped gases, and a re-evaluation of the evidence for solar cosmic ray-produced neon in shergottites and other achondrites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wieler, R.; Huber, L.; Busemann, H.; Seiler, S.; Leya, I.; Maden, C.; Masarik, J.; Meier, M. M. M.; Nagao, K.; Trappitsch, R.; Irving, A. J.</p> <p>2016-02-01</p> <p>We present noble gas data for 16 shergottites, 2 nakhlites (NWA 5790, NWA 10153), and 1 angrite (NWA 7812). Noble gas exposure ages of the shergottites fall in the 1-6 Ma range found in previous studies. Three depleted olivine-phyric shergottites (Tissint, NWA 6162, NWA 7635) have exposure ages of ~1 Ma, in agreement with published data for similar specimens. The exposure age of NWA 10153 (~12.2 Ma) falls in the range of 9-13 Ma reported for other nakhlites. Our preferred age of ~7.3 Ma for NWA 5790 is lower than this range, and it is possible that NWA 5790 represents a distinct ejection event. A Tissint glass sample contains Xe from the <span class="hlt">Martian</span> atmosphere. Several samples show a remarkably low (21Ne/22Ne)cos ratio < 0.80, as previously observed in a many shergottites and in various other rare achondrites. This was explained by solar cosmic ray-produced Ne (SCR Ne) in addition to the commonly found galactic cosmic ray-produced Ne, implying very low preatmospheric shielding and ablation loss. We revisit this by comparing measured (21Ne/22Ne)cos ratios with predictions by cosmogenic nuclide production models. Indeed, several shergottites, acalpulcoites/lodranites, angrites (including NWA 7812), and the Brachina-like <span class="hlt">meteorite</span> LEW 88763 likely contain SCR Ne, as previously postulated for many of them. The SCR contribution may influence the calculation of exposure ages. One likely reason that SCR nuclides are predominantly detected in <span class="hlt">meteorites</span> from rare classes is because they usually are analyzed for cosmogenic nuclides even if they had a very small (preatmospheric) mass and hence low ablation loss.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980021283','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980021283"><span><span class="hlt">Meteorites</span>, Microfossils and Exobiology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoover, Richard B.</p> <p>1997-01-01</p> <p>The discovery of evidence for biogenic activity and possible microfossils in a <span class="hlt">Martian</span> <span class="hlt">meteorite</span> may have initiated a paradigm shift regarding the existence of extraterrestrial microbial life. Terrestrial extremophiles that live in deep granite and hydrothermal vents and nanofossils in volcanic tuffs have altered the premise that microbial life and microfossils are inconsistent with volcanic activity and igneous rocks. Evidence for biogenic activity and microfossils in <span class="hlt">meteorites</span> can no longer be dismissed solely because the <span class="hlt">meteoritic</span> rock matrix is not sedimentary. <span class="hlt">Meteorite</span> impact-ejection and comets provide mechanisms for planetary cross-contamination of biogenic chemicals, microfossils, and living microorganisms. Hence, previously dismissed evidence for complex indigenous biochemicals and possible microfossils in carbonaceous chondrites must be re-examined. Many similar, unidentifiable, biological-like microstructures have been found in different carbonaceous chondrites and the prevailing terrestrial contaminant model is considered suspect. This paper reports the discovery of microfossils indigenous to the Murchison <span class="hlt">meteorite</span>. These forms were found in-situ in freshly broken, interior surfaces of the <span class="hlt">meteorite</span>. Environmental Scanning Electron Microscope (ESEM) and optical microscopy images indicate that a population of different biological-like forms are represented. Energy Dispersive Spectroscopy reveals these forms have high carbon content overlaying an elemental distribution similar to the matrix. Efforts at identification with terrestrial microfossils and microorganisms were negative. Some forms strongly resemble bodies previously isolated in the Orgueil <span class="hlt">meteorite</span> and considered microfossils by prior researchers. The Murchison forms are interpreted to represent an indigenous population of the preserved and altered carbonized remains (microfossils) of microorganisms that lived in the parent body of this <span class="hlt">meteorite</span> at diverse times during the past 4.5 billion</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014M%26PS...49E...1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014M%26PS...49E...1R"><span>The <span class="hlt">Meteoritical</span> Bulletin, No. 100, 2014 June</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruzicka, Alex; Grossman, Jeffrey N.; Garvie, Laurence</p> <p>2014-08-01</p> <p><span class="hlt">Meteoritical</span> Bulletin 100 contains 1943 <span class="hlt">meteorites</span> including 8 falls (Boumdeid [2011], Huaxi, Košice, Silistra, Sołtmany, Sutter's Mill, Thika, Tissint), with 1575 ordinary chondrites, 139 carbonaceous chondrites, 96 HED achondrites, 25 ureilites, 18 primitive achondrites, 17 iron <span class="hlt">meteorites</span>, 15 enstatite chondrites, 11 lunar <span class="hlt">meteorites</span>, 10 mesosiderites, 10 ungrouped achondrites, 8 pallasites, 8 <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, 6 Rumuruti chondrites, 3 enstatite achondrites, and 2 angrites, and with 937 from Antarctica, 592 from Africa, 230 from Asia, 95 from South America, 44 from North America, 36 from Oceania, 6 from Europe, and 1 from an unknown location. This will be the last Bulletin published in the current format. Information about approved <span class="hlt">meteorites</span> can be obtained from the <span class="hlt">Meteoritical</span> Bulletin Database (MBD) available online at http://www.lpi.usra.edu/meteor/</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040056056&hterms=whole+grains&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwhole%2Bgrains','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040056056&hterms=whole+grains&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwhole%2Bgrains"><span>Evidence for a Wet, Reduced <span class="hlt">Martian</span> Interior</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dyar, M. D.; Mackwell, S. J.; Seaman, S. J.; Marchand, G. J.</p> <p>2004-01-01</p> <p>Knowledge of the oxygen fugacity and hydrogen content of the source regions of <span class="hlt">martian</span> <span class="hlt">meteorites</span> is of paramount importance in constraining phase equilibria, crystallization sequences, and geodynamic processes of the <span class="hlt">martian</span> interior, as well as models of the planet's evolution. To date, these interpretations have been hindered by the paucity in SNC <span class="hlt">meteorites</span> of Fe-Ti oxides used in conventional oxybarometry, and by the presence of secondary alteration products that make it impossible to quantify primary hydrogen abundances in SNC minerals and melts based on whole rock samples. We present here the first transmission FTIR spectra of individual mineral grains from SNC <span class="hlt">meteorites</span>, and interpret those results along with Mossbauer data on mineral separates from the same <span class="hlt">meteorites</span>. Our goal is to quantify the amount of water and the oxygen fugacity present in the source regions for the rocks comprising the <span class="hlt">meteorites</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010007054&hterms=Metamorphic+process&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMetamorphic%2Bprocess','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010007054&hterms=Metamorphic+process&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DMetamorphic%2Bprocess"><span>Analysis of Siderite Thermal Decomposition by Differential Scanning Calorimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, M. S.; Lin, I.-C.; McKay, D. S.</p> <p>2000-01-01</p> <p>Characterization of carbonate devolitilization has important implications for atmospheric interactions and climatic effects related to large <span class="hlt">meteorite</span> impacts in platform sediments. On a smaller scale, <span class="hlt">meteorites</span> contain carbonates which have witnessed shock metamorphic events and may record pressure/temperature histories of impact(s). <span class="hlt">ALH</span><span class="hlt">84001</span> <span class="hlt">meteorite</span> contains zoned Ca-Mg-Fe-carbonates which formed on Mars. Magnetite crystals are found in the rims and cores of these carbonates and some are associated with void spaces leading to the suggestion by Brearley et al. that the crystals were produced by thermal decomposition of the carbonate at high temperature, possibly by incipient shock melting or devolitilization. Golden et al. recently synthesized spherical Mg-Fe-Ca-carbonates from solution under mild hydrothermal conditions that have similar carbonate compositional zoning to those of <span class="hlt">ALH</span><span class="hlt">84001</span>. They have shown experimental evidence that the carbonate-sulfide-magnetite assemblage in <span class="hlt">ALH</span><span class="hlt">84001</span> can result from a multistep inorganic process involving heating possibly due to shock events. Experimental shock studies on calcium carbonate prove its stability to approx. 60 GPa, well in excess of the approx. 45 GPa peak pressures indicated by other shock features in <span class="hlt">ALH</span><span class="hlt">84001</span>. In addition, Raman spectroscopy of carbonate globules in <span class="hlt">ALH</span><span class="hlt">84001</span> indicates no presence of CaO and MgO. Such oxide phases should be found associated with the magnetites in voids if these magnetites are high temperature shock products, the voids resulting from devolitilization of CO2 from calcium or magnesium carbonate. However, if the starting material was siderite (FeCO3), thermal breakdown of the <span class="hlt">ALH</span><span class="hlt">84001</span> carbonate at 470 C would produce iron oxide + CO2. As no documentation of shock effects in siderite exists, we have begun shock experiments to determine whether or not magnetite is produced by the decomposition of siderite within the < 45GPa pressure window and by the resultant thermal pulse to approx</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080026167','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080026167"><span>Magnetite in <span class="hlt">Martian</span> <span class="hlt">Meteorite</span> Mil 03346 and Gusev Adirondack Class Basalt: Moessbauer Evidence for Variability in the Oxidation State of Adirondack Lavas</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morris, R. V.; McKay, G. A.; Ming, D. W.; Klingelhoefer, G.; Schroeder, C.; Rodionov, D.; Yen, A.</p> <p>2006-01-01</p> <p>The Moessbauer spectrometers on the Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum) have returned information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases [1,2,3]. To date, 100 and 85 surface targets have been analyzed by the Spirit and Opportunity spectrometers, respectively. Twelve component subspectra (8 doublets and 4 sextets) have been identified and most have been assigned to mineralogical compositions [4]. Two sextet subspectra result from the opaque and strongly magnetic mineral magnetite (Fe3O4 for the stoichiometric composition), one each for the crystallographic sites occupied by tetrahedrally-coordinated Fe3+ and by octahedrally-coordinated Fe3+ and Fe2+. At Gusev crater, the percentage of total Fe associated with magnetite for rocks ranges from 0 to 35% (Fig. 1) [3]. The range for soils (5 to 12% of total Fe from Mt, with one exception) is narrower. The ubiquitous presence of Mt in soil firmly establishes the phase as the strongly magnetic component in <span class="hlt">martian</span> soil</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080026260','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080026260"><span>Magnetite in <span class="hlt">Martian</span> <span class="hlt">Meteorite</span> Mil 03346 and Gusev Adirondack Class Basalt: Mossbauer Evidence for Variability in the Oxidation State of Adirondack Lavas</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morris, R. V.; McKay, G. A.; Ming, D. W.; Klingelhoefer, G.; Schroeder, C.; Rodionov, D.; Yen, A.</p> <p>2006-01-01</p> <p>The Moessbauer spectrometers on the Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum) have returned information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases [1,2,3]. To date, approx.100 and approx.85 surface targets have been analyzed by the Spirit and Opportunity spectrometers, respectively. Twelve component subspectra (8 doublets and 4 sextets) have been identified and most have been assigned to mineralogical compositions [4]. Two sextet subspectra result from the opaque and strongly magnetic mineral magnetite (Fe3O4 for the stoichiometric composition), one each for the crystallographic sites occupied by tetrahedrally-coordinated Fe3+ and by octahedrally-coordinated Fe3+ and Fe2+. At Gusev crater, the percentage of total Fe associated with magnetite for rocks ranges from 0 to approx. 35% (Fig. 1) [3]. The range for soils (approx.5 to approx.12% of total Fe from Mt, with one exception) is narrower. The ubiquitous presence of Mt in soil firmly establishes the phase as the strongly magnetic component in <span class="hlt">martian</span> soil [4,5].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1332404-tissintite-ca-na-square-alsi2o6-highly-defective-shock-induced-high-pressure-clinopyroxene-tissint-martian-meteorite','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1332404-tissintite-ca-na-square-alsi2o6-highly-defective-shock-induced-high-pressure-clinopyroxene-tissint-martian-meteorite"><span>Tissintite, (Ca, Na,$${\\square}$$)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint <span class="hlt">martian</span> <span class="hlt">meteorite</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ma, Chi; Tschauner, Oliver; Beckett, John R.; ...</p> <p>2015-04-24</p> <p>Here, tissintite is a new vacancy-rich, high-pressure clinopyroxene, with a composition essentially equivalent to plagioclase. It was discovered in maskelynite (shocked plagioclase) and is commonly observed included within, or in contact with, shock-melt pockets in the Tissint <span class="hlt">meteorite</span>, a depleted olivine-phyric shergottite fall from Mars. The simple composition of tissintite (An58-69) and its precursor plagioclase (An59-69) together with the limited occurrence, both spatially (only in maskelynite less than ~25 μm of a shock melt pocket) and in terms of bulk composition, make tissintite a "goldilocks" phase. It formed during a shock event severe enough to allow nucleation and growth of vacancy-rich clinopyroxene from a melt of not too calcic and not too sodic plagioclase composition that was neither too hot nor too cold. With experimental calibration, these limitations on occurrence can be used to place strong constraints on the thermal history of a shock event. The kinetics for nucleation and growth of tissintite are probably slower for more-sodic plagioclase precursors, so tissintite is most likely to occur in depleted olivinephyric shergottites like Tissint and other highly shocked <span class="hlt">meteorites</span> and lunar and terrestrial rocks that consistently contained calcic plagioclase precursors in the appropriate compositional range for a shock of given intensity. Tissintite, (Ca0.45Na0.31more » $${\\square}$$ 0.24)(Al0.97Fe0.03Mg0.01)(Si1.80Al0.20)O6, is a C2/c clinopyroxene, containing 42-60 mol% of the Ca-Eskola component, by far the highest known. The cell parameters are a = 9.21 (17) Å, b = 9.09 (4) Å, c = 5.20 (2) Å, β = 109.6 (9)°, V = 410 (8) Å3, Z = 4. The density is 3.32 g/cm(3) and we estimate a cell volume for the Ca-Eskola end-member pyroxene of 411 ±13 Å3, which is consistent with a previous estimate and, therefore, supports the importance of this component in clinopyroxenes from ultra-high pressure metamorphic rocks from the Earth's upper mantle</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.422..194M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.422..194M"><span>Tissintite, (Ca, Na, □)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint <span class="hlt">martian</span> <span class="hlt">meteorite</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Chi; Tschauner, Oliver; Beckett, John R.; Liu, Yang; Rossman, George R.; Zhuravlev, Kirill; Prakapenka, Vitali; Dera, Przemyslaw; Taylor, Lawrence A.</p> <p>2015-07-01</p> <p>Tissintite is a new vacancy-rich, high-pressure clinopyroxene, with a composition essentially equivalent to plagioclase. It was discovered in maskelynite (shocked plagioclase) and is commonly observed included within, or in contact with, shock-melt pockets in the Tissint <span class="hlt">meteorite</span>, a depleted olivine-phyric shergottite fall from Mars. The simple composition of tissintite (An58-69) and its precursor plagioclase (An59-69) together with the limited occurrence, both spatially (only in maskelynite less than ˜25 μm of a shock melt pocket) and in terms of bulk composition, make tissintite a "goldilocks" phase. It formed during a shock event severe enough to allow nucleation and growth of vacancy-rich clinopyroxene from a melt of not too calcic and not too sodic plagioclase composition that was neither too hot nor too cold. With experimental calibration, these limitations on occurrence can be used to place strong constraints on the thermal history of a shock event. The kinetics for nucleation and growth of tissintite are probably slower for more-sodic plagioclase precursors, so tissintite is most likely to occur in depleted olivine-phyric shergottites like Tissint and other highly shocked <span class="hlt">meteorites</span> and lunar and terrestrial rocks that consistently contained calcic plagioclase precursors in the appropriate compositional range for a shock of given intensity. Tissintite, (Ca0.45Na0.31□0.24) (Al0.97Fe0.03Mg0.01) (Si1.80Al0.20)O6, is a C 2 / c clinopyroxene, containing 42-60 mol% of the Ca-Eskola component, by far the highest known. The cell parameters are a = 9.21 (17) Å, b = 9.09 (4) Å, c = 5.20 (2) Å, β = 109.6 (9)°, V = 410 (8) Å3, Z = 4. The density is 3.32 g/cm3 and we estimate a cell volume for the Ca-Eskola end-member pyroxene of 411 ± 13 Å3, which is consistent with a previous estimate and, therefore, supports the importance of this component in clinopyroxenes from ultra-high pressure metamorphic rocks from the Earth's upper mantle. At least in C 2 / c</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080012523','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080012523"><span>Prospects for Chronological Studies of <span class="hlt">Martian</span> Rocks and Soils</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.</p> <p>2008-01-01</p> <p>Chronological information about <span class="hlt">Martian</span> processes comes from two sources: Crater-frequency studies and laboratory studies of <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. Each has limitations that could be overcome by studies of returned <span class="hlt">Martian</span> rocks and soils. Chronology of <span class="hlt">Martian</span> volcanism: The currently accepted chronology of <span class="hlt">Martian</span> volcanic surfaces relies on crater counts for different <span class="hlt">Martian</span> stratigraphic units [1]. However, there is a large inherent uncertainty for intermediate ages near 2 Ga ago. The effect of differing preferences for <span class="hlt">Martian</span> cratering chronologies [1] is shown in Fig. 1. Stoeffler and Ryder [2] summarized lunar chronology, upon which <span class="hlt">Martian</span> cratering chronology is based. Fig. 2 shows a curve fit to their data, and compares to it a corresponding lunar curve from [3]. The radiometric ages of some lunar and <span class="hlt">Martian</span> <span class="hlt">meteorites</span> as well as the crater-count delimiters for <span class="hlt">Martian</span> epochs [4] also are shown for comparison to the craterfrequency curves. Scaling the Stoeffler-Ryder curve by a Mars/Moon factor of 1.55 [5] places <span class="hlt">Martian</span> shergottite ages into the Early Amazonian to late Hesperian epochs, whereas using the lunar curve of [3] and a Mars/Moon factor 1 consigns the shergottites to the Middle-to-Late Amazonian, a less probable result. The problem is worsened if a continually decreasing cratering rate since 3 Ga ago is accepted [6]. We prefer the adjusted St ffler-Ryder curve because it gives better agreement with the <span class="hlt">meteorite</span> ages (Fig.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890008944','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890008944"><span><span class="hlt">Meteorites</span> on Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flynn, G. J.; Mckay, D. S.</p> <p>1988-01-01</p> <p>Four types of <span class="hlt">meteoritic</span> material should be found on Mars: (1) micrometeorites, many of which will survive atmospheric entry unmelted, which should fall relatively uniformly over the planet's surface, (2) ablation products from larger <span class="hlt">meteorites</span> which ablate, break up and burn up in the Mars atmosphere, (3) debris from large, crater forming objects, which, by analogy to terrestrial and lunar impact events, will be concentrated in the crater ejecta blankets (except for rare, large events, such as the proposed C-T event on earth, which can distribute debris on a planetary scale), and (4) debris from the early, intense bombardment, which, in many areas of the planet, may now be incorporated into rocks by geologic processes subsequent to the intense bombardment era. To estimate the extent of <span class="hlt">meteoritic</span> addition to indigenous <span class="hlt">Martian</span> material, the <span class="hlt">meteoritic</span> flux on Mars must be known. It is estimated that the overall flux is twice that for the Moon and 1.33 that for Earth. For small particles, whose orbital evolution is dominated by Poynting Robertson drag, the flux at Mars can be estimated from the Earth flux. The smaller <span class="hlt">Martian</span> gravitational enhancement as well as the decrease in the spatial density of interplanetary dust with increasing heliocentric distance should reduce the flux of small particles at Mars to about 0.33 times the flux at Earth. Because of the smaller planetary cross-section the total infalling mass at Mars is then estimated to be 0.09 time the infalling mass in the micrometeorite size range at Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/7242171','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/7242171"><span><span class="hlt">Meteoritic</span> basalts. Final report, 1986-1989</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Treiman, A.H.</p> <p>1989-10-01</p> <p>The objectives were to: explain the abundances of siderophile elements in the SNC <span class="hlt">meteorite</span> suite, of putative <span class="hlt">Martian</span> origin; discover the magmatic origins and possibly magma compositions behind the Nakhla <span class="hlt">meteorite</span>, one of the SNC <span class="hlt">meteorites</span>; and a re-evaluation of the petrology of Angra dos Reis, a unique <span class="hlt">meteorite</span> linked to the earliest planetary bodies of the solar nebula. A re-evaluation of its petrography showed that the accepted scenario for its origin, as a cumulate igneous rock, was not consistent with the <span class="hlt">meteorite</span>'s textures (Treiman). More likely is that the <span class="hlt">meteorite</span> represents a prophyritic igneous rock, originally with magma dominant. Studies of the Nakhla <span class="hlt">meteorite</span>, of possible <span class="hlt">Martian</span> origin, although difficult, were successful. It became necessary to reject the basic categorization of Nakhla: that is was a cumulate igneous rock. Detailed studies of the chemical zoning of Nakhlas' minerals, coupled with the failure of experimental studies to yield expected results, forced the conclusion that Nakhla is not a cumulate rock in the usual sense: a rock composed of igneous crystals and intercrystal magma. Study of the siderophile element abundances in the SNC <span class="hlt">meteorite</span> groups involved trying to find reasonable core formation processes and parameters that would reproduce the observed abundances. Modelling was successful, and delimited a range of models which overlap with those reasonable from geophysical constraints.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011psrd.reptE.155M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011psrd.reptE.155M"><span>Timeline of <span class="hlt">Martian</span> Volcanism</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martel, L. M. V.</p> <p>2011-05-01</p> <p>A recent study of <span class="hlt">Martian</span> volcanism presents a timeline of the last major eruptions from 20 large volcanoes, based on the relative ages of caldera surfaces determined by crater counting. Stuart Robbins, Gaetano Di Achille, and Brian Hynek (University of Colorado) counted craters on high-resolution images from the the Context Camera (CTX) on Mars Reconnaissance Orbiter to date individual calderas, or terraces within calderas, on the 20 major <span class="hlt">Martian</span> volcanoes. Based on their timeline and mapping, rates and durations of eruptions and transitions from explosive to effusive activity varied from volcano to volcano. The work confirms previous findings by others that volcanism was continuous throughout <span class="hlt">Martian</span> geologic history until about one to two hundred million years ago, the final volcanic events were not synchronous across the planet, and the latest large-scale caldera activity ended about 150 million years ago in the Tharsis province. This timing correlates well with the crystallization ages (~165-170 million years) determined for the youngest basaltic <span class="hlt">Martian</span> <span class="hlt">meteorites</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17777058','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17777058"><span><span class="hlt">Meteoritic</span> Zircon.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marvin, U B; Klein, C</p> <p>1964-11-13</p> <p>Zircon (ZrSiO(5)) has been identified as an accessory mineral in the Vaca Muerta mesosiderite and in the troilite nodules of the Toluca iron <span class="hlt">meteorite</span>. The occurrence in Vaca Muerta is a new discovery confirmned by electron-probe nmicroanalysis of a grain in a polished section of the <span class="hlt">meteorite</span>. Our identification of zircon in Toluca substantiates an occurrence in this <span class="hlt">meteorite</span> reported in 1895 by Laspeyres and Kaiser.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982AmSci..70..156C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982AmSci..70..156C"><span>Antarctic <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cassidy, W. A.; Rancitelli, L. A.</p> <p>1982-04-01</p> <p>An abundance of <span class="hlt">meteorites</span> has been discovered on two sites in the Antarctic which may assist in the study of the origins of <span class="hlt">meteorites</span> and the history of the solar system. Characteristics particular to those <span class="hlt">meteorites</span> discovered in this region are explained. These specimens, being well preserved due to the climate, have implications in the study of the cosmic ray flux through time, the meteoroid complex in space, and cosmic ray exposure ages. Implications for the study of the Antarctic, particularly the ice flow, are also discussed. Further discoveries of <span class="hlt">meteorites</span> in this region are anticipated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000004369&hterms=dinosaur&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddinosaur','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000004369&hterms=dinosaur&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddinosaur"><span><span class="hlt">Meteorites</span> and the Evolution of Our Solar System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nava, David F.</p> <p>1999-01-01</p> <p>The study of <span class="hlt">meteorites</span> has long been of intense interest ever since these objects were discovered to be of extraterrestrial origin. <span class="hlt">Meteorite</span> research contributes to unraveling the mysteries in understanding the formation and evolution processes of our solar system. <span class="hlt">Meteorites</span>, of which there are a variety of widely diverse types of chemical and mineralogical compositions, are the most ancient of solar system objects that can be studied in the laboratory. They preserve a unique historical record of the astronomical and astrophysical events of our solar system. This record is being discerned by a host of ever evolving analytical laboratory methods. Recent discoveries of what are believed to be <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, lunar <span class="hlt">meteorites</span>, a <span class="hlt">meteorite</span> containing indigenous water, and the recovery from the Cretaceous layer of a small <span class="hlt">meteorite</span> fragment thought to be from the dinosaur-killing asteroid have fueled additional excitement for studying <span class="hlt">meteorites</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001696','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001696"><span>Nitrogen-Bearing, Indigenous Carbonaceous Matter in the Nakhla Mars <span class="hlt">Meteorite</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas-Keprta, K. L.; Clemett, S. J.; Messenger, S.; Rahman, Z.; Gibson, E. K.; Wentworth, S. J.; McKay, D. S.</p> <p>2017-01-01</p> <p>We report the identification of discrete assemblages of nitrogen (N)-rich organic matter entrapped within interior fracture surfaces of the <span class="hlt">martian</span> <span class="hlt">meteorite</span> Nakhla. Based on context, composition and isotopic measurements this organic matter is of demonstrably <span class="hlt">martian</span> origin. The presence of N-bearing organic species is of considerable importance to the habitable potential and chemical evolution of the <span class="hlt">martian</span> regolith.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930022752&hterms=Igneous+rocks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DIgneous%2Brocks','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930022752&hterms=Igneous+rocks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DIgneous%2Brocks"><span>On the weathering of <span class="hlt">Martian</span> igneous rocks</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dreibus, G.; Waenke, H.</p> <p>1992-01-01</p> <p>Besides the young crystallization age, one of the first arguments for the <span class="hlt">martian</span> origin of shergottite, nakhlite, and chassignite (SNC) <span class="hlt">meteorites</span> came from the chemical similarity of the <span class="hlt">meteorite</span> Shergotty and the <span class="hlt">martian</span> soil as measured by Viking XRF analyses. In the meantime, the discovery of trapped rare gas and nitrogen components with element and isotope ratios closely matching the highly characteristic ratios of the Mars atmosphere in the shock glasses of shergottite EETA79001 was further striking evidence that the SNC's are <span class="hlt">martian</span> surface rocks. The <span class="hlt">martian</span> soil composition as derived from the Viking mission, with its extremely high S and Cl concentrations, was interpreted as weathering products of mafic igneous rocks. The low SiO2 content and the low abundance of K and other trace elements in the <span class="hlt">martian</span> soils point to a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust. However, the chemical evolution of the <span class="hlt">martian</span> regolith and soil in respect to surface reaction with the planetary atmosphere or hydrosphere is poorly understood. A critical point in this respect is that the geochemical evidence as derived from the SNC <span class="hlt">meteorites</span> suggests that Mars is a very dry planet that should have lost almost all its initially large water inventory during its accretion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3228422','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3228422"><span>Combining <span class="hlt">meteorites</span> and missions to explore Mars</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McCoy, Timothy J.; Corrigan, Catherine M.; Herd, Christopher D. K.</p> <p>2011-01-01</p> <p>Laboratory studies of <span class="hlt">meteorites</span> and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a <span class="hlt">martian</span> origin came with the discovery of trapped atmospheric gases in one <span class="hlt">meteorite</span>. Since then, the study of <span class="hlt">martian</span> <span class="hlt">meteorites</span> and findings from missions have been linked. Although the <span class="hlt">meteorite</span> source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most <span class="hlt">martian</span> <span class="hlt">meteorites</span> are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from <span class="hlt">martian</span> <span class="hlt">meteorites</span> conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the <span class="hlt">meteorites</span> is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential. PMID:21969535</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21969535','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21969535"><span>Combining <span class="hlt">meteorites</span> and missions to explore Mars.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K</p> <p>2011-11-29</p> <p>Laboratory studies of <span class="hlt">meteorites</span> and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a <span class="hlt">martian</span> origin came with the discovery of trapped atmospheric gases in one <span class="hlt">meteorite</span>. Since then, the study of <span class="hlt">martian</span> <span class="hlt">meteorites</span> and findings from missions have been linked. Although the <span class="hlt">meteorite</span> source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most <span class="hlt">martian</span> <span class="hlt">meteorites</span> are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from <span class="hlt">martian</span> <span class="hlt">meteorites</span> conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the <span class="hlt">meteorites</span> is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20130010126&hterms=magnetite+alteration+basalt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmagnetite%2Balteration%2Bbasalt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20130010126&hterms=magnetite+alteration+basalt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmagnetite%2Balteration%2Bbasalt"><span>Mineralogy of <span class="hlt">Meteorite</span> Groups</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubin, Alan E.</p> <p>1997-01-01</p> <p>Approximately 275 mineral species have been identified in <span class="hlt">meteorites</span>, reflecting diverse redox environments, and, in some cases, unusual nebular formation conditions. Anhydrous ordinary, carbonaceous and R chondrites contain major olivine, pyroxene and plagioclase; major opaque phases include metallic Fe-Ni, troilite and chromite. Primitive achondrites are mineralogically similar. The highly reduced enstatite chondrites and achondrites contain major enstatite, plagioclase, free silica and kamacite as well as nitrides, a silicide and Ca-, Mg-, Mn-, Na-, Cr-, K- and Ti-rich sulfides. Aqueously altered carbonaceous chondrites contain major amounts of hydrous phyllosilicates, complex organic compounds, magnetite, various sulfates and sulfides, and carbonates. In addition to kamacite and taenite, iron <span class="hlt">meteorites</span> contain carbides, elemental C, nitrides, phosphates, phosphides, chromite and sulfides. Silicate inclusions in IAB/IIICD and lIE iron <span class="hlt">meteorites</span> consist of mafic silicates, plagioclase and various sulfides, oxides and phosphates. Eucrites, howardites and diogenites have basaltic to orthopyroxenitic compositions and consist of major pyroxene and calcic plagioclase and several accessory oxides. Ureilttes .are made up mainly of calcic, chromian olivine and low-Ca clinopyroxene embedded in a carbonaceous matrix; accessory phases include the C polymorphs graphite, diamond, lonsdaleite and chaoite as well as metallic Fe-Ni, troilite and halides. Angrites are achondrites rich in fassaitic pyroxene (i.e. , AI-Ti diopside); minor olivine with included magnesian kirschsteinite is also present. <span class="hlt">Martian</span> <span class="hlt">meteorites</span> comprise basalts, Iherzolites, a dunite and an orthopyroxenite. Major phases include various pyroxenes and olivine; minor to accessory phases include various sulfides, magnetite, chromite and Ca-phosphates. Lunar <span class="hlt">meteorites</span> comprise mare basalts with major augite and calcic plagioclase and anorthositic breccias with major calcic plagioclase. Several <span class="hlt">meteoritic</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SSRv..174..301N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SSRv..174..301N"><span>Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niles, Paul B.; Catling, David C.; Berger, Gilles; Chassefière, Eric; Ehlmann, Bethany L.; Michalski, Joseph R.; Morris, Richard; Ruff, Steven W.; Sutter, Brad</p> <p>2013-01-01</p> <p>Ongoing research on <span class="hlt">martian</span> <span class="hlt">meteorites</span> and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of <span class="hlt">martian</span> climate with important crosscutting themes including: the CO2 budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several <span class="hlt">martian</span> <span class="hlt">meteorites</span>. The <span class="hlt">martian</span> <span class="hlt">meteorites</span> contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2-5 wt.%) in the <span class="hlt">martian</span> dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in <span class="hlt">martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span> <span class="hlt">84001</span>. Finally, the Phoenix lander identified concentrations of 3-6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860063588&hterms=consortium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dconsortium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860063588&hterms=consortium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dconsortium"><span>The Shergotty consortium and SNC <span class="hlt">meteorites</span> - An overview</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Laul, J. C.</p> <p>1986-01-01</p> <p>The key up-to-date findings on the Shergotty and other SNC <span class="hlt">meteorites</span> are summarized. The <span class="hlt">Martian</span> origin of these <span class="hlt">meteorites</span> is strongly suggested by the evidence of trapped noble gases and nitrogen compositions in glasses of the EETA 79001 <span class="hlt">meteorite</span>, which compare well with the results of the <span class="hlt">Martian</span> atmosphere investigation by the Viking spacecraft. Age-dating and exposure scenarios suggest two possibilities for the ejection of SNC <span class="hlt">meteorites</span>: (1) ejection as a large (larger than 6 m) body by a single impact on Mars and then multiple breakup in the asteroidal belt, at about 11 Myr for Chassigny and nakhlites, at 2.5 Myr for Shergotty, Zagami and ALHA 77005, and at 0.6 Myr for EETA 79001; and (2) ejection of small (less than 0.5 m) objects by multiple impacts on the <span class="hlt">Martian</span> terrain at 11, 2.5, and 0.6 Myr, with no breakup in space.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2996665','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2996665"><span>Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shaheen, R.; Abramian, A.; Horn, J.; Dominguez, G.; Sullivan, R.; Thiemens, Mark H.</p> <p>2010-01-01</p> <p>The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the <span class="hlt">ALH</span><span class="hlt">84001</span> <span class="hlt">meteorite</span>; consequently, the identification of <span class="hlt">Martian</span> processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess 17O (0.4–3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O3 reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) <span class="hlt">Martian</span> <span class="hlt">meteorites</span> and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21059939','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21059939"><span>Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H</p> <p>2010-11-23</p> <p>The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the <span class="hlt">ALH</span><span class="hlt">84001</span> <span class="hlt">meteorite</span>; consequently, the identification of <span class="hlt">Martian</span> processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) <span class="hlt">Martian</span> <span class="hlt">meteorites</span> and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V41D2206C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V41D2206C"><span>An alternative hypothesis for high-T 40Ar/39Ar age spectrum discordance in polyphase extraterrestrial materials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cassata, W. S.; Shuster, D. L.; Renne, P. R.; Weiss, B. P.</p> <p>2009-12-01</p> <p>A common feature observed in 40Ar/39Ar age spectra of extraterrestrial (ET) rocks is a conspicuous decrease in the ages of high temperature extractions relative to lower temperature steps and a correlated increase in Ca/K, often succeeded by a monotonic increase in ages. This feature is routinely attributed to recoil-implanted 39Ar from a potassium (K)-rich donor phase into a K-poor receptor phase (e.g., 1,2). While 39Ar recoil redistribution is undoubtedly manifested in many terrestrial and ET 40Ar/39Ar whole-rock age spectra, it cannot easily explain the magnitude of high release temperature 40Ar*/39ArK anomalies observed in <span class="hlt">Martian</span> <span class="hlt">meteorites</span> <span class="hlt">ALH</span> <span class="hlt">84001</span> and Nakhla, as well as other course-grained <span class="hlt">meteorites</span> and lunar rocks. Depending on the aliquot and sample, 50 - 100% of the pyroxene release spectra in <span class="hlt">ALH</span> <span class="hlt">84001</span> and Nakhla appear strongly perturbed to lower ages. As the mean recoil distance of 39Ar ~0.1 µm, the recoil hypothesis demands that a high-K phase be ubiquitously distributed amongst sub-micron to micron sized pyroxene crystals to account for the observed pyroxene age spectra. However, in both Nakhla and <span class="hlt">ALH</span> <span class="hlt">84001</span>, pyroxene is often completely isolated from high-K phases and individual grains commonly exceed 100 µm in diameter. 40Ar/39Ar analyses of pyroxene-bearing terrestrial basalts, wherein fine-grained pyroxene and plagioclase are intimately adjoined, show that recoil-implanted 39Ar into pyroxene produces much less precipitous anomalies in 40Ar*/39ArK, as predicted by the recoil lengthscale. An alternative hypothesis is that whole-rock age spectra of ET samples with anomalously low ages at high temperatures may reflect diffusive 40Ar distributions within considerably degassed pyroxene grains. Owing to apparent differences in activation energies between glass and/or plagioclase and pyroxene, 40Ar may diffuse more rapidly from pyroxene under certain high-temperature conditions (i.e., above the temperature at which the extrapolated Ar Arrhenius</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150019422','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150019422"><span>Mars Atmospheric Composition, Isotope Ratios and Seasonal Variations: Overview and Updates of the SAM Measurements at Gale Crater</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niles, Paul</p> <p>2014-01-01</p> <p>We will summarize the in situ measurements of atmospheric composition and the isotopic ratios of D/H in water, C-13/C-12, O-18/O-16, O-17 / O-16, and C-13 O-18 / C-12 O-16 in carbon dioxide, and Ar-38 / Ar-36, Kr-x / Kr-84, and N-15 / N-14 made in the <span class="hlt">martian</span> atmosphere at Gale Crater from the Curiosity Rover using the Sample Analysis at Mars (SAM)'s Quadrupole Mass Spectrometer (QMS) and Tunable Laser Spectrometer (TLS). With data over 700 sols since the Curiosity landing, we will discuss evidence and implications for changes on seasonal and other timescales. We will also present results for continued methane and methane enrichment experiments over this time period. Comparison between our measurements in the modern atmosphere and those of <span class="hlt">martian</span> <span class="hlt">meteorites</span> like <span class="hlt">ALH</span> <span class="hlt">84001</span> implies that the <span class="hlt">martian</span> reservoirs of CO2 and H2O were largely established approximately 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011942','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011942"><span>Identification of new <span class="hlt">meteorite</span>, Mihonoseki (L), from broken fragments in Japan</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miura, Y.; Noma, Y.</p> <p>1993-01-01</p> <p>New <span class="hlt">meteorite</span> of Mihonoseki fallen in Shimane-ken was identified by fine broken pieces by using an energy-dispersive scanning electron microprobe analyzer. It shows fusion-crust (i.e. Fe-Si melt), <span class="hlt">meteoritic</span> minerals (kamacite, taenite, troilite, amorphous plagioclase etc.) and chrondrule with clear glassy rim. Mineralogical, and petrological data of several fine grains suggest that broken fragments of Mihonoseki are L3/4 chondritic <span class="hlt">meteorite</span> which is the first identification in a Japanese fallen <span class="hlt">meteorite</span>. The prompt identification method of <span class="hlt">meteorite</span>-fragments will be applied to the next lunar, <span class="hlt">Martian</span> and asteroid explorations, as well as <span class="hlt">meteorite</span> falls on the terrestrial surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70025811','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70025811"><span>The <span class="hlt">Meteoritical</span> Bulletin, No. 87, 2003 July</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Russell, S.S.; Zipfel, J.; Folco, L.; Jones, R.; Grady, M.M.; McCoy, T.; Grossman, J.N.</p> <p>2003-01-01</p> <p><span class="hlt">Meteoritical</span> Bulletin No. 87 lists information for 1898 newly classified <span class="hlt">meteorites</span>, comprising 1048 from Antarctica, 462 from Africa, 356 from Asia (355 of which are from Oman), 18 from North America, 5 from South America, 5 from Europe, and 3 from Australia. Information is provided for 10 falls (Beni M'hira, Elbert, Gasseltepaoua, Hiroshima, Kilabo, Neuschwanstein, Park Forest, Pe??, Pe??te??lkole??, and Thuathe). Two of these-Kilabo and Thuathe-fell on the same day. Orbital characteristics could be calculated for Neuschwanstein. Noteworthy specimens include 8 <span class="hlt">Martian</span> <span class="hlt">meteorites</span> (5 from Sahara, 2 from Oman and 1 from Antarctica), 13 lunar <span class="hlt">meteorites</span> (all except one from Oman), 3 irons, 3 pallasites, and many carbonaceous chondrites and achondrites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5343502','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5343502"><span>Shock-transformation of whitlockite to merrillite and the implications for <span class="hlt">meteoritic</span> phosphate</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Adcock, C. T.; Tschauner, O.; Hausrath, E. M.; Udry, A.; Luo, S. N.; Cai, Y.; Ren, M.; Lanzirotti, A.; Newville, M.; Kunz, M.; Lin, C.</p> <p>2017-01-01</p> <p><span class="hlt">Meteorites</span> represent the only samples available for study on Earth of a number of planetary bodies. The minerals within <span class="hlt">meteorites</span> therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite–whitlockite solid solution series. For example, the anhydrous nature of merrillite in <span class="hlt">Martian</span> <span class="hlt">meteorites</span> has been interpreted as evidence of water-limited late-stage <span class="hlt">Martian</span> melts. However, recent research on apatite in the same <span class="hlt">meteorites</span> suggests higher water content in melts. One complication of using <span class="hlt">meteorites</span> rather than direct samples is the shock compression all <span class="hlt">meteorites</span> have experienced, which can alter <span class="hlt">meteorite</span> mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to <span class="hlt">meteorites</span>, including <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. The results open the possibility that at least part of <span class="hlt">meteoritic</span> merrillite may have originally been H+-bearing whitlockite with implications for interpreting <span class="hlt">meteorites</span> and the need for future sample return. PMID:28262701</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...814667A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...814667A"><span>Shock-transformation of whitlockite to merrillite and the implications for <span class="hlt">meteoritic</span> phosphate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adcock, C. T.; Tschauner, O.; Hausrath, E. M.; Udry, A.; Luo, S. N.; Cai, Y.; Ren, M.; Lanzirotti, A.; Newville, M.; Kunz, M.; Lin, C.</p> <p>2017-03-01</p> <p><span class="hlt">Meteorites</span> represent the only samples available for study on Earth of a number of planetary bodies. The minerals within <span class="hlt">meteorites</span> therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite-whitlockite solid solution series. For example, the anhydrous nature of merrillite in <span class="hlt">Martian</span> <span class="hlt">meteorites</span> has been interpreted as evidence of water-limited late-stage <span class="hlt">Martian</span> melts. However, recent research on apatite in the same <span class="hlt">meteorites</span> suggests higher water content in melts. One complication of using <span class="hlt">meteorites</span> rather than direct samples is the shock compression all <span class="hlt">meteorites</span> have experienced, which can alter <span class="hlt">meteorite</span> mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to <span class="hlt">meteorites</span>, including <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. The results open the possibility that at least part of <span class="hlt">meteoritic</span> merrillite may have originally been H+-bearing whitlockite with implications for interpreting <span class="hlt">meteorites</span> and the need for future sample return.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000088490','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000088490"><span>Fluid Inclusions in Extraterrestrial Samples Fact or Fiction?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bodnar, R. J.; Zolensky, M. E.; Gibson, E. K.</p> <p>2000-01-01</p> <p>Over the years there have been numerous reports of liquid inclusions in <span class="hlt">meteorites</span>. Roedder reviews the reported occurrences of liquid inclusions in <span class="hlt">meteorites</span> and states that "silicate-melt inclusions are expectable and apparently ubiquitous, but the presence of actual liquid inclusions (i.e., with moving bubbles at room temperature) would seem almost impossible." The reason for this conclusion is that <span class="hlt">meteorites</span> (presumably) form in space at high temperatures and very low pressures where liquid water (or carbon dioxide) is not stable. Perhaps the most infamous report of fluid inclusions in <span class="hlt">meteorites</span> was that of Warner et al. In that study, the authors reported the presence of two-phase, liquid-vapor inclusions in a diogenite from Antarctica. This report of fluid inclusions generated considerable interest in the <span class="hlt">meteorite</span> community, and caused many to question existing models for the origin of the diogenites. This interest was short-lived however, as later investigations of the same samples showed that the inclusions were most likely artifacts. Rudnick et al. showed that many of the inclusions in <span class="hlt">meteorites</span> prepared at the Johnson Space Center contained a fluid that fluoresced strongly under the laser beam on the Raman microprobe. They interpreted this to indicate that the inclusions contained Almag oil used in the preparation of thin sections. Presumably, the Almag oil entered empty vesicles along fractures that were opened intermittently during cutting. Here, the occurrence of unambiguous fluid inclusions that could not have been introduced during sample preparation are described in samples from two different extraterrestrial environments. One environment is represented by the SNC (<span class="hlt">martian</span>) <span class="hlt">meteorites</span> <span class="hlt">ALH</span> <span class="hlt">84001</span> and Nakhla. The second environment is represented by the Monahans 1998 <span class="hlt">meteorite</span> that fell recently in the USA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860013036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860013036"><span><span class="hlt">Meteorite</span> craters</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ivanov, B. A.; Bazilevskiy, A. T.</p> <p>1986-01-01</p> <p>The origin and formation of various types of craters, both on the Earth and on other planetary bodies, are discussed. Various models are utilized to depict various potential causes of the types and forms of <span class="hlt">meteorite</span> craters in our solar system, and the geological structures are also discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016LPICo1921.6082L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016LPICo1921.6082L"><span>Chalcophile Siderophile Trace Element Systematics of Hydrothermal Pyrite from <span class="hlt">Martian</span> Regolith Breccia NWA 7533</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorand, J.-P.; Hewins, R. H.; Humayun, M.; Remusat, L.; Zanda, B.; La, C.; Pont, S.</p> <p>2016-08-01</p> <p><span class="hlt">Martian</span> impact breccia NWA 7533 contains hydrothermal pyrite. Laser ablation ICPMS analyses show that its chalcophile siderophile element content was inherited from both early <span class="hlt">meteorite</span> bombardment and later hydrothermal inputs from H2S fluids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940030922','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940030922"><span>Solar proton produced neon in shergottite <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garrison, D. H.; Rao, M. N.; Bogard, D. D.</p> <p>1994-01-01</p> <p>Cosmogenic radionuclides produced by near-surface, nuclear interactions of energetic solar protons (approx. 10-100 MeV) were reported in several lunar rocks and a very small <span class="hlt">meteorites</span>. We recently documented the existence and isotopic compositions of solar-produced (SCR) Ne in two lunar rocks. Here we present the first documented evidence for SCR Ne in a <span class="hlt">meteorite</span>, ALH77005, which was reported to contain SCR radionuclides. Examination of literature data for other shergottites suggests that they may also contain a SCR Ne component. The existence of SCR Ne in shergottites may be related to a <span class="hlt">Martian</span> origin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001834','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001834"><span>Evidence from Olivine-Hosted Melt Inclusions that the <span class="hlt">Martian</span> Mantle has a Chondritic D/H Ratio and that Some Young Basalts have Assimilated Old Crust</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Usui, Tomohiro; Alexander, O'D.; Wang, J.; Simon, J. I.; Jones, J. H.</p> <p>2012-01-01</p> <p>Magmatic degassing of volatile elements affects the climate and near-surface environment of Mars. Telescopic and <span class="hlt">meteorite</span> studies have revealed that the <span class="hlt">Martian</span> atmosphere and near-surface materials have D/H ratios 5-6 times terrestrial values [e.g., 1, 2]. Such high D/H ratios are interpreted to result from the preferential loss of H relative to heavier D from the <span class="hlt">Martian</span> atmosphere, assuming that the original <span class="hlt">Martian</span> water inventory had a D/H ratio similar to terrestrial values and to H in primitive <span class="hlt">meteorites</span> [e.g., 1, 3]. However, the primordial <span class="hlt">Martian</span> D/H ratio has, until now, not been well constrained. The uncertainty over the <span class="hlt">Martian</span> primordial D/H ratio has arisen both from the scarcity of primitive <span class="hlt">Martian</span> <span class="hlt">meteorites</span> and as a result of contamination by terrestrial and, perhaps, <span class="hlt">Martian</span> surface waters that obscure the signature of the <span class="hlt">Martian</span> mantle. This study reports a comprehensive dataset of magmatic volatiles and D/H ratios in <span class="hlt">Martian</span> primary magmas based on low-contamination, in situ ion microprobe analyses of olivine-hosted melt inclusions from both depleted [Yamato 980459 (Y98)] and enriched [Larkman Nunatak 06319 (LAR06)] <span class="hlt">Martian</span> basaltic <span class="hlt">meteorites</span>. Analyses of these primitive melts provide definitive evidence that the <span class="hlt">Martian</span> mantle has retained a primordial D/H ratio and that young <span class="hlt">Martian</span> basalts have assimilated old <span class="hlt">Martian</span> crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000psrd.reptE..39T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000psrd.reptE..39T"><span>Liquid Water on Mars: The Story from <span class="hlt">Meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, G. J.</p> <p>2000-05-01</p> <p>Two studies shed light on the nature and timing of alteration by water of rocks from Mars. One is an experimental study of the alteration of a rock similar to <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, conducted by Leslie Baker, Deborah Agenbroad, and Scott Wood (University of Idaho). They exposed crushed pieces of terrestrial lava flows to water at 23 C and 75 C and normal atmospheric pressure, and to hot water at 200 C to 400 C and a pressure 1000 times normal atmospheric to see what minerals would form. On the basis of a detailed comparison between the experimental products and the <span class="hlt">Martian</span> <span class="hlt">meteorites</span> Baker and colleagues conclude that the rocks from which <span class="hlt">Martian</span> <span class="hlt">meteorites</span> derived were intermittently exposed to water or water vapor; they were not exposed for a long time to large volumes of water. In an independent study, a team led by Tim Swindle (University of Arizona) tried to determine the time of formation of a reddish-brown alteration product in the <span class="hlt">Martian</span> <span class="hlt">meteorite</span> Lafayette. This <span class="hlt">meteorite</span> appears to have formed from magma 1.3 billion years ago, but the rusty-looking weathering product, a mixture of clay minerals, iron oxide, and iron hydride, formed long after the original rock had crystallized. Although the precise time is not pinned down, their measurements indicate formation during the past 650 million years. Taken together, these studies suggest that water flowed intermittently on the surface of Mars during the past 650 million years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019339','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019339"><span>International Workshop on Antarctic <span class="hlt">Meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Annexstad, J. O.; Schultz, L.; Waenke, H.</p> <p>1986-01-01</p> <p>Topics addressed include: <span class="hlt">meteorite</span> concentration mechanisms; <span class="hlt">meteorites</span> and the Antarctic ice sheet; iron <span class="hlt">meteorites</span>; iodine overabundance in <span class="hlt">meteorites</span>; entrainment, transport, and concentration of <span class="hlt">meteorites</span> in polar ice sheets; weathering of stony <span class="hlt">meteorites</span>; cosmic ray records; radiocarbon dating; element distribution and noble gas isotopic abundances in lunar <span class="hlt">meteorites</span>; thermoanalytical characterization; trace elements; thermoluminescence; parent sources; and <span class="hlt">meteorite</span> ablation and fusion spherules in Antarctic ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160002653','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160002653"><span>Indigenous Carbonaceous Matter in the Nakhla Mars <span class="hlt">Meteorite</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clemett, S. J.; Thomas-Keprta, K. L.; Rahman, Z.; Le, L.; Wentworth, S. J.; Gibson, E. K.; McKay, D. S.</p> <p>2016-01-01</p> <p>Detailed microanalysis of the <span class="hlt">Martian</span> <span class="hlt">meteorite</span> Nakhla has shown there are morphologically distinct carbonaceous features spatially associated with low-T aqueous alteration phases including salts and id-dingsite. A comprehensive suite of analytical instrumentation including optical microscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, focused ion beam (FIB) microscopy, transmission electron microscopy (TEM), two-step laser mass spectrometry (mu-L(sup 2)MS), laser mu-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nanoscale secondary ion mass spectrometry (NanoSIMS) are being used to characterize the carbonaceous matter and host mineralogy. The search for carbonaceous matter on Mars has proved challenging. Viking Landers failed to unambiguously detect simple organics at either of the two landing sites although the <span class="hlt">Martian</span> surface is estimated to have acquired at least 10(exp15) kg of C as a consequence of <span class="hlt">meteoritic</span> accretion over the last several Ga. The dearth of organics at the <span class="hlt">Martian</span> surface has been attributed to various oxidative processes including UV photolysis and peroxide activity. Consequently, investigations of <span class="hlt">Martian</span> organics need to be focused on the sub-surface regolith where such surface processes are either severely attenuated or absent. Fortuitously since <span class="hlt">Martian</span> <span class="hlt">meteorites</span> are derived from buried regolith materials they provide a unique opportunity to study <span class="hlt">Martian</span> organic geochemistry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17779983','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17779983"><span>The <span class="hlt">martian</span> surface.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Opik, E J</p> <p>1966-07-15</p> <p> could depend on the low night-time temperature and deposition of hoarfrost, which could melt into droplets after sunrise, before evaporating. If not vegetation, it must be something thing specifically <span class="hlt">Martian</span>; no other hypothesis hitherto proposed is able to account for the facts. However, the infrared bands which at one time were thought to be associated with the presence of organic matter, belong to heavy water in the terrestrial atmosphere. The conversion of a former bright area into a dark one in 1954, over some 1 million square kilometers, is the largest recorded change of this kind. Even on the vegetation hypothesis, it eludes satisfactory explanation. Relatively bright areas observed in the blue and violet in polar regions and elsewhere on the limb can be explained by a greater transparency of the atmosphere,its dust content being decreased by a downward (anticyclonic) current. The surface, of a greater reflecting power than the atmospheric smoke, then becomes visible. The sudden explosion-like occurrence of yellow or gray clouds, reducing atmospheric transparency and surface contrast, could be due to impacts of asteroids; in such a case, however, the number of unobservable small asteroids, down to 30 to 40 meters in diameter, should greatly exceed the number extrapolated from the larger members of the group. A "<span class="hlt">meteoritic</span>" increment in numbers, instead of the asteroidal one, would be required. special observations with large Schmidt telescopes could settle this crucial question. The <span class="hlt">Martian</span> "oases," centers of "canal" systems, could be impact creters. The canals may be real formations, without sharp borders and 100 to 200 kilometers wide, due to a systematic alignment. of the dark surface elements. They may indicate cracks in the planet's crust, radiating from the point of impact.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040056036&hterms=Gadolinium&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGadolinium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040056036&hterms=Gadolinium&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGadolinium"><span>Oxygen Fugacity of the <span class="hlt">Martian</span> Mantle from Pigeonite/Melt Partitioning of Samarium, Europium and Gadolinium</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Musselwhite, D. S.; Jnes, J. H.; Shearer, C.</p> <p>2004-01-01</p> <p>This study is part of an ongoing effort to calibrate the pyroxene/melt REE oxybarometer for conditions relevant to the <span class="hlt">martian</span> <span class="hlt">meteorites</span>. These efforts have been motivated by reports of redox variations among the shergottites . We have conducted experiments on <span class="hlt">martian</span> composition pigeonite/melt rare earth element partitioning as a function of fO2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930055812&hterms=Lafayette&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DLafayette','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930055812&hterms=Lafayette&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DLafayette"><span>Preterrestrial aqueous alteration of the Lafayette (SNC) <span class="hlt">meteorite</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Treiman, Allan H.; Barrett, Ruth A.; Gooding, James L.</p> <p>1993-01-01</p> <p>The structure and chemical composition of the Lafayette <span class="hlt">meteorite</span> were examined using several methods. The <span class="hlt">meteorite</span> contains abundant hydrous post-magnetic alteration material consisting of ferroan smectite clays, magnetite, and ferrihydrite. The textural relations, mineralogy, and composition of these materials were examined and their preterrestrial nature was documented. Olivine, pyroxene, and glass alteration are described and the bulk compositions of the alteration veinlets is discussed. Essential features of the geochemistry of the alteration processes are described. It is suggested that the alteration of the Lafayette <span class="hlt">meteorite</span> occurred during episodic infiltrations of small volumes of saline water. Constraints placed on water chemistry and water-rock interactions in the <span class="hlt">Martian</span> crust are outlined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001515','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001515"><span><span class="hlt">Martian</span> seismicity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phillips, Roger J.; Grimm, Robert E.</p> <p>1991-01-01</p> <p>The design and ultimate success of network seismology experiments on Mars depends on the present level of <span class="hlt">Martian</span> seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of <span class="hlt">Martian</span> seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000000521&hterms=motivation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmotivation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000000521&hterms=motivation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmotivation"><span>The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lissauer, J. J.; Rivera, E.; Duncan, M. J.; Levison, H. F.</p> <p>1998-01-01</p> <p>The giant impact hypothesis was introduced in the mid-1970s after consideration of results from the Apollo missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar Fe, and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive <span class="hlt">meteorites</span> and in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about100 m.y. after the oldest <span class="hlt">meteorites</span>. In addition, the age of the famous <span class="hlt">martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span> <span class="hlt">84001</span> and an early <span class="hlt">Martian</span> solidification time obtained by Lee and Halliday suggest that the inner solar system was fairly clear of large bodies about 10 m.y. after the oldest <span class="hlt">meteorites</span> formed. Thus, the "standard model" suggests that for several tens of millions of years, the terrestrial planet region had few, if any, lunar-sized bodies, and there were five terrestrial planets: Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the solar system before the hypothesized Moon-forming impact, we are integrating the solar system with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon System. We are looking at ranges in mass ratio and initial values for eccentricity, inclination, and semimajor axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 m.y. elapses. Results are presented in a companion abstract, (also presented at this meeting).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020080685&hterms=motivation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmotivation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020080685&hterms=motivation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmotivation"><span>The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lissuer, Jack; Rivera, E.; Duncan, M. J.; Levison, H. F.; DeVincenzi, Donald (Technical Monitor)</p> <p>1999-01-01</p> <p>The Giant Impact Hypothesis was introduced in the mid-1970's after consideration of results from the Apollo Moon missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar iron. and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive <span class="hlt">meteorites</span> and those of inclusions in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about 100 Myr after the oldest <span class="hlt">meteorites</span>. In addition, the age of the famous <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> and an early solidification time estimated from the <span class="hlt">Martian</span> crust, suggest that the inner Solar System was fairly clear of large bodies about 10 Myr after the oldest <span class="hlt">meteorites</span> formed. Thus, the 'standard model' suggests that for a period of several tens of millions of years the terrestrial planet region had few. if any, lunar-sized bodies and there were five terrestrial planets, Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the Solar System before the hypothesized Moon-forming impact, we are integrating the Solar System with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon system. We are looking at ranges in mass ratio and initial values for eccentricity, inclination. and semi-major axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 Myr elapses. Results are presented in a companion paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004E%26PSL.224...73W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004E%26PSL.224...73W"><span>Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weiss, Benjamin P.; Sam Kim, Soon; Kirschvink, Joseph L.; Kopp, Robert E.; Sankaran, Mohan; Kobayashi, Atsuko; Komeili, Arash</p> <p>2004-07-01</p> <p>Magnetite is both a common inorganic rock-forming mineral and a biogenic product formed by a diversity of organisms. Magnetotactic bacteria produce intracellular magnetites of high purity and crystallinity (magnetosomes) arranged in linear chains of crystals. Magnetosomes and their fossils (magnetofossils) have been identified using transmission electron microscopy (TEM) in sediments dating back to ˜510-570 Ma, and possibly in 4 Ga carbonates in <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span>. We present the results from two rock magnetic analyses—the low-temperature Moskowitz test and ferromagnetic resonance (FMR)—applied to dozens of samples of magnetite and other materials. The magnetites in these samples are of diverse composition, size, shape, and origin: biologically induced (extracellular), biologically controlled (magnetosomes and chiton teeth), magnetofossil, synthetic, and natural inorganic. We confirm that the Moskowitz test is a distinctive indicator for magnetotactic bacteria and provide the first direct experimental evidence that this is accomplished via sensitivity to the magnetosome chain structure. We also demonstrate that the FMR spectra of four different strains of magnetotactic bacteria and a magnetofossil-bearing carbonate have a form distinct from all other samples measured in this study. We suggest that this signature also results from the magnetosomes' unique arrangement in chains. Because FMR can rapidly identify samples with large fractions of intact, isolated magnetosome chains, it could be a powerful tool for identifying magnetofossils in sediments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/634150','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/634150"><span>Formation of magnetite and iron-rich carbonates by thermophilic iron-reducing bacteria</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Zhang, C.; Liu, S.; Roh, Y.; Cole, D.; Phelps, T.; Vali, H.; Kirschvink, J.L.; Onsttot, T.; McKay, D.</p> <p>1997-06-01</p> <p>Laboratory experiments were performed to study the formation of iron minerals by a thermophilic (45 to 75 C) fermentative iron-reducing bacterial culture (TOR39) obtained from the deep subsurface. Using amorphous Fe(III) oxyhydroxide as an electron acceptor and glucose as an electron donor, TOR39 produced magnetite and iron-rich carbonates at conditions consistent, on a thermodynamic basis, with Eh ({minus}200 mV to {minus}415 mV) and pH (6.2 to 7.7) values determined for these experiments. Analyses of the precipitating solid phases by X-ray diffraction showed that the starting amorphous Fe(III) oxyhydroxide was nearly completely converted to magnetite and Fe-rich carbonate after 20 days of incubation. Increasing bicarbonate concentration in the chemical milieu resulted in increased proportions of siderite relative to magnetite and the addition of MgCl{sub 2} caused the formation of magnesium-rich carbonate in addition to siderite. The results suggest that the TOR39 bacterial culture may have the capacity to form magnetite and iron-rich carbonates in a variety of geochemical conditions. These results may have significant implications for studying the past biogenic activities in the <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040010585&hterms=Biochemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DBiochemistry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040010585&hterms=Biochemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DBiochemistry"><span>Astrobiology: The Search for Life in the Universe</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pacchioli, David</p> <p>2003-01-01</p> <p>Each of the 11 lead members of NASA's Astrobiology Institute has a specific mission. According to Hiroshi Ohmoto, director of Penn State s Astrobiology Research Center, Here we are mainly concerned with the origin of life and the evolution and extinction of important organisms. These include bacteria that live on methane, cyanobacteria (the inventors of photosynthesis), eukaryotes (a big category, covering anything with a nucleus, from single-celled organisms to humans), land-dwelling organisms, and early animals. Penn State astrobiologists are studying the environment before there was life on Earth, the origin of oxygen in the atmosphere, the chemical and thermal structures of oceans, and the role of metals in the evolution of life. Overall, they want to understand the connection between changes in environment and changes in life forms in the early Earth. PSARC offers research assistantships for graduate and undergraduate students, fellowships for graduate students and post-doctoral fellows, and an undergraduate minor in astrobiology. The minor covers 18 credits in earth sciences, geochemistry, geophysics, astronomy, biology, biochemistry, meteorology, and microbiology. The goal, says Ohmoto, is to teach students to critically evaluate claims related to this field that they encounter well after their college education has ended. Under a scanning electron microscope, <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> yields tube-like structures that look a lot like remnants of Earthly bacteria except smaller by a factor of ten.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997SPIE.3111..420K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997SPIE.3111..420K"><span>Nanobacteria from blood: the smallest culturable autonomously replicating agent on Earth</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kajander, E. Olavi; Kuronen, Ilpo; Akerman, Kari K.; Pelttari, Alpo; Ciftcioglu, Neva</p> <p>1997-07-01</p> <p>Nanobacteria are the first mineral forming bacteria isolated from blood and blood products. They are coccoid cell-walled organisms with a size of 0.08 - 0.5 micrometers in EM, occure in clusters, produce a biofilm containing carbonate or hydroxyl apatite, and are highly resistant to heat, gamma-irradiation and antibiotics. Their growth rate is about one hundredth that of ordinary bacteria and they divide via several mechanisms. Taq polymerase was able to use their nontraditional nucleic acid as a template. 16S rRNA gene sequence results positioned them into the alpha-2 subgroup of Proteobacteria. Nanobacteria are smallest cell-walled bacteria since they can pass through 0.07 micrometers pores. In low-serum cultures, they form even smaller elementary particles or tubular units. How can blood be infected with such slow growing, heat and radio-resistant bacteria? The answer may lie in their phylogeny: alpha-2 subgroup has organisms from soil exposed to radiation and heat, that can penetrate into eukaryotic cells. Nanobacteria grow so slowly that they require a niche `cleaned' with heat, radiation or immunodefence. For survival they cloak themselves in apatite, a normal constituent of mammalian body. This may link nanobacteria to nannobacteria discovered from sedimentary rocks by Dr. Folk. Both have similar size, size variation, clustering and mineral deposits. They may resemble the probable ancient bacterial fossils in the <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJAsB..14..577G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJAsB..14..577G"><span>Unknown caller: can we effectively manage the announcement of discovery of extraterrestrial life?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gartrelle, Gordon M.</p> <p>2015-10-01</p> <p>The definitive discovery of another form of life from beyond Earth will answer one of our most fundamental questions: Are we alone in the Universe? This announcement will be the most significant in history. It will have impact on every facet of our lives and affect everyone on Earth. Ensuring the announcement is handled properly represents an opportunity to unify government, industrial, and scientific resources to work together on a global scale issue. The purpose of the present paper is to understand whether we have the overall strategy, management structures and process disciplines in place on a global scale to handle an announcement of this magnitude. The research methodology included review and analysis of peer-reviewed work on the topic, publications from appropriate scientific and policy organizations, and public statements from several acknowledged experts in the field of astrobiology and extraterrestrial communications. The 1996 case of the announcement of possible life from <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> was also analysed. The findings of the paper are multiple deficiencies exist in the ability to manage this problem globally in an integrated fashion across borders, institutional boundaries, and through the media. High-level recommendations are offered to address major identified gaps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020002130&hterms=dry+snow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddry%2Bsnow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020002130&hterms=dry+snow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddry%2Bsnow"><span>Dry Mars: Parched Rocks and Fallen Dust</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Treiman, Allan H.</p> <p>2001-01-01</p> <p>While "following the water" to find life on Mars, it is easy to overlook evidence that Mars is harshly dry, and to neglect ideas that do not invoke water. Direct evidence for a dry Mars comes from the <span class="hlt">ALH</span> <span class="hlt">84001</span> <span class="hlt">meteorite</span>, which has seen little or no liquid water during its last 3.9 billion years on Mars. Its aridity is difficult to reconcile with a Mars of abundant near-surface surface water or with episodes of warm wet climate. Alternative scenarios are also possible, even likely, for the <span class="hlt">martian</span> gullies and debris flows that have been cited as evidence of liquid water. It is reasonable that the gullies flows are the remnants of massive dust avalanches, comparable to large climax snow avalanches seen on Earth. Mars' surface is now desiccated, and at least part of it has been equally desiccated for the past 3.9 billion years. With this background, and the wealth of atmospheric, imaging, and chemical data available from Mars, one must be very cautious in evaluating claims for liquid water recently at or near Mars' surface. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990020839&hterms=strontium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dstrontium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990020839&hterms=strontium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dstrontium"><span>Rubidium-Strontium Formation Age of Allan Hills 84001 Carbonates</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borg, L. E.; Nyquist, L. E.; Shih, C.-Y.; Weismann, H.; Reese, Y.; Connelly, J. N.</p> <p>1998-01-01</p> <p>Our preferred age for the formation of carbonates in the <span class="hlt">martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span> <span class="hlt">84001</span> is 3.90 plus or minus 0.04 Ga for Lambda (Rubidium 87) equals 0.01402 Ga (exp -1), or 3.85 plus or minus 0.04 Ga for Lambda (Rubidium 87) = 0.0142 Ga(exponent -1). This age is determined by a three-point Rb-Sr isochron defined by leachates of high-graded carbonate-rich material. Major cation and especially phosphorous analyses of the leachates permit contributions from igneous whitlockite to be recognized for low-acidity leachates, and the corresponding data are omitted from the isochron. Data for the two highest acidity leachates plot close to the preferred isochron, but are omitted because we believe they contain contributions leached from the pyroxene substrate on which most of the carbonates are found. Nevertheless, the isochron age for all five highest-acidity leachates is 3.94 plus or minus 0.04 Ga, and is within error of the age obtained for the more restricted data set. All leachates used to define the isochron have major cation compositions that are singular to those obtained by microprobe analyses of the carbonate rosettes and are consistent with progressive digestion of the carbonates according to their composition. The age thus obtained for the carbonates is about 600 m.y. younger than the crystalization age of <span class="hlt">ALH</span> <span class="hlt">84001</span> determined by Sm-Nd analyses but is within error limits of the age of impact metamorphism inferred from the Rb-Sr and Ar-Ar systematics of silicates. which yield ages of 3.85 plus or minus 0.05 Ga and 4.05- 3.80 Ga to 4.3-3.8 Ga, respectively. Similarities between the carbonate crystallization age and the age of impact metamorphism as determined by Ar-Ar and Rb-Sr suggest that the carbonate formation is impact-related. Nevertheless, both high and low- temperature scenarios for the origin of the carbonates are possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100042326','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100042326"><span>Discovery of Carbonate-Rich Outcrops in the Gusev Crater Columbia Hills by the MER Rover Spirit</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morris, Richard V.; Ruff, Steven W.; Gellert, Ralf; Ming, Douglas W.; Arvidson, Raymond E.; Clark, Benton C.; Golden, Dadi C.; Siebach, Kirsten L.; Klingelhoefer, Goestar; Schroeder, Christian; Fleischer, Iris; Yen, Albert S.; Squyres, Steven W.</p> <p>2010-01-01</p> <p>The chemical composition, global abundance, distribution, and formation pathways of carbonates are central to understanding aqueous processes, climate, and habitability of early Mars. The Mars Exploration Rover (MER) Spirit analyzed a series of olivine-rich outcrops while descending from the summit region of Husband Hill into the Inner Basin of the Columbia Hills of Gusev Crater to the eastern edge of the El Dorado ripple field in late 2005. Reanalysis of Spirit s mineralogical data from the Moessbauer Spectrometer (MB) and the Miniature Thermal Emission Spectrometer (Mini-TES) and chemical data from the Alpha Particle X-Ray Spectrometer (APXS) in 2010, coupled with new laboratory data for carbonate-bearing samples, lead to identification of carbonate in one of the outcrops (Comanche) [Morris, R.V., et al., Science, 329, 421-424]. The carbonate is rich in magnesium and iron (Mc62Sd25Cc11Rh2, assuming all Ca and Mn is associated with the carbonate) and is a major component of the Comanche outcrops (16 to 34 wt.%). The mineralogical, chemical, and abundance data are constrained in multiple, mutually consistent ways by the MER analyses. For example, a low-Ca carbonate is required by the MB and APXS data and is consistent with Mini-TES data. Three spectral features attributable to fundamental infrared vibrational modes of low-Ca carbonate are present in the Mini-TES spectra of Comanche outcrops. The average composition of Comanche carbonate approximates the average composition of the carbonate globules in <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span> <span class="hlt">84001</span>. Analogy with <span class="hlt">ALH</span> <span class="hlt">84001</span>, terrestrial, and synthetic carbonate globules suggests that Comanche carbonate precipitated from aqueous solutions under hydrothermal conditions at near neutral pH in association with volcanic activity during the Noachian era. Comanche outcrop morphology suggests they are remnants of a larger carbonate-bearing formation that evolved in ultramafic rock and then preferentially eroded by a combination of aeolian</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001SSRv...96..165H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001SSRv...96..165H"><span>Cratering Chronology and the Evolution of Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartmann, William K.; Neukum, Gerhard</p> <p>2001-04-01</p> <p>Results by Neukum et al. (2001) and Ivanov (2001) are combined with crater counts to estimate ages of <span class="hlt">Martian</span> surfaces. These results are combined with studies of <span class="hlt">Martian</span> <span class="hlt">meteorites</span> (Nyquist et al., 2001) to establish a rough chronology of <span class="hlt">Martian</span> history. High crater densities in some areas, together with the existence of a 4.5 Gyr rock from Mars (<span class="hlt">ALH</span><span class="hlt">84001</span>), which was weathered at about 4.0 Gyr, affirm that some of the oldest surfaces involve primordial crustal materials, degraded by various processes including megaregolith formation and cementing of debris. Small craters have been lost by these processes, as shown by comparison with Phobos and with the production function, and by crater morphology distributions. Crater loss rates and survival lifetimes are estimated as a measure of average depositional/erosional rate of activity. We use our results to date the <span class="hlt">Martian</span> epochs defined by Tanaka (1986). The high crater densities of the Noachian confine the entire Noachian Period to before about 3.5 Gyr. The Hesperian/Amazonian boundary is estimated to be about 2.9 to 3.3 Gyr ago, but with less probability could range from 2.0 to 3.4 Gyr. Mid-age dates are less well constrained due to uncertainties in the <span class="hlt">Martian</span> cratering rate. Comparison of our ages with resurfacing data of Tanaka et al. (1987) gives a strong indication that volcanic, fluvial, and periglacial resurfacing rates were all much higher in approximately the first third of <span class="hlt">Martian</span> history. We estimate that the Late Amazonian Epoch began a few hundred Myr ago (formal solutions 300 to 600 Myr ago). Our work supports Mariner 9 era suggestions of very young lavas on Mars, and is consistent with <span class="hlt">meteorite</span> evidence for <span class="hlt">Martian</span> igneous rocks 1.3 and 0.2 - 0.3 Gyr old. The youngest detected <span class="hlt">Martian</span> lava flows give formal crater retention ages of the order 10 Myr or less. We note also that certain <span class="hlt">Martian</span> <span class="hlt">meteorites</span> indicate fluvial activity younger than the rock themselves, 700 Myr in one case, and this is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA07834&hterms=fingerprint&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D20%26Ntt%3Dfingerprint','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA07834&hterms=fingerprint&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D20%26Ntt%3Dfingerprint"><span><span class="hlt">Martian</span> Fingerprints</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p><p/> 9 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows patterned ground on the <span class="hlt">martian</span> northern plains. The circular features are buried meteor impact craters; the small dark dots associated with them are boulders. The dark feature at left center is a wind streak. <p/> <i>Location near</i>: 75.1oN, 303.0oW <i>Image width</i>: 3 km (1.9 mi) <i>Illumination from</i>: lower left <i>Season</i>: Northern Summer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA05759&hterms=meteorite+hit+earth&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmeteorite%2Bhit%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA05759&hterms=meteorite+hit+earth&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmeteorite%2Bhit%2Bearth"><span><span class="hlt">Meteorite</span> Linked to Rock at Meridiani</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p><p/>This <span class="hlt">meteorite</span>, a basalt lava rock nearly indistinguishable from many Earth rocks, provided the first strong proof that <span class="hlt">meteorites</span> could come from Mars. Originally weighing nearly 8 kilograms (17.6 pounds), it was collected in 1979 in the Elephant Moraine area of Antarctica. The side of the cube at the lower left in this image measures 1 centimeter (0.4 inches). <p/>This picture shows a sawn face of this fine-grained gray rock. (The vertical stripes are saw marks.) The black patches in the rock are melted rock, or glass, formed when a large <span class="hlt">meteorite</span> hit Mars near the rock. The <span class="hlt">meteorite</span> impact probably threw this rock, dubbed 'EETA79001,' off Mars and toward Antarctica on Earth. The black glass contains traces of <span class="hlt">martian</span> atmosphere gases. <p/>The Mars Exploration Rover Opportunity has discovered that a rock dubbed 'Bounce' at Meridiani Planum has a very similar mineral composition to this <span class="hlt">meteorite</span> and likely shares common origins. Bounce itself is thought to have originated outside the area surrounding Opportunity's landing site; an impact or collision likely threw the rock away from its primary home.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030111247&hterms=visible+spectroscopy&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvisible%2Bspectroscopy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030111247&hterms=visible+spectroscopy&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvisible%2Bspectroscopy"><span>Lunar Mare Basalts as Analogues for <span class="hlt">Martian</span> Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Graff, T. G.; Morris, R. V.; Christensen, P. R.</p> <p>2003-01-01</p> <p>The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the <span class="hlt">martian</span> surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic <span class="hlt">martian</span> <span class="hlt">meteorites</span> and from orbital and surface remote sensing observations. Petrographic observations of basaltic <span class="hlt">martian</span> <span class="hlt">meteorites</span> (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC <span class="hlt">meteorites</span> [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the <span class="hlt">martian</span> surface basalts than the basaltic <span class="hlt">martian</span> <span class="hlt">meteorites</span> because the plagioclase feldspar in the basaltic <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of <span class="hlt">martian</span> thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00290&hterms=living+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dliving%2Bmars','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00290&hterms=living+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dliving%2Bmars"><span>Mars Life? - Orange-colored Carbonate Mineral Globules</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1996-01-01</p> <p>This photograph shows orange-colored carbonate mineral globules found in a <span class="hlt">meteorite</span>, called <span class="hlt">ALH</span><span class="hlt">84001</span>, believed to have once been a part of Mars. These carbonate minerals in the <span class="hlt">meteorite</span> are believed to have been formed on Mars more than 3.6 billion years ago. Their structure and chemistry suggest that they may have been formed with the assistance of primitive, bacteria-like living organisms. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils inside of carbonate minerals such as these in the <span class="hlt">meteorite</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016pimo.conf..298T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016pimo.conf..298T"><span>Rediscovery of Polish <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tymiński, Z.; Stolarz, M.; Żołądek, P.; Wiśniewski, M.; Olech, A.</p> <p>2016-01-01</p> <p>The total number of Polish registered <span class="hlt">meteorites</span> (by July 2016) including the <span class="hlt">meteoritical</span> artifacts as Czestochowa Raków I and II is 22. Most of them are described by the pioneer of Polish <span class="hlt">Meteoritics</span> Jerzy Pokrzywnicki who also identified the <span class="hlt">meteorite</span> fall locations. In recent years prospectors found impressive specimens of known Polish <span class="hlt">meteorites</span> such as Morasko: 34 kg, 50 kg, 164 kg, 174 kg and 261 kg or Pultusk: 1578 g, 1576 g, 1510 g, 610 g and 580 g expanding and determining precisely the known <span class="hlt">meteorite</span> strewn fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.P51A0902D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.P51A0902D"><span>Assimilation of High 18O/16O Crust by Shergottite-Nakhlite-Chassigny (SNC) Magmas on Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, J. M.; Taylor, L. A.; Valley, J. W.; Spicuzza, M. J.</p> <p>2005-12-01</p> <p>There is significant geochemical evidence for assimilation of crustal material into sub-aerial, mantle-derived, terrestrial basaltic magmas. Some of the most powerful constraints on crustal assimilation come from oxygen isotope studies, because supracrustal rocks often have distinct 18O/16O ratios resulting from interaction with Earth's hydrosphere. From a planetary perspective, studies of carbonate concretions from <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> have yielded evidence for low-temperature crustal interaction at or near the surface of its putative parent body, Mars. This finding raises the possibility that crustal assimilation processes may be tracked using oxygen isotopes in combination with geochemical data of other reputed <span class="hlt">martian</span> (SNC) <span class="hlt">meteorites</span>. The whole-rock oxygen isotope ratios (Laser fluorination δ18O = +4.21 to +5.85‰ VSMOW) of SNC <span class="hlt">meteorites</span>, correlate with aspects of their incompatible element chemistry. Some of the oxygen isotope variability may be explained by post-magmatic alteration on Mars or Earth; however, it appears, based on petrographic and geochemical observations, that a number of SNC <span class="hlt">meteorites</span>, especially Shergottites, retain the original whole-rock oxygen isotope values of their magmas prior to crystallisation. Correlations between oxygen isotopes and incompatible element geochemistry are consistent with assimilation of a high-18O/16O, incompatible-element rich, oxidizing crustal component by hot, mantle-derived magmas (δ18O = ~~4.2‰). A crustal component has previously been recognized from Sr-Nd-Os isotope systematics and oxygen fugacity measurements of SNC <span class="hlt">meteorites</span>. Oxygen isotope evidence from SNC <span class="hlt">meteorites</span> suggests high-18O/16O crustal contaminants on Mars result from low temperature (< 300°C) interaction with <span class="hlt">martian</span> hydrosphere. The extent of apparent crustal contamination tracked by oxygen isotopes in SNC <span class="hlt">meteorites</span> implies that the majority of <span class="hlt">martian</span> crust may have undergone such interactions. Evidence for assimilation of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016LPICo1921.6119C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016LPICo1921.6119C"><span><span class="hlt">Meteorite</span> Falls in Morocco</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chennaoui Aoudjehane, H.</p> <p>2016-08-01</p> <p>The number of <span class="hlt">meteorite</span> falls reported in Morocco since 2000 is highest than any other place compared to the other countries in the world, that call into question the efficiency of the randomly <span class="hlt">meteorite</span> falls on Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.youtube.com/watch?v=yAN-wjGKzx0','SCIGOVIMAGE-NASA'); return false;" href="http://www.youtube.com/watch?v=yAN-wjGKzx0"><span>Searching for <span class="hlt">Meteorites</span></span></a></p> <p><a target="_blank" href="http://www.nasa.gov/multimedia/videogallery/index.html">NASA Video Gallery</a></p> <p></p> <p></p> <p>This lesson combines a series of activities to provide students with an understanding of how <span class="hlt">meteorites</span> can unlock answers to the early history of the solar system and how <span class="hlt">meteorites</span> and their big ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000110466&hterms=Hydrothermal+vents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DHydrothermal%2Bvents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000110466&hterms=Hydrothermal+vents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DHydrothermal%2Bvents"><span>Manganese, Metallogenium, and <span class="hlt">Martian</span> Microfossils</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stein, L. Y.; Nealson, K. H.</p> <p>1999-01-01</p> <p>Manganese could easily be considered an abundant element in the <span class="hlt">Martian</span> regolith, assuming that the composition of <span class="hlt">martian</span> <span class="hlt">meteorites</span> reflects the composition of the planet. Mineralogical analyses of 5 SNC <span class="hlt">meteorites</span> have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1332404','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1332404"><span>Tissintite, (Ca, Na,${\\square}$)AlSi<sub>2</sub>O<sub>6</sub>, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint <span class="hlt">martian</span> <span class="hlt">meteorite</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ma, Chi; Tschauner, Oliver; Beckett, John R.; Liu, Yang; Rossman, George R.; Zhuravlev, Kirill; Prakapenka, Vitali; Dera, Przemyslaw; Taylor, Lawrence A.</p> <p>2015-04-24</p> <p>Here, tissintite is a new vacancy-rich, high-pressure clinopyroxene, with a composition essentially equivalent to plagioclase. It was discovered in maskelynite (shocked plagioclase) and is commonly observed included within, or in contact with, shock-melt pockets in the Tissint <span class="hlt">meteorite</span>, a depleted olivine-phyric shergottite fall from Mars. The simple composition of tissintite (An58-69) and its precursor plagioclase (An59-69) together with the limited occurrence, both spatially (only in maskelynite less than ~25 μm of a shock melt pocket) and in terms of bulk composition, make tissintite a "goldilocks" phase. It formed during a shock event severe enough to allow nucleation and growth of vacancy-rich clinopyroxene from a melt of not too calcic and not too sodic plagioclase composition that was neither too hot nor too cold. With experimental calibration, these limitations on occurrence can be used to place strong constraints on the thermal history of a shock event. The kinetics for nucleation and growth of tissintite are probably slower for more-sodic plagioclase precursors, so tissintite is most likely to occur in depleted olivinephyric shergottites like Tissint and other highly shocked <span class="hlt">meteorites</span> and lunar and terrestrial rocks that consistently contained calcic plagioclase precursors in the appropriate compositional range for a shock of given intensity. Tissintite, (Ca<sub>0.45</sub>Na<sub>0.31</sub>${\\square}$ <sub>0.24</sub>)(Al<sub>0.97</sub>Fe<sub>0.03</sub>Mg<sub>0.01</sub>)(Si<sub>1.80</sub>Al<sub>0.20</sub>)O<sub>6</sub>, is a C2/c clinopyroxene, containing 42-60 mol% of the Ca-Eskola component, by far the highest known. The cell parameters are a = 9.21 (17) Å, b = 9.09 (4) Å, c = 5.20 (2) Å, β = 109.6 (9)°, V = 410 (8) Å<sup>3</sup>, Z = 4. The density is 3.32 g/cm(3) and we estimate a cell volume for the Ca-Eskola end-member pyroxene of 411 ±13 Å<sup>3</sup>, which is consistent with a previous estimate and, therefore, supports the importance</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080013502','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080013502"><span>Antarctic <span class="hlt">Meteorite</span> Newsletter, Volume 31, No. 1</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Satterwhite, Cecilia (Editor); Righter, Kevin (Editor)</p> <p>2008-01-01</p> <p>This newsletter reports 418 new <span class="hlt">meteorites</span> from the 2004 and 2006 ANSMET seasons from the Cumulus Hills (CMS), LaPaz Ice Field (LAP), Graves Nunataks (GRA), Grosvenor Mountains (GRO), Larkman Nunatak (LAR), MacAlpine Hills (MAC), Miller Range (MIL), Roberts Massif (RBT), and Scott Glacier (SCO). These new samples include one iron, 1 eucrite, 1 mesosiderite, 6 CK chondrites (2 with pairing), 2 CV3 chondrites, 1 CM1, 7 CM2 (4 with pairing), 3 CR2 (2 with pairing), and one each of a type 3 L and H chondrites. The CK6 chondrites (LAR 06869, 06872, 06873) are unusual in that they have no discernable chondrules, extremely fine-grained texture, and are full of veins. This newsletter represents a break from recent newsletters in which we have announced many unusual and popular samples, including new lunar and <span class="hlt">martian</span> <span class="hlt">meteorites</span>, an unusual achondrite (GRA 06128 and 06129 the topic of a special session at this years LPSC).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015M%26PS...50..590M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015M%26PS...50..590M"><span>Metamorphism in the <span class="hlt">Martian</span> crust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McSween, Harry Y.; Labotka, Theodore C.; Viviano-Beck, Christina E.</p> <p>2015-04-01</p> <p>Compositions of basaltic and ultramafic rocks analyzed by Mars rovers and occurring as <span class="hlt">Martian</span> <span class="hlt">meteorites</span> allow predictions of metamorphic mineral assemblages that would form under various thermophysical conditions. Key minerals identified by remote sensing roughly constrain temperatures and pressures in the <span class="hlt">Martian</span> crust. We use a traditional metamorphic approach (phase diagrams) to assess low-grade/hydrothermal equilibrium assemblages. Basaltic rocks should produce chlorite + actinolite + albite + silica, accompanied by laumontite, pumpellyite, prehnite, or serpentine/talc. Only prehnite-bearing assemblages have been spectrally identified on Mars, although laumontite and pumpellyite have spectra similar to other uncharacterized zeolites and phyllosilicates. Ultramafic rocks are predicted to produce serpentine, talc, and magnesite, all of which have been detected spectrally on Mars. Mineral assemblages in both basaltic and ultramafic rocks constrain fluid compositions to be H2O-rich and CO2-poor. We confirm the hypothesis that low-grade/hydrothermal metamorphism affected the Noachian crust on Mars, which has been excavated in large craters. We estimate the geothermal gradient (>20 °C km-1) required to produce the observed assemblages. This gradient is higher than that estimated from radiogenic heat-producing elements in the crust, suggesting extra heating by regional hydrothermal activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920019834&hterms=Percent+Composition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DPercent%2BComposition','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920019834&hterms=Percent+Composition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DPercent%2BComposition"><span>On the isotopic composition of magmatic carbon in SNC <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wright, I. P.; Grady, M. M.; Pillinger, C. T.</p> <p>1992-01-01</p> <p>SNC <span class="hlt">meteorites</span> are thought, from many lines of evidence, to come from Mars. A line of investigation which has been pursued in our laboratory over the years involves measurement of the stable isotopic composition of carbon, in its various forms, in SNC <span class="hlt">meteorites</span>. In order to establish a firm basis for studying the isotopic systematics of carbon in the <span class="hlt">martian</span> surface environment, it is first necessary to try and constrain the delta C-13 of bulk Mars. Taking all of the available information, it would seem that the delta C-13 of the Earth's mantle lies somewhere in the range of -5 to -7 percent. Preliminary assessment of magnetic carbon in SNC <span class="hlt">meteorites</span>, would tend to suggest a delta C-13 of 20 to 30 percent, which is conspicuously different from that of the terrestrial mantle. It is not obvious why there should be such a difference between the two planets, although many explanations are possible. One of these possibilities, that previous delta C-13 measurements for magnetic carbon in SNC <span class="hlt">meteorites</span> are in error to some degree, is being actively investigated. The most recent results seem to constrain the theta C-13 of the magnetic carbon in SNC <span class="hlt">meteorites</span> to about -20 percent, which is not at odds with previous estimates. As such, it is considered that a detailed investigation of the carbon isotopic systematics of <span class="hlt">martian</span> surface materials does have the necessary information with which to proceed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19423810','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19423810"><span>Elemental composition of the <span class="hlt">Martian</span> crust.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B</p> <p>2009-05-08</p> <p>The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and <span class="hlt">meteorite</span> data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that <span class="hlt">martian</span> <span class="hlt">meteorites</span> are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Sci...324..736M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Sci...324..736M"><span>Elemental Composition of the <span class="hlt">Martian</span> Crust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McSween, Harry Y.; Taylor, G. Jeffrey; Wyatt, Michael B.</p> <p>2009-05-01</p> <p>The composition of Mars’ crust records the planet’s integrated geologic history and provides clues to its differentiation. Spacecraft and <span class="hlt">meteorite</span> data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that <span class="hlt">martian</span> <span class="hlt">meteorites</span> are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000002826','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000002826"><span>Investigations in <span class="hlt">Martian</span> Sedimentology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Jeffrey M.</p> <p>1998-01-01</p> <p>The purpose of this report is to investigate and discuss the <span class="hlt">Martian</span> surface. This report was done in specific tasks. The tasks were: characterization of <span class="hlt">Martian</span> fluids and chemical sediments; mass wasting and ground collapse in terrains of volatile-rich deposits; Mars Rover terrestrial field investigations; Mars Pathfinder operations support; and <span class="hlt">Martian</span> subsurface water instrument.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160003506','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160003506"><span>Two Distinct Secondary Carbonate Species in OC <span class="hlt">Meteorites</span> from Antarctica are Possible Analogs for Mars Carbonates</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Evans, M. E.; Niles, P. B.; Locke, D. R.; Chapman, P.</p> <p>2016-01-01</p> <p><span class="hlt">Meteorites</span> falling in Antarctica are captured in ice and stored until the glacial flow transports them to the surface where they can be collected. Prior to collection, they are altered during interactions between the rock, the cryosphere, and the hydrosphere. The purpose of this study is to characterize the stable isotope values of terrestrial, secondary carbonate minerals from Ordinary Chondrite (OC) <span class="hlt">meteorites</span> collected in Antarctica. This facilitates better understanding of terrestrial weathering in <span class="hlt">martian</span> <span class="hlt">meteorites</span> as well as mechanisms for weathering in cold, arid environments as an analog to Mars. OC samples were selected for analysis based upon size and collection proximity to known <span class="hlt">martian</span> <span class="hlt">meteorites</span>. They were also selected based on petrologic type (3+) such that they were likely to be carbonate-free before falling to Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P53D..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P53D..02W"><span>Mars Atmospheric Composition, Isotope Ratios and Seasonal Variations: Overview and Updates of the SAM Measurements at Gale Crater</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Webster, C. R.; Mahaffy, P. R.; Atreya, S. K.; Conrad, P. G.; Franz, H.; Trainer, M. G.; Wong, M. H.; Mischna, M. A.; Flesch, G.; Farley, K. A.; Owen, T. C.; Niles, P. B.; Jones, J. H.; Christensen, L. E.; Martín-Torres, J.; Zorzano, M. P.</p> <p>2014-12-01</p> <p>We will summarize the in situ measurements of atmospheric composition and the isotopic ratios of D/H in water, 13C/12C, 18O/16O, 17O/16O, and 13C18O/12C16O in carbon dioxide, 38Ar/36Ar, xKr/84Kr, and 15N/14N made in the <span class="hlt">martian</span> atmosphere at Gale Crater from the Curiosity Rover using the Sample Analysis at Mars (SAM)'s Quadrupole Mass Spectrometer (QMS) and Tunable Laser Spectrometer (TLS). With data over 700 sols since the Curiosity landing, we will discuss evidence and implications for changes on seasonal and other timescales. We will also present results for continued methane and methane enrichment experiments over this time period. Comparison between our measurements in the modern atmosphere and those of <span class="hlt">martian</span> <span class="hlt">meteorites</span> like <span class="hlt">ALH</span> <span class="hlt">84001</span> implies that the <span class="hlt">martian</span> reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing. References:[1] Mahaffy P. R. et al., Science, 341, 263-266, 2013, doi:10.1126/science.1237966. [2] Webster C. R. et al. (2013), Science, 341, 260-263, doi:10.1126/science.1237961. [3] Wong, M. H. et al. (2013), Geophys. Res. Lett., doi:10.1002/2013GL057840. [4] Atreya S. K. et al (2013), Geophys. Res. Lett., 40, 1-5, doi:10.1002/2013GL057763. The research described here was supported by the National Aeronautics and Space Administration (NASA).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003GeCoA..67..185K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003GeCoA..67..185K"><span>Isotope geochemistry of caliche developed on basalt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knauth, L. Paul; Brilli, Mauro; Klonowski, Stan</p> <p>2003-01-01</p> <p>Enormous variations in oxygen and carbon isotopes occur in caliche developed on < 3 Ma basalts in 3 volcanic fields in Arizona, significantly extending the range of δ 18O and δ 13C observed in terrestrial caliche. Within each volcanic field, δ 18O is broadly co-variant with δ 13C and increases as δ 13C increases. The most 18O and 13C enriched samples are for subaerial calcite developed on pinnacles, knobs, and flow lobes that protrude above tephra and soil. The most 18O and 13C depleted samples are for pedogenic carbonate developed in soil atmospheres. The pedogenic caliche has δ 18O fixed by normal precipitation in local meteoric waters at ambient temperatures and has low δ 13C characteristic of microbial soil CO 2. Subaerial caliche has formed from 18O-rich evapoconcentrated meteoric waters that dried out on surfaces after local rains. The associated 13C enrichment is due either to removal of 12C by photosynthesizers in the evaporating drops or to kinetic isotope effects associated with evaporation. Caliche on basalt lava flows thus initially forms with the isotopic signature of evaporation and is subsequently over-layered during burial by calcite carrying the isotopic signature of the soil environment. The large change in carbon isotope composition in subsequent soil calcite defines an isotopic biosignature that should have developed in <span class="hlt">martian</span> examples if Mars had a "warm, wet" early period and photosynthesizing microbes were present in the early soils. The approach can be similarly applied to terrestrial Precambrian paleocaliche in the search for the earliest record of life on land. Large variations reported for δ 18O of carbonate in <span class="hlt">Martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> do not necessarily require high temperatures, playa lakes, or flood runoff if the carbonate is an example of altered <span class="hlt">martian</span> caliche.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999misp.conf..101T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999misp.conf..101T"><span>Chemical Models of Salts in the <span class="hlt">Martian</span> Regolith</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treiman, A. H.</p> <p>1999-01-01</p> <p>The <span class="hlt">martian</span> regolith is rich in ionic salts, which affect its chemical and physical properties, and will affect its resource potential and toxicity. Sulphate, halide, and carbonate salts are expected from theory, chemical analyses, and <span class="hlt">martian</span> <span class="hlt">meteorites</span>. A new inference here is that chromate salts may be present and abundant in the regolith. The origin of these salts is not known; they have been ascribed to hydrothermal action, <span class="hlt">meteoritic</span> contributions, and volcanic aerosols/gases. Low temperature alteration (diagenesis) is a potentially important contributor to regolith salts. Ionic salt minerals in the <span class="hlt">martian</span> regolith are important tracers of global and local chemical processes on Mars, appear to be important in setting the physical properties (i.e. trafficability) of the <span class="hlt">martian</span> surface, will likely be important resources for human exploitation, and could possibly present hazards to human health. MECA and other instruments on the MARS 2001 lander are designed to investigate the regolith, so it is appropriate to examine the current knowledge of likely salt mineral in the <span class="hlt">martian</span> regolith.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990079409&hterms=Magnesium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMagnesium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990079409&hterms=Magnesium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMagnesium"><span>Meteoric Magnesium Ions in the <span class="hlt">Martian</span> Atmosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pesnell, William Dean; Grebowsky, Joseph</p> <p>1999-01-01</p> <p>From a thorough modeling of the altitude profile of <span class="hlt">meteoritic</span> ionization in the <span class="hlt">Martian</span> atmosphere we deduce that a persistent layer of magnesium ions should exist around an altitude of 70 km. Based on current estimates of the meteoroid mass flux density, a peak ion density of about 10(exp 4) ions/cm is predicted. Allowing for the uncertainties in all of the model parameters, this value is probably within an order of magnitude of the correct density. Of these parameters, the peak density is most sensitive to the meteoroid mass flux density which directly determines the ablated line density into a source function for Mg. Unlike the terrestrial case, where the metallic ion production is dominated by charge-exchange of the deposited neutral Mg with the ambient ions, Mg+ in the <span class="hlt">Martian</span> atmosphere is produced predominantly by photoionization. The low ultraviolet absorption of the <span class="hlt">Martian</span> atmosphere makes Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the <span class="hlt">Martian</span> highlands.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130009093','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130009093"><span>Anhydrous Liquid Line of Descent of Yamato 980459 and Evolution of <span class="hlt">Martian</span> Parental Magmas</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rapp, J. F.; Draper, David S.; Mercer, C. M.</p> <p>2013-01-01</p> <p><span class="hlt">Martian</span> basalts represented by the shergottite <span class="hlt">meteorites</span> reflect derivation from highly depleted mantle sources (high Nd, strong LREE depletions, low fO2)[1-3], with evidence of mixing with a much more enriched and oxidized reservoir, most likely a late-stage product of crystallization of an initial <span class="hlt">martian</span> magma ocean [3-6]. The <span class="hlt">martian</span> basaltic <span class="hlt">meteorites</span> Yamato 980459 (Y98) and QUE 94201 (QUE) have bulk compositions that appear to represent bonafide liquids, rather than products of protracted crystallization. These two <span class="hlt">meteorites</span> also represent the most primitive and evolved examples of the depleted basaltic shergottite suite. Magmatic liquids serve as effective probes of their source regions, and thus studying the potential relationship between magmas represented by Y98 and QUE can yield important information on the formation and evolution of <span class="hlt">martian</span> basalts. Although the ages of these <span class="hlt">meteorites</span> preclude that they are petrogenetically related to each other, they represent the best existing candidates for genuine liquids (other <span class="hlt">meteorites</span> are suggested to represent liquid compositions, including LAR 06319 [7] and NWA 5789 [8], but only Y98 and QUE have been verified experimentally). They span much of the bulk-compositional range of <span class="hlt">martian</span> basaltic <span class="hlt">meteorites</span>, and represent end-member liquid compositions likely to arise from partial melting of the <span class="hlt">martian</span> mantle. Recent efforts to model Y98-like parent liquid evolution by fractional crystallization using MELTS [6] produced a derivative liquid composition that closely matches QUE bulk composition, although it required a some-what unusual crystallization sequence. Experimental endeavours to verify this result at 1 bar have, however, been inconclusive [9].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920019795&hterms=confounding&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dconfounding','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920019795&hterms=confounding&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dconfounding"><span>An ejection model for SNC <span class="hlt">meteorites</span>: An indication for recent volcanism on Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manker, J. P.</p> <p>1992-01-01</p> <p>When compared to other achondrites, Shergotty-Nakhla-Chassigny (SNC) <span class="hlt">meteorites</span> are viewed as anomalous objects. This conclusion is based mainly on their extremely young crystallization ages and their short cosmic ray exposure times. Further, SNC's noble gas and nitrogen components indicate a <span class="hlt">martian</span> origin for these objects. If these <span class="hlt">meteorites</span> are from Mars, then the most confounding question facing the planetary science community is how were they ejected from the planet's surface. The following is an investigation of that question.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016M%26PS...51.2023F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016M%26PS...51.2023F"><span>Constraints on the water, chlorine, and fluorine content of the <span class="hlt">Martian</span> mantle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filiberto, Justin; Gross, Juliane; McCubbin, Francis M.</p> <p>2016-11-01</p> <p>Previous estimates of the volatile contents of <span class="hlt">Martian</span> basalts, and hence their source regions, ranged from nearly volatile-free through estimates similar to those found in terrestrial subduction zones. Here, we use the bulk chemistry of <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, along with <span class="hlt">Martian</span> apatite and amphibole chemistry, to constrain the volatile contents of the <span class="hlt">Martian</span> interior. Our estimates show that the volatile content of the source region for the <span class="hlt">Martian</span> <span class="hlt">meteorites</span> is similar to the terrestrial Mid-Ocean-Ridge Mantle source. Chlorine is enriched compared with the depleted terrestrial mantle but is similar to the terrestrial enriched source region; fluorine is similar to the terrestrial primitive mantle; and water is consistent with the terrestrial mantle. Our results show that <span class="hlt">Martian</span> magmas were not volatile saturated; had water/chlorine and water/fluorine ratios 0.4-18; and are most similar, in terms of volatiles, to terrestrial MORBs. Presumably, there are variations in volatile content in the <span class="hlt">Martian</span> interior as suggested by apatite compositions, but more bulk chemical data, especially for fluorine and water, are required to investigate these variations. Finally, the Noachian <span class="hlt">Martian</span> interior, as exemplified by surface basalts and NWA 7034, may have had higher volatile contents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000040793','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000040793"><span>Antarctic <span class="hlt">Meteorite</span> Newsletter</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lindstrom, Marilyn</p> <p>2000-01-01</p> <p>This newsletter contains something for everyone! It lists classifications of about 440 <span class="hlt">meteorites</span> mostly from the 1997 and 1998 ANSMET (Antarctic Search for <span class="hlt">Meteorites</span>) seasons. It also gives descriptions of about 45 <span class="hlt">meteorites</span> of special petrologic type. These include 1 iron, 17 chondrites (7 CC, 1 EC, 9 OC) and 27 achondrites (25 HED, UR). Most notable are an acapoloite (GRA98028) and an olivine diogenite (GRA98108).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770050274&hterms=Fluorine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DFluorine','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770050274&hterms=Fluorine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DFluorine"><span>Fluorine in <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, R. O., Jr.; Clark, P. J.</p> <p>1977-01-01</p> <p>Microanalysis using a resonant nuclear reaction was used to measure F concentrations in USGS standard rocks and 21 <span class="hlt">meteorites</span>. The F appears to be a moderately depleted element, but there were significant variations within each sample. Measurements on separated metal phases suggest that about 20% of <span class="hlt">meteoritic</span> F is in the metal or in a phase closely associated with it. Simultaneous measurements of F, Mg, Na, Al and Si in the nonmagnetic fractions of <span class="hlt">meteorites</span> suggest plagioclase as a F containing phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11206539','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11206539"><span>Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty <span class="hlt">meteorite</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McSween, H Y; Grove, T L; Lentz, R C; Dann, J C; Holzheid, A H; Riciputi, L R; Ryan, J G</p> <p>2001-01-25</p> <p>Observations of <span class="hlt">martian</span> surface morphology have been used to argue that an ancient ocean once existed on Mars. It has been thought that significant quantities of such water could have been supplied to the <span class="hlt">martian</span> surface through volcanic outgassing, but this suggestion is contradicted by the low magmatic water content that is generally inferred from chemical analyses of igneous <span class="hlt">martian</span> <span class="hlt">meteorites</span>. Here, however, we report the distributions of trace elements within pyroxenes of the Shergotty <span class="hlt">meteorite</span>--a basalt body ejected 175 million years ago from Mars--as well as hydrous and anhydrous crystallization experiments that, together, imply that water contents of pre-eruptive magma on Mars could have been up to 1.8%. We found that in the Shergotty <span class="hlt">meteorite</span>, the inner cores of pyroxene minerals (which formed at depth in the <span class="hlt">martian</span> crust) are enriched in soluble trace elements when compared to the outer rims (which crystallized on or near to the <span class="hlt">martian</span> surface). This implies that water was present in pyroxenes at depth but was largely lost as pyroxenes were carried to the surface during magma ascent. We conclude that ascending magmas possibly delivered significant quantities of water to the <span class="hlt">martian</span> surface in recent times, reconciling geologic and petrologic constraints on the outgassing history of Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860022893','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860022893"><span>The 10Be contents of SNC <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pal, D. K.; Tuniz, C.; Moniot, R. K.; Savin, W.; Vajda, S.; Kruse, T.; Herzog, G. F.</p> <p>1986-01-01</p> <p>Several authors have explored the possibility that the Shergottites, Nakhlites, and Chassigny (SNC) came from Mars. The spallogenic gas contents of the SNC <span class="hlt">meteorites</span> have been used to: constrain the sizes of the SNC's during the last few million years; to establish groupings independent of the geochemical ones; and to estimate the likelihood of certain entries in the catalog of all conceivable passages from Mars to Earth. The particular shielding dependence of Be-10 makes the isotope a good probe of the irradiation conditions experienced by the SNC <span class="hlt">meteorites</span>. The Be-10 contents of nine members of the group were measured using the technique of accelerator mass spectrometry. The Be-10 contents of Nakhla, Governador Valadares, Chassigny, and probably Lafayette, about 20 dpm/kg, exceed the values expected from irradiation of the surface of a large body. The Be-10 data therfore do not support scenario III of Bogard et al., one in which most of the Be-10 in the SNC <span class="hlt">meteorites</span> would have formed on the <span class="hlt">Martian</span> surface; they resemble rather the Be-10 contents found in many ordinary chondrites subjected to 4 Pi exposures. The uncertainties of the Be-10 contents lead to appreciable errors in the Be-10 ages, t(1) = -1/lambda ln(1 Be-10/Be-10). Nonetheless, the Be-10 ages are consistent with the Ne-21 ages calculated assuming conventional, small-body production rates and short terrestrial ages for the finds. It is believed that this concordance strengthens the case for at least 3 different irradiation ages for the SNC <span class="hlt">meteorites</span>. Given the similar half-thicknesses of the Be-10 and Ne-21 production rates, the ratios of the Be-10 and Ne-21 contents do not appear consistent with common ages for any of the groups. In view of the general agreement between the Be-10 and Ne-21 ages it does not seem useful at this time to construct multiple-stage irradiation histories for the SNC <span class="hlt">meteorites</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050167804','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050167804"><span>Experimental Petrology of the Basaltic Shergottite Yamato 980459: Implications for the Thermal Structure of the <span class="hlt">Martian</span> Mantle</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dalton, H. A.; Musselwhite, D. S.; Kiefer, W.; Treiman, A. H.</p> <p>2005-01-01</p> <p>Yamato 980459 (Y98) is an olivine-phyric basaltic shergottite composed of 48% pyroxene, 26% olivine, 25% mesostasis, and 1% other minerals. Unlike the other <span class="hlt">Martian</span> basalts, it contains no plagioclase. Olivine in Y98 is the most magnesian of all <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. Thus Y98 is believed to be the most primitive and its composition may be the closest to a primary or direct melt of the <span class="hlt">Martian</span> mantle. As such, it provides a very useful probe of the mineralogy and depth of its mantle source region. Toward this end, we are conducting crystallization experiments on a synthetic Y98 composition at <span class="hlt">Martian</span> mantle pressures and temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011epsc.conf..842P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011epsc.conf..842P"><span>The EXPOSE-R Experiment ROSE-3 SPORES in artificial <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panitz, C.; Horneck, G.; Rabbow, E.; Rettberg, P.; Reitz, G.</p> <p>2011-10-01</p> <p>In the conducted experiment, spores of bacteria, fungi and ferns, especially adapted to survive extreme conditions, were either solely or embedded in artificial <span class="hlt">meteorites</span> exposed to space environment in the ESA facility EXPOSE-R for 22 months (10.03.2009-21.02.2011). The experiment will provide experimental clues to the question whether <span class="hlt">meteorite</span> material offers enough protection against the harsh environment of space for spores to survive a long-term stay in space. This question has received increased attention since the discovery of <span class="hlt">Martian</span> <span class="hlt">meteorites</span> has provided evidence that rocks can be transported from one planet to another in our solar</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992Metic..27R.298T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992Metic..27R.298T"><span>Foundations of Forensic <span class="hlt">Meteoritics</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treiman, A. H.</p> <p>1992-07-01</p> <p>It may be useful to know if a <span class="hlt">meteorite</span> was found at the site where it fell. For instance, the polymict ureilites North Haig and Nilpena were found 1100 km apart, yet are petrologically identical [1]. Could this distance represent transport from a single strewn field, or does it represent distinct fall sites? A <span class="hlt">meteorite</span> may contain sufficient clues to suggest some characteristics of its fall site. If these inferences are inconsistent with the find site, one may infer that the <span class="hlt">meteorite</span> has been transported. It will likely be impossible to determine the exact fall site of a transported <span class="hlt">meteorite</span>. Data relevant to a <span class="hlt">meteorite</span>'s fall site may be intrinsic to the <span class="hlt">meteorite</span>, or acquired at the site. For instance, an intrinsic property is terrestrial residence age (from abundances of cosmogenic radioisotopes and their decay products); a <span class="hlt">meteorite</span>'s terrestrial residence age must be the same or less than that of the surface on which it fell. After falling, a <span class="hlt">meteorite</span> may acquire characteristic telltales of terrestrial geological, geochemical, and biological processes. These telltale clues may include products of chemical weathering, adhering geological materials, biological organisms living (or once living) on the <span class="hlt">meteorite</span>, and biological materials adhering to (but never living on) the <span class="hlt">meteorite</span>. The effects of chemical weathering, present in all but the freshest finds, range from slight rusting to extensive decomposition and veining The ages of weathering materials and veins, as with terrestrial residence ages above, must be less than the age of the fall surface. The mineralogy and chemistry, elemental and isotopic, of weathering materials will differ according to the mineralogy and composition of the <span class="hlt">meteorite</span>, and the mineralogy, geochemistry, hydrology, and climate of the fall site. Weathering materials may also vary as climate changes and may vary among the microenvironments associated with a <span class="hlt">meteorite</span> on the Earth's surface. Geological materials (rock, sediment</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23612278','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23612278"><span>Discovery of seifertite in a shocked lunar <span class="hlt">meteorite</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miyahara, Masaaki; Kaneko, Shohei; Ohtani, Eiji; Sakai, Takeshi; Nagase, Toshiro; Kayama, Masahiro; Nishido, Hirotsugu; Hirao, Naohisa</p> <p>2013-01-01</p> <p>Many craters and thick regoliths of the moon imply that it has experienced heavy <span class="hlt">meteorite</span> bombardments. Although the existence of a high-pressure polymorph is a stark evidence for a dynamic event, few high-pressure polymorphs are found in a lunar sample. α-PbO₂-type silica (seifertite) is an ultrahigh-pressure polymorph of silica, and is found only in a heavily shocked <span class="hlt">Martian</span> <span class="hlt">meteorite</span>. Here we show evidence for seifertite in a shocked lunar <span class="hlt">meteorite</span>, Northwest Africa 4734. Cristobalite transforms to seifertite by high-pressure and -temperature condition induced by a dynamic event. Considering radio-isotopic ages determined previously, the dynamic event formed seifertite on the moon, accompanying the complete resetting of radio-isotopic ages, is ~2.7 Ga ago. Our finding allows us to infer that such intense planetary collisions occurred on the moon until at least ~2.7 Ga ago.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRE..113.6004P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRE..113.6004P"><span><span class="hlt">Martian</span> dunite NWA 2737: Integrated spectroscopic analyses of brown olivine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pieters, Carle M.; Klima, Rachel L.; Hiroi, Takahiro; Dyar, M. Darby; Lane, Melissa D.; Treiman, Allan H.; Noble, Sarah K.; Sunshine, Jessica M.; Bishop, Janice L.</p> <p>2008-06-01</p> <p>A second <span class="hlt">Martian</span> <span class="hlt">meteorite</span> has been identified that is composed primarily of heavily shocked dunite, Northwest Africa (NWA) 2737. This <span class="hlt">meteorite</span> has several similarities to the Chassigny dunite cumulate, but the olivine is more Mg rich and, most notably, is very dark and visually brown. Carefully coordinated analyses of NWA 2737 whole-rock and olivine separates were undertaken using visible and near-infrared reflectance, midinfrared emission and reflectance, and Mössbauer spectroscopic studies of the same samples along with detailed petrography, chemistry, scanning electron microscopy, and transmission electron microscopy analyses. Midinfrared spectra of this sample indicate that the olivine is fully crystalline and that its molecular structure remains intact. The unusual color and spectral properties that extend from the visible through the near-infrared part of the spectrum are shown to be due to nanophase metallic iron particles dispersed throughout the olivine during a major shock event on Mars. Although a minor amount of Fe3+ is present, it cannot account for the well-documented unusual optical properties of <span class="hlt">Martian</span> <span class="hlt">meteorite</span> NWA 2737. Perhaps unique to the <span class="hlt">Martian</span> environment, this ``brown'' olivine exhibits spectral properties that can potentially be used to remotely explore the pressure-temperature history of surface geology as well as assess surface composition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740018174','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740018174"><span>Magnetism in <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Herndon, J. M.; Rowe, M. W.</p> <p>1974-01-01</p> <p>An overview is presented of magnetism in <span class="hlt">meteorites</span>. A glossary of magnetism terminology followed by discussion of the various techniques used for magnetism studies in <span class="hlt">meteorites</span> are included. The generalized results from use of these techniques by workers in the field are described. A brief critical analysis is offered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27021613','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27021613"><span>Searching for the Source Crater of Nakhlite <span class="hlt">Meteorites</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kereszturi, A; Chatzitheodoridis, E</p> <p>2016-11-01</p> <p>We surveyed the <span class="hlt">Martian</span> surface in order to identify possible source craters of the nakhlite <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. We investigated rayed craters that are assumed to be younger than 11 Ma, on lava surfaces with a solidification age around 1.2 Ga. An area of 17.3 million km(2) Amazonian lava plains was surveyed and 53 rayed craters were identified. Although most of them are smaller than the threshold limit that is estimated as minimum of launching fragments to possible Earth crossing trajectories, their observed size frequency distribution agrees with the expected areal density from cratering models characteristic for craters that are less than few tens of Ma old. We identified 6 craters larger than 3 km diameter constituting the potentially best source craters for nakhlites. These larger candidates are located mostly on a smooth lava surface, and in some cases, on the earlier fluvial-like channels. In three cases they are associated with fluidized ejecta lobes and rays - although the rays are faint in these craters, thus might be older than the other craters with more obvious rays. More work is therefore required to accurately estimate ages based on ray system for this purpose. A more detailed search should further link remote sensing <span class="hlt">Martian</span> data with the in-situ laboratory analyses of <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, especially in case of high altitude, steep terrains, where the crater rays seems to rarely survive several Ma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OLEB...46..455K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OLEB...46..455K"><span>Searching for the Source Crater of Nakhlite <span class="hlt">Meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kereszturi, A.; Chatzitheodoridis, E.</p> <p>2016-11-01</p> <p>We surveyed the <span class="hlt">Martian</span> surface in order to identify possible source craters of the nakhlite <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. We investigated rayed craters that are assumed to be younger than 11 Ma, on lava surfaces with a solidification age around 1.2 Ga. An area of 17.3 million km2 Amazonian lava plains was surveyed and 53 rayed craters were identified. Although most of them are smaller than the threshold limit that is estimated as minimum of launching fragments to possible Earth crossing trajectories, their observed size frequency distribution agrees with the expected areal density from cratering models characteristic for craters that are less than few tens of Ma old. We identified 6 craters larger than 3 km diameter constituting the potentially best source craters for nakhlites. These larger candidates are located mostly on a smooth lava surface, and in some cases, on the earlier fluvial-like channels. In three cases they are associated with fluidized ejecta lobes and rays - although the rays are faint in these craters, thus might be older than the other craters with more obvious rays. More work is therefore required to accurately estimate ages based on ray system for this purpose. A more detailed search should further link remote sensing <span class="hlt">Martian</span> data with the in-situ laboratory analyses of <span class="hlt">Martian</span> <span class="hlt">meteorites</span>, especially in case of high altitude, steep terrains, where the crater rays seems to rarely survive several Ma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990020837&hterms=biofilms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dbiofilms','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990020837&hterms=biofilms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dbiofilms"><span>Biomarkers in Carbonate Thermal Springs: Implications for Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, C. C.; Kivett, S. J.; McKay, D. S.</p> <p>1998-01-01</p> <p>Evidence of possible relict biogenic activity has been reported in carbonate inclusions within <span class="hlt">martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span> <span class="hlt">84001</span>. The initial evidence included ovoid and elongated forms 50 - 500 nanometers in length, morphologically similar to but significantly smaller than many terrestrial microbes. More recently, thin structures resembling the remains of organic biofilms have been reported in the same <span class="hlt">meteorite</span>. Carbonates have also been discussed in the context of Mars sample return missions. Thermal spring deposits have often been cited as prime locations for exobiological exploration. By analogy to Earth, specialized microbes may have existed in the heated, mineralized waters, and precipitates of carbonate and/or silica from these waters may have trapped and preserved evidence of life. Since the geological interactions that produce thermal springs can be recognized in orbital imagery, directed searches for microfossils in such deposits are deemed possible. We are engaged in a study of the signatures produced by contemporary biogenic activity (biomarkers) in carbonate thermal springs. We are examining the microbes that live in such environments and the preservation of microbial forms, biofilms, and petrographic fabrics indicative of life in thermal spring mineral deposits. This work is part of a much more extensive study to refine the appropriate tools, techniques, and approaches to seek evidence of life in a range of planetary samples. A deeper understanding of biological signatures will prepare us for the detailed search for life on Mars and eventually on other planets. Overall. the study of biomarkers in rocks and soils will provide insight into the evolution of life because such signatures are a record of how life interacts with its environment, how it adapts to changing conditions, and how life can influence geology and climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990087893&hterms=onion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Donion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990087893&hterms=onion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Donion"><span>Fullerenes in Allende <span class="hlt">Meteorite</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Becker, L.; Bada, J. L.; Winans, R. E.; Bunch, T. E.</p> <p>1994-01-01</p> <p>The detection of fullerenes in deposits from meteor impacts has led to renewed interest in the possibility that fullerenes are present in <span class="hlt">meteorites</span>. Although fullerenes have not previously been detected in the Murchison and Allende <span class="hlt">meteorites</span>, the Allende <span class="hlt">meteorite</span> is known to contain several well-ordered graphite particles which are remarkably similar in size and appearance to the fullerene-related structures carbon onions and nanotubes. We report that fullerenes are in fact present in trace amounts in the Allende <span class="hlt">meteorite</span>. In addition to fullerenes, we detected many polycyclic aromatic hydrocarbons (PAHs) in the Allende <span class="hlt">meteorite</span>, consistent with previous reports. In particular, we detected benzofluoranthene and corannulene (C20H10), five-membered ring structures which have been proposed as precursors to the formation of fullerene synthesis, perhaps within circumstellar envelopes or other sites in the interstellar medium.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740029965&hterms=organic+compounds&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dorganic%2Bcompounds','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740029965&hterms=organic+compounds&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dorganic%2Bcompounds"><span>Organic compounds in <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anders, E.; Hayatsu, R.; Studier, M. H.</p> <p>1973-01-01</p> <p>The problem of whether organic compounds originated in <span class="hlt">meteorites</span> as a primary condensate from a solar gas or whether they were introduced as a secondary product into the <span class="hlt">meteorite</span> during its residence in a parent body is examined by initially attempting to reconstruct the physical conditions during condensation (temperature, pressure, time) from clues in the inorganic matrix of the <span class="hlt">meteorite</span>. The condensation behavior of carbon under these conditions is then analyzed on the basis of thermodynamic calculations, and compounds synthesized in model experiments on the condensation of carbon are compared with those actually found in <span class="hlt">meteorites</span>. Organic compounds in <span class="hlt">meteorites</span> seem to have formed by catalytic reactions of carbon monoxide, hydrogen, and ammonia in the solar nebula at 360 to 400 K temperature and about 3 to 7.6 microtorr pressure. The onset of these reactions was triggered by the formation of suitable catalysts (magnetite, hydrated silicates) at these temperatures.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412225R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412225R"><span>Cathodoluminescence : an imaging technique for the search of extraterrestrial life</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramboz, C.; Rubert, Y.; Bost, N.; Westall, F.; Lerouge, C.</p> <p>2012-04-01</p> <p>Solids irradiated by a 10-20 keV electron beam emit ligth in the UV-visible range, which is called cathodoluminescence (CL). CL imagery is a powerful tool for visualizing minerals and their internal structures (lattice defects, zoning). For example, terrestrial calcite, either of sedimentary or biogenic origin, often display a bright orange CL, as a result of the incorporation of trace Mn2+ in its lattice. Aragonite can also be discriminated from calcite by its green CL. Carbonates are a major target for the search of life on Mars, and CL imagery could contribute to reveal carbonates in situ. Thomas et al. [1] have validated the concept of an electron lamp to make CL imagery of a rock surface placed in a <span class="hlt">martian</span> CO2 atmosphere. We present 2 examples of terrestrial bacterial microstructures that are revealed by CL. (1) In Sinemurian sediments from the Montmiral borehole (Valence Basin, France), banded wavy calcite in contact with pyrite represents fossilized biofilms of sulfato-reducing bacteria, as confirmed by the sulfur isotopic composition of pyrite ~+36 %0 PDB. (2) At l'Ile Crémieux, north of the Valence basin, a dense filamentous microbial/fungal community with a bright orange CL signature is embedded in vuggy calcite from a tectonic vein. The mat is anchored 1-2 mm deep in the oolitic veinwall and emerges at right angle in the 'open' fracture space. Finally, carbonate vesicles and exhalite crusts from the Svalbard basalt in Groendland, with orange CL, are shown as analogues to carbonates from the <span class="hlt">martian</span> <span class="hlt">ALH</span><span class="hlt">84001</span> igneous <span class="hlt">meteorite</span>. [1]Thomas et al. (2009) in A. Gucsik (Ed.) "Cathodoluminescence and Its Application in the Planetary Sciences"</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110003451','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110003451"><span>A Terrestrial Analogue from Spitsbergen (Svalbard, Norway) for the Comanche Carbonate at Gusev Crater, Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morris, Richard V.; Blake, D. F.; Bish, D.; Ming, Douglas W.; Agresti, D. G.; Treiman, A. H.; Steele, A.; Amundsen, H. E. F.</p> <p>2011-01-01</p> <p>Carbonate occurs at the Comanche outcrops in Gusev Crater on the basis of analyses made by the Mars Exploration Rover Spirit [1]. Taken together, mineralogical data from Spirit's Moessbauer (MB) and Mini-TES spectrometer and chemical data from the APXS spectrometer show that Comanche carbonate has an Mg-Fe-rich bulk chemical composition, is present at high concentrations, and is distributed throughout the outcrop and not just at the MB and APXS analysis location. The granular outcrop texture and the observation that it appears to be resistant to weathering compared with surrounding material [1] imply that the carbonate may be present as a cement. A hydrothermal origin for the Comanche carbonate was inferred by analogy with laboratory experiments and with a carbonate occurrence within the Bockfjord volcanic complex on the island Spitsbergen (Svalbard, Norway) [1]. The laboratory carbonates, synthesized by precipitation from hydrothermal solutions, have (MB) parameters and average bulk chemical compositions that are characteristic of Comanche carbonate. The connection to Comanche carbonate is only through chemical data for certain occurrences of Spitsbergen carbonates. In fact, the common average bulk chemical composition for these Spitsbergen carbonates, the synthetic carbonates, the Comanche carbonate, and also the carbonate globules found in <span class="hlt">martian</span> <span class="hlt">meteorite</span> <span class="hlt">ALH</span><span class="hlt">84001</span> is a chemical constraint consistent with a hydrothermal formation process for all the carbonates [e.g., 1-3]. We develop here a link between MB data for the Comanche carbonate from MER and MB data for certain Spitsbergen carbonate occurrences from laboratory measurements. We also obtained visible and near- IR spectra on Spitsbergen carbonates for comparison with <span class="hlt">martian</span> carbonate detections made on the basis of CRISM spectral data, e.g., in Nili Fossae [4].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940028720','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940028720"><span>The mineralogic evolution of the <span class="hlt">Martian</span> surface through time: Implications from chemical reaction path modeling studies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.</p> <p>1993-01-01</p> <p>Chemical reaction path calculations were used to model the minerals that might have formed at or near the <span class="hlt">Martian</span> surface as a result of volcano or <span class="hlt">meteorite</span> impact driven hydrothermal systems; weathering at the <span class="hlt">Martian</span> surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the <span class="hlt">Martian</span> surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080026344','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080026344"><span>Ar-Ar Dating of <span class="hlt">Martian</span> Chassignites, NWA2737 and Chassigny, and Nakhlite MIL03346</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bogard, D. D.; Garrison, D. H.</p> <p>2006-01-01</p> <p>Until recently only three nakhlites and one chassignite had been identified among <span class="hlt">martian</span> <span class="hlt">meteorites</span>. These four exhibit very similar radiometric ages and cosmic ray exposure (CRE) ages, indicating that they may have derived from a common location on Mars and were ejected into space by a single impact. This situation is quite different from that of <span class="hlt">martian</span> shergottites, which exhibit a range of radiometric ages and CRE ages (1). Recently, several new nakhlites and a new <span class="hlt">martian</span> dunite (NWA2737) have been recognized. Here we report our results of Ar-39-Ar-40 dating for the MIL03346 nakhlite and the NWA2737 "chassignite", along with new results on Chassigny.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120007400','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120007400"><span>Iron Redox Systematics of Shergottites and <span class="hlt">Martian</span> Magmas</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.</p> <p>2010-01-01</p> <p><span class="hlt">Martian</span> <span class="hlt">meteorites</span> record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for <span class="hlt">martian</span> magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of <span class="hlt">martian</span> magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016M%26PS...51.1935F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016M%26PS...51.1935F"><span>A review of volatiles in the <span class="hlt">Martian</span> interior</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filiberto, Justin; Baratoux, David; Beaty, David; Breuer, Doris; Farcy, Benjamin J.; Grott, Matthias; Jones, John H.; Kiefer, Walter S.; Mane, Prajkta; McCubbin, Francis M.; Schwenzer, Susanne P.</p> <p>2016-11-01</p> <p>Multiple observations from missions to Mars have revealed compelling evidence for a volatile-rich <span class="hlt">Martian</span> crust. A leading theory contends that eruption of basaltic magmas was the ultimate mechanism of transfer of volatiles from the mantle toward the surface after an initial outgassing related to the crystallization of a magma ocean. However, the concentrations of volatile species in ascending magmas and in their mantle source regions are highly uncertain. This work and this special issue of <span class="hlt">Meteoritics</span> & Planetary Science summarize the key findings of the workshop on Volatiles in the <span class="hlt">Martian</span> Interior (Nov. 3-4, 2014), the primary open questions related to volatiles in <span class="hlt">Martian</span> magmas and their source regions, and the suggestions of the community at the workshop to address these open questions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P23E..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P23E..07F"><span>Continued Evidence for Input of Chlorine into the <span class="hlt">Martian</span> Crust from Degassing of Chlorine-Rich <span class="hlt">Martian</span> Magmas with Implications for Potential Habitability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filiberto, J.; Gross, J.</p> <p>2014-12-01</p> <p>The chlorine-concentration (or salinity) of a fluid affects the potential for that fluid to be a habitable environment, with most known terrestrial organisms preferring low salinity fluids [1, 2]. The <span class="hlt">Martian</span> crust (as analyzed by the Gamma Ray Spectrometer) is chlorine-rich with up to 0.8 wt% Cl; while the MER rovers Spirit and Opportunity as well as MSL Curiosity have analyzed rocks with even higher chlorine concentrations [e.g., 3]. This suggests that any potential fluid flowing through the crust would have high chlorine concentrations and therefore high salinity. Here we investigate the bulk and mineral chemistry of the SNC <span class="hlt">meteorites</span> to constrain the pre-eruptive chlorine concentrations of <span class="hlt">Martian</span> magmas as the potential source of chlorine in the <span class="hlt">Martian</span> crust. Bulk SNC <span class="hlt">meteorites</span> have Cl concentrations similar to terrestrial Mid Ocean Ridge Basalts which would suggest a Cl content of the <span class="hlt">Martian</span> interior similar to that of the Earth [4]. However, based on Cl/La ratios, the <span class="hlt">Martian</span> interior actually has 2-3 times more Cl than the Earth [5]. This is also reflected in the composition of Cl-rich minerals within the SNC <span class="hlt">meteorites</span> [5, 6] and suggests that the pre-eruptive parental magmas to the SNC <span class="hlt">meteorites</span> were Cl-rich. Eruption and degassing of such Cl-rich magmas would have delivered Cl to the <span class="hlt">Martian</span> crust, thereby increasing the salinity of any fluids within the crust. [1] Rothschild L.J. and R.L. Mancinelli (2001) Nature. 409: 1092-1101. [2] Sharp Z.D. and D.S. Draper (2013) EPSL. 369-370: 71-77. [3] Taylor G.J. et al. (2010) GRL. 37: L12204. [4]. Burgess R. et al (2013) GCA 77: 793. [5] Filiberto J. and A.H. Treiman (2009) Geology. 37: 1087-1090. [6] McCubbin F.M. et al. (2013) MaPS. 48: 819-853.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080012516','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080012516"><span><span class="hlt">Martian</span> Chronology and Atmospheric Composition: In Situ Measurements versus Sample Return</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bogard, Donald D.</p> <p>2008-01-01</p> <p>I examine two significant issues of <span class="hlt">martian</span> science from the point of view of in situ measurements by robotic spacecraft versus sample return and analysis in terrestrial labs. (1) To define <span class="hlt">martian</span> history, ages of geological processes and surface features are required. Estimated ages from surface crater densities have limitations, and the ages measured for <span class="hlt">martian</span> <span class="hlt">meteorites</span> cannot be associated with specific <span class="hlt">martian</span> locales. Whereas returned <span class="hlt">martian</span> rocks could be accurately dated, some have suggested sending a robotic spacecraft to Mars to measure rock ages using the classical K- Ar-40 technique, considered the easiest to implement. (2) To understand the evolution of the <span class="hlt">martian</span> atmosphere and its interactions with the surface, requires precise measurements of atmospheric composition. A significant amount of information has derived from measurements by Viking and of <span class="hlt">martian</span> <span class="hlt">meteorites</span>. Instrumentation on the Mars Science Lander (MSL) spacecraft to be launched in the near future promises to determine atmospheric composition even more precisely. If MSL is successful, which questions about atmospheric composition will remain and thus will require atmospheric sample return to answer?</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100033809','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100033809"><span>The Future of Human Exploration</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cooke, Doug</p> <p>2001-01-01</p> <p>This slide presentation reviews the near term future of human space exploration in terms of possible mission scenarios, propulsion technologies, orbital dynamics that lead to Low-Energy Transfer from Earth-Moon LI to Solar Libration Points and Return Potential Staging Point for Human Mars Missions. It also examines the required evolution of mission architecture, solar electric propulsion concept, vehicle concepts for future Mars missions, and an overview of a Mars Mission, Also in this presentation are pictures of several historic personages and occasions, and a view of a Mars <span class="hlt">Meteorite</span> (i.e., <span class="hlt">ALH</span><span class="hlt">84001</span>.0)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019348','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019348"><span>Radiocarbon datings of Yamato <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kigoshi, K.; Matsuda, E.</p> <p>1986-01-01</p> <p>The terrestrial ages of five Yamato <span class="hlt">Meteorites</span> were measured by the content of cosmic-ray-produced carbon-14. Three Yamato <span class="hlt">Meteorites</span> Y-74013, Y-74097, and Y-74136, which are all diogenites, were found at sites from one to two kilometers apart from each other. Evidence is presented for these three <span class="hlt">meteorites</span> being a single <span class="hlt">meteorite</span>. Also presented is a method adopted in the experimental procedure which includes a check for modern carbon contamination in the <span class="hlt">meteorites</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012M%26PS...47..927M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012M%26PS...47..927M"><span><span class="hlt">Meteorites</span> on Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCall, G. Joseph H.</p> <p>2012-05-01</p> <p>The article by Fairén et al. (2011) is very interesting to me, as not only have I published, albeit very cursorily, on the occurrence of <span class="hlt">meteorites</span> on Mars (McCall 2005, 2011, 2012; McCall et al. 2006), but I was the author (McCall 1965) of the description of the Mount Padbury mesosiderite cited by Schröder et al. (2010) in their description of the four stony <span class="hlt">meteorites</span> also found by the Opportunity rover. I have given my reasons elsewhere for thinking these are not mesosiderites (McCall 2012), but are likely differentiated stony <span class="hlt">meteorites</span> of a hitherto unknown type.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720060466&hterms=chromium+spinel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dchromium%2Bspinel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720060466&hterms=chromium+spinel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dchromium%2Bspinel"><span>The mineralogy of <span class="hlt">meteorites</span>.</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mason, B.</p> <p>1972-01-01</p> <p>Of particular interest among minerals recently discovered in <span class="hlt">meteorites</span> are five phosphate minerals, three of them unknown in terrestrial rocks; a chromium nitride and a silicon oxynitride; lonsdaleite and chaoite, new polymorphs of carbon; ringwoodite and majorite, the spinel and garnet analogs of olivine and pyroxene, respectively; a number of calcium- and aluminum-rich silicates in the Allende <span class="hlt">meteorite</span>, a type III carbonaceous chondrite which fell in 1969; and several alkali-rich silicates found as inclusions in iron <span class="hlt">meteorites</span>. Knowledge of the compositional range of the common minerals olivine, pyroxene, and plagioclase has also been greatly increased by recent researches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100006627','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100006627"><span>Carbon and Oxygen Stable Isotope Measurements of <span class="hlt">Martian</span> Atmospheric CO2 by the Phoenix Lander</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niles, Paul B.; Boynton, W. V.; Hoffman, J. H.; Ming, D. W.; Hamara, D.</p> <p>2010-01-01</p> <p>Precise stable isotope measurements of the CO2 in the <span class="hlt">martian</span> atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars [1]. The isotopic composition of the <span class="hlt">martian</span> atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated Delta(sup 13)C values measured in carbonates in <span class="hlt">martian</span> <span class="hlt">meteorites</span> [2-4] it has been proposed that the <span class="hlt">martian</span> atmosphere was enriched in 13C [8]. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated Delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the <span class="hlt">martian</span> atmosphere have measured the <span class="hlt">martian</span> CO2 to be depleted in C-13 relative to CO2 in the terrestrial atmosphere[ 7, 9-11]. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander [12] included a magnetic-sector mass spectrometer (EGA) [13] which had the goal of measuring the isotopic composition of <span class="hlt">martian</span> atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature instrument intended to measure both the <span class="hlt">martian</span> atmosphere as well as gases evolved from heating <span class="hlt">martian</span> soils.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040085427&hterms=Gadolinium&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGadolinium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040085427&hterms=Gadolinium&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGadolinium"><span>Oxygen Fugacity of the <span class="hlt">Martian</span> Mantle from Pigeonite/Melt Partitioning of Samarium, Europium and Gadolinium</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Musselwhite, S.; Jones, J. H.; Shearer, C.</p> <p>2004-01-01</p> <p>This study is part of an ongoing effort to calibrate the pyroxene/melt Eu oxybarometer for conditions relevant to the <span class="hlt">martian</span> <span class="hlt">meteorites</span>. There is fairly good agreement between a determinations using equilibria between Fe-Ti oxides and the estimates from Eu anomalies in shergottite augites in tenns of which <span class="hlt">meteorites</span> are more or less oxidized. The Eu calibration was for angrite composition pyroxenes which are rather extreme. However, application of a calibration for <span class="hlt">martian</span> composition augites 113 does not significantly reduce the discrepancy between the two methods. One possible reason for this discrepancy is that augites are non-liquidus. The use of pigeonite rather than augite as the oxy-barometer phase is considered. We have conducted experiments on <span class="hlt">martian</span> composition pigeonite/melt REE partitioning as a function of fO2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012903','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012903"><span>A TEM Investigation of the Fine-Grained Matrix of the <span class="hlt">Martian</span> Basaltic Breccia NWA 7034</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.</p> <p>2014-01-01</p> <p>The <span class="hlt">martian</span> basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles <span class="hlt">Martian</span> crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this <span class="hlt">martian</span> <span class="hlt">meteorite</span> may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired <span class="hlt">meteorites</span> NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991SSRv...56...13J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991SSRv...56...13J"><span>Chronology of SNC <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jagoutz, E.</p> <p>1991-04-01</p> <p>A model is presented for the geochemical evolution of Mars which is constrained by the isotope systematics of Pb, Nd, and Sr determined for SCN <span class="hlt">meteorites</span>. The young magmatic crystallization ages of SCNs may indicate that these <span class="hlt">meteorites</span> do in fact stem from Mars. Internal ages of U-Pb and Pb-Pb systematics strongly suggest that they are the result of two magmatic processes. In addition, shock metamorphism is implied from observed petrographic shock features.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003mia..book.....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003mia..book.....C"><span><span class="hlt">Meteorites</span>, Ice, and Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cassidy, William A.</p> <p>2003-08-01</p> <p>Bill Cassidy led <span class="hlt">meteorite</span> recovery expeditions in the Antarctic for fifteen years and his searches have resulted in the collection of thousands of <span class="hlt">meteorite</span> specimens from the ice. This personal account of his field experiences on the U.S. Antarctic Search for <span class="hlt">Meteorites</span> Project reveals the influence the work has had on our understanding of the moon, Mars and the asteroid belt. Cassidy describes the hardships and dangers of fieldwork in a hostile environment, as well as the appreciation he developed for its beauty. William Cassidy is Emeritus Professor of Geology and Planetary Science at the University of Pittsburgh. He initiated the U.S. Antarctic Search for <span class="hlt">Meteorites</span> (ANSMET) nroject and led <span class="hlt">meteorite</span> recovery expeditions in Antarctica in1976. His name is found attached to a mineral (cassidyite), on the map of Antarctica (Cassidy Glacier), and in the Catalog of Asteroids (3382 Cassidy). Profiled in "American Men of Science," and "Who's Who in America," he is also a recipient of The Antarctic Service Medal from the United States and has published widely in Science, <span class="hlt">Meteoritics</span> and Planetary Science, and The Journal of Geophysical Research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeCoA.157...56S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeCoA.157...56S"><span>Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the <span class="hlt">martian</span> crust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santos, Alison R.; Agee, Carl B.; McCubbin, Francis M.; Shearer, Charles K.; Burger, Paul V.; Tartèse, Romain; Anand, Mahesh</p> <p>2015-05-01</p> <p>The <span class="hlt">martian</span> <span class="hlt">meteorite</span> Northwest Africa (NWA) 7034 was examined both petrographically and geochemically using several micro-beam techniques including electron probe microanalysis and secondary ion mass spectrometry. We have identified various clast types of igneous, sedimentary, and impact origin that occur within the breccia, and we define a classification scheme for these materials based on our observations, although our primary focus here is on the petrology of the igneous clasts. A number of different igneous clasts are present in this <span class="hlt">meteorite</span>, and our study revealed the presence of at least four different igneous lithologies (basalt, basaltic andesite, trachyandesite, and an Fe, Ti, and P (FTP) rich lithology). These lithologies do not appear to be related by simple igneous processes such as fractional crystallization, indicating NWA 7034 is a polymict breccia that contains samples from several different igneous sources. The basalt lithologies are a good match for measured rock compositions from the <span class="hlt">martian</span> surface, however more exotic lithologies (e.g., trachyandesite and FTP lithologies) show this <span class="hlt">meteorite</span> contains previously unsampled rock types from Mars. These new rock types provide evidence for a much greater variety of igneous rocks within the <span class="hlt">martian</span> crust than previously revealed by <span class="hlt">martian</span> <span class="hlt">meteorites</span>, and supports recent rover observations of lithologic diversity across the <span class="hlt">martian</span> surface. Furthermore, the ancient ages for the lithologic components in NWA 7034 indicate Mars developed this lithologic diversity in the early stages of crust formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050176413&hterms=PEROVSKITE&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPEROVSKITE','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050176413&hterms=PEROVSKITE&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPEROVSKITE"><span>Lunar and Planetary Science XXXVI, Part 19</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p> Patera? 24) Mars Polar Cap Edges Tracked over 3 Full Mars Years; 25) Elemental Abundance in Presolar SiC: Comparing Grains Separated by Acid Residue and Gently Separation Procedures; 26) First Results from the Descent Imager/Spectral Radiometer (DISR) Experiment on the Huygens Entry Probe of Titan; 27) Minor Element Behavior of Pallasite Olivine: Understanding Pallasite Thermal History and Chronology; 28) Canonical Anorthite in a Grosnaja Forsterite-bearing CAI; 29) Experimental Evidence for Condensation of 'Astrophysical' Carbonate; 30) Distribution and Classification of Multiple Coronae on Venus; 31) Recognition of Rayed Craters on Mars in THEMIS Thermal Infrared Imagery: Implications for <span class="hlt">Martian</span> <span class="hlt">Meteorite</span> Source Regions; 32) Geochemical Modeling of Evaporites on Mars: Insight from Meridiani Planum; 33) Hadean Crustal Processes Revealed from Oxygen Isotopes and U-Th-Pb Depth Profiling of Pre-4.0 Ga Detrital Zircons from Western Australia; 34) On Modeling the Seepage of Water into the <span class="hlt">Martian</span> Subsurface; 35) Martial Gullies and Groundwater: A Series of Unfortunate Exceptions; 36) Olivine and Carbonate Globules in <span class="hlt">ALH</span><span class="hlt">84001</span>: A Terrestrial Analog, and Implications for Water on Mars; 37) A Reevaluation of Mass Movements Within the Valles Marineris Region of Mars Using MOLA and MOC Data; 38) Evidence of Hydrated 109P/Swift-Tuttle Meteoroids from Meteor Spectroscopy; 39) Cr-54 Anomalies in the Solar System: Their Extent and Origin; 40) Reevaluation of the Mn-53-Cr-53 Systematic in the Basaltic Achondrites; 41) Effective Liquid Metal-Silicate Mixing Upon Shock by Power-Law Droplet Size Scaling in Richtmyer-Meshkov Like Perturbations; 42) Post-Impact Deformation of Impact Craters: Towards a Better Understanding Through the Study of Mjolnir Crater; 43) Cutting Silica Aerogel for Particle Extraction; 44) Liquid Hydrocarbons on Titan's Surface? How Cassini ISS Observations Fit into the Story (So Far); and 45) Mesoscale Simulations of Polar Circulations: Late Spring to Late Summe</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2253637M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2253637M"><span>Organic Molecules in <span class="hlt">Meteorites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martins, Zita</p> <p>2015-08-01</p> <p>Carbonaceous <span class="hlt">meteorites</span> are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous <span class="hlt">meteorites</span> may have contributed to the organic inventory of the early Earth. The majority (>70%) of the <span class="hlt">meteoritic</span> organic material consist of insoluble organic matter (IOM) [1]. The remaining <span class="hlt">meteoritic</span> organic material (<30%) consists of a rich organic inventory of soluble organic compounds, including key compounds important in terrestrial biochemistry [2-4]. Different carbonaceous <span class="hlt">meteorites</span> contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the <span class="hlt">meteorite</span> parent bodies. Extensive aqueous alteration on the <span class="hlt">meteorite</span> parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous <span class="hlt">meteorites</span> may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the <span class="hlt">meteorite</span> parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in <span class="hlt">meteorites</span> helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820048233&hterms=Igneous+rocks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DIgneous%2Brocks','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820048233&hterms=Igneous+rocks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DIgneous%2Brocks"><span>SNC <span class="hlt">meteorites</span> - Igneous rocks from Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, C. A.; Ashwal, L. D.</p> <p>1982-01-01</p> <p>It is argued that SNC (shergottite, nakhlite, chassignite) <span class="hlt">meteorites</span> are ejecta from Mars. The mineralogy and chemistry of these objects is discussed, including rare earth element content, potassium/uranium ratios, oxidation state, oxygen isotopes, ages and isotopic evolution, magnetism, shock and texture. The possibility of SNC's deriving from Mercury, Venus, earth, moon, or a eucrite parent body is argued against. Mercury is too volatile-poor and anhydrous, Venus's atmosphere too thick and hot and its gravitational field too large, earth's oxygen isotope content too different from that of SNC's, the moon too different isotopically and chemically, and the ages of eucrites too different. Models suggest that SNC's could have escaped from Mars's gravitational field, and their composition supports <span class="hlt">Martian</span> origin. Statistically, they could have reached the earth within their measured shock ages. Objections to the hypothesis are also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712534O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712534O"><span>Origin of the soluble species in the Tissint Mars <span class="hlt">meteorite</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oberlin, Elizabeth; Kounaves, Samuel; Claire, Mark; Gabriel-Ori, Gian; Taj-Edine, Kamal</p> <p>2015-04-01</p> <p>The Tissint <span class="hlt">martian</span> <span class="hlt">meteorite</span> is a high magnesium olivine shergottite that was observed falling on 18 July 2011 near the Oued Drâa valley, Morocco [1]. Fragments collected over the next several months in the remote desert region should thus represent minimally contaminated fragments of <span class="hlt">martian</span> surface and crustal material. We obtained interior fragments of Tissint from the Natural History Museum in London, and analyzed the soluble species using ion chromatography. Analyses showed trace levels of perchlorate (ClO4-) as well as several other species including nitrate (NO3-), chlorate (ClO3), and sulfate (SO42-). In order to differentiate the measured species in Tissint from possible terrestrial contamination, we collected soil samples from the Tissint strewn field, centered at approximately 50km ESE of Tata, and 48 km SSW of Tissint, near El Ga'ïdat plateau and both N and S of Oued El Gsaïb valley. Samples were collected from the surface and at depth from over 15 sites spanning the strewn field. The samples were then brought back to our laboratory and analyzed for a variety of soluble inorganic species. We also compare these values to those recently reported for the Mars <span class="hlt">meteorite</span> EETA79001 [2], which shares similar lithology, elemental abundance, and cosmic ray exposure age, to the Tissint <span class="hlt">meteorite</span>. [1] Chennaoui Aoudjehane, H., et al., (2012) Science 338, 785-788 [2] Kounaves, S.P., et al., (2014) Icarus, 229, 206-213</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007795','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007795"><span>Field Characterization of the Mineralogy and Organic Chemistry of Carbonates from the 2010 Arctic Mars Analog Svalbard Expedition by Evolved Gas Analysis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McAdam, A. C.; Ten Kate, I. L.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Morris, R. V.; Steele, A.; Amundson, H. E. F.</p> <p>2011-01-01</p> <p>The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return. The Sample Analysis at Mars (SAM) [1] instrument suite, which will be on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser mass spectrometer (TLS); all will be applied to analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-MS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples [e.g., 2]. Field-portable versions of CheMin were used during AMASE. AMASE 2010 focused on two sites that represented biotic and abiotic analogs. The abiotic site was the basaltic Sigurdfjell vent complex, which contains Mars-analog carbonate cements including carbonate globules which are excellent analogs for the globules in the <span class="hlt">ALH</span><span class="hlt">84001</span> <span class="hlt">martian</span> <span class="hlt">meteorite</span> [e.g., 3, 4]. The biotic site was the Knorringfjell fossil methane seep, which featured carbonates precipitated in a methane-supported chemosynthetic community [5]. This contribution focuses on EGA-MS analyses of samples from each site, with mineralogy comparisons to CheMin team results. The results give insight into organic content and organic-mineral associations, as well as some constraints on the minerals present.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019356','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019356"><span>Thermoluminescence and Antarctic <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sears, D. W. G.; Hasan, F. A.</p> <p>1986-01-01</p> <p>The level of natural thermoluminescence (TL) in <span class="hlt">meteorites</span> is the result of competition between build-up, due to exposure to cosmic radiation, and thermal decay. Antarctic <span class="hlt">meteorites</span> tend to have lower natural TL than non-Antarctic <span class="hlt">meteorites</span> because of their generally larger terrestrial ages. However, since a few observed falls have low TL due to a recent heating event, such as passage within approximately 0.7 astronomical units of the Sun, this could also be the case for some Antarctic <span class="hlt">meteorites</span>. Dose rate variations due to shielding, heating during atmospheric passage, and anomalous fading also cause natural TL variations, but the effects are either relatively small, occur infrequently, or can be experimentally circumvented. The TL sensitivity of <span class="hlt">meteorites</span> reflects the abundance and nature of the feldspar. Thus intense shock, which destroys feldspar, causes the TL sensitivity to decrease by 1 to 2 orders of magnitude, while metamorphism, which generates feldspar through the devitrification of glass, causes TL sensitivity to increase by a factor of approximately 10000. The TL-metamorphism relationship is particularly strong for the lowest levels of metamorphism. The order-disorder transformation in feldspar also affect the TL emission characteristics and thus TL provides a means of paleothermometry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970041155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970041155"><span>Antarctic <span class="hlt">Meteorite</span> Newsletter. Volume 20</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lindstrom, Marilyn M.; Satterwhite, Cecilia E.</p> <p>1997-01-01</p> <p>The availability of 116 new <span class="hlt">meteorites</span> from the 1994-1996 collections is announced. There are 4 special chondrites, 2 carbonaceous chondrites, and 1 achondrite among the new <span class="hlt">meteorites</span>. Also included is a redescription of Lodranite GRA95209.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016M%26PS...51.1959B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016M%26PS...51.1959B"><span>Water in the <span class="hlt">Martian</span> interior—The geodynamical perspective</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breuer, Doris; Plesa, Ana-Catalina; Tosi, Nicola; Grott, Matthias</p> <p>2016-11-01</p> <p>Petrological analysis of the <span class="hlt">Martian</span> <span class="hlt">meteorites</span> suggests that rheologically significant amounts of water are present in the <span class="hlt">Martian</span> mantle. A bulk mantle water content of at least a few tens of ppm is thus expected to be present despite the potentially efficient degassing during accretion, magma ocean solidification, and subsequent volcanism. We examine the dynamical consequences of different thermochemical evolution scenarios testing whether they can lead to the formation and preservation of mantle reservoirs, and compare model predictions with available data. First, the simplest scenario of a homogenous mantle that emerges when ignoring density changes caused by the extraction of partial melt is found to be inconsistent with the isotopic evidence for distinct reservoirs provided by the analysis of the <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. In a second scenario, reservoirs can form as a result of partial melting that induces a density change in the depleted mantle with respect to its primordial composition. However, efficient mantle mixing prevents these reservoirs from being preserved until present unless they are located in the stagnant lid. Finally, reservoirs could be formed during fractional crystallization of a magma ocean. In this case, however, the mantle would likely end up being stably stratified as a result of the global overturn expected to accompany the fractional crystallization. Depending on the assumed density contrast, little secondary crust would be produced and the lithosphere would be extremely cool and dry, in contrast to observations. In summary, it is very challenging to obtain a self-consistent evolution scenario that satisfies all available constraints.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920064072&hterms=Magnetism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMagnetism','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920064072&hterms=Magnetism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMagnetism"><span>The relict magnetism of <span class="hlt">meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cisowski, S. M.; Hood, L. L.</p> <p>1991-01-01</p> <p><span class="hlt">Meteorite</span> paleomagnetic studies are reviewed and evaluated. Possible mechanisms for producing early solar system magnetic fields that could have been responsible for the magnetization of some or all <span class="hlt">meteorite</span> classes are explored. A detailed review of paleointensity results derived from the various classes of <span class="hlt">meteorites</span> is given, and the likelihood that the results might related to solar or nebulawide magnetic fields is considered. The implications of <span class="hlt">meteorite</span> magnetism for early solar system evolution are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010M%26PS...45...21S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010M%26PS...45...21S"><span>High oxidation state during formation of <span class="hlt">Martian</span> nakhlites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szymanski, Anja; Brenker, Frank E.; Palme, Herbert; El Goresy, Ahmed</p> <p>2010-01-01</p> <p>The oxygen fugacities recorded in the nakhlites Nakhla, Yamato-000593 (Y-000593), Lafayette, and NWA998 were studied by applying the Fe,Ti-oxide oxybarometer. Oxygen fugacities obtained cluster closely around the FMQ (Fayalite-Magnetite-Quartz) buffer (NWA998=FMQ-0.8 Y-000593=FMQ-0.7 Nakhla=FMQ Lafayette=FMQ+ 0.1). The corresponding equilibration temperatures are 810°C for Nakhla and Y-000593, 780°C for Lafayette and 710°C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for <span class="hlt">Martian</span> basalts, i.e., shergottites whose oxygen fugacities vary from FMQ-1 to FMQ-4. It has been known for some time that nakhlites are different from other <span class="hlt">Martian</span> <span class="hlt">meteorites</span> in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)-enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other <span class="hlt">Martian</span> <span class="hlt">meteorites</span>. It is likely that the differences in fO2 between nakhlites and other <span class="hlt">Martian</span> <span class="hlt">meteorites</span> were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle (Brandon et al. 2000) must have been kept isolated throughout <span class="hlt">Martian</span> history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070037445','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070037445"><span>Microbial Extremophiles in Evolutionary Aspect</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pikuta, Elena V.; Hoover, Richard B.</p> <p>2007-01-01</p> <p>The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath the ice crusts of icy moons of Jupiter and Saturn. For astrobiology the focus on the study alkaliphilic microorganisms was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the <span class="hlt">ALH</span><span class="hlt">84001</span> <span class="hlt">meteorite</span>. Although the <span class="hlt">ALH</span><span class="hlt">84001</span> "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and <span class="hlt">meteorites</span>. Recent studies of CI and CM carbonaceous <span class="hlt">meteorites</span> have resulted in the detection of the well-preserved mineralized remains of coccoidal and" filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology and the evolution of life. Extremophilic microorganisms on Earth are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath the icy crusts of Europa and Enceladus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11541744','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11541744"><span>Organic degradation under simulated <span class="hlt">Martian</span> conditions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stoker, C R; Bullock, M A</p> <p>1997-05-25</p> <p>We report on laboratory experiments which simulate the breakdown of organic compounds under <span class="hlt">Martian</span> surface conditions. Chambers containing Mars-analog soil mixed with the amino acid glycine were evacuated and filled to 100 mbar pressure with a <span class="hlt">Martian</span> atmosphere gas mixture and then irradiated with a broad spectrum Xe lamp. Headspace gases were periodically withdrawn and analyzed via gas chromatography for the presence of organic gases expected to be decomposition products of the glycine. The quantum efficiency for the decomposition of glycine by light at wavelengths from 2000 to 2400 angstroms was measured to be 1.46 +/- 1.0 x 10(-6) molecules/photon. Scaled to Mars, this represents an organic destruction rate of 2.24 +/- 1.2 x 10(-4) g of C m-2 yr-1. We compare this degradation rate with the rate that organic compounds are brought to Mars as a result of <span class="hlt">meteoritic</span> infall to show that organic compounds are destroyed on Mars at rates far exceeding the rate that they are deposited by <span class="hlt">meteorites</span>. Thus the fact that no organic compounds were found on Mars by the Viking Lander Gas Chromatograph Mass Spectrometer experiment can be explained without invoking the presence of strong oxidants in the surface soils. The organic destruction rate may be considered as an upper bound for the globally averaged biomass production rate of extant organisms at the surface of Mars. This upper bound is comparable to the slow growing cryptoendolithic microbial communities found in dry Antarctica deserts. Finally, comparing these organic destruction rates to recently reported experiments on the stability of carbonate on the surface of Mars, we find that organic compounds may currently be more stable than calcite.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010048879&hterms=Chemistry+organic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DChemistry%2Borganic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010048879&hterms=Chemistry+organic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DChemistry%2Borganic"><span>Organic Chemistry of <span class="hlt">Meteorites</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chang, S.; Morrison, David (Technical Monitor)</p> <p>1994-01-01</p> <p>Studies of the molecular structures and C,N,H-isotopic compositions of organic matter in <span class="hlt">meteorites</span> reveal a complex history beginning in the parent interstellar cloud which spawned the solar system. Incorporation of interstellar dust and gas in the protosolar nebula followed by further thermal and aqueous processing on primordial parent bodies of carbonaceous, <span class="hlt">meteorites</span> have produced an inventory of diverse organic compounds including classes now utilized in biochemistry. This inventory represents one possible set of reactants for chemical models for the origin of living systems on the early Earth. Evidence bearing on the history of <span class="hlt">meteoritic</span> organic matter from astronomical observations and laboratory investigations will be reviewed and future research directions discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860012008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860012008"><span>Oblique impact: A process for providing <span class="hlt">meteorite</span> samples of other planets</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Okeefe, J. D.; Ahrens, T. J.</p> <p>1986-01-01</p> <p>Cratering flow calculations for a series of oblique to normal impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether the gas produced upon shock vaporizing both projectile and planetary material could entrain and accelerate surface rocks and thus provide a mechanism for propelling SNC <span class="hlt">meteorites</span> from the <span class="hlt">Martian</span> surface. The difficult constraints that the impact origin hypothesis for SNC <span class="hlt">meteorites</span> has to satisfy are that these <span class="hlt">meteorites</span> are lightly to moderately shocked and yet were accelerated to speeds in excess of the <span class="hlt">Martian</span> escape velocity. Two dimensional finite difference calculations demonstrate that at highly probable impact velocities, vapor plume jets are produced at oblique impact angles of 25 deg to 60 deg and have speeds as great as 20 km/sec. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 km, the resulting vapor jets have densities of 0.1 to 1 g/cu.cm. These jets can entrain <span class="hlt">Martian</span> surface rocks and accelerate them to velocities 5 km/sec. It is suggested th