Science.gov

Sample records for ali advanced microwave

  1. Prognostic Significance of Modified Advanced Lung Cancer Inflammation Index (ALI) in Patients with Small Cell Lung Cancer_ Comparison with Original ALI

    PubMed Central

    Kim, Young Saing; Seo, Ja-Young; Park, Inkeun; Ahn, Hee Kyung; Jeong, Yu Mi; Kim, Jeong Ho

    2016-01-01

    Background Advanced lung cancer inflammation index (ALI, body mass index [BMI] x serum albumin/neutrophil-lymphocyte ratio [NLR]) has been shown to predict overall survival (OS) in small cell lung cancer (SCLC). CT enables skeletal muscle to be quantified, whereas BMI cannot accurately reflect body composition. The purpose was to evaluate prognostic value of modified ALI (mALI) using CT-determined L3 muscle index (L3MI, muscle area at L3/height2) beyond original ALI. Methods L3MIs were calculated using the CT images of 186 consecutive patients with SCLC taken at diagnosis, and mALI was defined as L3MI x serum albumin/NLR. Using chi-squared test determined maximum cut-offs for low ALI and low mALI, the prognostic values of low ALI and low mALI were tested using Kaplan-Meier method and Cox proportional hazards analysis. Finally, deviance statistics was used to test whether the goodness of fit of the prognostic model is improved by adding mALI as an extra variable. Results Patients with low ALI (cut-off, 31.1, n = 94) had shorter OS than patients with high ALI (median, 6.8 months vs. 15.8 months; p < 0.001), and patients with low mALI (cut-off 67.7, n = 94) had shorter OS than patients with high mALI (median, 6.8 months vs. 16.5 months; p < 0.001). There was no significant difference in estimates of median survival time between low ALI and low mALI (z = 0.000, p = 1.000) and between high ALI and high mALI (z = 0.330, p = 0.740). Multivariable analysis showed that low ALI was an independent prognostic factor for shorter OS (HR, 1.67, p = 0.004), along with advanced age (HR, 1.49, p = 0.045), extensive disease (HR, 2.27, p < 0.001), supportive care only (HR, 7.86, p < 0.001), and elevated LDH (HR, 1.45, p = 0.037). Furthermore, goodness of fit of this prognostic model was not significantly increased by adding mALI as an extra variable (LR difference = 2.220, p = 0.136). Conclusion The present study confirms mALI using CT-determined L3MI has no additional prognostic

  2. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  3. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  4. Advances In Microwave Metamaterials

    NASA Astrophysics Data System (ADS)

    Wigle, James A.

    2011-12-01

    Metamaterials are a new area of research showing significant promise for an entirely new set of materials, and material properties. Only recently has three-fourths of the entire electromagnetic material space been made available for discoveries, research, and applications. This thesis is a culmination of microwave metamaterial research that has transpired over numerous years at the University of Colorado. New work is presented; some is complete while other work has yet to be finished. Given the significant work efforts, and potential for new and interesting results, I have included some of my partial work to be completed in the future. This thesis begins with background theory to assist readers in fully understanding the mechanisms that drove my research and results obtained. I illustrate the design and manufacture of a metamaterial that can operate within quadrants I and II of the electromagnetic material space (epsilon r > 0 and mur > 0 or epsilonr < 0 and mu r > 0, respectively). Another metamaterial design is presented for operation within quadrant III of the electromagnetic material space (epsilonr < 0 and mur < 0). Lorentz reciprocity is empirically demonstrated for a quadrant I and II metamaterial, as well as a metamaterial enhanced antenna, or meta-antenna. Using this meta-antenna I demonstrate improved gain and directivity, and illuminate how the two are not necessarily coincident in frequency. I demonstrate a meta-lens which provides a double beam pattern for a normally hemispherical antenna, which also provides a null where the antenna alone would provide a peak on boresight. The thesis also presents two related, but different, novel tests intended to be used to definitively illustrate the negative angle of refraction for indices of refraction less than zero. It will be shown how these tests can be used to determine most bulk electromagnetic material properties of the material under test, for both right handed and left handed materials, such as epsilonr

  5. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  6. Advanced techniques for microwave reflectometry

    SciTech Connect

    Sanchez, J.; Branas, B.; Luna, E. de la; Estrada, T.; Zhuravlev, V. |; Hartfuss, H.J.; Hirsch, M.; Geist, T.; Segovia, J.; Oramas, J.L.

    1994-12-31

    Microwave reflectometry has been applied during the last years as a plasma diagnostic of increasing interest, mainly due to its simplicity, no need for large access ports and low radiation damage of exposed components. Those characteristics make reflectometry an attractive diagnostic for the next generation devices. Systems used either for density profile or density fluctuations have also shown great development, from the original single channel heterodyne to the multichannel homodyne receivers. In the present work we discuss three different advanced reflectometer systems developed by CIEMAT members in collaboration with different institutions. The first one is the broadband heterodyne reflectometer installed on W7AS for density fluctuations measurements. The decoupling of the phase and amplitude of the reflected beam allows for quantitative analysis of the fluctuations. Recent results showing the behavior of the density turbulence during the L-H transition on W7AS are shown. The second system shows how the effect of the turbulence can be used for density profile measurements by reflectometry in situations where the complicated geometry of the waveguides cannot avoid many parasitic reflections. Experiments from the TJ-I tokamak will be shown. Finally, a reflectometer system based on the Amplitude Modulation (AM) technique for density profile measurements is discussed and experimental results from the TJ-I tokamak are shown. The AM system offers the advantage of being almost insensitive to the effect of fluctuations. It is able to take a direct measurement of the time delay of the microwave pulse which propagates to the reflecting layer and is reflected back. In order to achieve fast reconstruction for real time monitoring of the density profile application of Neural Networks algorithms will be presented the method can reduce the computing times by about three orders of magnitude. 10 refs., 10 figs.

  7. Advanced components for microwave photonics

    NASA Astrophysics Data System (ADS)

    Fonjallaz, Pierre-Yves; Gunnarsson, Ola; Popov, Mikhail; Margulis, Walter; Petermann, Ingemar; Berlemont, David; Carlsson, Fredrik

    2003-04-01

    This persentation gives an overveiw of the field of microwave photonics with an emphasis on new fiber based devices which we belive have a real practical potential. Microwave photonics can be considered as the fruitful meeting point bewteen optics and microwave engineering, where optoelectronic devices and systems are used both for processing at microwave rates and for signal handling in microwave systems. The use of specialty fibers, glass poling and naturally fiber Bragg gratings opens new perspectives for the realization of low-cost devices with appropriate functionality. The application field for optical microwave transmission and processing spans from radar technology to cable TV and mobile communications systems. Over the last few years very much attention has been directed towards radio-over-fiber systems for the next-generation mobile communications infrastructure as well as hybrid fiber radio for picocell systems at 60 GHz or above. As a matter of fact, the higher the microwave frequencies, the greater are the similarities with the optical carrier and the more there is to be gained by processing the microwave signal in the optical domain. Other important application examples are beamforming networks for phased array antennas and subcarrier processing for routing in optical networks.

  8. Approximating tasseled cap values to evaluate brightness, greenness, and wetness for the Advanced Land Imager (ALI)

    USGS Publications Warehouse

    Yamamoto, Kristina H.; Finn, Michael P.

    2012-01-01

    The Tasseled Cap transformation is a method of image band conversion to enhance spectral information. It primarily is used to detect vegetation using the derived brightness, greenness, and wetness bands. An approximation of Tasseled Cap values for the Advanced Land Imager was investigated and compared to the Landsat Thematic Mapper Tasseled Cap values. Despite sharing similar spectral, temporal, and spatial resolution, the two systems are not interchangeable with regard to Tasseled Cap matrices.

  9. Advanced Microwave Ferrite Research (AMFeR): Phase Four

    DTIC Science & Technology

    2009-10-15

    COVERED (From - To) 28 Dec 2006 - 30 Sep 2009 4. TITLE AND SUBTITLE Advanced Microwave Ferrite Research (AMFeR): Phase Four 5a. CONTRACT NUMBER 5b...research endeavor is to devise ferrite materials for microwave , self-biased circulator applications. To this end, the research team focused on two key...Std Z39-18 Final Report Advanced Microwave Ferrite Research (AMFeR): Phase Four Dr. Jeffrey L. Young MRC Institute/Electrical and Computer

  10. Ferrite Materials for Advanced Multifunction Microwave Systems Applications

    DTIC Science & Technology

    2006-07-05

    TITLE AND SUBTITLE 5. FUNDING NUMBERS Ferrite Materials for Advanced Multifunction Microwave Systems Applications Award No. (Grant) N00014-03-1-0070 PR...were also used in this work. (200 words) 14. SUBJECT TERMS 15. NUMBER OF PAGES Microwave ferrites , yttrium iron garnet, lithium ferrites , hexagonal...Unlimited COVER PAGE FINAL REPORT to the UNITED STATES OFFICE OF NAVAL RESEARCH Ferrite Materials for Advanced Multifunction Microwave Systems

  11. Advanced microwave sounding unit study for atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip W.; Staelin, David H.

    1992-01-01

    The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), and the Microwave Humidity Sounder (MHS, formerly AMSU-B) together constitute the advanced sounding system facility for the Earth Observing System (EOS). A summary of the EOS phase B activities are presented.

  12. Recent advances in processing and applications of microwave ferrites

    NASA Astrophysics Data System (ADS)

    Harris, Vincent G.; Geiler, Anton; Chen, Yajie; Yoon, Soack Dae; Wu, Mingzhong; Yang, Aria; Chen, Zhaohui; He, Peng; Parimi, Patanjali V.; Zuo, Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier; Vittoria, Carmine

    2009-07-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  13. Recent Advances in Microwave Imaging for Breast Cancer Detection

    PubMed Central

    Kwon, Sollip

    2016-01-01

    Breast cancer is a disease that occurs most often in female cancer patients. Early detection can significantly reduce the mortality rate. Microwave breast imaging, which is noninvasive and harmless to human, offers a promising alternative method to mammography. This paper presents a review of recent advances in microwave imaging for breast cancer detection. We conclude by introducing new research on a microwave imaging system with time-domain measurement that achieves short measurement time and low system cost. In the time-domain measurement system, scan time would take less than 1 sec, and it does not require very expensive equipment such as VNA. PMID:28096808

  14. Advanced microwave radiometer antenna system study

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  15. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  16. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  17. Prospects for advances in microwave atomic frequency standards

    NASA Technical Reports Server (NTRS)

    Walls, F. L.

    1979-01-01

    Traditional standards based on rubidium, cesium and hydrogen have been greatly refined over the past decade, such that the frequency stability of the current generation of devices is generally limited by those basic concepts on which they are based. Future advances in frequency stability will principally come from changes in the concepts on which the standards are based, and only secondarily from more careful engineering of the old concepts. The fundamental limitations in these standards are considered and the important conceptual and component advances which could have a major impact on future performance of these standards are indicated. A very promising new class of microwave standards based on ion storage techniques is examined.

  18. ADVANCES IN GREEN CHEMISTRY: CHEMICAL SYNTHESES USING MICROWAVE IRRADIATION, ISBN 81-901238-5-8

    EPA Science Inventory

    16. Abstract Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation
    Microwave-accelerated chemical syntheses in solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predomi...

  19. ALIS deployment in Cambodia

    NASA Astrophysics Data System (ADS)

    Sato, Motoyuki; Takahashi, Kazunori

    2012-06-01

    Dual sensor is one of the most promising sensors for humanitarian demining operations. Conventional landmine detection depends on highly trained and focused human operators manually sweeping 1m2 plots with a metal detector and listening for characteristic audio signals indicating the presence of AP (Anti-personnel) landmines. In order to reduce the time of plodding detected objects, metal detectors need to be combined with a complimentary subsurface imaging sensor. i.e., GPR(Ground Penetrating Radar). The demining application requires real-time imaging results with centimetre resolution in a highly portable package. We are currently testing a dual sensor ALIS which is a real-time sensor tracking system based on a CCD camera and image processing. In this paper we introduce ALIS systems which we have developed for detection of buried antipersonnel mines and small size explosives. The performance of ALIS has been tested in Cambodia since 2009. More than 80 anti-personnel mines have been detected and removed from local agricultural area. ALIS has cleared more than 70,000 m2 area and returned it to local farmers.

  20. Fundamental Materials Studies for Advanced High Power Microwave and Terahertz Vacuum Electronic Radiation Sources

    DTIC Science & Technology

    2014-12-10

    Models for Microstrip Computer-Aided Design,” in Microwave Symposium Digest , 1980 IEEE MTT-S International, 1980, p. 407. [2] B.B. Yang, S.L...AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and

  1. Use of EO-1 Advanced Land Imager (ALI) multispectral image data and real-time field sampling for water quality mapping in the Hirfanlı Dam Lake, Turkey.

    PubMed

    Kavurmacı, Murat; Ekercin, Semih; Altaş, Levent; Kurmaç, Yakup

    2013-08-01

    This paper focuses on the evaluation of water quality variations in Hirfanlı Water Reservoir, which is one of the most important water resources in Turkey, through EO-1 (Earth Observing-1) Advanced Land Imager (ALI) multispectral data and real-time field sampling. The study was materialized in 20 different sampling points during the overpass of the EO-1 ALI sensor over the study area. A multi-linear regression technique was used to explore the relationships between radiometrically corrected EO-1 ALI image data and water quality parameters: chlorophyll a, turbidity, and suspended solids. The retrieved and verified results show that the measured and estimated values of water quality parameters are in good agreement (R (2) >0.93). The resulting thematic maps derived from EO-1 multispectral data for chlorophyll a, turbidity, and suspended solids show the spatial distribution of the water quality parameters. The results indicate that the reservoir has average nutrient values. Furthermore, chlorophyll a, turbidity, and suspended solids values increased at the upstream reservoir and shallow coast of the Hirfanlı Water Reservoir.

  2. Advanced on-chip divider for monolithic microwave VCO's

    NASA Technical Reports Server (NTRS)

    Peterson, Weddell C.

    1989-01-01

    High frequency division on a monolithic circuit is a critical technology required to significantly enhance the performance of microwave and millimeter-wave phase-locked sources. The approach used to meet this need is to apply circuit design practices which are essentially 'microwave' in nature to the basically 'digital' problem of high speed division. Following investigation of several promising circuit approaches, program phase 1 culminated in the design and layout of an 8.5 GHz (Deep Space Channel 14) divide by four circuit based on a dynamic mixing divider circuit approach. Therefore, during program phase 2, an 8.5 GHz VCO with an integral divider which provides a phase coherent 2.125 GHz reference signal for phase locking applications was fabricated and optimized. Complete phase locked operation of the monolithic GaAs devices (VCO, power splitter, and dynamic divider) was demonstrated both individually and as an integrated unit. The fully functional integrated unit in a suitable test fixture was delivered to NASA for engineering data correlation. Based on the experience gained from this 8.5 GHz super component, a monolithic GaAs millimeter-wave dynamic divider for operation with an external VCO was also designed, fabricated, and characterized. This circuit, which was also delivered to NASA, demonstrated coherent division by four at an input frequency of 24.3 GHz. The high performance monolithic microwave VCO with a coherent low frequency reference output described in this report and others based on this technology will greatly benefit advanced communications systems in both the DoD and commercial sectors. Signal processing and instrumentation systems based on phase-locking loops will also attain enhanced performance at potentially reduced cost.

  3. Recent advances in environmental monitoring using commercial microwave links

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; Guez, Oded; Messer, Hagit; David, Noam; Harel, Oz; Eshel, Adam; Cohen, Ori

    2016-04-01

    Recent advances in environmental monitoring using commercial microwave links Pinhas Alpert, H. Messer, N. David, O. Guez, O. Cohen, O. Harel, A. Eshel Tel Aviv University, Israel The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for semi-arid region cases when floods occurred in the Judean desert in Israel with comparison to hydrological measurements in the Dead Sea area. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, fog, dew, atmospheric moisture. References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure-the future of fog monitoring?" BAMS (Oct. issue), 1687-1698, 2015. O. Harel, David, N., Alpert, P. and Messer, H., "The potential of microwave communication networks to detect dew using the GLRT- experimental study", IEEE Journal of Selected

  4. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    NASA Astrophysics Data System (ADS)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  5. Advanced Microwave Precipitation Radiometer (AMPR) for remote observation of precipitation

    NASA Technical Reports Server (NTRS)

    Galliano, J. A.; Platt, R. H.

    1990-01-01

    The design, development, and tests of the Advanced Microwave Precipitation Radiometer (AMPR) operating in the 10 to 85 GHz range specifically for precipitation retrieval and mesoscale storm system studies from a high altitude aircraft platform (i.e., ER-2) are described. The primary goals of AMPR are the exploitation of the scattering signal of precipitation at frequencies near 10, 19, 37, and 85 GHz together to unambiguously retrieve precipitation and storm structure and intensity information in support of proposed and planned space sensors in geostationary and low earth orbit, as well as storm-related field experiments. The development of AMPR will have an important impact on the interpretation of microwave radiances for rain retrievals over both land and ocean for the following reasons: (1) A scanning instrument, such as AMPR, will allow the unambiguous detection and analysis of features in two dimensional space, allowing an improved interpretation of signals in terms of cloud features, and microphysical and radiative processes; (2) AMPR will offer more accurate comparisons with ground-based radar data by feature matching since the navigation of the ER-2 platform can be expected to drift 3 to 4 km per hour of flight time; and (3) AMPR will allow underflights of the SSM/I satellite instrument with enough spatial coverage at the same frequencies to make meaningful comparisons of the data for precipitation studies.

  6. Characterisation of the advanced microwave sounding unit, AMSU-B

    NASA Astrophysics Data System (ADS)

    Vangasse, P.; Charlton, J.; Jarrett, M.

    1996-03-01

    The Advanced Microwave Sounding Unit, AMSU-B, is a five channel microwave radiometer to be flown later this decade on the series of polar orbiting spacecraft NOAA-K, L and M. It will provide global data in support of synoptic weather forecasting by sounding the water vapour content of the atmosphere from the `window' channels at 89 and 150 GHz to the strong resonance line at 183.3 GHz. It has a scan period of 2 2/3 seconds and provides 90 earth view pixels each of nominal beam width 1.1 degrees during earth scan. The key radiometric requirements of the instrument are to provide a temperature sensitivity of 1 to 1.2K depending on channel, a linearity within 0.3 of the temperature sensitivity and a beam efficiency of 95%. This paper describes the design of the AMSU-B, the ground based buy-off tests and results obtained for the Proto-Flight Model (PFM), Flight 2 (FM2) and Flight 3 (FM3) Models in the context of these requirements. The Engineering Model testing is described in reference /1/.

  7. ALIS evaluation tests in Croatia

    NASA Astrophysics Data System (ADS)

    Sato, Motoyuki; Fujiwara, Jun; Kido, Takashi; Takahashi, Kazunori

    2009-05-01

    Tohoku University, Japan is developing a new hand-held land mine detection dual-sensor (ALIS) which is equipped with a metal detector and a GPR. ALIS is equipped with a sensor tracking system, which can record the GPR and Metal detector signal with its location. The Migration processing drastically increases the quality of the imaging of the buried objects.Evaluation test of ALIS has been conducted several test sites. Tests in real mine fields in Croatia has been conducted between December 2007 and April 2008. Under different soil and environment conditions, ALIS worked well. Then ALIS evaluation test started in Cambodia in February 2009 and we could find discrimination capability of ALIS in test lanes, and we are planning to start evaluation test in real mine fields in Cambodia.

  8. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, Cheng-H Joseph; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Mike; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    ATMS is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface

  9. Advances in microwave-assisted combinatorial chemistry without polymer-supported reagents.

    PubMed

    Martínez-Palou, Rafael

    2006-08-01

    Combinatorial methodologies have dramatically changed the chemical research and discovery process, offering an unlimited source of new molecule entities to be screened for activity. The application of microwave irradiation in Combinatorial Chemistry and high-throughput synthesis has become increasingly popular. By taking advantage of this energy source, compound libraries for lead generation can be assembled in a fraction of time required by conventional thermal heating. This review focuses on the advances in developing synthetic methodologies in microwave without polymer-supported reagents suitable for combinatorial chemistry, including the advances in microwave-assisted fluorous synthesis technology.

  10. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  11. The Advanced Technology Microwave Sounder (ATMS): The First 10 Months On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, C-H Joseph; Blackwell, Willaim; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Kent; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the NPOESS Preparatory Project (NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models, especially under cloudy sky conditions. ATMS has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-A1/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). All this is accomplished with approximately 1/4 the volume, 1/2 the mass, and 1/2 the power of the three AMSUs. A description of ATMS cal/val activities will be presented followed by examples of its performance after its first 10 months on orbit.

  12. Advancing microwave technology for dehydration processing of biologics.

    PubMed

    Cellemme, Stephanie L; Van Vorst, Matthew; Paramore, Elisha; Elliott, Gloria D

    2013-10-01

    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex(®) syringe filter holder (Millipore(™), Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit.

  13. Microwave imaging for breast cancer detection: advances in three--dimensional image reconstruction.

    PubMed

    Golnabi, Amir H; Meaney, Paul M; Epstein, Neil R; Paulsen, Keith D

    2011-01-01

    Microwave imaging is based on the electrical property (permittivity and conductivity) differences in materials. Microwave imaging for biomedical applications is particularly interesting, mainly due to the fact that available range of dielectric properties for different tissues can provide important functional information about their health. Under the assumption that a 3D scattering problem can be reasonably represented as a simplified 2D model, one can take advantage of the simplicity and lower computational cost of 2D models to characterize such 3D phenomenon. Nonetheless, by eliminating excessive model simplifications, 3D microwave imaging provides potentially more valuable information over 2D techniques, and as a result, more accurate dielectric property maps may be obtained. In this paper, we present some advances we have made in three-dimensional image reconstruction, and show the results from a 3D breast phantom experiment using our clinical microwave imaging system at Dartmouth Hitchcock Medical Center (DHMC), NH.

  14. Microwave heated resin injector for advanced composite production.

    PubMed

    Stanculovic, Sebastijan; Feher, Lambert

    2008-01-01

    A novel microwave (MW) injector at 2.45 GHz for resin infiltration has been developed at the Institute for Pulsed Power and Microwave Technology (IHM), Research Center Karlsruhe (FZK), Germany. Resin injection is an essential step in the production of carbon fibre reinforced plastics (CFRP) for aerospace applications. A compact, low-cost and automated MW injector provides an efficient and safe energy transfer from the MW source to the resin and supports an appropriate electromagnetic field structure for homogeneous infiltration. The system provides temperature monitoring and an automatized MW power switching, which ensures a fast response of the MW system to rapid changes in the temperature for high flow rates of the resin. In low power measurements with a vector network analyzer, the geometry of the injector cavity has been adjusted to provide an efficient system. The MW injector has been tested for specific resin systems infiltrations.

  15. Advanced Microwave Ferrite Research (AMFeR): Phase Three

    DTIC Science & Technology

    2008-07-31

    10 GHz. Certain deviations from simulation The ferrite hysteresis and ferromagnetic resonance proper- are apparent particularly in the insertion loss...Field (Oe) 12 Frequency (GHz) Fig. 7. Measured hysteresis curve of TT1-1000. Fig. 10. Simulation and measurement Wwrtion loss and isolation of the 0...quality simulation of a ferrite phase shifter. The key team members of this project are divided into two functional groups: Material Science and Microwave

  16. The advanced thermionic converter with microwave power as an auxiliary ionization source

    NASA Technical Reports Server (NTRS)

    Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.

    1978-01-01

    In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.

  17. Earth Observing System(EOS). Advanced Microwave Sounding Unit-A: Firmware Test Report

    NASA Technical Reports Server (NTRS)

    Schwantje, R.

    1998-01-01

    This document is the Firmware Test Report for the firmware to be used in the Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) instrument. It describes the firmware results of the Formal Qualification Test (FQT)/Demonstrations conducted on Mar. 21, 1997, Apr. 8, 1998, and July 14, 1998, for the EOS/AMSU-A instrument.

  18. Ferrite-superconductor devices for advanced microwave applications

    SciTech Connect

    Dionne, G.F.; Oates, D.E.; Temme, D.H.; Weiss, J.A.

    1996-07-01

    Microwave devices comprising magnetized ferrite in contact with superconductor circuits designed to eliminate magnetic field penetration of the superconductor have demonstrated phase shift without significant conduction losses. The device structures are adaptable to low- or high-{Tc} superconductors. A nonoptimized design of a ferrite phase shifter that employs niobium or YBCO meanderlines has produced over 1,000 degrees of differential phase shift with a figure of merit exceeding 1,000 degrees/dB at X band. By combining superconductor meanderline sections with alternating T junctions on a ferrite substrate in a configuration with three-fold symmetry, a low-loss three-port switching circulator has been demonstrated.

  19. Advanced systems requirements for ocean observations via microwave radiometers

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Swift, C. T.; Kendall, B. M.

    1978-01-01

    A future microwave spectroradiometer operating in several frequency bands will have the capability to step or sweep frequencies on an adaptable or programmable basis. The on-board adaptable frequency shifting can make the systems immune from radio interference. Programmable frequency sweeping with on-board data inversion by high speed computers would provide for instantaneous synoptic measurements or sea surface temperature and salinity, water surface and volume pollution, ice thickness, ocean surface winds, snow depth, and soil moisture. Large structure satellites will allow an order of magnitude improvement in the present radiometric measurement spacial resolution.

  20. New NOAA-15 Advanced Microwave Sounding Unit (AMSU) Datasets for Stratospheric Research

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    1999-01-01

    The NOAA-15 spacecraft launched in May 1998 carried the first Advanced Microwave Sounding Unit (AMSU). The AMSU has eleven oxygen absorption channels with weighting functions peaking from near the surface to 2 mb. Twice-daily, limb-corrected I degree gridded datasets of layer temperatures have been constructed since the AMSU went operational in early August 1998. Examples of AMSU imagery will be shown, as will preliminary analyses of daily fluctuations in tropical stratospheric temperatures and their relationship to daily variations in tropical-average rainfall measured by the Special Sensor Microwave Imager (SSM/I). The AMSU datasets are now available for other researchers to utilize.

  1. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.

    PubMed

    Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor

    2005-01-01

    An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.

  2. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in

  3. Recent advances in environmental monitoring using commercial microwave links

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; David, Noam; Messer-Yaron, Hagit; Samuels, Rana

    2013-04-01

    The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As we have recently shown, commercial wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be discussed. This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08) and the PROCEMA VI coordinated by H. Kunstmann. The research was also supported by the by the United States- Israel BINATIONAL SCIENCE FOUNDATION (BSF, Grant No. 2010342). References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, P. Alpert, and H. Messer, "Novel method for fog monitoring using cellular networks infrastructures", Atmos. Meas. Tech. Discuss, 5, 5725-5752, 2012.

  4. A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU)

    NASA Astrophysics Data System (ADS)

    Ferraro, Ralph; Beauchamp, James; Cecil, Daniel; Heymsfield, Gerald

    2015-09-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and most recently, the Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sensor. This led to climatologies of hail frequency from TMI and AMSR-E, however, limitations included geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. NOAA and EUMETSAT have been operating the Advanced Microwave Sounding Unit (AMSU-A and -B) and the Microwave Humidity Sounder (MHS) on several operational satellites since 1998: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 h, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz, one at 157 GHz, and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental US for a 10-year period (2000-2009). Compared with the surface observations, the algorithm detects approximately 40% of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology based on all available AMSU observations during 2000-2011 that is stratified in several ways

  5. A New ERA in Global Temperature Monitoring with the Advanced Microwave Sounding Unit (AMSU)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.; Christy, John R.

    1999-01-01

    The launch of the first Advanced Microwave Sounding Unit (AMSU) on the NOAA-15 spacecraft on 13 May 1998 marked a significant advance in our ability to monitor global temperatures. Compared to the Microwave Sounding Units (MSU) flying since 1978 on the TIROS-N series of NOAA polar orbiters, the AMSU offers better horizontal, vertical, and radiometric resolutions. It will allow routine monitoring of 1 1 (mostly) separate layers, compared to 2 or 3 with the MSU, including layers in the middle and upper stratosphere (2.5 hPa) where increasing carbon dioxide concentrations should be causing a cooling rate of about 1 deg. C per decade. More precise limb corrections combined with low noise will allow identification of subtle spatial temperature patterns associated with global cyclone activity.

  6. The Advanced Microwave Sounding Unit-A: Antenna Number 2 Bearing Assembly Life Test

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1997-01-01

    Four bearing assemblies, lubricated with Apiezon C oil with 5% lead naphthenate (PbNp), were life tested in support of the Advanced Microwave Sounding Unit-A (AMSU-A). These assemblies were tested continuously for five to six years using the scanning pattern of the flight instrument. A post-life-test analysis was performed on two of the assemblies to evaluate the lubricant behavior and wear in the bearings.

  7. Microwave Doppler reflectometer system in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhou, C; Liu, A D; Zhang, X H; Hu, J Q; Wang, M Y; Li, H; Lan, T; Xie, J L; Sun, X; Ding, W X; Liu, W D; Yu, C X

    2013-10-01

    A Doppler reflectometer system has recently been installed in the Experimental Advanced Superconducting (EAST) Tokamak. It includes two separated systems, one for Q-band (33-50 GHz) and the other for V-band (50-75 GHz). The optical system consists of a flat mirror and a parabolic mirror which are optimized to improve the spectral resolution. A synthesizer is used as the source and a 20 MHz single band frequency modulator is used to get a differential frequency for heterodyne detection. Ray tracing simulations are used to calculate the scattering location and the perpendicular wave number. In EAST last experimental campaign, the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated.

  8. High altitude airborne remote sensing mission using the advanced microwave precipitation radiometer (AMPR)

    NASA Technical Reports Server (NTRS)

    Galliano, J.; Platt, R. H.; Spencer, Roy; Hood, Robbie

    1991-01-01

    The advanced microwave precipitation radiometer (AMPR) is an airborne multichannel imaging radiometer used to better understand how the earth's climate structure works. Airborne data results from the October 1990 Florida thunderstorm mission in Jacksonville, FL, are described. AMPR data on atmospheric precipitation in mesoscale storms were retrieved at 10.7, 19.35, 37.1, and 85.5 GHz onboard the ER-2 aircraft at an altitude of 20 km. AMPR's three higher-frequency data channels were selected to operate at the same frequencies as the spaceborne special sensor microwave/imager (SSM/I) presently in orbit. AMPR uses two antennas to receive the four frequencies: the lowest frequency channel uses a 9.7-in aperture lens antennas, while the three higher-frequency channels share a separate 5.3-in aperture lens antenna. The radiometer's temperature resolution performance is summarized.

  9. Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes.

    PubMed

    Zhihui, Ai; Peng, Yang; Xiaohua, Lu

    2005-08-01

    In this work the synergistic effects of several microwave assisted advanced oxidation processes (MW/AOPs) were studied for the degradation of 4-chlorophenol (4-CP). The efficiencies of the degradation of 4-CP in dilute aqueous solution for a variety of AOPs with or without MW irradiation were compared. The results showed that the synergistic effects between MW and H2O2, UV/H2O2, TiO2 photocatalytic oxidation (PCO) resulted in a high degradation efficiency for 4-CP. The potential of MW/AOPs for treatment of industrial wastewater is discussed.

  10. Earth resources programs at the Langley Research Center. Part 1: Advanced Applications Flight Experiments (AAFE) and microwave remote sensing program

    NASA Technical Reports Server (NTRS)

    Parker, R. N.

    1972-01-01

    The earth resources activity is comprised of two basic programs as follows: advanced applications flight experiments, and microwave remote sensing. The two programs are in various stages of implementation, extending from experimental investigations within both the AAFE program and the microwave remote sensing program, to multidisciplinary studies and planning. The purpose of this paper is simply to identify the main thrust of the Langley Research Center activity in earth resources.

  11. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A): Calibration management plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the Calibration Management Plan for the Earth Observing System/Advanced Microwave Sounding Unit-A (AMSU-A). The plan defines calibration requirements, calibration equipment, and calibration methods for the AMSU-A, a 15 channel passive microwave radiometer that will be used for measuring global atmospheric temperature profiles from the EOS polar orbiting observatory. The AMSU-A system will also provide data to verify and augment that of the Atmospheric Infrared Sounder.

  12. Microwaves and their coupling to advanced oxidation processes: enhanced performance in pollutants degradation.

    PubMed

    Nascimento, Ulisses M; Azevedo, Eduardo B

    2013-01-01

    This review assesses microwaves (MW) coupled to advanced oxidation processes (AOPs) for pollutants degradation, as well as the basic theory and mechanisms of MW dielectric heating. We addressed the following couplings: MW/H2O2, MW/UV/H2O2, MW/Fenton, MW/US, and MW/UV/TiO2, as well as few studies that tested alternative oxidants and catalysts. Microwave Discharge Electrodeless Lamps (MDELs) are being extensively used with great advantages over ballasts. In their degradation studies, researchers generally employed domestic ovens with minor adaptations. Non-thermal effects and synergies between UV and MW radiation play an important role in the processes. Published papers so far report degradation enhancements between 30 and 1,300%. Unfortunately, how microwaves enhance pollutants is still obscure and real wastewaters scarcely studied. Based on the results surveyed in the literature, MW/AOPs are promising alternatives for treating/remediating environmental pollutants, whenever one considers high degradation yields, short reaction times, and small costs.

  13. Treatment of dairy manure using the microwave enhanced advanced oxidation process under a continuous mode operation.

    PubMed

    Yu, Yang; Lo, Ing W; Liao, Ping H; Lo, Kwang V

    2010-11-01

    The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat dairy manure for solubilization of nutrients and organic matters. This study investigated the effectiveness of the MW/H(2)O(2)-AOP under a continuous mode of operation, and compared the results to those of batch operations. The main factors affecting solubilization by the MW/H(2)O(2)-AOP were heating temperature and hydrogen peroxide dosage. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) increased with an increase of microwave (MW) heating temperature; very high concentrations were obtained at 90°C. Insignificant amounts of ammonia and reducing sugars were released in all runs. An acidic pH condition was required for phosphorus solubilisation from dairy manure. The best yield was obtained at 90°C with an acid dosage of 1.0 %; about 92 % of total phosphorus and 90 % of total chemical oxygen demand were in the soluble forms. The MW/H(2)O(2)-AOP operated in a continuous operation mode showed pronounced synergistic effects between hydrogen peroxide and microwave irradiation when compared to a batch system under similar operating conditions, resulting in much better yields.

  14. Microwave Radiometer Technology Acceleration Mission (MiRaTA): Advancing Weather Remote Sensing with Nanosatellites

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Bishop, R. L.; Erickson, N.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Bardeen, J.; Dave, P.; Marinan, A.; Marlow, W.; Kingsbury, R.; Kennedy, A.; Byrne, J. M.; Peters, E.; Allen, G.; Burianek, D.; Busse, F.; Elliott, D.; Galbraith, C.; Leslie, V. V.; Osaretin, I.; Shields, M.; Thompson, E.; Toher, D.; DiLiberto, M.

    2014-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). Microwave radiometer measurements and GPS radio occultation (GPSRO) measurements of all-weather temperature and humidity provide key contributions toward improved weather forecasting. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for GPS radio occultation retrieval of both temperature-pressure profiles in the atmosphere and electron density profiles in the ionosphere. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. The radiometer measurement quality can be substantially improved relative to present systems through the use of proximal GPSRO measurements as a calibration standard for radiometric observations, reducing and perhaps eliminating the need for costly and complex internal calibration targets. MiRaTA will execute occasional pitch-up maneuvers so that the radiometer and GPSRO observations sound overlapping volumes of atmosphere through the Earth's limb. To validate system performance, observations from both microwave radiometer (MWR) and GPSRO instruments will be compared to radiosondes, global high-resolution analysis fields, other satellite observations, and to each other using radiative transfer models. Both the radiometer and GPSRO payloads, currently at TRL5 but to be advanced to TRL7 at mission conclusion, can be accommodated in a single 3U CubeSat. The current plan is to launch from an International Space Station (ISS) orbit at ~400 km altitude and 52° inclination for low-cost validation over a ~90-day mission to fly in 2016. MiRaTA will demonstrate high fidelity, well-calibrated radiometric

  15. Hurricane Sandy warm-core structure observed from advanced Technology Microwave Sounder

    NASA Astrophysics Data System (ADS)

    Zhu, Tong; Weng, Fuzhong

    2013-06-01

    The warm-core structures of Hurricane Sandy and other nine tropical cyclones (TCs) are studied using the temperatures retrieved from Advanced Technology Microwave Sounder (ATMS). A new algorithm is developed for the retrieval of atmospheric temperature profiles from the ATMS radiances. Since ATMS observation has a higher spatial resolution and better coverage than its predecessor, Advanced Microwave Sounding Unit-A, the retrieved temperature field explicitly resolves TC warm core throughout troposphere and depicts the cold temperature anomalies in the eyewall and spiral rainbands. Unlike a typical TC, the height of maximum warm core of Hurricane Sandy is very low, but the storm size is quite large. Based on the analysis of 10 TCs in 2012, close correlations are found between ATMS-derived warm core and the TC maximum sustained wind (MSW) or minimum sea level pressure (MSLP). The estimation errors of MSW and MSLP from ATMS-retrieved warm core are 13.5 mph and 13.1 hPa, respectively.

  16. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    NASA Technical Reports Server (NTRS)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  17. Treating solid dairy manure using microwave-enhanced advanced oxidation process.

    PubMed

    Kenge, Anju A; Liao, Ping H; Lo, Kwang V

    2009-08-01

    The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat separated solid dairy manure for nutrient release and solids reduction. The MW/H(2)O(2)-AOP was conducted at a microwave temperature of 120 degrees C for 10 minutes, and at three pH conditions of 3.5, 7.3 and 12. The hydrogen peroxide dosage at approximately 2 mL per 1% TS for a 30 mL sample was used in this study, reflecting a range of 0.53-0.75 g H(2)O(2)/g dry sludge. The results indicated that substantial quantities of nutrients could be released into the solution at pH of 3.5. However, at neutral and basic conditions only volatile fatty acids and soluble chemical oxygen demand could be released. The analyses on orthophosphate, soluble chemical oxygen demands and volatile fatty acids were re-examined for dairy manure. It was found that the orthophosphate concentration for untreated samples at a higher % total solids (TS) was suppressed and lesser than actual. To overcome this difficulty, the initial orthophosphate concentration had to be measured at 0.5% TS.

  18. Microwave enhanced advanced oxidation process for treating dairy manure at low pH.

    PubMed

    Lo, Kwang V; Chan, Winnie W I; Yawson, Selina K; Liao, Ping H

    2012-01-01

    This study investigated the treatment of dairy manure using the microwave enhanced advanced oxidation process (MW-AOP) at pH 2. An experimental design was developed based on a statistical program using response surface methodology to explore the effects of temperature, hydrogen peroxide dosage and heating time on sugar production, nutrient release and solids destruction. Temperature, hydrogen peroxide dosage and acid concentration were key factors affecting reducing sugar production. The highest reducing sugar yield of 7.4% was obtained at 160°C, 0 mL, 15 min heating time, and no H(2)O(2) addition. Temperature was a dominant factor for an increase of soluble chemical oxygen demand (SCOD) in the treated dairy manure. The important factors for volatile fatty acids (VFA) production were microwave temperature and hydrogen peroxide dosage. Temperature was the most important parameter, and heating time, to a lesser extent affecting orthophosphate release. Heating time, hydrogen peroxide dosage and temperature were significant factors for ammonia release. There was a maximum of 96% and 196% increase in orthophosphate and ammonia concentration, respectively at 160°C, 0.5 mL H(2)O(2) and 15 min heating time. The MW-AOP is an effective method in dairy manure treatment for sugar production, nutrient solubilisation, and solids disintegration.

  19. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A): Instrument logic diagrams

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report contains all of the block diagrams and internal logic diagrams for the Earth Observation System Advanced Microwave Sounding Unit-A (AMSU-A). These diagrams show the signal inputs, outputs, and internal signal flow for the AMSU-A.

  20. Earth Observing System (EOS) Advanced Microwave Sounding Unit: A (EOS/AMSU-A) Firmware Version Description Document

    NASA Technical Reports Server (NTRS)

    Cisneros, A.

    1998-01-01

    This is the final submittal of the Earth Observing System/Advanced Microwave Sounding Unit-A Firmware Version Description Document. Its purpose is to provide a precise description of the particular version of the firmware being released. This description also defines the version of the requirements and design applicable to this version.

  1. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Stress Analysis Report

    NASA Technical Reports Server (NTRS)

    Heffner, Robert

    1996-01-01

    Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module using static loads is presented. The structural margins of safety and natural frequency predictions for the METSAT design are reported.

  2. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A): Instrumentation interface control document

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).

  3. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    NASA Astrophysics Data System (ADS)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  4. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A)

    NASA Technical Reports Server (NTRS)

    Mullooly, William

    1995-01-01

    This is the thirty-first monthly report for the Earth Observing System (EOS)/Advanced Microwave Sounding Unit- A (AMSU-A), Contract NAS5-32314, and covers the period from 1 July 1995 through 31 July 1995. This period is the nineteenth month of the Implementation Phase which provides for the design, fabrication, assembly, and test of the first EOS/AMSU-A, the Protoflight Model. Included in this report is the Master Program Schedule (Section 2), a report from the Product Team Leaders on the status of all major program elements (Section 3), Drawing status (Section 4), Weight and Power Budgets (CDRL) 503 (Section 5), Performance Assurance (CDRL 204) (Section 6), Configuration Management Status Report (CDRL 203) (Section 7), Documentation/Data Management Status Report (Section 8), and Contract Status (Section 9).

  5. Validation of Rain-Rate Retrieved from Advanced Microwave Sounding Unit (AMSU) over the Tropical Cyclone

    NASA Astrophysics Data System (ADS)

    Byon, J.

    2002-12-01

    Rain-rate retrieval using the NOAA/AMSU (Advanced Microwave Sounding Unit) (Zaho et al., 2001) has been implemented at METRI/KMA since 2001. Here, we present the validation results of the AMSU derived rain-rate, especially for the rainfall associated with the tropical cyclone for 2001 and 2002. For the validation, we use rain-rate derived from the ground based radar and/or rainfall observation from the rain gauge in Korea. We estimate the bias score, threat score, bias, RMSE and correlation coefficient for total of 25 tropical cyclone cases. Bias score shows around 1.3 and it increases with the increasing threshold value of rain-rate, while the threat score extends from 0.4 to 0.6 with the increasing threshold value of precipitation. The averaged rain-rate for all 25 cases is 3.23mm/hr and 1.01mm/hr for the retrieved from AMSU and the ground observation, respectively. On the other hand, AMSU rain-rate shows a much better agreement with the ground based observation over inner part of tropical cyclone than over the outer part (Correlation coefficient for convective region is about 0.7, while it is only about 0.3 over the stratiform region). The larger discrepancy of the correlation coefficient with the different part of the tropical cyclone is partly due to the time difference in between ice water path and surface rainfall. Another possible cause is the different vertical rain structure within the tropical cyclone which will be further investigated. The detailed procedure we modified for the improvement of current algorithm will be discussed in the presentation. Reference Zaho, L., F. Weng, and R. Ferraro, 2001: A physically-based algorithm to derive surface rainfall rate using advanced microwave sounding unit-B (AMSU-B) measurements. 11th Conf. on satellite meteorology and oceanography, American Meteorological Society 371-374.

  6. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  7. Tomographic inversion for ALIS noise and resolution

    NASA Astrophysics Data System (ADS)

    Gustavsson, Björn

    1998-11-01

    In this report the problems of resolution and noise sensitivity of tomographic reconstructions from ground-based multistation imaging of aurora with the auroral large imaging system (ALIS) are considered. ALIS is a ground-based grid of high-performance CCD-imaging stations at high latitudes. For evaluation of the resolution and noise sensitivity of current tomographic reconstruction procedures a full model simulation of the ALIS system is presented. The results show that relative errors are typically in the range 0.05-0.1 for typical noise levels in measurements of aurora. A general method to estimate resolution in a tomographic imaging system is developed and used to give estimates of the horizontal and vertical resolution. Its current limitations and future perspective are briefly discussed. A method to retrieve feasible tomographic reconstructions from a few image projections with variable noise level are outlined.

  8. High-resolution imaging of rain systems with the advanced microwave precipitation radiometer

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Hood, Robbie E.; Lafontaine, Frank J.; Smith, Eric A.; Platt, Robert; Galliano, Joe; Griffin, Vanessa L.; Lobl, Elena

    1994-01-01

    An advanced Microwave Precipitation Radiometer (AMPR) has been developed and flown in the NASA ER-2-high-altitude aircraft for imaging various atmospheric and surface processes, primarily the internal structure of rain clouds. The AMPR is a scanning four-frequency total power microwave radiometer that is externally calibrated with high-emissivity warm and cold loads. Separate antenna systems allow the sampling of the 10.7- and 19.35-GHz channels at the same spatial resolution, while the 37.1- and 85.5-GHz channels utilize the same multifrequency feedhorn as the 19.35-GHz channel. Spatial resolutions from an aircraft altitude of 20-km range from 0.6 km at 85.5 GHz to 2.8 km at 19.35 and 10.7 GHz. All channels are sampled every 0.6 km in both along-track and cross-track directions, leading to a contiguous sampling pattern of the 85.5-GHz 3-dB beamwidth footprints, 2.3X oversampling of the 37.1-GHz data, and 4.4X oversampling of the 19.35- and 10.7-GHz data. Radiometer temperature sensitivities range from 0.2 to 0.5 C. Details of the system are described, including two different calibration systems and their effect on the data collected. Examples of oceanic rain systems are presented from Florida and the tropical west Pacific that illustrate the wide variety of cloud water, rainwater, and precipitation-size ice combinations that are observable from aircraft altitudes.

  9. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect

    Dinesh Agrawal; Rustum Roy

    2000-11-01

    The main objective of this program was to develop an efficient and economically viable microwave processing technique to process cobalt cemented tungsten carbide with improved properties for drill-bits for advanced drilling operations for oil, gas, geothermal and excavation industries. The program was completed in three years and successfully accomplished all the states goals in the original proposal. In three years of the program, we designed and built several laboratory scale microwave sintering systems for conducting experiments on Tungsten carbide (WC) based composites in controlled atmosphere. The processing conditions were optimized and various properties were measured. The design of the system was then modified to enable it to process large commercial parts of WC/Co and in large quantities. Two high power (3-6 kW) microwave systems of 2.45 GHz were built for multi samples runs in a batch process. Once the process was optimized for best results, the technology was successfully transferred to our industrial partner, Dennis Tool Co. We helped them to built couple of prototype microwave sintering systems for carbide tool manufacturing. It was found that the microwave processed WC/Co tools are not only cost effective but also exhibited much better overall performance than the standard tools. The results of the field tests performed by Dennis Tool Co. showed remarkable advantage and improvement in their overall performance. For example: wear test shows an increase of 20-30%, corrosion test showed much higher resistance to the acid attack, erosion test exhibited about 15% better resistance than standard sinter-HIP parts. This proves the success of microwave technology for WC/Co based drilling tools. While we have successfully transferred the technology to our industrial partner Dennis Tool Co., they have signed an agreement with Valenite, a world leading WC producer of cutting and drilling tools and wear parts, to push aggressively the new microwave technology in

  10. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Antenna Drive Subsystem METSAT AMSU-A2 (PN:1331200-2, SN:108)

    NASA Technical Reports Server (NTRS)

    Haapala, C.

    1999-01-01

    This is the Performance Verification Report, Antenna Drive Subassembly, Antenna Drive Subsystem, METSAT AMSU-A2 (P/N 1331200-2, SN: 108), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  11. Global Climate Monitoring with the EOS PM-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2002-01-01

    The Advanced Microwave Scanning 2 Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called Aqua) in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-II satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM/I and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-II AMSR). The ADEOS-II AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team 3 activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The US Team's products will be archived at the National Snow and Ice Data Center (NSIDC).

  12. Science Data Processing for the Advanced Microwave Scanning Radiometer: Earth Observing System

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Regner, Kathryn; Conover, Helen; Ashcroft, Peter; Wentz, Frank; Conway, Dawn; Lobl, Elena; Beaumont, Bruce; Hawkins, Lamar; Jones, Steve

    2004-01-01

    The National Aeronautics and Space Administration established the framework for the Science Investigator-led Processing Systems (SIPS) to enable the Earth science data products to be produced by personnel directly associated with the instrument science team and knowledgeable of the science algorithms. One of the first instantiations implemented for NASA was the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) SIPS. The AMSR-E SIPS is a decentralized, geographically distributed ground data processing system composed of two primary components located in California and Alabama. Initial science data processing is conducted at Remote Sensing Systems (RSS) in Santa Rosa, California. RSS ingests antenna temperature orbit data sets from JAXA and converts them to calibrated, resampled, geolocated brightness temperatures. The brightness temperatures are sent to the Global Hydrology and Climate Center in Huntsville, Alabama, which generates the geophysical science data products (e.g., water vapor, sea surface temperature, sea ice extent, etc.) suitable for climate research and applications usage. These science products are subsequently sent to the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado for archival and dissemination to the at-large science community. This paper describes the organization, coordination, and production techniques employed by the AMSR-E SIPS in implementing, automating and operating the distributed data processing system.

  13. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the twentieth monthly report for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A), Contract NAS5-32314, and covers the period from 1 August 1994 through 31 August 1994. This period is the eighth month of the Implementation Phase which provides for the design, fabrication, assembly, and test of the first EOS/AMSU-A, the Protoflight Model. During this period the number one priority for the program continued to be the issuance of Requests for Quotations (RFQ) to suppliers and the procurement of the long-lead receiver components. Significant effort was also dedicated to preparation and conduct of internal design reviews and preparation for the PDR scheduled in September. An overview of the program status, including key events, action items, and documentation submittals, is provided in Section 2 of this report. The Program Manager's 'Priority Issues' are defined in Section 3. Section 4 through 7 provide detailed progress reports for the system engineering effort, each subsystem, performance assurance, and configuration/data management. Contractual matters are discussed in Section 8.

  14. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    PubMed Central

    Cheng, Gong; Lin, Jing; Lu, Jian; Zhao, Xi; Cai, Zhengqing; Fu, Jie

    2015-01-01

    The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k) was 0.0125 min−1. The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe2+ dosage of 0.8 mmol/L, and H2O2 dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC) concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions. PMID:26347877

  15. Tidal effects on stratospheric temperature series derived from successive advanced microwave sounding units.

    PubMed

    Keckhut, P; Funatsu, B M; Claud, C; Hauchecorne, A

    2015-01-01

    Stratospheric temperature series derived from the Advanced Microwave Sounding Unit (AMSU) on board successive NOAA satellites reveal, during periods of overlap, some bias and drifts. Part of the reason for these discrepancies could be atmospheric tides as the orbits of these satellites drifted, inducing large changes in the actual times of measurement. NOAA 15 and 16, which exhibit a long period of overlap, allow deriving diurnal tides that can correct such temperature drifts. The characteristics of the derived diurnal tides during summer periods is in good agreement with those calculated with the Global Scale Wave Model, indicating that most of the observed drifts are likely due to the atmospheric tides. Cooling can be biased by a factor of 2, if times of measurement are not considered. When diurnal tides are considered, trends derived from temperature lidar series are in good agreement with AMSU series. Future adjustments of temperature time series based on successive AMSU instruments will require considering corrections associated with the local times of measurement.

  16. Post-Launch Assessment of Performance of the NOAA-19 Advanced Microwave Sounding Unit-A

    NASA Astrophysics Data System (ADS)

    Mo, T.

    2009-05-01

    The Advanced Microwave Sounding Unit-A (AMSU-A) on the NOAA-19 satellite was successfully launched on 6 February 2009. NOAA-19 is the fifth in a series of five Polar-orbiting Operational Environmental Satellites (POES) with AMSU-A that provide imaging and sounding capabilities. As it orbits the Earth, NOAA-19 will collect data about the Earth's surface and atmosphere that are vital inputs to NOAA's weather forecasts. AMSU-A is a new generation of total-power microwave radiometers which have been flown on the NOAA-15 to NOAA-18 and METOP-A Satellites since May 1998. AMSU-A is composed of two separate units. AMSU-A2 provides channels 1 and 2 at 23.8 and 31.4 GHz. AMSU-A1 furnishes 12 channels in the 50.3 to 57.3 GHz oxygen band which are used for temperature sounding from the surface to about 50 km (i.e., from 1000 to 1 millbar) plus channel 15 at 89 GHz. Channels 1-3 and 15, which have weighting functions peaked near the surface, aid the retrieval of temperature sounding by providing information to correct the effect due to surface emissivity, atmospheric liquid water, and total precipitable water vapor on temperature sounding. Channels 1 and 2 also provide information on precipitation, sea ice, and snow cover. Before launch, each AMSU-A was tested and calibrated by the instrument contractor Northrop Grumman (formerly Aerojet). These pre-launch calibration data are analyzed at NOAA to derive the calibration parameters which are used in the operational calibration software to produce the AMSU-A Level 1B data sets. A systematic post-launch calibration and validation of the instrumental performances was conducted with on-orbit data. The long-term trends of the housekeeping sensors and radiometric counts from the cold space and warm targets are continuously monitored. Scan-by- scan examination of the radiometric calibration counts is employed to confirm normal functioning of the instrument and to detect any anomalous events, such as lunar contamination (LC) in the cold

  17. Global Climate Monitoring with the Eos Pm-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2000-01-01

    The Advanced Microwave Scanning Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called "Aqua") in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-11 satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM[l and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-11 AMSR). The ADEOS-11 AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The U.S. Team's products will be archived at the National Snow and Ice Data Center (NSIDC). Further information about AMSR-E can be obtained at http://www.jzhcc.msfc.nasa.Vov/AMSR.

  18. Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements

    NASA Astrophysics Data System (ADS)

    Han, Yang; Weng, Fuzhong; Zou, Xiaolei; Yang, Hu; Scott, Deron

    2016-05-01

    The Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership satellite has 22 channels at frequencies ranging from 23 to 183 GHz for probing the atmospheric temperature and moisture under all weather conditions. As part of the ATMS calibration and validation activities, the geolocation accuracy of ATMS data must be well characterized and documented. In this study, the coastline crossing method (CCM) and the land-sea fraction method (LFM) are utilized to characterize and quantify the ATMS geolocation accuracy. The CCM is based on the inflection points of the ATMS window channel measurements across the coastlines, whereas the LFM collocates the ATMS window channel data with high-resolution land-sea mask data sets. Since the ATMS measurements provide five pairs of latitude and longitude data for K, Ka, V, W, and G bands, respectively, the window channels 1, 2, 3, 16, and 17 from each of these five bands are chosen for assessing the overall geolocation accuracy. ATMS geolocation errors estimated from both methods are generally consistent from 40 cases in June 2014. The ATMS along-track (cross-track) errors at nadir are within ±4.2 km (±1.2 km) for K/Ka, ±2.6 km (±2.7 km) for V bands, and ±1.2 km (±0.6 km) at W and G bands, respectively. At the W band, the geolocation errors derived from both algorithms are probably less reliable due to a reduced contrast of brightness temperatures in coastal areas. These estimated ATMS along-track and cross-track geolocation errors are well within the uncertainty requirements for all bands.

  19. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  20. Advances on simultaneous desulfurization and denitrification using activated carbon irradiated by microwaves.

    PubMed

    Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi

    2012-06-01

    This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.

  1. Calibration of the advanced microwave sounding unit-A for NOAA-K

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1995-01-01

    The thermal-vacuum chamber calibration data from the Advanced Microwave Sounding Unit-A (AMSU-A) for NOAA-K, which will be launched in 1996, were analyzed to evaluate the instrument performance, including calibration accuracy, nonlinearity, and temperature sensitivity. The AMSU-A on NOAA-K consists of AMSU-A2 Protoflight Model and AMSU-A1 Flight Model 1. The results show that both models meet the instrument specifications, except the AMSU-A1 antenna beamwidths, which exceed the requirement of 3.3 +/- 10%. We also studied the instrument's radiometric characterizations which will be incorporated into the operational calibration algorithm for processing the in-orbit AMSU-A data from space. Particularly, the nonlinearity parameters which will be used for correcting the nonlinear contributions from an imperfect square-law detector were determined from this data analysis. It was found that the calibration accuracies (differences between the measured scene radiances and those calculated from a linear two-point calibration formula) are polarization-dependent. Channels with vertical polarizations show little cold biases at the lowest scene target temperature 84K, while those with horizontal polarizations all have appreciable cold biases, which can be up to 0.6K. It is unknown where these polarization-dependent cold biases originate, but it is suspected that some chamber contamination of hot radiances leaked into the cold scene target area. Further investigation in this matter is required. The existence and magnitude of nonlinearity in each channel were established and a quadratic formula for modeling these nonlinear contributions was developed. The model was characterized by a single parameter u, values of which were obtained for each channel via least-squares fit to the data. Using the best-fit u values, we performed a series of simulations of the quadratic corrections which would be expected from the space data after the launch of AMSU-A on NOAA-K. In these simulations

  2. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  3. Atmospheric monitoring strategy for the Ali site, Tibet

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Zhou, Y.; Liu, L.; Wang, H.; Yin, J.; You, X.; Fu, X.

    2015-04-01

    The astronomical site survey in China has been carried out since 2003. Remote studies and local surveys are performed over the high plateaus, and candidate sites have been selected and performed site testing measurements. The monitoring results show that Ali area in western Tibet can be the best choice for astronomical observations over East Asian regions. Ali site, near the central town of Ali area, has been further identified for small telescope projects and simultaneously for detailed site characterization, and begun construction in 2010. This paper presents the site monitoring strategy and site development plan of the new Ali observatory.

  4. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.

    PubMed

    Beiranvand Pour, Amin; Hashim, Mazlan

    2014-01-01

    This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.

  5. Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor

    USGS Publications Warehouse

    Chander, G.; Meyer, D.J.; Helder, D.L.

    2004-01-01

    As part of the Earth Observer 1 (EO-1) Mission, the Advanced Land Imager (ALI) demonstrates a potential technological direction for Landsat Data Continuity Missions. To evaluate ALI's capabilities in this role, a cross-calibration methodology has been developed using image pairs from the Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) and EO-1 (ALI) to verify the radiometric calibration of ALI with respect to the well-calibrated L7 ETM+ sensor. Results have been obtained using two different approaches. The first approach involves calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors. The second approach uses vicarious calibration techniques to compare the predicted top-of-atmosphere radiance derived from ground reference data collected during the overpass to the measured radiance obtained from the sensor. The results indicate that the relative sensor chip assemblies gains agree with the ETM+ visible and near-infrared bands to within 2% and the shortwave infrared bands to within 4%.

  6. Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Shaojun; Zhang, Saisai; Wu, Zhijun; Wang, Ting; Zong, Jianbo; Zhao, Mengxi; Yang, Gang

    2017-01-01

    In technologically important Li-rich layered cathode materials, the synthesis time is a critical determinant to overcome the practical difficulties. Normal technology costs at least one day or even more to obtain final Li-rich cathode material. Full microwave synthesis is performed here to obtain final Li1.2Mn0.56Ni0.16Co0.08O2 within 60 min with high time-efficiency and power economization. The as-prepared Li-rich oxides keep the spherical hierarchical structure of the precursor. Compared to the same material obtained by traditional calcination, it exhibits well-formed layered structure with higher ordered ion arrangement. X-ray photoelectron spectroscopy (XPS) indicates that microwave assisted heating contributes to a more ordered and stable surface with desired Mn, Co, Ni element states and less impurity. Thus, the as-prepared material reveals remarkable electrochemical property with high discharge capacity of 159.3 mAh g-1 at high current density of 2000 mA g-1. And 88.6% specific capacity is remained after 300 cycles at such high current density. Furthermore, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) are carried out to overall investigate and estimate the material. It is concluded that such full microwave synthesis is really promising as one of the dominant way to obtain Li-rich layered cathode material for applications.

  7. Arctic sea ice concentrations from special sensor microwave imager and advanced very high resolution radiometer satellite data

    NASA Technical Reports Server (NTRS)

    Emery, W. J.; Fowler, C.; Maslanik, J.

    1994-01-01

    Nearly coincident data from the special sensor microwave imager (SSM/I) and the advanced very high resolution radiometer (AVHRR) are used to compute and compare Arctic sea ice concentrations for different regions and times of the year. To help determine overall accuracies and to highlight sources of differences between passive microwave, optical wavelength, and thermal wavelength data, ice concentrations are estimated using two operational SSM/I ice concentration algorithms and with visible- and thermal-infrared wavelength AVHRR data. All algorithms capture the seasonal patterns of ice growth and melt. The ranges of differences fall within the general levels of uncertainty expected for each method and are similar to previous accuracy estimates. The estimated ice concentrations are all highly correlated, with uniform biases, although differences between individual pairs of observations can be large. On average, the NASA Team algorithm yielded 5% higher ice concentrations than the Bootstrap algorithm, while during nonmelt periods the two SSM/I algorithms agree to within 0.5%. These seasonal differences are consistent with the ways that the 19-GHz and 37-GHz microwave channels are used in the algorithms. When compared to the AVHRR-derived ice concentrations, the Team-algorithm results are more similar on average in terms of correlation and mean differences. However, the Team algorithm underestimates concentrations relative to the AVHRR output by 6% during cold months and overestimates by 3% during summer. Little seasonal difference exists between the Bootstrap and AVHRR results, with a mean difference of about 5%. Although the mean differences are less between the SSM/I-derived concentrations and concentrations estimated using AVHRR channel 1, the correlations appear substantially better between the SSM/I data and concentrations derived from AVHRR channel 4, particularly for the Team algorithm output.

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A) METOP Stress Analysis Report (Qual Level Random Vibration) A1 Module

    NASA Technical Reports Server (NTRS)

    Mehitretter, R.

    1996-01-01

    Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module performed using the Meteorological Operational (METOP) Qualification Level 9.66 grms Random Vibration PSD Spectrum is presented. The random vibration structural margins of safety and natural frequency predictions are summarized.

  9. A Prototype Hail Detection Algorithm and Hail Climatology Developed with the Advanced Microwave Sounding Unit (AMSU)

    NASA Technical Reports Server (NTRS)

    Ferraro, Ralph; Beauchamp, James; Cecil, Dan; Heymsfeld, Gerald

    2015-01-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 SMMR, the TRMM Microwave Imager (TMI) and most recently, the Aqua AMSR-E sensor. This lead to climatologies of hail frequency from TMI and AMSR-E, however, limitations include geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. Since 1998, NOAA and EUMETSAT have been operating the AMSU-A/B and the MHS on several operational satellites: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 hours, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental U.S. for a 12-year period (2000-2011). Compared with the surface observations, the algorithm detects approximately 40 percent of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology that is based on all available AMSU observations during 2000-11 that is stratified in several ways, including total hail occurrence by month (March through September), total annual, and over the diurnal cycle. Independent comparisons are made compared to similar data sets derived from other

  10. Research and Development on Advanced Silicon Carbide Thin Film Growth Techniques and Fabrication of High Power and Microwave Frequency Silicon Carbide-Based Device Structures

    DTIC Science & Technology

    1990-12-01

    0W " -Annual Letter Report- N,4 Research and Developmen. on Advanced Silicon Carbide Thin Film Growth Techniques and Fabrication of High Power and...Microwave Frequency Silicon Carbide -Based Device Structures Supported under Grant #N00014-88-K-0341/P00002 Office of the Chief of Naval Research Report...SUBTITLE Research and Development on Advanced S. FUNDING NUMBERS Silicon Carbide Thin Filn.Growth Technl.ques and R&T:212k003---03 Fabrication of High

  11. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  12. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Connolly, D. J.

    1986-10-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  13. Fresnel-region fields and antenna noise-temperature calculations for advanced microwave sounding units

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1982-01-01

    A transition from the antenna noise temperature formulation for extended noise sources in the far-field or Fraunhofer-region of an antenna to one of the intermediate near field or Fresnel-region is discussed. The effort is directed toward microwave antenna simulations and high-speed digital computer analysis of radiometric sounding units used to obtain water vapor and temperature profiles of the atmosphere. Fresnel-region fields are compared at various distances from the aperture. The antenna noise temperature contribution of an annular noise source is computed in the Fresnel-region (D squared/16 lambda) for a 13.2 cm diameter offset-paraboloid aperture at 60 GHz. The time-average Poynting vector is used to effect the computation.

  14. Evaluation test of ALIS in Cambodia for humanitarian demining

    NASA Astrophysics Data System (ADS)

    Sato, Motoyuki

    2010-04-01

    ALIS is a hand-held dual sensor developed by Tohoku University, Japan since 2002. Dual sensor is a general name of sensor for humanitarian demining, which are equipped with metal detector and GPR. ALIS is only one hand-held dual sensor, which can record the sensor position with sensor signals. Therefore, the data can be processed after data acquisition, and can increase the imaging capability. ALIS has been tested in some mine affected courtiers including Afghanistan (2004), Egypt(2005), Croatia(2006-) and Cambodia(2007-). Mine fields at each country has different conditions and soil types. Therefore testes at the real mine fields are very important. ALIS has detected more than 30 AP-Mines in evaluation test in Cambodia held in 2009.

  15. Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia

    2012-08-01

    In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.

  16. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.

    PubMed

    Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

    2013-09-15

    Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more

  17. Microwave Ablation in Combination with Chemotherapy for the Treatment of Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Wei, Zhigang Ye, Xin Yang, Xia Zheng, Aimin Huang, Guanghui Li, Wenhong Ni, Xiang Wang, Jiao; Han, Xiaoying

    2015-02-15

    PurposeTo verify whether microwave ablation (MWA) used as a local control treatment had an improved outcome regarding advanced non-small cell lung cancer (NSCLC) when combined with chemotherapy.MethodsThirty-nine patients with histologically verified advanced NSCLC and at least one measurable site other than the ablative sites were enrolled. Primary tumors underwent MWA followed by platinum-based doublet chemotherapy. Modified response evaluation criteria in solid tumors (mRECIST) and RECIST were used to evaluate therapeutic response. Complications were assessed using the National Cancer Institute Common Toxicity Criteria (version 3.0).ResultsMWA was administered to 39 tumors in 39 patients. The mean and median diameters of the primary tumor were 3.84 cm and 3.30 cm, respectively, with a range of 1.00–9.00 cm. Thirty-three (84.6 %) patients achieved a partial response. No correlation was found between MWA efficacy and clinicopathologic characteristics. For chemotherapy, 11 patients (28.2 %) achieved a partial response, 18 (46.2 %) showed stable disease, and 10 (25.6 %) had progressive disease. The overall objective response rate and disease control rate were 28.2 and 74.4 %, respectively. The median progression-free survival time was 8.7 months (95 % CI 5.5–11.9). The median overall survival time was 21.3 months (95 % CI 17.0–25.4). Complications were observed in 22 (56.4 %) patients, and grade 3 adverse events were observed in 3 (7.9 %) patients.ConclusionsPatients with advanced NSCLC could benefit from MWA in combination with chemotherapy. Complications associated with MWA were common but tolerable.

  18. Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions

    USGS Publications Warehouse

    Hubbard, B.E.; Crowley, J.K.

    2005-01-01

    Hyperspectral data coverage from the EO-1 Hyperion sensor was useful for calibrating Advanced Land Imager (ALI) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of a volcanic terrane area of the Chilean-Bolivian Altiplano. Following calibration, the ALI and ASTER datasets were co-registered and joined to produce a 13-channel reflectance cube spanning the Visible to Short Wave Infrared (0.4-2.4 ??m). Eigen analysis and comparison of the Hyperion data with the ALI + ASTER reflectance data, as well as mapping results using various ALI+ASTER data subsets, provided insights into the information dimensionality of all the data. In particular, high spectral resolution, low signal-to-noise Hyperion data were only marginally better for mineral mapping than the merged 13-channel, low spectral resolution, high signal-to-noise ALI + ASTER dataset. Neither the Hyperion nor the combined ALI + ASTER datasets had sufficient information dimensionality for mapping the diverse range of surface materials exposed on the Altiplano. However, it is possible to optimize the use of the multispectral data for mineral-mapping purposes by careful data subsetting, and by employing other appropriate image-processing strategies.

  19. Site Protection Program and Progress Report of Ali Observatory, Tibet

    NASA Astrophysics Data System (ADS)

    Yao, Yongqiang; Zhou, Yunhe; Wang, Xiaohua; He, Jun; Zhou, Shu

    2015-08-01

    The Ali observatory, Tibet, is a promising new site identified through ten year site survey over west China, and it is of significance to establish rules of site protection during site development. The site protection program is described with five aspects: site monitoring, technical support, local government support, specific organization, and public education. The long-term sky brightness monitoring is ready with site testing instruments and basic for light pollution measurement; the monitoring also includes directions of main light sources, providing periodical reports and suggestions for coordinating meetings. The technical supports with institutes and manufacturers help to publish lighting standards and replace light fixtures; the research pays special attention to the blue-rich sources, which impact the important application of high altitude sites. An official leading group towards development and protection of astronomical resources has been established by Ali government; one of its tasks is to issue regulations against light pollution, including special restrictions of airport, mine, and winter heating, and to supervise lighting inspection and rectification. A site protection office under the official group and local astronomical society are organized by Ali observatory; the office can coordinate in government levels and promote related activities. A specific website operated by the protection office releases activity propaganda, evaluation results, and technical comparison with other observatories. Both the site protection office and Ali observatory take responsibility for public education, including popular science lectures, light pollution and energy conservation education. Ali Night Sky Park has been constructed and opens in 2014, and provides a popular place and observational experience. The establishment of Ali Observatory and Night Sky Park brings unexpected social influence, and the starry sky trip to Ali becomes a new format of culture

  20. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). As-Designed Parts List: Electrical, Electronic, and Electromechanical (EEE) As-Built Parts List for the AMSU-A Instruments

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is the As-Designed Parts List, Electrical, Electronic, and Electromechanical (EEE) As-Built Parts Lists For The AMSU-A Instruments, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  1. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  2. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 108 2

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1 SIN 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  3. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  4. Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products.

    PubMed

    Barbosa-Cánovas, Gustavo V; Medina-Meza, Ilce; Candoğan, Kezban; Bermúdez-Aguirre, Daniela

    2014-11-01

    Conventional thermal processes have been very reliable in offering safe sterilized meat products, but some of those products are of questionable overall quality. Flavor, aroma, and texture, among other attributes, are significantly affected during such processes. To improve those quality attributes, alternative approaches to sterilizing meat and meat products have been explored in the last few years. Most of the new strategies for sterilizing meat products rely on using thermal approaches, but in a more efficient way than in conventional methods. Some of these emerging technologies have proven to be reliable and have been formally approved by regulatory agencies such as the FDA. Additional work needs to be done in order for these technologies to be fully adopted by the food industry and to optimize their use. Some of these emerging technologies for sterilizing meat include pressure assisted thermal sterilization (PATS), microwaves, and advanced retorting. This review deals with fundamental and applied aspects of these new and very promising approaches to sterilization of meat products.

  5. Pre-Launch Characterization of the Advanced Technology Microwave Sounder (ATMS) on the Joint Polar Satellite System-1 Satellite (JPSS-1)

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Leslie, Vince; Lyu, Joseph; Smith, Craig; McCormick, Lisa; Anderson, Kent

    2016-04-01

    The Advanced Technology Microwave Sounder (ATMS) is the newest generation of microwave sounder in the international fleet of polar-orbiting weather satellites, replacing the Advanced Microwave Sounding Unit (AMSU) which first entered service in 1998. The first ATMS was launched aboard the Suomi NPP (S-NPP) satellite in late 2011. The second ATMS is manifested on the Joint Polar Satellite System-1 Satellite (JPSS-1). ATMS provides 22 channels of temperature and humidity sounding observations over a frequency range from 23 to 183 GHz. These microwave soundings provide the highest impact data ingested by operational Numerical Weather Prediction (NWP) models, and are the most critical of the polar-orbiting satellite observations, particularly because microwave sensing can penetrate clouds. This paper will present performance characterizations from pre-launch calibration measurements of the JPSS-1 ATMS just completed in December, 2015. The measurements were conducted in a thermal vacuum chamber with blackbody targets simulating cold space, ambient, and a variable Earth scene. They represent the best opportunity for calibration characterization of the instrument since the environment can be carefully controlled. We will present characterizations of the sensitivity (NEDT), accuracy, nonlinearity, noise spectral characteristics, gain stability, repeatability, and inter-channel correlation. An estimate of expected "striping" will be presented, and a discussion of reflector emissivity effects will also be provided. Comparisons will be made with the S-NPP flight unit. Finally, we will describe planned on-orbit characterizations - such as pitch and roll maneuvers - that will further improve both the measurement quality and the understanding of various error contributions.

  6. Research and Development on Advanced Silicon Carbide Thin Film Growth Techniques and Fabrication of High Power and Microwave Frequency Silicon Carbide-Based Device Structures

    DTIC Science & Technology

    1991-12-01

    AD-A243 531IIII!IIHUHllAlll| DTIC Annual Letter Report EL Vr DECA S C Research and Development on Advanced Silicon Carbide Thin Film Growth...Techniques and Fabrication of High Power and Microwave Frequency Silicon Carbide -Based Device Structures Supported under Grant #N00014-88-K-0341/P00002 Office...Letter l/,1- 2 3 lj9 l 4. TITLE AND SUBTITLE Research and Develp~nt on Advanced S. FUNDING NUMBERS Silicon Carbide Thin Film .Growth Techniques and R&T

  7. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Markham, Brian L.; Helder, Dennis L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  8. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Helder, D.L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of-Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  9. Proton irradiation effects on advanced digital and microwave III-V components

    SciTech Connect

    Hash, G.L.; Schwank, J.R.; Shaneyfelt, M.R.; Sandoval, C.E.; Connors, M.P.; Sheridan, T.J.; Sexton, F.W.; Slayton, E.M.; Heise, J.A.; Foster, C.

    1994-09-01

    A wide range of advanced III-V components suitable for use in high-speed satellite communication systems were evaluated for displacement damage and single-event effects in high-energy, high-fluence proton environments. Transistors and integrated circuits (both digital and MMIC) were irradiated with protons at energies from 41 to 197 MeV and at fluences from 10{sup 10} to 2 {times} 10{sup 14} protons/cm{sup 2}. Large soft-error rates were measured for digital GaAs MESFET (3 {times} 10{sup {minus}5} errors/bit-day) and heterojunction bipolar circuits (10{sup {minus}5} errors/bit-day). No transient signals were detected from MMIC circuits. The largest degradation in transistor response caused by displacement damage was observed for 1.0-{mu}m depletion- and enhancement-mode MESFET transistors. Shorter gate length MESFET transistors and HEMT transistors exhibited less displacement-induced damage. These results show that memory-intensive GaAs digital circuits may result in significant system degradation due to single-event upset in natural and man-made space environments. However, displacement damage effects should not be a limiting factor for fluence levels up to 10{sup 14} protons/cm{sup 2} [equivalent to total doses in excess of 10 Mrad(GaAs)].

  10. Enhancing the AliEn Web Service Authentication

    NASA Astrophysics Data System (ADS)

    Zhu, Jianlin; Saiz, Pablo; Carminati, Federico; Betev, Latchezar; Zhou, Daicui; Mendez Lorenzo, Patricia; Grigoras, Alina Gabriela; Grigoras, Costin; Furano, Fabrizio; Schreiner, Steffen; Vladimirovna Datskova, Olga; Sankar Banerjee, Subho; Zhang, Guoping

    2011-12-01

    Web Services are an XML based technology that allow applications to communicate with each other across disparate systems. Web Services are becoming the de facto standard that enable inter operability between heterogeneous processes and systems. AliEn2 is a grid environment based on web services. The AliEn2 services can be divided in three categories: Central services, deployed once per organization; Site services, deployed on each of the participating centers; Job Agents running on the worker nodes automatically. A security model to protect these services is essential for the whole system. Current implementations of web server, such as Apache, are not suitable to be used within the grid environment. Apache with the mod_ssl and OpenSSL only supports the X.509 certificates. But in the grid environment, the common credential is the proxy certificate for the purpose of providing restricted proxy and delegation. An Authentication framework was taken for AliEn2 web services to add the ability to accept X.509 certificates and proxy certificates from client-side to Apache Web Server. The authentication framework could also allow the generation of access control policies to limit access to the AliEn2 web services.

  11. Sidi Ali Ou Azza (L4): A New Moroccan Fall

    NASA Astrophysics Data System (ADS)

    Chennaoui Aoudjehane, H.; Agee, C. B.; Aaranson, A.; Bouragaa, A.

    2016-08-01

    Sidi Ali Ou Azza is the latest meteorite fall in Morocco, it occurred on 28 July 2015 very close (about 40 km) to Tissint martian shergottite fall that occurred on 18 July 2011. It's one of the small group of 23 L4 ordinary chondrite falls.

  12. ALIS through the Looking Glass: Changing Perceptions of Performance Indicators.

    ERIC Educational Resources Information Center

    Williamson, John; And Others

    1992-01-01

    Follows up on a Williamson and Fitz-Gibbon article (1990) focusing on the impact of a performance indicator project, COMBSE (Confidential Measurement Based Self-Evaluation), on secondary school English departments. This article describes COMBSE's metamorphosis into another system, ALIS (A Level Information System), that has transcended the…

  13. ALI--A Digital Archive of DAISY Books

    ERIC Educational Resources Information Center

    Forsberg, Asa

    2007-01-01

    ALI is a project to develop an archive for talking books produced by the Swedish universities. The universities produce talking books from the mandatory literature for students with reading disabilities, including mostly journal articles, book chapters and texts written by teachers. The project group consists of librarians and co-ordinators for…

  14. Current status of the global change observation mission - water SHIZUKU (GCOM-W) and the advanced microwave scanning radiometer 2 (AMSR2) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Maeda, Takashi; Kachi, Misako; Kasahara, Marehito

    2016-10-01

    Japan Aerospace Exploration Agency (JAXA) launched the Global Change Observation Mission - Water (GCOM-W) or "SHIZUKU" in 18 May 2012 (JST) from JAXA's Tanegashima Space Center. The GCOM-W satellite joins to NASA's A-train orbit since June 2012, and its observation is ongoing. The GCOM-W satellite carries the Advanced Microwave Scanning Radiometer 2 (AMSR2). The AMSR2 is a multi-frequency, total-power microwave radiometer system with dual polarization channels for all frequency bands, and successor microwave radiometer to the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) loaded on the NASA's Aqua satellite. The AMSR-E kept observation in the slower rotation speed (2 rotations per minute) for cross-calibration with AMSR2 since December 2012, its operation ended in December 2015. The AMSR2 is designed almost similarly as the AMSR-E. The AMSR2 has a conical scanning system with large-size offset parabolic antenna, a feed horn cluster to realize multi-frequency observation, and an external calibration system with two temperature standards. However, some important improvements are made. For example, the main reflector size of the AMSR2 is expanded to 2.0 m to observe the Earth's surface in higher spatial resolution, and 7.3-GHz channel is newly added to detect radio frequency interferences at 6.9 GHz. In this paper, we present a recent topic for the AMSR2 (i.e., RFI detection performances) and the current operation status of the AMSR2.

  15. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  16. Effect of H2O2 dosing strategy on sludge pretreatment by microwave-H2O2 advanced oxidation process.

    PubMed

    Wang, Yawei; Wei, Yuansong; Liu, Junxin

    2009-09-30

    Considering characteristics of breaking down H(2)O(2) into water and molecular oxygen by catalase in waste activated sludge (WAS), the effect of H(2)O(2) dosing strategy on sludge pretreatment by the advanced oxidation process (AOP) of microwave-H(2)O(2) was investigated by batch experiments for optimizing H(2)O(2) dosage. Results showed that the catalase in sludge was active at the low temperature range between 15 degrees C and 45 degrees C, and gradually lost activity from 60 degrees C to 80 degrees C. Therefore, the H(2)O(2) was dosed at 80 degrees C, to which the waste activated sludge was first heated by the microwave (MW), and then the sludge dosed with H(2)O(2) was continuously heated till 100 degrees C by the microwave. Results at different H(2)O(2) dosages showed that the higher the H(2)O(2) dosing ratio was, the more the SCOD and total organic carbon (TOC) were released into the supernatant, and the optimum range of H(2)O(2)/TCOD ratio should be between 0.1 and 1.0. The percentages of consumed H(2)O(2) in the AOP of microwave and H(2)O(2) treating the WAS were 25.38%, 22.53%, 14.82%, 13.61% and 19.63% at different H(2)O(2)/TCOD dosing ratios of 0.1, 0.5, 1, 2, 4, respectively. Along with the increasing H(2)O(2)/TCOD ratio, the contents of TCOD on particles, soluble substances and mineralization increased and the TCOD distribution on solids decreased.

  17. Simulation of EO-1 Hyperion Data from ALI Multispectral Data Based on the Spectral Reconstruction Approach.

    PubMed

    Liu, Bo; Zhang, Lifu; Zhang, Xia; Zhang, Bing; Tong, Qingxi

    2009-01-01

    Data simulation is widely used in remote sensing to produce imagery for a new sensor in the design stage, for scale issues of some special applications, or for testing of novel algorithms. Hyperspectral data could provide more abundant information than traditional multispectral data and thus greatly extend the range of remote sensing applications. Unfortunately, hyperspectral data are much more difficult and expensive to acquire and were not available prior to the development of operational hyperspectral instruments, while large amounts of accumulated multispectral data have been collected around the world over the past several decades. Therefore, it is reasonable to examine means of using these multispectral data to simulate or construct hyperspectral data, especially in situations where hyperspectral data are necessary but hard to acquire. Here, a method based on spectral reconstruction is proposed to simulate hyperspectral data (Hyperion data) from multispectral Advanced Land Imager data (ALI data). This method involves extraction of the inherent information of source data and reassignment to newly simulated data. A total of 106 bands of Hyperion data were simulated from ALI data covering the same area. To evaluate this method, we compare the simulated and original Hyperion data by visual interpretation, statistical comparison, and classification. The results generally showed good performance of this method and indicated that most bands were well simulated, and the information both preserved and presented well. This makes it possible to simulate hyperspectral data from multispectral data for testing the performance of algorithms, extend the use of multispectral data and help the design of a virtual sensor.

  18. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Initial Comprehensive Performance Test Report, P/N 1331200-2-IT, S/N 105/A2

    NASA Technical Reports Server (NTRS)

    Platt, R.

    1999-01-01

    This is the Performance Verification Report, Initial Comprehensive Performance Test Report, P/N 1331200-2-IT, S/N 105/A2, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The specification establishes the requirements for the Comprehensive Performance Test (CPT) and Limited Performance Test (LPT) of the Advanced Microwave Sounding, Unit-A2 (AMSU-A2), referred to herein as the unit. The unit is defined on Drawing 1331200. 1.2 Test procedure sequence. The sequence in which the several phases of this test procedure shall take place is shown in Figure 1, but the sequence can be in any order.

  19. Microwave Ovens

    MedlinePlus

    ... Emitting Products Radiation-Emitting Products and Procedures Home, Business, and Entertainment Products Microwave ... for Consumers Laws, Regulations & Standards Industry Guidance Other Resources Description Microwave ...

  20. Mapping forest height, foliage height profiles and disturbance characteristics with time series of gap-filled Landsat and ALI imagery

    NASA Astrophysics Data System (ADS)

    Helmer, E.; Ruzycki, T. S.; Wunderle, J. M.; Kwit, C.; Ewert, D. N.; Voggesser, S. M.; Brandeis, T. J.

    2011-12-01

    We mapped tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m) and foliage height profiles with a time series of gap-filled Landsat and Advanced Land Imager (ALI) imagery for the island of Eleuthera, The Bahamas. We also mapped disturbance type and age with decision tree classification of the image time series. Having mapped these variables in the context of studies of wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii), we then illustrated relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series were both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitated. Also unique to this study was that seven of the eight image time steps were cloud-gap-filled images: mosaics of the clear parts of several cloudy scenes, in which cloud gaps in a reference scene for each time step are filled with image data from alternate scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization of the image data that filled cloud gaps. We also illustrated how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age.

  1. Predictive criteria to study the pathogenesis of malaria-associated ALI/ARDS in mice.

    PubMed

    Ortolan, Luana S; Sercundes, Michelle K; Barboza, Renato; Debone, Daniela; Murillo, Oscar; Hagen, Stefano C F; Russo, Momtchilo; D' Império Lima, Maria Regina; Alvarez, José M; Amaku, Marcos; Marinho, Claudio R F; Epiphanio, Sabrina

    2014-01-01

    Malaria-associated acute lung injury/acute respiratory distress syndrome (ALI/ARDS) often results in morbidity and mortality. Murine models to study malaria-associated ALI/ARDS have been described; we still lack a method of distinguishing which mice will develop ALI/ARDS before death. This work aimed to characterize malaria-associated ALI/ARDS in a murine model and to demonstrate the first method to predict whether mice are suffering from ALI/ARDS before death. DBA/2 mice infected with Plasmodium berghei ANKA developing ALI/ARDS or hyperparasitemia (HP) were compared using histopathology, PaO2 measurement, pulmonary X-ray, breathing capacity, lung permeability, and serum vascular endothelial growth factor (VEGF) levels according to either the day of death or the suggested predictive criteria. We proposed a model to predict malaria-associated ALI/ARDS using breathing patterns (enhanced pause and frequency respiration) and parasitemia as predictive criteria from mice whose cause of death was known to retrospectively diagnose the sacrificed mice as likely to die of ALI/ARDS as early as 7 days after infection. Using this method, we showed increased VEGF levels and increased lung permeability in mice predicted to die of ALI/ARDS. This proposed method for accurately identifying mice suffering from ALI/ARDS before death will enable the use of this model to study the pathogenesis of this disease.

  2. Predictive Criteria to Study the Pathogenesis of Malaria-Associated ALI/ARDS in Mice

    PubMed Central

    Ortolan, Luana S.; Sercundes, Michelle K.; Debone, Daniela; Hagen, Stefano C. F.; D' Império Lima, Maria Regina; Alvarez, José M.; Marinho, Claudio R. F.; Epiphanio, Sabrina

    2014-01-01

    Malaria-associated acute lung injury/acute respiratory distress syndrome (ALI/ARDS) often results in morbidity and mortality. Murine models to study malaria-associated ALI/ARDS have been described; we still lack a method of distinguishing which mice will develop ALI/ARDS before death. This work aimed to characterize malaria-associated ALI/ARDS in a murine model and to demonstrate the first method to predict whether mice are suffering from ALI/ARDS before death. DBA/2 mice infected with Plasmodium berghei ANKA developing ALI/ARDS or hyperparasitemia (HP) were compared using histopathology, PaO2 measurement, pulmonary X-ray, breathing capacity, lung permeability, and serum vascular endothelial growth factor (VEGF) levels according to either the day of death or the suggested predictive criteria. We proposed a model to predict malaria-associated ALI/ARDS using breathing patterns (enhanced pause and frequency respiration) and parasitemia as predictive criteria from mice whose cause of death was known to retrospectively diagnose the sacrificed mice as likely to die of ALI/ARDS as early as 7 days after infection. Using this method, we showed increased VEGF levels and increased lung permeability in mice predicted to die of ALI/ARDS. This proposed method for accurately identifying mice suffering from ALI/ARDS before death will enable the use of this model to study the pathogenesis of this disease. PMID:25276057

  3. Association of Heme Oxygenase 1 with Lung Protection in Malaria-Associated ALI/ARDS

    PubMed Central

    Pereira, Marcelo L. M.; Ortolan, Luana S.; Sercundes, Michelle K.; Debone, Daniela; Murillo, Oscar; Lima, Flávia A.

    2016-01-01

    Malaria is a serious disease, caused by the parasite of the genus Plasmodium, which was responsible for 440,000 deaths in 2015. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the main clinical complications in severe malaria. The murine model DBA/2 reproduces the clinical signs of ALI/ARDS in humans, when infected with Plasmodium berghei ANKA. High levels of HO-1 were reported in cases of severe malaria. Our data indicated that the HO-1 mRNA and protein expression are increased in mice that develop malaria-associated ALI/ARDS (MA-ALI/ARDS). Additionally, the hemin, a HO-1 inducing drug, prevented mice from developing MA-ALI/ARDS when administered prior to the development of MA-ALI/ARDS in this model. Also, hemin treatment showed an amelioration of respiratory parameters in mice, high VEGF levels in the sera, and a decrease in vascular permeability in the lung, which are signs of ALI/ARDS. Therefore, the induction of HO-1 before the development of MA-ALI/ARDS could be protective. However, the increased expression of HO-1 on the onset of MA-ALI/ARDS development may represent an effort to revert the phenotype of this syndrome by the host. We therefore confirm that HO-1 inducing drugs could be used for prevention of MA-ALI/ARDS in humans. PMID:27974865

  4. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Reports: Final Comprehensive Performance Test Report, P/N: 1356006-1, S.N: 202/A2

    NASA Technical Reports Server (NTRS)

    Platt, R.

    1998-01-01

    This is the Performance Verification Report. the process specification establishes the requirements for the comprehensive performance test (CPT) and limited performance test (LPT) of the earth observing system advanced microwave sounding unit-A2 (EOS/AMSU-A2), referred to as the unit. The unit is defined on drawing 1356006.

  5. Remote Sensing Observatory Validation of Surface Soil Moisture Using Advanced Microwave Scanning Radiometer E, Common Land Model, and Ground Based Data: Case Study in SMEX03 Little River Region, Georgia, U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal soil moisture estimation may be characterized by inter-comparisons among remotely sensed measurements, ground-based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSR-E), ground-based measurements, and Soil-Vege...

  6. Optical Turbulence Characterization by WRF model above Ali, Tibet

    NASA Astrophysics Data System (ADS)

    Wang, Hongshuai; Yao, Yongqiang; Liu, Liyong; Qian, Xuan; Yin, Jia

    2015-04-01

    Atmospheric optical turbulence modeling and forecast for astronomy is a relatively recent discipline, but has played important roles in site survey, optimization of large telescope observing tables, and in the applications of adaptive optics technique. The numerical approach, by using of meteorological parameters and parameterization of optical turbulence, can provide all the optical turbulence parameters related, such as C2n profile, coherent length, wavefront coherent time, seeing, isoplanatic angle, and so on. This is particularly interesting for searching new sites without the long and expensive site testing campaigns with instruments. Earlier site survey results by the site survey team of National Astronomical Observatories of China imply that the south-west Tibet, Ali, is one of the world best IR and sub-mm site. For searching the best site in Ali area, numerical approach by Weather and Research Forecasting (WRF) model had been used to evaluate the climatology of the optical turbulence. The WRF model is configured over a domain 200km×200km with 1km horizontal resolution and 65 vertical levels from ground to the model top(10millibars) in 2010. The initial and boundary conditions for the model are provided by the 1° × 1° Global Final Analysis data from NCEP. The distribution and seasonal variation of optical turbulence parameters over this area are presented.

  7. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan

    NASA Technical Reports Server (NTRS)

    Fay, M.

    1998-01-01

    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). As-Designed Parts List: Electrical, Electronic and Electromechanical (EEE) As-Designed Parts List

    NASA Technical Reports Server (NTRS)

    Lorenz, E.

    1999-01-01

    This report comprises the Electrical, Electronic, and Electromechanical (EEE) As Designed Parts List to be used in the Integrated Advanced Microwave Sounding Unit-A (AMSU-A) instrument. The purpose of the EEE As-Designed Parts List is to provide a listing of EEE parts identified for use on the Integrated AMSU-A. All EEE parts used on the AMSU-A must meet the parts control requirements as defined in the Parts Control Plan (POP). All part applications are reviewed by the Parts Control Board (PCB) and granted approval if POP requirements are met. The "As Designed Parts Lists" indicates PCB approval status, and thus also serves as the Program Approved Parts List.

  9. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Yang, Yongliang; Amster, Oskar

    2015-03-01

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. Recent results will be presented illustrating high-resolution electrical features such as sub 15 nm Moire' patterns in Graphene, carbon nanotubes of various electrical states and ferro-electrics. In addition to imaging, the technique is suited to a variety of metrology applications where specific physical properties are determined quantitatively. We will present research activities on quantitative measurements using multiple techniques to determine dielectric constant (permittivity) and conductivity (e.g. dopant concentration) for a range of materials. Examples include bulk dielectrics, low-k dielectric thin films, capacitance standards and doped semiconductors. Funded in part by DOE SBIR DE-SC0009586.

  10. Muhammad Ali's Fighting Words: The Paradox of Violence in Nonviolent Rhetoric

    ERIC Educational Resources Information Center

    Gorsevski, Ellen W.; Butterworth, Michael L.

    2011-01-01

    While Muhammad Ali has been the subject of countless articles and books written by sports historians and journalists, rhetorical scholars have largely ignored him. This oversight is surprising given both the tradition of social movement scholarship within rhetorical studies and Ali's influential eloquence as a world renowned celebrity espousing…

  11. Biomarkers of ALI/ARDS: pathogenesis, discovery, and relevance to clinical trials.

    PubMed

    Janz, David R; Ware, Lorraine B

    2013-08-01

    Despite the high incidence and poor prognosis of acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), it remains challenging to identify patients who are at highest risk of developing these syndromes, differentiate these syndromes from other causes of acute respiratory failure, and accurately prognosticate once the diagnosis is made. The identification and validation of biological markers of ALI has the potential to ameliorate these challenges by facilitating studies of therapies aimed at prevention, identifying patients more accurately that have ALI so they can benefit from evidence-based therapies and enrollment in clinical trials, and determining which patients are unlikely to have a positive outcome to guide therapeutic choices and trials of experimental rescue therapies. This article reviews the current state of biomarker research in ALI/ARDS. New methodologies for identification of novel biomarkers of ALI, including metabolomics, proteomics, gene expression, and genetic studies are also discussed.

  12. Advancement of green process through microwave-assisted extraction of bioactive metabolites from Arthrospira Platensis and bioactivity evaluation.

    PubMed

    Esquivel-Hernández, Diego A; Rodríguez-Rodríguez, José; Rostro-Alanis, Magdalena; Cuéllar-Bermúdez, Sara P; Mancera-Andrade, Elena I; Núñez-Echevarría, Jade E; García-Pérez, J Saúl; Chandra, Rashmi; Parra-Saldívar, Roberto

    2017-01-01

    Bioactivity and functional properties of cyanobacterial extract mostly depends on process of extraction, temperature and solvent used (polar or non-polar). To evaluate these parameters a design of experiment (DOE; using a 2(k) design) was performed with Arthrospira platensis. Extraction process was optimized through microwave-assisted extraction considering solvent ratio, temperature and time of extraction with polar (PS) and non-polar (NPS). Maximum extract yield obtained was 4.32±0.25% and 5.26±0.11% (w/w) respectively for PS and NPS. Maximum content of bioactive metabolites in PS extracts were thiamine (846.57±14.12μg/g), riboflavin (101.09±1.63μg/g), C-phycocyanin (2.28±0.10μg/g) and A-phycocyanin (4.11±0.03μg/g), while for NPS extracts were α-tocopherol (37.86±0.78μg/g), β-carotene (123.64±1.45μg/g) and 19.44±0.21mg/g of fatty acids. A. platensis PS extracts showed high antimicrobial activity and PS extracts had antioxidant activity of 0.79±0.12μmolTE/g for FRAP assay, while for NPS extracts 1.03±0.08μmol α-TE/g for FRAP assay.

  13. Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index

    PubMed Central

    Pu, Ruiliang; Gong, Peng; Yu, Qian

    2008-01-01

    In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). A total of 38 mixed coniferous forest CC and 38 LAI measurements were collected at Blodgett Forest Research Station, University of California at Berkeley, USA. The analysis method consists of (1) extracting spectral vegetation indices (VIs), spectral texture information and maximum noise fractions (MNFs), (2) establishing multivariate prediction models, (3) predicting and mapping pixel-based CC and LAI values, and (4) validating the mapped CC and LAI results with field validated photo-interpreted CC and LAI values. The experimental results indicate that the Hyperion data are the most effective for mapping forest CC and LAI (CC mapped accuracy (MA) = 76.0%, LAI MA = 74.7%), followed by ALI data (CC MA = 74.5%, LAI MA = 70.7%), with ETM+ data results being least effective (CC MA = 71.1%, LAI MA = 63.4%). This analysis demonstrates that the Hyperion sensor outperforms the other two sensors: ALI and ETM+. This is because of its high spectral resolution with rich subtle spectral information, of its short-wave infrared data for constructing optimal VIs that are slightly affected by the atmosphere, and of its more available MNFs than the other two sensors to be selected for establishing prediction models. Compared to ETM+ data, ALI data are better for mapping forest CC and LAI due to ALI data with more bands and higher signal-to-noise ratios than those of ETM+ data. PMID:27879906

  14. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Final Comprehensive Performance Test Report, P/N 1331720-2TST, S/N 105/A1

    NASA Technical Reports Server (NTRS)

    Platt, R.

    1999-01-01

    This is the Performance Verification Report, Final Comprehensive Performance Test (CPT) Report, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). This specification establishes the requirements for the CPT and Limited Performance Test (LPT) of the AMSU-1A, referred to here in as the unit. The sequence in which the several phases of this test procedure shall take place is shown.

  15. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: AMSU-A1 Antenna Drive Subsystem, PN 1331720-2, S/N 106

    NASA Technical Reports Server (NTRS)

    Luu, D.

    1999-01-01

    This is the Performance Verification Report, AMSU-A1 Antenna Drive Subsystem, P/N 1331720-2, S/N 106, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The antenna drive subsystem of the METSAT AMSU-A1, S/N 106, P/N 1331720-2, completed acceptance testing per A-ES Test Procedure AE-26002/lD. The test included: Scan Motion and Jitter, Pulse Load Bus Peak Current and Rise Time, Resolver Reading and Position Error, Gain/ Phase Margin, and Operational Gain Margin. The drive motors and electronic circuitry were also tested at the component level. The drive motor test includes: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The electronic circuitry was tested at the Circuit Card Assembly (CCA) level of production; each test exercised all circuit functions. The transistor assembly was tested during the W3 cable assembly (1356941-1) test.

  16. The development of the hand-held dual-sensor ALIS

    NASA Astrophysics Data System (ADS)

    Sato, Motoyuki; Fujiwara, Jun; Takahashi, Kazunori

    2007-04-01

    Since 2002, we have developed a new hand-held land mine detection dual-sensor ALIS. ALIS is equipped with a metal detector and a GPR, and it has a sensor tracking system, which can record the GPR and Metal detector signal with its location. It makes possible to process the data afterwards, including migration. The migration processing drastically increases the quality of the image of the buried objects. The new system, we do not need any standard mark on the ground. Also, ALIS uses two different GPOR systems, including VNA (Vector Network Analyzer) based GPR and an Impulse GPR. VNA based GPR can provide better quality GPR images, although the impulse GPR is faster and light weight. ALIS evaluation tests were held in mine affected courtiers including Afghanistan, Croatia, Egypt and Cambodia. In the two-month evaluation test in Cambodia, ALIS worked without any problem. After some demonstrations and evaluation, we got many useful suggestions. Using these advises, we have modified the ALIS and it is now more easy to use. ALIS will be commercialized in 2007.

  17. Dynamic virtual AliEn Grid sites on Nimbus with CernVM

    NASA Astrophysics Data System (ADS)

    Harutyunyan, A.; Buncic, P.; Freeman, T.; Keahey, K.

    2010-04-01

    We describe the work on enabling one click deployment of Grid sites of AliEn Grid framework on the Nimbus 'science cloud' at the University of Chicago. The integration of computing resources of the cloud with the resource pool of AliEn Grid is achieved by leveraging two mechanisms: the Nimbus Context Broker developed at Argonne National Laboratory and the University of Chicago, and CernVM - a baseline virtual software appliance for LHC experiments developed at CERN. Two approaches of dynamic virtual AliEn Grid site deployment are presented.

  18. Comparative alteration mineral mapping using visible to shortwave infrared (0.4-2.4 μm) Hyperion, ALI, and ASTER imagery

    USGS Publications Warehouse

    Hubbard, B.E.; Crowley, J.K.; Zimbelman, D.R.

    2003-01-01

    Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Hyperion imaging spectrometer data covering an area in the Central Andes between Volcan Socompa and Salar de Llullaillaco were used to map hydrothermally altered rocks associated with several young volcanic systems. Six ALI channels in the visible and near-infrared wavelength range (0.4-1.0 ??m) were useful for discriminating between ferric-iron alteration minerals based on the spectral shapes of electronic absorption features seen in continuum-removed spectra. Six ASTER channels in the short wavelength infrared (1.0-2.5 ??m) enabled distinctions between clay and sulfate mineral types based on the positions of band minima related to Al-OH vibrational absorption features. Hyperion imagery embedded in the broader image coverage of ALI and ASTER provided essential leverage for calibrating and improving the mapping accuracy of the multispectral data. This capability is especially valuable in remote areas of the earth where available geologic and other ground truth information is limited.

  19. The development of advanced automatic flare and decrab for powered lift short haul aircraft using a microwave landing system

    NASA Technical Reports Server (NTRS)

    Gevaert, G.; Feinreich, B.

    1977-01-01

    Advanced automatic flare and decrab control laws were developed for future powered lift STOL aircraft using the NASA-C-8A augmentor wing vehicle as the aircraft model. The longitudinal control laws utilize the throttle for flight path control and use the direct lift augmentor flap chokes for flight path augmentation. The elevator is used to control airspeed during the approach phase and to enhance path control during the flare. The forward slip maneuver was selected over the flat decrab technique for runway alignment because it can effectively handle the large crab angles obtained at STOL approach speeds. Performance evaluation of selected system configurations were obtained over the total landing environment. Limitations were defined and critical failure modes assessed. Pilot display concepts are discussed.

  20. Professor Mansour Ali Haseeb: Highlights from a pioneer of biomedical research, physician and scientist.

    PubMed

    Salih, Mustafa Abdalla M

    2013-01-01

    The article highlights the career of Professor Mansour Ali Haseeb (1910 - 1973; DKSM, Dip Bact, FRCPath, FRCP [Lond]), a pioneer worker in health, medical services, biomedical research and medical education in the Sudan. After his graduation from the Kitchener School of Medicine (renamed, Faculty of Medicine, University of Khartoum [U of K]) in 1934, he devoted his life for the development of laboratory medicine. He became the first Sudanese Director of Stack Medical Research Laboratories (1952 - 1962). He made valuable contributions by his services in the vaccine production and implementation programs, most notably in combating small pox, rabies and epidemic meningitis. In 1963 he became the first Sudanese Professor of Microbiology and Parasitology and served as the first Sudanese Dean of the Faculty of Medicine, U of K (1963-1969). He was an active loyal citizen in public life and served in various fields outside the medical profession. As Mayor of Omdurman, he was invited to visit Berlin in 1963 by Willy Brandt, Mayor of West Berlin (1957-1966) and Chancellor of the Federal Republic of Germany (1969 to 1974). Also as Mayor of Omdurman, he represented the City in welcoming Queen Elizabeth II during her visit to Sudan in February 1965. He also received State Medals from Egypt and Ethiopia. In 1973 he was appointed Chairman of the Sudan Medical Research Council, and was awarded the international Dr. Shousha Foundation Prize and Medal by the WHO for his contribution in the advancement of health, research and medical services.

  1. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  2. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  3. Hand-held dual-sensor ALIS and its evaluation tests

    NASA Astrophysics Data System (ADS)

    Sato, Motoyuki; Takahashi, Kazunori

    2008-04-01

    Since 2002, our research group at Tohoku University has developed a new hand-held land mine detection dual-sensor ALIS. ALIS is equipped with a metal detector and a GPR, and it has a sensor tracking system, which can record the GPR and Metal detector signal with its location. It makes possible to process the data afterwards, including migration. The migration processing drastically increases the quality of the image of the buried objects. ALIS evaluation test was conducted in Croatia in October 2007. Then after, we stared a half-year evaluation test of ALIS in QC test in Croatia in December 2007. This test will be conducted in various soil and environmental conditions in Croatia.

  4. Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) Validation Data Management at the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC)

    NASA Astrophysics Data System (ADS)

    Marquis, M. C.; Paserba, A. M.

    2003-12-01

    The National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) is supporting the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) validation activity. NSIDC has designed and developed a web portal to data and information collected during NASA's AMSR-E Validation Program: (http://nsidc.org/data/amsr_validation/.) The AMSR-E validation experiments address three disciplines: soil moisture, rainfall and cryospheric validation campaigns. This poster describes all these experiments (past, present and future). NSIDC provides documentation, e.g., user guides, as well as metadata documents (DIFS) submitted to the Global Change Master Directory (GCMD), for all the AMSR-E validation experiments. NSIDC further supports the validation activities by collaborating with the AMSR-E Science Investigator-led Processing System (SIPS) to provide scientists in the field (e.g., Arctic and Antarctic ship and flight campaigns) with quick, easy access to AMSR-E data for their validation experiments. NSIDC provides subsets of reformatted data in a manner most convenient to the validation scientists while they conduct their experiments. The AMSR-E is a mission instrument launched aboard NASA's Aqua Satellite on 4 May 2002. The Aqua mission provides a multi-disciplinary study of the Earth's atmospheric, oceanic, cryospheric, and land processes and their relationship to global change. With six instruments aboard, the Aqua Satellite will travel in a polar, sun-synchronous orbit. NSIDC will archive and distribute all AMSR-E products, including Levels 1A, 2, and 3 data. Users can order Level-1A AMSR-E data beginning 19 June 2003 and Level-2A data beginning 01 September 2003. Other products will be available in March 2004.

  5. Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein.

    PubMed

    Uhrig, Joachim F; Canto, Tomas; Marshall, David; MacFarlane, Stuart A

    2004-08-01

    The P19 protein of tomato bushy stunt virus (TBSV) is a multifunctional pathogenicity determinant involved in suppression of posttranscriptional gene silencing, virus movement, and symptom induction. Here, we report that P19 interacts with the conserved RNA-binding domain of an as yet uncharacterized family of plant ALY proteins that, in animals, are involved in export of RNAs from the nucleus and transcriptional coactivation. We show that the four ALY proteins encoded by the Arabidopsis genome and two ALY proteins from Nicotiana benthamiana are localized to the nucleus. Moreover, and in contrast to animal ALY, all but one of the proteins are also in the nucleolus, with distinct subnuclear localizations. Infection of plants by TBSV or expression of P19 from Agrobacterium results in relocation of three of the six ALY proteins from the nucleus to the cytoplasm demonstrating specific targeting of the ALY proteins by P19. The differential effects on subcellular localization indicate that, in plants, the various ALY proteins may have different functions. Interaction with and relocalization of ALY is prevented by mutation of P19 at residues previously shown to be important for P19 function in plants. Down-regulation of expression of two N. benthamiana ALY genes by virus-induced gene silencing did not interfere with posttranscriptional gene silencing. Targeting of ALY proteins during TBSV infection may therefore be related to functions of P19 in addition to its silencing suppression activity.

  6. Microwave superheaters for fusion

    SciTech Connect

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-10-16

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ..delta..T of 2000/sup 0/K is possible when the wall temperature is maintained at 1000/sup 0/K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D-/sup 3/He. 5 refs.

  7. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  8. Aly/ REF, a factor for mRNA transport, activates RH gene promoter function.

    PubMed

    Suganuma, Hiroshi; Kumada, Maki; Omi, Toshinori; Gotoh, Takaya; Lkhagvasuren, Munkhtulga; Okuda, Hiroshi; Kamesaki, Toyomi; Kajii, Eiji; Iwamoto, Sadahiko

    2005-06-01

    The rhesus (Rh) blood group antigens are of considerable importance in transfusion medicine as well as in newborn or autoimmune hemolytic diseases due to their high antigenicity. We identified a major DNaseI hypersensitive site at the 5' flanking regions of both RHD and RHCE exon 1. A 34 bp fragment located at -191 to -158 from a translation start position, and containing the TCCCCTCCC sequence, was involved in enhancing promoter activity, which was assessed by luciferase reporter gene assay. A biotin-labelled 34 bp probe isolated an mRNA transporter protein, Aly/REF. The specific binding of Aly/REF to RH promoter in erythroid was confirmed by chromatin immunoprecipitation assay. The silencing of Aly/REF by siRNA reduced not only the RH promoter activity of the reporter gene but also transcription from the native genome. These facts provide second proof of Aly/REF as a transcription coactivator, initially identified as a coactivator for the TCRalpha enhancer function. Aly/REF might be a novel transcription cofactor for erythroid-specific genes.

  9. Preliminary studies on the extraction of Glycospanonins in Tongkat Ali extract

    NASA Astrophysics Data System (ADS)

    Abirame, S.; Sivakumar, K.; Chua, L. S.; Sarmidi, M. R.

    2016-06-01

    Eurycoma longifolia, locally known as Tongkat Ali, is a famous medicinal plant in the family of Simaroubaceae and well known for its aphrodisiac properties from its water extract. The root of E. longifolia is used to extract wide range bioactive components of Tongkat Ali. Previous works standardised Tongkat Ali extracts by measuring the concentration of eurycomanone, a quassinoid marker chemical, within the overall extract. There is a newer Malaysian standard that specifies that Tongkat Ali can be standardised to glycosaponin, thus it is desired to determine how extraction parameters such as particle size, extraction temperature, and solvent type affects the glycosaponin content in the extract. The overall study is aimed to determine how the extraction parameters affect the glycosaponin amount in extract. This paper presents the preliminary work where in this study the effect of particle size on overall extract and glycosaponin quantification method development is presented. A reflux extraction method was used to extract Tongkat Ali with a particle size of 0.5 mm, 1.0 mm and 2.0 mm of raw material to study effect of particle size on overall extract. Water and methanol were the two types of solvent used for extraction to study the quantity of glycosaponin.

  10. Microwave generator

    DOEpatents

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  11. Advances in nanomaterial-based microwaves and infrared wave-assisted tryptic digestion for ultrafast proteolysis and rapid detection by MALDI-MS.

    PubMed

    Kailasa, Suresh Kumar; Wu, Hui-Fen

    2014-01-01

    The unique physical/chemical properties of nanomaterials have significant impacts in electromagnetic waves (microwave and infrared waves)-assisted tryptic digestion approaches by using them as heat absorbers to expedite digestion and as affinity probes to enrich digested proteins prior to MALDI-MS analysis. We review recent developments in electromagnetic waves (microwaves and infrared waves)-assisted proteolysis using nanomaterials as heat absorbers and as affinity probes for analysis of digested proteins in MALDI-MS. New trends in ultrafast proteolysis (nonphosphoproteins- lysozyme, cytochrome c, myoglobin and bovine serum albumin (BSA); phosphoproteins- α- and β- caseins) using nanomaterials based microwaves and infrared (IR) waves assisted digestion approaches for rapid identification of digested proteins in the MALDI-MS.

  12. EDITORIAL: Microwave Moisture Measurements

    NASA Astrophysics Data System (ADS)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  13. ALIS (Auroral Large Imaging System) used for optical observations of the meteor impact process

    NASA Astrophysics Data System (ADS)

    Brändström, U.; Gustavsson, B.; Steen, A.; Pellinen-Wannberg, Asta

    2001-11-01

    This paper outlines a possibly new use of the Auroral Large Imaging System (ALIS) for studies of differential ablation phenomena in meteor trails. By simultaneous imaging from up to six stations, the altitude distribution of the meteor trails could be triangulated, while some stations simultaneously image the trails in for example the sodium (5893 Å) and calcium (4227 Å) lines. ALIS was primarily designed for auroral studies, but has also been used for studies of heater-induced airglow, polar stratospheric clouds as well as other phenomena. The system consits of six unmanned remote-controlled observation stations located in northern Sweden.

  14. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  15. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  16. Detection of Rain-on-Snow (ROS) Events Using the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Weather Station Observations

    NASA Astrophysics Data System (ADS)

    Ryan, E. M.; Brucker, L.; Forman, B. A.

    2015-12-01

    During the winter months, the occurrence of rain-on-snow (ROS) events can impact snow stratigraphy via generation of large scale ice crusts, e.g., on or within the snowpack. The formation of such layers significantly alters the electromagnetic response of the snowpack, which can be witnessed using space-based microwave radiometers. In addition, ROS layers can hinder the ability of wildlife to burrow in the snow for vegetation, which limits their foraging capability. A prime example occurred on 23 October 2003 in Banks Island, Canada, where an ROS event is believed to have caused the deaths of over 20,000 musk oxen. Through the use of passive microwave remote sensing, ROS events can be detected by utilizing observed brightness temperatures (Tb) from AMSR-E. Tb observed at different microwave frequencies and polarizations depends on snow properties. A wet snowpack formed from an ROS event yields a larger Tb than a typical dry snowpack would. This phenomenon makes observed Tb useful when detecting ROS events. With the use of data retrieved from AMSR-E, in conjunction with observations from ground-based weather station networks, a database of estimated ROS events over the past twelve years was generated. Using this database, changes in measured Tb following the ROS events was also observed. This study adds to the growing knowledge of ROS events and has the potential to help inform passive microwave snow water equivalent (SWE) retrievals or snow cover properties in polar regions.

  17. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  18. Microwave processing of ceramic oxide filaments

    SciTech Connect

    Vogt, G.J.; Katz, J.D.

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  19. Mechanism and early intervention research on ALI during emergence surgery of Stanford type-A AAD

    PubMed Central

    Cheng, Yi; Jin, Mu; Dong, Xiuhua; Sun, Lizhong; Liu, Jing; Wang, Rong; Yang, Yanwei; Lin, Peirong; Hou, Siyu; Ma, Yuehua; Wang, Yuefeng; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2016-01-01

    Abstract Background: Stanford type-A acute aortic dissection (AAD) is a severe cardiovascular disease demonstrating the characteristics of acute onset and rapid development, with high morbidity and mortality. The available evidence shows that preoperative acute lung injury (ALI) induced by Stanford type-A AAD is a frequent and important cause for a number of untoward consequences. However, there is no study assessing the incidence of preoperative ALI and its independent determinants before Standford type-A AAD surgery in Chinese adult patients. Methods/design: This is a prospective, double-blind, signal-center clinical trial. We will recruit 130 adult patients undergoing Stanford type-A AAD surgery. The incidence of preoperative ALI will be evaluated. Perioperative clinical baselines and serum variables including coagulation, fibrinolysis, inflammatory, reactive oxygen species, and endothelial cell function will be assayed. The independent factors affecting the occurrence of preoperative ALI will be identified by multiple logistic regression analysis. Trial registration: ClinicalTrials.gov (https://register.clinicaltrials.gov/), Registration number NCT01894334. PMID:27759648

  20. The evaluation test of hand-held dual-sensor ALIS in Croatia and Cambodia

    NASA Astrophysics Data System (ADS)

    Sato, Motoyuki; Takahashi, Kazunori

    2007-04-01

    We are developing a new hand-held land mine detection dual-sensor (ALIS) which is equipped with a metal detector and a GPR. ALIS is equipped with a sensor tracking system, which can record the GPR and Metal detector signal with its location. It makes possible to process the data after the data was acquired, including migration. The migration processing drastically increases the quality of the images of the buried objects. Evaluation test of ALIS has been conducted in several test sites. In February 2006, a one-month evaluation test was conducted in Croatia, and in October- December 2006, a two-month evaluation test was conducted in Croatia. Since the dual-sensor is a new landmine detection sensor, and the conventional evaluation procedure developed for metal detectors cannot directly be applied for the dual sensor. In Croatia, the detection probability was comparable to that by a metal detector operated by local deminers. In addition, we showed that ALIS provides image of buried objects by GPR, which can be used for identification. Therefore, their performances were sufficiently high. Then the test was also conducted in Cambodia. The test was carried out by 2 local deminers independently, which allows studying the influence of different operators and increases the statistical value of the results.

  1. Deployment of dual-sensor ALIS for humanitarian demining in Cambodia

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, K.

    2013-06-01

    We are in the process of developing a high-resolution landmine scanning system "ALIS" which produces horizontal slices of the shallow subsurface for visualization of buried explosives and inert clutter. As many AP mines contain minimum amounts of metal, metal detectors need to be combined with a complimentary subsurface imaging sensor. Ground Penetrating Radar (GPR) is widely accepted for subsurface sensing in the fields of geology, archaeology and utility detection. The demining application requires real-time imaging results with centimetre resolution in a highly portable package. The key requirement for sharp images of the subsurface is the precise tracking of the geophysical sensor(s) during data collection. We should also notice that GPR system is a very wide band radar system, and equivalent to UWB radar, which has recently been developed for short-range high-accuracy radar. We are testing simplified but effective signal processing for imaging mines. We are currently testing a dual sensor ALIS which is a realtime sensor tracking system based on a CCD camera and image processing. In this paper we introduce the GPR systems which we have developed for detection of buried antipersonnel mines and small size explosives. ALIS has been deployed in Cambodia since 2009 and detected more than 70 mines in mine fields, and returned more than 13ha cleaned fields to local farmers. We also report the current status of ALIS in Cambodia.

  2. Traumatic forequarter amputation associated acute lung injury (ALI): report of one case.

    PubMed

    Liang, K; Gan, X; Deng, Z

    2012-07-01

    One case of traumatic forequarter amputation associated acute lung injury (ALI) was presented. A discussion reviewing the treatment guidelines for this devastating injury, and pointing out the importance of supporting the lung and preventing the development of acute respiratory distress syndrome (ARDS) was included.

  3. 76 FR 62494 - Designation of Ibrahim `Awwad Ibrahim `Ali al-Badri, Also Known as Dr. Ibrahim `Awwad Ibrahim...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Designation of Ibrahim `Awwad Ibrahim `Ali al-Badri, Also Known as Dr. Ibrahim `Awwad Ibrahim `Ali al-Badri, Also Known as Ibrahim `Awad Ibrahim al-Badri al-Samarrai, Also Known as Ibrahim Awwad Ibrahim al-Samarra'I, Also Known as Dr. Ibrahim Awwad...

  4. Simultaneous quantitation of six major quassinoids in Tongkat Ali dietary supplements by liquid chromatography with tandem mass spectrometry.

    PubMed

    Han, Young Min; Jang, Moonhee; Kim, In Sook; Kim, Seung Hyun; Yoo, Hye Hyun

    2015-07-01

    Tongkat Ali (Eurycoma longifolia) is one of the most popular traditional herbs in Southeast Asia and generally consumed as forms of dietary supplements, tea, or drink additives for coffee or energy beverages. In this study, the liquid chromatography with tandem mass spectrometry method for the simultaneous quantitation of six major quassinoids of Tongkat Ali (eurycomanone, 13,21-dihydroeurycomanone, 13α(21)-epoxyeurycomanone, 14,15β-dihydroxyklaineanone, eurycomalactone, and longilactone) was developed and validated. Using the developed method, the content of the six quassinoids was measured in Tongkat Ali containing dietary supplement tablets or capsules, and the resulting data were used to confirm the presence of Tongkat Ali in those products. Among the six quassinoids, eurycomanone was the most abundant quassinoid in all samples tested. The developed method would be useful for the quality assessment of Tongkat Ali containing dietary supplements.

  5. GEO Sounding Using Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Shiue, James; Krimchansky, Sergey; Susskind, Joel; Krimchansky, Alexander; Chu, Donald; Davis, Martin

    2004-01-01

    There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.

  6. Involvement of CD4⁺ Foxp3⁺ regulatory T cells in persistence of Leishmania donovani in the liver of alymphoplastic aly/aly mice.

    PubMed

    Tiwananthagorn, Saruda; Iwabuchi, Kazuya; Ato, Manabu; Sakurai, Tatsuya; Kato, Hirotomo; Katakura, Ken

    2012-01-01

    Visceral leishmaniasis (VL) is a chronic and fatal disease in humans and dogs caused by the intracellular protozoan parasites, Leishmania donovani and L. infantum (L. chagasi). Relapse of disease is frequent in immunocompromised patients, in which the number of VL cases has been increasing recently. The present study is aimed to improve the understanding of mechanisms of L. donovani persistence in immunocompromised conditions using alymphoplastic aly/aly mice. Hepatic parasite burden, granuloma formation and induction of regulatory T cells were determined for up to 7 months after the intravenous inoculation with L. donovani promastigotes. While control aly/+ mice showed a peak of hepatic parasite growth at 4 weeks post infection (WPI) and resolved the infection by 8 WPI, aly/aly mice showed a similar peak in hepatic parasite burden but maintained persistent in the chronic phase of infection, which was associated with delayed and impaired granuloma maturation. Although hepatic CD4(+)Foxp3(+) but not CD8(+)Foxp3(+) T cells were first detected at 4 WPI in both strains of mice, the number of CD4(+)Foxp3(+) T cells was significantly increased in aly/aly mice from 8 WPI. Immunohistochemical analysis demonstrated the presence of Foxp3(+) T cells in L. donovani-induced hepatic granulomas and perivascular neo-lymphoid aggregates. Quantitative real-time PCR analysis of mature granulomas collected by laser microdissection revealed the correlation of Foxp3 and IL-10 mRNA level. Furthermore, treatment of infected aly/aly mice with anti-CD25 or anti-FR4 mAb resulted in significant reductions in both hepatic Foxp3(+) cells and parasite burden. Thus, we provide the first evidence that CD4(+)Foxp3(+) Tregs mediate L. donovani persistence in the liver during VL in immunodeficient murine model, a result that will help to establish new strategies of immunotherapy against this intracellular protozoan pathogen.

  7. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: METSAT (S/N) AMSU-A1 Receiver Assemblies P/N 1356429-1 S/N F06 and P/N 1356409-1 S/N F06

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is the Performance Verification Report, METSAT (S/N 109) AMSU-A1 Receiver Assemblies, P/N 1356429-1 S/N F06 and P/N 1356409 S/N F06, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A. Engineering Report: Electromagnetic Interface (EMI)/Electromagnetic Radiation (EMR) and Electromagnetic Compatibility (EMC), for the METSAT/METOP AMSU-A1

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    1999-01-01

    This document contains the procedure and the test results of the Advanced Microwave Sounding Unit-A (AMSU-A) Electromagnetic Interference (EMI), Electromagnetic Susceptibility, and Electromagnetic Compatibility (EMC) qualification test for the Meteorological Satellite (METSAT) and the Meteorological Operation Platform (METOP) projects. The test was conducted in accordance with the approved EMI/EMC Test Plan/Procedure, Specification number AE-26151/5D. This document describes the EMI/EMC test performed by Aerojet and it is presented in the following manner: Section-1 contains introductory material and a brief summary of the test results. Section 2 contains more detailed descriptions of the test plan, test procedure, and test results for each type of EMI/EMC test conducted. Section 3 contains supplementary information that includes test data sheets, plots, and calculations collected during the qualification testing.

  9. Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A): Reliability prediction report for module A1 (channels 3 through 15) and module A2 (channels 1 and 2)

    NASA Technical Reports Server (NTRS)

    Geimer, W.

    1995-01-01

    This report documents the final reliability prediction performed on the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A). The A1 Module contains Channels 3 through 15, and is referred to herein as 'EOS/AMSU-A1'. The A2 Module contains Channels 1 and 2, and is referred herein as 'EOS/AMSU-A2'. The 'specified' figures were obtained from Aerojet Reports 8897-1 and 9116-1. The predicted reliability figure for the EOS/AMSU-A1 meets the specified value and provides a Mean Time Between Failures (MTBF) of 74,390 hours. The predicted reliability figure for the EOS/AMSU-A2 meets the specified value and provides a MTBF of 193,110 hours.

  10. Comparison of data from the Scanning Multifrequency Microwave Radiometer (SMMR) with data from the Advanced Very High Resolution Radiometer (AVHRR) for terrestrial environmental monitoring - An overview

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Choudhury, B. J.; Tucker, C. J.; Giddings, L.; Justice, C. O.

    1989-01-01

    Comparison between the microwave polarized difference temperature (MPDT) derived from 37 GHz band data and the normalized difference vegetation index (NDVI) derived from near-infrared and red bands, from several empirical investigations are summarized. These indicate the complementary character of the two measures in environmental monitoring. Overall the NDVI is more sensitive to green leaf activity, whereas the MPDT appears also to be related to other elements of the above-ground biomass. Monitoring of hydrological phenomena is carried out much more effectively by the MPDT. Further work is needed to explain spectral and temporal variation in MPDT both through modelling and field experiments.

  11. An intravascular MRI contrast agent based on Gd(DO3A-Lys) for tumor angiography.

    PubMed

    Yang, Chang-Tong; Chandrasekharan, Prashant; He, Tao; Poh, Zihan; Raju, Anandhkumar; Chuang, Kai-Hsiang; Robins, Edward G

    2014-01-01

    An intravascular MRI contrast agent Gd(DO3A-Lys), Gadolinium(III) (2,2',2″-(10-(3-(5-benzamido-6-methoxy-6-oxohexylamino)-3-oxopropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate), has been studied for tumor angiography based on its high relaxivity and long blood half-life. The preparation procedures of the contrast agent have been modified in order to achieve higher yield and improve the synthetic reproducibility. High relaxivity of Gd(DO3A-Lys) has been confirmed by measurements at 3 T, 7 T and 9.4 T magnetic fields. The relaxivity-dependent albumin binding study indicated that Gd(DO3A-Lys) partially bound to albumin protein. In vitro cell viability in HK2 cell indicated low cytotoxicity of Gd(DO3A-Lys) up to 1.2 mM [Gd] concentration. In vivo toxicity studies demonstrated no toxicity of Gd(DO3A-Lys) on kidney tissues up to 0.2 mM [Gd]. While the toxicity on liver tissue was not observed at low dosage (1.0 mM [Gd]), Gd(DO3A-Lys) cause certain damage on hepatic tissue at high dosage (2.0 mM [Gd]). The DO3A-Lys has been labeled with (68)Ga radioisotope for biodistribution studies. (68)Ga(DO3A-Lys) has high uptake in both HT1080 and U87MG xenograft tumors, and has high accumulation in blood. Contrast-enhanced MR angiography (CE-MRA) in mice bearing U87MG xenograft tumor demonstrated that Gd(DO3A-Lys) could enhance vascular microenvironment around the tumor, and displays promising characteristics of an MRI contrast agent for tumor angiography.

  12. Targeted percutaneous microwave ablation at the pulmonary lesion combined with mediastinal radiotherapy with or without concurrent chemotherapy in locally advanced non-small cell lung cancer evaluation in a randomized comparison study.

    PubMed

    Xu, Xinglu; Ye, Xin; Liu, Gang; Zhang, Tingping

    2015-09-01

    Concurrent chemoradiotherapy is the standard treatment for patients with locally advanced lung cancer. The most common dose-limiting adverse effect of thoracic radiotherapy (RT) is radiation pneumonia (RP). A randomized comparison study was designed to investigate targeted percutaneous microwave ablation at pulmonary lesion combined with mediastinal RT with or without chemotherapy (ablation group) in comparison with RT (target volume includes pulmonary tumor and mediastinal node) with or without chemotherapy (RT group) for the treatment of locally advanced non-small cell lung cancers (NSCLCs). From 2009 to 2012, patients with stage IIIA or IIIB NSCLCs who refused to undergo surgery or were not suitable for surgery were enrolled. Patients were randomly assigned to the RT group (n = 47) or ablation group (n = 51). Primary outcomes were the incidence of RP and curative effectiveness (complete response, partial response, and stable disease); secondary outcome was the 2-year overall survival (OS). Fifteen patients (31.9%) in the RT and two (3.9%) in the ablation group experienced RP (P < 0.001). The ratio of effective cases was 85.1 versus 80.4% for mediastinal lymph node (P = 0.843) and 83.0 versus 100% for pulmonary tumors (P = 0.503), respectively, for the RT and ablation groups. Kaplan-Meier analysis demonstrated 2-year OS rate of NSCLC patients in ablation group was higher than RT group, but no statistical difference (log-rank test, P = 0.297). Percutaneous microwave ablation followed by RT for inoperable stage III NSCLCs may result in a lower rate of RP and better local control than radical RT treatments.

  13. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1989-01-01

    This paper discusses the following topics on microwave processing of ceramics: Microwave-material interactions; anticipated advantage of microwave sintering; ceramic sintering; and ceramic joining. 24 refs., 4 figs. (LSP)

  14. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  15. Plant proteins, minerals and trace elements of Eurycoma longifolia (Tongkat Ali).

    PubMed

    Chua, Lee Suan; Abdul-Rahman, Nurulaini; Rosidi, Bustanur; Lee, Chew Tin

    2013-03-01

    A water extraction method has been used to extract plant proteins from the roots of Eurycoma longifolia harvested from Perak and Pahang, Malaysia. On the basis of the spectroscopic Bradford assay, Tongkat Ali Perak and Pahang contained 0.3868 and 0.9573 mg mL(-1) of crude protein, respectively. The crude proteins were separated by one dimensional 15% sodium dodecyl sulphate polyacrylamide gel electrophoresis into two (49.8 and 5.5 kD) and four (49.8, 24.7, 21.1 and 5.5 kD) protein spots for Tongkat Ali Perak and Pahang, respectively. Isoleucine was present in the highest concentration significantly. Both plant samples showed differences in the mineral and trace element profiles, but the minerals calcium, magnesium and potassium were present in the highest concentration. The highly concerned toxic metals such as arsenic and lead were not detected.

  16. Tongkat Ali (Eurycoma longifolia Jack): a review on its ethnobotany and pharmacological importance.

    PubMed

    Bhat, Rajeev; Karim, A A

    2010-10-01

    Eurycoma longifolia Jack is an herbal medicinal plant of South-East Asian origin, popularly recognized as 'Tongkat Ali.' The plant parts have been traditionally used for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities, which have also been proved scientifically. The plant parts are rich in various bioactive compounds (like eurycomaoside, eurycolactone, eurycomalactone, eurycomanone, and pasakbumin-B) among which the alkaloids and quassinoids form a major portion. Even though toxicity and safety evaluation studies have been pursued, still a major gap exists in providing scientific base for commercial utilization and clearance of the Tongkat Ali products with regard to consumer's safety. The present review aims at reviewing the research works undertaken till date, on this plant in order to provide sufficient baseline information for future works and for commercial exploitation.

  17. Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed

    2014-09-01

    The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.

  18. ALIS: a multistation imaging facility with possibilities for future VI applications

    NASA Astrophysics Data System (ADS)

    Brandstrom, Urban; Steen, Ake; Rydesater, Peter; Gustavsson, Bjorn; Aso, T.

    1999-03-01

    ALIS (Auroral Large Imaging System) is an imaging facility in Northern Sweden. The system consists of six unmanned, remote controlled stations. Each station has a high performance CCD imager, and some stations also have other scientific instrumentation (e.g. pulsation magnetometers). ALIS is capable of producing large amounts of data in a short time. For that reason, novel (AI/VI) techniques for data analysis, are of high priority in order to be able to handle the large data sets. In this paper we will try to describe the current implementation and address the questions of how to interface AI/VI applications to an existing multi station research facility, in terms of real- time experiment control, selective imaging, real-time data analysis, etc.

  19. Microwave and Pulsed Power

    SciTech Connect

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  20. Microwave and pulsed power

    NASA Astrophysics Data System (ADS)

    Freytag, E. K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO(x) from various effluent sources. We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  1. JAliEn - A new interface between the AliEn jobs and the central services

    NASA Astrophysics Data System (ADS)

    Grigoras, A. G.; Grigoras, C.; Pedreira, M. M.; Saiz, P.; Schreiner, S.

    2014-06-01

    Since the ALICE experiment began data taking in early 2010, the amount of end user jobs on the AliEn Grid has increased significantly. Presently 1/3 of the 40K CPU cores available to ALICE are occupied by jobs submitted by about 400 distinct users, individually or in organized analysis trains. The overall stability of the AliEn middleware has been excellent throughout the 3 years of running, but the massive amount of end-user analysis and its specific requirements and load has revealed few components which can be improved. One of them is the interface between users and central AliEn services (catalogue, job submission system) which we are currently re-implementing in Java. The interface provides persistent connection with enhanced data and job submission authenticity. In this paper we will describe the architecture of the new interface, the ROOT binding which enables the use of a single interface in addition to the standard UNIX-like access shell and the new security-related features.

  2. Securing the AliEn File Catalogue - Enforcing authorization with accountable file operations

    NASA Astrophysics Data System (ADS)

    Schreiner, Steffen; Bagnasco, Stefano; Sankar Banerjee, Subho; Betev, Latchezar; Carminati, Federico; Vladimirovna Datskova, Olga; Furano, Fabrizio; Grigoras, Alina; Grigoras, Costin; Mendez Lorenzo, Patricia; Peters, Andreas Joachim; Saiz, Pablo; Zhu, Jianlin

    2011-12-01

    The AliEn Grid Services, as operated by the ALICE Collaboration in its global physics analysis grid framework, is based on a central File Catalogue together with a distributed set of storage systems and the possibility to register links to external data resources. This paper describes several identified vulnerabilities in the AliEn File Catalogue access protocol regarding fraud and unauthorized file alteration and presents a more secure and revised design: a new mechanism, called LFN Booking Table, is introduced in order to keep track of access authorization in the transient state of files entering or leaving the File Catalogue. Due to a simplification of the original Access Envelope mechanism for xrootd-protocol-based storage systems, fundamental computational improvements of the mechanism were achieved as well as an up to 50% reduction of the credential's size. By extending the access protocol with signed status messages from the underlying storage system, the File Catalogue receives trusted information about a file's size and checksum and the protocol is no longer dependent on client trust. Altogether, the revised design complies with atomic and consistent transactions and allows for accountable, authentic, and traceable file operations. This paper describes these changes as part and beyond the development of AliEn version 2.19.

  3. Comparison of EO1 Landsat-7 ETM+ and EO-1 ALI images over Rochester, New York

    NASA Astrophysics Data System (ADS)

    Pedelty, Jeffrey A.; Morisette, Jeffrey T.; Smith, James A.

    2002-08-01

    We present a comparison of images from the ETM+ sensor on Landsat-7 and the ALI instrument on EO-1 over a test site in Rochester, NY. The site contains a variety of features, ranging from water of varying depths, deciduous/coniferous forest, grass fields, to urban areas. The nearly coincident cloud-free images were collected just one minute apart on 25 August, 2001. We atmospherically corrected each image with the 6S atmosphere model, using aerosol optical thickness and water vapor column density measured by a Cimel sun photometer within the Aerosol Robotic Network (Aeronet), along with ozone density derived from NCEP data. We present three-color composites from each instrument that show excellent qualitative agreement. We present ETM+ and ALI reflectance spectra for water, grass, and urban targets. We make a more detailed comparison for our forest site, where we use measured geometric and optical properties as input to the SAIL canopy reflectance model, which we compare to the ETM+, ALI, and EO-1 Hyperion reflectance spectra.

  4. Cross-calibration of MODIS with ETM+ and ALI sensors for long-term monitoring of land surface processes

    USGS Publications Warehouse

    Meyer, D.; Chander, G.

    2006-01-01

    Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products (e.g., vegetation cover, albedo, surface temperature) derived from different sensors can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Crosscalibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study explores the impacts of cross-calibrating sensors when such conditions are met to some degree but not perfectly. In order to constrain the range of conditions at some level, the analysis is limited to sensors where cross-calibration studies have been conducted (Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 (L7), Advance Land Imager (ALI) and Hyperion on Earth Observer-1 (EO-1)) and including systems having somewhat dissimilar geometry, spatial resolution & spectral response characteristics but are still part of the so-called "A.M. constellation" (Moderate Resolution Imaging Spectrometer (MODIS) aboard the Terra platform). Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These

  5. Microwave heating of porous media

    SciTech Connect

    Gori, F.; Martini, L. ); Gentili, G.B. )

    1987-05-01

    The technique actually used for recycling in place asphaltic concrete pavements is the following: heating of the surface layer of the pavement with special infrared lamps (gas-fed); hot removal and remixing in place of the materials with the addition of new binder; in-line reconstruction of the pavement layer with rolling. Such a technique is highly efficient and economic but it suffers an important disadvantage: The low thermal conductivity of the asphalt causes a strong temperature decrease with depth. Further on, the infrared radiation produces carbonization of the pavement skin with possible modification of the rheological properties of the bitumen. The technology of microwave generators (Magnetron, Klystron, and Amplitron) has registered some recent advances. It is now possible, and in some cases convenient, to use microwave energy for industrial heating of low-thermal-conductivity materials. Actually the microwaves are employed for drying wood, paper, and textiles, and for freeze-drying, cooking, and defrosting foods. One of the most interesting features of the microwave process is the rate and uniformity of the heating inside the material. Some preliminary experiments have been carried out for recycling in place asphaltic concrete pavements. The goal of the present paper is to propose a theoretical model capable of describing the phenomena occurring in a soil during a microwave heating process.

  6. A multifrequency microwave radiometer of the future

    NASA Technical Reports Server (NTRS)

    Le Vine, D.; Wilheit, T.; Murphy, R.; Swift, C.

    1987-01-01

    The design of the High-Resolution Multifrequency Microwave Radiometer (HMMR), which is to be installed on EOS, is described. The HMMR is to consist of the Advanced Microwave Sounding Unit (AMSU), the Advanced Mechanically Scanned Radiometer (AMSR), and the Electronically Scanned Thinned Array Radiometer (ESTAR). The AMSU is a 20-channel microwave radiometer system designed to measure profiles of atmospheric temperature and humidity and the AMSR is a microwave imager with channels at 6, 10, 18, 21, 37, and 90 GHz for measuring snow cover over land, the age and areal extent of sea ice, the intensity of precipitation over oceans and land, and the amount of water in the atmosphere. ESTAR is an imaging radiometer operating near 1.4 GHz capable of obtaining global maps of surface soil moisture with a spatial resolution of about 10 km. The antenna and signal processing utilized in the ESTAR to achieve the real aperture resolution are examined.

  7. Signal processing device to control microwave output

    NASA Astrophysics Data System (ADS)

    Pinto, J. G.

    1989-08-01

    The development of an electronic device to control the operation of a commercial microwave oven is discussed. This device when installed in conjunction with the existing circuitry of SHARP MICROWAVE OVEN (model R-9524) is capable of automatically advancing through a sequence of thawing recipes programmed and stored in the memory bank of the oven. The device therefore eliminates or minimizes human operator action needed in previous prototype version of a blood thawing device.

  8. A comparison of sea ice parameters computed from Advanced Very High Resolution Radiometer and Landsat satellite imagery and from airborne passive microwave radiometry

    NASA Technical Reports Server (NTRS)

    Emery, W. J.; Radebaugh, M.; Fowler, C. W.; Cavalieri, D.; Steffen, K.

    1991-01-01

    AVHRR-derived sea ice parameters from the Bering Sea are compared with those computed from nearly coincident (within 6 hr) Landsat MSS imagery and from the Aircraft Multichannel Microwave Radiometer (AMMR) flown on the NASA DC-8 in order to evaluate the accuracy and reliability of AVHRR-mapped sea-ice concentration and ice edge. Mean ice-concentration differences between AVHRR near-infrared (channel 2) and Landsat MSS data ranged from -0.8 to 1.8 percent with a mean value of 0.5 percent; rms differences ranged from 6.8 to 17.7 percent. Mean differences were larger for AVHRR thermal infrared (channel 4) ice concentrations ranging from -2.2 to 8.4 percent with rms differences from 8.6 to 26.8 percent. Mean differences between AVHRR channel 2 concentrations and the AMMR data ranged from -19.7 to 18.9 percent, while rms values went from 17.0 to 44.8 percent.

  9. Respiratory Impairment after Early Red Cell Transfusion in Pediatric Patients with ALI/ARDS.

    PubMed

    Rajasekaran, Surender; Sanfilippo, Dominic; Shoemaker, Allen; Curtis, Scott; Zuiderveen, Sandra; Ndika, Akunne; Stoiko, Michael; Hassan, Nabil

    2012-01-01

    Introduction. In the first 48 hours of ventilating patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), a multipronged approach including packed red blood cell (PRBC) transfusion is undertaken to maintain oxygen delivery. Hypothesis. We hypothesized children with ALI/ARDS transfused within 48 hours of initiating mechanical ventilation would have worse outcome. The course of 34 transfused patients was retrospectively compared to 45 nontransfused control patients admitted to the PICU at Helen DeVos Children's Hospital between January 1st 2008 and December 31st 2009. Results. Mean hemoglobin (Hb) prior to transfusion was 8.2 g/dl compared to 10.1 g/dl in control. P/F ratio decreased from 135.4 ± 7.5 to 116.5 ± 8.8 in transfused but increased from 148.0 ± 8.0 to 190.4 ± 17.8 (P < 0.001) in control. OI increased in the transfused from 11.7 ± 0.9 to 18.7 ± 1.6 but not in control. Ventilator days in the transfused were 15.6 ± 1.7 versus 9.5 ± 0.6 days in control (P < 0.001). There was a trend towards higher rates of MODS in transfused patients; 29.4% versus 17.7%, odds ratio 1.92, 95% CI; 0.6-5.6 Fisher exact P < 0.282. Conclusion. This study suggests that early transfusions of patients with ALI/ARDS were associated with increased ventilatory needs.

  10. Respiratory Impairment after Early Red Cell Transfusion in Pediatric Patients with ALI/ARDS

    PubMed Central

    Rajasekaran, Surender; Sanfilippo, Dominic; Shoemaker, Allen; Curtis, Scott; Zuiderveen, Sandra; Ndika, Akunne; Stoiko, Michael; Hassan, Nabil

    2012-01-01

    Introduction. In the first 48 hours of ventilating patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), a multipronged approach including packed red blood cell (PRBC) transfusion is undertaken to maintain oxygen delivery. Hypothesis. We hypothesized children with ALI/ARDS transfused within 48 hours of initiating mechanical ventilation would have worse outcome. The course of 34 transfused patients was retrospectively compared to 45 nontransfused control patients admitted to the PICU at Helen DeVos Children's Hospital between January 1st 2008 and December 31st 2009. Results. Mean hemoglobin (Hb) prior to transfusion was 8.2 g/dl compared to 10.1 g/dl in control. P/F ratio decreased from 135.4 ± 7.5 to 116.5 ± 8.8 in transfused but increased from 148.0 ± 8.0 to 190.4 ± 17.8 (P < 0.001) in control. OI increased in the transfused from 11.7 ± 0.9 to 18.7 ± 1.6 but not in control. Ventilator days in the transfused were 15.6 ± 1.7 versus 9.5 ± 0.6 days in control (P < 0.001). There was a trend towards higher rates of MODS in transfused patients; 29.4% versus 17.7%, odds ratio 1.92, 95% CI; 0.6–5.6 Fisher exact P < 0.282. Conclusion. This study suggests that early transfusions of patients with ALI/ARDS were associated with increased ventilatory needs. PMID:22957223

  11. The Persian legend of ophthalmology: Ali Asghar Khodadoust and his everlasting lines.

    PubMed

    Sajjadi, Sepideh; Fesharaki, Hamid; Abtahi, Zahra-Alsadat; Murray, Richard T; Fereidan-Esfahani, Mahboobeh; Mazloumi, Mehdi; Abtahi, Seyed-Hossein

    2013-06-01

    This is a brief celebratory overview of the fruitful life and scientific endeavors of Professor Ali Asghar Khodadoust (b.1935), a world renowned ophthalmologist, Persian icon of modern ophthalmology and an international pioneer of eye research. The global reputation of Dr. Khodadoust is rooted in his extensive studies on corneal diseases and transplantation biology. As a result of his truly deserved world renown, several famous American ophthalmologists have recognized him as the world's best corneal graft surgeon. Due to his exceptionally impressive achievements in this field, a clinical finding has been named in his honor, the "Khodadoust rejection line", a sign indicative of a chronic focal transplant reaction.

  12. The Microwave Assisted Composite Manufacturing and Repair (MACMAR) Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Terrier, Douglas; Clayton, Ronald G.; Worthy, Erica; Sosa, Edward

    2015-01-01

    The inherent microwave property of carbon nanotubes (CNTs) generates the thermal energy required to induce reversible polymerization of the matrix in these self-healing composites. Microwaves will be used to demonstrate advanced composite manufacturing and repair using self-healing composites.

  13. Microwave sensing of quality attributes of agricultural and food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave sensors for real-time characterization of agricultural and food products have become viable solutions with recent advances in the development of calibration methods and the availability of inexpensive microwave components. The examples shown here for grain, seed, and in-shell peanuts indic...

  14. Why different passive microwave algorithms give different soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several algorithms have been used to retrieve surface soil moisture from brightness temperature observations provided by low frequency microwave satellite sensors such as the Advanced Microwave Scanning Radiometer on NASA EOS satellite Aqua (AMSR-E). Most of these algorithms have originated from the...

  15. Total microwave processing using microwave technologies

    SciTech Connect

    Walter, P.J.; Kingston, H.M.

    1995-12-31

    The implementation of total microwave processing of samples involves all processes after the collection of a sample up to but not including the analysis. These processes are often time consuming and a primary source of critical analytical errors. The use of microwave technology has been shown to improve sample digestion while also reducing contamination. However, microwave technology can also be used in the preparation of representative samples and matrix modifications; essentially total sample preparation. The concept of total microwave processing will be discussed as applied to the routine analysis of samples according to proposed Environmental Protection Agency Method 3052. This method requires microwave digestion and provides for several methods of post-digestion removal of hydrofluoric acid. Microwave technologies will be shown to efficiently dry, digest, and perform matrix modifications.

  16. Effect of Tongkat Ali on stress hormones and psychological mood state in moderately stressed subjects

    PubMed Central

    2013-01-01

    Background Eurycoma longifolia is a medicinal plant commonly called tongkat ali (TA) and “Malaysian ginseng.” TA roots are a traditional “anti-aging” remedy and modern supplements are intended to improve libido, energy, sports performance and weight loss. Previous studies have shown properly-standardized TA to stimulate release of free testosterone, improve sex drive, reduce fatigue, and improve well-being. Methods We assessed stress hormones and mood state in 63 subjects (32 men and 31 women) screened for moderate stress and supplemented with a standardized hot-water extract of TA root (TA) or Placebo (PL) for 4 weeks. Analysis of variance (ANOVA) with significance set at p < 0.05 was used to determine differences between groups. Results Significant improvements were found in the TA group for Tension (−11%), Anger (−12%), and Confusion (−15%). Stress hormone profile (salivary cortisol and testosterone) was significantly improved by TA supplementation, with reduced cortisol exposure (−16%) and increased testosterone status (+37%). Conclusion These results indicate that daily supplementation with tongkat ali root extract improves stress hormone profile and certain mood state parameters, suggesting that this “ancient” remedy may be an effective approach to shielding the body from the detrimental effects of “modern” chronic stress, which may include general day-to-day stress, as well as the stress of dieting, sleep deprivation, and exercise training. PMID:23705671

  17. Magma-driven antiform structures in the Afar rift: The Ali Sabieh range, Djibouti

    NASA Astrophysics Data System (ADS)

    Le Gall, Bernard; Daoud, Mohamed Ahmed; Maury, René C.; Rolet, Joël; Guillou, Hervé; Sue, Christian

    2010-06-01

    The Ali Sabieh Range, SE Afar, is an antiform involving Mesozoic sedimentary rocks and synrift volcanics. Previous studies have postulated a tectonic origin for this structure, in either a contractional or extensional regime. New stratigraphic, mapping and structural data demonstrate that large-scale doming took place at an early stage of rifting, in response to a mafic laccolithic intrusion dated between 28 and 20 Ma from new K-Ar age determinations. Our 'laccolith' model is chiefly supported by: (i) the geometry of the intrusion roof, (ii) the recognition of roof pendants in its axial part, and (iii) the mapping relationships between the intrusion, the associated dyke-sill network, and the upper volcanic/volcaniclastic sequences. The laccolith is assumed to have inflated with time, and to have upwardly bent its sedimentary roof rocks. From the architecture of the ˜1 km-thick Mesozoic overburden sequences, ca. 2 km of roof lifting are assumed to have occurred, probably in association with reactivated transverse discontinuities. Computed paleostress tensors indicate that the minimum principal stress axis is consistently horizontal and oriented E-W, with a dominance of extensional versus strike-slip regimes. The Ali Sabieh laccolith is the first regional-scale magma-driven antiform structure reported so far in the Afro-Arabian rift system.

  18. STS-45 Earth observation of the Persian Gulf and the island of Abu Ali

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, is of the northern reaches of the Persian Gulf with the sunglint pattern centered on the Saudi Arabian island of Abu Ali. Bright features along the coast are thought to be deposits of oil, released from a terminal offshore of Kuwait during the recent Persian Gulf War. Further up the coast, in Kuwait, the black, oil-soaked desert surrounding the site of the oil well fires is clearly visible. View was taken from an altitude of 160 nautical miles with OV-104 located at 28 degrees north and 52.8 degrees east. During the STS-45 mission, an international survey team focused on oil contamination of the shallow-water habitants in the area north of Abu Ali Island. Crewmembers contacted the NOAA survey vessel, the R/V Mt. Mitchell, several times and photographed water color and sunglint within the study area and throughout the entire Persian Gulf. These photographic data are expected to aid the Persian Gulf researchers in

  19. Microwave processing of materials. Final report

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Garard, R.S.

    1997-11-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and Lambda Technologies, Inc. (Lambda) of Raleigh, N.C., was initiated in May 1995. [Lockheed Martin Energy Research, Corp. (LMER) has replaced LMES]. The completion data for the Agreement was December 31, 1996. The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace (VFMF); and (2) microwave curing of polymer composites. The VFMF, whose initial conception and design was funded by the Advanced Industrial Concepts (AIC) Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies.

  20. Phenomenology of microwave coupling. Part I

    SciTech Connect

    King, R.J.; Breakall, J.K.; Hudson, H.G.; Morrison, J.J.; McGevna, V.G.; Kunz, K.S.; Ludwigsen, A.P.; Gnade, D.K.

    1984-11-01

    Recent advances in the development of high power microwave sources have increased the potential for future deployment of microwave weapons. A key ingredient in being able to predict the vulnerability of military systems to such threats involves understanding the phenomenology of how electromagnetic energy couples into cavity-like objects, or the so-called back-door coupling. A similar but much longer standing problem is that of nuclear electromagnetic pulses (EMP) in which the frequencies extend up to several hundreds of MHz. However, compared to EMP coupling, microwave coupling (from 1 GHz to above 40 GHz) is distinctively different because the wavelength is comparable to the size of the ports of entry (apertures, seams, cracks, protruding connectors, etc.). These ports of entry and the interior configuration of a vulnerable system are no longer below cutoff, and can permit significant penetration of the microwave energy into susceptible electronic systems. In fact, these coupling paths can be highly resonant at certain microwave frequencies, making the shielding against microwave threats difficult. This report summarizes the initial efforts at Lawrence Livermore National Laboratory to study the phenomenology of back door coupling at the low microwave frequencies (up to 2.5 GHz). These studies were limited to 2.5 GHz because the limitations of the Electromagnetic Transient Range Facility.

  1. Microwave combustion and sintering without isostatic pressure

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber.

  2. MICROWAVE SOLID-STATE GENERATORS.

    DTIC Science & Technology

    RADIOFREQUENCY GENERATORS , *SEMICONDUCTOR DIODES, *TRANSISTORS, MICROWAVE EQUIPMENT, X BAND, FREQUENCY MULTIPLIERS, MICROWAVE OSCILLATORS, CIRCUITS, BROADBAND, NARROWBAND, RADIOFREQUENCY POWER, TRANSISTOR AMPLIFIERS.

  3. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Test Report, Electromagnetic Interference (EMI)/Electromagnetic Radiation(EMR) and Electromagnetic Capability (EMC) for the EOS/AMSU-A1

    NASA Technical Reports Server (NTRS)

    Paliwoda, L.

    1998-01-01

    This document contains the procedure and the test results of the Advanced Microwave Sounding Unit-A (AMSU-A) Earth Observing System (EOS) Project, assembly part number 1356008-1, serial number 202, Electromagnetic Interference (EMI) and Electromagnetic Susceptibility (EMC) qualification test. The test was conducted in accordance with the approved EMI/EMC Test Plan/Procedure, Specification number AE-26151/8B, dated 10 September 1998. Aerojet intends that the presentation and submittal of this document, prepared in accordance with the objectives established by the aforementioned Test Plan/Procedure, document number AE-26151/8B, will satisfy the data requirement with respect to the AMSU-A/EOS instrument operational compliance of the EMI/EMC test requirement. Test for the AMSU-A/EOS instrument have been completed and all the requirements per General Interface Requirement Document (GIRD), GSFC 422-11-12-01, for EOS Common Spacecraft/Instruments, paragraph 10.11, were met with the exceptions of the test methods CE03, RE01, and RE02, as described in this document.

  4. A protocol for improving mapping and assessing of seagrass abundance along the West Central Coast of Florida using Landsat TM and EO-1 ALI/Hyperion images

    NASA Astrophysics Data System (ADS)

    Pu, Ruiliang; Bell, Susan

    2013-09-01

    Seagrass habitats are characteristic features of shallow waters worldwide and provide a variety of ecosystem functions. Remote sensing techniques can help collect spatial and temporal information about seagrass resources. In this study, we evaluate a protocol that utilizes image optimization algorithms followed by atmospheric and sunglint corrections to the three satellite sensors [Landsat 5 Thematic Mapper (TM), Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion (HYP)] and a fuzzy synthetic evaluation technique to map and assess seagrass abundance in Pinellas County, FL, USA. After image preprocessed with image optimization algorithms and atmospheric and sunglint correction approaches, the three sensors' data were used to classify the submerged aquatic vegetation cover (%SAV cover) into 5 classes with a maximum likelihood classifier. Based on three biological metrics [%SAV, leaf area index (LAI), and Biomass] measured from the field, nine multiple regression models were developed for estimating the three biometrics with spectral variables derived from the three sensors' data. Then, five membership maps were created with the three biometrics along with two environmental factors (water depth and distance-to-shoreline). Finally, seagrass abundance maps were produced by using a fuzzy synthetic evaluation technique and five membership maps. The experimental results indicate that the HYP sensor produced the best results of the 5-class classification of %SAV cover (overall accuracy = 87% and Kappa = 0.83 vs. 82% and 0.77 by ALI and 79% and 0.73 by TM) and better multiple regression models for estimating the three biometrics (R2 = 0.66, 0.62 and 0.61 for %SAV, LAI and Biomass vs. 0.62, 0.61 and 0.55 by ALI and 0.58, 0.56 and 0.52 by TM) for creating seagrass abundance maps along with two environmental factors. Combined our results demonstrate that the image optimization algorithms and the fuzzy synthetic evaluation technique were effective in mapping

  5. Microwave guiding in air by a cylindrical filament array waveguide

    SciTech Connect

    Chateauneuf, M.; Dubois, J.; Payeur, S.; Kieffer, J.-C.

    2008-03-03

    Microwave guiding was demonstrated over 16 cm in air using a large diameter hollow plasma waveguide. The waveguide was generated with the 100 TW femtosecond laser system at the Advanced Laser Light Source facility. A deformable mirror was used to spatially shape the intense laser pulses in order to generate hundreds of filaments judiciously distributed in a cylindrical shape, creating a cylindrical plasma wall that acts as a microwave waveguide. The microwaves were confined for about 10 ns, which corresponds to the free electron plasma wall recombination time. The characteristics of the plasma waveguide and the results of microwave guiding are presented.

  6. Divergence of the gene aly in experimentally evolved cytoraces, the members of the nasuta-albomicans complex of Drosophila.

    PubMed

    Radhika, P N; Ramachandra, N B

    2014-08-01

    We generated cytoraces by crossing the chromosomal races (Drosophila nasuta nasuta and Drosophila nasuta albomicans) of the nasuta subgroup of Drosophila and maintained the offspring over many generations through sibling mating. These cytoraces, along with their parents, are members of the nasuta-albomicans complex of Drosophila. The gene always early (aly) is one of the rapidly evolving genes in the genus Drosophila and plays a central role in regulating meiosis. Here we examined the rate of molecular evolution of aly in cytoraces of Drosophila and demonstrated that the rate of substitutions amongst cytoraces is around eight times greater than their parents and even amongst species of subgenera. Thus, the presence of positive selection in the laboratory-derived cytoraces based on the analysis of the synonymous and nonsynonymous substitution rates of aly suggests the rapid evolution in cytoraces.

  7. Microwave Workshop for Windows.

    ERIC Educational Resources Information Center

    White, Colin

    1998-01-01

    "Microwave Workshop for Windows" consists of three programs that act as teaching aid and provide a circuit design utility within the field of microwave engineering. The first program is a computer representation of a graphical design tool; the second is an accurate visual and analytical representation of a microwave test bench; the third…

  8. Microwave Radiometer (MWR) Handbook

    SciTech Connect

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  9. FAMoS - an information service on the usage of data files in AliEn

    NASA Astrophysics Data System (ADS)

    Abramyan, A.; Betev, L.; Buncic, P.; Grigoras, C.; Grigoryan, A.; Manukyan, N.; Pedreira, M. M.; Saiz, P.

    2015-05-01

    The File Access Monitoring Service (FAMoS) leverages the information stored in the central AliEn file catalogue, which describes every file in a Unix-like directory structure, as well as metadata on file location and its replicas. In addition, it uses the access information provided by a set of API servers, used by all Grid clients to access the catalogue. The main functions of FAMoS are to sort the file accesses by logical groups, access time, user and storage element. The collected data identifies rarely used groups of files, as well as those with high popularity over different time periods. This information can be further used to optimize file distribution and replication factors, thus increasing the data processing efficiency. The paper describes the FAMoS structure and user interface and presents the results obtained in one year of service operation.

  10. First results of auroral tomography from ALIS-Japan multi-station observations in March, 1995

    NASA Astrophysics Data System (ADS)

    Aso, T.; Ejiri, M.; Urashima, A.; Miyaoka, H.; Steen, Å.; Brändström, U.; Gustavsson, B.

    1998-01-01

    Auroral tomography observations have been carried out in March, 1995, as a joint international campaign between Sweden and Japan. Three unmanned Swedish ALIS stations (Kiruna, Merasjärvi, Tjautjas) and two Japanese JICCD sites (Abisko, Nikkaluokta), geographically separated by about 50 km at higher latitudes, were operated to capture multi-station monochromatic tomography images at 557.7 nm wavelength using CCD cameras. All cameras were pointing to one of the predetermined directions to secure a common field of view. Several images of auroral arcs, mostly for the core region right above Kiruna, have synchronously been taken by the multi-station imaging system. Tomographic inversion analysis for four-point images was carried out using the algebraic reconstruction technique. Reconstructions of a curved arc and of a double arc system suggest promising application of this technique to the retrieval of three-dimensional auroral luminosity.

  11. Ali Observatory in Tibet: a unique northern site for future CMB ground-based observations

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2015-08-01

    Ground-based CMB observations have been performed at the South Pole and the Atacama desert in Chile. However, a significant fraction of the sky can not be observed from just these two sites. For a full sky coverage from the ground in the future, a northern site for CMB observation, in particular CMB polarization, is required. Besides the long-thought site in Greenland, the high altitude Tibet plateau provides another opportunity. I will describe the Ali Observatory in Tibet, located at N32°19', E80°01', as a potential site for ground-based CMB observations. The new site is located on almost 5100m mountain, near Gar town, where is an excellent site for both infrared and submillimeter observations. Study with the long-term database of ground weather stations and archival satellite data has been performed. The site has enough relative height on the plateau and is accessible by car. The Shiquanhe town is 40 mins away by driving, and a recently opened airport with 40 mins driving, the site also has road excess, electricity, and optical fiber with fast internet. Preliminary measurement of the Precipitable Water Vapor is ~one quarter less than 0.5mm per year and the long term monitoring is under development. In addition, surrounding higher sites are also available and could be further developed if necessary. Ali provides unique northern sky coverage and together with the South Pole and the Atacama desert, future CMB observations will be able to cover the full sky from ground.

  12. Ba-hexaferrite Films for Next Generation Microwave Devices (invited)

    SciTech Connect

    Harris,V.; Chen, Z.; Chen, Y.; Yoon, S.; Sakai, T.; Geiler, A.; Yang, A.; He, Y.; Ziemer, K.; et al.

    2006-01-01

    Next generation magnetic microwave devices require ferrite films to be thick (>300 {mu}m), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.

  13. Microwave Photonics

    DTIC Science & Technology

    2005-11-01

    Single wafer) (Metals – Dome + Planetary) Optical Films (Filmstacks) Al Ni HfO2 Al/1% Si Cr SiO2 ITO Au Mo Al Ta Sn Al/Nd Ti Ti TiW...n1); R2 ~ (n3-n2)/(n3+n2). The optimized n2 of AR materials should be around 1.84. Hafnium oxide ( HfO2 ) has reflective index around 1.97 @ 800 nm...deposition of HfO2 was carried out using Leybold APS1104 reactive evaporator system. Advanced Plasma Source (APS), also known as Plasma Ion Assisted

  14. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  15. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  16. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  17. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  18. An evidence-based systematic review of tongkat ali (Eurycoma longifolia) by the Natural Standard Research Collaboration.

    PubMed

    Ulbricht, Catherine; Conquer, Julie; Flanagan, Kelly; Isaac, Richard; Rusie, Erica; Windsor, Regina C

    2013-03-01

    An evidence-based systematic review of tongkat ali (Eurycoma longifolia) by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated, reproducible grading rationale. This article includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.

  19. The ALI-ARMS Code for Modeling Atmospheric non-LTE Molecular Band Emissions: Current Status and Applications

    NASA Technical Reports Server (NTRS)

    Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.

    2008-01-01

    The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.

  20. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02.

    PubMed

    Huh, Chang Ki; Hwang, Tae Yean

    2016-03-01

    This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not H2O2. The molecular weights of the antifungal substances were ≤3,000 Da. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid.

  1. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

    PubMed Central

    Huh, Chang Ki; Hwang, Tae Yean

    2016-01-01

    This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not H2O2. The molecular weights of the antifungal substances were ≤3,000 Da. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid. PMID:27069906

  2. An Approach to the Stories of Sabahattin Ali within the Context of Marxist Literary Aesthetics: The Conflict between Peasants and the Intelligentsia

    ERIC Educational Resources Information Center

    Yigit, Murat

    2016-01-01

    This study will try to read the stories of Sabahattin Ali, who has written various books in Turkish, within the context of Marxist literary aesthetics, assess the types and characters in the stories of Sabahattin Ali within that framework, and observe the social levels and the gaps between them based on the relationships between the two extreme…

  3. 40 CFR 721.9527 - Bis(1,2,2,6,6-pentamethyl-4-piperidin-4-ol) ester of cy-clo-ali-phatic spiroketal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-4-ol) ester of cy-clo-ali-phatic spiroketal. 721.9527 Section 721.9527 Protection of Environment...-piperidin-4-ol) ester of cy-clo-ali-phatic spiroketal. (a) Chemical substance and significant new uses...-piperidin-4-ol) ester of cycloaliphatic spiroketal (PMN No. P-91-1361) is subject to reporting under...

  4. A Moderate-resolution Geosynchronous Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Shiue, James

    2004-01-01

    The introduction of microwave radiometers for remote sensing of atmospheric temperature and humidity began in early 1970s, when NASA's Nimbus series experimental satellites tested a number of microwave payloads which are the precursors of today's operational microwave temperature and humidity sounders such as the Advanced Microwave Sounding Unit (AMSU-A and AMSU-B), now flying on several Lower Earth Orbiting (LEO) satellites, notably the National Oceanic and Atmospheric (NOAA)-series weather satellites. The Advanced Technology Microwave Sounder (ATMS) will be the next generation microwave sounder, now being developed by NASA for the future U.S. National Polar-orbiting Operational Environmental Satellites System (NPOESS), slated for operation late this decade. The unique feature of a microwave sensor is its cloud-penetrating capability. And the visible and IR sensors are usually greatly degraded by cloud covers. But under the cloud cover is where the weather can be most "active," and atmospheric measurements are most urgently needed. This unique capability has been well proven by AMSU-A, and AMSU-B on LEO satellites. The same capability is also true for a microwave sounder on a GEO satellite. The key advantage of a sensor on a GEO-platform is its "high temporal resolution." A sensor on a GEO-platform can almost "continuous" monitor a given scene on Earth. On the other hand, the major drawback the GEO-platform is its poor spatial resolution. This is probably the main reason why a geosynchronous microwave sounder has yet to be realized. Take the ATMS as an example. It has a 20 cm diameter antenna (temperature channels), producing a 2.2 degree beam, resulting in a footprint of 32 km (from the NPOESS 833 km orbit). From a GEO-orbit the same 32 km footprint would need an antenna 43 times larger, or 860 cm diameter. We will discuss the needs and advantages of such a GEO-microwave sounder with a straw-man design, and show the expected performance characteristics, such as

  5. A geometric performance assessment of the EO-1 advanced land imager

    USGS Publications Warehouse

    Storey, J.C.; Choate, M.J.; Meyer, D.J.

    2004-01-01

    The Earth Observing 1 (EO-1) Advanced Land Imager (ALI) demonstrates technology applicable to a successor system to the Landsat Thematic Mapper series. A study of the geometric performance characteristics of the ALI was conducted under the auspices of the EO-1 Science Validation Team. This study evaluated ALI performance with respect to absolute pointing knowledge, focal plane sensor chip assembly alignment, and band-to-band registration for purposes of comparing this new technology to the heritage Landsat systems. On-orbit geometric calibration procedures were developed that allowed the generation of ALI geometrically corrected products that compare favorably with their Landsat 7 counterparts with respect to absolute geodetic accuracy, internal image geometry, and band registration.

  6. Microwave Regenerable Air Purification Device

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  7. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  8. Lithospheric mantle evolution in the Afro-Arabian domain: Insights from Bir Ali mantle xenoliths (Yemen)

    NASA Astrophysics Data System (ADS)

    Sgualdo, P.; Aviado, K.; Beccaluva, L.; Bianchini, G.; Blichert-Toft, J.; Bryce, J. G.; Graham, D. W.; Natali, C.; Siena, F.

    2015-05-01

    Detailed petrological and geochemical investigations of an extensive sampling of mantle xenoliths from the Neogene-Quaternary Bir Ali diatreme (southern Yemen) indicate that the underlying lithospheric mantle consists predominantly of medium- to fine-grained (often foliated) spinel-peridotites (85-90%) and spinel-pyroxenites (10-15%) showing thermobarometric estimates in the P-T range of 0.9-2.0 GPa and 900-1150 °C. Peridotites, including lherzolites, harzburgites and dunites delineate continuous chemical, modal and mineralogical variations compatible with large extractions of basic melts occurring since the late Proterozoic (~ 2 Ga, according to Lu-Hf model ages). Pyroxenites may represent intrusions of subalkaline basic melts interacting and equilibrated with the host peridotite. Subsequent metasomatism has led to modal changes, with evidence of reaction patches and clinopyroxene and spinel destabilization, as well as formation of new phases (glass, amphibole and feldspar). These changes are accompanied by enrichment of the most incompatible elements and isotopic compositions. 143Nd/144Nd ranges from 0.51419 to 0.51209 (εNd from + 30.3 to - 10.5), 176Hf/177Hf from 0.28459 to 0.28239 (εHf from + 64.4 to - 13.6), and 208Pb/204Pb from 36.85 to 41.56, thus extending from the depleted mantle (DM) towards the enriched OIB mantle (EM and HIMU) components. 3He/4He (R/RA) ratios vary from 7.2 to 7.9 with He concentrations co-varying with the most incompatible element enrichment, in parallel with metasomatic effects. These metasomatic events, particularly effective in harzburgites and dunites, are attributable to the variable interaction with alkaline basic melts related to the general extensional and rifting regime affecting the East Africa-Arabian domain during the Cenozoic. In this respect, Bir Ali mantle xenoliths resemble those occurring along the Arabian margins and the East Africa Rift system, similarly affected by alkaline metasomatism, whereas they are

  9. Microwave Processing of Materials

    DTIC Science & Technology

    1994-01-01

    of peak output power of 100 megawatts at 10 GHz. Microwave Fundamentals 11 RESONANT HELIX TWT STO KLYSTRON CTf C 0 Grid oShadow Grid PPM FOCUS SPACE C...Rather, broadband and high-temperature measurement techniques that have been used in conjunction with microwave processing of materials-specifically... Broadband Dielectric Properties Measurement Techniques. Pp. 527-539 in Materials Research Society Symposium Proceedings, Vol. 269, Microwave Processing

  10. Microwave Lightcraft concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Looking like an alien space ship or a flying saucer the Microwave Lightcraft is an unconventional launch vehicle approach for delivering payload to orbit using power transmitted via microwaves. Microwaves re beamed from either a ground station or an orbiting solar power satellite to the lightcraft. The energy received breaks air molecules into a plasma and a magnetohydrodynamic fanjet provides the lifting force. Only a small amount of propellant is required for circulation, attitude control and deorbit.

  11. Digital communications: Microwave applications

    NASA Astrophysics Data System (ADS)

    Feher, K.

    Transmission concepts and techniques of digital systems are presented; and practical state-of-the-art implementation of digital communications systems by line-of-sight microwaves is described. Particular consideration is given to statistical methods in digital transmission systems analysis, digital modulation methods, microwave amplifiers, system gain, m-ary and QAM microwave systems, correlative techniques and applications to digital radio systems, hybrid systems, digital microwave systems design, diversity and protection switching techniques, measurement techniques, and research and development trends and unsolved problems.

  12. A Review of Ferdous al-Hekma fil-Tibb by Ali ibn Raban Tabari

    PubMed Central

    Ardalan, Mohammadreza; Khodadoust, Kazem; Mostafidi, Elmira

    2015-01-01

    T Ferdous al-Hekma (Paradise of Wisdom) is one of the oldest medical texts in the Islamic world written in Arabic in 850 AD by Ali ibn Raban Tabari. He was a Persian physician who moved from Tabaristan (Mazandaran province of modern day Iran) to Samarra during the reign of the Abbasid Caliph al-Mutawakkil (847-861 AD). We studied the book of Ferdous al-Hekma fil-Tibb, in an attempt to comprehend its general outlook on diseases of different organs, their classifications and the associated signs and symptoms. The book is one of the earliest medical pandects of the period of translation, adaptation and expansion of knowledge in the Islamic world during the 9th century AD. Tabari was mainly influenced by Hippocrates, Galen and Aristotle, as well as his contemporaries Johanna ibn Massavieh and Hunayn ibn Ishaq. The book is written in thirty chapters in a total number of 308 subtitles. In each part there is an introduction to the symptomatology, followed by organ specific diseases and therapeutic recommendations. Symptoms and physical signs of different diseases are vividly described in Ferdous al-Hekma, and some of them are even understandable for contemporary medical students. PMID:27350863

  13. Remembering Ali Alpar's Early Work, and: Three Types of Neutron Stars?

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.

    2011-09-01

    Some memories of Ali Alpar and his early work are presented, with particular emphasis on his work on the origin of milliscond pulsars. After this, arguments are summarized, indicating the existence of three categories of neutron stars, with two different formation mechanisms: (i) A low-mass category ( M~1.25 +/- 0.05 solar masses), characterized by low kick velocities. These neutron stars most probably formed by electron-capture collapse in degenerate O-Ne-Mg cores of stars of initial masses between ~8 and ~11 solar masses. (ii) An intermediate-mass category (M~1.40 +/- 0.10 solar masses), characterized by high kick velocities. These stars formed by the collapse of the iron cores of stars with initial masses probably between ~11 and ~19 solar masses. (iii) A category of massive neutron stars (M >= 1.70 solar masses), also characterized by high space velocities, and formed by the collapse of the iron cores, in this case of stars with intial masses >19 solar mases.

  14. In vivo effects of Eurycoma longifolia Jack (Tongkat Ali) extract on reproductive functions in the rat.

    PubMed

    Solomon, M C; Erasmus, N; Henkel, R R

    2014-05-01

    An aqueous extract of Eurycoma longifolia (Tongkat Ali; TA) roots is traditionally used to enhance male sexuality. Because previous studies are limited to only few sperm parameters or testosterone concentration, this study investigated the in vivo effects of TA on body and organ weight as well as functional sperm parameters in terms of safety and efficacy in the management of male infertility. Forty-two male rats were divided into a control, low-dose (200 mg kg(-1) BW) and high-dose (800 mg kg(-1) BW) group (n = 14). Rats were force-fed for 14 days and then sacrificed. Total body and organ weights of the prostate, testes, epididymides, gastrocnemius muscle and the omentum were recorded. Moreover, testosterone concentration, sperm concentration, motility, velocity, vitality, acrosome reaction and mitochondrial membrane potential (MMP) were assessed. Whilst TA decreased BW by 5.7% (P = 0.0276) and omentum fat by 31.9% (P = 0.0496), no changes in organ weights were found for the prostate, testes and epididymides. Testosterone concentration increased by 30.2% (P = 0.0544). Muscle weight also increased, yet not significantly. Whilst sperm concentration, total and progressive motility and vitality increased significantly, MMP improved markedly (P = 0.0765) by 25.1%. Because no detrimental effect could be observed, TA appears safe for possible treatment of male infertility and ageing male problems.

  15. Effect of Eurycoma longifolia Jack (Tongkat ali) extract on human spermatozoa in vitro.

    PubMed

    Erasmus, N; Solomon, M C; Fortuin, K A; Henkel, R R

    2012-10-01

    Eurycoma longifolia (Tongkat ali; TA) is a Malaysian shrub used to treat various illnesses including male infertility. Considering that TA is used to improve male fertility and no report regarding its safety has been published, this study investigated the effects of TA extract on various sperm functions. Semen samples of 27 patients and 13 donors were divided into two groups, washed and swim-up spermatozoa, and incubated with different concentrations of TA (1, 10, 20, 100, 2000 μg ml(-1) ) for 1 h at 37 °C. A sample without addition of TA served as control. For washed spermatozoa, significant dose-dependent trends were found for vitality, total motility, acrosome reaction and reactive oxygen species-positive spermatozoa. However, these trends were only significant if the highest concentrations were included in the calculation. Contrary, the increase in the percentage of acrosome-reacted spermatozoa with increasing TA concentrations is very significant (P < 0.0001), and a significant difference (P = 0.0069) to the control could even be recorded at 20 μg TA per ml. For swim-up spermatozoa, no trend could be observed. Results indicate that the TA extract has no deleterious effects on sperm functions at therapeutically used concentrations (<2.5 μg ml(-1) ). However, at very high concentrations, TA may have harmful effects in vitro.

  16. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    DTIC Science & Technology

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  17. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    DTIC Science & Technology

    ELECTRIC FILTERS, MICROWAVE FREQUENCY), (*MICROWAVE EQUIPMENT, ELECTRIC FILTERS), CIRCUITS, CAPACITORS, COILS, RESONATORS, STRIP TRANSMISSION LINES, WAVEGUIDES, TUNING DEVICES, PARAMETRIC AMPLIFIERS, FREQUENCY CONVERTERS .

  18. 1990 MTT-S International Microwave Symposium and Exhibition and Microwave and Millimeter-Wave Monolithic IC Symposium, Dallas, TX, May 7-10, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    McQuiddy, David N., Jr.; Sokolov, Vladimir

    1990-12-01

    The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.

  19. Radiation-hardened microwave system

    SciTech Connect

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.

    1990-01-01

    In order to develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe RF multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced MSTS configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high band-rate digital data links at total gamma dose tolerance levels exceeding 10{sup 7} rads and at elevated ambient temperatures. 3 refs., 4 figs.

  20. Microwave pretreatment for enhancement of phosphorus release from dairy manure.

    PubMed

    Pan, Szu-Hua; Lo, Kwang Victor; Liao, Ping Huang; Schreier, Hans

    2006-01-01

    Both the advanced oxidation process (AOP) using a combination of hydrogen peroxide addition and microwave heating (H2O2/microwave), and the microwave heating process were used for solubilization of phosphorus from liquid dairy manure. About 80% of total phosphate was released into the solution at a microwave heating time of 5 min at 170 degrees C. With an addition of H2O2, more than 81% of total phosphate could be released over a reaction period of 49 h at ambient temperature. The AOP process could achieve up to 85% of total phosphate release at 120 degrees C. The results indicated that both the microwave, and the AOP processes could effectively release phosphate from liquid dairy manure. These processes could serve as pretreatments for phosphorus recovery from animal wastes, and could be combined with the struvite crystallization process to provide a new approach in treating animal wastes.

  1. Advanced Silicon Technology for Microwave Circuits

    DTIC Science & Technology

    1994-03-08

    Pennsylvania 15235-5098 ABSTRACT MICROX is a silicon-on-insulator ( SOI ) technology using high resistivity (>3,000 ohm-cm) silicon substrates to...consideration in SOI devices. H. B. Dietrich, NRL, suggested making the technology capability comparisons covering GaAs FETs and HEMTs and Si FETs. R...Westinghouse Baltimore, arranged for thinning of wafers prior to via processing. 1. SUiKuRR MICROX is a silicon-on-insulator ( SOI ) technology which employs high

  2. Variable frequency microwave heating apparatus

    DOEpatents

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  3. Variable frequency microwave heating apparatus

    SciTech Connect

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  4. Coaxial microwave plasma source

    SciTech Connect

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Kossyi, I. A.; Kotelev, M. S.

    2011-11-15

    Physical principles underlying the operation of a pulsed coaxial microwave plasma source (micro-wave plasmatron) are considered. The design and parameters of the device are described, and results of experimental studies of the characteristics of the generated plasma are presented. The possibility of application of this type of plasmatron in gas-discharge physics is discussed.

  5. Active microwave water equivalence

    NASA Technical Reports Server (NTRS)

    Boyne, H. S.; Ellerbruch, D. A.

    1980-01-01

    Measurements of water equivalence using an active FM-CW microwave system were conducted over the past three years at various sites in Colorado, Wyoming, and California. The measurement method is described. Measurements of water equivalence and stratigraphy are compared with ground truth. A comparison of microwave, federal sampler, and snow pillow measurements at three sites in Colorado is described.

  6. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-01-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  7. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-04-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  8. Television Microwave--1971.

    ERIC Educational Resources Information Center

    Peterson, Roger E.

    Since it became a reality just before World War II, terrestrial microwave has improved in systems and equipments, but with the improvements have come higher costs. Television microwave costs are so high because users are demanding more capability, land prices have increased, operating costs are higher, and there is frequency congestion along many…

  9. Microwave device investigations

    NASA Technical Reports Server (NTRS)

    Choudhury, K. K. D.; Haddad, G. I.; Kwok, S. P.; Masnari, N. A.; Trew, R. J.

    1972-01-01

    Materials, devices and novel schemes for generation, amplification and detection of microwave and millimeter wave energy are studied. Considered are: (1) Schottky-barrier microwave devices; (2) intermodulation products in IMPATT diode amplifiers; and (3) harmonic generation using Read diode varactors.

  10. MICROWAVES IN ORGANIC SYNTHESIS

    EPA Science Inventory

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  11. Cellular Nuclear Export Factors TAP and Aly Are Required for HDAg-L-mediated Assembly of Hepatitis Delta Virus.

    PubMed

    Huang, Hsiu-Chen; Lee, Chung-Pei; Liu, Hui-Kang; Chang, Ming-Fu; Lai, Yu-Heng; Lee, Yu-Ching; Huang, Cheng

    2016-12-09

    Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus (HBV). HDV genome encodes two forms of hepatitis delta antigen (HDAg), small HDAg (HDAg-S), which is required for viral replication, and large HDAg (HDAg-L), which is essential for viral assembly. HDAg-L is identical to HDAg-S except that it bears a 19-amino acid extension at the C terminus. Both HDAgs contain a nuclear localization signal (NLS), but only HDAg-L contains a CRM1-independent nuclear export signal at its C terminus. The nuclear export activity of HDAg-L is important for HDV particle formation. However, the mechanisms of HDAg-L-mediated nuclear export of HDV ribonucleoprotein are not clear. In this study, the host cellular RNA export complex TAP-Aly was found to form a complex with HDAg-L, but not with an export-defective HDAg-L mutant, in which Pro(205) was replaced by Ala. HDAg-L was found to colocalize with TAP and Aly in the nucleus. The C-terminal domain of HDAg-L was shown to directly interact with the N terminus of TAP, whereas an HDAg-L mutant lacking the NLS failed to interact with full-length TAP. In addition, small hairpin RNA-mediated down-regulation of TAP or Aly reduced nuclear export of HDAg-L and assembly of HDV virions. Furthermore, a peptide, TAT-HDAg-L(198-210), containing the 10-amino acid TAT peptide and HDAg-L(198-210), inhibited the interaction between HDAg-L and TAP and blocked HDV virion assembly and secretion. These data demonstrate that formation and release of HDV particles are mediated by TAP and Aly.

  12. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  13. Microwave ion source

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  14. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  15. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  16. Microwave integrated circuits for space applications

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  17. Gold Nanoparticle Microwave Synthesis

    SciTech Connect

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington, II, Aaron L.; Murph, Simona H.

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  18. 75 FR 2921 - In the Matter of the Designation of Said Ali al-Shihri, Also Known as Abu-Sayyaf, Also Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF STATE In the Matter of the Designation of Said Ali al-Shihri, Also Known as Abu-Sayyaf, Also Known as Abu-Sufyan al-Azidi, Also Known as Abu-Sayyaf al-Shihri, Also Known as Abu Sufian Kadhdhaab Matrook, Also Known as Sa'id Ali Jabir al-Khathim al-Shihri,...

  19. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  20. Microwave coupler and method

    SciTech Connect

    Holcombe, Cressie E.

    1985-01-01

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  1. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  2. Microwave coupler and method

    DOEpatents

    Holcombe, C.E.

    1984-11-29

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  3. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  4. Effects of Rapid Thermal Annealing and Different Oxidants on the Properties of LaxAlyO Nanolaminate Films Deposited by Atomic Layer Deposition.

    PubMed

    Fei, Chenxi; Liu, Hongxia; Wang, Xing; Zhao, Lu; Zhao, Dongdong; Feng, Xingyao

    2017-12-01

    A comparative study of different sequences of two metal precursors [trimethylaluminum (TMA) and Tris(isopropylcyclopentadienyl) lanthanum (La((i)PrCp)3)] for atomic layer deposition (ALD) lanthanum aluminum oxide (LaxAlyO) films is carried out. The percentage compositions of C and N impurity of LaxAlyO films were investigated using in situ X-ray photoelectron spectroscopy (XPS). The effects of different oxidants on the physical and chemical properties and electrical characteristics of LaxAlyO films are studied before and after annealing. Preliminary testing results indicate that the impurity level of LaxAlyO films grown with different oxidants can be well controlled before and after annealing. Analysis indicates the rapid thermal annealing (RTA) and kinds of oxidants have significant effects on the equivalent oxide thickness (EOT), dielectric constant, electrical properties, and stability of LaxAlyO films. Additionally, the change of chemical bond types of rapid thermal annealing effects on the properties of LaxAlyO films are grown with different oxidants also investigated by XPS.

  5. Metamaterial microwave holographic imaging system.

    PubMed

    Hunt, John; Gollub, Jonah; Driscoll, Tom; Lipworth, Guy; Mrozack, Alex; Reynolds, Matthew S; Brady, David J; Smith, David R

    2014-10-01

    We demonstrate a microwave imaging system that combines advances in metamaterial aperture design with emerging computational imaging techniques. The flexibility inherent to guided-wave, complementary metamaterials enables the design of a planar antenna that illuminates a scene with dramatically varying radiation patterns as a function of frequency. As frequency is swept over the K-band (17.5-26.5 GHz), a sequence of pseudorandom radiation patterns interrogates a scene. Measurements of the return signal versus frequency are then acquired and the scene is reconstructed using computational imaging methods. The low-cost, frequency-diverse static aperture allows three-dimensional images to be formed without mechanical scanning or dynamic beam-forming elements. The metamaterial aperture is complementary to a variety of computational imaging schemes, and can be used in conjunction with other sensors to form a multifunctional imaging platform. We illustrate the potential of multisensor fusion by integrating an infrared structured-light and optical image sensor to accelerate the microwave scene reconstruction and to provide a simultaneous visualization of the scene.

  6. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  7. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  8. Microwave Oven Observations.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  9. Tunable Microwave Transversal Filters.

    DTIC Science & Technology

    1984-05-01

    GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER AFOSR-TR. 84-0977 S4. TI TLE (and Subtitle) 5. TYP ?FE&T&PEO OEE U!NABLE MICROWAVE TRANSVERSAL FILTERS...this goal through magnetostatic waves MSW propagating at microwave frequency in magnetically biased, liquid phase epitaxial films of yttrium iron...garnet (YIG) grown on gadolinium gallium garnet (GGG). This technology has a number of advantages; low loss (greater than 30db/usec at xband), tunable by

  10. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  11. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  12. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  13. Automatic Microwave Network Analysis.

    DTIC Science & Technology

    A program and procedure are developed for the automatic measurement of microwave networks using a Hewlett-Packard network analyzer and programmable calculator . The program and procedure are used in the measurement of a simple microwave two port network. These measurements are evaluated by comparing with measurements on the same network using other techniques. The programs...in the programmable calculator are listed in Appendix 1. The step by step procedure used is listed in Appendix 2. (Author)

  14. Microwaves and Alzheimer's disease

    PubMed Central

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-01-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review. PMID:27698682

  15. Microwaves and Alzheimer's disease.

    PubMed

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-10-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review.

  16. Microwave sintering process model.

    PubMed

    Peng, Hu; Tinga, W R; Sundararaj, U; Eadie, R L

    2003-01-01

    In order to simulate and optimize the microwave sintering of a silicon nitride and tungsten carbide/cobalt toolbits process, a microwave sintering process model has been built. A cylindrical sintering furnace was used containing a heat insulating layer, a susceptor layer, and an alumina tube containing the green toolbit parts between parallel, electrically conductive, graphite plates. Dielectric and absorption properties of the silicon nitride green parts, the tungsten carbide/cobalt green parts, and an oxidizable susceptor material were measured using perturbation and waveguide transmission methods. Microwave absorption data were measured over a temperature range from 20 degrees C to 800 degrees C. These data were then used in the microwave process model which assumed plane wave propagation along the radial direction and included the microwave reflection at each interface between the materials and the microwave absorption in the bulk materials. Heat transfer between the components inside the cylindrical sintering furnace was also included in the model. The simulated heating process data for both silicon nitride and tungsten carbide/cobalt samples closely follow the experimental data. By varying the physical parameters of the sintering furnace model, such as the thickness of the susceptor layer, the thickness of the allumina tube wall, the sample load volume and the graphite plate mass, the model data predicts their effects which are helpful in optimizing those parameters in the industrial sintering process.

  17. Microwave radiation absorption: behavioral effects.

    PubMed

    D'Andrea, J A

    1991-07-01

    The literature contains much evidence that absorption of microwave energy will lead to behavioral changes in man and laboratory animals. The changes include simple perturbations or outright stoppage of ongoing behavior. On one extreme, intense microwave absorption can result in seizures followed by death. On the other extreme, man and animals can hear microwave pulses at very low rates of absorption. Under certain conditions of exposure, animals will avoid microwaves, while under other conditions, they will actively work to obtain warmth produced by microwaves. Some research has shown behavioral effects during chronic exposure to low-level microwaves. The specific absorption rates that produce behavioral effects seem to depend on microwave frequency, but controversy exists over thresholds and mechanism of action. In all cases, however, the behavioral disruptions cease when chronic microwave exposure is terminated. Thermal changes in man and animals during microwave exposure appear to account for all reported behavioral effects.

  18. Microwave Imaging Reflectometer for TEXTOR

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; B.H. Deng; C.W. Domier; N.C. Luhmann, Jr.; J. Wang; Z.G. Xia; A.J.H. Donne; and M. van de Pol

    2002-07-09

    Understanding the behavior of fluctuations in magnetically confined plasmas is essential to the advancement of turbulence-based transport physics. Though microwave reflectometry has proven to be an extremely useful and sensitive tool for measuring small density fluctuations in some circumstances, this technique has been shown to have limited viability for large amplitude, high kq fluctuations and/or core measurements. To this end, a new instrument based on 2-D imaging reflectometry has been developed to measure density fluctuations over an extended plasma region in the TEXTOR tokamak. This technique is made possible by collecting an extended spectrum of reflected waves with large-aperture imaging optics. Details of the imaging reflectometry concept, as well as technical details of the TEXTOR instrument will be presented. Data from roof-of-principle experiments on TEXTOR using a prototype system is presented, as well as results from a systematic off-line study of the advantages and limitations of the imaging reflectometer.

  19. Characterizing magnetospheric electrons from ALIS observations of discrete auroral arcs and quasi-stationary modeling of auroral acceleration

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Simon, C.; Echim, M.; de Keyser, J. M.; Gustavsson, B.; Sergienko, T.; Sandahl, I.; Brandstrom, U.

    2010-12-01

    From a series of images obtained simultaneously with the CCD cameras of the ALIS (Auroral Large Imaging System) network located in Scandinavia, three-dimensional (3D) large-scale structures of discrete auroral arcs can be retrieved in several filters with tomography-like techniques. In particular, the 3D reconstructed volume emission rates at 4278 Å can be used to derive the energy spectra of precipitating magnetospheric electrons in 2D, along and across the arc, with a spatial resolution of approximately 3 km. These spectra directly provide E0, the characteristic energy and ɛm, the total flux energy of precipitating electrons. The latter can be used together with a kinetic modelling of adiabatic motion of particles (Lundin & Sandahl, 1978) and assuming a Maxwellian distribution for magnetospheric electrons, to derive ΔΦ, the field-aligned potential difference between the ionosphere and magnetosphere. The next step is to use a quasi-static magnetosphere-ionosphere coupling model based on the current continuity in the ionosphere (Echim et al, 2007) and the model of tangential discontinuity generators (Roth et al 1993) to determine densities (ne) and temperatures (Te) of the magnetospheric electrons. The model is run iteratively for typical values of magnetospheric ne and Te that are adjusted until ΔΦ provided by the model is in agreement with the one determined from ALIS observations. This technique allows to obtain information about the properties of the generator of the auroral arc, from ground-based observations and quasi-stationary modeling. Future conjugated observations between ALIS and a spacecraft crossing the same magnetic field lines above the acceleration region could be used to validate this novel technique.

  20. Large scale evaluation of soil moisture retrievals from passive microwave observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years passive microwave observations have been used to retrieve surface soil moisture from the Earth’s surface. Several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and WindSat have been used for this purpose using multi-channel observations. Large sc...

  1. High Power Microwaves on the Future Battlefield: Implications for U.S. Defense

    DTIC Science & Technology

    2010-02-17

    AIR WAR COLLEGE AIR UNIVERSITY HIGH POWER MICROWAVES ON THE FUTURE BATTLEFIELD: IMPLICATIONS FOR U.S. DEFENSE by Robert J. Capozzella...2 HPM Weapons’ Capabilities, Today and in the Future...into its greatest liability as recent advances in the area of high power microwave (HPM) weapons are garnering interest around the world. Current

  2. AliBiMotif: integrating alignment and biclustering to unravel transcription factor binding sites in DNA sequences.

    PubMed

    Gonçalves, Joana P; Moreau, Yves; Madeira, Sara C

    2012-01-01

    Transcription Factors (TFs) control transcription by binding to specific sites in the promoter regions of the target genes, which can be modelled by structured motifs. In this paper we propose AliBiMotif, a method combining sequence alignment and a biclustering approach based on efficient string matching techniques using suffix trees to unravel approximately conserved sets of blocks (structured motifs) while straightforwardly disregarding non-conserved stretches in-between. The ability to ignore the width of non-conserved regions is a major advantage of the proposed method over other motif finders, as the lengths of the binding sites are usually easier to estimate than the separating distances.

  3. Microwave processing of ceramic oxide filaments. Annual report, FY1997

    SciTech Connect

    Vogt, G.J.

    1998-12-31

    The objective of the microwave filament processing project is to develop microwave techniques to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company. Continuous ceramic filaments are a principal component in many advanced high temperature materials like continuous fiber ceramic composites (CFCC) and woven ceramic textiles. The use of continuous ceramic filaments in CFCC radiant burners, gas turbines, waste incineration, and hot gas filters in U.S. industry and power generation is estimated to save at least 2.16 quad/yr by year 2010 with energy cost savings of at least $8.1 billion. By year 2010, continuous ceramic filaments and CFCC`s have the potential to abate pollution emissions by 917,000 tons annually of nitrous oxide and 118 million tons annually of carbon dioxide (DOE Report OR-2002, February, 1994).

  4. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export.

    PubMed

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P; Sandri-Goldin, Rozanne M

    2013-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.

  5. Investigation of microwave dielectric properties of biodiesel components.

    PubMed

    Muley, Pranjali D; Boldor, Dorin

    2013-01-01

    Advanced microwave technology has the potential to significantly enhance the biodiesel production process. Knowledge of dielectric properties of materials plays a major role in microwave design for any process. Dielectric properties (ε' and ε") of biodiesel precursors: soybean oil, alcohols and catalyst and their different mixtures were measured using a vector network analyzer and a slim probe in an open ended coaxial probe method at four different temperatures (30, 45, 60 and 75 °C) and in the frequency range of 280 MHz to 4.5 GHz. Results indicate that the microwave dielectric properties depend significantly on both temperature and frequency. Addition of catalyst significantly affected the dielectric properties. Dielectric properties behaved differently when oil, alcohol and catalyst was mixed at room temperature before heating and when the oil and the alcohol catalyst mixture was heated separately to a pre-determined temperature before mixing. These results can be used in designing microwave based transesterification system.

  6. Zonation of flood production potential in Kabutar Ali Chai watershed using SCS model

    NASA Astrophysics Data System (ADS)

    Jananeh, Keristineh

    2015-04-01

    Kabutar Ali Chai watershed is located on the southern hillsides of Mishow mountains, 75 km northwest of Tabriz, NW Iran. This watershed is confined to 1390 and 3230 m elevation levels, where the general dip is from north to south. The watershed area is 67.46 km2 and the length of the main stream is about 24.5 km. This is one of the flood basins in the region and considering the availability of precipitation data for the 20 year interval and the possibility of flood occurrence threatening the downstream villages, the flood production investigations in order to prioritize the sub-basins regarding their flood-potential were carried out using the SCS method. In this regard, the watershed area was divided into 4 sections based on physiographic and topographic characteristics and the existing stream network: A1 (the southern and the low-height end of the watershed), A2 (the mid-western half), A3 (the mid-eastern half) and A4 (the northern and highest part). The precipitation data for 20 year interval were gathered from the nearby weather stations of Tabriz, Sahand, Marand and Sharafkhaneh based on which, the average annual precipitation is about 294 mm, with the highest amounts of 415 to 450 mm in A4 sub-basin and the lowest value of 253 mm in the southern A1 sub-basin. According to the time of concentration estimates based on the stream lengths and the elevation differences, this parameter is highest in A1 sub-basin with the rate of 1.64 h and lowest at A3 sub-basin with the rate of 0.35 h. This parameter has negative correlation with the flood production potential. The runoff height is estimated using the SCS method. In order to determine the CN curve Number, the maps of hydrologic groups of soil, land use and vegetation were prepared and combined with each other and then, by taking into account the area of each homogeneous unit, the CN number was calculated for the watershed and the related CN map was prepared. The peak discharge of the hydrologic units across the

  7. Design of a microwave calorimeter for the microwave tokamak experiment

    SciTech Connect

    Marinak, M. )

    1988-10-07

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs.

  8. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I. ); Chagnot, D.; LeRoy, A. )

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10[sup 7] rads and at elevated ambient temperatures.

  9. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10{sup 7} rads and at elevated ambient temperatures.

  10. MICROWAVE TECHNOLOGY CHEMICAL SYNTHESIS APPLICATIONS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses in various solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although th...

  11. Equations of state of anhydrous AlF3 and AlI3: Modeling of extreme condition halide chemistry

    NASA Astrophysics Data System (ADS)

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Goncharov, Alexander F.; Radousky, Harry B.; Armstrong, Michael R.; Roberts, Sarah K.; Plaue, Jonathan W.

    2015-06-01

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.

  12. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Glasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2003-01-01

    Spectral band synthesis is a key step in the process of creating a simulated multispectral image from hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an example of its application. Using spectral responses of AVIRIS, Hyperion, ALI, and ETM+, the following section shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation accuracy based on results of MODTRAN modeling. In the final sections of the paper, simulated images are compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an AVIRIS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-1 satellite are used to simulate multispectral images from the ALI and ETM+ sensors.

  13. Caractérisation de jonctions ultra-minces réalisées par dopage laser

    NASA Astrophysics Data System (ADS)

    Kerrien, G.; Sarnet, T.; Débarre, D.; Hernandez, M.; Zahorski, D.; Venturini, J.; Laviron, C.; Semeria, M. N.; Boulmer, J.

    2003-06-01

    Cette étude concerne les techniques de recuit laser (LTP) et de dopage laser direct (GILD) de jonctions ultra-minces, nécessaires à la fabrication des composants microélectroniques du futur (générations CMOS sub 0,1 μm). Des jonctions de 20 à 80 nm sont réalisées à l'aide d'un laser à excimères. Le procédé est suivi en temps réel grâce à l'analyse de la réflectivité transitoire à 675 nm. L'évolution de l'activation des dopants est ensuite caractérisée par spectroscopie IR (FTIR). Les résultats obtenus permettent de caractériser les jonctions en termes d'épaisseur dopées, concentration et résistivité. Une comparaison avec des caractérisations classiques (mesures électriques de résistivité, profils SIMS) permet de valider ces mesures et de mettre en évidence l'intérêt des techniques optiques pour la caractérisation in-situ et ex-situ des couches minces dopées réalisées par laser.

  14. [Pathology of adaptation according to Sami-Ali and index of conformity to the Rorschach test in ulcerative rectocolitis].

    PubMed

    Porcelli, P; Zaka, S; Tarantino, S; Sisto, G

    1992-01-01

    According to Sami-Ali's theoretical model the psychosomatic personality is characterised by an adaptation pathology whose main elements are the repression of imaginative thought and conformity to socio-cultural standards. This study examines adaptation pathology using the Rorschach test. The Authors have formulated a conformity index by relating kinestheses (M) and banal perceptions (BAN). The study was carried out on a sample of 41 patients suffering from ulcerous rectocolitis comprising 24 males and 17 women with a mean age of 32 years. As expected in the hypothesis 97.6% of the sample showed M values below the norm, and 68.3% had Ban values higher than normal, whereas the conformity index was positive and tendentially positive in 65.9% of cases. These findings confirm Sami-Ali's theory. Subjects with ulcerous rectocolitis form part of the adaptation pathology which characterised the psychosomatic personality, with an inverse proportionality between imaginative activity (kinesthesia below normal) and conformism (banal perceptions above the norm).

  15. Equations of state of anhydrous AlF3 and AlI3: Modeling of extreme condition halide chemistry.

    PubMed

    Stavrou, Elissaios; Zaug, Joseph M; Bastea, Sorin; Crowhurst, Jonathan C; Goncharov, Alexander F; Radousky, Harry B; Armstrong, Michael R; Roberts, Sarah K; Plaue, Jonathan W

    2015-06-07

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.

  16. Uniform batch processing using microwaves

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    A microwave oven and microwave heating method generates microwaves within a cavity in a predetermined mode such that there is a known region of uniform microwave field. Samples placed in the region will then be heated in a relatively identical manner. Where perturbations induced by the samples are significant, samples are arranged in a symmetrical distribution so that the cumulative perturbation at each sample location is the same.

  17. Disinfection of Wastewater by Microwaves.

    DTIC Science & Technology

    1980-01-01

    temperature of the cells before treatment with microwaves nor the temperature of the diluent buffer showed any effect on the rate and extent of...suspension on the sur- vival of E. coli B cells subjected to microwave treatment. 11 2. Effect of the temperature of diluent upon the survival of microwave...the surface of the material to be heated by conduction, convection, and/or radiation. While microwave energy is recognized to have bactericidal ability

  18. Urban rainfall estimation employing commercial microwave links

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  19. Physics of the Microwave Oven

    ERIC Educational Resources Information Center

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  20. Microwave-assisted Chemical Transformations

    EPA Science Inventory

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  1. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: METSAT (S/N 108) AMSU-A1 Receiver Assemblies, P/N 1356429-1 S/N F05 and P/N 1356409-1 S/N F05

    NASA Technical Reports Server (NTRS)

    Haigh, R.; Krimchansky, S. (Technical Monitor)

    2000-01-01

    This is the Performance Verification Report, METSAT (S/N 108) AMSU-A1 Receiver Assemblies P/N 1356429-1 S/N F05 and P/N 1356409-1 S/N F05, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The ATP for the AMSU-A Receiver Subsystem, AE-26002/6A, is prepared to describe in detail the configuration of the test setups and the procedures of the tests to verify that the receiver subsystem meets the specifications as required either in the AMSU-A Instrument Performance and Operation Specifications, S-480-80, or in AMSU-A Receiver Subsystem Specifications, AE-26608, derived by the Aerojet System Engineering. Test results that verify the conformance to the specifications demonstrate the acceptability of that particular receiver subsystem.

  2. Effects of endocardial microwave energy ablation

    PubMed Central

    Climent, Vicente; Hurlé, Aquilino; Ho, Siew Yen; Sánchez-Quintana, Damián

    2005-01-01

    Until recently the treatment of atrial fibrillation (AF) consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure. PMID:16943871

  3. Handbook of microwave testing

    NASA Astrophysics Data System (ADS)

    Laverghetta, T. S.

    A description of microwave test equipment is presented, taking into account signal generators, signal detection/indicating devices, auxiliary testing devices, and microwave systems. Low power, medium power, high power, and peak power measurements are considered along with noise measurements, spectrum analyzer measurements, active testing, antenna measurements, and automatic testing. Attention is given to phase noise, Q measurements, the Time Domain Reflectometry (TDR) measurement, swept impedance, noise sources, noise meters, manual noise measurements, automatic noise figure measurements, gain, gain compression, intermodulation, the third order intercept, and questions of spectral purity.

  4. Microwave Frequency Polarizers

    NASA Technical Reports Server (NTRS)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  5. High power microwave generator

    DOEpatents

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  6. An evaluation of the effect of microwave irradiation on bone decalcification aimed to DNA extraction.

    PubMed

    Imaizumi, Kazuhiko; Taniguchi, Kei; Ogawa, Yoshinori

    2013-09-01

    An effect of intermittent microwave irradiation on decalcification of compact bone followed by DNA extraction was verified. In order to perform quantitative analysis regarding the degree of decalcification, Cubic bone specimens were prepared from bovine metacarpal bone and micro-focus X-ray CT imaging was applied to measure precise volume of decalcified area in the cubes. Microwave irradiation was performed under strict control of temperature using commercially available experimental device which is designed for advancing tissue fixation, decalcification, and antigen-antibody reaction by intermittent microwave. The integrity of the DNA obtained from irradiated specimen was also examined by PCR analysis. The results of morphological analysis with CT imaging showed that microwave irradiation has a positive effect on decalcification though that effect is not so drastic. The results obtained from PCR analysis showed that microwave irradiation decrease amplifiable DNA, suggesting that we should be careful to use microwave for the purpose of bone DNA extraction.

  7. Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    Rosa, Roberto; Colombini, Elena; Veronesi, Paolo; Poli, Giorgio; Leonelli, Cristina

    2012-05-01

    Microwave energy has been exploited to ignite combustion synthesis (CS) reactions of properly designed powders mixtures, in order to rapidly reach the joining between different kinds of materials, including metals (Titanium and Inconel) and ceramics (SiC). Beside the great advantage offered by CS itself, i.e., rapid and highly localized heat generation, the microwaves selectivity in being absorbed by micrometric metallic powders and not by bulk metallic components represents a further intriguing aspect in advanced materials joining applications, namely the possibility to avoid the exposition to high temperatures of the entire substrates to be joined. Moreover, in case of microwaves absorbing substrates, the competitive microwaves absorption by both substrates and powdered joining material, leads to the possibility of adhesion, interdiffusion and chemical bonding enhancements. In this study, both experimental and numerical simulation results are used to highlight the great potentialities of microwave ignited CS in the joining of advanced materials.

  8. Endocytosis of the Aspartic Acid/Glutamic Acid Transporter Dip5 Is Triggered by Substrate-Dependent Recruitment of the Rsp5 Ubiquitin Ligase via the Arrestin-Like Protein Aly2 ▿

    PubMed Central

    Hatakeyama, Riko; Kamiya, Masao; Takahara, Terunao; Maeda, Tatsuya

    2010-01-01

    Endocytosis of nutrient transporters is stimulated under various conditions, such as elevated nutrient availability. In Saccharomyces cerevisiae, endocytosis is triggered by ubiquitination of transporters catalyzed by the E3 ubiquitin ligase Rsp5. However, how the ubiquitination is accelerated under certain conditions remains obscure. Here we demonstrate that closely related proteins Aly2/Art3 and Aly1/Art6, which are poorly characterized members of the arrestin-like protein family, mediate endocytosis of the aspartic acid/glutamic acid transporter Dip5. In aly2Δ cells, Dip5 is stabilized at the plasma membrane and is not endocytosed efficiently. Efficient ubiquitination of Dip5 is dependent on Aly2. aly1Δ cells also show deficiency in Dip5 endocytosis, although less remarkably than aly2Δ cells. Aly2 physically interacts in vivo with Rsp5 at its PY motif and also with Dip5, thus serving as an adaptor linking Rsp5 with Dip5 to achieve Dip5 ubiquitination. Importantly, the interaction between Aly2 and Dip5 is accelerated in response to elevated aspartic acid availability. This result indicates that the regulation of Dip5 endocytosis is accomplished by dynamic recruitment of Rsp5 via Aly2. PMID:20956561

  9. Sharpening advanced land imager multispectral data using a sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2005-01-01

    The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.

  10. RF characterization of monolithic microwave and mm-wave ICs

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1986-01-01

    A number of fixturing techniques compatible with automatic network analysis are presented. The fixtures are capable of characterizing GaAs Monolithic Microwave Integrated Circuits (MMICs) at K and Ka band. Several different transitions are used to couple the RF test port to microstrip. Fixtures which provide chip level de-embedding are included. In addition, two advanced characterization techniques are assessed.

  11. Summary report for the Microwave Source Working Group

    SciTech Connect

    Westenskow, G.A.

    1997-01-01

    This report summarizes the discussions of the Microwave Source Working Group during the Advanced Accelerator Concepts Workshop held October 13-19, 1996 in the Granlibakken Conference Center at Lake Tahoe, California. Progress on rf sources being developed for linear colliders is reviewed. Possible choices for high-power rf sources at 34 GHz and 94 GHz for future colliders are examined. 27 refs.

  12. Flying NASA's terminal configured vehicle against the microwave landing system

    NASA Technical Reports Server (NTRS)

    Person, L. H., Jr.; Yenni, K. R.

    1979-01-01

    Technology for advanced airborne systems and flight procedures to improve terminal-area operations in ATC environment is developed. The terminal configured vehicle (TCV) aircraft, its integrated digital electronic displays and flight controls, and how the pilot interfaces with the aircraft to fly precise curved descending approaches using Microwave Landing System (MLS) guidance are discussed.

  13. Microwave Plasma Hydrogen Recovery System

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal

    2010-01-01

    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  14. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  15. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  16. Leakage of Microwave Ovens

    ERIC Educational Resources Information Center

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  17. Electronically Tuned Microwave Oscillator

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, Mysore

    1987-01-01

    Features include low phase noise and frequency stability. Bias-tuned, low-phase-noise microwave oscillator circuit based on npn bipolar transistor and dielectric resonator. Operating at frequency of about 8.4 GHz, oscillator adjusted to give low phase noise, relatively flat power output versus frequency, and nearly linear frequency versus bias voltage.

  18. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  19. New insights into the structure of Om Ali-Thelepte basin, central Tunisia, inferred from gravity data: Hydrogeological implications

    NASA Astrophysics Data System (ADS)

    Harchi, Mongi; Gabtni, Hakim; El Mejri, Hatem; Dassi, Lassaad; Mammou, Abdallah Ben

    2016-08-01

    This work presents new results from gravity data analyses and interpretation within the Om Ali-Thelepte (OAT) basin, central Tunisia. It focuses on the hydrogeological implication, using several qualitative and quantitative techniques such as horizontal gradient, upward continuation and Euler deconvolution on boreholes log data, seismic reflection data and electrical conductivity measurements. The structures highlighted using the filtering techniques suggest that the Miocene aquifer of OAT basin is cut by four major fault systems that trend E-W, NE-SW, NW-SE and NNE-SSW. In addition, a NW-SE gravity model established shows the geometry of the Miocene sandstone reservoir and the Upper Cretaceous limestone rocks. Moreover, the superimposition of the electrical conductivity and the structural maps indicates that the low conductivity values of sampled water from boreholes are located around main faults.

  20. Probing the structures of gold-aluminum alloy clusters AuxAly(-): a joint experimental and theoretical study.

    PubMed

    Khetrapal, Navneet Singh; Jian, Tian; Pal, Rhitankar; Lopez, Gary V; Pande, Seema; Wang, Lai-Sheng; Zeng, Xiao Cheng

    2016-05-05

    Besides the size and structure, compositions can also dramatically affect the properties of alloy nanoclusters. Due to the added degrees of freedom, determination of the global minimum structures for multi-component nanoclusters poses even greater challenges, both experimentally and theoretically. Here we report a systematic and joint experimental/theoretical study of a series of gold-aluminum alloy clusters, AuxAly(-) (x + y = 7,8), with various compositions (x = 1-3; y = 4-7). Well-resolved photoelectron spectra have been obtained for these clusters at different photon energies. Basin-hopping global searches, coupled with density functional theory calculations, are used to identify low-lying structures of the bimetallic clusters. By comparing computed electronic densities of states of the low-lying isomers with the experimental photoelectron spectra, the global minima are determined. It is found that for y ≥ 6 there is a strong tendency to form the magic-number square bi-pyramid motif of Al6(-) in the AuxAly(-) clusters, suggesting that the Al-Al interaction dominates the Au-Au interaction in the mixed clusters. A closely related trend is that for x > 1, the gold atoms tend to be separated by Al atoms unless only the magic-number Al6(-) square bi-pyramid motif is present, suggesting that in the small-sized mixed clusters, Al and Au components do not completely mix with one another. Overall, the Al component appears to play a more dominant role due to the high robustness of the magic-number Al6(-) square bi-pyramid motif, whereas the Au component tends to be either "adsorbed" onto the Al6(-) square bi-pyramid motif if y ≥ 6, or stays away from one another if x < y < 6.

  1. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Henry Huang, Xue Ming; Zorman, Christian A.; Mehregany, Mehran; Roukes, Michael L.

    2003-01-01

    It has been almost forgotten that the first computers envisaged by Charles Babbage in the early 1800s were mechanical and not electronic, but the development of high-frequency nanoelectromechanical systems is now promising a range of new applications, including sensitive mechanical charge detectors and mechanical devices for high-frequency signal processing, biological imaging and quantum measurement. Here we describe the construction of nanodevices that will operate with fundamental frequencies in the previously inaccessible microwave range (greater than 1 gigahertz). This achievement represents a significant advance in the quest for extremely high-frequency nanoelectromechanical systems.

  2. Microwave landing system autoland system analysis

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Craven, B. K.

    1991-01-01

    The objective was to investigate the ability of present day aircraft equipped with automatic flight control systems to fly advanced Microwave Landing Systems (MLS) approaches. The tactical approach used to achieve this objective included reviewing the design and autoland operation of the MD-80 aircraft, simulating the MLS approaches using a batch computer program, and assessing the performance of the autoland system from computer generated data. The results showed changes were required to present Instrument Landing System (ILS) procedures to accommodate the new MLS curved paths. It was also shown that in some cases, changes to the digital flight guidance systems would be required so that an autoland could be performed.

  3. The Cosmic Microwave Background and its Polarization

    NASA Astrophysics Data System (ADS)

    Wollack, Edward

    2017-01-01

    The subtle spatial variations in the cosmic microwave background (CMB) radiation provide a unique astrophysical probe of the early Universe. Characterization of this relic radiation and its polarization have the power to reveal and constrain the properties of light astroparticle species, long wave gravitational radiation, and intervening mass concentrations. Recent advances in theory, observation, and instrumentation have set the stage to experimentally confront the inflationary paradigm via precision polarimetric surveys of the CMB. Current and proposed future observational efforts from the ground, balloon, and spaceborne platforms will be briefly surveyed in this presentation. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be presented.

  4. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave

  5. Radiation-hardened microwave communications system

    SciTech Connect

    Smith, S.F.; Crutcher, R.I.; Vandermolen, R.I. )

    1990-01-01

    The consolidated fuel reprocessing program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been developing signal transmission techniques and equipment to improve the efficiency of remote handling operations for nuclear applications. These efforts have been largely directed toward the goals of (a) remotely controlling bilateral force-reflecting servomanipulators for dexterous manipulation-based operations in remote maintenance tasks and (b) providing television viewing of the work site. In September 1987, developmental microwave transceiving hardware operating with dish antennas was demonstrated in the advanced integrated maintenance system (AIMS) facility at ORNL, successfully implementing both high-quality one-way television transmissions and simultaneous bidirectional digital control data transmissions with very low error rates. Initial test results based on digital transmission at a 1.0-Mbaud data rate indicated that the error rates of the microwave system were comparable to those of a hardwired system. During these test intervals, complex manipulator operations were performed, and the AIMS transporter was moved repeatedly without adverse effects on data integrity. Results of these tests have been factored into subsequent phases of the development program, with an ultimate goal of designing a fully radiation-hardened microwave signal transmission system for use in nuclear facilities.

  6. Standardised water-soluble extract of Eurycoma longifolia, Tongkat ali, as testosterone booster for managing men with late-onset hypogonadism?

    PubMed

    Tambi, M I B M; Imran, M K; Henkel, R R

    2012-05-01

    In most countries, millions of people are relying on herbal medicines as remedy for numerous ailments. In South-East Asia, Eurycoma longifolia Jack, also known as 'Malaysian ginseng' or Tongkat ali, is used to combat stress and disease and to improve physical strength. Moreover, the compounds of the roots of this plant are reported to have aphrodisiac and testosterone enhancing effects in the rat. Considering that human studies are not available, 76 of 320 patients suffering from late-onset hypogonadism (LOH) were given 200 mg of a standardised water-soluble extract of Tongkat ali for 1 month. The Ageing Males' Symptoms (AMS) according to the standardised rating scale and the serum testosterone concentration were taken. Results show that treatment of LOH patients with this Tongkat ali extract significantly (P < 0.0001) improved the AMS score as well as the serum testosterone concentration. While before treatment only 10.5% of the patients did not show any complaint according to the AMS scale and 35.5% had normal testosterone levels, after the completed treatment 71.7% and 90.8% of the patients showed normal values, respectively. Thus, Tongkat ali extract appears to be useful as a supplement in overcoming the symptoms of LOH and for the management of hypogonadism.

  7. SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling

    PubMed Central

    Bai, Xiaozhi; Fan, Lei; He, Ting; Jia, Wenbin; Yang, Longlong; Zhang, Jun; Liu, Yang; Shi, Jihong; Su, Linlin; Hu, Dahai

    2015-01-01

    Silent information regulator type-1 (SIRT1) has been reported to be involved in the cardiopulmonary protection. However, its role in the pathogenesis of burn-induced remote acute lung injury (ALI) is currently unknown. The present study aims to investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling pathway. We observed that SIRT1 expression in rat lung tissue after burn injury appeared an increasing trend after a short period of suppression. The upregulation of SIRT1 stimulated by resveratrol exhibited remission of histopathologic changes, reduction of cell apoptosis, and downregulation of pro-inflammatory cytokines in rat pulmonary tissues suffering from severe burn. We next used primary pulmonary microvascular endothelial cells (PMVECs) challenged by burn serum (BS) to simulate in vivo rat lung tissue after burn injury, and found that BS significantly suppressed SIRT1 expression, increased cell apoptosis, and activated p38 MAPK signaling. The use of resveratrol reversed these effects, while knockdown of SIRT1 by shRNA further augmented BS-induced increase of cell apoptosis and activation of p38 MAPK. Taken together, these results indicate that SIRT1 might protect lung tissue against burn-induced remote ALI by attenuating PMVEC apoptosis via p38 MAPK signaling, suggesting its potential therapeutic effects on the treatment of ALI. PMID:25992481

  8. Microwave Quantum Illumination

    DTIC Science & Technology

    2016-07-29

    target detection than the optical, due to the naturally -occurring bright thermal background in the microwave regime. We use an electro-opto...technologically-driven information task. So far, QI has only been demonstrated at optical wave- lengths [9, 14, 15], for which naturally -occurring back...background. The QI communication protocol from [8, 9] deals with this ∗ stefano.pirandola@york.ac.uk problem in a natural way by purposefully injecting am

  9. Microwave Radiation and Thermoregulation.

    DTIC Science & Technology

    1985-05-01

    environment ................................................ 33 19. A plot of dry heat losses as a function of the skin-to- ambient temperature gradient...avapora- - on of water to be 0.72 W-h/g. Dry heat exchanged with the environment ’hrough convection C and radiation R must be expressed in terms of...microwave field was present, the animals were observed to sit much more quietly than during the equilibration period, often with eyes closed as though

  10. Microwave-Assisted Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  11. Passive Microwave Power Distribution Systems.

    DTIC Science & Technology

    wavelength by switching a reciprocal latching ferrite phase shifter in the stub, in response to termination of microwave power from one of the feed tubes....A standby microwave transmitter power amplifier tube is switched into a microwave power distribution system for a phased array in microseconds when...after the switching is completed, the switching being accomplished by changing electrical length of a quarter-wavelength waveguide stub to one-half

  12. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  13. Microwave effects on plasmid DNA.

    PubMed

    Sagripanti, J L; Swicord, M L; Davis, C C

    1987-05-01

    The exposure of purified plasmid DNA to microwave radiation at nonthermal levels in the frequency range from 2.00 to 8.75 GHz produces single- and double-strand breaks that are detected by agarose gel electrophoresis. Microwave-induced damage to DNA depends on the presence of small amounts of copper. This effect is dependent upon both the microwave power and the duration of the exposure. Cuprous, but not cupric, ions were able to mimic the effects produced by microwaves on DNA.

  14. Microwave effects on plasmid DNA

    SciTech Connect

    Sagripanti, J.L.; Swicord, M.L.; Davis, C.C.

    1987-05-01

    The exposure of purified plasmid DNA to microwave radiation at nonthermal levels in the frequency range from 2.00 to 8.75 GHz produces single- and double-strand breaks that are detected by agarose gel electrophoresis. Microwave-induced damage to DNA depends on the presence of small amounts of copper. This effect is dependent upon both the microwave power and the duration of the exposure. Cuprous, but not cupric, ions were able to mimic the effects produced by microwaves on DNA.

  15. New Advanced Dielectric Materials for Accelerator Applications

    SciTech Connect

    Kanareykin, A.

    2010-11-04

    We present our recent results on the development and experimental testing of advanced dielectric materials that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications. The materials discussed here include low loss microwave ceramics, quartz, Chemical Vapor Deposition diamonds and nonlinear Barium Strontium Titanate based ferroelectrics.

  16. Passive microwave observations of thunderstorms from high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Fulton, Richard

    1988-01-01

    A high-altitude (20 km) aircraft made overflights of severe and nonsevere Midwest thunderstorms in the central and southeast U.S. during 2 separate experiments. Down-looking instruments on the aircraft are the imaging Multi-Channel Cloud Radiometer with channels in the visible, IR, and near IR, and two passive microwave instruments, the imaging Advanced Microwave Moisture Sounder at 92 (atmospheric window) and 183 GHz (centered on a water vapor line) and the 45 deg foward-of-nadir Multi-Channel Precipitation Radiometer at the 18 and 37 GHz window channels. Over land, the 92 GHz frequency distinguishes quite well the precipitating region from the nonprecipitating anvil region. The interpretation of the microwave measurements is complicated by differences in the cloud microphysics between different climatic regions.

  17. Local Longitudinal Microwave Instability Limits During Bunch Rotation

    SciTech Connect

    Ng, K. Y.

    2012-10-23

    Bunch width compression can be accomplished by rf rotating an elongated bunch with minimal energy spread. The formation of tails at the two bunch ends produces disconnected regions in many time-advance slices. The stability limits of longitudinal microwave growth for each time-advance slice of the beam will be affected. This effect is studied and the Keil-Schnell stability limits for such time-advance slices are derived. Application is made to the bunch-width compression in the Fermilab Compressor Ring, destined for pion and subsequently muon production

  18. A microwave beam waveguide undulator for a brilliant above 100 keV photon source.

    SciTech Connect

    Kang, Y. W.

    1999-04-19

    For generation of photons above 100-keV with a magnetic field strength in the range 0.2-0.5 Tesla, an undulator wavelength {lambda}{sub u} shorter than 5 mm may be needed with beam in the Advanced Photon Source (APS) storage ring. A microwave beam waveguide undulator system has been investigated for generation of such light. The waveguide structure consists of two parallel reflector surfaces that can be derived from an elliptically cylindrical waveguide. The structure can support deflecting TE{sub m0} modes with very low microwave loss. A microwave ring resonator circuit employing the beam waveguide is considered to construct an undulator with the above requirement. Microwave properties of the beam waveguide structure have been investigated, and the design criteria for a microwave undulator are discussed.

  19. Microwave processing of Tantalum capacitors. CRADA final report

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Vierow, W.F.

    1998-03-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and AVX Tantalum Corporation (AVX) of Biddeford, Maine, was initiated in October 1991. [Lockheed Martin Energy Research Corp. (LMER) has replaced LMES]. The completion date for the Agreement was March 1996. The purpose of this work is to explore the feasibility of an advanced microwave processing concept to develop higher capacitance tantalum anodes. Tantalum capacitors are used where high reliability is needed (e.g., pacemakers, hearing aids, and military devices). Two types of tantalum powder are used: sodium-reduced powder and electron beam-refined powder. Sodium-reduced powder has higher surface area, but lower purity; electron beam-refined powder has higher purity for working voltages, but somewhat lower surface area. The powder is pressed into pellets using traditional methods and then placed in the microwave furnace for processing. It is of interest to determine if variable-frequency microwave sintering can increase quality while decreasing processing time and decreasing or eliminating surface contamination; these issues must be addressed while retaining the maximum surface area of the anode. Meeting each of these needs will result in a higher quality anodic film, which will thereby increase the dielectric strength. Additionally, microwave sintering might enable the authors to develop a strong sintered anode without excessive grain growth. The variable-frequency microwave furnace (VFMF), located at the Y-12 Plant, allows the authors to study the effects of sintering over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT), originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies.

  20. Estimation of global snow cover using passive microwave data

    NASA Astrophysics Data System (ADS)

    Chang, Alfred T. C.; Kelly, Richard E.; Foster, James L.; Hall, Dorothy K.

    2003-04-01

    This paper describes an approach to estimate global snow cover using satellite passive microwave data. Snow cover is detected using the high frequency scattering signal from natural microwave radiation, which is observed by passive microwave instruments. Developed for the retrieval of global snow depth and snow water equivalent using Advanced Microwave Scanning Radiometer EOS (AMSR-E), the algorithm uses passive microwave radiation along with a microwave emission model and a snow grain growth model to estimate snow depth. The microwave emission model is based on the Dense Media Radiative Transfer (DMRT) model that uses the quasi-crystalline approach and sticky particle theory to predict the brightness temperature from a single layered snowpack. The grain growth model is a generic single layer model based on an empirical approach to predict snow grain size evolution with time. Gridding to the 25 km EASE-grid projection, a daily record of Special Sensor Microwave Imager (SSM/I) snow depth estimates was generated for December 2000 to March 2001. The estimates are tested using ground measurements from two continental-scale river catchments (Nelson River and the Ob River in Russia). This regional-scale testing of the algorithm shows that for passive microwave estimates, the average daily snow depth retrieval standard error between estimated and measured snow depths ranges from 0 cm to 40 cm of point observations. Bias characteristics are different for each basin. A fraction of the error is related to uncertainties about the grain growth initialization states and uncertainties about grain size changes through the winter season that directly affect the parameterization of the snow depth estimation in the DMRT model. Also, the algorithm does not include a correction for forest cover and this effect is clearly observed in the retrieval. Finally, error is also related to scale differences between in situ ground measurements and area-integrated satellite estimates. With AMSR

  1. Controlling & understanding the variables: Key to commercializing micowave processing of advanced materials

    SciTech Connect

    Garard, R.S.

    1995-12-31

    Commercial use of microwave energy for processing advanced materials has been a {open_quotes}promising new development{close_quotes} for over a decade. However, the realization of actual commercial use in most advanced material cases has not yet been achieved. As with any new processing technique, the control and application of process conditions must be reliable, repeatable, and thoroughly understood. This paper will discuss the variables associated with both economic analysis and material properties when determining the potential of microwave processing for a given application. The importance of having a microwave system capable of controlling those variables and distributing the microwave energy uniformly over large volumes within a microwave oven is reviewed. The need for a production equipment supplier to combine materials science expertise with strong microwave engineering background is also discussed with emphasis on ensuring that a good understanding of the material/microwave interaction exists for each specific application.

  2. Emerging Trends in Microwave Processing of Spices and Herbs.

    PubMed

    Rahath Kubra, Ismail; Kumar, Devender; Jagan Mohan Rao, Lingamallu

    2016-10-02

    Today, spices are integral part of our food as they provide sensory attributes such as aroma, color, flavour and taste to food. Further their antimicrobial, antioxidant, pharmaceutical and nutritional properties are also well known. Since spices are seasonal so their availability can be extended year round by adopting different preservation techniques. Drying and extraction are most important methods for preservation and value addition to spices. There are different techniques for drying of spices with their own advantages and limitations. A novel, non-conventional technique for drying of spices is use of microwave radiation. This technique proved to be very rapid, and also provide a good quality product. Similarly, there are a number of non-conventional extraction methods in use that are all, in principle, solid-liquid extractions but which introduce some form of additional energy to the process in order to facilitate the transfer of analytes from sample to solvent. This paper reviews latest advances in the use of microwave energy for drying of spices and herbs. Also, the review describes the potential application of microwave energy for extraction of essential oil/bioactive components from spices and herbs and the advantages of microwave-assisted process over the other extraction processes generally employed for extraction. It also showcases some recent research results on microwave drying/extraction from spices and herbs.

  3. Source analysis of spaceborne microwave radiometer interference over land

    NASA Astrophysics Data System (ADS)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  4. Microwave Sterilization in School Microbiology.

    ERIC Educational Resources Information Center

    Wynn, Brian; Dixon, Angela

    1988-01-01

    Described are two investigations carried out in a high school biology department using a domestic microwave oven to compare the relative attributes of the autoclave and microwave oven in school use. Discussed are equipment, methods, and results of each investigation. (Author/CW)

  5. Computer-Generated Microwave Holograms.

    ERIC Educational Resources Information Center

    Leming, Charles W.; Hastings, Orestes Patterson, III

    1980-01-01

    Described is the phasor method of superposition of waves. The intensity pattern from a system of microwave sources is calculated point by point on a plane corresponding to a film emulsion, and then printed and directly converted to a hologram for 3-cm microwaves. Calculations, construction, and viewing of holograms are included. (Author/DS)

  6. High-Sensitivity Microwave Optics.

    ERIC Educational Resources Information Center

    Nunn, W. M., Jr.

    1981-01-01

    Describes a 3.33-cm wavelength (9 GHz) microwave system that achieves a high overall signal sensitivity and a well-collimated beam with moderate-size equipment. The system has been used to develop microwave versions of the Michelson interferometer, Bragg reflector, Brewster's law and total internal reflection, and Young's interference experiment.…

  7. GREENER SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are expedited because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The MW application under s...

  8. Microwave sintering of multiple articles

    DOEpatents

    Blake, Rodger D.; Katz, Joel D.

    1993-01-01

    Apparatus and method for producing articles of alumina and of alumina and silicon carbide in which the articles are sintered at high temperatures using microwave radiation. The articles are placed in a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  9. CHEMICAL SYNTHESIS & TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    A historical account of the utility of microwaves in a variety of chemical synthesis applications will be presented, including a solvent-free strategy that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such...

  10. More Experiments with Microwave Ovens

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    Microwave ovens can be used to perform exciting demonstrations that illustrate a variety of physics topics. Experiments discussed here show superheating, visualize the inhomogeneous heating that takes place in a microwave and also show how to use a mobile phone to detect radiation leaking from the oven. Finally eggs can give some spectacular…

  11. Image formation in microwave holography

    NASA Technical Reports Server (NTRS)

    Cribbs, R. W.; Lamb, B. L.

    1973-01-01

    Microwave holograms are made without offset reference beam, but it has been found that Van der Lugt filter can be used to produce image offset. Also, filter permits "decoding" of holograms in contrast with usual practice of reconstructing visible-light analogs of original micro-wave wave fronts.

  12. Microwave drying of seed cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small lab dryer was designed for use in drying seed cotton with components of a microwave generator mounted thereon. The magnetron emitted radiation directly into the seed cotton and a fan directed air cross-flow to the radiation direction. The microwave components were a 1.1 kW magnetron, trans...

  13. Microwave ablation of liver malignancies: comparison of effects and early outcomes of percutaneous and intraoperative approaches with different liver conditions : New advances in interventional oncology: state of the art.

    PubMed

    De Cobelli, Francesco; Marra, Paolo; Ratti, Francesca; Ambrosi, Alessandro; Colombo, Michele; Damascelli, Anna; Sallemi, Claudio; Gusmini, Simone; Salvioni, Marco; Diana, Pietro; Cipriani, Federica; Venturini, Massimo; Aldrighetti, Luca; Del Maschio, Alessandro

    2017-04-01

    Liver thermal ablation is an alternative treatment for hepatocellular carcinoma (HCC) and secondary liver malignancies. Microwave ablation (MWA) produces large ablation zones (AZ) in short time; however, AZ prediction is based on preclinical ex vivo models, rising concerns about reproducibility and safety in humans. We aimed to investigate the effects produced by a new-generation MWA system on human liver in vivo with different approaches (percutaneous or intraoperative) and liver conditions (cirrhosis or previous chemotherapy treatment), in comparison with manufacturer-provided predictions based on ex vivo animal models. Complete tumor ablation (CA) and early clinical outcomes were also assessed. From October 2014, 60 consecutive patients (cirrhotic = 31; non-cirrhotic = 10; chemotherapy-treated = 19) with 81 liver nodules (HCC = 31; mets = 50) underwent MWA procedures (percutaneous = 30; laparotomic = 18; laparoscopic = 12), with a 2450 MHz/100 W generator with Thermosphere™ Technology (Emprint™, Medtronic). A contrast-enhanced CT or MR was performed after one month to assess CA and measure AZ. A linear correlation between AZ volumes and ablation times was observed in vivo, without differences from manufacturer-provided ex vivo predictions in all operative approaches and liver conditions. Other independent variables (sex, age, nodule location) showed no relationship when added to the model. Median (IQR) longitudinal and transverse roundness-indexes of the AZs were, respectively, 0.77(0.13) and 0.93(0.11). CA at 1 month was 93% for percutaneous and 100% for intraoperative procedures (p = 0.175). Thirty-day morbidity and mortality were 3% and 0%. MWA with Thermosphere™ Technology produces predictable AZs on human liver in vivo, according to manufacturer-provided ex vivo predictions. In our experience, this new-generation MWA system is effective and safe to treat liver malignancies in different operative and clinical settings.

  14. Microwave semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sitch, J. E.

    1985-03-01

    The state of the art of microwave semiconductor design is reviewed, with emphasis on developments of the past 10-12 years. Consideration is given to: varistor diodes; varactor diodes; and transit time negative diodes. The design principles of bipolar and unipolar transistors are discussed, with reference to power FETs, traveling-wave FETs, and camel or planar-doped barrier transistors. Recent innovations in the field of fabrication technology are also considered, including: crystal growth; doping; and packaging. Several schematic drawings and photographs of the different devices are provided.

  15. Microwave imaging of aircraft

    NASA Astrophysics Data System (ADS)

    Steinberg, Bernard D.

    1988-12-01

    Three methods of imaging aircraft from the ground with microwave radar with quality suitable for aircraft target recognition are described. The imaging methods are based on a self-calibration procedure called adaptive beamforming that compensates for the severe geometric distortion inherent in any imaging system that is large enough to achieve the high angular resolution necessary for two-dimensional target imaging. The signal processing algorithm is described and X-band (3-cm)-wavelength experiments demonstrate its success on commercial aircraft flying into Philadelphia International Airport.

  16. Microwave PASER Experiment

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Antipov, S.; Poluektov, O.; Jing, C.

    2009-01-22

    The PASER (Particle Acceleration by Stimulated Emission of Radiation) concept for particle acceleration entails the direct transfer of energy from an active medium to a charged particle beam. The PASER was originally formulated for optical (laser) media; we are planning a PASER demonstration experiment based on an optically pumped X-band paramagnetic medium consisting of porphyrin or fullerene (C{sub 60}) derivatives in a toluene solution or polystyrene matrix. We discuss the background of this project and report on the status of the experiment to measure the acceleration of electrons using the microwave PASER.

  17. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    NASA Technical Reports Server (NTRS)

    Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2001-01-01

    Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.

  18. Noise disturbance caused by outdoor activities--a simulated-environment study for Ali Sami Yen Stadium, İstanbul.

    PubMed

    Dal, Zeynep; Akdağ, Neşe Yüğrük

    2011-03-01

    Negative effects of noise on individuals, the inevitable result of urbanization, have become a significant urban problem in our day. Introduction of an approach to the noise problem on an urban-planning scale lightens the burden of measures required to be taken against noise at the stages of regional and developmental planning. Stadiums, which should be also evaluated from the point of noise problem when planning decisions are made on the urban planning scale, may cause very serious problems differing depending on the region they are located in. In this article, various dimensions of the noise problem caused by stadiums have been exemplified by making an assessment on Ali Sami Yen football stadium located in Mecidiyeköy district which is among important residential and commercial centres of İstanbul or Turkey. When the simulation results obtained for ordinary days and match days are evaluated, it has been found out that the people living in the area are exposed to noise levels substantially exceeding the acceptable values. Results of the survey conducted in the area have clearly revealed the existence of noise problem, too.

  19. Tongkat Ali as a potential herbal supplement for physically active male and female seniors--a pilot study.

    PubMed

    Henkel, Ralf R; Wang, Ruxiang; Bassett, Susan H; Chen, Tao; Liu, Na; Zhu, Ying; Tambi, Mohd Ismail

    2014-04-01

    Tongkat Ali (Eurycoma longifolia; TA) is known to increase testosterone levels and alleviate aging males' symptoms. This study aimed at investigating TA as an ergogenic supplement for elderly people. Thirteen physically active male and 12 physically active female seniors (57-72 years) were supplemented with 400-mg TA extract daily for 5 weeks. Standard hematological parameters were taken. In addition, the concentrations of total and free testosterone, dihydroepiandrosterone, cortisol, insulin-like growth factor-1, and sex hormone-binding globulin were analyzed. As additional biochemical parameters, blood urea nitrogen and creatine kinase as parameters of kidney function and muscle damage, respectively, as well as the muscle strength by a simple handgrip test were determined. After treatment, hemoglobin, testosterone, and dihydroepiandrosterone concentrations, and the ratio of total testosterone/cortisol and muscle force remained significantly lower in female seniors than in male seniors. Hematocrit and erythrocyte count in male seniors increased slightly but were significantly higher than in female seniors. Treatment resulted in significant increases in total and free testosterone concentrations and muscular force in men and women. The increase in free testosterone in women is thought to be due to the significant decline in sex hormone-binding globulin concentrations. The study affirms the ergogenic benefit of TA through enhanced muscle strength.

  20. Evaluation of Acute 13-Week Subchronic Toxicity and Genotoxicity of the Powdered Root of Tongkat Ali (Eurycoma longifolia Jack).

    PubMed

    Li, Ching-Hao; Liao, Jiunn-Wang; Liao, Po-Lin; Huang, Wei-Kuang; Tse, Ling-Shan; Lin, Cheng-Hui; Kang, Jaw-Jou; Cheng, Yu-Wen

    2013-01-01

    Tongkat Ali (Eurycoma longifolia) is an indigenous traditional herb in Southern Asia. Its powdered root has been processed to produce health supplements, but no detailed toxicology report is available. In this study, neither mutagenicity nor clastogenicity was noted, and acute oral LD50 was more than 6 g/kg b.w. After 4-week subacute and 13-week subchronic exposure paradigms (0, 0.6, 1.2, and 2 g/kg b.w./day), adverse effects attributable to test compound were not observed with respect to body weight, hematology, serum biochemistry, urinalysis, macropathology, or histopathology. However, the treatment significantly reduced prothrombin time, partial thromboplastin time, blood urea nitrogen, creatinine, aspartate aminotransferase, creatine phosphate kinase, lactate dehydrogenase, and cholesterol levels, especially in males (P < 0.05). These changes were judged as pharmacological effects, and they are beneficial to health. The calculated acceptable daily intake (ADI) was up to 1.2 g/adult/day. This information will be useful for product development and safety management.

  1. Effects of Eurycoma longifolia Jack (Tongkat Ali) on the initiation of sexual performance of inexperienced castrated male rats.

    PubMed

    Ang, H H; Cheang, H S; Yusof, A P

    2000-01-01

    We studied the effects of Eurycoma longifolia Jack, commonly known as Tongkat Ali in Malaysia, on the initiation of sexual performance and the weights of sexual accessories in inexperienced castrated male rats. The doses of 200, 400 and 800 mg/kg body weight, which were extracted from E. longifolia Jack, were orally administered to the rats twice daily for 10 days prior to the tests and continued throughout the test period. Testosterone was used as a positive control after injecting 15 mg/kg daily subcutaneously for 32 days. Results showed that E. longifolia Jack produced a dose-dependent increase in sexual performance of the treated animals, but the E. longifolia Jack groups showed lower sexual performance in mounting, intromission and ejaculation than the testosterone group. Further results also showed that E. longifolia Jack promoted the growth of both ventral prostate and seminal vesicles as compared with the control, but the growth of sexual accessories at 800 mg/kg of butanol, methanol, water and chloroform fractions of E. longifolia Jack was less than that of testosterone treated group. The present study therefore gives further evidence of the folkuse of E. longifolia as an aphrodisiac.

  2. Alis, A State-of-the-Art Optical Observation Network for the Exploration of Polar Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Aso, T.; Steen, Å.; Brändström, U.; Gustavsson, B.; Urashima, A.; Ejiri, M.

    An optical group at the Swedish Institute of Space Physics in Kiruna, Sweden has been developing the ALIS (Auroral Large Imaging System) multi-station optical observing network which makes it possible to obtain composite monochromatic 2-D images over a fairly wide field-of-view (FOV), and more interestingly, a CT (Computed Tomography) image set for the retrieval of 3-D structure of aurora by adjusting vergence angles of cameras to a common volume. National Institute of Polar Research, Japan is collaborating in observation and analysis. At the moment, the network has 6 stations separated from each other by about 50 km.Each station houses a monochromatic CCD (Charge Coupled Device) imaging system mounted on the steerable azimuth/elevation drive along with a house keeping unit and supervising computer linked to the control center via a telephone line. Altitude profiles of luminosity for stable arc and aurora vortex at 557.7nm and recently at 427.8nm are analysed by the algebraic reconstruction technique and compared with sophisticated numerical modelling of auroral emission rate. Conjunctions with satellites and radars are now intensively explored towards comprehensive understanding of the formation and electrodynamics of aurora. Imaging of polar stratospheric clouds is also attempted in relation to arctic environmental studies

  3. Effect of Heme Oxygenase-1 on Mitofusin-1 protein in LPS-induced ALI/ARDS in rats

    PubMed Central

    Yu, Jianbo; Wang, Ying; Li, Zhen; Dong, Shuan; Wang, Dan; Gong, Lirong; Shi, Jia; Zhang, Yuan; Liu, Daquan; Mu, Rui

    2016-01-01

    Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common and important oxidative stress in the lung. Mitochondrial fusion responds to the normal morphology and function of cells and is finely regulated by mitochondrial fusion proteins, such as mitofusin-1 protein (Mfn1), mitofusin-2 protein (Mfn2) and optical atrophy 1 (OPA1). Additionally, Mfn1 has been identified as the most important protein in mitochondrial fusion. Heme oxygenase-1 (HO-1) is a stress-inducible protein that plays a critical role in protecting against oxidative stress. However, whether the protection of HO-1 is related to mitochondrial fusion is still a question. Thus, our in vitro and in vivo experiments aimed to identify the relationship between HO-1 and Mfn1. Here, we used Hemin and ZnPP-IX as treatments in an in vivo experiment. Then, HO-1 and Mfn1 were measured using RT-PCR and Western blotting. Supernatants were analyzed for MDA, SOD, and ROS. Our results implied that HO-1 upregulation suppressed oxidative stress induced by LPS, and the possible mechanism could be associated with Mfn1 and the PI3K/Akt pathway. PMID:27830717

  4. Evaluation of Acute 13-Week Subchronic Toxicity and Genotoxicity of the Powdered Root of Tongkat Ali (Eurycoma longifolia Jack)

    PubMed Central

    Liao, Jiunn-Wang; Liao, Po-Lin; Huang, Wei-Kuang; Tse, Ling-Shan; Lin, Cheng-Hui; Kang, Jaw-Jou; Cheng, Yu-Wen

    2013-01-01

    Tongkat Ali (Eurycoma longifolia) is an indigenous traditional herb in Southern Asia. Its powdered root has been processed to produce health supplements, but no detailed toxicology report is available. In this study, neither mutagenicity nor clastogenicity was noted, and acute oral LD50 was more than 6 g/kg b.w. After 4-week subacute and 13-week subchronic exposure paradigms (0, 0.6, 1.2, and 2 g/kg b.w./day), adverse effects attributable to test compound were not observed with respect to body weight, hematology, serum biochemistry, urinalysis, macropathology, or histopathology. However, the treatment significantly reduced prothrombin time, partial thromboplastin time, blood urea nitrogen, creatinine, aspartate aminotransferase, creatine phosphate kinase, lactate dehydrogenase, and cholesterol levels, especially in males (P < 0.05). These changes were judged as pharmacological effects, and they are beneficial to health. The calculated acceptable daily intake (ADI) was up to 1.2 g/adult/day. This information will be useful for product development and safety management. PMID:24062779

  5. Combination microwave and gas oven

    SciTech Connect

    Yoshida, N.; Taga, Y.

    1980-07-08

    One selling point of a combined microwave and gas oven is that it can not only defrost and reheat foods quickly but can also brown them to make the food look more appetizing. Although other combined oven designs have been proposed, they have proved to be impractical due to microwave leakage or radiant-heat damage to the microwave energy source. This improved design provides a fan that effectively circulates the heat. The microwave source is protected by a heat-insulating cover with a film that reflects radiant energy. A choking system terminates microwave energy leaks, particularly around the shaft of the circulating fan and its connectors. The oven is relatively simple in construction and can be manufactured at low cost.

  6. Microwave coupling in EBT reactor

    SciTech Connect

    Uckan, N.A.; Uckan, T.; Dandl, R.A.

    1980-02-01

    For a typical size ELMO Bumpy Torus (EBT) reactor (approx. 1000 MWe), microwave frequencies required lie in the range of 60 to 110 GHz at power levels of 50 to 75 MW. As the frequency rises, the unloaded cavity (i.e., without plasma) quality factor Q decreases. Because of the short wavelengths of microwave heating power and the large cavity dimensions of a reactor, it is possible to apply quasi-optical principles in the efficient coupling of power to the plasma. The use of a confocal Fabry-Perot resonator with spherical mirrors is discussed; these serve to confine the microwave power to the region occupied by the plasma. The potential advantages of these resonators include high efficiency utilization of microwave power, minimal thermal burden on the cryopumping system, and significant benefit in preventing microwave leakage from the device. An estimation of the unloaded cavity quality factor Q and the design considerations of Fabry-Perot resonator are given.

  7. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  8. Interpretation of Nimbus-7 37 GHz microwave brightness temperature data in semi-arid southern Africa

    NASA Technical Reports Server (NTRS)

    Prince, S. D.; Choudhury, B. J.

    1989-01-01

    Monthly 37 GHz microwave polarization difference temperatures (MPDT) derived from the Nimbus-7 scanning multichannel microwave radiometer (SMMR) for southern Africa from 1979 to 1985 are compared with rainfall and Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation index (NDVI) data. MPDT rose sharply during a drought episode which occurred within the period included in the data. The rise was seen not only in the growing season, but also in the dry season MPDT when no actively photosynthetic, water-containing leaves are present. The results suggest that scattering of the emitted microwave radiation by dead and living vegetation is a more important factor than has previously been recognized.

  9. Tuning Broadband Microwave Amplifiers

    SciTech Connect

    Alaniz, Gabriel

    2003-09-05

    The PEP-II/DA {Phi} NE/ALS longitudinal feedback systems are complex wide bandwidth systems requiring analog, digital and microwave circuits. The solid-state amplifier is one of the components in the microwave circuit that is required to suppress the coupled bunch instabilities that exist in the PEP-II accelerator. The suppression is achieved by using an antenna as a kicker structure that provides an electric field in order to increase or decrease the energy of particles passing through the structure. The amplifier is made up of sixteen 30 to 35W microstrip GaAs FET modules that are combined to obtain 500W over a bandwidth of 850MHz to 1850MHz. The amplifier malfunctioned causing a reduction in the functionality and power output of the individual GaAs FET modules. The amplifier must be repaired. After repair, the amplifier must be tuned to optimize the gain while maintaining proper power output. The amplifier is tuned using microstrip circuit techniques. A variety of microstrip methods are used to obtain the proper line impedance. The result is a working amplifier that operates efficiently.

  10. Transcatheter Microwave Antenna

    NASA Technical Reports Server (NTRS)

    Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  11. Microwave hematoma detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  12. Microwave oscillator with reduced phase noise by negative feedback incorporating microwave signals with suppressed carrier

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Saunders, J.

    1989-01-01

    Oscillator configurations which reduce the effect of 1/f noise sources for both direct feedback and stabilized local oscillator (STALO) circuits are developed and analyzed. By appropriate use of carrier suppression, a small signal is generated which suffers no loss of loop phase information or signal-to-noise ratio. This small signal can be amplified without degradation by multiplicative amplifier noise, and can be detected without saturation of the detector. Together with recent advances in microwave resonator Qs, these circuit improvements will make possible lower phase noise than can be presently achieved without the use of cryogenic devices.

  13. Preface to the special issue on "Integrated Microwave Photonic Signal Processing"

    NASA Astrophysics Data System (ADS)

    Azaña, José; Yao, Jianping

    2016-08-01

    As Guest Editors, we are pleased to introduce this special issue on ;Integrated Microwave Photonic Signal Processing; published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.

  14. Microwave Frequency Multiplier

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  15. Local microwave ablation with continued EGFR tyrosine kinase inhibitor as a treatment strategy in advanced non-small cell lung cancers that developed extra-central nervous system oligoprogressive disease during EGFR tyrosine kinase inhibitor treatment

    PubMed Central

    Ni, Yang; Bi, Jingwang; Ye, Xin; Fan, Weijun; Yu, Guohua; Yang, Xia; Huang, Guanghui; Li, Wenhong; Wang, Jiao; Han, Xiaoying; Ni, Xiang; Wei, Zhigang; Han, Mingyong; Zheng, Aimin; Meng, Min; Xue, Guoliang; Zhang, Liang; Wan, Chao

    2016-01-01

    Abstract The non-small cell lung cancer (NSCLC) patients that experienced good clinical response to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKIs) will ultimately develop acquired resistance. This retrospective study was performed to explore the potential survival benefit of microwave ablation (MWA) therapy in epidermal growth factor receptor (EGFR)-mutant NSCLC that developed extra-central nervous system (CNS) oligoprogressive disease during TKI treatment. We retrospectively analyzed 54 NSCLC patients with EGFR mutations who showed a clinical benefit from initial EGFR-TKI therapy and developed extra-CNS oligoprogressive disease at our institutions. Twenty eight patients received MWA as a local therapy for the metastatic sites and continued on the same TKIs (MWA group). The following 26 patients received systemic chemotherapy after progression (chemotherapy group). The progression-free survival (PFS1) was calculated from initiation of targeted therapy to first progression. Progression-free survival (PFS2) was defined from first progression to second progression after MWA or chemotherapy. Overall survival (OS) was calculated from the time of diagnosis to the date of last follow-up or death. The median PFS1 for both groups was similar (median 12.6 vs. 12.9 months, HR 0.63). However, the MWA group patients had a significantly longer PFS2 (median 8.8 vs. 5.8 months, hazards ratio [HR] 0.357) and better OS (median 27.7 vs. 20.0, HR 0.238) in comparison with chemotherapy group. Multivariate analysis and the internal validation identified MWA as the main favorable prognostic factor for PFS2 and OS. In the MWA group, the median PFS2 for complete ablation was significantly longer than that for incomplete ablation (11 vs. 4.2 months, HR 0.29, P < 0.05). MWA with continued EGFR inhibition might be associated with favorable progression-free survival (PFS) and OS in patients with extra-CNS oligometastatic disease. MWA as a local therapy for extra

  16. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  17. 47 CFR 101.141 - Microwave modulation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Microwave modulation. 101.141 Section 101.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.141 Microwave modulation. (a) Microwave transmitters employing...

  18. 47 CFR 101.141 - Microwave modulation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Microwave modulation. 101.141 Section 101.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.141 Microwave modulation. (a) Microwave transmitters employing...

  19. 47 CFR 101.141 - Microwave modulation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Microwave modulation. 101.141 Section 101.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.141 Microwave modulation. (a) Microwave transmitters employing...

  20. Intracellular Targeting Signals and Lipid Specificity Determinants of the ALA/ALIS P4-ATPase Complex Reside in the Catalytic ALA α-Subunit

    PubMed Central

    Poulsen, Lisbeth R.; Hanisch, Susanne; Meffert, Katharina; Buch-Pedersen, Morten J.; Jakobsen, Mia K.; Pomorski, Thomas Günther; Palmgren, Michael G.

    2010-01-01

    Members of the P4 subfamily of P-type ATPases are believed to catalyze flipping of phospholipids across cellular membranes, in this way contributing to vesicle biogenesis in the secretory and endocytic pathways. P4-ATPases form heteromeric complexes with Cdc50-like proteins, and it has been suggested that these act as β-subunits in the P4-ATPase transport machinery. In this work, we investigated the role of Cdc50-like β-subunits of P4-ATPases for targeting and function of P4-ATPase catalytic α-subunits. We show that the Arabidopsis P4-ATPases ALA2 and ALA3 gain functionality when coexpressed with any of three different ALIS Cdc50-like β-subunits. However, the final cellular destination of P4-ATPases as well as their lipid substrate specificity are independent of the nature of the ALIS β-subunit they were allowed to interact with. PMID:20053675

  1. Investigation on the neutral and anionic BxAlyH2 (x + y = 7, 8, 9) clusters using density functional theory combined with photoelectron spectroscopy.

    PubMed

    Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Ding, Lei; Yuan, Tao Li

    2016-08-17

    The structure and bonding nature of neutral and negatively charged BxAlyH2 (x + y = 7, 8, 9) clusters are investigated with the aid of previously published experimental photoelectron spectra combined with the present density functional theory calculations. The comparison between the experimental photoelectron spectra and theoretical simulated spectra helps to identify the ground state structures. The accuracy of the obtained ground state structures is further verified by calculating their adiabatic electron affinities and vertical detachment energies and comparing them against available experimental data. The results show that the structures of BxAlyH2 transform from three-dimensional to planar structures as the number of boron atoms increases. Moreover, boron atoms tend to bind together forming Bn units. The hydrogen atoms prefer to bind with boron atoms rather than aluminum atoms. The analyses of the molecular orbital on the ground state structures further support the abovementioned results.

  2. Implementation of the final geometry of the V0A detector for the ALICE experiment in the simulator program AliRoot

    SciTech Connect

    Valencia, L.

    2008-07-02

    The V0A trigger detector of the ALICE experiment is a scintillator hodoscope of 32 channels that has been designed and constructed by the Mexican groups at the Instituto de Fisica de la UNAM and the CINVESTAV.In this work, the final geometry of the constructed detector and its support frame have been implemented using the geometrical modeler of the Root framework in order to be able to simulate the response and trigger performance of the detector with AliRoot.

  3. The Liverpool Microwave Palaeointensity System

    NASA Astrophysics Data System (ADS)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot

    2016-04-01

    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  4. Method and apparatus for selectively annealing heterostructures using microwaves

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  5. Method and apparatus for selectively annealing heterostructures using microwave

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  6. First-principles study of zinc-blende BxAlyIn1-x-yN quaternary alloy: Alchemical mixing approximation approach

    NASA Astrophysics Data System (ADS)

    Bamgbose, M. K.; Adebambo, P. O.; Badmus, B. S.; Dare, E. O.; Akinlami, J. O.; Adebayo, G. A.

    2016-08-01

    Detailed first-principle calculations of properties in zinc blende quaternary alloy BxAlyIn1-x-yN at various concentrations are investigated using density functional theory (DFT) within virtual crystal approximation (VCA) implemented in alchemical mixing approximation. The calculated bandgaps show direct transitions at Γ-Γ and indirect transitions at Γ-X, which are opened by increasing boron concentration. The density of state (DOS) revealed upper valence band (VB1) domination by p-states atoms, while s-states dominate the lower valence band (VB2); also, the DOS shows the contribution of d-states to the conduction band. The first critical point in the dielectric constant ranges between 0.07-4.47 eV and is due to the first threshold optical transitions in the energy bandgap. Calculated static dielectric function (DF) 𝜖1(0) is between 5.15 and 10.35, an indication that small energy bandgaps yield large static DFs. The present results indicate ZB-BxAlyIn1-x-yN alloys are suitable candidates of deep ultraviolet light emitting diodes (LEDs), laser diodes (LDs) and modern solar cell since the concentrations x and y make the bandgap and lattice constant of ZB-BxAlyIn1-x-yN quaternary alloys tunable to desirable values.

  7. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  8. Circulators for microwave and millimeter-wave integrated circuits

    NASA Astrophysics Data System (ADS)

    Schloemann, Ernst F.

    1988-02-01

    The requirements for circulators for use in combination with microwave and millimeter-wave integrated circuits are reviewed, with special emphasis on modules for phased-array antennas. Recent advances in broadbanding and in miniaturization are summarized. Novel types of circulators that are fabricated by attaching a ferrite disc and a suitable coupling structure to the surface of a dielectric or semiconductor substrate ('quasi-monolithic' integration) are described. Methods for achieving complete monolithic integration are also discussed.

  9. Multibeam 1.4-GHz Pushbroom Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, Roland W.; Bailey, Marion C.; Harrington, Richard F.; Hearn, Chase P.; Wells, John G., Jr.; Stanley, William L.

    1990-01-01

    Airborne prototype of multiple-beam pushbroom microwave radiometer (PBMR) developed to advance radiometric technology necessary for remote sensing of geophysical parameters. Instrument used in several joint Langley Research Center/United States Department of Agriculture soil-moisture flight experiments in Virginia, Texas, and California. Data from experiments used to modify, develop, and verify algorithms used to predict soil moisture from remote-sensing measurements. Image data useful in study of effects of characters of beams on radiometer imaging data.

  10. Aerodigestive tract burn from ingestion of microwaved food.

    PubMed

    Silberman, Michael; Jeanmonod, Rebecca

    2013-01-01

    Aerodigestive tract burns represent a rare but potentially devastating injury pattern throughout the world. Although the majority of these injuries do not require intervention, these burns have the potential for poor outcomes. Traditionally this disease has been caused by superheated gases found in explosions or fire-related injury. However, as technology advances, it brings novel methods for injury that require physician awareness of potential hazards. We describe a case of laryngeal and esophageal thermal burn caused by a microwave heated food bolus.

  11. Microwave properties of ferromagnetic nanostructures.

    PubMed

    Valenzuela, R; Alvarez, G; Mata-Zamora, M E

    2008-06-01

    A review of the dynamic properties of nanostructured ferromagnetic materials at microwave frequencies (1-40 GHz) is presented. Since some confusion has recently appeared between giant magnetoimpedance (GMI) and ferromagnetic resonance (FMR), a detailed analysis is made in order to establish their differences. A brief review of a novel microwave absorption mode, the low-field microwave absorption (LFA) is then presented, together with a discussion about its similarities with GMI. Recent results on high-frequency measurements on nanogranular thin films and FMR in nanowire arrays are finally addressed.

  12. Image recorder with microwave fixation

    SciTech Connect

    Hosono, N.; Isaka, K.

    1984-11-13

    The present invention is directed to improvement in an image recorder for recording developed images or toner images by microwave fixation. According to the invention there is used a novel thermoplastic developer comprising of two components. The first component contains a dielectric material which is able to absorb microwave and generate heat by dielectric loss. The second component contains magnetic loss exothermic material. The microwave absorbing power of the first component is improved by heating the first component with heat generated from the second component.

  13. Discharge Against Medical Advice in the Pediatric Wards in Boo-ali Sina Hospital, Sari, Iran 2010

    PubMed Central

    Mohseni Saravi, Benyamin; Reza Zadeh, Esmaeil; Siamian, Hasan; Yahghoobian, Mahboobeh

    2013-01-01

    Introduction: Since children neither comprehended nor contribute to the decision, discharge against medical advice is a challenge of health care systems in the world. Therefore, the current study was designed to determine the rate and causes of discharge against medical advice. Methods: This descriptive cross-sectional study was done by reviewing the medical records by census method. Data was analyzed using SPSS software and x2 statistics was used to determine the relationship between variables. The value of P<0.05 was considered significant. Results: Rate of discharged against medical advice was 108 (2.2%). Mean of age and length of stay were 2.8±4 (SD).3 years old and 3.7±5.4 (SD) days, respectively. Totally, 95 patients (88.7%) had health insurance and 65 (60.2%) patients lived in urban areas. History of psychiatric disease and addiction in 22 (20.6%) of the parents were negative. In addition, 100 (92.3%) patients admitted for medical treatment and the others for surgery. The relationship of the signatory with patients (72.3%) was father. Of 108 patients discharged against medical advice, 20 (12%) were readmitted. The relationship between the day of discharge and discharge against medical advice was significant (ρ =0/03). Conclusion: Rate of discharge against medical advice in Boo-ali hospital is the same as the other studies in the same range. The form which is used for this purpose did not have suitable data elements about description of consequence of such discharge, and it has not shown the real causes of discharge against medical advice. PMID:24554800

  14. Microwaves and particle accelerators: a fundamental link

    SciTech Connect

    Chattopadhyay, Swapan

    2011-07-01

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of the twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society. (author)

  15. Gigatron microwave amplifier

    DOEpatents

    McIntyre, P.M.

    1993-07-13

    An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  16. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  17. Gigatron microwave amplifier

    SciTech Connect

    McIntyre, Peter M.

    1993-01-01

    An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  18. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  19. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    PubMed

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis.

  20. Non-equilibrium mechanisms of light in the microwave region

    NASA Astrophysics Data System (ADS)

    Mortenson, Juliana H. J.

    2011-09-01

    Quantum mechanics and quantum chemistry have taught for more than 100 years that "photons" associated with microwaves cannot exert photochemical effects because their "photon energies" are smaller than chemical bond energies. Those quantum theories have been strongly contradicted within the last few decades by physical experiments demonstrating non-equilibrium, photochemical and photomaterial activity by microwaves. Reactions among scientists to these real physical models and proofs have varied from disbelief and denial, to acceptance of the real physical phenomena and demands for revisions to quantum theory. At the previous "Nature of Light" meeting, an advance in the foundations of quantum mechanics was presented. Those discoveries have revealed the source of these conflicts between quantum theory and microwave experiments. Critical variables and constants were missing from quantum theory due to a minor mathematical inadvertence in Planck's original quantum work. As a result, erroneous concepts were formed nearly a century ago regarding the energetics and mechanisms of lower frequency light, such as in the microwave region. The new discoveries have revealed that the traditional concept of "photons" mistakenly attributed elementary particle status to what is actually an arbitrarily time-based collection of sub-photonic, elementary particles. In a mathematical dimensional sense, those time-based energy measurements cannot be mathematically equivalent to bond energies as historically believed. Only an "isolated quantity of energy", as De Broglie referred to it, can be equivalent to bond energy. With the aid of the new variables and constants, the non-equilibrium mechanisms of light in the microwave region can now be described. They include resonant absorption, splitting frequency stimulation leading to electronic excitation, and resonant acoustic transduction. Numerous practical engineering applications can be envisioned for non-equilibrium microwaves.

  1. Thin-Film Ferroelectric Tunable Microwave Devices Being Developed

    NASA Technical Reports Server (NTRS)

    VanKeuls, Frederick W.

    1999-01-01

    Electronically tunable microwave components have become the subject of intense research efforts in recent years. Many new communications systems would greatly benefit from these components. For example, planned low Earth orbiting satellite networks have a need for electronically scanned antennas. Thin ferroelectric films are one of the major technologies competing to fill these applications. When a direct-current (dc) voltage is applied to ferroelectric film, the dielectric constant of the film can be decreased by nearly an order of magnitude, changing the high-frequency wavelength in the microwave device. Recent advances in film growth have demonstrated high-quality ferroelectric thin films. This technology may allow microwave devices that have very low power and are compact, lightweight, simple, robust, planar, voltage tunable, and affordable. The NASA Lewis Research Center has been designing, fabricating, and testing proof-of-concept tunable microwave devices. This work, which is being done in-house with funding from the Lewis Director's Discretionary Fund, is focusing on introducing better microwave designs to utilize these materials. We have demonstrated Ku- and K-band phase shifters, tunable local oscillators, tunable filters, and tunable diplexers. Many of our devices employ SrTiO3 as the ferroelectric. Although it is one of the more tunable and easily grown ferroelectrics, SrTiO3 must be used at cryogenic temperatures, usually below 100 K. At these temperatures, we frequently use high-temperature superconducting thin films of YBa2Cu3O7-8 to carry the microwave signals. However, much of our recent work has concentrated on inserting room-temperature ferroelectric thin films, such as BaxSr1- xTiO3 into these devices. The BaxSr1-xTiO3 films are used in conjuction with normal metal conductors, such as gold.

  2. Turning soot into diamonds with microwaves

    SciTech Connect

    Gruen, D.M.; Krauss, A.R.; Luo, J.; Pan, X.; Liu, S.

    1994-06-01

    Growth of diamond films using fullerene precursors in an argon microwave plasma without the addition of hydrogen or oxygen has recently been accomplished. Microwave discharges (2.45 GHz) were generated in C{sub 60}-containing Ar. The gas mixtures were produced by flowing Ar over fullerene-containing soot at a variety of temperatures. Optical spectroscopy shows that the spectrum is dominated by the d{sup 3}{Pi}{minus}a{sup 3}{Pi}{sub u}. Swan bands of C{sub 2} and particularly the {Delta}{nu} = {minus}2, {minus}1.0, +1, and +2 sequences, that C{sub 2} is one of the products of C{sub 60} fragmentation brought about, at least in part, by collisionally-induced dissociation. The nanocrystalline films were characterized with scanning and high-resolution transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Assuming a linear dependence on carbon concentration, a growth rate at least six times higher than commonly observed using methane as a precursor would be predicted at a carbon content of 1% based on C{sub 60}. Energetic and mechanistic arguments are advanced to rationalize this result based on C{sub 2} as the growth species.

  3. EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...

  4. The thin film microwave iris

    NASA Technical Reports Server (NTRS)

    Ramey, R. L.; Landes, H. S.; Manus, E. A.

    1972-01-01

    Development of waveguide iris for microwave coupling applications using thin film techniques is discussed. Production process and installation of iris are described. Iris improves power transmission properties of waveguide window.

  5. Develop Prototype Microwave Interferometry Diagnostic

    SciTech Connect

    Tringe, J. W.; Converse, M. C.; Kane, R. J.

    2016-11-15

    A prototype microwave interferometer was created at NSTec to characterize moving conductive fronts in upcoming experiments. The interferometer is capable of operation in the ~26-40 GHz band, and interrogating fronts with more than 1 W of power.

  6. EFFICIENT CHEMICAL SYNTHESIS USING MICROWAVES

    EPA Science Inventory

    Synthetic organic transformations performed under non-traditional conditions are becoming popular primarily to circumvent the growing environmental concerns. A solvent-free approach that involves microwave (MW) exposure of neat reactants catalyzed by the surfaces of less-expensiv...

  7. Airborne microwave radiometric data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Results from the 1.5 cm, 19.35 GHz electrical scanning microwave radiometer which was once of the instruments used during the 1971 flight over Imperial Valley, California; Phoenix, Arizona; and Weslaco, Texas.

  8. Resonance microwave volume plasma source

    SciTech Connect

    Berezhetskaya, N. K.; Kop'ev, V. A.; Kossyi, I. A.; Malykh, N. I.; Misakyan, M. A.; Taktakishvili, M. I.; Temchin, S. M.; Lee, Young Dong

    2007-07-15

    A conceptual design of a microwave gas-discharge plasma source is described. The possibility is considered of creating conditions under which microwave energy in the plasma resonance region would be efficiently converted into the energy of thermal and accelerated (fast) electrons. Results are presented from interferometric and probe measurements of the plasma density in a coaxial microwave plasmatron, as well as the data from probe measurements of the plasma potential and electron temperature. The dynamics of plasma radiation was recorded using a streak camera and a collimated photomultiplier. The experimental results indicate that, at relatively low pressures of the working gas, the nonlinear interaction between the microwave field and the inhomogeneous plasma in the resonance region of the plasmatron substantially affects the parameters of the ionized gas in the reactor volume.

  9. Magnetic spheres in microwave cavities

    NASA Astrophysics Data System (ADS)

    Zare Rameshti, Babak; Cao, Yunshan; Bauer, Gerrit E. W.

    2015-06-01

    We apply Mie scattering theory to study the interaction of magnetic spheres with microwaves in cavities beyond the magnetostatic and rotating wave approximations. We demonstrate that both strong and ultrastrong coupling can be realized for stand alone magnetic spheres made from yttrium iron garnet (YIG), acting as an efficient microwave antenna. The eigenmodes of YIG spheres with radii of the order mm display distinct higher angular momentum character that has been observed in experiments.

  10. [Microwave-induced heating injury].

    PubMed

    Frey, F J

    2004-12-01

    The case reported herein involves burns at the lower extremities leading to amputation followed by an MRSA infection with subsequent myocardial infarction and death in a patient with diabetes on chronic ambulatory peritoneal dialysis. The burns were produced by the use of a warm-up pillow containing natural stones (grape seeds) heated by microwaves. This represents another of the strange potential hazards of serious microwave related injuries.

  11. Microwaves and Thermoregulation: A Symposium.

    DTIC Science & Technology

    1983-02-01

    realization that body -a~rtne Increase Ip an experimental animl exposed to microwaves lirplies a breakdown of thenirulatory mechanisms. On the other hand, low...febrile states, cardiovascular adjustments, behavioral mechanisms, and models of human thermoregulation participated in the Symposium program. Their...refinement of simulation models of human ther- moregulation on the one hand and of the deposition of microwave energy in humans on the other hand. Recent

  12. Two Thick Microwave Dichroic Panels

    NASA Technical Reports Server (NTRS)

    Epp, Larry W.; Chen, Jacqueline C.; Stanton, Philip H.; Jorgenson, Roy E.

    1994-01-01

    Cross-shaped apertures enable relatively tight packing, eliminating some grating lobes. Two panels made of thin, honey-comblike metal walls constitute planar arrays of waveguidelike apertures designed to satisfy special requirements with respect to microwave transmittance and reflectance. Considered for use in multiplexing signals at various frequencies in microwave communication system. Both panels required to exhibit low insertion loss. Angle of incidence 30 degrees.

  13. Systems design and analysis of the microwave radiometer spacecraft

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1981-01-01

    Systems design and analysis data were generated for microwave radiometer spacecraft concept using the Large Advanced Space Systems (LASS) computer aided design and analysis program. Parametric analyses were conducted for perturbations off the nominal-orbital-altitude/antenna-reflector-size and for control/propulsion system options. Optimized spacecraft mass, structural element design, and on-orbit loading data are presented. Propulsion and rigid-body control systems sensitivities to current and advanced technology are established. Spacecraft-induced and environmental effects on antenna performance (surface accuracy, defocus, and boresight off-set) are quantified and structured material frequencies and modal shapes are defined.

  14. Advanced propulsion on a shoestring

    SciTech Connect

    Lerner, E.J.

    1990-05-01

    Consideration is given to propulsion concepts under study by NASA Advanced Propulsion Research Program. These concepts include fusion, antimatter-matter annihilation, microwave electrothermal, and electron cyclotron resonance propulsion. Results from programs to develop fusion technologies are reviewed, including compact fusion devices and inertial confinement experiments. Problems concerning both antimatter and fusion propulsion concepts are examined and the economic issues related to propulsion research are discussed.

  15. A Robust, Microwave Rain Gauge

    NASA Astrophysics Data System (ADS)

    Mansheim, T. J.; Niemeier, J. J.; Kruger, A.

    2008-12-01

    Researchers at The University of Iowa have developed an all-electronic rain gauge that uses microwave sensors operating at either 10 GHz or 23 GHz, and measures the Doppler shift caused by falling raindrops. It is straightforward to interface these sensors with conventional data loggers, or integrate them into a wireless sensor network. A disadvantage of these microwave rain gauges is that they consume significant power when they are operating. However, this may be partially negated by using data loggers' or sensors networks' sleep-wake-sleep mechanism. Advantages of the microwave rain gauges are that one can make them very robust, they cannot clog, they don't have mechanical parts that wear out, and they don't have to be perfectly level. Prototype microwave rain gauges were collocated with tipping-bucket rain gauges, and data were collected for two seasons. At higher rain rates, microwave rain gauge measurements compare well with tipping-bucket measurements. At lower rain rates, the microwave rain gauges provide more detailed information than tipping buckets, which quantize measurement typically in 1 tip per 0.01 inch, or 1 tip per mm of rainfall.

  16. Study of federal microwave standards

    SciTech Connect

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  17. Advanced ceramic coating development for industrial/utility gas turbines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Stetson, A. R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO2.82O3; CaO.TiO2; 2CaO.SiO2; and MgO.Al2O3. The best overall results were obtained with a CaO.TiO2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO2.8Y2O3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines.

  18. Design and performance of the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Lencioni, Donald E.; Digenis, Constantine J.; Bicknell, William E.; Hearn, David R.; Mendenhall, Jeffrey A.

    1999-12-01

    An Advanced Land Imager (ALI) will be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). The ALI contains a number of key NMP technologies. These include a 15 degree wide field-of-view, push-broom instrument architecture with a 12.5 cm aperture diameter, compact multispectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The focal plane contains multispectral and panchromatic (MS/Pan) detector arrays with a total of 10 spectral bands spanning the 0.4 to 2.5 micrometer wavelength region. Seven of these correspond to the heritage Landsat bands. The instantaneous fields of view of the detectors are 14.2 (mu) rad for the Pan band and 42.6 (mu) rad for the MS bands. The partially populated focal plane provides a 3 degree cross-track coverage corresponding to 37 km on the ground. The focal plane temperature is maintained at 220 K by means of a passive radiator. The instrument environmental and performance testing has been completed. Preliminary data analysis indicates excellent performance. This paper presents an overview of the instrument design, the calibration strategy, and results of the pre-flight performance measurements. It also discusses the potential impact of ALI technologies to future Landsat-like instruments.

  19. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Ylin, Tzu-yuan (Inventor); Jackson, Henry (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  20. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  1. Microwave-assisted synthesis using ionic liquids.

    PubMed

    Martínez-Palou, Rafael

    2010-02-01

    The research and application of green chemistry principles have led to the development of cleaner processes. In this sense, during the present century an ever-growing number of studies have been published describing the use of ionic liquids (ILs) as solvents, catalysts, or templates to develop more environmentally friendly and efficient chemical transformations for their use in both academia and industry. The conjugation of ILs and microwave irradiation as a non-conventional heating source has shown evident advantages when compared to conventional synthetic procedures for the generation of fast, efficient, and environmental friendly synthetic methodologies. This review focuses on the advances in the use of ILs in organic, polymers and materials syntheses under MW irradiation conditions.

  2. Cosmology with the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Souradeep, Tarun

    The standard model of cosmology must not only explain the dynamics of the homogeneous background universe, but also satisfactorily describe the perturbed universe - the generation, evolution and finally, the formation of large-scale structures in the universe. Cosmic microwave background (CMB) has been by far the most influential cosmological observation driving advances in current cosmology. Exquisite measurements from CMB experiments have seen the emergence of a concordant cosmological model. Besides precise determination of various parameters of the standard cosmological model, observations have also established some important basic tenets that underlie models of cosmology and structure formation in the universe. The article reviews this aspect of recent progress in cosmology for a general science reader.

  3. Anisotropies in the cosmic microwave background: Theory

    SciTech Connect

    Dodelson, S.

    1998-02-01

    Anisotropies in the Cosmic Microwave Background (CMB) contain a wealth of information about the past history of the universe and the present values of cosmological parameters. I online some of the theoretical advances of the last few years. In particular, I emphasize that for a wide class of cosmological models, theorists can accurately calculate the spectrum to better than a percent. The spectrum of anisotropies today is directly related to the pattern of inhomogeneities present at the time of recombination. This recognition leads to a powerful argument that will enable us to distinguish inflationary models from other models of structure formation. If the inflationary models turn out to be correct, the free parameters in these models will be determined to unprecedented accuracy by the upcoming satellite missions.

  4. Tropical cyclone intensities from satellite microwave data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Kidder, S. Q.

    1980-01-01

    Radial profiles of mean 1000 mb to 250 mb temperature from the Nimbus 6 scanning microwave spectrometer (SCAMS) were constructed around eight intensifying tropical storms in the western Pacific. Seven storms showed distinct inward temperature gradients required for intensification; the eighth displayed no inward gradient and was decaying 24 hours later. The possibility that satellite data might be used to forecast tropical cyclone turning motion was investigated using estimates obtained from Nimbus 6 SCAMS data tapes of the mean 1000 mb to 250 mb temperature field around eleven tropical storms in 1975. Analysis of these data show that for turning storms, in all but one case, the turn was signaled 24 hours in advance by a significant temperature gradient perpendicular to the storm's path, at a distance of 9 deg to 13 deg in front of the storm. A thresholding technique was applied to the North Central U.S. during the summer to estimate precipitation frequency. except

  5. Remote monitoring of soil moisture using passive microwave-based technologies – theoretical basic and overview of selected algorithms for AMSR-E

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite-based passive microwave remote sensing has been shown to be a valuable tool in mapping and monitoring global soil moisture. The Advanced Microwave Scanning Radiometer on the Aqua platform (AMSR-E) has made significant contributions to this application. As the result of agency and individua...

  6. Microwave Sterilization and Depyrogenation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.

    2009-01-01

    A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time

  7. Interpreting snowpack radiometry using currently existing microwave radiative transfer models

    NASA Astrophysics Data System (ADS)

    Kang, Do-Hyuk; Tang, Shurun; Kim, Edward J.

    2015-10-01

    A radiative transfer model (RTM) to calculate the snow brightness temperatures (Tb) is a critical element in terrestrial snow parameter retrieval from microwave remote sensing observations. The RTM simulates the Tb based on a layered snow by solving a set of microwave radiative transfer equations. Even with the same snow physical inputs to drive the RTM, currently existing models such as Microwave Emission Model of Layered Snowpacks (MEMLS), Dense Media Radiative Transfer (DMRT-QMS), and Helsinki University of Technology (HUT) models produce different Tb responses. To backwardly invert snow physical properties from the Tb, differences from RTMs are first to be quantitatively explained. To this end, this initial investigation evaluates the sources of perturbations in these RTMs, and reveals the equations where the variations are made among the three models. Modelling experiments are conducted by providing the same but gradual changes in snow physical inputs such as snow grain size, and snow density to the 3 RTMs. Simulations are conducted with the frequencies consistent with the Advanced Microwave Scanning Radiometer- E (AMSR-E) at 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz. For realistic simulations, the 3 RTMs are simultaneously driven by the same snow physics model with the meteorological forcing datasets and are validated against the snow insitu samplings from the CLPX (Cold Land Processes Field Experiment) 2002-2003, and NoSREx (Nordic Snow Radar Experiment) 2009-2010.

  8. Interpreting snowpack radiometry using currently existing microwave radiative transfer models

    NASA Astrophysics Data System (ADS)

    Kang, D. H.; Tan, S.; Kim, E. J.

    2015-12-01

    A radiative transfer model (RTM) to calculate a snow brightness temperature (Tb) is a critical element to retrieve terrestrial snow from microwave remote sensing observations. The RTM simulates the Tb based on a layered snow by solving a set of microwave radiative transfer formulas. Even with the same snow physical inputs used for the RTM, currently existing models such as Microwave Emission Model of Layered Snowpacks (MEMLS), Dense Media Radiative Transfer (DMRT-Tsang), and Helsinki University of Technology (HUT) models produce different Tb responses. To backwardly invert snow physical properties from the Tb, the differences from the RTMs are to be quantitatively explained. To this end, the paper evaluates the sources of perturbations in the RTMs, and reveals the equations where the variations are made among three models. Investigations are conducted by providing the same but gradual changes in snow physical inputs such as snow grain size, and snow density to the 3 RTMs. Simulations are done with the frequencies consistent with the Advanced Microwave Scanning Radiometer-E (AMSR-E) at 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz. For realistic simulations, the 3 RTMs are simultaneously driven by the same snow physics model with the meteorological forcing datasets and are validated from the snow core samplings from the CLPX (Cold Land Processes Field Experiment) 2002-2003, and NoSREx (Nordic Snow Radar Experiment) 2009-2010.

  9. Quantifying Uncertainties in Land-Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2013-01-01

    Uncertainties in the retrievals of microwaveland-surface emissivities are quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including the Special Sensor Microwave Imager, the Tropical Rainfall Measuring Mission Microwave Imager, and the Advanced Microwave Scanning Radiometer for Earth Observing System, are studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land-surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors inthe retrievals. Generally, these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 1%-4% (3-12 K) over desert and 1%-7% (3-20 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.5%-2% (2-6 K). In particular, at 85.5/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are most likely caused by rain/cloud contamination, which can lead to random errors up to 10-17 K under the most severe conditions.

  10. Characteristics of Cylindrical Microwave Plasma Source at Low Pressure

    NASA Astrophysics Data System (ADS)

    Park, Seungil; Youn, S.; Kim, S. B.; Yoo, S. J.

    2016-10-01

    A microwave plasma source with a cylindrical resonance cavity has been proposed to generate the plasma at low pressure. This plasma source consists of magnetron, waveguide, antenna, and cavity. The microwave generating device is a commercial magnetron with 1 kW output power at the frequency of 2.45 GHz. The microwave is transmitted through the rectangular waveguide with the whistle shape, and coupled to the cavity by the slot antenna. The resonant mode of the cylindrical cavity is the TE111 mode. The operating pressure is between 0.1 Torr and 0.3 Torr with the Argon and nitrogen gas. The electron temperature and electron number density of argon plasma were measured with the optical emission spectroscopy measurement. And Ar1s5 metastable density was measured using tunable diode laser absorption spectroscopy (TDLAS). The plasma diagnostic results of a cylindrical microwave plasma source would be described in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  11. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  12. The NOAA/NESDIS Operational Microwave Integrated Retrieval System

    NASA Astrophysics Data System (ADS)

    Zhao, L.

    2009-04-01

    The Microwave Integrated Retrieval System (MIRS) is a state-of-the-art retrieval system developed to support POES, MetOp, DMSP, NPP/NPOESS programs at NOAA/NESDIS in generating operational temperature, water vapor, surface and hydrological parameters from microwave sensors. It is based on an assimilation-type scheme and capable of optimally retrieving atmospheric and surface state parameters in all weather and over all-surface conditions. The MIRS is being implemented at NESDIS to build a one-stop shop for operational microwave products from various satellites with different instrumental configurations. With its capability of providing optimal and physically-based retrievals of atmospheric and surface state parameters, the operational MIRS provides advanced near-real-time surface and precipitation products in all-weather and over all-surface conditions. These products are retrieved with brightness temperature measurements from microwave instruments, including AMSU-A and AMSU-B/MHS instruments onboard NOAA and EUMETSAT polar orbiting satellites, SSMIS on DMSP polar satellites and are operationally available to both real-time users and climate users through the NESDIS Environment Satellite Processing Center (ESPC) Data Distribution Sever (DDS) and Comprehensive Large Array-data Stewardship System (CLASS). In this presentation, we will discuss the operational MIRS system, its products and their application in supporting NESDIS precipitation operation.

  13. Microwave-assisted pyrolysis of microalgae for biofuel production.

    PubMed

    Du, Zhenyi; Li, Yecong; Wang, Xiaoquan; Wan, Yiqin; Chen, Qin; Wang, Chenguang; Lin, Xiangyang; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2011-04-01

    The pyrolysis of Chlorella sp. was carried out in a microwave oven with char as microwave reception enhancer. The results indicated that the maximum bio-oil yield of 28.6% was achieved under the microwave power of 750 W. The bio-oil properties were characterized with elemental, GC-MS, GPC, FTIR, and thermogravimetric analysis. The algal bio-oil had a density of 0.98 kg/L, a viscosity of 61.2 cSt, and a higher heating value (HHV) of 30.7 MJ/kg. The GC-MS results showed that the bio-oils were mainly composed of aliphatic hydrocarbons, aromatic hydrocarbons, phenols, long chain fatty acids and nitrogenated compounds, among which aliphatic and aromatic hydrocarbons (account for 22.18% of the total GC-MS spectrum area) are highly desirable compounds as those in crude oil, gasoline and diesel. The results in this study indicate that fast growing algae are a promising source of feedstock for advanced renewable fuel production via microwave-assisted pyrolysis (MAP).

  14. Crystallization of lithium disilicate glass using variable frequency microwave processing

    NASA Astrophysics Data System (ADS)

    Mahmoud, Morsi Mohamed

    The lithium disilicate (LS2) glass system provides the basis for a large number of useful glass-ceramic products. Microwave processing of materials such as glass-ceramics offers unique benefits over conventional processing techniques. Variable frequency microwave (VFM) processing is an advanced processing technique developed to overcome the hot spot and the arcing problems in microwave processing. In general, two main questions are addressed in this dissertation: (1) How does microwave energy couple with a ceramic material to create heat? and, (2) Is there a "microwave effect" and if so what are the possible explanations for the existence of that effect? The results of the present study show that VFM processing was successfully used to crystallize LS2 glass at a frequency other than 2.45 GHz and without the aid of other forms of energy (hybrid heating). Crystallization of LS2 glass using VFM heating occurred in a significantly shorter time and at a lower temperature as compared to conventional heating. Furthermore, the crystallization mechanism of LS2 glass in VFM heating was not exactly the same as in conventional heating. Although LS2 crystal phase (Orthorhombic Ccc2) was developed in the VFM crystallized samples as well as in the conventionally crystallized samples as x-ray diffraction (XRD) confirmed, the structural units of SiO4 tetrahedra (Q species) in the VFM crystallized samples were slightly different than the ones in conventionally crystallized samples as the Raman spectroscopy revealed. Moreover, the observed reduction in the crystallization time and apparent temperature in addition to the different crystallization mechanism observed in the VFM process both provided experimental evidence to support the presence of the microwave effect in the LS2 crystallization process. Also, the molecular orbital model was successfully used to predict the microwave absorption in LS2 glass and glass-ceramic. This model was consistent with experiments and indicated that

  15. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  16. Dielectric, ferroelectric and mechanical Properties of Microwave Sintered Bi based High temperature Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Angalakurthi, Rambabu; Raju, K. C. James

    2011-10-01

    The sintering of advanced ceramics requires fast heating in order to avoid both grain growth and inter diffusion. In this context, the microwave sintering is a powerful method since it enables sintering in a short time. This paper reports the synthesis and characterization of Strontium Bismuth Titanate (SBTi) system. The material powder was prepared by solid state route and sintering was carried out by both conventional and microwave furnaces. Morphological, dielectric, ferroelectric and mechanical properties were studied for both samples. The dielectric constant and loss tangent of the conventional and microwave sintered samples have ranged between (185-195) & (0.005-0.007) and (195-220) & (0.004-0.006) respectively when measured at 1MHz frequency. The microwave sintering of the SBTi ceramics leads to higher densification (97% of the theoretical density), fine microstructure, and good mechanical and ferroelectric properties in much shorter duration of time compared to that of the conventional sintering process.

  17. Miniaturized hand held microwave interference scanning system for NDE of dielectric armor and armor systems

    SciTech Connect

    Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Meitzler, Thomas J.; Green, William

    2011-06-23

    Inspection of ceramic-based armor has advanced through development of a microwave-based, portable, non-contact NDE system. Recently, this system was miniaturized and made wireless for maximum utility in field applications. The electronic components and functionality of the laboratory system are retained, with alternative means of position input for creation of scan images. Validation of the detection capability was recently demonstrated using specially fabricated surrogates and ballistic impact-damaged specimens. The microwave data results have been compared to data from laboratory-based microwave interferometry systems and digital x-ray imaging. The microwave interference scanning has been shown to reliably detect cracks, laminar features and material property variations. The authors present details of the system operation, descriptions of the test samples used and recent results obtained.

  18. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  19. New tools for rapid clinical and bioagent diagnostics: microwaves and plasmonic nanostructures.

    PubMed

    Aslan, Kadir; Geddes, Chris D

    2008-11-01

    In this timely review, we summarize recent work on ultra-fast and sensitive bioassays based on microwave heating, and provide our current interpretation of the role of the combined use of microwave energy and plasmonic nanostructures for applications in rapid clinical and bioagent diagnostics. The incorporation of microwave heating into plasmonic nanostructure-based bioassays brings new advancements to diagnostic tests. A temperature gradient, created by the selective heating of water in the presence of plasmonic nanostructures, results in an increased mass transfer of target biomolecules towards the biorecognition partners placed on the plasmonic nanostructures, enabling diagnostic tests to be completed in less than a minute, and in some cases only a few seconds, by further microwave heating. The diagnostic tests can also be run in complex biological samples, such as human serum and whole blood.

  20. Efficient simultaneous image deconvolution and upsampling algorithm for low-resolution microwave sounder data

    NASA Astrophysics Data System (ADS)

    Qin, Jing; Yanovsky, Igor; Yin, Wotao

    2015-01-01

    Microwave imaging has been widely used in the prediction and tracking of hurricanes, typhoons, and tropical storms. Due to the limitations of sensors, the acquired remote sensing data are usually blurry and have relatively low resolution, which calls for the development of fast algorithms for deblurring and enhancing the resolution. We propose an efficient algorithm for simultaneous image deconvolution and upsampling for low-resolution microwave hurricane data. Our model involves convolution, downsampling, and the total variation regularization. After reformulating the model, we are able to apply the alternating direction method of multipliers and obtain three subproblems, each of which has a closed-form solution. We also extend the framework to the multichannel case with the multichannel total variation regularization. A variety of numerical experiments on synthetic and real Advanced Microwave Sounding Unit and Microwave Humidity Sounder data were conducted. The results demonstrate the outstanding performance of the proposed method.

  1. Microwave. Instructor's Edition. Louisiana Vocational-Technical Education.

    ERIC Educational Resources Information Center

    Blanton, William

    This publication contains related study assignments and job sheets for a course in microwave technology. The course is organized into 12 units covering the following topics: introduction to microwave, microwave systems, microwave oscillators, microwave modulators, microwave transmission lines, transmission lines, detectors and mixers, microwave…

  2. Effects of JAM-A deficiency or blocking antibodies on neutrophil migration and lung injury in a murine model of ALI.

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Naik, Meghna U; Naik, Ulhas P; Reddy, Raju C

    2012-11-01

    Transmigration of neutrophils (PMNs) from the vasculature into inflamed tissues, mediated by interactions between PMNs and adhesion molecules on endothelial cells, is an essential aspect of inflammation. The crucial adhesion molecules include junctional adhesion molecule (JAM)-A. Investigation of the role of this molecule in models of inflammatory disease has been limited, however, and results in different disease models have varied. No previous study has addressed JAM-A in lung disease or effects on oxidant stress and proinflammatory cytokines. We use JAM-A knockout mice and blocking antibodies to investigate the role of JAM-A in a murine model of acute lung injury (ALI). With either experimental system, we find that absence of JAM-A activity significantly reduces migration of PMNs into the alveolar space, with a resulting decrease in oxidative stress. However, there is no reduction in whole lung activity of PMN-associated myeloperoxidase, presumably reflecting the histologically observed retention of PMNs in lung tissue. Activity of these retained PMNs may account for our failure to find significant change in markers of lung oxidative stress or cytokine and chemokine levels in plasma, lung, and bronchoalveolar lavage fluid. We likewise see no JAM-A-related changes in markers of capillary permeability or lung injury. A similar lack of congruence between effects on PMN migration and tissue injury has been reported in other disease models and for other adhesion molecules in models of ALI. Our results thus confirm the crucial role of JAM-A in PMN transmigration but demonstrate that transmigration is not essential for other aspects of inflammation or for lung injury in ALI.

  3. A novel liquid plasma AOP device integrating microwaves and ultrasounds and its evaluation in defluorinating perfluorooctanoic acid in aqueous media.

    PubMed

    Horikoshi, Satoshi; Sato, Susumu; Abe, Masahiko; Serpone, Nick

    2011-09-01

    A simplified and energy-saving integrated device consisting of a microwave applicator and an ultrasonic homogenizer has been fabricated to generate liquid plasma in a medium possessing high dielectric factors, for example water. The microwave waveguide and the ultrasonic transducer were interconnected through a tungsten/titanium alloy stick acting both as the microwave antenna and as the horn of the ultrasonic homogenizer. Both microwaves and ultrasonic waves are simultaneously transmitted to the aqueous media through the tungsten tip of the antenna. The microwave discharge liquid plasma was easily generated in solution during ultrasonic cavitation. The simple device was evaluated by carrying out the degradation of the perfluorooctanoic acid (PFOA), a system highly recalcitrant to degradation by conventional advanced oxidation processes (AOPs). PFOA is 59% degraded in an aqueous medium after only 90 s of irradiation by the plasma. Intermediates were identified by electrospray mass spectral techniques in the negative ion mode.

  4. Variable frequency microwave moisture leveling

    SciTech Connect

    Hamann, M.R.

    1999-07-01

    A variable frequency microwave system was examined to replace an existing carousel resistance heating line as the method for drying of mouth swabs for the pharmaceutical industry. A pharmaceutical manufacturer located in Northern Illinois had a resistive heating system that was not drying product satisfactorily, thus requiring additional ambient drying time even after a 30-minute drying cycle. Since the swabs are used for the healthcare industry, the amount of moisture present after drying was critical to avoid the formation of mold on the product that could have lead to dissatisfied customers. Variable frequency microwave moisture leveling allowed better product quality while turning the manufacturing operation into just in time delivery. During pilot scale testing, a 300 times cycle improvement was realized for variable frequency microwave compared to the conventional carousel resistive drying unit (24 hours to 5 minutes). The projected total cost of the variable frequency microwave system is $1 million, with 25% of the cost in the microwave unit and 70% of the cost in a new autobagging system. The author projected a $0.58 million saving per year in reduced operational costs with productivity increases. Although the project would have had a 1.8 year payback time, it was not implemented due to the capital expense and risk of an unknown technology.

  5. Microwave heating apparatus and method

    DOEpatents

    Johnson, Andrew J.; Petersen, Robert D.; Swanson, Stephen D.

    1990-01-01

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  6. Wideband Agile Digital Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven

    2012-01-01

    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.

  7. Microwave propagation on acupuncture channels.

    PubMed

    Krevsky, Michael A; Zinina, Ekaterina S; Koshurinov, Yuri; Ovechkin, Aleck M; Tkachenko, Yuri A; Han, Wantaek; Lee, Sang-Min; Yoon, Gilwon

    2006-01-01

    Quantitative studies on functional state of acupuncture points and meridians have been done mostly by electrical measurement that requires the contact of the electrode on skin and is subject to pressure, humidity, etc. In this study, a new modality of using microwave was investigated. Microwave energy in the frequency range of 250 approximately 550MHz was irradiated on an acupuncture point. Transmitted microwave energy along the meridian was measured at the next acupuncture point of the same meridian. Diabetic and cancer patients were compared with healthy persons. Normal group consisted of 50 healthy persons. Diabetic group included 50 diabetic patients. Breast cancer group had also 50 patients. All 12 meridians on both right and left hands and feet were measured. For the diabetic group, the microwave energy propagation in this frequency range was 1.417 dB lower along Lung channel and 1.601 dB higher along Spleen channel compared with the normal group regardless of sex and diabetic types. For cancer patients, the propagation was 1.620 dB lower along Liver channel and 1.245 dB higher along Kidney channel compared with the normal group. Microwave energy proved to be a potential diagnostic method.

  8. ORGANIC SYNTHESES USING MICROWAVES AND SUPPORTED REAGENTS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although the use of dedicated MW equipment...

  9. HIGH POWER MICROWAVE FERRITES AND DEVICES

    DTIC Science & Technology

    FERROMAGNETIC MATERIALS, * MICROWAVE EQUIPMENT, ALUMINUM, DELAY LINES, ELECTRODES, FERRITES , GADOLINIUM , GARNET, IONS, IRON, MAGNESIUM ALLOYS...MAGNETIC FIELDS, MAGNETIC MATERIALS, MAGNETIC MOMENTS, MANGANESE ALLOYS, MICROWAVE SPECTROSCOPY, NICKEL ALLOYS, RADIOFREQUENCY POWER, RARE EARTH COMPOUNDS, SINGLE CRYSTALS, WAVEFORM GENERATORS, YTTRIUM.

  10. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema

    Haase, Andy

    2016-07-12

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  11. Student Microwave Experiments Involving the Doppler Effect.

    ERIC Educational Resources Information Center

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  12. SLAC All Access: Vacuum Microwave Device Department

    SciTech Connect

    Haase, Andy

    2012-10-09

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  13. 47 CFR 101.69 - Transition of the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands from the fixed microwave...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (PCS), Advanced Wireless Services (AWS), and Mobile Satellite Services (MSS). The rules in this section... frequencies to other media or other fixed channels, including those in other microwave bands. (a) ET...

  14. Cosmic Microwave Background Data Analysis

    NASA Astrophysics Data System (ADS)

    Paykari, Paniez; Starck, Jean-Luc Starck

    2012-03-01

    that the highest power fluctuations occur at scales of about one degree. A number of ground-based interferometers provided measurements of the fluctuations with higher accuracy over the next three years, including the Very Small Array [16], Degree Angular Scale Interferometer (DASI) [61], and the Cosmic Background Imager (CBI) [78]. DASI was the first to detect the polarization of the CMB and the CBI provided the first E-mode polarization spectrum with compelling evidence that it is out of phase with the T-mode spectrum. In June 2001, NASA launched its second CMB mission (after COBE), Wilkinson Microwave Anisotropy Explorer (WMAP) [44], to make much more precise measurements of the CMB sky. WMAP measured the differences in the CMB temperature across the sky creating a full-sky map of the CMB in five different frequency bands. The mission also measured the CMB's E-mode and the foreground polarization. As of October 2010, the WMAP spacecraft has ended its mission after nine years of operation. Although WMAP provided very accurate measurements of the large angular-scale fluctuations in the CMB, it did not have the angular resolution to cover the smaller-scale fluctuations that had been observed by previous ground-based interferometers. A third space mission, the Planck Surveyor [1], was launched by ESA* in May 2009 to measure the CMB on smaller scales than WMAP, as well as making precise measurements of the polarization of CMB. Planck represents an advance over WMAP in several respects: it observes in higher resolution, hence allowing one to probe the CMB power spectrum to smaller scales; it has a higher sensitivity and observes in nine frequency bands rather than five, hence improving the astrophysical foreground models. The mission has a wide variety of scientific aims, including: (1) detecting the total intensity/polarization of the primordial CMB anisotropies; (2) creating a galaxy-cluster catalogue through the Sunyaev-Zel'dovich (SZ) effect [93]; (3) observing the

  15. Ignition methods and apparatus using microwave energy

    DOEpatents

    DeFreitas, Dennis Michael; Migliori, Albert

    1997-01-01

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  16. Microwave ovens: mapping the electrical field distribution.

    PubMed

    Ng, K H

    1991-07-01

    Uniformity of electric field intensity of microwaves within the microwave oven cavity is necessary to ensure even load-heating, and is particularly important in pathology procedures where small volume irradiation is carried out. A simple and rapid method for mapping electric field distribution, using reversible thermographic paint, is described. Spatial heating patterns for various positions, and the effects of introducing dummy loads to modify heating distributions, have been obtained for a dedicated microwave processor, and comparison made with a domestic microwave oven.

  17. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  18. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  19. Microwavable thermal energy storage material

    DOEpatents

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  20. Microwavable thermal energy storage material

    DOEpatents

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  1. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  2. A Microwave Interferometer on an Air Track.

    ERIC Educational Resources Information Center

    Polley, J. Patrick

    1993-01-01

    Uses an air track and microwave transmitters and receivers to make a Michelson interferometer. Includes three experiments: (1) measuring the wavelength of microwaves, (2) measuring the wavelength of microwaves by using the Doppler Effect, and (3) measuring the Doppler shift. (MVL)

  3. Microwave assisted centrifuge and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  4. Microwaves (including radar) and protection against radiation

    NASA Astrophysics Data System (ADS)

    Kossel, F.

    1982-08-01

    A directive by the Commission of the European Communities for protection against microwaves is outlined, and the nature of microwaves, and possible protection methods are discussed. Devices which utilize microwaves are reviewed. The health risks from these forms of radiation are discussed, and safety limits are considered. A limit value of 10 mw/sqcm is specified.

  5. Microwave heat treating of manufactured components

    DOEpatents

    Ripley, Edward B.

    2007-01-09

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  6. A Numerical Study on Microwave Coagulation Therapy

    DTIC Science & Technology

    2013-01-01

    improvement of therapeutic effect. References [1] P. Prakash, “Theoretical Modeling for Hepatic Microwave Ablation ,” The Open Biomedical...A Numerical Study on Microwave Coagulation Therapy Amy J. Liu † , Hong Zhou * and Wei Kang * Department of Applied Mathematics Naval...is properly cited. Abstract Microwave coagulation therapy is a clinical technique for treating hepatocellular carcinoma (small size liver

  7. Tunable Microwave Cavity For Ion Source

    NASA Technical Reports Server (NTRS)

    Nakanishi, Shigeo; Calco, Frank S.; Scarpelli, August R.

    1988-01-01

    Movable probe and tuning wall adjusted to obtain resonance at microwave frequency used to generate plasma in cell at one end of microwave cavity. Electroless discharge without disadvantages of dc-cathode-discharge and RF-induction methods. To achieve precise positioning, coaxial probe extends into microwave cavity through tube.

  8. Changing sunlight to microwaves: A concept

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    Electromechanical device converts sunlight into microwave energy by direct process. Still in conceptual stage, device is expected to be lighter and more efficient (ninety percent conversion efficiency) than less-direct conversion systems that employ solar panels and magnetrons. Besides uses in satellites and spacecraft as microwave source, device has many terrestrial applications, including use in fuel-saving sun-powered microwave oven.

  9. Engineering Topological Many-Body Materials in Microwave Cavity Arrays

    NASA Astrophysics Data System (ADS)

    Anderson, Brandon M.; Ma, Ruichao; Owens, Clai; Schuster, David I.; Simon, Jonathan

    2016-10-01

    We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry-breaking (nonreciprocal) flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the α =1 /4 Hofstadter model. To induce photon-photon interactions, the cavities are coupled to superconducting qubits; we find these interactions are sufficient to stabilize a ν =1 /2 bosonic Laughlin puddle. Exact diagonalization studies demonstrate that this architecture is robust to experimentally achievable levels of disorder. These advances provide an exciting opportunity to employ the quantum circuit toolkit for the exploration of strongly interacting topological materials.

  10. A Bayesian approach to microwave precipitation profile retrieval

    NASA Technical Reports Server (NTRS)

    Evans, K. Franklin; Turk, Joseph; Wong, Takmeng; Stephens, Graeme L.

    1995-01-01

    A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to combine statistical information from numerical cloud models with forward radiative transfer modeling. A multivariate lognormal prior probability distribution contains the covariance information about hydrometeor distribution that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrieval method is tested with data from the Advanced Microwave Precipitation Radiometer (10, 19, 37, and 85 GHz) of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify the retrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysical information, and future improvements to the algorithm are suggested.

  11. Digital simulation of dynamic processes in radiometer systems. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    The development and application of several computer programs for simulating different classes of microwave radiometers are described. The programs are dynamic in nature, and they may be used to determine the instantaneous behavior of system variables as a function of time. Some of the programs employ random variable models in the simulations so that the statistical nature of the results may be investigated. The programs have been developed to utilize either the Continuous System Modeling Program or the Advanced Continuous System Language. The validity of most of the programs was investigated using statistical tests, and the results show excellent correlation with theoretical predictions. The programs are currently being used in the investigation of new design techniques for microwave radiometers.

  12. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  13. Status of the microwave power transmission components for the solar power satellite

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1981-01-01

    During the 1970-1980 time period a substantial advance has been made in developing all portions of a microwave power transmission system for the solar power satellite (SPS). The most recent advances pertain to the transmitting portion of the system in the satellite and are based upon experimental observations of the use of the magnetron combined with a passive directional device to convert it into a highly efficient directional amplifier with excellent low-noise properties and potentially very long life. The ability of its microwave output to track a phase reference makes it possible to combine it with many other radiating units to provide a highly coherent microwave beam. The ability of its output to track an amplitude reference while operating from a dc power source with varying voltage makes it possible to eliminate most of the power conditioning equipment that would otherwise be necessary.

  14. Microwave treatment of vulcanized rubber

    DOEpatents

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.; Folz, Diane C.

    2002-07-16

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds broken by microwave radiation. The direct application of microwaves in combination with uniform heating of the crumb rubber renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger particle sizes and/or loading levels of the treated crumb rubber can be used in new rubber mixtures to produce recycled composite products with good properties.

  15. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  16. Temperature measurement during microwave processing

    SciTech Connect

    Darby, G.; Clark, D.E.; DiFiore, R.; Foltz, D.

    1995-12-31

    Many ceramic materials have been fabricated using sol-gel processing where the starting materials consist of a liquid organic precursor mixed with water and alcohol. The initial stages in sol-gel reactions require temperatures in the range of 100{degrees}C or less, and therefore appear ideally suited for processing in a conventional microwave oven. In this paper we evaluate the use of several types of thermocouple geometries for measuring the temperature of liquids, including tetraethylorthosilicate (TEOS) during microwave heating. The boiling point of water is used as a reference on which to base the accuracy of our measurements.

  17. Microcomputer control for microwave oven

    SciTech Connect

    Richards, P.L.

    1986-09-23

    In a microwave oven having means defining an oven cavity and heating means for effecting microwave energy heating of matter in the oven cavity, the improvement is described comprising: control means for providing selectively different programs of operation of the heating means. The programs have different cycles of operation therein, and including means for changing the selection of cycles including addition and elimination of subsequent cycles and changing the parameters of any cycles of operation during continued running of a presently running cycle of a selected program.

  18. Microwave plasma in hydrocarbon liquids

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Toyota, Hiromichi; Mukasa, Shinobu; Yamashita, Hiroshi; Maehara, Tsunehiro; Kuramoto, Makoto

    2006-05-01

    The generation of microwave plasma in liquid with vapor bubbles has been achieved and will soon be applied to high-speed chemical vapor deposition. Vapor bubbles are induced from an electrode by heating. The deposition rate of diamondlike carbon films depends on the pressure and the power of the microwave supply. Polycrystalline silicon carbide is synthesized on a silicon substrate in a mixture of n-dodecane and silicone oil. The dispersion of water droplets in liquid creates many pores on the silicon carbide films. The synthesis of carbon nanotubes can be achieved in liquid benzene.

  19. Medical applications of microwave imaging.

    PubMed

    Wang, Zhao; Lim, Eng Gee; Tang, Yujun; Leach, Mark

    2014-01-01

    Ultrawide band (UWB) microwave imaging is a promising method for the detection of early stage breast cancer, based on the large contrast in electrical parameters between malignant tumour tissue and the surrounding normal breast-tissue. In this paper, the detection and imaging of a malignant tumour are performed through a tomographic based microwave system and signal processing. Simulations of the proposed system are performed and postimage processing is presented. Signal processing involves the extraction of tumour information from background information and then image reconstruction through the confocal method delay-and-sum algorithms. Ultimately, the revision of time-delay and the superposition of more tumour signals are applied to improve accuracy.

  20. Microwave imaging of metal objects

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar; Li, Jiang; Tolliver, C.; Yeh, Hsiang H.

    1994-01-01

    The procedure of microwave imaging by maximum entropy method is discussed. First, the relationship between the induced current on the metal object surface and the scattered field is introduced. Our imaging concept is to reconstruct the induced current on the object surface from the measured scattered field. The object configuration will be provided by the induced current which is zero everywhere except on the object surface. Future work is also included with focus on the application of microwave imaging to both NASA and industry.

  1. Prenatal microwave exposure and behavior

    SciTech Connect

    O'Connor, M.E.

    1988-01-01

    The hypotheses for the initial investigation was based on the idea that failure to observe structural teratogenesis following microwave exposure did not preclude the possibility that such exposure would result in behavioral changes. We also proposed that such exposure might specifically alter some aspect of thermoregulatory behavior. The results of these studies support both of these hypotheses. Whether the studies show enhanced thermal sensitivity or enhanced development, they do support the hypothesis that prenatal exposure to microwave radiation is more likely to alter postnatal sensitivity to thermally related stimuli or conditions as compared to stimuli that are thermally neutral.

  2. Mission 119 passive microwave results

    NASA Technical Reports Server (NTRS)

    Hollinger, J. P.; Mennella, R. A.

    1972-01-01

    Passive microwave measurements of the sea surface were made for determining surface wind speeds from the NP3A aircraft (NASA-927). Observations were made at frequencies of 1.4, 10.6, and 31.4 GHz during NASA mission 119, undertaken off Bermuda in the vicinity of Argus Island sea tower during January 1970. Passive microwave observations from Argus Island ocean showed that the surface roughness effect, dependent on wind speed, is also dependent on observational frequency, increasing with increasing frequency. The roughness effect appears to be dominant for wind speeds less than 30 to 40 knots (2).

  3. Microwave assisted chemical vapor infiltration

    SciTech Connect

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-12-31

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ``inside out`` deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs.

  4. Microwave transport system for the MTX (Microwave Tokamak Experiment)

    SciTech Connect

    Felker, B.; Ferguson, S.W.

    1989-09-27

    This paper presents the design and construction, as well as the initial operation, of the Microwave Transmission System. The system consists of containment vessels, mirror boxes, mirrors, an alignment system, two turbo-molecular pump vacuum stations, and microwave source. Fifty-ns-length pulses of 6-MeV electrons pass through a free electron laser (FEL) wiggler. A 300 W extended interaction oscillator (EIO) of 140 GHz frequency supplies the seed signal for amplification in the wiggler. The electron beam is dumped and the microwave beam is transmitted quasi-optically 90 ft by six aluminum mirrors through an evacuated tube. Three of the mirrors are elliptical paraboloids and the others are flat. A seventh mirror is rotated into the microwave beam to divert it into a load tank. The transport vacuum vessel is 20-in.-diameter stainless steel tube with bellows and mirror boxes at each mirror. Two vacuum systems at each end of the transport tube allow a base pressure of 10{sup {minus}7} Torr to be attained by 7000 L/s of turbo-molecular pumping. Also at each mirror, at the MTX vessel, and at the two ends of the wiggler waveguide are HeNe laser detectors used for vacuum alignment. Descriptions of the major components, their requirements and system requirements will be presented, and the initial operation of the system and its performance will be described. 7 figs., 2 tabs.

  5. Comparison of microwave-assisted and conventional hydrodistillation in the extraction of essential oils from mango (Mangifera indica L.) flowers.

    PubMed

    Wang, Hong-Wu; Liu, Yan-Qing; Wei, Shou-Lian; Yan, Zi-Jun; Lu, Kuan

    2010-10-29

    Microwave-assisted hydrodistillation (MAHD) is an advanced hydrodistillation (HD) technique, in which a microwave oven is used in the extraction process. MAHD and HD methods have been compared and evaluated for their effectiveness in the isolation of essential oils from fresh mango (Mangifera indica L.) flowers. MAHD offers important advantages over HD in terms of energy savings and extraction time (75 min against 4 h). The composition of the extracted essential oils was investigated by GC-FID and GC-MS. Results indicate that the use of microwave irradiation did not adversely influence the composition of the essential oils. MAHD was also found to be a green technology.

  6. Using Passive Microwaves for Open Water Monitoring and Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Parinussa, R.; Johnson, F.; Sharma, A.; Lakshmi, V.

    2015-12-01

    One of the biggest and severest natural disasters that society faces is floods. An important component that can help in reducing the impact of floods is satellite remote sensing as it allows for consistent monitoring and obtaining catchment information in absence of physical contact. Nowadays, passive microwave remote sensing observations are available in near real time (NRT) with a couple of hours delay from the actual sensing. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a multi-frequency passive microwave sensor onboard the Global Change Observation Mission 1 - Water that was launched in May 2012. Several of these frequencies have a high sensitivity to the land surface and they also have the capacity to penetrate clouds. These advantages come at the cost of the relatively coarse spatial resolution (footprints range from ~5 to ~50 km) which in turn allows for global monitoring. A relatively simple methodology to monitor the fraction of open water from AMSR2 observations is presented here. Low frequency passive microwave observations have sensitivity to the land surface but are modulated by overlying signals from physical temperature and vegetation cover. We developed a completely microwave based artificial neural network supported by physically based components to monitor the fraction of open water. Three different areas, located in China, Southeast Asia and Australia, were selected for testing purposes and several different characteristics were examined. First, the overall performance of the methodology was evaluated against the NASA NRT Global Flood Mapping system. Second, the skills of the various different AMSR2 frequencies were tested and revealed that artificial contamination is a factor to consider. The different skills of the tested frequencies are of interest to apply the methodology to alternative passive microwave sensors. This will be of benefit in using the numerous multi-frequency passive microwaves sensors currently observing our Earth

  7. Lunar orbiting microwave beam power system

    NASA Technical Reports Server (NTRS)

    Fay, Edgar H.; Cull, Ronald C.

    1990-01-01

    A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.

  8. Microwave scattering from laser spark in air

    SciTech Connect

    Sawyer, Jordan; Zhang Zhili; Shneider, Mikhail N.

    2012-09-15

    In this paper, microwave Mie scattering from a laser-induced plasma in atmospheric air is computed. It shows that the scattered microwave transitions from coherent Rayleigh scattering to Mie scattering based on the relative transparency of the laser-induced plasma at the microwave frequency. The microwave penetration in the plasma alters from total transparency to partial shielding due to the sharp increase of the electron number density within the avalanche ionization phase. The transition from Rayleigh scattering to Mie scattering is verified by both the temporal evolution of the scattered microwave and the homogeneity of polar scattering plots.

  9. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  10. Atmospheric pressure microwave assisted heterogeneous catalytic reactions.

    PubMed

    Chemat-Djenni, Zoubida; Hamada, Boudjema; Chemat, Farid

    2007-07-11

    The purpose of the study was to investigate microwave selective heating phenomena and their impact on heterogeneous chemical reactions. We also present a tool which will help microwave chemists to answer to such questions as "My reaction yields 90% after 7 days at reflux; is it possible to obtain the same yield after a few minutes under microwaves?" and to have an approximation of their reactions when conducted under microwaves with different heterogeneous procedures. This model predicting reaction kinetics and yields under microwave heating is based on the Arrhenius equation, in agreement with experimental data and procedures.

  11. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, Xiao-Dong; Schultz, Peter G.; Wei, Tao

    1998-01-01

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

  12. Making Curved Frequency-Selective Microwave Reflectors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Wu, Te-Kao

    1995-01-01

    Prototype curved lightweight dichroic microwave reflectors designed to be highly reflective in X and K(suba) frequency bands and highly transmissive in K(subu) and S bands. Conductive grid elements formed photolithographically on curved reflector surfaces. Intended for use as subreflectors of main paraboloidal antenna reflector to enable simultaneous operation in both prime-focus configuration in K(subu) and S bands and Cassegrain configuration in X and K(suba) bands. Basic concepts of reflectors described in "Frequency-Selective Microwave Reflectors" (NPO-18701). "Double Square-Loop Dichroic Microwave Reflector" (NPO-18676), "Triband Circular-Loop Dichroic Microwave Reflector" (NPO-18714), and "Improved Dichroic Microwave Reflector" (NPO-18664).

  13. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, X.D.; Schultz, P.G.; Wei, T.

    1998-10-13

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.

  14. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  15. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  16. Progress in CPI Microwave Tube Development

    NASA Astrophysics Data System (ADS)

    Wright, Edward L.; Bohlen, Heinz

    2006-01-01

    CPI continues its role as a leading supplier of state-of-the-art, high-power microwave tubes; from linear beam, velocity- and density-modulated devices, to high frequency gyro-devices. Klystrons are the device-of-choice for many high-power microwave applications, and can provide multi-megawatts to multi-kilowatts of power from UHF to W-band, respectively. A number of recent and on-going developments will be described. At UHF frequencies, the inductive output tube (IOT) has replaced the klystron for terrestrial NTSC and HDTV broadcast, due to its high efficiency and linearity, and is beginning to see use in scientific applications requiring 300 kW or less. Recent advances have enabled use well into L-band. CPI has developed a number of multiple-beam amplifiers. The VKL-8301 multiple-beam klystron (MBK) was built for the TESLA V/UV and x-ray FEL projects, and is a candidate RF source for the International Linear Collider (ILC). We have also contributed to the development of the U.S. Naval Research Laboratory (NRL) high-power fundamental-mode S-band MBK. The VHP-8330B multiple-beam, high-order mode (HOM) IOT shows great promise as a compact, CW UHF source for high power applications. These topics will be discussed, along with CPI's development capabilities for new and novel applications. Most important is our availability to provide design and fabrication services to organizations requiring CPI's manufacturing and process control infrastructure to build and test state-of-the-art devices.

  17. New Small Satellite Capabilities for Microwave Atmospheric Remote Sensing: The Earth Observing Nanosatellite-Microwave (EON-MW)

    NASA Astrophysics Data System (ADS)

    Blackwell, W. J.

    2015-12-01

    Four nanosatellite advanced technology missions flying microwave radiometers for high-resolution atmospheric sensing are in varying stages of development. Microwave instrumentation is particularly well suited for implementation on a very small satellite, as the sensor requirements for power, pointing, and spatial resolution (aperture size) can be accommodated by a nanosatellite platform. The first mission, the Microsized Microwave Atmospheric Satellite (MicroMAS), was developed to demonstrate temperature sounding in nine channels near 118 GHz on a 3U CubeSat (10x10x34 cm; 4.25 kg). MicroMAS was recently released from the International Space Station (ISS) for a 100-day mission, and while an eventual transmitter failure prevented demonstration of the radiometer payload, all key spacecraft subsystems provided on-orbit data to validate performance. Two 3U CubeSat follow-on missions, MicroMAS-2 (12 channels near 90, 118, 183, and 206 GHz; cross-track scanning) and MiRaTA (12 channels near 60, 183, and 206 GHz; no scanning; GPSRO onboard), will launch in 2016 for further demonstration. Building upon this work, the Earth Observing Nanosatellite-Microwave mission is being formulated by MIT Lincoln Laboratory for the NOAA National Environmental Satellite, Data, and Information Service as part of the Polar Follow-On (PFO) budget request to extend JPSS for two more missions, and provides a means to mitigate the risk of a gap in continuity of weather observations. The PFO request aims to achieve robustness in the polar satellite system to ensure continuity of NOAA's polar weather observations. The baseline EON-MW design accommodates a scanning 22-channel high-resolution microwave spectrometer on a 12U (22x22x34 cm, 20 kg) CubeSat platform to provide data continuity with the existing AMSU and ATMS microwave sounding systems. EON-MW will nominally be launched into a sun-synchronous orbit for a two to three year mitigation mission in 2019 that will also extend technology

  18. Satellite-based land use mapping: comparative analysis of Landsat-8, Advanced Land Imager, and big data Hyperion imagery

    NASA Astrophysics Data System (ADS)

    Pervez, Wasim; Uddin, Vali; Khan, Shoab Ahmad; Khan, Junaid Aziz

    2016-04-01

    Until recently, Landsat technology has suffered from low signal-to-noise ratio (SNR) and comparatively poor radiometric resolution, which resulted in limited application for inland water and land use/cover mapping. The new generation of Landsat, the Landsat Data Continuity Mission carrying the Operational Land Imager (OLI), has improved SNR and high radiometric resolution. This study evaluated the utility of orthoimagery from OLI in comparison with the Advanced Land Imager (ALI) and hyperspectral Hyperion (after preprocessing) with respect to spectral profiling of classes, land use/cover classification, classification accuracy assessment, classifier selection, study area selection, and other applications. For each data source, the support vector machine (SVM) model outperformed the spectral angle mapper (SAM) classifier in terms of class discrimination accuracy (i.e., water, built-up area, mixed forest, shrub, and bare soil). Using the SVM classifier, Hyperion hyperspectral orthoimagery achieved higher overall accuracy than OLI and ALI. However, OLI outperformed both hyperspectral Hyperion and multispectral ALI using the SAM classifier, and with the SVM classifier outperformed ALI in terms of overall accuracy and individual classes. The results show that the new generation of Landsat achieved higher accuracies in mapping compared with the previous Landsat multispectral satellite series.

  19. Terahertz and Microwave Devices Based on the Photo-Excited Low Dimensional Electronic System

    DTIC Science & Technology

    2015-03-11

    condition that is realized by photo-exciting the system with electromagnetic waves in the microwave and THz parts of the radiation spectrum, in the...electron system. This research aimed to advance the understanding of such radiation -induced phenomena in the two-dimensional electron system, while helping...exciting a high mobility low dimensional electron system. This research aimed to advance the understanding of such radiation -induced phenomena in the two

  20. Microwave powered sterile access port

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Atwater, James E. (Inventor); Dahl, Roger W. (Inventor); Garmon, Frank C. (Inventor); Lunsford, Teddie D. (Inventor); Michalek, William F. (Inventor); Wheeler, Jr., Richard R. (Inventor)

    2000-01-01

    A device and method for elimination of contamination during transfer of materials either into or from bioreactors, food containers, or other microbially vulnerable systems. Using microwave power, thermal sterilizations of mating fixtures are achieved simply, reliably, and quickly by the volatilization of small quantities of water to produce superheated steam which contacts all exposed surfaces.