Science.gov

Sample records for alien invasive species

  1. Mycorrhizal status helps explain invasion success of alien plant species.

    PubMed

    Menzel, Andreas; Hempel, Stefan; Klotz, Stefan; Moora, Mari; Pyšek, Petr; Rillig, Matthias C; Zobel, Martin; Kühn, Ingolf

    2017-01-01

    It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies.

  2. Floristic characteristics of alien invasive seed plant species in China.

    PubMed

    Wang, Congyan; Liu, Jun; Xiao, Hongguang; Zhou, Jiawei; DU, Daolin

    2016-01-01

    This study aims to determine the floristic characteristics of alien invasive seed plant species (AISPS) in China. There are a total of five hundred and thirteen AISPS, belonging to seventy families and two hundred and eighty-three genera. Seventy families were classified into nine areal types at the family level, and "Cosmopolitan" and "Pantropic" are the two main types. Two hundred and eighty-three genera were classified into twelve areal types at the genus level, and "Pantropic", "Trop. Asia & Amer. disjuncted", and "Cosmopolitan" are the three main types. These results reveal a certain degree of diversity among AISPS in China. The floristic characteristics at the family level exhibit strong pantropic characteristics. Two possible reasons for this are as follows. Firstly, southeastern China is heavily invaded by alien invasive plant species and this region has a mild climate. Secondly, southeastern China is more disturbed by human activities than other regions in China. The floristic characteristics at the genus level display strong pantropic but with abundant temperate characteristics. This may be due to that China across five climatic zones and the ecosystems in which the most alien invasive plant species occur have the same or similar climate with their natural habitat.

  3. Essential elements of online information networks on invasive alien species

    USGS Publications Warehouse

    Simpson, A.; Sellers, E.; Grosse, A.; Xie, Y.

    2006-01-01

    In order to be effective, information must be placed in the proper context and organized in a manner that is logical and (preferably) standardized. Recently, invasive alien species (IAS) scientists have begun to create online networks to share their information concerning IAS prevention and control. At a special networking session at the Beijing International Symposium on Biological Invasions, an online Eastern Asia-North American IAS Information Network (EA-NA Network) was proposed. To prepare for the development of this network, and to provide models for other regional collaborations, we compare four examples of global, regional, and national online IAS information networks: the Global Invasive Species Information Network, the Invasives Information Network of the Inter-American Biodiversity Information Network, the Chinese Species Information System, and the Invasive Species Information Node of the US National Biological Information Infrastructure. We conclude that IAS networks require a common goal, dedicated leaders, effective communication, and broad endorsement, in order to obtain sustainable, long-term funding and long-term stability. They need to start small, use the experience of other networks, partner with others, and showcase benefits. Global integration and synergy among invasive species networks will succeed with contributions from both the top-down and the bottom-up. ?? 2006 Springer.

  4. Origin matters: diversity affects the performance of alien invasive species but not of native species.

    PubMed

    Sun, Yan; Müller-Schärer, Heinz; Maron, John L; Schaffner, Urs

    2015-06-01

    At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species.

  5. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    USGS Publications Warehouse

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  6. Effect of the Internet Commerce on Dispersal Modes of Invasive Alien Species

    PubMed Central

    Lenda, Magdalena; Skórka, Piotr; Knops, Johannes M. H.; Moroń, Dawid; Sutherland, William J.; Kuszewska, Karolina; Woyciechowski, Michał

    2014-01-01

    The spread of invasive alien plants has considerable environmental and economic consequences, and is one of the most challenging ecological problems. The spread of invasive alien plant species depends largely on long-distance dispersal, which is typically linked with human activity. The increasing domination of the internet will have impacts upon almost all components of our lives, including potential consequences for the spread of invasive species. To determine whether the rise of Internet commerce has any consequences for the spread of invasive alien plant species, we studied the sale of thirteen of some of the most harmful Europe invasive alien plant species sold as decorative plants from twenty-eight large, well known gardening shops in Poland that sold both via the Internet and through traditional customer sales. We also analyzed temporal changes in the number of invasive plants sold in the largest Polish internet auction portal. When sold through the Internet invasive alien plant species were transported considerably longer distances than for traditional sales. For internet sales, seeds of invasive alien plant species were transported further than were live plants saplings; this was not the case for traditional sales. Also, with e-commerce the shape of distance distribution were flattened with low skewness comparing with traditional sale where the distributions were peaked and right-skewed. Thus, e-commerce created novel modes of long-distance dispersal, while traditional sale resembled more natural dispersal modes. Moreover, analysis of sale in the biggest Polish internet auction portal showed that the number of alien specimens sold via the internet has increased markedly over recent years. Therefore internet commerce is likely to increase the rate at which ecological communities become homogenized and increase spread of invasive species by increasing the rate of long distance dispersal. PMID:24932498

  7. Effect of the internet commerce on dispersal modes of invasive alien species.

    PubMed

    Lenda, Magdalena; Skórka, Piotr; Knops, Johannes M H; Moroń, Dawid; Sutherland, William J; Kuszewska, Karolina; Woyciechowski, Michał

    2014-01-01

    The spread of invasive alien plants has considerable environmental and economic consequences, and is one of the most challenging ecological problems. The spread of invasive alien plant species depends largely on long-distance dispersal, which is typically linked with human activity. The increasing domination of the internet will have impacts upon almost all components of our lives, including potential consequences for the spread of invasive species. To determine whether the rise of Internet commerce has any consequences for the spread of invasive alien plant species, we studied the sale of thirteen of some of the most harmful Europe invasive alien plant species sold as decorative plants from twenty-eight large, well known gardening shops in Poland that sold both via the Internet and through traditional customer sales. We also analyzed temporal changes in the number of invasive plants sold in the largest Polish internet auction portal. When sold through the Internet invasive alien plant species were transported considerably longer distances than for traditional sales. For internet sales, seeds of invasive alien plant species were transported further than were live plants saplings; this was not the case for traditional sales. Also, with e-commerce the shape of distance distribution were flattened with low skewness comparing with traditional sale where the distributions were peaked and right-skewed. Thus, e-commerce created novel modes of long-distance dispersal, while traditional sale resembled more natural dispersal modes. Moreover, analysis of sale in the biggest Polish internet auction portal showed that the number of alien specimens sold via the internet has increased markedly over recent years. Therefore internet commerce is likely to increase the rate at which ecological communities become homogenized and increase spread of invasive species by increasing the rate of long distance dispersal.

  8. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  9. Impact of an Alien Invasive Shrub on Ecology of Native and Alien Invasive Mosquito Species (Diptera: Culicidae).

    PubMed

    Muturi, Ephantus J; Gardner, Allison M; Bara, Jeffrey J

    2015-10-01

    We examined how leaf litter of alien invasive honeysuckle (Lonicera maackii Rupr.) either alone or in combination with leaf litter of one of two native tree species, sugar maple (Acer saccharum Marshall) and northern red oak (Quercus rubra L.), affects the ecology of Culex restuans Theobald, Ochlerotatus triseriatus Say, and Ochlerotatus japonicus Theobald. Experimental mesocosms containing single species litter or a mixture of honeysuckle and one of two native tree species litter were established at South Farms and Trelease Woods study sites in Urbana, IL, and examined for their effect on 1) oviposition site selection by the three mosquito species, and 2) adult production and body size of Oc. triseriatus and Oc. japonicus. There were no significant effects of study site and leaf treatment on Oc. japonicus and Oc. triseriatus oviposition preference and adult production. In contrast, significantly more Cx. restuans eggs rafts were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Significantly larger adult females of Oc. japonicus and Oc. triseriatus were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Combining honeysuckle litter with native tree species litter had additive effects on Cx. restuans oviposition preference and Oc. japonicus and Oc. triseriatus body size, with the exception of honeysuckle and northern red oak litter combination, which had antagonistic effects on Oc. triseriatus body size. We conclude that input of honeysuckle litter into container aquatic habitats may alter the life history traits of vector mosquito species.

  10. Species pools, community completeness and invasion: disentangling diversity effects on the establishment of native and alien species.

    PubMed

    Bennett, Jonathan A; Riibak, Kersti; Kook, Ene; Reier, Ülle; Tamme, Riin; Guillermo Bueno, C; Pärtel, Meelis

    2016-12-01

    Invasion should decline with species richness, yet the relationship is inconsistent. Species richness, however, is a product of species pool size and biotic filtering. Invasion may increase with richness if large species pools represent weaker environmental filters. Measuring species pool size and the proportion realised locally (completeness) may clarify diversity-invasion relationships by separating environmental and biotic effects, especially if species' life-history stage and origin are accounted for. To test these relationships, we added seeds and transplants of 15 native and alien species into 29 grasslands. Species pool size and completeness explained more variation in invasion than richness alone. Although results varied between native and alien species, seed establishment and biotic resistance to transplants increased with species pool size, whereas transplant growth and biotic resistance to seeds increased with completeness. Consequently, species pools and completeness represent multiple independent processes affecting invasion; accounting for these processes improves our understanding of invasion.

  11. Insect Eradication and Containment of Invasive Alien Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect eradication programs are nearly always targeted at recently arrived invasive species with significant pest potential. They attempt to contain a pest to a defined area and then completely eliminate the pest from that area. From a Federal regulatory standpoint, eradication programs are undert...

  12. Differences in leaf construction cost between alien and native mangrove species in Futian, Shenzhen, China: implications for invasiveness of alien species.

    PubMed

    Li, Fenglan; Yang, Qiong; Zan, Qijie; Tam, Nora F Y; Shin, Paul K S; Vrijmoed, Lilian L P; Cheung, S G

    2011-09-01

    Construction cost (CC) is a quantifiable measure of energy demand for biomass production, and low CC is hypothesized to give an alien plant growth advantages and increase its potential to be an invader. Comparison of leaf CC and growth traits between alien and native mangroves in Shenzhen Futian Nature Reserve showed CC per unit mass (CC(mass)), carbon concentration and gross and ash-free caloric values of alien mangroves were significantly lower than those of native species, while the height and chest circumference were just the opposite. Alien species Sonneratia apetala had the lowest CC(mass) while Sonneratia caseolaris had the lowest CC(area), and were 8.99% and 32.17% lower than those of native species, respectively. Conversely, specific leaf area (SLA) of these two Sonneratia species was significantly higher than native species. Lower CC and higher SLA make the two Sonneratia species grow and spread faster than other mangroves and enhance their invasive potential.

  13. Missing the Boat on Invasive Alien Species: A Review of Post-Secondary Curricula in Canada

    ERIC Educational Resources Information Center

    Smith, Andrea L.; Bazely, Dawn R.; Yan, Norman D.

    2011-01-01

    Invasive alien species (IAS) cause major environmental and economic damage worldwide, and also threaten human food security and health. The impacts of IAS are expected to rise with continued globalization, land use modification, and climate change. Developing effective strategies to deal with IAS requires a collaborative, interdisciplinary…

  14. Are Photosynthetic Characteristics and Energetic Cost Important Invasive Traits for Alien Sonneratia Species in South China?

    PubMed Central

    Li, Feng-Lan; Zan, Qi-Jie; Hu, Zheng-Yu; Shin, Paul-K. S.; Cheung, Siu-Gin; Wong, Yuk-Shan; Tam, Nora Fung-Yee; Lei, An-Ping

    2016-01-01

    A higher photosynthesis and lower energetic cost are recognized as important characteristics for invasive species, but whether these traits are also important for the ability of alien mangrove species to become invasive has seldom been reported. A microcosm study was conducted to compare the photosynthetic characteristics, energetic cost indices and other growth traits between two alien species (Sonneratia apetala and S. caseolaris) and four native mangrove species over four seasons in a subtropical mangrove nature reserve in Shenzhen, South China. The aim of the study was to evaluate the invasive potential of Sonneratia based on these physiological responses. The annual average net photosynthetic rate (Pn), stomatal conductance (Gs) and total carbon assimilation per unit leaf area (Atotal) of the two alien Sonneratia species were significantly higher than the values of the native mangroves. In contrast, the opposite results were obtained for the leaf construction cost (CC) per unit dry mass (CCM) and CC per unit area (CCA) values. The higher Atotal and lower CC values resulted in a 72% higher photosynthetic energy-use efficiency (PEUE) for Sonneratia compared to native mangroves, leading to a higher relative growth rate (RGR) of the biomass and height of Sonneratia with the respective values being 51% and 119% higher than those of the native species. Higher photosynthetic indices for Sonneratia compared to native species were found in all seasons except winter, whereas lower CC values were found in all four seasons. The present findings reveal that alien Sonneratia species may adapt well and become invasive in subtropical mangrove wetlands in Shenzhen due to their higher photosynthetic characteristics coupled with lower costs in energy use, leading to a higher PEUE. The comparison of these physiological responses between S. apetala and S. caseolaris reveal that the former species is more invasive than the latter one, thus requiring more attention in future. PMID

  15. Are Photosynthetic Characteristics and Energetic Cost Important Invasive Traits for Alien Sonneratia Species in South China?

    PubMed

    Li, Feng-Lan; Zan, Qi-Jie; Hu, Zheng-Yu; Shin, Paul-K S; Cheung, Siu-Gin; Wong, Yuk-Shan; Tam, Nora Fung-Yee; Lei, An-Ping

    2016-01-01

    A higher photosynthesis and lower energetic cost are recognized as important characteristics for invasive species, but whether these traits are also important for the ability of alien mangrove species to become invasive has seldom been reported. A microcosm study was conducted to compare the photosynthetic characteristics, energetic cost indices and other growth traits between two alien species (Sonneratia apetala and S. caseolaris) and four native mangrove species over four seasons in a subtropical mangrove nature reserve in Shenzhen, South China. The aim of the study was to evaluate the invasive potential of Sonneratia based on these physiological responses. The annual average net photosynthetic rate (Pn), stomatal conductance (Gs) and total carbon assimilation per unit leaf area (Atotal) of the two alien Sonneratia species were significantly higher than the values of the native mangroves. In contrast, the opposite results were obtained for the leaf construction cost (CC) per unit dry mass (CCM) and CC per unit area (CCA) values. The higher Atotal and lower CC values resulted in a 72% higher photosynthetic energy-use efficiency (PEUE) for Sonneratia compared to native mangroves, leading to a higher relative growth rate (RGR) of the biomass and height of Sonneratia with the respective values being 51% and 119% higher than those of the native species. Higher photosynthetic indices for Sonneratia compared to native species were found in all seasons except winter, whereas lower CC values were found in all four seasons. The present findings reveal that alien Sonneratia species may adapt well and become invasive in subtropical mangrove wetlands in Shenzhen due to their higher photosynthetic characteristics coupled with lower costs in energy use, leading to a higher PEUE. The comparison of these physiological responses between S. apetala and S. caseolaris reveal that the former species is more invasive than the latter one, thus requiring more attention in future.

  16. How can alien species inventories and interception data help us prevent insect invasions?

    PubMed

    Kenis, M; Rabitsch, W; Auger-Rozenberg, M-A; Roques, A

    2007-10-01

    Information relevant to invasion processes and invasive alien insect species management in Central Europe was extracted from two databases: a compilation of two inventories of alien insects in Austria and Switzerland, and a list of interceptions of non-indigenous plant pests in Europe gathered by the European and Mediterranean Plant Protection Organisation (EPPO) for the period 1995-2004. For one-third of the insects established in Switzerland and Austria, the region of origin is unclear. Others come mainly from North America, Asia and the Mediterranean region. Among the intercepted insects, 40% were associated with commodities from Asia, 32% from Europe and only 2% from North America. Sternorrhyncha, Coleoptera and Psocoptera were particularly well represented in the alien fauna compared to the native fauna. In the interception database, Sternorrhyncha were also well represented but Diptera accounted for the highest number of records. Sap feeders and detritivores were the dominant feeding niches in the alien insect fauna. In contrast, external defoliators, stem borers, gall makers, root feeders, predators and parasitoids were underrepresented. Nearly 40% of the alien insects in Switzerland and Austria live only indoors. Another 15% live outdoors but exclusively or predominantly on exotic plants. Less than 20% are found mainly in 'natural' environments. The majority of introductions of alien insects in Europe are associated with the international trade in ornamental plants. An economic impact was found for 40% of the alien insects in Switzerland and Austria, whereas none is known to have an ecological impact. The implications of these observations for further studies and the management of alien species in Europe are discussed.

  17. Global threats from invasive alien species in the twenty-first century and national response capacities

    PubMed Central

    Early, Regan; Bradley, Bethany A.; Dukes, Jeffrey S.; Lawler, Joshua J.; Olden, Julian D.; Blumenthal, Dana M.; Gonzalez, Patrick; Grosholz, Edwin D.; Ibañez, Ines; Miller, Luke P.; Sorte, Cascade J. B.; Tatem, Andrew J.

    2016-01-01

    Invasive alien species (IAS) threaten human livelihoods and biodiversity globally. Increasing globalization facilitates IAS arrival, and environmental changes, including climate change, facilitate IAS establishment. Here we provide the first global, spatial analysis of the terrestrial threat from IAS in light of twenty-first century globalization and environmental change, and evaluate national capacities to prevent and manage species invasions. We find that one-sixth of the global land surface is highly vulnerable to invasion, including substantial areas in developing economies and biodiversity hotspots. The dominant invasion vectors differ between high-income countries (imports, particularly of plants and pets) and low-income countries (air travel). Uniting data on the causes of introduction and establishment can improve early-warning and eradication schemes. Most countries have limited capacity to act against invasions. In particular, we reveal a clear need for proactive invasion strategies in areas with high poverty levels, high biodiversity and low historical levels of invasion. PMID:27549569

  18. Global threats from invasive alien species in the twenty-first century and national response capacities.

    PubMed

    Early, Regan; Bradley, Bethany A; Dukes, Jeffrey S; Lawler, Joshua J; Olden, Julian D; Blumenthal, Dana M; Gonzalez, Patrick; Grosholz, Edwin D; Ibañez, Ines; Miller, Luke P; Sorte, Cascade J B; Tatem, Andrew J

    2016-08-23

    Invasive alien species (IAS) threaten human livelihoods and biodiversity globally. Increasing globalization facilitates IAS arrival, and environmental changes, including climate change, facilitate IAS establishment. Here we provide the first global, spatial analysis of the terrestrial threat from IAS in light of twenty-first century globalization and environmental change, and evaluate national capacities to prevent and manage species invasions. We find that one-sixth of the global land surface is highly vulnerable to invasion, including substantial areas in developing economies and biodiversity hotspots. The dominant invasion vectors differ between high-income countries (imports, particularly of plants and pets) and low-income countries (air travel). Uniting data on the causes of introduction and establishment can improve early-warning and eradication schemes. Most countries have limited capacity to act against invasions. In particular, we reveal a clear need for proactive invasion strategies in areas with high poverty levels, high biodiversity and low historical levels of invasion.

  19. Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems

    PubMed Central

    Godoy, Oscar; Richardson, David M.; Valladares, Fernando; Castro-Díez, Pilar

    2009-01-01

    Background and Aims Flowering phenology is a potentially important component of success of alien species, since elevated fecundity may enhance invasiveness. The flowering patterns of invasive alien plant species and related natives were studied in three regions with Mediterranean-type climate: California, Spain and South Africa's Cape region. Methods A total of 227 invasive–native pairs were compared for seven character types across the regions, with each pair selected on the basis that they shared the same habitat type within a region, had a common growth form and pollination type, and belonged to the same family or genus. Key Results Invasive alien plant species have different patterns of flowering phenology from native species in the three regions. Whether the alien species flower earlier, later or at the same time as natives depends on the climatic regime in the native range of the aliens and the proportion of species in the invasive floras originating from different regions. Species invading at least two of the regions displayed the same flowering pattern, showing that flowering phenology is a conservative trait. Invasive species with native ranges in temperate climates flower earlier than natives, those from Mediterranean-type climates at the same time, and species from tropical climates flower later. In California, where the proportion of invaders from the Mediterranean Basin is high, the flowering pattern did not differ between invasive and native species, whereas in Spain the high proportion of tropical species results in a later flowering than natives, and in the Cape region early flowering than natives was the result of a high proportion of temperate invaders. Conclusions Observed patterns are due to the human-induced sympatry of species with different evolutionary histories whose flowering phenology evolved under different climatic regimes. The severity of the main abiotic filters imposed by the invaded regions (e.g. summer drought) has not been

  20. Screening Allelochemical-Resistant Species of the Alien Invasive Mikania micrantha for Restoration in South China

    PubMed Central

    Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming

    2015-01-01

    To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats. PMID:26177031

  1. Jack-of-all-trades: phenotypic plasticity facilitates the invasion of an alien slug species

    PubMed Central

    Knop, Eva; Reusser, Nik

    2012-01-01

    Invasive alien species might benefit from phenotypic plasticity by being able to (i) maintain fitness in stressful environments (‘robust’), (ii) increase fitness in favourable environments (‘opportunistic’), or (iii) combine both abilities (‘robust and opportunistic’). Here, we applied this framework, for the first time, to an animal, the invasive slug, Arion lusitanicus, and tested (i) whether it has a more adaptive phenotypic plasticity compared with a congeneric native slug, Arion fuscus, and (ii) whether it is robust, opportunistic or both. During one year, we exposed specimens of both species to a range of temperatures along an altitudinal gradient (700–2400 m a.s.l.) and to high and low food levels, and we compared the responsiveness of two fitness traits: survival and egg production. During summer, the invasive species had a more adaptive phenotypic plasticity, and at high temperatures and low food levels, it survived better and produced more eggs than A. fuscus, representing the robust phenotype. During winter, A. lusitanicus displayed a less adaptive phenotype than A. fuscus. We show that the framework developed for plants is also very useful for a better mechanistic understanding of animal invasions. Warmer summers and milder winters might lead to an expansion of this invasive species to higher altitudes and enhance its spread in the lowlands, supporting the concern that global climate change will increase biological invasions. PMID:23015630

  2. Jack-of-all-trades: phenotypic plasticity facilitates the invasion of an alien slug species.

    PubMed

    Knop, Eva; Reusser, Nik

    2012-11-22

    Invasive alien species might benefit from phenotypic plasticity by being able to (i) maintain fitness in stressful environments ('robust'), (ii) increase fitness in favourable environments ('opportunistic'), or (iii) combine both abilities ('robust and opportunistic'). Here, we applied this framework, for the first time, to an animal, the invasive slug, Arion lusitanicus, and tested (i) whether it has a more adaptive phenotypic plasticity compared with a congeneric native slug, Arion fuscus, and (ii) whether it is robust, opportunistic or both. During one year, we exposed specimens of both species to a range of temperatures along an altitudinal gradient (700-2400 m a.s.l.) and to high and low food levels, and we compared the responsiveness of two fitness traits: survival and egg production. During summer, the invasive species had a more adaptive phenotypic plasticity, and at high temperatures and low food levels, it survived better and produced more eggs than A. fuscus, representing the robust phenotype. During winter, A. lusitanicus displayed a less adaptive phenotype than A. fuscus. We show that the framework developed for plants is also very useful for a better mechanistic understanding of animal invasions. Warmer summers and milder winters might lead to an expansion of this invasive species to higher altitudes and enhance its spread in the lowlands, supporting the concern that global climate change will increase biological invasions.

  3. Canopy and knowledge gaps when invasive alien insects remove foundation species.

    PubMed

    Marler, Thomas E; Lawrence, John H

    2013-01-01

    The armored scale Aulacaspis yasumatsui invaded the northern range of the cycad Cycas micronesica in 2003, and epidemic tree mortality ensued due to a lack of natural enemies of the insect. We quantified cycad demographic responses to the invasion, but the ecological responses to the selective removal of this foundation species have not been addressed. We use this case to highlight information gaps in our understanding of how alien invasive phytophagous insects force cascading adverse ecosystem changes. The mechanistic role of unique canopy gaps, oceanic island examples and threatened foundation species with distinctive traits are three issues that deserve research efforts in a quest to understand this facet of ecosystem change occurring across multiple settings globally.

  4. DEVELOPMENT OF AN INDEX OF ALIEN SPECIES INVASIVENESS: AN AID TO ASSESSING RIPARIAN VEGETATION CONDITION

    EPA Science Inventory

    Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...

  5. Optimal and robust control of invasive alien species spreading in homogeneous landscapes

    PubMed Central

    Carrasco, L. R.; Baker, R.; MacLeod, A.; Knight, J. D.; Mumford, J. D.

    2010-01-01

    Government agencies lack robust modelling tools to manage the spread of invasive alien species (IAS). In this paper, we combine optimal control and simulation methods with biological invasion spread theory to estimate the type of optimal policy and switching point of control efforts against a spreading IAS. We employ information-gap (info-gap) theory to assess how the optimal solutions differ from a policy that is most robustly immune to unacceptable outcomes. The model is applied to the potential invasion of the Colorado potato beetle in the UK. Under no uncertainty, we demonstrate that for many of the parameter combinations the optimal control policy corresponds to slowing down the invasion. The info-gap analysis shows that eradication policies identified as optimal under no uncertainty are robustly the best policies even under severe uncertainty, i.e. even if they are likely to turn into slowing down policies. We also show that the control of satellite colonies, if identified as optimal under no uncertainty, will also be a robust slowing down policy for IAS that can spread by long distance dispersal even for relatively ineffective control measures. The results suggest that agencies adopt management strategies that are robustly optimal, despite the severe uncertainties they face. PMID:19740923

  6. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    USGS Publications Warehouse

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  7. Perception and Understanding of Invasive Alien Species Issues by Nature Conservation and Horticulture Professionals in Belgium

    NASA Astrophysics Data System (ADS)

    Vanderhoeven, Sonia; Piqueray, Julien; Halford, Mathieu; Nulens, Greet; Vincke, Jan; Mahy, Grégory

    2011-03-01

    We conducted a survey to determine how two professional sectors in Belgium, horticulture professionals and nature reserve managers (those directly involved in conservation), view the issues associated with invasive plant species. We developed and utilized a questionnaire that addressed the themes of awareness, concept and use of language, availability of information, impacts and, finally, control and available solutions. Using co-inertia analyses, we tested to what extent the perception of invasive alien species (IAS) was dependent upon the perception of Nature in general. Only forty-two percent of respondent horticulture professionals and eighty-two percent of nature reserve managers had a general knowledge of IAS. Many individuals in both target groups nonetheless had an accurate understanding of the scientific issues. Our results therefore suggest that the manner in which individuals within the two groups view, or perceive, the IAS issue was more the result of lack of information than simply biased perceptions of target groups. Though IAS perceptions by the two groups diverged, they were on par with how they viewed Nature in general. The descriptions of IAS by participants converged with the ideas and concepts frequently found in the scientific literature. Both managers and horticulture professionals expressed a strong willingness to participate in programs designed to prevent the spread of, and damage caused by, IAS. Despite this, the continued commercial availability of many invasive species highlighted the necessity to use both mandatory and voluntary approaches to reduce their re-introduction and spread. The results of this study provide stakeholders and conservation managers with practical information on which communication and management strategies can be based.

  8. Analyzing the social factors that influence willingness to pay for invasive alien species management under two different strategies: eradication and prevention.

    PubMed

    García-Llorente, Marina; Martín-López, Berta; Nunes, Paulo A L D; González, José A; Alcorlo, Paloma; Montes, Carlos

    2011-09-01

    Biological invasions occur worldwide, and have been the object of ecological and socio-economic research for decades. However, the manner in which different stakeholder groups identify the problems associated with invasive species and confront invasive species management under different policies remains poorly understood. In this study, we conducted an econometric analysis of the social factors influencing willingness to pay for invasive alien species management under two different regimes: eradication and prevention in the Doñana Natural Protected Area (SW Spain). Controlling for the participation of local residents, tourists and conservationists, email and face-to-face questionnaires were conducted. Results indicated that respondents were more willing to pay for eradication than prevention; and public support for invasive alien species management was influenced by an individual's knowledge and perception of invasive alien species, active interest in nature, and socio-demographic attributes. We concluded that invasive alien species management research should confront the challenges to engage stakeholders and accept any tradeoffs necessary to modify different conservation policies to ensure effective management is implemented. Finally, our willingness to pay estimates suggest the Department of Environment of Andalusian Government has suitable social support to meet the budgetary expenditures required for invasive alien species plans and adequate resources to justify an increase in the invasive alien species management budget.

  9. Analyzing the Social Factors That Influence Willingness to Pay for Invasive Alien Species Management Under Two Different Strategies: Eradication and Prevention

    NASA Astrophysics Data System (ADS)

    García-Llorente, Marina; Martín-López, Berta; Nunes, Paulo A. L. D.; González, José A.; Alcorlo, Paloma; Montes, Carlos

    2011-09-01

    Biological invasions occur worldwide, and have been the object of ecological and socio-economic research for decades. However, the manner in which different stakeholder groups identify the problems associated with invasive species and confront invasive species management under different policies remains poorly understood. In this study, we conducted an econometric analysis of the social factors influencing willingness to pay for invasive alien species management under two different regimes: eradication and prevention in the Doñana Natural Protected Area (SW Spain). Controlling for the participation of local residents, tourists and conservationists, email and face-to-face questionnaires were conducted. Results indicated that respondents were more willing to pay for eradication than prevention; and public support for invasive alien species management was influenced by an individual's knowledge and perception of invasive alien species, active interest in nature, and socio-demographic attributes. We concluded that invasive alien species management research should confront the challenges to engage stakeholders and accept any tradeoffs necessary to modify different conservation policies to ensure effective management is implemented. Finally, our willingness to pay estimates suggest the Department of Environment of Andalusian Government has suitable social support to meet the budgetary expenditures required for invasive alien species plans and adequate resources to justify an increase in the invasive alien species management budget.

  10. Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain

    PubMed Central

    Roy, Helen E; Peyton, Jodey; Aldridge, David C; Bantock, Tristan; Blackburn, Tim M; Britton, Robert; Clark, Paul; Cook, Elizabeth; Dehnen-Schmutz, Katharina; Dines, Trevor; Dobson, Michael; Edwards, François; Harrower, Colin; Harvey, Martin C; Minchin, Dan; Noble, David G; Parrott, Dave; Pocock, Michael J O; Preston, Chris D; Roy, Sugoto; Salisbury, Andrew; Schönrogge, Karsten; Sewell, Jack; Shaw, Richard H; Stebbing, Paul; Stewart, Alan J A; Walker, Kevin J

    2014-01-01

    Invasive alien species (IAS) are considered one of the greatest threats to biodiversity, particularly through their interactions with other drivers of change. Horizon scanning, the systematic examination of future potential threats and opportunities, leading to prioritization of IAS threats is seen as an essential component of IAS management. Our aim was to consider IAS that were likely to impact on native biodiversity but were not yet established in the wild in Great Britain. To achieve this, we developed an approach which coupled consensus methods (which have previously been used for collaboratively identifying priorities in other contexts) with rapid risk assessment. The process involved two distinct phases: Preliminary consultation with experts within five groups (plants, terrestrial invertebrates, freshwater invertebrates, vertebrates and marine species) to derive ranked lists of potential IAS.Consensus-building across expert groups to compile and rank the entire list of potential IAS. Five hundred and ninety-one species not native to Great Britain were considered. Ninety-three of these species were agreed to constitute at least a medium risk (based on score and consensus) with respect to them arriving, establishing and posing a threat to native biodiversity. The quagga mussel, Dreissena rostriformis bugensis, received maximum scores for risk of arrival, establishment and impact; following discussions the unanimous consensus was to rank it in the top position. A further 29 species were considered to constitute a high risk and were grouped according to their ranked risk. The remaining 63 species were considered as medium risk, and included in an unranked long list. The information collated through this novel extension of the consensus method for horizon scanning provides evidence for underpinning and prioritizing management both for the species and, perhaps more importantly, their pathways of arrival. Although our study focused on Great Britain, we suggest that

  11. Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain.

    PubMed

    Roy, Helen E; Peyton, Jodey; Aldridge, David C; Bantock, Tristan; Blackburn, Tim M; Britton, Robert; Clark, Paul; Cook, Elizabeth; Dehnen-Schmutz, Katharina; Dines, Trevor; Dobson, Michael; Edwards, François; Harrower, Colin; Harvey, Martin C; Minchin, Dan; Noble, David G; Parrott, Dave; Pocock, Michael J O; Preston, Chris D; Roy, Sugoto; Salisbury, Andrew; Schönrogge, Karsten; Sewell, Jack; Shaw, Richard H; Stebbing, Paul; Stewart, Alan J A; Walker, Kevin J

    2014-12-01

    Invasive alien species (IAS) are considered one of the greatest threats to biodiversity, particularly through their interactions with other drivers of change. Horizon scanning, the systematic examination of future potential threats and opportunities, leading to prioritization of IAS threats is seen as an essential component of IAS management. Our aim was to consider IAS that were likely to impact on native biodiversity but were not yet established in the wild in Great Britain. To achieve this, we developed an approach which coupled consensus methods (which have previously been used for collaboratively identifying priorities in other contexts) with rapid risk assessment. The process involved two distinct phases: Preliminary consultation with experts within five groups (plants, terrestrial invertebrates, freshwater invertebrates, vertebrates and marine species) to derive ranked lists of potential IAS. Consensus-building across expert groups to compile and rank the entire list of potential IAS. Five hundred and ninety-one species not native to Great Britain were considered. Ninety-three of these species were agreed to constitute at least a medium risk (based on score and consensus) with respect to them arriving, establishing and posing a threat to native biodiversity. The quagga mussel, Dreissena rostriformis bugensis, received maximum scores for risk of arrival, establishment and impact; following discussions the unanimous consensus was to rank it in the top position. A further 29 species were considered to constitute a high risk and were grouped according to their ranked risk. The remaining 63 species were considered as medium risk, and included in an unranked long list. The information collated through this novel extension of the consensus method for horizon scanning provides evidence for underpinning and prioritizing management both for the species and, perhaps more importantly, their pathways of arrival. Although our study focused on Great Britain, we suggest

  12. Ecological impacts of invasive alien species along temperature gradients: testing the role of environmental matching.

    PubMed

    Iacarella, Josephine C; Dick, Jaimie T A; Alexander, Mhairi E; Ricciardi, Anthony

    2015-04-01

    Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response (the relationship between predation rate and prey supply) of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across. relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders.

  13. Lack of sex-specific movement patterns in an alien species at its invasion front - consequences for invasion speed.

    PubMed

    Herfindal, Ivar; Melis, Claudia; Åhlén, Per-Arne; Dahl, Fredrik

    2016-08-01

    Efficient targeting of actions to reduce the spread of invasive alien species relies on understanding the spatial, temporal, and individual variation of movement, in particular related to dispersal. Such patterns may differ between individuals at the invasion front compared to individuals in established and dense populations due to differences in environmental and ecological conditions such as abundance of conspecifics or sex-specific dispersal affecting the encounter rate of potential mates. We assessed seasonal and diurnal variation in movement pattern (step length and turning angle) of adult male and female raccoon dog at their invasion front in northern Sweden using data from Global Positioning System (GPS)-marked adult individuals and assessed whether male and female raccoon dog differed in their movement behavior. There were few consistent sex differences in movement. The rate of dispersal was rather similar over the months, suggesting that both male and female raccoon dog disperse during most of the year, but with higher speed during spring and summer. There were diurnal movement patterns in both sexes with more directional and faster movement during the dark hours. However, the short summer nights may limit such movement patterns, and long-distance displacement was best explained by fine-scale movement patterns from 18:00 to 05:00, rather than by movement patterns only from twilight and night. Simulation of dispersing raccoon dogs suggested a higher frequency of male-female encounters that were further away from the source population for the empirical data compared to a scenario with sex differences in movement pattern. The lack of sex differences in movement pattern at the invasion front results in an increased likelihood for reproductive events far from the source population. Animals outside the source population should be considered potential reproducing individuals, and a high effort to capture such individuals is needed throughout the year to prevent

  14. The large‐scale removal of mammalian invasive alien species in Northern Europe

    PubMed Central

    Adriaens, Tim; Lambin, Xavier; Mill, Aileen; Roy, Sugoto; Shuttleworth, Craig M; Sutton‐Croft, Mike

    2016-01-01

    Abstract Numerous examples exist of successful mammalian invasive alien species (IAS) eradications from small islands (<10 km2), but few from more extensive areas. We review 15 large‐scale removals (mean area 2627 km2) from Northern Europe since 1900, including edible dormouse, muskrat, coypu, Himalayan porcupine, Pallas' and grey squirrels and American mink, each primarily based on daily checking of static traps. Objectives included true eradication or complete removal to a buffer zone, as distinct from other programmes that involved local control to limit damage or spread. Twelve eradication/removal programmes (80%) were successful. Cost increased with and was best predicted by area, while the cost per unit area decreased; the number of individual animals removed did not add significantly to the model. Doubling the area controlled reduced cost per unit area by 10%, but there was no evidence that cost effectiveness had increased through time. Compared with small islands, larger‐scale programmes followed similar patterns of effort in relation to area. However, they brought challenges when defining boundaries and consequent uncertainties around costs, the definition of their objectives, confirmation of success and different considerations for managing recolonisation. Novel technologies or increased use of volunteers may reduce costs. Rapid response to new incursions is recommended as best practice rather than large‐scale control to reduce the environmental, financial and welfare costs. © 2016 Crown copyright. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26733319

  15. The large-scale removal of mammalian invasive alien species in Northern Europe.

    PubMed

    Robertson, Peter A; Adriaens, Tim; Lambin, Xavier; Mill, Aileen; Roy, Sugoto; Shuttleworth, Craig M; Sutton-Croft, Mike

    2017-02-01

    Numerous examples exist of successful mammalian invasive alien species (IAS) eradications from small islands (<10 km(2) ), but few from more extensive areas. We review 15 large-scale removals (mean area 2627 km(2) ) from Northern Europe since 1900, including edible dormouse, muskrat, coypu, Himalayan porcupine, Pallas' and grey squirrels and American mink, each primarily based on daily checking of static traps. Objectives included true eradication or complete removal to a buffer zone, as distinct from other programmes that involved local control to limit damage or spread. Twelve eradication/removal programmes (80%) were successful. Cost increased with and was best predicted by area, while the cost per unit area decreased; the number of individual animals removed did not add significantly to the model. Doubling the area controlled reduced cost per unit area by 10%, but there was no evidence that cost effectiveness had increased through time. Compared with small islands, larger-scale programmes followed similar patterns of effort in relation to area. However, they brought challenges when defining boundaries and consequent uncertainties around costs, the definition of their objectives, confirmation of success and different considerations for managing recolonisation. Novel technologies or increased use of volunteers may reduce costs. Rapid response to new incursions is recommended as best practice rather than large-scale control to reduce the environmental, financial and welfare costs. © 2016 Crown copyright. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. ALIEN SPECIES: THEIR ROLE IN AMPHIBIAN POPULATION DECLINES AND RESTORATION

    EPA Science Inventory

    Alien species (also referred to as exotic, invasive, introduced, or normative species) have been implicated as causal agents in population declines of many amphibian species. Herein, we evaluate the relative contributions of alien species and other factors in adversely affecting ...

  17. Salmonella infection in green anoles (Anolis carolinensis), an invasive alien species on Chichi Island of the Ogasawara archipelago in Japan.

    PubMed

    Sumiyama, Daisuke; Izumiya, Hidemasa; Kanazawa, Tomoko; Murata, Koichi

    2014-03-01

    We investigated the presence of Salmonella in the green anole (Anolis carolinensis), an invasive alien species on Chichi Island, Japan. Samples were also collected from feral goats and public toilets on the island to examine infectious routes. Salmonellae were isolated from 27.1% of 199 samples; 32.6% of 141 cloacal samples from anoles, 62.5% of 8 intestinal samples from anole carcasses, 16.7% of 12 fecal samples from goats and 2.6% of 38 toilet bowl swabs. The serotype of most isolates was Salmonella Oranienburg (94.4% of 54). Although we did not confirm the infection pathways, our results indicated that green anoles are a risk factor as a source of Salmonella for public health. It is important to consider endemic pathogens that may be amplified by alien species within their introduced areas.

  18. Evaluating the "recovery level" of endangered species without prior information before alien invasion.

    PubMed

    Watari, Yuya; Nishijima, Shota; Fukasawa, Marina; Yamada, Fumio; Abe, Shintaro; Miyashita, Tadashi

    2013-11-01

    For maintaining social and financial support for eradication programs of invasive species, quantitative assessment of recovery of native species or ecosystems is important because it provides a measurable parameter of success. However, setting a concrete goal for recovery is often difficult owing to lack of information prior to the introduction of invaders. Here, we present a novel approach to evaluate the achievement level of invasive predator management based on the carrying capacity of endangered species estimated using long-term monitoring data. In Amami-Oshima Island, Japan, where the eradication project of introduced small Indian mongoose is ongoing since 2000, we surveyed the population densities of four endangered species threatened by the mongoose (Amami rabbit, the Otton frog, Amami tip-nosed frog, and Amami Ishikawa's frog) at four time points ranging from 2003 to 2011. We estimated the carrying capacities of these species using the logistic growth model combined with the effects of mongoose predation and environmental heterogeneity. All species showed clear tendencies toward increasing their density in line with decreased mongoose density, and they exhibited density-dependent population growth. The estimated carrying capacities of three endangered species had small confidence intervals enough to measure recovery levels by the mongoose management. The population density of each endangered species has recovered to the level of the carrying capacity at about 20-40% of all sites, whereas no individuals were observed at more than 25% of all sites. We propose that the present approach involving appropriate monitoring data of native organism populations will be widely applicable to various eradication projects and provide unambiguous goals for management of invasive species.

  19. Quantifying the Establishment Likelihood of Invasive Alien Species Introductions Through Ports with Application to Honeybees in Australia.

    PubMed

    Heersink, Daniel K; Caley, Peter; Paini, Dean R; Barry, Simon C

    2016-05-01

    The cost of an uncontrolled incursion of invasive alien species (IAS) arising from undetected entry through ports can be substantial, and knowledge of port-specific risks is needed to help allocate limited surveillance resources. Quantifying the establishment likelihood of such an incursion requires quantifying the ability of a species to enter, establish, and spread. Estimation of the approach rate of IAS into ports provides a measure of likelihood of entry. Data on the approach rate of IAS are typically sparse, and the combinations of risk factors relating to country of origin and port of arrival diverse. This presents challenges to making formal statistical inference on establishment likelihood. Here we demonstrate how these challenges can be overcome with judicious use of mixed-effects models when estimating the incursion likelihood into Australia of the European (Apis mellifera) and Asian (A. cerana) honeybees, along with the invasive parasites of biosecurity concern they host (e.g., Varroa destructor). Our results demonstrate how skewed the establishment likelihood is, with one-tenth of the ports accounting for 80% or more of the likelihood for both species. These results have been utilized by biosecurity agencies in the allocation of resources to the surveillance of maritime ports.

  20. Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties.

    PubMed

    Majewska, Marta L; Błaszkowski, Janusz; Nobis, Marcin; Rola, Kaja; Nobis, Agnieszka; Łakomiec, Daria; Czachura, Paweł; Zubek, Szymon

    In order to recognize interactions between alien vascular plants and soil microorganisms and thus better understand the mechanisms of plant invasions, we examined the mycorrhizal status, arbuscular mycorrhizal fungi (AMF) colonization rate, arbuscular mycorrhiza (AM) morphology and presence of fungal root endophytes in 37 non-native species in Central Europe. We also studied the AMF diversity and chemical properties of soils from under these species. The plant and soil materials were collected in southern Poland. We found that 35 of the species formed AM and their mycorrhizal status depended on species identity. Thirty-three taxa had AM of Arum-type alone. Lycopersicon esculentum showed intermediate AM morphology and Eragrostis albensis developed both Arum and Paris. The mycelia of dark septate endophytes (DSE) were observed in 32 of the species, while sporangia of Olpidium spp. were found in the roots of 10. Thirteen common and worldwide occurring AMF species as well as three unidentified spore morphotypes were isolated from trap cultures established with the soils from under the plant species. Claroideoglomus claroideum, Funneliformis mosseae and Septoglomus constrictum were found the most frequently. The presence of root-inhabiting fungi and the intensity of their colonization were not correlated with soil chemical properties, plant invasion status, their local abundance and habitat type. No relationships were also found between the presence of AMF, DSE and Olpidium spp. These suggest that other edaphic conditions, plant and fungal species identity or the abundance of these fungi in soils might have an impact on the occurrence and intensity of fungal root colonization in the plants under study.

  1. Modelling Hotspots for Invasive Alien Plants in India.

    PubMed

    Adhikari, Dibyendu; Tiwary, Raghuvar; Barik, Saroj Kanta

    2015-01-01

    Identification of invasion hotspots that support multiple invasive alien species (IAS) is a pre-requisite for control and management of invasion. However, till recently it remained a methodological challenge to precisely determine such invasive hotspots. We identified the hotspots of alien species invasion in India through Ecological Niche Modelling (ENM) using species occurrence data from the Global Biodiversity Information Facility (GBIF). The predicted area of invasion for selected species were classified into 4 categories based on number of model agreements for a region i.e. high, medium, low and very low. About 49% of the total geographical area of India was predicted to be prone to invasion at moderate to high levels of climatic suitability. The intersection of anthropogenic biomes and ecoregions with the regions of 'high' climatic suitability was classified as hotspot of alien plant invasion. Nineteen of 47 ecoregions of India, harboured such hotspots. Most ecologically sensitive regions of India, including the 'biodiversity hotspots' and coastal regions coincide with invasion hotspots, indicating their vulnerability to alien plant invasion. Besides demonstrating the usefulness of ENM and open source data for IAS management, the present study provides a knowledge base for guiding the formulation of an effective policy and management strategy for controlling the invasive alien species.

  2. Modelling Hotspots for Invasive Alien Plants in India

    PubMed Central

    Adhikari, Dibyendu; Tiwary, Raghuvar; Barik, Saroj Kanta

    2015-01-01

    Identification of invasion hotspots that support multiple invasive alien species (IAS) is a pre-requisite for control and management of invasion. However, till recently it remained a methodological challenge to precisely determine such invasive hotspots. We identified the hotspots of alien species invasion in India through Ecological Niche Modelling (ENM) using species occurrence data from the Global Biodiversity Information Facility (GBIF). The predicted area of invasion for selected species were classified into 4 categories based on number of model agreements for a region i.e. high, medium, low and very low. About 49% of the total geographical area of India was predicted to be prone to invasion at moderate to high levels of climatic suitability. The intersection of anthropogenic biomes and ecoregions with the regions of 'high' climatic suitability was classified as hotspot of alien plant invasion. Nineteen of 47 ecoregions of India, harboured such hotspots. Most ecologically sensitive regions of India, including the 'biodiversity hotspots' and coastal regions coincide with invasion hotspots, indicating their vulnerability to alien plant invasion. Besides demonstrating the usefulness of ENM and open source data for IAS management, the present study provides a knowledge base for guiding the formulation of an effective policy and management strategy for controlling the invasive alien species. PMID:26230513

  3. Spatial Pattern and Determinants of the First Detection Locations of Invasive Alien Species in Mainland China

    PubMed Central

    Huang, Dingcheng; Zhang, Runzhi; Kim, Ke Chung; Suarez, Andrew V.

    2012-01-01

    Background The unintentional transport of species as a result of human activities has reached unprecedented rates. Once established, introduced species can be nearly impossible to eradicate. It is therefore essential to identify and monitor locations where invaders are most likely to establish new populations. Despite the obvious value of early detection, how does an agency identify areas that are most vulnerable to new invaders? Here we propose a novel approach by using the “first detection location” (FDL) of introduced species in China to quantify characteristics of areas where introduced species are first reported. Methodology/Principal Findings We obtained FDLs for 166 species (primarily agricultural and forestry pests) that were unintentionally introduced into China prior to 2008 from literature searches. The spatial pattern and determinants of FDLs were examined at the provincial level. The spatial pattern of FDLs varied among provinces with more commerce and trade and economically developed provinces in coastal regions having more FDLs than interior provinces. For example, 74.6% of FDLs were distributed in coastal regions despite that they only cover 15.6% of the total area in China. Variables that may be indicators of “introduction pressure” (e.g. the amount of received commerce) had an overwhelming effect on the number of FDLs in each province (R2 = 0.760). Conclusions/Significance Our results suggest that “introduction pressure” may be one of the most important factors that determine the locations where newly-introduced species are first detected, and that open and developed provinces in China should be prioritized when developing monitoring programs that focus on locating and managing new introductions. Our study illustrates that FDL approaches can contribute to the study and management of biological invasions not only for China but also for elsewhere. PMID:22363715

  4. The invasion of five alien species in the Delta do Parnaíba Environmental Protection Area, Northeastern Brazil.

    PubMed

    Loebmann, Daniel; Mai, Ana Cecília G; Lee, James T

    2010-09-01

    Marine biological invasions have been regarded as one of the major causes of native biodiversity loss, with shipping and aquaculture being the leading contributors for the introductions of alien species in aquatic ecosystems. In the present study, five aquatic alien species (one mollusk, three crustaceans and one fish species) were detected during dives, shore searches and from the fisheries on the coast of the Delta do Parnaíba Environmental Protection Area, in the States of Piauí and Maranhão, Northeastern Brazil. The species were the bicolor purse-oyster Isognomon bicolor, the whiteleg shrimp Litopenaeus vannamei, the giant river prawn Macrobrachium rosenbergii, the Indo-Pacific swimming crab Charybdis hellerii and, the muzzled blenny Omobranchus punctatus. Ballast water (I. bicolor, C. hellerii, and O. punctatus) and aquaculture activities (L. vannamei and M. rosenbergii) in adjacent areas are the most likely vectors of introduction. All exotic species found have potential impact risks to the environment because they are able to compete against native species for resources (food and habitat). Isognomon bicolor share the same habitat and food items with the native bivalve species of mussels and barnacles. Litopenaeus vannamei share the same habitat and food items with the native penaeids such as the pinkspot shrimp Farfantepenaeus brasiliensis, the Southern brown shrimp Farfantepenaeus subtilis, and the Southern white shrimp Litopenaeus schmitti, and in the past few years L. vannamei was responsible for a viral epidemics in the cultivation tanks that could be transmitted to native penaeid shrimps. Charybdis hellerii is also able to cause impacts on the local fisheries as the species can decrease the populations of native portunid crabs which are commercialized in the studied region. Macrobrachium rosenbergii may be sharing natural resources with the Amazon River prawn Macrobrachium amazonicum. Omobranchus punctatus shares habit with the native redlip blenny

  5. The prevalence of antimicrobial-resistant Escherichia coli in two species of invasive alien mammals in Japan.

    PubMed

    Nakamura, Ichiro; Obi, Takeshi; Sakemi, Yoko; Nakayama, Ayano; Miyazaki, Kei; Ogura, Go; Tamaki, Masanobu; Oka, Tatsuzo; Takase, Kozo; Miyamoto, Atsushi; Kawamoto, Yasuhiro

    2011-08-01

    The prevalence of antimicrobial resistance in 128 Escherichia coli isolates was investigated in two species of invasive alien mammals (IAMs): the small Asian mongoose (SAM) and Japanese weasel (JW). The SAM is found on the main island of Okinawa, Japan, where a large number of livestock is available, and the JW is present on a small island, where is isolated from the main island, and have a small number of livestock. We focused on the two IAMs, inhabiting under the different environments, and compared their prevalence of antimicrobial-resistant E. coli. In the comparison of the frequencies of antimicrobial-resistant E. coli isolates between the SAM and JW, JW showed significantly higher prevalence of resistance against three drugs, ampicillin, chlortetracycline and nalidixic acid, compared with SAM's test results (P<0.05). The bla(TEM) gene and the aph1 gene were detected in 35 subjects (91%) of ampicillin-resistant isolates and 6 subjects (100%) of kanamycin-resistant isolates, respectively. The tet (A) gene was detected in 62 subjects (46%) of CTC-resistant isolates, and the tet (B) gene was detected in 25 subjects (8%) of those in IAM. The present results suggest that some IAMs were the carrier of antimicrobial-resistant bacteria and their genes, and the frequencies of these resistances were different between two IAM species.

  6. A review of invasive alien species impacts on eucalypt stands and citrus orchards ecosystem services: towards an integrated management approach.

    PubMed

    Branco, Sofia; Videira, Nuno; Branco, Manuela; Paiva, Maria Rosa

    2015-02-01

    Multidisciplinary knowledge on the impact caused by invasive alien species (IAS) on ecosystems is crucial for guiding policy makers in the adoption of sustainable management measures. This research was focused on insect IAS impacts on two managed ecosystems: eucalypt plantations and citrus orchards. It begins with an identification of the wide range of ecosystem services (ES) and disservices provided by each of these managed ecosystems, according to the methodology proposed by the Millennium Ecosystem Assessment. Subsequently, a comprehensive review of studies that promoted the identification and valuation of direct and indirect impacts IAS impacts on these ecosystems was performed. From the synthesis of previous findings, an integrative management framework is advanced. This links the identification of ES, drivers of change and development of IAS management strategies by means of assessment processes that account for multiple dimensions of ES values. The article concludes with a discussion on the challenges underpinning assessment and valuation approaches that inform the design of inclusive strategies and interventions to tackle IAS impacts.

  7. Neighbour Origin and Ploidy Level Drive Impact of an Alien Invasive Plant Species in a Competitive Environment.

    PubMed

    Sun, Yan; Müller-Schärer, Heinz; Schaffner, Urs

    2016-01-01

    Our understanding of the potential mechanisms driving the spread and naturalization of alien plant species has increased over the past decades, but specific knowledge on the factors contributing to their increased impact in the introduced range is still urgently needed. The native European plant Centaurea stoebe occurs as two cytotypes with different life histories (monocarpic diploids, allo-polycarpic tetraploids). However, only tetraploids have been found in its introduced range in North America, where C. stoebe has become a most prominent plant invader. Here, we focus on the ploidy level of C. stoebe and origin of neighbouring community in explaining the high impact during the invasion of new sites in the introduced range. We conducted a mesocosm experiment under open-field conditions with the diploid (EU2x) and tetraploid (EU4x) cytotype of Centaurea stoebe from its native European (EU) range, and with the invasive tetraploid (NA4x) cytotype from the introduced North American (NA) range in competition with EU (old) or NA (new) neighbouring plant communities. In the presence of competition, the biomass of EU neighbouring community was reduced to a comparable level by all three geo-cytotypes of C. stoebe. In contrast, the biomass of the NA neighbouring community was reduced beyond when competing with tetraploid, but not with diploid C. stoebe. The fact that the biomass of all three geo-cytotypes of C. stoebe was correlated with the biomass of the EU neighbouring community, but not with that of the NA neighbouring community suggests that different mechanisms underlie the competitive interactions between C. stoebe and its old vs. new neighbouring communities, such as competition for the same limiting resources at home vs competition through novel allelo-chemicals or differential resource uptake strategies in the introduced range. We therefore caution to simply use the ecosystem impact assessed at home to predict impact in the introduced range.

  8. Neighbour Origin and Ploidy Level Drive Impact of an Alien Invasive Plant Species in a Competitive Environment

    PubMed Central

    Sun, Yan; Müller-Schärer, Heinz; Schaffner, Urs

    2016-01-01

    Our understanding of the potential mechanisms driving the spread and naturalization of alien plant species has increased over the past decades, but specific knowledge on the factors contributing to their increased impact in the introduced range is still urgently needed. The native European plant Centaurea stoebe occurs as two cytotypes with different life histories (monocarpic diploids, allo-polycarpic tetraploids). However, only tetraploids have been found in its introduced range in North America, where C. stoebe has become a most prominent plant invader. Here, we focus on the ploidy level of C. stoebe and origin of neighbouring community in explaining the high impact during the invasion of new sites in the introduced range. We conducted a mesocosm experiment under open-field conditions with the diploid (EU2x) and tetraploid (EU4x) cytotype of Centaurea stoebe from its native European (EU) range, and with the invasive tetraploid (NA4x) cytotype from the introduced North American (NA) range in competition with EU (old) or NA (new) neighbouring plant communities. In the presence of competition, the biomass of EU neighbouring community was reduced to a comparable level by all three geo-cytotypes of C. stoebe. In contrast, the biomass of the NA neighbouring community was reduced beyond when competing with tetraploid, but not with diploid C. stoebe. The fact that the biomass of all three geo-cytotypes of C. stoebe was correlated with the biomass of the EU neighbouring community, but not with that of the NA neighbouring community suggests that different mechanisms underlie the competitive interactions between C. stoebe and its old vs. new neighbouring communities, such as competition for the same limiting resources at home vs competition through novel allelo-chemicals or differential resource uptake strategies in the introduced range. We therefore caution to simply use the ecosystem impact assessed at home to predict impact in the introduced range. PMID:27203687

  9. Invasive Species

    EPA Pesticide Factsheets

    Invasive species have significantly changed the Great Lakes ecosystem. An invasive species is a plant or animal that is not native to an ecosystem, and whose introduction is likely to cause economic, human health, or environmental damage.

  10. Widespread plant species: natives vs. aliens in our changing world

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  11. Widespread plant species: Natives versus aliens in our changing world

    USGS Publications Warehouse

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  12. Comparative Functional Responses Predict the Invasiveness and Ecological Impacts of Alien Herbivorous Snails.

    PubMed

    Xu, Meng; Mu, Xidong; Dick, Jaimie T A; Fang, Miao; Gu, Dangen; Luo, Du; Zhang, Jiaen; Luo, Jianren; Hu, Yinchang

    2016-01-01

    Understanding determinants of the invasiveness and ecological impacts of alien species is amongst the most sought-after and urgent research questions in ecology. Several studies have shown the value of comparing the functional responses (FRs) of alien and native predators towards native prey, however, the technique is under-explored with herbivorous alien species and as a predictor of invasiveness as distinct from ecological impact. Here, in China, we conducted a mesocosm experiment to compare the FRs among three herbivorous snail species: the golden apple snail, Pomacea canaliculata, a highly invasive and high impact alien listed in "100 of the World's Worst Invasive Alien Species"; Planorbarius corneus, a non-invasive, low impact alien; and the Chinese native snail, Bellamya aeruginosa, when feeding on four locally occurring plant species. Further, by using a numerical response equation, we modelled the population dynamics of the snail consumers. For standard FR parameters, we found that the invasive and damaging alien snail had the highest "attack rates" a, shortest "handling times" h and also the highest estimated maximum feeding rates, 1/hT, whereas the native species had the lowest attack rates, longest handling times and lowest maximum feeding rates. The non-invasive, low impact alien species had consistently intermediate FR parameters. The invasive alien species had higher population growth potential than the native snail species, whilst that of the non-invasive alien species was intermediate. Thus, while the comparative FR approach has been proposed as a reliable method for predicting the ecological impacts of invasive predators, our results further suggest that comparative FRs could extend to predict the invasiveness and ecological impacts of alien herbivores and should be explored in other taxa and trophic groups to determine the general utility of the approach.

  13. Comparative Functional Responses Predict the Invasiveness and Ecological Impacts of Alien Herbivorous Snails

    PubMed Central

    Xu, Meng; Mu, Xidong; Dick, Jaimie T. A.; Fang, Miao; Gu, Dangen; Luo, Du; Zhang, Jiaen; Luo, Jianren; Hu, Yinchang

    2016-01-01

    Understanding determinants of the invasiveness and ecological impacts of alien species is amongst the most sought-after and urgent research questions in ecology. Several studies have shown the value of comparing the functional responses (FRs) of alien and native predators towards native prey, however, the technique is under-explored with herbivorous alien species and as a predictor of invasiveness as distinct from ecological impact. Here, in China, we conducted a mesocosm experiment to compare the FRs among three herbivorous snail species: the golden apple snail, Pomacea canaliculata, a highly invasive and high impact alien listed in “100 of the World's Worst Invasive Alien Species”; Planorbarius corneus, a non-invasive, low impact alien; and the Chinese native snail, Bellamya aeruginosa, when feeding on four locally occurring plant species. Further, by using a numerical response equation, we modelled the population dynamics of the snail consumers. For standard FR parameters, we found that the invasive and damaging alien snail had the highest “attack rates” a, shortest “handling times” h and also the highest estimated maximum feeding rates, 1/hT, whereas the native species had the lowest attack rates, longest handling times and lowest maximum feeding rates. The non-invasive, low impact alien species had consistently intermediate FR parameters. The invasive alien species had higher population growth potential than the native snail species, whilst that of the non-invasive alien species was intermediate. Thus, while the comparative FR approach has been proposed as a reliable method for predicting the ecological impacts of invasive predators, our results further suggest that comparative FRs could extend to predict the invasiveness and ecological impacts of alien herbivores and should be explored in other taxa and trophic groups to determine the general utility of the approach. PMID:26771658

  14. DNA-based identification of invasive alien species in relation to Canadian federal policy and law, and the basis of rapid-response management.

    PubMed

    Thomas, Vernon G; Hanner, Robert H; Borisenko, Alex V

    2016-11-01

    Managing invasive alien species in Canada requires reliable taxonomic identification as the basis of rapid-response management. This can be challenging, especially when organisms are small and lack morphological diagnostic features. DNA-based techniques, such as DNA barcoding, offer a reliable, rapid, and inexpensive toolkit for taxonomic identification of individual or bulk samples, forensic remains, and even environmental DNA. Well suited for this requirement, they could be more broadly deployed and incorporated into the operating policy and practices of Canadian federal departments and should be authorized under these agencies' articles of law. These include Fisheries and Oceans Canada, Canadian Food Inspection Agency, Transport Canada, Environment Canada, Parks Canada, and Health Canada. These efforts should be harmonized with the appropriate provisions of provincial jurisdictions, for example, the Ontario Invasive Species Act. This approach necessitates that a network of accredited, certified laboratories exists, and that updated DNA reference libraries are readily accessible. Harmonizing this approach is vital among Canadian federal agencies, and between the federal and provincial levels of government. Canadian policy and law must also be harmonized with that of the USA when detecting, and responding to, invasive species in contiguous lands and waters. Creating capacity in legislation for use of DNA-based identifications brings the authority to fund, train, deploy, and certify staff, and to refine further developments in this molecular technology.

  15. Invasion and Management of Agricultural Alien Insects in China.

    PubMed

    Wan, Fang-Hao; Yang, Nian-Wan

    2016-01-01

    China is the world's fourth-largest country in terms of landmass. Its highly diverse biogeography presents opportunities for many invasive alien insects. However, physical and climate barriers sometimes prevent locally occurring species from spreading. China has 560 confirmed invasive alien species; 125 are insect pests, and 92 of these damage the agricultural ecosystem. The estimated annual economic loss due to alien invasive species is more than $18.9 billion. The most harmful invasive insects exhibit some common characteristics, such as high reproduction, competitive dominance, and high tolerance, and benefit from mutualist facilitation interactions. Regional cropping system structure adjustments have resulted in mono-agricultural ecosystems in cotton and other staple crops, providing opportunities for monophagous insect pests. Furthermore, human dietary shifts to fruits and vegetables and smallholder-based farming systems result in highly diverse agricultural ecosystems, which provide resource opportunities for polyphagous insects. Multiple cropping and widespread use of greenhouses provide continuous food and winter habitats for insect pests, greatly extending their geographic range. The current management system consists of early-warning, monitoring, eradication, and spread blocking technologies. This review provides valuable new synthetic information on integrated management practices based mainly on biological control for a number of invasive species. We encourage farmers and extension workers to be more involved in training and further research for novel protection methods that takes into consideration end users' needs.

  16. Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada

    USGS Publications Warehouse

    Keeley, Jon E.; Lubin, Daniel; Fotheringham, C.J.

    2003-01-01

    Patterns of native and alien plant diversity in response to disturbance were examined along an elevational gradient in blue oak savanna, chaparral, and coniferous forests. Total species richness, alien species richness, and alien cover declined with elevation, at scales from 1 to 1000 m2. We found no support for the hypothesis that community diversity inhibits alien invasion. At the 1-m2 point scale, where we would expect competitive interactions between the largely herbaceous flora to be most intense, alien species richness as well as alien cover increased with increasing native species richness in all communities. This suggests that aliens are limited not by the number of native competitors, but by resources that affect establishment of both natives and aliens.Blue oak savannas were heavily dominated by alien species and consistently had more alien than native species at the 1-m2 scale. All of these aliens are annuals, and it is widely thought that they have displaced native bunchgrasses. If true, this means that aliens have greatly increased species richness. Alternatively, there is a rich regional flora of native annual forbs that could have dominated these grasslands prior to displacement by alien grasses. On our sites, livestock grazing increased the number of alien species and alien cover only slightly over that of sites free of livestock grazing for more than a century, indicating some level of permanency to this invasion.In chaparral, both diversity and aliens increased markedly several years after fire. Invasive species are rare in undisturbed shrublands, and alien propagules fail to survive the natural crown fires in these ecosystems. Thus, aliens necessarily must colonize after fire and, as a consequence, time since fire is an important determinant of invasive presence. Blue oak savannas are an important propagule source for alien species because they maintain permanent populations of all alien species encountered in postfire chaparral, and because the

  17. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    USGS Publications Warehouse

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  18. Differences in evolutionary history translate into differences in invasion success of alien mammals in South Africa

    PubMed Central

    Yessoufou, Kowiyou; Gere, Jephris; Daru, Barnabas H; van der Bank, Michelle

    2014-01-01

    Attempts to investigate the drivers of invasion success are generally limited to the biological and evolutionary traits distinguishing native from introduced species. Although alien species introduced to the same recipient environment differ in their invasion intensity – for example, some are “strong invaders”; others are “weak invaders” – the factors underlying the variation in invasion success within alien communities are little explored. In this study, we ask what drives the variation in invasion success of alien mammals in South Africa. First, we tested for taxonomic and phylogenetic signal in invasion intensity. Second, we reconstructed predictive models of the variation in invasion intensity among alien mammals using the generalized linear mixed-effects models. We found that the family Bovidae and the order Artiodactyla contained more “strong invaders” than expected by chance, and that such taxonomic signal did not translate into phylogenetic selectivity. In addition, our study indicates that latitude, gestation length, social group size, and human population density are only marginal determinant of the variation in invasion success. However, we found that evolutionary distinctiveness – a parameter characterising the uniqueness of each alien species – is the most important predictive variable. Our results indicate that the invasive behavior of alien mammals may have been “fingerprinted” in their evolutionary past, and that evolutionary history might capture beyond ecological, biological and life-history traits usually prioritized in predictive modeling of invasion success. These findings have applicability to the management of alien mammals in South Africa. PMID:25360253

  19. Differences in evolutionary history translate into differences in invasion success of alien mammals in South Africa.

    PubMed

    Yessoufou, Kowiyou; Gere, Jephris; Daru, Barnabas H; van der Bank, Michelle

    2014-06-01

    Attempts to investigate the drivers of invasion success are generally limited to the biological and evolutionary traits distinguishing native from introduced species. Although alien species introduced to the same recipient environment differ in their invasion intensity - for example, some are "strong invaders"; others are "weak invaders" - the factors underlying the variation in invasion success within alien communities are little explored. In this study, we ask what drives the variation in invasion success of alien mammals in South Africa. First, we tested for taxonomic and phylogenetic signal in invasion intensity. Second, we reconstructed predictive models of the variation in invasion intensity among alien mammals using the generalized linear mixed-effects models. We found that the family Bovidae and the order Artiodactyla contained more "strong invaders" than expected by chance, and that such taxonomic signal did not translate into phylogenetic selectivity. In addition, our study indicates that latitude, gestation length, social group size, and human population density are only marginal determinant of the variation in invasion success. However, we found that evolutionary distinctiveness - a parameter characterising the uniqueness of each alien species - is the most important predictive variable. Our results indicate that the invasive behavior of alien mammals may have been "fingerprinted" in their evolutionary past, and that evolutionary history might capture beyond ecological, biological and life-history traits usually prioritized in predictive modeling of invasion success. These findings have applicability to the management of alien mammals in South Africa.

  20. Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator

    PubMed Central

    2016-01-01

    The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species) and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring. PMID:26882479

  1. Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator.

    PubMed

    Acosta, André L; Giannini, Tereza C; Imperatriz-Fonseca, Vera L; Saraiva, Antonio M

    2016-01-01

    The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species) and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring.

  2. The global avian invasions atlas, a database of alien bird distributions worldwide

    PubMed Central

    Dyer, Ellie E.; Redding, David W.; Blackburn, Tim M.

    2017-01-01

    The introduction of species to locations where they do not naturally occur (termed aliens) can have far-reaching and unpredictable environmental and economic consequences. Therefore there is a strong incentive to stem the tide of alien species introduction and spread. In order to identify broad patterns and processes of alien invasions, a spatially referenced, global dataset on the historical introductions and alien distributions of a complete taxonomic group is required. Here we present the Global Avian Invasions Atlas (GAVIA)—a new spatial and temporal dataset comprising 27,723 distribution records for 971 alien bird species introduced to 230 countries and administrative areas spanning the period 6000BCE—AD2014. GAVIA was initiated to provide a unified database of records on alien bird introductions, incorporating records from all stages of invasion, including introductions that have failed as well as those that have succeeded. GAVIA represents the most comprehensive resource on the global distribution of alien species in any major taxon, allowing the spatial and temporal dynamics of alien bird distributions to be examined. PMID:28350387

  3. Loss or gain? Invasive aliens and biodiversity in the Mediterranean Sea.

    PubMed

    Galil, B S

    2007-01-01

    More than 500 alien species were listed from the Mediterranean Sea. Though no extinction of a native species is known, sudden decline in abundance, and even local extirpations, concurrent with proliferation of aliens, had been recorded. Examination of the profound ecological impacts of some of the most conspicuous invasive alien species underscores their role, among multiple anthropogenic stressors, in altering the infralittoral communities. Local population losses and niche contraction of native species may not induce immediate extirpation, but they augur reduction of genetic diversity, loss of functions, processes, and habitat structure, increase the risk of decline and extinction, and lead to biotic homogenization. The relevant environmental policy and management framework is discussed.

  4. No saturation in the accumulation of alien species worldwide.

    PubMed

    Seebens, Hanno; Blackburn, Tim M; Dyer, Ellie E; Genovesi, Piero; Hulme, Philip E; Jeschke, Jonathan M; Pagad, Shyama; Pyšek, Petr; Winter, Marten; Arianoutsou, Margarita; Bacher, Sven; Blasius, Bernd; Brundu, Giuseppe; Capinha, César; Celesti-Grapow, Laura; Dawson, Wayne; Dullinger, Stefan; Fuentes, Nicol; Jäger, Heinke; Kartesz, John; Kenis, Marc; Kreft, Holger; Kühn, Ingolf; Lenzner, Bernd; Liebhold, Andrew; Mosena, Alexander; Moser, Dietmar; Nishino, Misako; Pearman, David; Pergl, Jan; Rabitsch, Wolfgang; Rojas-Sandoval, Julissa; Roques, Alain; Rorke, Stephanie; Rossinelli, Silvia; Roy, Helen E; Scalera, Riccardo; Schindler, Stefan; Štajerová, Kateřina; Tokarska-Guzik, Barbara; van Kleunen, Mark; Walker, Kevin; Weigelt, Patrick; Yamanaka, Takehiko; Essl, Franz

    2017-02-15

    Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970-2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.

  5. No saturation in the accumulation of alien species worldwide

    PubMed Central

    Seebens, Hanno; Blackburn, Tim M.; Dyer, Ellie E.; Genovesi, Piero; Hulme, Philip E.; Jeschke, Jonathan M.; Pagad, Shyama; Pyšek, Petr; Winter, Marten; Arianoutsou, Margarita; Bacher, Sven; Blasius, Bernd; Brundu, Giuseppe; Capinha, César; Celesti-Grapow, Laura; Dawson, Wayne; Dullinger, Stefan; Fuentes, Nicol; Jäger, Heinke; Kartesz, John; Kenis, Marc; Kreft, Holger; Kühn, Ingolf; Lenzner, Bernd; Liebhold, Andrew; Mosena, Alexander; Moser, Dietmar; Nishino, Misako; Pearman, David; Pergl, Jan; Rabitsch, Wolfgang; Rojas-Sandoval, Julissa; Roques, Alain; Rorke, Stephanie; Rossinelli, Silvia; Roy, Helen E.; Scalera, Riccardo; Schindler, Stefan; Štajerová, Kateřina; Tokarska-Guzik, Barbara; van Kleunen, Mark; Walker, Kevin; Weigelt, Patrick; Yamanaka, Takehiko; Essl, Franz

    2017-01-01

    Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization. PMID:28198420

  6. Physico-chemical variables determining the invasion risk of freshwater habitats by alien mollusks and crustaceans

    PubMed Central

    Früh, Denise; Stoll, Stefan; Haase, Peter

    2012-01-01

    The aim of this study was to assess the invasion risk of freshwater habitats and determine the environmental variables that are most favorable for the establishment of alien amphipods, isopods, gastropods, and bivalves. A total of 981 sites located in streams and rivers in Germany. Therefore we analyzed presence–absence data of alien and indigenous amphipods, isopods, gastropods, and bivalves from 981 sites located in small to large rivers in Germany with regard to eight environmental variables: chloride, ammonium, nitrate, oxygen, orthophosphate, distance to the next navigable waterway, and maximum and minimum temperature. Degraded sites close to navigable waters were exposed to an increased invasion risk by all major groups of alien species. Moreover, invaded sites by all four groups of alien species were similar, whereas the sites where indigenous members of the four groups occurred were more variable. Increased temperature and chloride concentration as well as decreased oxygen concentration were identified as major factors for the invasibility of a site. Species-specific analyses showed that chloride was among the three most predictive environmental variables determining species assemblage in all four taxonomic groups. Also distance to the next navigable waterways was similarly important. Additionally, the minimum temperature was among the most important variables for amphipods, isopods, and bivalves. The bias in the occurrence patterns of alien species toward similarly degraded habitats suggests that the members of all four major groups of freshwater alien species are a non-random, more tolerant set of species. Their common tolerance to salinity, high temperature, and oxygen depletion may reflect that most alien species were spread in ballast water tanks, where strong selective pressures, particularly temperature fluctuations, oxygen depletion, and increased salinity may create a bottleneck for successful invasion. Knowledge on the major factors that

  7. Invasive alien species water hyacinth Eichhornia crassipes as abode for macroinvertebrates in hypertrophic Ramsar Site, Lake Xochimilco, Mexico.

    PubMed

    Rocha-Ramirez, A; Robles-Valderrama, E; Ramirez-Flores, E

    2014-11-01

    This paper presents information on the density, diversity and functional feeding groups of macroinvertebrate assemblages associated with water hyacinth in Antiguo Canal Cuemanco, part of Lake Xochimilco in Mexico City. Rare (low frequency and density) and dominant (high frequency and density) taxa prevailed in the assemblages, with the most predominant being Hyalella azteca, Chironomus plumosus and Ischnura denticollis. Nonmetric Multidimensional Scaling confirmed two climatic seasons: warm-rainy and cold-dry; the former with the highest diversity and density of taxa. Canonical Correspondence Analysis showed that conductivity, nitrates and turbidity explained the density variations of taxa. Antiguo Canal Cuemanco waters are spatially homogeneous with the characteristics of hypertrophic shallow lakes, inhabited by scrapers and gathering-collectors. The species found were tolerant to organic pollution.

  8. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    USGS Publications Warehouse

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  9. Do invasive alien plants benefit more from global environmental change than native plants?

    PubMed

    Liu, Yanjie; Oduor, Ayub M O; Zhang, Zhen; Manea, Anthony; Tooth, Ifeanna M; Leishman, Michelle R; Xu, Xingliang; van Kleunen, Mark

    2016-11-26

    Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta-analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above-mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: P = 0.051; increased precipitation: P = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (P = 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future.

  10. Ornamental plants as invasive aliens: problems and solutions in Kruger National Park, South Africa.

    PubMed

    Foxcroft, Llewellyn C; Richardson, David M; Wilson, John R U

    2008-01-01

    The most widespread invasive alien plant species in South Africa's Kruger National Park (KNP) were either introduced unintentionally along rivers and roads, or intentionally for use as ornamentals. We examine the spatial distribution of ornamental alien plants in KNP, look at the link between human population size, history, and species richness, and show how the distribution of particular species reflects the likely history of ornamental plantings. Results are used to assess whether past management actions have been appropriately directed. Two hundred and fifty-eight alien species have been recorded in the 36 tourist camps and staff villages. The number of staff housed in villages explains much of the diversity of cultivated alien plant species. Older camps also tend to have more ornamental alien plant species. However, the lack of a strong link between camp age and number of cultivated species suggests that ornamental plants have been widely spread around the KNP by humans. We also show that increased camp activity (either size or age) has led to more ornamental species, while, with the notable exception of Skukuza, camp activity has had a much smaller effect on the number of noncultivated species. Noncultivated species tend to be naturally dispersed, as opposed to directly spread by humans between camps. Past management prioritized certain species on the basis of their potential to invade KNP and on the prevailing national legislation. These species were removed manually and follow-up control was carried out. Once the priority species were deemed to be under control, less invasive species were targeted. All alien species were removed from vacated houses, regardless of the potential invasiveness of the species.

  11. Ornamental Plants as Invasive Aliens: Problems and Solutions in Kruger National Park, South Africa

    NASA Astrophysics Data System (ADS)

    Foxcroft, Llewellyn C.; Richardson, David M.; Wilson, John R. U.

    2008-01-01

    The most widespread invasive alien plant species in South Africa’s Kruger National Park (KNP) were either introduced unintentionally along rivers and roads, or intentionally for use as ornamentals. We examine the spatial distribution of ornamental alien plants in KNP, look at the link between human population size, history, and species richness, and show how the distribution of particular species reflects the likely history of ornamental plantings. Results are used to assess whether past management actions have been appropriately directed. Two hundred and fifty-eight alien species have been recorded in the 36 tourist camps and staff villages. The number of staff housed in villages explains much of the diversity of cultivated alien plant species. Older camps also tend to have more ornamental alien plant species. However, the lack of a strong link between camp age and number of cultivated species suggests that ornamental plants have been widely spread around the KNP by humans. We also show that increased camp activity (either size or age) has led to more ornamental species, while, with the notable exception of Skukuza, camp activity has had a much smaller effect on the number of noncultivated species. Noncultivated species tend to be naturally dispersed, as opposed to directly spread by humans between camps. Past management prioritized certain species on the basis of their potential to invade KNP and on the prevailing national legislation. These species were removed manually and follow-up control was carried out. Once the priority species were deemed to be under control, less invasive species were targeted. All alien species were removed from vacated houses, regardless of the potential invasiveness of the species.

  12. Applications of Remote Sensing to Alien Invasive Plant Studies

    PubMed Central

    Huang, Cho-ying; Asner, Gregory P.

    2009-01-01

    Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558

  13. Recent cases of invasive alien mites and ticks in Japan: why is a regulatory framework needed?

    PubMed

    Goka, Koichi; Okabe, Kimiko; Takano, Ai

    2013-02-01

    Japan's economy depends on the importation of natural resources, and as a result, Japan is subjected to a high risk of biological invasion. Although Japan has quarantine systems to protect ecosystems, agriculture, forestry, fisheries, and human health against alien species, economic globalization has resulted in an ever-increasing risk of invasion. Mite invasion is no exception. Alien species that impact natural ecosystems are regulated in Japan by the Invasive Alien Species Act. However, the law focuses only on visibly recognizable species, so that species too small to see, such as viruses, bacteria, fungi, and mites, are beyond the scope of this law. The Plant Protection Law has limited the introduction of alien pests, including mites, that are harmful to agricultural crops. Recently, the liberalization of global trade policies have increased pressure to loosen regulations on various pests, including spider mites. Infectious diseases and their causative species are quarantined under the Rabies Prevention Law, the Domestic Animal Infectious Diseases Control Law, and the Human Infectious Diseases Control Law, but these laws do not cover wildlife diseases. The most serious problem is that wild reptiles, which can be carriers of ticks and tick-borne diseases, can be freely introduced to Japan. These loopholes in Japan's regulatory system have resulted in mite and tick invasions, which affect not only wildlife communities and human society but also endemism and biological diversity of natural mite populations.

  14. Living with the enemy: parasites and pathogens of the invasive alien ladybird Harmonia axyridis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmonia axyridis is an invasive alien predator in many countries across the world. The rapid establishment and spread of this species is of concern because of the threat it poses to biodiversity as a generalist predator. Understanding the mechanisms that contribute to the success of this species ...

  15. A meta-analysis of trait differences between invasive and non-invasive plant species.

    PubMed

    van Kleunen, Mark; Weber, Ewald; Fischer, Markus

    2010-02-01

    A major aim in ecology is identifying determinants of invasiveness. We performed a meta-analysis of 117 field or experimental-garden studies that measured pair-wise trait differences of a total of 125 invasive and 196 non-invasive plant species in the invasive range of the invasive species. We tested whether invasiveness is associated with performance-related traits (physiology, leaf-area allocation, shoot allocation, growth rate, size and fitness), and whether such associations depend on type of study and on biogeographical or biological factors. Overall, invasive species had significantly higher values than non-invasive species for all six trait categories. More trait differences were significant for invasive vs. native comparisons than for invasive vs. non-invasive alien comparisons. Moreover, for comparisons between invasive species and native species that themselves are invasive elsewhere, no trait differences were significant. Differences in physiology and growth rate were larger in tropical regions than in temperate regions. Trait differences did not depend on whether the invasive alien species originates from Europe, nor did they depend on the test environment. We conclude that invasive alien species had higher values for those traits related to performance than non-invasive species. This suggests that it might become possible to predict future plant invasions from species traits.

  16. Seed dispersal networks in the Galápagos and the consequences of alien plant invasions.

    PubMed

    Heleno, Ruben H; Olesen, Jens M; Nogales, Manuel; Vargas, Pablo; Traveset, Anna

    2013-01-07

    Alien plants are a growing threat to the Galápagos unique biota. We evaluated the impact of alien plants on eight seed dispersal networks from two islands of the archipelago. Nearly 10 000 intact seeds from 58 species were recovered from the droppings of 18 bird and reptile dispersers. The most dispersed invaders were Lantana camara, Rubus niveus and Psidium guajava, the latter two likely benefiting from an asynchronous fruit production with most native plants, which facilitate their consumption and spread. Lava lizards dispersed the seeds of 27 species, being the most important dispersers, followed by small ground finch, two mockingbirds, the giant tortoise and two insectivorous birds. Most animals dispersed alien seeds, but these formed a relatively small proportion of the interactions. Nevertheless, the integration of aliens was higher in the island that has been invaded for longest, suggesting a time-lag between alien plant introductions and their impacts on seed dispersal networks. Alien plants become more specialized with advancing invasion, favouring more simplified plant and disperser communities. However, only habitat type significantly affected the overall network structure. Alien plants were dispersed via two pathways: dry-fruited plants were preferentially dispersed by finches, while fleshy fruited species were mostly dispersed by other birds and reptiles.

  17. Seed dispersal networks in the Galápagos and the consequences of alien plant invasions

    PubMed Central

    Heleno, Ruben H.; Olesen, Jens M.; Nogales, Manuel; Vargas, Pablo; Traveset, Anna

    2013-01-01

    Alien plants are a growing threat to the Galápagos unique biota. We evaluated the impact of alien plants on eight seed dispersal networks from two islands of the archipelago. Nearly 10 000 intact seeds from 58 species were recovered from the droppings of 18 bird and reptile dispersers. The most dispersed invaders were Lantana camara, Rubus niveus and Psidium guajava, the latter two likely benefiting from an asynchronous fruit production with most native plants, which facilitate their consumption and spread. Lava lizards dispersed the seeds of 27 species, being the most important dispersers, followed by small ground finch, two mockingbirds, the giant tortoise and two insectivorous birds. Most animals dispersed alien seeds, but these formed a relatively small proportion of the interactions. Nevertheless, the integration of aliens was higher in the island that has been invaded for longest, suggesting a time-lag between alien plant introductions and their impacts on seed dispersal networks. Alien plants become more specialized with advancing invasion, favouring more simplified plant and disperser communities. However, only habitat type significantly affected the overall network structure. Alien plants were dispersed via two pathways: dry-fruited plants were preferentially dispersed by finches, while fleshy fruited species were mostly dispersed by other birds and reptiles. PMID:23173203

  18. Status of biological control projects on terrestrial invasive alien weeds in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...

  19. Variation in the strength of reproductive interference from an alien congener to a native species in Taraxacum.

    PubMed

    Nishida, Sachiko; Hashimoto, Keisuke; Kanaoka, Masahiro M; Takakura, Ko-Ichi; Nishida, Takayoshi

    2017-01-01

    Reproductive interference (RI) may be a contributing factor to the displacement of native species by an alien congener, and RI strength has been shown theoretically to affect distributional relationships between species. Thus, variations in RI strength from alien to native species result in different consequences of invasions and efforts to conserve native species, but the variations have seldom been examined empirically. We therefore investigated RI strength variations from the alien species Taraxacum officinale and its hybrids to eight populations of native dandelions, four T. japonicum populations and two populations each of two subspecies of T. platycarpum. We examined the association between alien relative abundance and native seed set in field surveys, and we also performed hand-pollination experiments to investigate directly the sensitivity of native flowers to alien pollen. We found that the effect of alien relative abundance on native seed set of even the same native species could differ greatly in different regions, and that the sensitivity of native flowers to alien pollen was also dependent on region. Our results, together with those of previous studies, show that RI from the alien to the native species is strong in regions where the alien species outnumbers the native species and marginal where it does not; this result suggests that alien RI can critically affect distributional relationships between native and alien species. Our study highlights the importance of performing additional empirical investigations of RI strength variation and of giving due attention to alien RI in efforts to conserve regional native biodiversity.

  20. Index of Alien Impact: A method for evaluating potential ecological impact of alien plant species

    EPA Science Inventory

    Alien plant species are stressors to ecosystems and indicators of reduced ecosystem integrity. The magnitude of the stress reflects not only the quantity of aliens present, but also the quality of their interactions with native ecosystems. We develop an Index of Alien Impact (IAI...

  1. Are soil mite assemblages structured by the identity of native and invasive alien grasses?

    PubMed

    St John, Mark G; Wall, Diana H; Hunt, H William

    2006-05-01

    Associations between plants and animals in aboveground communities are often predictable and specific. This has been exploited for the purposes of estimating the diversity of animal species based on the diversity of plant species. The introduction of invasive alien plants into an ecosystem can result in dramatic changes in both the native plant and animal assemblages. Few data exist at the species level to determine whether belowground animal assemblages share the same degree of association to plants. The hypotheses that soil mites (Acari) form assemblages specifically associated with different native grass species in an unmanipulated natural ecosystem and that invasive alien grasses will impact soil mite assemblage composition in this setting were tested. Soil mites sampled beneath five native and two invasive alien species of grasses at the Konza Prairie Biological Station, Kansas, USA, were similarly abundant, species rich, diverse, and taxonomically distinct. No mite species had affinities for a specific grass species. There was no evidence from analysis of similarity, canonical correspondence analysis, or a nonparametric assemblage analysis that the assemblage composition of soil mites was specific to grass species. Results suggest that soil mite assemblages were more related to characteristics of the plant assemblage as a whole or prevailing soil conditions. The most recent invasive alien grass did not support a successionally younger mite fauna, based on the ratio of mesostigmatid to oribatid mites, and neither of the two invasive grasses influenced mite assemblage structure, possibly because they had not yet substantially altered the soil environment. Our results suggest that extrapolations of soil mite diversity based on assumptions of plant specificity would be invalid.

  2. The Global Distribution and Drivers of Alien Bird Species Richness

    PubMed Central

    Dyer, Ellie E.; Cassey, Phillip; Redding, David W.; Collen, Ben; Franks, Victoria; Gaston, Kevin J.; Jones, Kate E.; Kark, Salit; Orme, C. David L.; Blackburn, Tim M.

    2017-01-01

    Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., “colonisation pressure”). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species. PMID:28081142

  3. The Global Distribution and Drivers of Alien Bird Species Richness.

    PubMed

    Dyer, Ellie E; Cassey, Phillip; Redding, David W; Collen, Ben; Franks, Victoria; Gaston, Kevin J; Jones, Kate E; Kark, Salit; Orme, C David L; Blackburn, Tim M

    2017-01-01

    Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., "colonisation pressure"). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species.

  4. Invasive species in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production of food, feed, fiber or fuel is a local human activity with global ecological impacts, including the potential to foster invasions. Agriculture plays an unusual role in biological invasions, in that it is both a source of non-indigenous invasive species (NIS) and especially s...

  5. Recovery of endemic dragonflies after removal of invasive alien trees.

    PubMed

    Samways, Michael J; Sharratt, Norma J

    2010-02-01

    Because dragonflies are very sensitive to alien trees, we assessed their response to large-scale restoration of riparian corridors. We compared three types of disturbance regime--alien invaded, cleared of alien vegetation, and natural vegetation (control)--and recorded data on 22 environmental variables. The most significant variables in determining dragonfly assemblages were percentage of bank cover and tree canopy cover, which indicates the importance of vegetation architecture for these dragonflies. This finding suggests that it is important to restore appropriate marginal vegetation and sunlight conditions. Recovery of dragonfly assemblages after the clearing of alien trees was substantial. Species richness and abundance at restored sites matched those at control sites. Dragonfly assemblage patterns reflected vegetation succession. Thus, initially eurytopic, widespread species were the main beneficiaries of the removal of alien trees, and stenotopic, endemic species appeared after indigenous vegetation recovered over time. Important indicator species were the two national endemics (Allocnemis leucosticta and Pseudagrion furcigerum), which, along with vegetation type, can be used to monitor return of overall integrity of riparian ecology and to make management decisions. Endemic species as a whole responded positively to restoration, which suggests that indigenous vegetation recovery has major benefits for irreplaceable and widespread generalist species.

  6. Invasion trajectory of alien trees: the role of introduction pathway and planting history.

    PubMed

    Donaldson, Jason E; Hui, Cang; Richardson, David M; Robertson, Mark P; Webber, Bruce L; Wilson, John R U

    2014-05-01

    Global change is driving a massive rearrangement of the world's biota. Trajectories of distributional shifts are shaped by species traits, the recipient environment and driving forces with many of the driving forces directly due to human activities. The relative importance of each in determining the distributions of introduced species is poorly understood. We consider 11 Australian Acacia species introduced to South Africa for different reasons (commercial forestry, dune stabilization and ornamentation) to determine how features of the introduction pathway have shaped their invasion history. Projections from species distribution models (SDMs) were developed to assess how the reason for introduction influences the similarity between climatic envelopes in native and alien ranges. A lattice model for an idealized invasion was developed to assess the relative contribution of intrinsic traits and introduction dynamics on the abundance and extent over the course of simulated invasions. SDMs show that alien populations of ornamental species in South Africa occupy substantially different climate space from their native ranges, whereas species introduced for forestry occupy a similar climate space in native and introduced ranges. This may partly explain the slow spread rates observed for some alien ornamental plants. Such mismatches are likely to become less pronounced with the current drive towards 'eco gardens' resulting in more introductions of ornamental species with a close climate match between native and newly introduced regions. The results from the lattice model showed that the conditions associated with the introduction pathway (especially introduction pressure) dominate early invasion dynamics. The placement of introduction foci in urban areas limited the extent and abundance of invasive populations. Features of introduction events appear to initially mask the influence of intrinsic species traits on invasions and help to explain the relative success of species

  7. Ecophysiology of native and alien-invasive clams in an ocean warming context.

    PubMed

    Anacleto, Patrícia; Maulvault, Ana Luísa; Lopes, Vanessa M; Repolho, Tiago; Diniz, Mário; Nunes, Maria Leonor; Marques, António; Rosa, Rui

    2014-09-01

    Both climate change and biological invasions are among the most serious global environmental threats. Yet mechanisms underlying these eventual interactions remain unclear. The aim of this study was to undertake a comprehensive examination of the physiological and biochemical responses of native (Ruditapes decussatus) and alien-invasive (Ruditapes philippinarum) clams to environmental warming. We evaluated thermal tolerance limits (CTMax), routine metabolic rates (RMRs) and respective thermal sensitivity (Q10 values), critical oxygen partial pressure (Pcrit), heat shock response (HSP70/HSC70 levels), lipid peroxidation (MDA build-up) and antioxidant enzyme [glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD)] activities. Contrary to most studies that show that invasive species have a higher thermal tolerance than native congeners, here we revealed that the alien-invasive and native species had similar CTMax values. However, warming had a stronger effect on metabolism and oxidative status of the native R. decussatus, as indicated by the higher RMRs and HSP70/HSC70 and MDA levels, as well as GST, CAT and SOD activities. Moreover, we argue that the alien-invasive clams, instead of up-regulating energetically expensive cellular responses, have evolved a less demanding strategy to cope with short-term environmental (oxidative) stress-pervasive valve closure. Although efficient during stressful short-term periods to ensure isolation and guarantee longer survival, such adaptive behavioural strategy entails metabolic arrest (and the enhancement of anaerobic pathways), which to some extent will not be advantageous under the chronically warming conditions predicted in the future.

  8. The role of the World Trade Organization and the 'three sisters' (the World Organisation for Animal Health, the International Plant Protection Convention and the Codex Alimentarius Commission) in the control of invasive alien species and the preservation of biodiversity.

    PubMed

    Kahn, S; Pelgrim, W

    2010-08-01

    The missions of the World Organisation for Animal Health (OIE) include the design of surveillance and control methods for infectious transboundary animal diseases (including zoonoses), the provision of guarantees concerning animal health and animal production food safety, and the setting of standards for, and promotion of, animal welfare. The OIE role in setting standards for the sanitary safety of international trade in animals and animal products is formally recognised in the World Trade Organization (WTO) Agreement on the Application of Sanitary and Phytosanitary Measures (the SPS Agreement). While the primary focus of the OIE is on animal diseases and zoonoses, the OIE has also been working within the WTO framework to examine possible contributions the organisation can make to achieving the goals of the Convention on Biological Diversity, particularly to preventing the global spread of invasive alien species (IAS). However, at the present time, setting standards for invasive species (other than those connected to the cause and distribution of diseases listed by the OIE) is outside the OIE mandate. Any future expansion of the OIE mandate would need to be decided by its Members and resources (expertise and financial contributions) for an extended standard-setting work programme secured. The other international standard-setting organisations referenced by the SPS Agreement are the International Plant Protection Convention (IPPC) and the Codex Alimentarius Commission (CAC). The IPPC mandate and work programme address IAS and the protection of biodiversity. The CAC is not involved in this field.

  9. Alien species as a driver of recent extinctions.

    PubMed

    Bellard, Céline; Cassey, Phillip; Blackburn, Tim M

    2016-02-01

    We assessed the prevalence of alien species as a driver of recent extinctions in five major taxa (plants, amphibians, reptiles, birds and mammals), using data from the IUCN Red List. Our results show that alien species are the second most common threat associated with species that have gone completely extinct from these taxa since AD 1500. Aliens are the most common threat associated with extinctions in three of the five taxa analysed, and for vertebrate extinctions overall.

  10. Alien species as a driver of recent extinctions

    PubMed Central

    Bellard, Céline; Cassey, Phillip

    2016-01-01

    We assessed the prevalence of alien species as a driver of recent extinctions in five major taxa (plants, amphibians, reptiles, birds and mammals), using data from the IUCN Red List. Our results show that alien species are the second most common threat associated with species that have gone completely extinct from these taxa since AD 1500. Aliens are the most common threat associated with extinctions in three of the five taxa analysed, and for vertebrate extinctions overall. PMID:26888913

  11. Effects of fruit position on fruit mass and seed germination in the alien species Heracleum mantegazzianum (Apiaceae) and the implications for its invasion

    NASA Astrophysics Data System (ADS)

    Moravcová, Lenka; Perglová, Irena; Pyšek, Petr; Jarošík, Vojtěch; Pergl, Jan

    2005-07-01

    The aims of this paper are to determine whether the effect of position of fruit on a plant affects the germination characteristics of seed of Heracleum mantegazzianum (Apiaceae), a Caucasian species invasive in Europe, and the germination potential of this species. Reproductive characteristics of H. mantegazzianum were studied at seven sites in the Czech Republic where this species is abundant. Fruits were collected and weighed from eight plants at each site, from three umbel types (terminal, satellite and branch) and two fruit positions within an umbel (central or marginal). Characteristics of individual umbels (duration of flowering, size) and plants (fecundity, age, height, basal diameter) were recorded. Percentage germination and germination rate (time to when 50% of the seeds had germinated) were assessed. At each site, fruit mass and percentage germination varied greatly among plants. Fruits from terminal inflorescences were heavier than those from satellites and branches, and those produced in the centre of an umbel were heavier than those from the margin. Mean percentage germination was 91%, which varied among sites but was not affected by fruit position on a plant. Germination rate increased with fruit mass. Neither umbel size nor time of flowering had a significant effect on germination characteristics. At some sites, there was a negative relationship between fruit mass and plant height. A combination of reproductive traits (high fecundity, high germination capacity, opportunistic behaviour associated with limited effect of fruit position on a plant on germination characteristics) might determine this species ability to successfully invade new habitats.

  12. Habitat invasibility and dominance by alien annual plants in the western Mojave Desert

    USGS Publications Warehouse

    Brooks, M.L.

    1999-01-01

    Patterns of habitat invasibility and alien dominance, respectively measured as species richness and biomass of alien annual plants, were evaluated in association with four habitat factors at the Desert Tortoise Research Natural Area (DTNA) in the western Mojave Desert, USA. Habitat factors varied in levels of disturbance outside (high) and inside (low) the DTNA, and in levels of soil nutrients in washlet (high) and hummock (low) topographic positions, in Larrea-north (high), Larrea-south (medium), and interspace (low) microhabitats near creosote bushes (Larrea tridentata), and during 1995 when rainfall was 207% (high) and 1994 when rainfall was 52% (low) of the long-term average. Dominant alien plants included the annual grasses Bromus rubens, Bromus trinii, and Schismus spp., and the forb Erodium cicutarium. Species richness and dominance of alien annual plants were slightly higher where disturbance was high, and much higher where soil nutrients were high. B. rubens and B. trinii were most dominant in washlets and in the Larrea-north microhabitats during both years. These two species evolved in mesic ecosystems, and appeared to be particularly limited by soil nutrients at this site. Schismus spp. and E. cicutarium were also most dominant in washlets, but their dominance varied between interspaces in 1994 and the Larrea-south microhabitat in 1995. Monitoring to detect the invasion of new annual plants should focus on regions of high rainfall and nitrogen deposition and on washes and beneath-canopy microhabitats. The ecological range of each alien species should be evaluated separately, because their evolutionary origins may greatly affect their patterns of invasion and dominance in the Mojave Desert.

  13. Putative linkages between below- and aboveground mutualisms during alien plant invasions

    PubMed Central

    Rodríguez-Echeverría, Susana; Traveset, Anna

    2015-01-01

    Evidence of the fundamental role of below–aboveground links in controlling ecosystem processes is mostly based on studies done with soil herbivores or mutualists and aboveground herbivores. Much less is known about the links between belowground and aboveground mutualisms, which have been studied separately for decades. It has not been until recently that these mutualisms—mycorrhizas and legume–rhizobia on one hand, and pollinators and seed dispersers on the other hand—have been found to influence each other, with potential ecological and evolutionary consequences. Here we review the mechanisms that may link these two-level mutualisms, mostly reported for native plant species, and make predictions about their relevance during alien plant invasions. We propose that alien plants establishing effective mutualisms with belowground microbes might improve their reproductive success through positive interactions between those mutualists and pollinators and seed dispersers. On the other hand, changes in the abundance and diversity of soil mutualists induced by invasion can also interfere with below–aboveground links for native plant species. We conclude that further research on this topic is needed in the field of invasion ecology as it can provide interesting clues on synergistic interactions and invasional meltdowns during alien plant invasions. PMID:26034049

  14. Spatial scale and species identity influence the indigenous-alien diversity relationship in springtails.

    PubMed

    Terauds, Aleks; Chown, Steven L; Bergstrom, Dana M

    2011-07-01

    Although theory underlying the invasion paradox, or the change in the relationship between the richness of alien and indigenous species from negative to positive with increasing spatial scale, is well developed and much empirical work on the subject has been undertaken, most of the latter has concerned plants and to a lesser extent marine invertebrates. Here we therefore examine the extent to which the relationships between indigenous and alien species richness change from the local metacommunity to the interaction neighborhood scales, and the influences of abundance, species identity, and environmental favorability thereon, in springtails, a significant component of the soil fauna. Using a suite of modeling techniques, including generalized least squares and geographically weighted regressions to account for spatial autocorrelation or nonstationarity of the data, we show that the abundance and species richness of both indigenous and alien species at the metacommunity scale respond strongly to declining environmental favorability, represented here by altitude. Consequently, alien and indigenous diversity covary positively at this scale. By contrast, relationships are more complex at the interaction neighborhood scale, with the relationship among alien species richness and/or density and the density of indigenous species varying between habitats, being negative in some, but positive in others. Additional analyses demonstrated a strong influence of species identity, with negative relationships identified at the interaction neighborhood scale involving alien hypogastrurid springtails, a group known from elsewhere to have negative effects on indigenous species in areas where they have been introduced. By contrast, diversity relationships were positive with the other alien species. These results are consistent with both theory and previous empirical findings for other taxa, that interactions among indigenous and alien species change substantially with spatial scale and

  15. New alien barnacles in the Azores and some remarks on the invasive potential of Balanidae

    NASA Astrophysics Data System (ADS)

    Torres, Paulo; Costa, Ana Cristina; Dionísio, Maria Ana

    2012-12-01

    Global homogenization of biota is underway through worldwide introduction and establishment of non-indigenous (exotic) species. Organisms fouling ship hulls are continually in transit and can affect communities through biodiversity loss and serious damage to economy and public health. In the Azores, for the first time, underwater alien species prospection was conducted in marinas and recreational harbours, at São Miguel Island. Populations of three locally previously unknown barnacle species were found: Amphibalanus amphitrite, Amphibalanus eburneus and Perforatus perforatus. These species account for the more than 50% of alien barnacles worldwide that belong to Balanidae family. Hence, some considerations about morphology and life cycle of this family are advanced, discussed and related to their invasive potential.

  16. Fire-driven alien invasion in a fire-adapted ecosystem

    USGS Publications Warehouse

    Keeley, Jon E.; Brennan, Teresa J.

    2012-01-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels

  17. Functional changes due to invasive species: Food web shifts at shallow Posidonia oceanica seagrass beds colonized by the alien macroalga Caulerpa racemosa

    NASA Astrophysics Data System (ADS)

    Deudero, S.; Box, A.; Alós, J.; Arroyo, N. L.; Marbà, N.

    2011-06-01

    Multiple stable isotope analyses were used to examine the trophic shifts at faunal assemblages within the invading macroalga Caulerpa racemosa in comparison to established communities of Posidonia oceanica seagrass meadows. Sampling of macrobenthic invertebrates and their potential food sources of algal mats and seagrass meadows in Mallorca (NW Mediterranean) showed differences in species composition of faunal and primary producers among seagrass and C. racemosa. Accordingly, changes in food web structure and trophic guilds were observed, not only at species level but also at community level. The carbon and nitrogen isotope signatures of herbivores, detritivores and deposit feeders confirmed that the seagrass provided a small contribution to the macrofaunal organisms. δ 13C at the P. oceanica seagrass and at the C. racemosa assemblages differed, ranging from -6.19 to -21.20‰ and -2.67 to -31.41‰, respectively. δ 15N at the Caulerpa mats was lower (ranging from 2.64 to 10.45‰) than that at the seagrass meadows (3.51-12. 94‰). Significant differences in isotopic signatures and trophic level among trophic guilds at P. oceanica and C. racemosa were found. N fractionation at trophic guild level considerable differed between seagrass and macroalgae mats, especially for detritivores, deposit feeders, and herbivores. Filter feeders slightly differed with a relatively lower N signal at the seagrass and CR values at community level and at trophic guild level were higher in the C. racemosa invaded habitats indicating an increase in diversity of basal resource pools. C. racemosa did seem to broaden the niche diversity of the P. oceanica meadows it colonised at the base of the food web, may be due to the establishment of a new basal resource. The extent of the effects of invasive species on ecosystem functioning is a fundamental issue in conservation ecology. The observed changes in invertebrate and macrophytic composition, stable isotope signatures of concomitant

  18. Evaluation of Online Information Sources on Alien Species in Europe: The Need of Harmonization and Integration

    NASA Astrophysics Data System (ADS)

    Gatto, Francesca; Katsanevakis, Stelios; Vandekerkhove, Jochen; Zenetos, Argyro; Cardoso, Ana Cristina

    2013-06-01

    Europe is severely affected by alien invasions, which impact biodiversity, ecosystem services, economy, and human health. A large number of national, regional, and global online databases provide information on the distribution, pathways of introduction, and impacts of alien species. The sufficiency and efficiency of the current online information systems to assist the European policy on alien species was investigated by a comparative analysis of occurrence data across 43 online databases. Large differences among databases were found which are partially explained by variations in their taxonomical, environmental, and geographical scopes but also by the variable efforts for continuous updates and by inconsistencies on the definition of "alien" or "invasive" species. No single database covered all European environments, countries, and taxonomic groups. In many European countries national databases do not exist, which greatly affects the quality of reported information. To be operational and useful to scientists, managers, and policy makers, online information systems need to be regularly updated through continuous monitoring on a country or regional level. We propose the creation of a network of online interoperable web services through which information in distributed resources can be accessed, aggregated and then used for reporting and further analysis at different geographical and political scales, as an efficient approach to increase the accessibility of information. Harmonization, standardization, conformity on international standards for nomenclature, and agreement on common definitions of alien and invasive species are among the necessary prerequisites.

  19. Evaluation of online information sources on alien species in Europe: the need of harmonization and integration.

    PubMed

    Gatto, Francesca; Katsanevakis, Stelios; Vandekerkhove, Jochen; Zenetos, Argyro; Cardoso, Ana Cristina

    2013-06-01

    Europe is severely affected by alien invasions, which impact biodiversity, ecosystem services, economy, and human health. A large number of national, regional, and global online databases provide information on the distribution, pathways of introduction, and impacts of alien species. The sufficiency and efficiency of the current online information systems to assist the European policy on alien species was investigated by a comparative analysis of occurrence data across 43 online databases. Large differences among databases were found which are partially explained by variations in their taxonomical, environmental, and geographical scopes but also by the variable efforts for continuous updates and by inconsistencies on the definition of "alien" or "invasive" species. No single database covered all European environments, countries, and taxonomic groups. In many European countries national databases do not exist, which greatly affects the quality of reported information. To be operational and useful to scientists, managers, and policy makers, online information systems need to be regularly updated through continuous monitoring on a country or regional level. We propose the creation of a network of online interoperable web services through which information in distributed resources can be accessed, aggregated and then used for reporting and further analysis at different geographical and political scales, as an efficient approach to increase the accessibility of information. Harmonization, standardization, conformity on international standards for nomenclature, and agreement on common definitions of alien and invasive species are among the necessary prerequisites.

  20. Release from belowground enemies and shifts in root traits as interrelated drivers of alien plant invasion success: a hypothesis.

    PubMed

    Dawson, Wayne

    2015-10-01

    Our understanding of the interrelated mechanisms driving plant invasions, such as the interplay between enemy release and resource-acquisition traits, is biased by an aboveground perspective. To address this bias, I hypothesize that plant release from belowground enemies (especially fungal pathogens) will give invasive plant species a fitness advantage in the alien range, via shifts in root traits (e.g., increased specific root length and branching intensity) that increase resource uptake and competitive ability compared to native species in the alien range, and compared to plants of the invader in its native range. Such root-trait changes could be ecological or evolutionary in nature. I explain how shifts in root traits could occur as a consequence of enemy release and contribute to invasion success of alien plants, and how they could be interrelated with other potential belowground drivers of invasion success (allelopathy, mutualist enhancement). Finally, I outline the approaches that could be taken to test whether belowground enemy release results in increased competitive ability and nutrient uptake by invasive alien plants, via changes in root traits in the alien range.

  1. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    NASA Astrophysics Data System (ADS)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (<6), making interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  2. Sentinel trees as a tool to forecast invasions of alien plant pathogens.

    PubMed

    Vettraino, AnnaMaria; Roques, Alain; Yart, Annie; Fan, Jian-ting; Sun, Jiang-hua; Vannini, Andrea

    2015-01-01

    Recent disease outbreaks caused by alien invasive pathogens into European forests posed a serious threat to forest sustainability with relevant environmental and economic effects. Many of the alien tree pathogens recently introduced into Europe were not previously included on any quarantine lists, thus they were not subject to phytosanitary inspections. The identification and description of alien fungi potentially pathogenic to native European flora before their introduction in Europe, is a paramount need in order to limit the risk of invasion and the impact to forest ecosystems. To determine the potential invasive fungi, a sentinel trees plot was established in Fuyang, China, using healthy seedlings of European tree species including Quercus petreae, Q. suber, and Q. ilex. The fungal assemblage associated with symptomatic specimens was studied using the tag-encoded 454 pyrosequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS 1). Taxa with probable Asiatic origin were identified and included plant pathogenic genera. These results indicate that sentinel plants may be a strategic tool to improve the prevention of bioinvasions.

  3. Sentinel Trees as a Tool to Forecast Invasions of Alien Plant Pathogens

    PubMed Central

    Vettraino, AnnaMaria; Roques, Alain; Yart, Annie; Fan, Jian-ting; Sun, Jiang-hua; Vannini, Andrea

    2015-01-01

    Recent disease outbreaks caused by alien invasive pathogens into European forests posed a serious threat to forest sustainability with relevant environmental and economic effects. Many of the alien tree pathogens recently introduced into Europe were not previously included on any quarantine lists, thus they were not subject to phytosanitary inspections. The identification and description of alien fungi potentially pathogenic to native European flora before their introduction in Europe, is a paramount need in order to limit the risk of invasion and the impact to forest ecosystems. To determine the potential invasive fungi, a sentinel trees plot was established in Fuyang, China, using healthy seedlings of European tree species including Quercus petreae, Q. suber, and Q. ilex. The fungal assemblage associated with symptomatic specimens was studied using the tag-encoded 454 pyrosequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS 1). Taxa with probable Asiatic origin were identified and included plant pathogenic genera. These results indicate that sentinel plants may be a strategic tool to improve the prevention of bioinvasions. PMID:25826684

  4. Urban Power Line Corridors as Novel Habitats for Grassland and Alien Plant Species in South-Western Finland

    PubMed Central

    Lampinen, Jussi; Ruokolainen, Kalle; Huhta, Ari-Pekka

    2015-01-01

    Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas. PMID:26565700

  5. Urban Power Line Corridors as Novel Habitats for Grassland and Alien Plant Species in South-Western Finland.

    PubMed

    Lampinen, Jussi; Ruokolainen, Kalle; Huhta, Ari-Pekka

    2015-01-01

    Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas.

  6. Alien Invasions and the Game of Hide and Seek in Patagonia

    PubMed Central

    Lindegren, Martin; Vigliano, Pablo; Nilsson, P. Anders

    2012-01-01

    The introduction, establishment and spread of alien species is a major threat to biodiversity and the provision of ecosystem services for human wellbeing. In order to reduce further loss of biodiversity and maintain productive and sustainable ecosystems, understanding the ecological mechanisms underlying species invasions and avoiding potentially harmful effects on native communities is urgently needed, but largely lacking. We here demonstrate, by means of hydroacoustics and advanced spatial modelling, how native fish species as a result of previous exposure to native predators may successfully respond to invasive novel predators through a complicated game of hide and seek, minimizing spatio-temporal overlap with predators, and potentially facilitating coexistence between native prey species (Galaxiids) and introduced novel predators (Salmonids) in a deep Andean lake, Patagonia. PMID:23071496

  7. Defining an invasive species.

    PubMed

    Moutou, F; Pastoret, P P

    2010-04-01

    The definition of an invasive species will depend on the viewpoint of the observer, who in some cases may be responsible for introducing the species. History has taught us that humans are the species that has invaded the largest surface area of the planet. So, before going on to propose a few definitions, this article describes three different examples or types of example in which domestic animal species, wild animal species and microorganisms (for biological pest control) have been transported intentionally. By doing so, this paper uses a variety of situations to support the definitions. A contemporary argument would counter a strictly biogeographical definition with a more ecological definition. The two are probably complementary. In any case, these definitions should remain practical. The consequences of species movements vary. However, their health impacts should not be underestimated.

  8. Preventing, controlling, and managing alien species introduction for the health of aquatic and marine ecosystems

    USGS Publications Warehouse

    Short, C.I.; Gross, S.K.; Wilkinson, D.

    2004-01-01

    The introduction and spread of invasive species is an emerging global problem. As economic and ecological impacts continue to grow, there will be an increasing need to develop innovative solutions and global partnerships to combat the increasing rate of invasions and their accompanying impacts. Threats to sustainable fisheries in North America associated with alien species come from many global directions and sources and can be deliberate or the unintended consequence of other actions. Decisions about the role of sustainable fisheries in protecting and restoring the health of aquatic ecosystems become even more complex when economic and social factors are considered along with environmental impacts, because many intentionally introduced species also have associated economic and community costs and benefits. Actions designed to prevent or control alien species in an aquatic ecosystem are often complicated by these nonenvironmental factors as well as public perception and opinion. Aquatic ecosystems are disturbed to varying degrees by alien species, including disease organisms. Prevention is the first and best line of defense. Determining likely pathways and effective countermeasures is more cost-effective than either eradication or control. Our ability to quickly identify new species and their associated risk to ecosystems is critical in designing and implementing effective control and management actions. Lack of infrastructure and necessary resources, clear-cut authority for regulation and action, and scientific information about the biology of alien species and effective control techniques are often limiting factors that prevent the needed action to protect aquatic ecosystems.

  9. Alien plant invasions and native plant extinctions: a six-threshold framework

    PubMed Central

    Downey, Paul O.; Richardson, David M.

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat—in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the ‘extinction trajectory’, global extinction being the final threshold. Although there are no documented examples of either ‘in the wild’ (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1–3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader

  10. Alien plant invasions and native plant extinctions: a six-threshold framework.

    PubMed

    Downey, Paul O; Richardson, David M

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat-in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the 'extinction trajectory', global extinction being the final threshold. Although there are no documented examples of either 'in the wild' (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1-3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat.

  11. Germination Response of Four Alien Congeneric Amaranthus Species to Environmental Factors.

    PubMed

    Hao, Jian-Hua; Lv, Shuang-Shuang; Bhattacharya, Saurav; Fu, Jian-Guo

    2017-01-01

    Seed germination is the key step for successful establishment, growth and further expansion of population especially for alien plants with annual life cycle. Traits like better adaptability and germination response were thought to be associated with plant invasion. However, there are not enough empirical studies correlating adaptation to environmental factors with germination response of alien invasive plants. In this study, we conducted congeneric comparisons of germination response to different environmental factors such as light, pH, NaCl, osmotic and soil burials among four alien amaranths that differ in invasiveness and have sympatric distribution in Jiangsu Province, China. The data were used to create three-parameter sigmoid and exponential decay models, which were fitted to cumulative germination and emergence curves. The results showed higher maximum Germination (Gmax), shorter time for 50% germination (G50) and the rapid slope (Grate) for Amaranthus blitum (low-invasive) and A. retroflexus (high-invasive) compare to intermediately invasive A. spinosus and A. viridis in all experimental regimes. It indicated that germination potential does not necessarily constitute a trait that can efficiently distinguish highly invasive and low invasive congeners in four Amaranthus species. However, it was showed that the germination performances of four amaranth species were more or less correlated with their worldwide distribution area. Therefore, the germination performance can be used as a reference indicator, but not an absolute trait for invasiveness. Our results also confirmed that superior germination performance in wide environmental conditions supplementing high seed productivity in highly invasive A. retroflexus might be one of the reasons for its prolific growth and wide distribution. These findings lay the foundation to develop more efficient weed management practice like deep burial of seeds by turning over soil and use of tillage agriculture to control

  12. Germination Response of Four Alien Congeneric Amaranthus Species to Environmental Factors

    PubMed Central

    Hao, Jian-Hua; Lv, Shuang-Shuang; Bhattacharya, Saurav; Fu, Jian-Guo

    2017-01-01

    Seed germination is the key step for successful establishment, growth and further expansion of population especially for alien plants with annual life cycle. Traits like better adaptability and germination response were thought to be associated with plant invasion. However, there are not enough empirical studies correlating adaptation to environmental factors with germination response of alien invasive plants. In this study, we conducted congeneric comparisons of germination response to different environmental factors such as light, pH, NaCl, osmotic and soil burials among four alien amaranths that differ in invasiveness and have sympatric distribution in Jiangsu Province, China. The data were used to create three-parameter sigmoid and exponential decay models, which were fitted to cumulative germination and emergence curves. The results showed higher maximum Germination (Gmax), shorter time for 50% germination (G50) and the rapid slope (Grate) for Amaranthus blitum (low-invasive) and A. retroflexus (high-invasive) compare to intermediately invasive A. spinosus and A. viridis in all experimental regimes. It indicated that germination potential does not necessarily constitute a trait that can efficiently distinguish highly invasive and low invasive congeners in four Amaranthus species. However, it was showed that the germination performances of four amaranth species were more or less correlated with their worldwide distribution area. Therefore, the germination performance can be used as a reference indicator, but not an absolute trait for invasiveness. Our results also confirmed that superior germination performance in wide environmental conditions supplementing high seed productivity in highly invasive A. retroflexus might be one of the reasons for its prolific growth and wide distribution. These findings lay the foundation to develop more efficient weed management practice like deep burial of seeds by turning over soil and use of tillage agriculture to control

  13. Global change and marine communities: alien species and climate change.

    PubMed

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  14. Feeding ecology of a nocturnal invasive alien lizard species, Hemidactylus mabouia Moreau de Jonnès, 1818 (Gekkonidae), living in an outcrop rocky area in southeastern Brazil.

    PubMed

    Rocha, C F D; Anjos, L A

    2007-08-01

    We studied in fieldwork, the feeding ecology of a Hemidactylus mabouia population from southeastern Brazil throughout one year in a region with marked climatic seasonality. A sampling of availability of arthropods in the environment was carried out, which evidenced that the availability of food resources influenced the composition of the diet of H. mabouia. There were no seasonal differences on diet composition, which may be due to the relatively constant availability on prey throughout the year. In general, this population can be classified as generalist and opportunistic regarding diet. There was a high food niche overlap among juveniles and adults, although juvenile lizards tend to eat higher number of prey (but in lower volume) when compared to adult lizards. The ability to exploit a wide array of prey in an efficient way, maintaining a positive energetic balance, may be a factor determining the efficiency of this exotic species to occupy invaded areas.

  15. Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem

    PubMed Central

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment. PMID:24586947

  16. A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa.

    PubMed

    van Wilgen, B W; Reyers, B; Le Maitre, D C; Richardson, D M; Schonegevel, L

    2008-12-01

    This paper reports an assessment of the current and potential impacts of invasive alien plants on selected ecosystem services in South Africa. We used data on the current and potential future distribution of 56 invasive alien plant species to estimate their impact on four services (surface water runoff, groundwater recharge, livestock production and biodiversity) in five terrestrial biomes. The estimated reductions in surface water runoff as a result of current invasions were >3000 million m(3) (about 7% of the national total), most of which is from the fynbos (shrubland) and grassland biomes; the potential reductions would be more than eight times greater if invasive alien plants were to occupy the full extent of their potential range. Impacts on groundwater recharge would be less severe, potentially amounting to approximately 1.5% of the estimated maximum reductions in surface water runoff. Reductions in grazing capacity as a result of current levels of invasion amounted to just over 1% of the potential number of livestock that could be supported. However, future impacts could increase to 71%. A 'biodiversity intactness index' (the remaining proportion of pre-modern populations) ranged from 89% to 71% for the five biomes. With the exception of the fynbos biome, current invasions have almost no impact on biodiversity intactness. Under future levels of invasion, however, these intactness values decrease to around 30% for the savanna, fynbos and grassland biomes, but to even lower values (13% and 4%) for the two karoo biomes. Thus, while the current impacts of invasive alien plants are relatively low (with the exception of those on surface water runoff), the future impacts could be very high. While the errors in these estimates are likely to be substantial, the predicted impacts are sufficiently large to suggest that there is serious cause for concern.

  17. RELATIONSHIPS OF ALIEN PLANT SPECIES ABUNDANCE TO RIPARIAN VEGETATION, ENVIRONMENT, AND DISTURBANCE

    EPA Science Inventory

    Riparian ecosystems are often invaded by alien species. We evaluated vegetation, environment, and disturbance conditions and their interrelationships with alien species abundance along reaches of 29 streams in eastern Oregon, USA. Using flexible-BETA clustering, indicator species...

  18. Gaps in Border Controls Are Related to Quarantine Alien Insect Invasions in Europe

    PubMed Central

    Bacon, Steven James; Bacher, Sven; Aebi, Alexandre

    2012-01-01

    Alien insects are increasingly being dispersed around the world through international trade, causing a multitude of negative environmental impacts and billions of dollars in economic losses annually. Border controls form the last line of defense against invasions, whereby inspectors aim to intercept and stop consignments that are contaminated with harmful alien insects. In Europe, member states depend on one another to prevent insect introductions by operating a first point of entry rule – controlling goods only when they initially enter the continent. However, ensuring consistency between border control points is difficult because there exists no optimal inspection strategy. For the first time, we developed a method to quantify the volume of agricultural trade that should be inspected for quarantine insects at border control points in Europe, based on global agricultural trade of over 100 million distinct origin-commodity-species-destination pathways. This metric was then used to evaluate the performance of existing border controls, as measured by border interception results in Europe between 2003 and 2007. Alarmingly, we found significant gaps between the trade pathways that should be inspected and actual number of interceptions. Moreover, many of the most likely introduction pathways yielded none or very few insect interceptions, because regular interceptions are only made on only a narrow range of pathways. European countries with gaps in border controls have been invaded by higher numbers of quarantine alien insect species, indicating the importance of proper inspections to prevent insect invasions. Equipped with an optimal inspection strategy based on the underlying risks of trade, authorities globally will be able to implement more effective and consistent border controls. PMID:23112835

  19. Suitability of the ALien Biotic IndEX (ALEX) for assessing invasion of macroalgae across different Mediterranean habitats.

    PubMed

    Piazzi, Luigi; Gennaro, Paola; Ceccherelli, Giulia

    2015-08-15

    The ALien Biotic IndEX (ALEX) has been recently proposed to evaluate biological invasions in soft-bottom macro-invertebrate assemblages. The present paper proposes the use of ALEX in sessile assemblages of Mediterranean hard bottom habitats and tests it along gradients of invasion. For five invasive macroalgae a variable number of case studies per each of four habitats were examined from the available data sets. For each case study samples were attributed to four levels of invasion depending on the abundance of the invading macroalgae. Results showed that the application of ALEX to sessile assemblages of hard bottoms allows to qualify the level of invasion along the considered gradients. Moreover, the decline of index values matched the impact of invasion on species number of the assemblages. Results also suggest that the concurrent use of ALEX and indices of benthic quality status can be a valuable tool to assess biopollution in hard bottom habitats.

  20. Preference and Prey Switching in a Generalist Predator Attacking Local and Invasive Alien Pests

    PubMed Central

    Jaworski, Coline C.; Bompard, Anaïs; Genies, Laure; Amiens-Desneux, Edwige; Desneux, Nicolas

    2013-01-01

    Invasive pest species may strongly affect biotic interactions in agro-ecosystems. The ability of generalist predators to prey on new invasive pests may result in drastic changes in the population dynamics of local pest species owing to predator-mediated indirect interactions among prey. On a short time scale, the nature and strength of such indirect interactions depend largely on preferences between prey and on predator behavior patterns. Under laboratory conditions we evaluated the prey preference of the generalist predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae) when it encounters simultaneously the local tomato pest Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and the invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). We tested various ratios of local vs. alien prey numbers, measuring switching by the predator from one prey to the other, and assessing what conditions (e.g. prey species abundance and prey development stage) may favor such prey switching. The total predation activity of M. pygmaeus was affected by the presence of T. absoluta in the prey complex with an opposite effect when comparing adult and juvenile predators. The predator showed similar preference toward T. absoluta eggs and B. tabaci nymphs, but T. absoluta larvae were clearly less attacked. However, prey preference strongly depended on prey relative abundance with a disproportionately high predation on the most abundant prey and disproportionately low predation on the rarest prey. Together with the findings of a recent companion study (Bompard et al. 2013, Population Ecology), the insight obtained on M. pygmaeus prey switching may be useful for Integrated Pest Management in tomato crops, notably for optimal simultaneous management of B. tabaci and T. absoluta, which very frequently co-occur on tomato. PMID:24312646

  1. Preference and prey switching in a generalist predator attacking local and invasive alien pests.

    PubMed

    Jaworski, Coline C; Bompard, Anaïs; Genies, Laure; Amiens-Desneux, Edwige; Desneux, Nicolas

    2013-01-01

    Invasive pest species may strongly affect biotic interactions in agro-ecosystems. The ability of generalist predators to prey on new invasive pests may result in drastic changes in the population dynamics of local pest species owing to predator-mediated indirect interactions among prey. On a short time scale, the nature and strength of such indirect interactions depend largely on preferences between prey and on predator behavior patterns. Under laboratory conditions we evaluated the prey preference of the generalist predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae) when it encounters simultaneously the local tomato pest Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and the invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). We tested various ratios of local vs. alien prey numbers, measuring switching by the predator from one prey to the other, and assessing what conditions (e.g. prey species abundance and prey development stage) may favor such prey switching. The total predation activity of M. pygmaeus was affected by the presence of T. absoluta in the prey complex with an opposite effect when comparing adult and juvenile predators. The predator showed similar preference toward T. absoluta eggs and B. tabaci nymphs, but T. absoluta larvae were clearly less attacked. However, prey preference strongly depended on prey relative abundance with a disproportionately high predation on the most abundant prey and disproportionately low predation on the rarest prey. Together with the findings of a recent companion study (Bompard et al. 2013, Population Ecology), the insight obtained on M. pygmaeus prey switching may be useful for Integrated Pest Management in tomato crops, notably for optimal simultaneous management of B. tabaci and T. absoluta, which very frequently co-occur on tomato.

  2. They're Here: A Coast-to-Coast Investigation of Invasive Species

    ERIC Educational Resources Information Center

    Hogan, Tracy; Craven, John

    2005-01-01

    According to the National Invasive Species Council, an "invasive species" is defined as a species that is (1) nonnative (or alien) to the ecosystem under consideration, and (2) whose introduction causes or is likely to cause economic or environmental harm or harm to human health. In this article, the authors describe an activity that can be…

  3. Niche dynamics of alien species do not differ among sexual and apomictic flowering plants.

    PubMed

    Dellinger, Agnes S; Essl, Franz; Hojsgaard, Diego; Kirchheimer, Bernhard; Klatt, Simone; Dawson, Wayne; Pergl, Jan; Pyšek, Petr; van Kleunen, Mark; Weber, Ewald; Winter, Marten; Hörandl, Elvira; Dullinger, Stefan

    2016-02-01

    Biological invasions can be associated with shifts of the species' climatic niches but the incidence of such shifts is under debate. The reproductive system might be a key factor controlling such shifts because it influences a species' evolutionary flexibility. However, the link between reproductive systems and niche dynamics in plant invasions has been little studied so far. We compiled global occurrence data sets of 13 congeneric sexual and apomictic species pairs, and used principal components analysis (PCA) and kernel smoothers to compare changes in climatic niche optima, breadths and unfilling/expansion between native and alien ranges. Niche change metrics were compared between sexual and apomictic species. All 26 species showed changes in niche optima and/or breadth and 14 species significantly expanded their climatic niches. However, we found no effect of the reproductive system on niche dynamics. Instead, species with narrower native niches showed higher rates of niche expansion in the alien ranges. Our results suggest that niche shifts are frequent in plant invasions but evolutionary potential may not be of major importance for such shifts. Niche dynamics rather appear to be driven by changes of the realized niche without adaptive change of the fundamental climatic niche.

  4. Higher allocation to low cost chemical defenses in invasive species of Hawaii.

    PubMed

    Peñuelas, Josep; Sardans, J; Llusia, J; Owen, S M; Silva, J; Niinemets, U

    2010-11-01

    The capacity to produce carbon-based secondary compounds (CBSC), such as phenolics (including tannins) and terpenes as defensive compounds against herbivores or against neighboring competing plants can be involved in the competition between alien and native plant species. Since the Hawaiian Islands are especially vulnerable to invasions by alien species, we compared total phenolic (TP), total tannin (Tta), and total terpene (TT) leaf contents of alien and native plants on Oahu Island (Hawaii). We analyzed 35 native and 38 alien woody plant species randomly chosen among representative current Hawaiian flora. None of these CBSC exhibited phylogenetic fingerprinting. Alien species had similar leaf TP and leaf Tta contents, and 135% higher leaf TT contents compared with native species. Alien plants had 80% higher leaf TT:N leaf content ratio than native plants. The results suggest that apart from greater growth rate and greater nutrient use, alien success in Oahu also may be linked to greater contents of low cost chemical defenses, such as terpenes, as expected in faster-growing species in resource rich regions. The higher TT contents in aliens may counterbalance their lower investment in leaf structural defenses and their higher leaf nutritional quality. The higher TT provides higher effectiveness in deterring the generalist herbivores of the introduced range, where specialist herbivores are absent. In addition, higher TT contents may favor aliens conferring higher protection against abiotic and biotic stressors. The higher terpene accumulation was independent of the alien species origin, which indicates that being alien either selects for higher terpene contents post-invasion, or that species with high terpene contents are pre-adapted to invasiveness. Although less likely, an originally lower terpene accumulation in Hawaiian than in continental plants that avoids the increased attraction of specialist enemies associated to terpenes may not be discarded.

  5. The Impact of the Invasive Alien Plant, Impatiens glandulifera, on Pollen Transfer Networks.

    PubMed

    Emer, Carine; Vaughan, Ian P; Hiscock, Simon; Memmott, Jane

    2015-01-01

    Biological invasions are a threat to the maintenance of ecological processes, including pollination. Plant-flower visitor networks are traditionally used as a surrogated for pollination at the community level, despite they do not represent the pollination process, which takes place at the stigma of plants where pollen grains are deposited. Here we investigated whether the invasion of the alien plant Impatiens glandulifera (Balsaminaceae) affects pollen transfer at the community level. We asked whether more alien pollen is deposited on the stigmas of plants on invaded sites, whether deposition is affected by stigma type (dry, semidry and wet) and whether the invasion of I. glandulifera changes the structure of the resulting pollen transfer networks. We sampled stigmas of plants on 10 sites invaded by I. glandulifera (hereafter, balsam) and 10 non-invaded control sites. All 20 networks had interactions with balsam pollen, although significantly more balsam pollen was found on plants with dry stigmas in invaded areas. Balsam pollen deposition was restricted to a small subset of plant species, which is surprising because pollinators are known to carry high loads of balsam pollen. Balsam invasion did not affect the loading of native pollen, nor did it affect pollen transfer network properties; networks were modular and poorly nested, both of which are likely to be related to the specificity of pollen transfer interactions. Our results indicate that pollination networks become more specialized when moving from the flower visitation to the level of pollen transfer networks. Therefore, caution is needed when inferring pollination from patterns of insect visitation or insect pollen loads as the relationship between these and pollen deposition is not straightforward.

  6. The Impact of the Invasive Alien Plant, Impatiens glandulifera, on Pollen Transfer Networks

    PubMed Central

    Emer, Carine; Vaughan, Ian P.; Hiscock, Simon; Memmott, Jane

    2015-01-01

    Biological invasions are a threat to the maintenance of ecological processes, including pollination. Plant-flower visitor networks are traditionally used as a surrogated for pollination at the community level, despite they do not represent the pollination process, which takes place at the stigma of plants where pollen grains are deposited. Here we investigated whether the invasion of the alien plant Impatiens glandulifera (Balsaminaceae) affects pollen transfer at the community level. We asked whether more alien pollen is deposited on the stigmas of plants on invaded sites, whether deposition is affected by stigma type (dry, semidry and wet) and whether the invasion of I. glandulifera changes the structure of the resulting pollen transfer networks. We sampled stigmas of plants on 10 sites invaded by I. glandulifera (hereafter, balsam) and 10 non-invaded control sites. All 20 networks had interactions with balsam pollen, although significantly more balsam pollen was found on plants with dry stigmas in invaded areas. Balsam pollen deposition was restricted to a small subset of plant species, which is surprising because pollinators are known to carry high loads of balsam pollen. Balsam invasion did not affect the loading of native pollen, nor did it affect pollen transfer network properties; networks were modular and poorly nested, both of which are likely to be related to the specificity of pollen transfer interactions. Our results indicate that pollination networks become more specialized when moving from the flower visitation to the level of pollen transfer networks. Therefore, caution is needed when inferring pollination from patterns of insect visitation or insect pollen loads as the relationship between these and pollen deposition is not straightforward. PMID:26633170

  7. A unified classification of alien species based on the magnitude of their environmental impacts.

    PubMed

    Blackburn, Tim M; Essl, Franz; Evans, Thomas; Hulme, Philip E; Jeschke, Jonathan M; Kühn, Ingolf; Kumschick, Sabrina; Marková, Zuzana; Mrugała, Agata; Nentwig, Wolfgang; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; Vilà, Montserrat; Wilson, John R U; Winter, Marten; Genovesi, Piero; Bacher, Sven

    2014-05-01

    Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact-ranging from Minimal to Massive-with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.

  8. Ecological Risk Assessment with MCDM of Some Invasive Alien Plants in China

    NASA Astrophysics Data System (ADS)

    Xie, Guowen; Chen, Weiguang; Lin, Meizhen; Zheng, Yanling; Guo, Peiguo; Zheng, Yisheng

    Alien plant invasion is an urgent global issue that threatens the sustainable development of the ecosystem health. The study of its ecological risk assessment (ERA) could help us to prevent and reduce the invasion risk more effectively. Based on the theory of ERA and methods of the analytic hierarchy process (AHP) of multi-criteria decision-making (MCDM), and through the analyses of the characteristics and processes of alien plant invasion, this paper discusses the methodologies of ERA of alien plant invasion. The assessment procedure consisted of risk source analysis, receptor analysis, exposure and hazard assessment, integral assessment, and countermeasure of risk management. The indicator system of risk source assessment as well as the indices and formulas applied to measure the ecological loss and risk were established, and the method for comprehensively assessing the ecological risk of alien plant invasion was worked out. The result of ecological risk analysis to 9 representative invasive alien plants in China shows that the ecological risk of Erigeron annuus, Ageratum conyzoides, Alternanthera philoxeroides and Mikania midrantha is high (grade1-2), that of Oxalis corymbosa and Wedelia chinensis comes next (grade3), while Mirabilis jalapa, Pilea microphylla and Calendula officinalis of the last (grade 4). Risk strategies are put forward on this basis.

  9. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    PubMed

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.

  10. Spread dynamics of invasive species

    PubMed Central

    Arim, Matías; Abades, Sebastián R.; Neill, Paula E.; Lima, Mauricio; Marquet, Pablo A.

    2006-01-01

    Species invasions are a principal component of global change, causing large losses in biodiversity as well as economic damage. Invasion theory attempts to understand and predict invasion success and patterns of spread. However, there is no consensus regarding which species or community attributes enhance invader success or explain spread dynamics. Experimental and theoretical studies suggest that regulation of spread dynamics is possible; however, the conditions for its existence have not yet been empirically demonstrated. If invasion spread is a regulated process, the structure that accounts for this regulation will be a main determinant of invasion dynamics. Here we explore the existence of regulation underlying changes in the rate of new site colonization. We employ concepts and analytical tools from the study of abundance dynamics and show that spread dynamics are, in fact, regulated processes and that the regulation structure is notably consistent among invasions occurring in widely different contexts. We base our conclusions on the analysis of the spread dynamics of 30 species invasions, including birds, amphibians, fish, invertebrates, plants, and a virus, all of which exhibited similar regulation structures. In contrast to current beliefs that species invasions are idiosyncratic phenomena, here we provide evidence that general patterns do indeed exist. PMID:16387862

  11. Possibility to implement invasive species control in Swedish forests.

    PubMed

    Pettersson, Maria; Strömberg, Caroline; Keskitalo, E Carina H

    2016-02-01

    Invasive alien species constitute an increasing risk to forestry, as indeed to natural systems in general. This study reviews the legislative framework governing invasive species in the EU and Sweden, drawing upon both a legal analysis and interviews with main national level agencies responsible for implementing this framework. The study concludes that EU and Sweden are limited in how well they can act on invasive species, in particular because of the weak interpretation of the precautionary principle in the World Trade Organisation and Sanitary and Phytosanitary agreements. In the Swedish case, this interpretation also conflicts with the stronger interpretation of the precautionary principle under the Swedish Environmental Code, which could in itself provide for stronger possibilities to act on invasive species.

  12. Invasion by the Alien Tree Prunus serotina Alters Ecosystem Functions in a Temperate Deciduous Forest.

    PubMed

    Aerts, Raf; Ewald, Michael; Nicolas, Manuel; Piat, Jérôme; Skowronek, Sandra; Lenoir, Jonathan; Hattab, Tarek; Garzón-López, Carol X; Feilhauer, Hannes; Schmidtlein, Sebastian; Rocchini, Duccio; Decocq, Guillaume; Somers, Ben; Van De Kerchove, Ruben; Denef, Karolien; Honnay, Olivier

    2017-01-01

    Alien invasive species can affect large areas, often with wide-ranging impacts on ecosystem structure, function, and services. Prunus serotina is a widespread invader of European temperate forests, where it tends to form homogeneous stands and limits recruitment of indigenous trees. We hypotesized that invasion by P. serotina would be reflected in the nutrient contents of the native species' leaves and in the respiration of invaded plots as efficient resource uptake and changes in nutrient cycling by P. serotina probably underly its aggressive invasiveness. We combined data from 48 field plots in the forest of Compiègne, France, and data from an experiment using 96 microcosms derived from those field plots. We used general linear models to separate effects of invasion by P. serotina on heterotrophic soil and litter respiration rates and on canopy foliar nutrient content from effects of soil chemical properties, litter quantity, litter species composition, and tree species composition. In invaded stands, average respiration rates were 5.6% higher for soil (without litter) and 32% higher for soil and litter combined. Compared to indigenous tree species, P. serotina exhibited higher foliar N (+24.0%), foliar P (+50.7%), and lower foliar C:N (-22.4%) and N:P (-10.1%) ratios. P. serotina affected foliar nutrient contents of co-occuring indigenous tree species leading to decreased foliar N (-8.7 %) and increased C:N ratio (+9.5%) in Fagus sylvatica, decreased foliar N:P ratio in Carpinus betulus (-13.5%) and F. sylvatica (-11.8%), and increased foliar P in Pinus sylvestris (+12.3%) in invaded vs. uninvaded stands. Our results suggest that P. serotina is changing nitrogen, phosphorus, and carbon cycles to its own advantage, hereby increasing carbon turnover via labile litter, affecting the relative nutrient contents in the overstory leaves, and potentially altering the photosynthetic capacity of the long-lived indigenous broadleaved species. Uncontrolled invasion of

  13. Invasion by the Alien Tree Prunus serotina Alters Ecosystem Functions in a Temperate Deciduous Forest

    PubMed Central

    Aerts, Raf; Ewald, Michael; Nicolas, Manuel; Piat, Jérôme; Skowronek, Sandra; Lenoir, Jonathan; Hattab, Tarek; Garzón-López, Carol X.; Feilhauer, Hannes; Schmidtlein, Sebastian; Rocchini, Duccio; Decocq, Guillaume; Somers, Ben; Van De Kerchove, Ruben; Denef, Karolien; Honnay, Olivier

    2017-01-01

    Alien invasive species can affect large areas, often with wide-ranging impacts on ecosystem structure, function, and services. Prunus serotina is a widespread invader of European temperate forests, where it tends to form homogeneous stands and limits recruitment of indigenous trees. We hypotesized that invasion by P. serotina would be reflected in the nutrient contents of the native species' leaves and in the respiration of invaded plots as efficient resource uptake and changes in nutrient cycling by P. serotina probably underly its aggressive invasiveness. We combined data from 48 field plots in the forest of Compiègne, France, and data from an experiment using 96 microcosms derived from those field plots. We used general linear models to separate effects of invasion by P. serotina on heterotrophic soil and litter respiration rates and on canopy foliar nutrient content from effects of soil chemical properties, litter quantity, litter species composition, and tree species composition. In invaded stands, average respiration rates were 5.6% higher for soil (without litter) and 32% higher for soil and litter combined. Compared to indigenous tree species, P. serotina exhibited higher foliar N (+24.0%), foliar P (+50.7%), and lower foliar C:N (−22.4%) and N:P (−10.1%) ratios. P. serotina affected foliar nutrient contents of co-occuring indigenous tree species leading to decreased foliar N (−8.7 %) and increased C:N ratio (+9.5%) in Fagus sylvatica, decreased foliar N:P ratio in Carpinus betulus (−13.5%) and F. sylvatica (−11.8%), and increased foliar P in Pinus sylvestris (+12.3%) in invaded vs. uninvaded stands. Our results suggest that P. serotina is changing nitrogen, phosphorus, and carbon cycles to its own advantage, hereby increasing carbon turnover via labile litter, affecting the relative nutrient contents in the overstory leaves, and potentially altering the photosynthetic capacity of the long-lived indigenous broadleaved species. Uncontrolled

  14. Fingerprint recognition of alien invasive weeds based on the texture character and machine learning

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Jia; Li, Xiao-Li; He, Yong; Xu, Zheng-Hao

    2008-11-01

    Multi-spectral imaging technique based on texture analysis and machine learning was proposed to discriminate alien invasive weeds with similar outline but different categories. The objectives of this study were to investigate the feasibility of using Multi-spectral imaging, especially the near-infrared (NIR) channel (800 nm+/-10 nm) to find the weeds' fingerprints, and validate the performance with specific eigenvalues by co-occurrence matrix. Veronica polita Pries, Veronica persica Poir, longtube ground ivy, Laminum amplexicaule Linn. were selected in this study, which perform different effect in field, and are alien invasive species in China. 307 weed leaves' images were randomly selected for the calibration set, while the remaining 207 samples for the prediction set. All images were pretreated by Wallis filter to adjust the noise by uneven lighting. Gray level co-occurrence matrix was applied to extract the texture character, which shows density, randomness correlation, contrast and homogeneity of texture with different algorithms. Three channels (green channel by 550 nm+/-10 nm, red channel by 650 nm+/-10 nm and NIR channel by 800 nm+/-10 nm) were respectively calculated to get the eigenvalues.Least-squares support vector machines (LS-SVM) was applied to discriminate the categories of weeds by the eigenvalues from co-occurrence matrix. Finally, recognition ratio of 83.35% by NIR channel was obtained, better than the results by green channel (76.67%) and red channel (69.46%). The prediction results of 81.35% indicated that the selected eigenvalues reflected the main characteristics of weeds' fingerprint based on multi-spectral (especially by NIR channel) and LS-SVM model.

  15. Impacts of invading alien plant species on water flows at stand and catchment scales

    PubMed Central

    Le Maitre, D. C.; Gush, M. B.; Dzikiti, S.

    2015-01-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300–400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200–300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5–2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. PMID:25935861

  16. Foliar mono- and sesquiterpene contents in relation to leaf economic spectrum in native and alien species in Oahu (Hawai'i).

    PubMed

    Sardans, Jordi; Llusià, Joan; Niinemets, Ulo; Owen, Sue; Peñuelas, Josep

    2010-02-01

    Capacity for terpene production may confer advantage in protection against abiotic stresses such as heat and drought, and also against herbivore and pathogen attack. Plant invasive success has been intense in the Hawaiian islands, but little is known about terpene content in native and alien plant species on these islands. We conducted a screening of leaf terpene concentrations in 35 native and 38 alien dominant plant species on Oahu island. Ten (29%) of the 35 native species and 15 (39%) of the 38 alien species contained terpenes in the leaves. This is the first report of terpene content for the ten native species, and for 10 of the 15 alien species. A total of 156 different terpenes (54 monoterpenes and 102 sesquiterpenes) were detected. Terpene content had no phylogenetic significance among the studied species. Alien species contained significantly more terpenes in leaves (average+/-SE=1965+/-367 microg g(-1)) than native species (830+/-227 microg g(-1)). Alien species showed significantly higher photosynthetic capacity, N content, and lower Leaf Mass Area (LMA) than native species, and showed higher total terpene leaf content per N and P leaf content. Alien species, thus, did not follow the expected pattern of "excess carbon" in comparison with native species. Instead, patterns were consistent with the "nutrient driven synthesis" hypothesis. Comparing alien and native species, the results also support the modified Evolution of Increased Competitive Ability (EICA) hypothesis that suggests that alien success may be favored by a defense system based on an increase in concentrations of less costly defenses (terpenes) against generalist herbivores.

  17. Impacts of Alien Tree Invasion on Evapotranspiration in Tropical Montane Cloud Forest in Hawai'i

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Asner, G. P.; Martin, R. E.; Nullet, M. M.; Huang, M.; Delay, J. K.; Mudd, R. G.; Takahashi, M.

    2007-12-01

    Hawaiian tropical montane cloud forests (TMCFs) are ecologically and hydrologically valuable zones. TMCFs in Hawai'i serve as refugia for the remaining intact native terrestrial plant and animal ecosystems, and are major sources of hydrologic input to surface water and groundwater systems. Invasion of alien tree species, with obvious effects on the ecological integrity of TMCFs, also threatens to impact the hydrological services these forests provide. Much speculation has been made about the hydrological effects of replacing native forest tree species with alien trees in Hawai'i, but until now no measurements have been made to test these assertions. We established two study sites, each equipped with eddy covariance and other micrometeorological instrumentation, one within native Metrosideros polymorpha forest and the other at a site heavily invaded by Psidium cattleianum, in the cloud forest zone of Hawai'i Volcanoes National Park. We are conducting measurements of stand-level evapotranspiration, transpiration (using sapflow techniques), energy balance, throughfall, stemflow, and soil moisture at each site. Preliminary analysis of these measurements shows that the fraction of available energy used for evapotranspiration (ET Fraction) at the native site is much higher for wet canopy conditions. The ET Fraction at the native site has an annual cycle corresponding to the annual cycle in leaf area. Deviations from the annual cycle are more closely related to variations in canopy wetness than to variations in soil moisture. Overall, ET as a function of available energy is 27% higher at the invaded site than the native site. The difference in ET between the two sites is especially pronounced during dry canopy periods, during which the ET Fraction is 53% higher at the invaded site than the native site. Sapflow measurements using heat balance collars show that leaf-area-specific transpiration is much greater in invasive P. cattleianum trees than in remnant native M

  18. Over-invasion by functionally equivalent invasive species.

    PubMed

    Russell, James C; Sataruddin, Nurul S; Heard, Allison D

    2014-08-01

    Multiple invasive species have now established at most locations around the world, and the rate of new species invasions and records of new invasive species continue to grow. Multiple invasive species interact in complex and unpredictable ways, altering their invasion success and impacts on biodiversity. Incumbent invasive species can be replaced by functionally similar invading species through competitive processes; however the generalized circumstances leading to such competitive displacement have not been well investigated. The likelihood of competitive displacement is a function of the incumbent advantage of the resident invasive species and the propagule pressure of the colonizing invasive species. We modeled interactions between populations of two functionally similar invasive species and indicated the circumstances under which dominance can be through propagule pressure and incumbent advantage. Under certain circumstances, a normally subordinate species can be incumbent and reject a colonizing dominant species, or successfully colonize in competition with a dominant species during simultaneous invasion. Our theoretical results are supported by empirical studies of the invasion of islands by three invasive Rattus species. Competitive displacement is prominent in invasive rats and explains the replacement of R. exulans on islands subsequently invaded by European populations of R. rattus and R. norvegicus. These competition outcomes between invasive species can be found in a broad range of taxa and biomes, and are likely to become more common. Conservation management must consider that removing an incumbent invasive species may facilitate invasion by another invasive species. Under very restricted circumstances of dominant competitive ability but lesser impact, competitive displacement may provide a novel method of biological control.

  19. A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts

    PubMed Central

    Blackburn, Tim M.; Essl, Franz; Evans, Thomas; Hulme, Philip E.; Jeschke, Jonathan M.; Kühn, Ingolf; Kumschick, Sabrina; Marková, Zuzana; Mrugała, Agata; Nentwig, Wolfgang; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.; Sendek, Agnieszka; Vilà, Montserrat; Wilson, John R. U.; Winter, Marten; Genovesi, Piero; Bacher, Sven

    2014-01-01

    Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact—ranging from Minimal to Massive—with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions. PMID:24802715

  20. Alien interference: disruption of infochemical networks by invasive insect herbivores.

    PubMed

    Desurmont, Gaylord A; Harvey, Jeff; van Dam, Nicole M; Cristescu, Simona M; Schiestl, Florian P; Cozzolino, Salvatore; Anderson, Peter; Larsson, Mattias C; Kindlmann, Pavel; Danner, Holger; Turlings, Ted C J

    2014-08-01

    Insect herbivores trigger various biochemical changes in plants, and as a consequence, affect other organisms that are associated with these plants. Such plant-mediated indirect effects often involve herbivore-induced plant volatiles (HIPVs) that can be used as cues for foraging herbivores and their natural enemies, and are also known to affect pollinator attraction. In tightly co-evolved systems, the different trophic levels are expected to display adaptive response to changes in HIPVs caused by native herbivores. But what if a new herbivore invades such a system? Current literature suggests that exotic herbivores have the potential to affect HIPV production, and that plant responses to novel herbivores are likely to depend on phylogenetic relatedness between the invader and the native species. Here we review the different ways exotic herbivores can disrupt chemically mediated interactions between plants and the key users of HIPVs: herbivores, pollinators, and members of the third (i.e. predators and parasitoids) and fourth (i.e. hyperparasitoids) trophic levels. Current theory on insect invasions needs to consider that disruptive effects of invaders on infochemical networks can have a short-term impact on the population dynamics of native insects and plants, as well as exerting potentially negative consequences for the functioning of native ecosystems.

  1. Spatial distribution and temporal trends of soft-bottom marine benthic alien species collected during the period 1989-2008 in the Nervión estuary (southeastern Bay of Biscay)

    NASA Astrophysics Data System (ADS)

    Zorita, Izaskun; Solaun, Oihana; Borja, Angel; Franco, Javier; Muxika, Iñigo; Pascual, Marta

    2013-10-01

    As the introduction of alien species represents one of the most important causes of biodiversity loss, it is crucial to study the distribution of alien species in order to control or eradicate their introduction and spread. Thus, the present study aimed to analyse the spatial distribution and temporal trends of soft-bottom marine benthic alien species collected during 20 years in the Nervión estuary, southeastern Bay of Biscay. Results indicated that, from a total of 6688 species records, 117 corresponded to alien species. Likewise, from a total of 742 different species identified, 23 species were classified as alien species. The two most frequently recorded alien species, Pseudopolydora paucibranchiata and Monocorophium acherusicum, appeared mainly at the intermediate part of the estuary that suffered historically an intense pollution. The presence and abundance of soft-bottom alien species became more evident since the mid-nineties, when the widening of the Bilbao Harbour occurred, together with a water quality improvement and the industry decline. Finally, although the identified alien species are considered as not invasive, the spread of alien species in the estuary might be considered as a threat.

  2. A new species of the genus Alienates Barber (Hemiptera: Heteroptera: Enicocephalidae: Alienatinae) from Venezuela.

    PubMed

    Baňař, Petr; Štys, Pavel; Kolesnichenko, Yuliya

    2015-09-03

    New species Alienates thomasi sp. nov. Baňař & Štys is described from Venezuela based on a single female. It is the first species recorded from South America, and is illustrated and compared with other Caribbean and Central American Alienates species.

  3. Limiting similarity and Darwin's naturalization hypothesis: understanding the drivers of biotic resistance against invasive plant species.

    PubMed

    Yannelli, F A; Koch, C; Jeschke, J M; Kollmann, J

    2017-03-01

    Several hypotheses have been proposed to explain biotic resistance of a recipient plant community based on reduced niche opportunities for invasive alien plant species. The limiting similarity hypothesis predicts that invasive species are less likely to establish in communities of species holding similar functional traits. Likewise, Darwin's naturalization hypothesis states that invasive species closely related to the native community would be less successful. We tested both using the invasive alien Ambrosia artemisiifolia L. and Solidago gigantea Aiton, and grassland species used for ecological restoration in central Europe. We classified all plant species into groups based on functional traits obtained from trait databases and calculated the phylogenetic distance among them. In a greenhouse experiment, we submitted the two invasive species at two propagule pressures to competition with communities of ten native species from the same functional group. In another experiment, they were submitted to pairwise competition with native species selected from each functional group. At the community level, highest suppression for both invasive species was observed at low propagule pressure and not explained by similarity in functional traits. Moreover, suppression decreased asymptotically with increasing phylogenetic distance to species of the native community. When submitted to pairwise competition, suppression for both invasive species was also better explained by phylogenetic distance. Overall, our results support Darwin's naturalization hypothesis but not the limiting similarity hypothesis based on the selected traits. Biotic resistance of native communities against invasive species at an early stage of establishment is enhanced by competitive traits and phylogenetic relatedness.

  4. Invasive species. Part 1: general aspects and biodiversity. Part 2: concrete examples.

    PubMed

    Pastoret, P P; Moutou, F

    2010-04-01

    The problem of invasive species is of interest to researchers in a variety of different fields, including biology, epidemiology, agriculture, public health and even human sciences. It is an issue that affects all regions of the world to a greater or lesser extent. It can also have detrimental effects on animal health and biodiversity. For example, the International Union for the Conservation of Nature (lUCN) reported that 625 (51%) of known endangered species are threatened because of invasive (alien) species.

  5. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence

    PubMed Central

    Pahl, Anna T.; Kollmann, Johannes; Mayer, Andreas; Haider, Sylvia

    2013-01-01

    Background and Aims Local adaptation enables plant species to persist under different environmental conditions. Evolutionary change can occur rapidly in invasive annual species and has been shown to lead to local adaptation. However, the patterns and mechanisms of local adaptation in invasive species along colonization sequences are not yet understood. Thus, in this study the alien annual Impatiens glandulifera was used to investigate local adaptation to distinct habitats that have been consecutively invaded in central Europe. Methods A reciprocal transplant experiment was performed using 15 populations from alluvial deciduous forests, fallow meadows and coniferous upland forests, and a greenhouse experiment was performed in which plants from these habitats were grown under treatments reflecting the main habitat differentiators (shade, soil acidity, competition). Key Results Biomass production, specific leaf area, plant height and relative growth rate differed between habitats in the field experiment and between treatments in the greenhouse, but not between seed origins. Overall, there was no indication of local adaptation in either experiment. Conclusions Since I. glandulifera is a successful invader in many habitats without showing local adaptation, it is suggested that the species is coping with environmental variation by means of high phenotypic plasticity. The species seems to follow a ‘jack-and-master’ strategy, i.e. it is able to maintain high fitness under a wide range of environmental conditions, but performs particularly well in favourable habitats. Therefore, the proposed colonization sequence is likely to be based primarily on changes in propagule pressure. It is concluded that invasive alien plants can become dominant in distinct habitats without local adaptation. PMID:24214934

  6. Modeling potential habitats for alien species Dreissena polymorpha in continental USA

    USGS Publications Warehouse

    Mingyang, Li; Yunwei, Ju; Kumar, Sunil; Stohlgren, Thomas J.

    2008-01-01

    The effective measure to minimize the damage of invasive species is to block the potential invasive species to enter into suitable areas. 1864 occurrence points with GPS coordinates and 34 environmental variables from Daymet datasets were gathered, and 4 modeling methods, i.e., Logistic Regression (LR), Classification and Regression Trees (CART), Genetic Algorithm for Rule-Set Prediction (GARP), and maximum entropy method (Maxent), were introduced to generate potential geographic distributions for invasive species Dreissena polymorpha in Continental USA. Then 3 statistical criteria of the area under the Receiver Operating Characteristic curve (AUC), Pearson correlation (COR) and Kappa value were calculated to evaluate the performance of the models, followed by analyses on major contribution variables. Results showed that in terms of the 3 statistical criteria, the prediction results of the 4 ecological niche models were either excellent or outstanding, in which Maxent outperformed the others in 3 aspects of predicting current distribution habitats, selecting major contribution factors, and quantifying the influence of environmental variables on habitats. Distance to water, elevation, frequency of precipitation and solar radiation were 4 environmental forcing factors. The method suggested in the paper can have some reference meaning for modeling habitats of alien species in China and provide a direction to prevent Mytilopsis sallei on the Chinese coast line.

  7. Which Factors Affect the Success or Failure of Eradication Campaigns against Alien Species?

    PubMed Central

    Pluess, Therese; Jarošík, Vojtěch; Pyšek, Petr; Cannon, Ray; Pergl, Jan; Breukers, Annemarie; Bacher, Sven

    2012-01-01

    Although issues related to the management of invasive alien species are receiving increasing attention, little is known about which factors affect the likelihood of success of management measures. We applied two data mining techniques, classification trees and boosted trees, to identify factors that relate to the success of management campaigns aimed at eradicating invasive alien invertebrates, plants and plant pathogens. We assembled a dataset of 173 different eradication campaigns against 94 species worldwide, about a half of which (50.9%) were successful. Eradications in man-made habitats, greenhouses in particular, were more likely to succeed than those in (semi-)natural habitats. In man-made habitats the probability of success was generally high in Australasia, while in Europe and the Americas it was higher for local infestations that are easier to deal with, and for international campaigns that are likely to profit from cross-border cooperation. In (semi-) natural habitats, eradication campaigns were more likely to succeed for plants introduced as an ornamental and escaped from cultivation prior to invasion. Averaging out all other factors in boosted trees, pathogens, bacteria and viruses were most, and fungi the least likely to be eradicated; for plants and invertebrates the probability was intermediate. Our analysis indicates that initiating the campaign before the extent of infestation reaches the critical threshold, starting to eradicate within the first four years since the problem has been noticed, paying special attention to species introduced by the cultivation pathway, and applying sanitary measures can substantially increase the probability of eradication success. Our investigations also revealed that information on socioeconomic factors, which are often considered to be crucial for eradication success, is rarely available, and thus their relative importance cannot be evaluated. Future campaigns should carefully document socioeconomic factors to

  8. Which factors affect the success or failure of eradication campaigns against alien species?

    PubMed

    Pluess, Therese; Jarošík, Vojtěch; Pyšek, Petr; Cannon, Ray; Pergl, Jan; Breukers, Annemarie; Bacher, Sven

    2012-01-01

    Although issues related to the management of invasive alien species are receiving increasing attention, little is known about which factors affect the likelihood of success of management measures. We applied two data mining techniques, classification trees and boosted trees, to identify factors that relate to the success of management campaigns aimed at eradicating invasive alien invertebrates, plants and plant pathogens. We assembled a dataset of 173 different eradication campaigns against 94 species worldwide, about a half of which (50.9%) were successful. Eradications in man-made habitats, greenhouses in particular, were more likely to succeed than those in (semi-)natural habitats. In man-made habitats the probability of success was generally high in Australasia, while in Europe and the Americas it was higher for local infestations that are easier to deal with, and for international campaigns that are likely to profit from cross-border cooperation. In (semi-) natural habitats, eradication campaigns were more likely to succeed for plants introduced as an ornamental and escaped from cultivation prior to invasion. Averaging out all other factors in boosted trees, pathogens, bacteria and viruses were most, and fungi the least likely to be eradicated; for plants and invertebrates the probability was intermediate. Our analysis indicates that initiating the campaign before the extent of infestation reaches the critical threshold, starting to eradicate within the first four years since the problem has been noticed, paying special attention to species introduced by the cultivation pathway, and applying sanitary measures can substantially increase the probability of eradication success. Our investigations also revealed that information on socioeconomic factors, which are often considered to be crucial for eradication success, is rarely available, and thus their relative importance cannot be evaluated. Future campaigns should carefully document socioeconomic factors to

  9. Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems.

    PubMed

    Catford, Jane A; Jansson, Roland

    2014-10-01

    Riparian vegetation is exposed to stress from inundation and hydraulic disturbance, and is often rich in native and alien plant species. We describe 35 traits that enable plants to cope with riparian conditions. These include traits for tolerating or avoiding anoxia and enabling underwater photosynthesis, traits that confer resistance and resilience to hydraulic disturbance, and attributes that facilitate dispersal, such as floating propagules. This diversity of life-history strategies illustrates that there are many ways of sustaining life in riparian zones, which helps to explain high riparian biodiversity. Using community assembly theory, we examine how adaptations to inundation, disturbance and dispersal shape plant community composition along key environmental gradients, and how human actions have modified communities. Dispersal-related processes seem to explain many patterns, highlighting the influence of regional processes on local species assemblages. Using alien plant invasions like an (uncontrolled) experiment in community assembly, we use an Australian and a global dataset to examine possible causes of high degrees of riparian invasion. We found that high proportions of alien species in the regional species pools have invaded riparian zones, despite not being riparian specialists, and that riparian invaders disperse in more ways, including by water and humans, than species invading other ecosystems.

  10. Early detection of potentially invasive invertebrate species in Mytilus galloprovincialis Lamarck, 1819 dominated communities in harbours

    NASA Astrophysics Data System (ADS)

    Preda, Cristina; Memedemin, Daniyar; Skolka, Marius; Cogălniceanu, Dan

    2012-12-01

    Constanţa harbour is a major port on the western coast of the semi-enclosed Black Sea. Its brackish waters and low species richness make it vulnerable to invasions. The intensive maritime traffic through Constanţa harbour facilitates the arrival of alien species. We investigated the species composition of the mussel beds on vertical artificial concrete substrate inside the harbour. We selected this habitat for study because it is frequently affected by fluctuating levels of temperature, salinity and dissolved oxygen, and by accidental pollution episodes. The shallow communities inhabiting it are thus unstable and often restructured, prone to accept alien species. Monthly samples were collected from three locations from the upper layer of hard artificial substrata (maximum depth 2 m) during two consecutive years. Ten alien macro-invertebrate species were inventoried, representing 13.5% of the total number of species. Two of these alien species were sampled starting the end of summer 2010, following a period of high temperatures that triggered hypoxia, causing mass mortalities of benthic organisms. Based on the species accumulation curve, we estimated that we have detected all benthic alien species on artificial substrate from Constanţa harbour, but additional effort is required to detect all the native species. Our results suggest that monitoring of benthic communities at small depths in harbours is a simple and useful tool in early detection of potentially invasive alien species. The selected habitat is easily accessible, the method is low-cost, and the samples represent reliable indicators of alien species establishment.

  11. 75 FR 29359 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    .../coastal environments in the world, with over 50 invasive species that threaten the Bay's vibrant economy... within invasive species efforts, ballast water related issues, and the development of state...

  12. 75 FR 69698 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    .... The full ISAC will also consider a white paper entitled, Invasive Species and Climate Change, as drafted by the ISAC Task Team on Climate Change. DATES: Meeting of the Invasive Species Advisory...

  13. Getting the Right Traits: Reproductive and Dispersal Characteristics Predict the Invasiveness of Herbaceous Plant Species

    PubMed Central

    Moravcová, Lenka; Pyšek, Petr; Pergl, Jan

    2015-01-01

    To better understand the effect of species traits on plant invasion, we collected comparative data on 20 reproductive and dispersal traits of 93 herbaceous alien species in the Czech Republic, central Europe, introduced after 1500 A. D. We explain plant invasion success, expressed by two measures: invasiveness, i.e. whether the species is naturalized but non-invasive, or invasive; and dominance in plant communities expressed as the mean cover in vegetation plots. We also tested how important reproductive and dispersal traits are in models including other characteristics generally known to predict invasion outcome, such as plant height, life history and residence time. By using regression/classification trees we show that the biological traits affect invasion success at all life stages, from reproduction (seed production) to dispersal (propagule properties), and the ability to compete with resident species (height). By including species traits information not usually available in multispecies analyses, we provide evidence that traits do play important role in determining the outcome of invasion and can be used to distinguish between alien species that reach the final stage of the invasion process and dominate the local communities from those that do not. No effect of taxonomy ascertained in regression and classification trees indicates that the role of traits in invasiveness should be assessed primarily at the species level. PMID:25906399

  14. Council Coordination of Federal Invasive Species Efforts

    DTIC Science & Technology

    2004-08-01

    Chris Dionigi, Assistant Director, Domestic Policy National Invasive Species Council Coordination of Federal Invasive Species Efforts Report...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE CouncilCoordination of Federal Invasive Species Efforts 5a. CONTRACT NUMBER 5b...ADDRESS(ES) National Invasive Species Council (NISC) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS

  15. [Fast catalogue of alien invasive weeds by Vis/NIR spectroscopy].

    PubMed

    Yu, Jia-Jia; Zou, Wei; He, Yong; Xu, Zheng-Hao

    2009-11-01

    The feasibility of visible and short-wave near-infrared spectroscopy (VIS/WNIR) techniques as means for the nondestructive and fast detection of alien invasive weeds was evaluated. Selected sensitive bands were found validated. In the present study, 3 kinds of alien invasive weeds, Veronica persica, Veronica polita, and Veronica arvensis Linn, and one kind of local weed, Lamiaceae amplexicaule Linn, were employed. The results showed that visible and NIR (Vis/NIR) technology could be introduced in classification of the alien invasive weeds or local weed with the similar outline. Thirty x 4 weeds samples were randomly selected for the calibration set, while the remaining 20 x 4 samples for the prediction set. Smoothing methods of moving average and standard normal variate (SNV) were used to pretreat spectra data. Based on principal components analysis, soft independent models of class analogy (SIMCA) were applied to make the model. Four frontal principal components of each catalogues were applied as the input of SIMCA, and with a significance level of 0.05, recognition ratio of 78.75% was obtained. The average prediction result is 90% except for Veronica polita. According to the modeling power of each spectra data in SIMCA, some possible sensitive bands, 496-521, 589-626 and 789-926 nm, were founded. By using these possible sensitive bands as the inputs of least squares support vector machine (LS-SVM), and setting the result of LS-SVM as the object function value of genetic algorithm (GA), mutational rate, crossover rate and population size were set up as 0.9, 0.5 and 50 respectively. Finally recognition ratio of 95.63% was obtained. The prediction results of 95.63% indicated that the selected wavelengths reflected the main characteristics of the four weeds, which proposed a new way to accelerate the research on cataloguing alien invasive weeds.

  16. 78 FR 70317 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Office of the Secretary Invasive Species Advisory Committee AGENCY: Office of the Secretary, Interior. ACTION: Notice of Public Meeting (via Teleconference) of the Invasive Species Advisory Committee. SUMMARY... Invasive Species Advisory Committee. The purpose of the Advisory Committee is to provide advice to...

  17. 78 FR 11899 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... Office of the Secretary Invasive Species Advisory Committee AGENCY: Office of the Secretary, Interior... Invasive Species Advisory Committee. The document contained incorrect dates. This document corrects those.... Meeting of the Invasive Species Advisory Committee (OPEN): Thursday, March 7, 2013 through Friday, March...

  18. 76 FR 68776 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...] [FR Doc No: 2011-28743] DEPARTMENT OF THE INTERIOR Office of the Secretary Invasive Species Advisory..., notice is hereby given of meetings of the Invasive Species Advisory Committee (ISAC). Comprised of 29 nonfederal invasive species experts and stakeholders from across the nation, the purpose of the...

  19. Newly emergent and future threats of alien species to Pacific birds and ecosystems

    USGS Publications Warehouse

    Loope, Lloyd L.; Howarth, Francis G.; Kraus, Frederick; Pratt, Thane K.

    2001-01-01

    Although the devastating effects of established alien species to Pacific birds and ecosystems are generally well recognized by the avian conservation community, we raise the under appreciated issue of effects of incipient and future invasions. Although special attention to Pacific bird species “on the brink” is to a certain extent appropriate and necessary, a comparable focus on stopping new invasions appears desperately needed. All indications suggest that introductions will escalate with the trend toward ever increasing commerce and unrestricted trade unless stronger preventative measures are implemented very soon. The threat to Pacific island avifaunas from the brown tree snake (Bniga irregularis) is well-known, but as many as several hundred of the world’s snake species, some of which are repeatedly smuggled illegally as pets, might have similar impacts on native birds if transported to Pacific islands. We touch upon a sampling of obviously severe potential future threats, with the hope of raising awareness and resolve to fix the current woefully inadequate system for prevention of and rapid response to new invasions.

  20. Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata)

    PubMed Central

    Trucchi, Emiliano; Sbordoni, Valerio

    2009-01-01

    Background Biological invasions can be considered one of the main threats to biodiversity, and the recognition of common ecological and evolutionary features among invaders can help developing a predictive framework to control further invasions. In particular, the analysis of successful invasive species and of their autochthonous source populations by means of genetic, phylogeographic and demographic tools can provide novel insights into the study of biological invasion patterns. Today, long-term dynamics of biological invasions are still poorly understood and need further investigations. Moreover, distribution and molecular data on native populations could contribute to the recognition of common evolutionary features of successful aliens. Results We analyzed 2,195 mitochondrial base pairs, including Cytochrome b, Control Region and rRNA 12S, in 161 Italian and 27 African specimens and assessed the ancient invasive origin of Italian crested porcupine (Hystrix cristata) populations from Tunisia. Molecular coalescent-based Bayesian analyses proposed the Roman Age as a putative timeframe of introduction and suggested a retention of genetic diversity during the early phases of colonization. The characterization of the native African genetic background revealed the existence of two differentiated clades: a Mediterranean group and a Sub-Saharan one. Both standard population genetic and advanced molecular demography tools (Bayesian Skyline Plot) did not evidence a clear genetic signature of the expected increase in population size after introduction. Along with the genetic diversity retention during the bottlenecked steps of introduction, this finding could be better described by hypothesizing a multi-invasion event. Conclusion Evidences of the ancient anthropogenic invasive origin of the Italian Hystrix cristata populations were clearly shown and the native African genetic background was preliminary described. A more complex pattern than a simple demographic exponential

  1. Invasion triangle: an organizational framework for species invasion

    PubMed Central

    Perkins, Lora B; Leger, Elizabeth A; Nowak, Robert S

    2011-01-01

    Species invasion is a complex, multifactor process. To encapsulate this complexity into an intuitively appealing, simple, and straightforward manner, we present an organizational framework in the form of an invasion triangle. The invasion triangle is an adaptation of the disease triangle used by plant pathologists to help envision and evaluate interactions among a host, a pathogen, and an environment. Our modification of this framework for invasive species incorporates the major processes that result in invasion as the three sides of the triangle: (1) attributes of the potential invader; (2) biotic characteristics of a potentially invaded site; and (3) environmental conditions of the site. The invasion triangle also includes the impact of external influences on each side of the triangle, such as climate and land use change. This paper introduces the invasion triangle, discusses how accepted invasion hypotheses are integrated in this framework, describes how the invasion triangle can be used to focus research and management, and provides examples of application. The framework provided by the invasion triangle is easy to use by both researchers and managers and also applicable at any level of data intensity, from expert opinion to highly controlled experiments. The organizational framework provided by the invasion triangle is beneficial for understanding and predicting why species are invasive in specific environments, for identifying knowledge gaps, for facilitating communication, and for directing management in regard to invasive species. PMID:22393528

  2. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  3. Characteristics of successful alien plants.

    PubMed

    van Kleunen, M; Dawson, W; Maurel, N

    2015-05-01

    Herbert Baker arguably initiated the search for species characteristics determining alien plant invasion success, with his formulation of the 'ideal weed'. Today, a profusion of studies has tested a myriad of traits for their importance in explaining success of alien plants, but the multiple, not always appropriate, approaches used have led to some confusion and criticism. We argue that a greater understanding of the characteristics explaining alien plant success requires a refined approach that respects the multistage, multiscale nature of the invasion process. We present a schema of questions we can ask regarding the success of alien species, with the answering of one question in the schema being conditional on the answer of preceding questions (thus acknowledging the nested nature of invasion stages). For each question, we identify traits and attributes of species we believe are likely to be most important in explaining species success, and we make predictions as to how we expect successful aliens to differ from natives and from unsuccessful aliens in their characteristics. We organize the findings of empirical studies according to the questions in our schema that they have addressed, to assess the extent to which they support our predictions. We believe that research on plant traits of alien species has already told us a lot about why some alien species become successful after introduction. However, if we ask the right questions at the appropriate scale and use appropriate comparators, research on traits may tell us whether they are really important or not, and if so under which conditions.

  4. Differences found in the macroinvertebrate community composition in the presence or absence of the invasive alien crayfish, Orconectes hylas

    USGS Publications Warehouse

    Freeland-Riggert, Brandye T.; Cairns, Stefan H.; Poulton, Barry C.; Riggert, Chris M.

    2016-01-01

    Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities.

  5. Differences Found in the Macroinvertebrate Community Composition in the Presence or Absence of the Invasive Alien Crayfish, Orconectes hylas

    PubMed Central

    Freeland-Riggert, Brandye T.

    2016-01-01

    Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities. PMID:26986207

  6. Differences Found in the Macroinvertebrate Community Composition in the Presence or Absence of the Invasive Alien Crayfish, Orconectes hylas.

    PubMed

    Freeland-Riggert, Brandye T; Cairns, Stefan H; Poulton, Barry C; Riggert, Christopher M

    2016-01-01

    Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities.

  7. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits.

    PubMed

    Klonner, Günther; Fischer, Stefan; Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties.

  8. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits

    PubMed Central

    Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties. PMID:27187616

  9. The Invasive Species Forecasting System

    NASA Technical Reports Server (NTRS)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  10. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    PubMed

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  11. 76 FR 30955 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Office of the Secretary Invasive Species Advisory Committee AGENCY: Office of the Secretary, Interior. ACTION: Notice of public meetings of the Invasive Species Advisory Committee. SUMMARY: Pursuant to the provisions of the Federal Advisory Committee Act, notice is hereby given of meetings of the Invasive...

  12. CONSERVATION PROGRAMS THAT PROMOTE INVASIVE SPECIES

    EPA Science Inventory

    Invasive plant species are degrading the structure and function of ecosystems throughout the world. Although most state and federal conservation agencies in the U.S. attempt to reduce the impact of invasive species, some agency activities can contribute to the spread of invasive...

  13. Chemical Cues Released by an Alien Invasive Aquatic Gastropod Drive Its Invasion Success

    PubMed Central

    Raw, Jacqueline L.; Miranda, Nelson A. F.; Perissinotto, Renzo

    2013-01-01

    Background Chemical cues provide aquatic organisms with sensory information that guides behavioural responses and thus interactions among themselves, each other and the environment. Chemical cues are considered important for predator avoidance, foraging, larval settlement and broadcast spawning in aquatic environments. However, the significance of their role as drivers of direct interactions between heterospecifics has been largely overlooked. Methodology/Principal Findings A video camera and a demarcated arena were used in situ to record behavioural responses of three native gastropod species, Assiminea cf. capensis, Melanoides tuberculata and Coriandria durbanensis, exposed to treatments representing chemical cues released by a non-native invasive gastropod, Tarebia granifera. The responses were measured quantitatively as displacement and orientation of movement at locations in St Lucia Estuary, within the iSimangaliso Wetland Park, a UNESCO World Heritage Site on the east coast of South Africa. All native gastropods exhibited a negative taxis response to chemical cues released by T. granifera, while T. granifera individuals responded randomly to conspecifics. Displacement was measured relative to the source of the extract, the number of steps taken were determined with path analysis and orientation was determined from the mean (±95% CIs) turning angles, with significant negative turning angles representing negative taxis. Responses to treatments corresponding to the environment and conspecifics were random and undirected, indicating kinesis. Conclusion/Significance This study presents evidence for interactions driven by chemical cues between a non-native invasive gastropod and several gastropods native to South Africa. The results indicate that chemical cues can facilitate invasion success as the behavioural response of native gastropods is to move away allowing additional food and space resources to become available to T. granifera. PMID:23691151

  14. Determining the Hydrological Benefits of Clearing Invasive Alien Vegetation on the Agulhas Plain, South Africa

    NASA Astrophysics Data System (ADS)

    Nowell, M. S.; Le Maitre, D. C.; Esler, K. J.; Kalwij, J. M.

    2010-12-01

    Invasive Alien Plants (IAPs) threaten biodiversity and ecosystem processes due to their ability to outcompete native vegetation for resources such as water, nutrients, light and space. IAPs utilize water differently for different hydrogeological conditions. The aim of this study was to explore the water use by invasive vegetation for three different hydrogeological scenarios using remote sensing and the Surface Energy Balance Algorithm for Land (SEBAL). The application of remote sensing techniques to map and monitor IAPs is relatively new in South Africa. Not only will the findings of this study contribute to more effective clearing strategies for the Working for Water programme, but will also provide conservation planners and managers with a cost and time effective technique for mapping invasive vegetation and updating land use maps in the Cape Floristic Region of South Africa.

  15. Using the Maxent program for species distribution modelling to assess invasion risk

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E.; Venette, R.C

    2015-01-01

    MAXENT is a software package used to relate known species occurrences to information describing the environment, such as climate, topography, anthropogenic features or soil data, and forecast the presence or absence of a species at unsampled locations. This particular method is one of the most popular species distribution modelling techniques because of its consistent strong predictive performance and its ease to implement. This chapter discusses the decisions and techniques needed to prepare a correlative climate matching model for the native range of an invasive alien species and use this model to predict the potential distribution of this species in a potentially invaded range (i.e. a novel environment) by using MAXENT for the Burmese python (Python molurus bivittatus) as a case study. The chapter discusses and demonstrates the challenges that are associated with this approach and examines the inherent limitations that come with using MAXENT to forecast distributions of invasive alien species.

  16. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change.

    PubMed

    Wan, Ji-Zhong; Wang, Chun-Jing; Tan, Jing-Fang; Yu, Fei-Hai

    2017-03-01

    Testing climatic niche divergence and modeling habitat suitability under conditions of climate change are important for developing strategies to limit the introduction and expansion of alien invasive weeds (AIWs) and providing important ecological and evolutionary insights. We assessed climatic niches in both native and invasive ranges as well as habitat suitability under climate change for eight representative Chinese AIWs from the American continent. We used climatic variables associated with occurrence records and developed ecological niche models with Maxent. Interestingly, the climatic niches of all eight AIWs diverged significantly between the native and invasive ranges (the American continent and China). Furthermore, the AIWs showed larger climatic niche breadths in the invasive ranges than in the native ranges. Our results suggest that climatic niche shifts between native and invasive ranges occurred. Thus, the occurrence records of both native and invasive regions must be considered when modeling and predicting the spatial distributions of AIWs under current and future climate scenarios. Owing to high habitat suitability, AIWs were more likely to expand into regions of low latitude, and future climate change was predicted to result in a shift in the AIWs in Qinghai and Tibet (regions of higher altitude) as well as Heilongjiang, Jilin, Liaoning, Inner Mongolia, and Gansu (regions of higher latitude). Our results suggest that we need measures to prevent and control AIW expansion at the country-wide level.

  17. Invasive species, ecosystem services and human well-being.

    PubMed

    Pejchar, Liba; Mooney, Harold A

    2009-09-01

    Although the effects of invasive alien species (IAS) on native species are well documented, the many ways in which such species impact ecosystem services are still emerging. Here we assess the costs and benefits of IAS for provisioning, regulating and cultural services, and illustrate the synergies and tradeoffs associated with these impacts using case studies that include South Africa, the Great Lakes and Hawaii. We identify services and interactions that are the least understood and propose a research and policy framework for filling the remaining knowledge gaps. Drawing on ecology and economics to incorporate the impacts of IAS on ecosystem services into decision making is key to restoring and sustaining those life-support services that nature provides and all organisms depend upon.

  18. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.

    PubMed

    Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C

    Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers <500 in each population. In 2010, only a single individual was captured at each locality and further searching failed to record any others in repeated sampling up to 2014. We conclude that both populations are now extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.

  19. Alien species of mammals and their impact on natural ecosystems in the biosphere reserves of Russia.

    PubMed

    Neronov, Valery M; Khlyap, Ludmila A; Bobrov, Vladimir V; Warshavsky, Andrey A

    2008-06-01

    The paper analyses the results of a survey of 37 Russian biosphere reserves using questionnaires concerning the presence of alien species of mammals, their pathways of penetration, and their impacts on protected ecosystems. The penetration of alien mammals into terrestrial ecosystems of Russia is extensive, both in places with maximum human environmental impact (inhabited areas and agricultural lands) and in biosphere reserves with minimal human impact. There are 62 mammal species registered as alien in Russian ecosystems and they account for 22% of the terrestrial mammal fauna of Russia. The percentage of alien species in biosphere reserves is 32.6% at most. In most regions, Castor fiber, Ondatra zibethicus, Nyctereutes procyonoides, Canis familiaris, Neovison vison and Sus scrofa are very dangerous, and both Castor fiber and Sus scrofa can have environment-forming impacts.

  20. The Invasive Plant Species Education Guide

    ERIC Educational Resources Information Center

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  1. A Conceptual Analysis of the "Alien Invasion": Institutionalized Support of Illegal Mexican Aliens in the U.S.

    ERIC Educational Resources Information Center

    Stoddard, Ellwyn R.

    1976-01-01

    Organizes and conceptually clarifies the various elements within the illegal Mexican immigration situation, specifically focuses on how many and who the aliens are, why they are here, and which institutions within the society are supportive of them. (Author)

  2. Fort Collins Science Center: Invasive Species Science

    USGS Publications Warehouse

    Stohlgren, Tom

    2004-01-01

    FORT is also the administrative home of the National Institute of Invasive Species Science, a growing consortium of partnerships between government and private organizations established by the U.S. Geological Survey (USGS) and its many cooperators. The Institute was formed to develop cooperative approaches for invasive species science that meet the urgent needs of land managers and the public. Its mission is to work with others to coordinate data and research from many sources to predict and reduce the effects of harmful nonnative plants, animals, and diseases in natural areas and throughout the United States, with a strategic approach to information management, research, modeling, technical assistance, and outreach. The Institute research team will develop local-, regional-, and national- scale maps of invasive species and identify priority invasive species, vulnerable habitats, and pathways of invasion. County-level and point data on occurrence will be linked to plot-level and site-level information on species abundance and spread. FORT scientists and Institute partners are working to integrate remote sensing data and GIS-based predictive models to track the spread of invasive species across the country. This information will be linked to control and restoration efforts to evaluate their cost-effectiveness. Understanding both successes and failures will advance the science of invasive species containment and control as well as restoration of habitats and native biodiversity.

  3. The generic impact scoring system (GISS): a standardized tool to quantify the impacts of alien species.

    PubMed

    Nentwig, Wolfgang; Bacher, Sven; Pyšek, Petr; Vilà, Montserrat; Kumschick, Sabrina

    2016-05-01

    Alien species can exert negative environmental and socio-economic impacts. Therefore, administrations from different sectors are trying to prevent further introductions, stop the spread of established species, and apply or develop programs to mitigate their impact, to contain the most harmful species, or to eradicate them if possible. Often it is not clear which of the numerous alien species are most important in terms of damage, and therefore, impact scoring systems have been developed to allow a comparison and thus prioritization of species. Here, we present the generic impact scoring system (GISS), which relies on published evidence of environmental and socio-economic impact of alien species. We developed a system of 12 impact categories, for environmental and socio-economic impact, comprising all kinds of impacts that an alien species may exert. In each category, the intensity of impact is quantified by a six-level scale ranging from 0 (no impact detectable) to 5 (the highest impact possible). Such an approach, where impacts are grouped based on mechanisms for environmental impacts and receiving sectors for socio-economy, allows for cross-taxa comparisons and prioritization of the most damaging species. The GISS is simple and transparent, can be conducted with limited funds, and can be applied to a large number of alien species across taxa and environments. Meanwhile, the system was applied to 349 alien animal and plant species. In a comparison with 22 other impact assessment methods, the combination of environmental and socio-economic impact, as well as the possibility of weighting and ranking of the scoring results make GISS the most broadly applicable system.

  4. Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions.

    PubMed

    Vicente, J R; Fernandes, R F; Randin, C F; Broennimann, O; Gonçalves, J; Marcos, B; Pôças, I; Alves, P; Guisan, A; Honrado, J P

    2013-12-15

    Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.

  5. Resilience to disturbance and resistance to alien grass invasions in the cold desert of western North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alien grass invasions are resulting in ecosystem-level transformations of entire landscapes in arid and semi-arid ecosystems. The cold desert of western US is undergoing such a transformation, and is considered one of the most imperiled large ecosystems in the US. To address the rapid and complex ch...

  6. Global threat to agriculture from invasive species.

    PubMed

    Paini, Dean R; Sheppard, Andy W; Cook, David C; De Barro, Paul J; Worner, Susan P; Thomas, Matthew B

    2016-07-05

    Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread.

  7. Global threat to agriculture from invasive species

    PubMed Central

    Paini, Dean R.; Sheppard, Andy W.; Cook, David C.; De Barro, Paul J.; Worner, Susan P.; Thomas, Matthew B.

    2016-01-01

    Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread. PMID:27325781

  8. 77 FR 23740 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ..., ecological, and human health impacts that invasive species cause. The Council is co-chaired by the Secretary... the Pacific Northwest. A ``systems thinking'' approach to this meeting in both ecological...

  9. Aquatic invasive species: Lessons from cancer research

    USGS Publications Warehouse

    Sepulveda, Adam; Ray, Andrew; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Gresswell, Robert E.; Gross, Jackson A.; Kershner, Jeffrey L.

    2014-01-01

    Aquatic invasive species are disrupting ecosystems with increasing frequency. Successful control of these invasions has been rare: Biologists and managers have few tools for fighting aquatic invaders. In contrast, the medical community has long worked to develop tools for preventing and fighting cancer. Its successes are marked by a coordinated research approach with multiple steps: prevention, early detection, diagnosis, treatment options and rehabilitation. The authors discuss how these steps can be applied to aquatic invasive species, such as the American bullfrog (Lithobates catesbeianus), in the Northern Rocky Mountain region of the United States, to expedite tool development and implementation along with achievement of biodiversity conservation goals.

  10. Alien molluscan species established along the Italian shores: an update, with discussions on some Mediterranean “alien species” categories

    PubMed Central

    Crocetta, Fabio; Macali, Armando; Furfaro, Giulia; Cooke, Samantha; Guido Villani; Valdés, Ángel

    2013-01-01

    Abstract The state of knowledge of the alien marine Mollusca in Italy is reviewed and updated. Littorina saxatilis (Olivi, 1792), Polycera hedgpethi Er. Marcus, 1964 and Haminoea japonica Pilsbry, 1895are here considered as established on the basis of published and unpublished data, and recent records of the latter considerably expand its known Mediterranean range to the Tyrrhenian Sea. COI sequences obtained indicate that a comprehensive survey of additional European localities is needed to elucidate the dispersal pathways of Haminoea japonica.Recent records and interpretation of several molluscan taxa as alien are discussed both in light of new Mediterranean (published and unpublished) records and of four categories previously excluded from alien species lists. Within this framework, ten taxa are no longer considered as alien species, or their records from Italy are refuted. Furthermore, Trochocochlea castriotae Bellini, 1903 is considered a new synonym for Gibbula albida (Gmelin, 1791). Data provided here leave unchanged as 35 the number of alien molluscan taxa recorded from Italy as well as the percentage of the most plausible vectors of introduction, but raise to 22 the number of established species along the Italian shores during the 2005–2010 period, and backdate to 1792 the first introduction of an alien molluscan species (Littorina saxatilis) to the Italian shores. PMID:23794825

  11. Invasive species management and research using GIS

    USGS Publications Warehouse

    Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.

    2007-01-01

    Geographical Information Systems (GIS) are powerful tools in the field of invasive species management. GIS can be used to create potential distribution maps for all manner of taxa, including plants, animals, and diseases. GIS also performs well in the early detection and rapid assessment of invasive species. Here, we used GIS applications to investigate species richness and invasion patterns in fish in the United States (US) at the 6-digit Hydrologic Unit Code (HUC) level. We also created maps of potential spread of the cane toad (Bufo marinus) in the southeastern US at the 8-digit HUC level using regression and environmental envelope techniques. Equipped with this potential map, resource managers can target their field surveys to areas most vulnerable to invasion. Advances in GIS technology, maps, data, and many of these techniques can be found on websites such as the National Institute of Invasive Species Science (www.NIISS.org). Such websites provide a forum for data sharing and analysis that is an invaluable service to the invasive species community.

  12. Past and estimated future impact of invasive alien mammals on insular threatened vertebrate populations.

    PubMed

    McCreless, Erin E; Huff, David D; Croll, Donald A; Tershy, Bernie R; Spatz, Dena R; Holmes, Nick D; Butchart, Stuart H M; Wilcox, Chris

    2016-08-18

    Invasive mammals on islands pose severe, ongoing threats to global biodiversity. However, the severity of threats from different mammals, and the role of interacting biotic and abiotic factors in driving extinctions, remain poorly understood at a global scale. Here we model global extirpation patterns for island populations of threatened and extinct vertebrates. Extirpations are driven by interacting factors including invasive rats, cats, pigs, mustelids and mongooses, native species taxonomic class and volancy, island size, precipitation and human presence. We show that controlling or eradicating the relevant invasive mammals could prevent 41-75% of predicted future extirpations. The magnitude of benefits varies across species and environments; for example, managing invasive mammals on small, dry islands could halve the extirpation risk for highly threatened birds and mammals, while doing so on large, wet islands may have little benefit. Our results provide quantitative estimates of conservation benefits and, when combined with costs in a return-on-investment framework, can guide efficient conservation strategies.

  13. Invasive Species Science Branch: research and management tools for controlling invasive species

    USGS Publications Warehouse

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  14. Biotic Resistance to an Alien Amphibian: Larval Competition between Japanese Frogs and Invasive Cane Toads.

    PubMed

    Haramura, Takashi; Takeuchi, Hirohiko; Crossland, Michael R; Shine, Richard

    2016-01-01

    Understanding negative effects of native species on introduced taxa may suggest novel ways to control the invasive species by enhancing such effects. Previous studies have reported that the larvae of invasive cane toads (Rhinella marina) are suppressed by competition with the larvae of native anurans in Australia, but not in North America. We conducted laboratory trials to measure the effect of exposure to the larvae of Japanese frogs (Microhyla ornata, Fejervarya sakishimensis, Rhacophorus owstoni) on rates of survival, growth and development of cane toad tadpoles in Ishigaki Island, in southern Japan. Survival rates were not affected by native species, but competition with Dicroglossids and Rhacophorids (but not Microhylids) strongly reduced rates of growth and development in the tadpoles of cane toads. Dicroglossid tadpoles also reduced the body condition to toad tadpoles in addition to effects on SVL and mass. Encouraging populations of native frogs in toad-invaded areas of Japan thus may help to reduce the numbers of invasive cane toads.

  15. Climate change and invasive species: double jeopardy.

    PubMed

    Mainka, Susan A; Howard, Geoffrey W

    2010-06-01

    Two of the key drivers of biodiversity loss today are climate change and invasive species. Climate change is already having a measurable impact on species distributions, reproduction and behavior, and all evidence suggests that things will get worse even if we act tomorrow to mitigate any future increases in greenhouse gas emissions: temperature will increase, precipitation will change, sea level will rise and ocean chemistry will change. At the same time, biological invasions remain an important threat to biodiversity, causing species loss, changes in distribution and habitat degradation. Acting together, the impacts of each of these drivers of change are compounded and interactions between these two threats present even greater challenges to field conservationists as well as policymakers. Similarly, the social and economic impacts of climate change and invasive species, already substantial, will be magnified. Awareness of the links between the two should underpin all biodiversity management planning and policy.

  16. Long-term differences in annual litter production between alien (Sonneratia apetala) and native (Kandelia obovata) mangrove species in Futian, Shenzhen, China.

    PubMed

    Liu, Lina; Li, Fenglan; Yang, Qiong; Tam, Nora F Y; Liao, Wenbo; Zan, Qijie

    2014-08-30

    Annual litter production in alien (Sonneratia apetala) and native (Kandelia obovata) mangrove forests in Shenzhen, China were compared from 1999 to 2010. S. apetala had significantly higher litter production than K. obovata, with mean annual total litter of 18.1 t ha(-1) yr(-1) and 15.2 t ha(-1) yr(-1), respectively. The higher litter production in S. apetala forest indicates higher productivity and consequently more nutrient supply to the estuarine ecosystems but may be more invasive due to positive plant-soil feedbacks and nutrient availability to this alien species. Two peaks were recorded in S. apetala (May and October), while only one peak was observed in K. obovata, in early spring (March and April). Leaf and reproductive materials were the main contributors to litter production (>80%) in both forests. These results suggest that the ecological function of S. apetala and its invasive potential can be better understood based on a long-term litter fall analysis.

  17. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    EPA Science Inventory

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  18. Regarding the role of new host associations in the success of Cactoblastis cactorum as both a biological control agent and invasive species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key theoretical basis for using classic biological control against invasive alien species (IAS) has been the enemy release hypothesis (ERH), which suggests that the increased vigor and invasiveness of IAS in the introduced range is strongly influenced by their release from co-evolved natural enemi...

  19. Do David and Goliath Play the Same Game? Explanation of the Abundance of Rare and Frequent Invasive Alien Plants in Urban Woodlands in Warsaw, Poland

    PubMed Central

    Mędrzycki, Piotr; Kołaczkowska, Ewa; Ciurzycki, Wojciech; Marciszewska, Katarzyna

    2016-01-01

    Invasive Alien Plants occur in numbers differing by orders of magnitude at subsequent invasion stages. Effective sampling and quantifying niches of rare invasive plants are quite problematic. The aim of this paper is an estimation of the influence of invasive plants frequency on the explanation of their local abundance. We attempted to achieve it through: (1) assessment of occurrence of self-regenerating invasive plants in urban woodlands, (2) comparison of Random Forest modelling results for frequent and rare species. We hypothesized that the abundance of frequent species would be explained better than that of rare ones and that both rare and frequent species share a common hierarchy of the most important determinants. We found 15 taxa in almost two thirds of 1040 plots with a total number of 1068 occurrences. There were recorded 6 taxa of high frequency–Prunus serotina, Quercus rubra, Acer negundo, Robinia pseudoacacia, Impatiens parviflora and Solidago spp.–and 9 taxa of low frequency: Acer saccharinum, Amelanchier spicata, Cornus spp., Fraxinus spp., Parthenocissus spp., Syringa vulgaris, Echinocystis lobata, Helianthus tuberosus, Reynoutria spp. Random Forest’s models’ quality grows with the number of occurrences of frequent taxa but not of the rare ones. Both frequent and rare taxa share a similar hierarchy of predictors’ importance: Land use > Tree stand > Seed source and, for frequent taxa, Forest properties as well. We conclude that there is an ‘explanation jump’ at higher species frequencies, but rare species are surprisingly similar to frequent ones in their determinant’s hierarchy, with differences conforming with their respective stages of invasion. PMID:27992516

  20. Do David and Goliath Play the Same Game? Explanation of the Abundance of Rare and Frequent Invasive Alien Plants in Urban Woodlands in Warsaw, Poland.

    PubMed

    Obidziński, Artur; Mędrzycki, Piotr; Kołaczkowska, Ewa; Ciurzycki, Wojciech; Marciszewska, Katarzyna

    2016-01-01

    Invasive Alien Plants occur in numbers differing by orders of magnitude at subsequent invasion stages. Effective sampling and quantifying niches of rare invasive plants are quite problematic. The aim of this paper is an estimation of the influence of invasive plants frequency on the explanation of their local abundance. We attempted to achieve it through: (1) assessment of occurrence of self-regenerating invasive plants in urban woodlands, (2) comparison of Random Forest modelling results for frequent and rare species. We hypothesized that the abundance of frequent species would be explained better than that of rare ones and that both rare and frequent species share a common hierarchy of the most important determinants. We found 15 taxa in almost two thirds of 1040 plots with a total number of 1068 occurrences. There were recorded 6 taxa of high frequency-Prunus serotina, Quercus rubra, Acer negundo, Robinia pseudoacacia, Impatiens parviflora and Solidago spp.-and 9 taxa of low frequency: Acer saccharinum, Amelanchier spicata, Cornus spp., Fraxinus spp., Parthenocissus spp., Syringa vulgaris, Echinocystis lobata, Helianthus tuberosus, Reynoutria spp. Random Forest's models' quality grows with the number of occurrences of frequent taxa but not of the rare ones. Both frequent and rare taxa share a similar hierarchy of predictors' importance: Land use > Tree stand > Seed source and, for frequent taxa, Forest properties as well. We conclude that there is an 'explanation jump' at higher species frequencies, but rare species are surprisingly similar to frequent ones in their determinant's hierarchy, with differences conforming with their respective stages of invasion.

  1. Long live the alien: is high genetic diversity a pivotal aspect of crested porcupine (Hystrix cristata) long-lasting and successful invasion?

    PubMed

    Trucchi, Emiliano; Facon, Benoit; Gratton, Paolo; Mori, Emiliano; Stenseth, Nils Chr; Jentoft, Sissel

    2016-08-01

    Studying the evolutionary dynamics of an alien species surviving and continuing to expand after several generations can provide fundamental information on the relevant features of clearly successful invasions. Here, we tackle this task by investigating the dynamics of the genetic diversity in invasive crested porcupine (Hystrix cristata) populations, introduced to Italy about 1500 years ago, which are still growing in size, distribution range and ecological niche. Using genome-wide RAD markers, we describe the structure of the genetic diversity and the demographic dynamics of the H. cristata invasive populations and compare their genetic diversity with that of native African populations of both H. cristata and its sister species, H. africaeaustralis. First, we demonstrate that genetic diversity is lower in both the invasive Italian and the North Africa source range relative to other native populations from sub-Saharan and South Africa. Second, we find evidence of multiple introduction events in the invasive range followed by very limited gene flow. Through coalescence-based demographic reconstructions, we also show that the bottleneck at introduction was mild and did not affect the introduced genetic diversity. Finally, we reveal that the current spatial expansion at the northern boundary of the range is following a leading-edge model characterized by a general reduction of genetic diversity towards the edge of the expanding range. We conclude that the level of genome-wide diversity of H. cristata invasive populations is less important in explaining its successful invasion than species-specific life-history traits or the phylogeographic history in the native source range.

  2. Some Perspectives on the Risks and Benefits of Biological Control of Invasive Alien Plants in the Management of Natural Ecosystems

    NASA Astrophysics Data System (ADS)

    van Wilgen, B. W.; Moran, V. C.; Hoffmann, J. H.

    2013-09-01

    Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. Weed biological control offers opportunities to arrest or even reverse these trends and, although it is not always effective or appropriate as a management strategy, this practice has an excellent record of safety and many notable successes over two centuries. In recent years, growing concerns about the potential for unintended, non-target damage by biological control agents, and fears about other unpredictable effects on ecosystems, have created an increasingly demanding risk-averse regulatory environment. This development may be counter-productive because it tends to overemphasize potential problems and ignores or underestimates the benefits of weed biological control; it offers no viable alternatives; and it overlooks the inherent risks of a decision not to use biological control. The restoration of badly degraded ecosystems to a former pristine condition is not a realistic objective, but the protection of un-invaded or partial restoration of invaded ecosystems can be achieved safely, at low cost and sustainably through the informed and responsible application of biological control. This practice should therefore be given due consideration when management of invasive alien plants is being planned. This discussion paper provides a perspective on the risks and benefits of classical weed biological control, and it is aimed at assisting environmental managers in their deliberations on whether or not to use this strategy in preference, or as a supplement to other alien invasive plant control practices.

  3. Projecting rates of spread for invasive species.

    PubMed

    Neubert, Michael G; Parker, Ingrid M

    2004-08-01

    All else being equal, the faster an invading species spreads, the more dangerous its invasion. The projection of spread rate therefore ought to be a central part of the determination of invasion risk. Originally formulated in the 1970s to describe the spatial spread of advantageous alleles, integrodifference equation (IDE) models have since been co-opted by population biologists to describe the spread of populations. More recently, they have been modified to include population structure and environmental variability. We review how IDE models are formulated, how they are parameterized, and how they can be analyzed to project spread rates and the sensitivity of those rates to changes in model parameters. For illustrative purposes, we apply these models to Cytisus scoparius, a large shrub in the legume family that is considered a noxious invasive species in eastern and western North America, Chile, Australia, and New Zealand.

  4. Agricultural Warfare and Bioterrorism using Invasive Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chapter on Agricultural Warfare and Bioterrorism using Invasive Species is part of the book titled Pest Management and Phytosanitary Trade Barriers authored by Neil Heather (Australia) and Guy Hallman. The chapter attempts to briefly put the topic into context with phytosanitation. It presents...

  5. Invasive Species - A Threat to the Homeland?

    DTIC Science & Technology

    2003-04-07

    continent in the 14th century and killed a large portion of the European population or the current problem with leafy spurge , an invasive plant that causes an...and difficult to mitigate. While trying to re-establish native prairie grass and forbs, it was very difficult to eradicate the non-native species and...north it may spread. Total eradication of the species is no longer feasible at this point of its spread and establishment. Government agencies

  6. Regional climate model downscaling may improve the prediction of alien plant species distributions

    NASA Astrophysics Data System (ADS)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  7. Past and estimated future impact of invasive alien mammals on insular threatened vertebrate populations

    PubMed Central

    McCreless, Erin E.; Huff, David D.; Croll, Donald A.; Tershy, Bernie R.; Spatz, Dena R.; Holmes, Nick D.; Butchart, Stuart H. M.; Wilcox, Chris

    2016-01-01

    Invasive mammals on islands pose severe, ongoing threats to global biodiversity. However, the severity of threats from different mammals, and the role of interacting biotic and abiotic factors in driving extinctions, remain poorly understood at a global scale. Here we model global extirpation patterns for island populations of threatened and extinct vertebrates. Extirpations are driven by interacting factors including invasive rats, cats, pigs, mustelids and mongooses, native species taxonomic class and volancy, island size, precipitation and human presence. We show that controlling or eradicating the relevant invasive mammals could prevent 41–75% of predicted future extirpations. The magnitude of benefits varies across species and environments; for example, managing invasive mammals on small, dry islands could halve the extirpation risk for highly threatened birds and mammals, while doing so on large, wet islands may have little benefit. Our results provide quantitative estimates of conservation benefits and, when combined with costs in a return-on-investment framework, can guide efficient conservation strategies. PMID:27535095

  8. Differential parasitism of seed-feeding Cydia (Lepidoptera: Tortricidae) by native and alien wasp species relative to elevation in subalpine Sophora (Fabaceae) forests on Mauna Kea, Hawaii

    USGS Publications Warehouse

    Oboyski, P.T.; Slotterback, J.W.; Banko, P.C.

    2004-01-01

    Alien parasitic wasps, including accidental introductions and purposefully released biological control agents, have been implicated in the decline of native Hawaiian Lepidoptera. Understanding the potential impacts of alien wasps requires knowledge of ecological parameters that influence parasitism rates for species in their new environment. Sophora seed-feeding Cydia spp. (Lepidoptera: Tortricidae) were surveyed for larval parasitoids to determine how native and alien wasps are partitioned over an elevation gradient (2200-2800 m) on Hawaii Island, Hawaii. Parasitism rate of native Euderus metallicus (Eulophidae) increased with increased elevation, while parasitism rate by immigrant Calliephialtes grapholithae (Ichneumonidae) decreased. Parasitism by Pristomerus hawaiiensis (Ichneumonidae), origins uncertain, also decreased with increased elevation. Two other species, Diadegma blackburni (Ichneumonidae), origins uncertain, and Brasema cushmani (Eupelmidae), a purposefully introduced biological control agent for pepper weevil, did not vary significantly with elevation. Results are contrasted with a previous study of this system with implications for the conservation of an endangered bird species that feed on Cydia larvae. Interpretation of results is hindered by lack of knowledge of autecology of moths and wasps, origins, phylogeny, systematics, competitive ability, and physiological limitations of each wasp species. These factors should be incorporated into risk analysis for biological control introductions and invasive species programs. ?? 2004 Kluwer Academic Publishers.

  9. Ensemble habitat mapping of invasive plant species.

    PubMed

    Stohlgren, Thomas J; Ma, Peter; Kumar, Sunil; Rocca, Monique; Morisette, Jeffrey T; Jarnevich, Catherine S; Benson, Nate

    2010-02-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis.

  10. Ensemble habitat mapping of invasive plant species

    USGS Publications Warehouse

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  11. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny.

    PubMed

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-04-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species' native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion

  12. Evidence for shifts to faster growth strategies in the new ranges of invasive alien plants

    PubMed Central

    Leishman, Michelle R; Cooke, Julia; Richardson, David M; Newman, Jonathan

    2014-01-01

    Summary Understanding the processes underlying the transition from introduction to naturalization and spread is an important goal of invasion ecology. Release from pests and pathogens in association with capacity for rapid growth is thought to confer an advantage for species in novel regions. We assessed leaf herbivory and leaf-level traits associated with growth strategy in the native and exotic ranges of 13 invasive plant species from 256 populations. Species were native to either the Western Cape region of South Africa, south-western Australia or south-eastern Australia and had been introduced to at least one of the other regions or to New Zealand. We tested for evidence of herbivore release and shifts in leaf traits between native and exotic ranges of the 13 species. Across all species, leaf herbivory, specific leaf area and leaf area were significantly different between native and exotic ranges while there were no significant differences across the 13 species found for leaf mass, assimilation rate, dark respiration or foliar nitrogen. Analysis at the species- and region-level showed that eight out of 13 species had reduced leaf herbivory in at least one exotic region compared to its native range. Six out of 13 species had significantly larger specific leaf area (SLA) in at least one exotic range region and five of those six species experienced reduced leaf herbivory. Increases in SLA were underpinned by increases in leaf area rather than reductions in leaf mass. No species showed differences in the direction of trait shifts from the native range between different exotic regions. This suggests that the driver of selection on these traits in the exotic range is consistent across regions and hence is most likely to be associated with factors linked with introduction to a novel environment, such as release from leaf herbivory, rather than with particular environmental conditions. Synthesis. These results provide evidence that introduction of a plant species into a

  13. Biotic Resistance to an Alien Amphibian: Larval Competition between Japanese Frogs and Invasive Cane Toads

    PubMed Central

    2016-01-01

    Understanding negative effects of native species on introduced taxa may suggest novel ways to control the invasive species by enhancing such effects. Previous studies have reported that the larvae of invasive cane toads (Rhinella marina) are suppressed by competition with the larvae of native anurans in Australia, but not in North America. We conducted laboratory trials to measure the effect of exposure to the larvae of Japanese frogs (Microhyla ornata, Fejervarya sakishimensis, Rhacophorus owstoni) on rates of survival, growth and development of cane toad tadpoles in Ishigaki Island, in southern Japan. Survival rates were not affected by native species, but competition with Dicroglossids and Rhacophorids (but not Microhylids) strongly reduced rates of growth and development in the tadpoles of cane toads. Dicroglossid tadpoles also reduced the body condition to toad tadpoles in addition to effects on SVL and mass. Encouraging populations of native frogs in toad-invaded areas of Japan thus may help to reduce the numbers of invasive cane toads. PMID:27253973

  14. Invasive crayfish reduce food limitation of alien American mink and increase their resilience to control.

    PubMed

    Melero, Yolanda; Palazón, Santiago; Lambin, Xavier

    2014-02-01

    Trophic relationships between invasive species in multiply invaded ecosystems may reduce food limitation relative to more pristine ecosystems and increase resilience to control. Here, we consider whether invasive predatory American mink Neovison vison are trophically subsidized by invasive crayfish. We collated data from the literature on density and home range size of mink populations in relation to the prevalence of crayfish in the diet of mink. We then tested the hypothesis that populations of an invasive predator reach higher densities and are more resilient to lethal control when they have access to super-abundant non-native prey, even in the absence of changes in density dependence, hence compensatory capacity. We found a strong positive relationship between the proportion of crayfish in mink diet and mink population density, and a negative relationship between the proportion of crayfish in mink diet and mink home range size, with crayfish contribution to mink diet reflecting their abundance in the ecosystem. We then explored the consequence of elevated mink density by simulating a hypothetical eradication program with a constant harvest in a Ricker model. We found that mink populations were more resilient to harvest in the presence of crayfish. As a result, the simulated number of mink harvested to achieve eradication increased by 500% in the presence of abundant crayfish if carrying capacity increased by 630%. This led to a threefold increase in time to eradication under a constant harvest and an approximately 20-fold increase in the cumulative management cost. Our results add to evidence of inter-specific positive interactions involving invasive species, and our simple model illustrates how this increases management cost.

  15. The intermediate distance hypothesis of biological invasions.

    PubMed

    Seebens, Hanno; Essl, Franz; Blasius, Bernd

    2017-02-01

    Biological invasions are a worldwide phenomenon, but the global flows between native and alien regions have rarely been investigated in a cross-taxonomic study. We therefore lack a thorough understanding of the global patterns of alien species spread. Using native and alien ranges of 1380 alien species, we show that the number of alien species follows a hump-shaped function of geographic distance. We observe distinct variations in the relationship between alien species exchanges and distance among taxonomic groups, which relate to the taxa-specific dispersal modes and their pathways of introduction. We formulate a simple statistical model, combining trade volume and biogeographic dissimilarity, which reproduces the observed pattern in good agreement with reported data and even captures variations among taxonomic groups. This study demonstrates the universality of the intermediate distance hypothesis of alien species spread across taxonomic groups, which will help to improve the predictability of new alien species arrivals.

  16. Optimal invasive species management under multiple uncertainties.

    PubMed

    Kotani, Koji; Kakinaka, Makoto; Matsuda, Hiroyuki

    2011-09-01

    The management programs for invasive species have been proposed and implemented in many regions of the world. However, practitioners and scientists have not reached a consensus on how to control them yet. One reason is the presence of various uncertainties associated with the management. To give some guidance on this issue, we characterize the optimal strategy by developing a dynamic model of invasive species management under uncertainties. In particular, focusing on (i) growth uncertainty and (ii) measurement uncertainty, we identify how these uncertainties affect optimal strategies and value functions. Our results suggest that a rise in growth uncertainty causes the optimal strategy to involve more restrained removals and the corresponding value function to shift up. Furthermore, we also find that a rise in measurement uncertainty affects optimal policies in a highly complex manner, but their corresponding value functions generally shift down as measurement uncertainty rises. Overall, a rise in growth uncertainty can be beneficial, while a rise in measurement uncertainty brings about an adverse effect, which implies the potential gain of precisely identifying the current stock size of invasive species.

  17. Lake Superior Aquatic Invasive Species Complete Prevention Plan

    EPA Pesticide Factsheets

    The Lake Superior Aquatic Invasive Species Complete Prevention Plan is an expression of the best professional judgment of the members of the Lake Superior Task Force as to what is necessary to protect Lake Superior from new aquatic invasive species.

  18. Effect of intra- and interspecific competition on the performance of native and invasive species of Impatiens under varying levels of shade and moisture.

    PubMed

    Skálová, Hana; Jarošík, Vojtěch; Dvořáčková, Śárka; Pyšek, Petr

    2013-01-01

    Many alien plants are thought to be invasive because of unique traits and greater phenotypic plasticity relative to resident species. However, many studies of invasive species are unable to quantify the importance of particular traits and phenotypic plasticity in conferring invasive behavior because traits used in comparative studies are often measured in a single environment and by using plants from a single population. To obtain a deeper insight into the role of environmental factors, local differences and competition in plant invasions, we compared species of Impatiens (Balsaminaceae) of different origin and invasion status that occur in central Europe: native I. noli-tangere and three alien species (highly invasive I. glandulifera, less invasive I. parviflora and potentially invasive I. capensis). In two experiments we harvested late-stage reproductive plants to estimate performance. The first experiment quantified how populations differed in performance under varying light and moisture levels in the absence of competition. The second experiment quantified performance across these environments in the presence of intra- and inter-specific competition. The highly invasive I. glandulifera was the strongest competitor, was the tallest and produced the greatest biomass. Small size and high plasticity were characteristic for I. parviflora. This species appeared to be the second strongest competitor, especially under low soil moisture. The performance of I. capensis was within the range of the other Impatiens species studied, but sometimes limited by alien competitors. Our results suggest that invasion success within the genus Impatiens depends on the ability to grow large under a range of environmental conditions, including competition. The invasive species also exhibited greater phenotypic plasticity across environmental conditions than the native species. Finally, the decreased performance of the native I. noli-tangere in competition with other species studied

  19. Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D; Storey, Katie; Boggess, May

    2014-06-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species.

  20. Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California

    USGS Publications Warehouse

    Rundel, Philip W.; Keeley, Jon E.

    2016-01-01

    Patterns of elevational distribution of alien plant species in the southern Sierra Nevada of California were used to test the hypothesis that alien plant species invading high elevations around the world are typically climate generalists capable of growing across a wide elevational range. The Sierra Nevada has been heavily impacted for more than a century and a half, first by heavy grazing up into high elevation meadows, followed by major logging, and finally, by impacts associated with recreational use. The comparative elevational patterns of distribution and growth form were compared for native and alien plant species in the four families (Asteraceae, Brassicaceae, Fabaceae, and Poaceae) that contribute the majority of naturalized aliens in the study area. The distribution of realized climatic niche breadth, as measured by elevational range of occurrence, was virtually identical for alien and native species, with both groups showing a roughly Gaussian distribution peaking with species whose range covers a span of 1500–1999 m. In contrast to alien species, which only rarely occurred at higher elevations, native species showed a distribution of upper elevation limits peaking at 3000–3499 m, an elevation that corresponds to the zone of upper montane and subalpine forests. Consistent with a hypothesis of abiotic limitations, only a few alien species have been ecologically successful invaders at subalpine and alpine elevations above 2500 m. The low diversity of aliens able to become established in these habitats is unlikely due to dispersal limitations, given the long history of heavy grazing pressure at high elevations across this region. Instead, this low diversity is hypothesized to be a function of life history traits and multiple abiotic stresses that include extremes of cold air and soil temperature, heavy snowfall, short growing seasons, and low resource availability. These findings have significant implications for resource managers.

  1. A Landscape Approach to Invasive Species Management.

    PubMed

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  2. A Landscape Approach to Invasive Species Management

    PubMed Central

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A.

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  3. 78 FR 14351 - Invasive Species Advisory Committee; Meeting Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Office of the Secretary Invasive Species Advisory Committee; Meeting Cancellation AGENCY: Office of the Secretary, Interior. ACTION: Notice of meeting cancellation. SUMMARY: The meeting of the Invasive Species....gov . SUPPLEMENTARY INFORMATION: The ISAC is comprised of 31 nonfederal invasive species experts...

  4. Control effort exacerbates invasive-species problem.

    PubMed

    Rinella, Matthew J; Maxwell, Bruce D; Fay, Peter K; Weaver, Theodore; Sheley, Roger L

    2009-01-01

    Ecosystem managers face a difficult decision when managing invasive species. If they use aggressive practices to reduce invader abundances, they will likely reduce invaders' competitive impacts on natives. But it is often difficult or impossible to reduce invaders without damaging natives. So a critical question becomes: Which is worse for native biota, invaders or things done to control invaders? We attempted to answer this question for a common scenario. We studied several grassland natives exhibiting long-term coexistence with an invader and asked how aggressive management (herbicide use) affected the natives. Whether or not grazing was excluded, one-time herbicide use made two native forbs exceedingly rare for our entire 16-year study period. Herbicide also made several other native forbs rare, but only when grazing was excluded, and there is evidence that the dominant invader became more abundant in response to the decreases in native-forb abundances. Throughout the world, terrestrial and aquatic ecosystems are receiving herbicide applications for exotic-species control. Some of the applications are doubtless warranted because they target small invader patches or larger areas with virtually no remaining natives. However, other herbicide applications occur where large native populations occur, and our data suggest that these applications can be ill advised. Our cautionary tale is told using an herbicide-treated grassland, but our results should be considered wherever invasive-species management damages native species.

  5. Effects of an alien ant invasion on abundance, behavior, and reproductive success of endemic island birds.

    PubMed

    Davis, Naomi E; O'Dowd, Dennis J; Green, Peter T; Nally, Ralph Mac

    2008-10-01

    Biological invaders can reconfigure ecological networks in communities, which changes community structure, composition, and ecosystem function. We investigated whether impacts caused by the introduced yellow crazy ant (Anoplolepis gracilipes), a pantropical invader rapidly expanding its range, extend to higher-order consumers by comparing counts, behaviors, and nesting success of endemic forest birds in ant-invaded and uninvaded rainforest on Christmas Island (Indian Ocean). Point counts and direct behavioral observations showed that ant invasion altered abundances and behaviors of the bird species we examined: the Island Thrush (Turdus poliocephalus erythropleurus), Emerald Dove (Chalcophaps indica natalis), and Christmas Island White-eye (Zosterops natalis). The thrush, which frequents the forest floor, altered its foraging and reproductive behaviors in ant-invaded forest, where nest-site location changed, and nest success and juvenile counts were lower. Counts of the dove, which forages exclusively on the forest floor, were 9-14 times lower in ant-invaded forest. In contrast, counts and foraging success of the white-eye, a generalist feeder in the understory and canopy, were higher in ant-invaded forest, where mutualism between the ant and honeydew-secreting scale insects increased the abundance of scale-insect prey. These complex outcomes involved the interplay of direct interference by ants and altered resource availability and habitat structure caused indirectly by ant invasion. Ecological meltdown, rapidly unleashed by ant invasion, extended to these endemic forest birds and may affect key ecosystem processes, including seed dispersal.

  6. The stock of invasive insect species and its economic determinants.

    PubMed

    Hlasny, Vladimir

    2011-06-01

    Invasions of nonindigenous organisms have long been linked to trade, but the contribution of individual trade pathways remains poorly understood, because species are not observed immediately upon arrival and the number of species arriving annually is unknown. Species interception records may count both new arrivals and species long introduced. Furthermore, the stock of invasive insect species already present is unknown. In this study, a state-space model is used to infer the stock of detected as well as undetected invasive insect species established in the United States. A system of equations is estimated jointly to distinguish the patterns of introduction, identification, and eradication. Introductions of invasive species are modeled as dependent on the volume of trade and arrival of people. Identifications depend on the public efforts at invasive species research, as well as on the established stock of invasive species that remain undetected. Eradications of both detected and undetected invasive species depend on containment and quarantine efforts, as well as on the stock of all established invasive species. These patterns are estimated by fitting the predicted number of invasive species detections to the observed record in the North American Non-Indigenous Arthropod Database. The results indicate that agricultural imports are the most important pathway of introduction, followed by immigration of people. Expenditures by the U.S. Department of Agriculture and the Agricultural Research Service are found to explain the species identification record well. Between three and 38 invasive insect species are estimated to be established in the United States undetected.

  7. New pasture plants intensify invasive species risk.

    PubMed

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.

  8. Limiting invasive species in ballast water

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-06-01

    Ballast water is often intentionally loaded onto cargo ships and other vessels to provide weight necessary for safe maneuvering. However, this practice can unintentionally transport exotic organisms to parts of the world where populations of these organisms can establish themselves in new habitats as invasive and environmentally and economically disruptive species. Each year, an estimated 196 million metric tons of ballast water are discharged into U.S. coastal waters and the Great Lakes alone from an average of more than 90,000 visits of commercial ships greater than 300 metric tons, according to a 2 June report by the U.S. National Research Council (NRC) of the National Academies.

  9. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius in a mountain tourist destination

    PubMed Central

    Takahashi, Koichi; Hanyu, Masaaki

    2015-01-01

    Alien species expand their distribution by transportation network development. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius was examined in a mountain tourist destination in central Japan. The three taxa were morphologically identified in the field. Stem height and leaf area were greater in R. longifolius than R. obtusifolius; hybrids were intermediate between the two Rumex species. R. longifolius and the hybrids grew mainly in wet land and the river tributary; R. obtusifolius grew mainly at the roadside and in meadows. Hybrid germination rates of pollen and seeds were much lower than for the two Rumex species. Clustering analysis showed the three taxa each formed a cluster. Most hybrids were F1 generation; the possibility was low of introgression into the two Rumex species by backcross. This study clarified that (1) hybridization occurred between R. obtusifolius and R. longifolius because they occurred together in a small area, but grew in different water habitat conditions, and (2) hybridization was mostly F1 generation because hybrid pollen and seed fertility was low. However, we need caution about introgression into R. longifolius by R. obtusifolius in this area because of the slight possibility of F2 generation and backcrosses. PMID:26354180

  10. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius in a mountain tourist destination.

    PubMed

    Takahashi, Koichi; Hanyu, Masaaki

    2015-09-10

    Alien species expand their distribution by transportation network development. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius was examined in a mountain tourist destination in central Japan. The three taxa were morphologically identified in the field. Stem height and leaf area were greater in R. longifolius than R. obtusifolius; hybrids were intermediate between the two Rumex species. R. longifolius and the hybrids grew mainly in wet land and the river tributary; R. obtusifolius grew mainly at the roadside and in meadows. Hybrid germination rates of pollen and seeds were much lower than for the two Rumex species. Clustering analysis showed the three taxa each formed a cluster. Most hybrids were F1 generation; the possibility was low of introgression into the two Rumex species by backcross. This study clarified that (1) hybridization occurred between R. obtusifolius and R. longifolius because they occurred together in a small area, but grew in different water habitat conditions, and (2) hybridization was mostly F1 generation because hybrid pollen and seed fertility was low. However, we need caution about introgression into R. longifolius by R. obtusifolius in this area because of the slight possibility of F2 generation and backcrosses.

  11. Survivorship and feeding preferences among size classes of outplanted sea urchins, Tripneustes gratilla, and possible use as biocontrol for invasive alien algae.

    PubMed

    Westbrook, Charley E; Ringang, Rory R; Cantero, Sean Michael A; Toonen, Robert J

    2015-01-01

    We investigate the survivorship, growth and diet preferences of hatchery-raised juvenile urchins, Tripneustes gratilla, to evaluate the efficacy of their use as biocontrol agents in the efforts to reduce alien invasive algae. In flow-through tanks, we measured urchin growth rates, feeding rates and feeding preferences among diets of the most common invasive algae found in Kāne'ohe Bay, Hawai'i: Acanthophora spicifera, Gracilaria salicornia, Eucheuma denticulatum and Kappaphycus clade B. Post-transport survivorship of outplanted urchins was measured in paired open and closed cages in three different reef environments (lagoon, reef flat and reef slope) for a month. Survivorship in closed cages was highest on the reef flat (∼75%), and intermediate in the lagoon and reef slope (∼50%). In contrast, open cages showed similar survivorship on the reef flat and in the lagoon, but only 20% of juvenile urchins survived in open cages placed on the reef slope. Urchins grew significantly faster on diets of G. salicornia (1.58 mm/week ± 0.14 SE) and Kappaphycus clade B (1.69 ± 0.14 mm/wk) than on E. denticulatum (0.97 ± 0.14 mm/wk), with intermediate growth when fed on A. spicifera (1.23 ± 0.11 mm/wk). Interestingly, urchins display size-specific feeding preferences. In non-choice feeding trials, small urchins (17.5-22.5 mm test diameter) consumed G. salicornia fastest (6.08 g/day ± 0.19 SE), with A. spicifera (4.25 ± 0.02 g/day) and Kappaphycus clade B (3.83 ± 0.02 g/day) intermediate, and E. denticulatum was clearly the least consumed (2.32 ± 0.37 g/day). Medium-sized (29.8-43.8 mm) urchins likewise preferentially consumed G. salicornia (12.60 ± 0.08 g/day), with less clear differences among the other species in which E. denticulatum was still consumed least (9.35 ± 0.90 g/day). In contrast, large urchins (45.0-65.0 mm) showed no significant preferences among the different algae species at all (12.43-15.24 g/day). Overall consumption rates in non-choice trials

  12. Survivorship and feeding preferences among size classes of outplanted sea urchins, Tripneustes gratilla, and possible use as biocontrol for invasive alien algae

    PubMed Central

    Ringang, Rory R.; Cantero, Sean Michael A.; Toonen, Robert J.

    2015-01-01

    We investigate the survivorship, growth and diet preferences of hatchery-raised juvenile urchins, Tripneustes gratilla, to evaluate the efficacy of their use as biocontrol agents in the efforts to reduce alien invasive algae. In flow-through tanks, we measured urchin growth rates, feeding rates and feeding preferences among diets of the most common invasive algae found in Kāneʻohe Bay, Hawaiʻi: Acanthophora spicifera, Gracilaria salicornia, Eucheuma denticulatum and Kappaphycus clade B. Post-transport survivorship of outplanted urchins was measured in paired open and closed cages in three different reef environments (lagoon, reef flat and reef slope) for a month. Survivorship in closed cages was highest on the reef flat (∼75%), and intermediate in the lagoon and reef slope (∼50%). In contrast, open cages showed similar survivorship on the reef flat and in the lagoon, but only 20% of juvenile urchins survived in open cages placed on the reef slope. Urchins grew significantly faster on diets of G. salicornia (1.58 mm/week ± 0.14 SE) and Kappaphycus clade B (1.69 ± 0.14 mm/wk) than on E. denticulatum (0.97 ± 0.14 mm/wk), with intermediate growth when fed on A. spicifera (1.23 ± 0.11 mm/wk). Interestingly, urchins display size-specific feeding preferences. In non-choice feeding trials, small urchins (17.5–22.5 mm test diameter) consumed G. salicornia fastest (6.08 g/day ± 0.19 SE), with A. spicifera (4.25 ± 0.02 g/day) and Kappaphycus clade B (3.83 ± 0.02 g/day) intermediate, and E. denticulatum was clearly the least consumed (2.32 ± 0.37 g/day). Medium-sized (29.8–43.8 mm) urchins likewise preferentially consumed G. salicornia (12.60 ± 0.08 g/day), with less clear differences among the other species in which E. denticulatum was still consumed least (9.35 ± 0.90 g/day). In contrast, large urchins (45.0–65.0 mm) showed no significant preferences among the different algae species at all (12.43–15.24 g/day). Overall consumption rates in non

  13. The evolutionary impact of invasive species

    PubMed Central

    Mooney, H. A.; Cleland, E. E.

    2001-01-01

    Since the Age of Exploration began, there has been a drastic breaching of biogeographic barriers that previously had isolated the continental biotas for millions of years. We explore the nature of these recent biotic exchanges and their consequences on evolutionary processes. The direct evidence of evolutionary consequences of the biotic rearrangements is of variable quality, but the results of trajectories are becoming clear as the number of studies increases. There are examples of invasive species altering the evolutionary pathway of native species by competitive exclusion, niche displacement, hybridization, introgression, predation, and ultimately extinction. Invaders themselves evolve in response to their interactions with natives, as well as in response to the new abiotic environment. Flexibility in behavior, and mutualistic interactions, can aid in the success of invaders in their new environment. PMID:11344292

  14. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator.

    PubMed

    Carthey, Alexandra J R; Banks, Peter B

    2012-01-01

    The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become 'native'. But when exactly does an alien become a native species? The dingo (Canis lupus dingo) was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta) recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris), we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus) or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve.

  15. Evidence For Rapid Spatiotemporal Changes in Genetic Structure of an Alien Whitefly During Initial Invasion

    PubMed Central

    Chu, Dong; Guo, Dong; Tao, Yunli; Jiang, Defeng; Li, Jie; Zhang, Youjun

    2014-01-01

    The sweetpotato whitefly Bemisia tabaci Q species is a recent invader and important pest of agricultural crops in China. This research tested the hypothesis that the Q populations that establish in agricultural fields in northern China each year are derived from multiple secondary introductions and/or local populations that overwinter in greenhouses (the pest cannot survive winters in the field in northern China). Here, we report the evidence that the Q populations in agricultural fields mainly derive from multiple secondary introductions. In addition, the common use of greenhouses during the winter in certain locations in northern China helps increase the genetic diversity and the genetic structure of the pest. The genetic structure information generated from this long-term and large-scale field analysis increases our understanding of B. tabaci Q as an invasive pest and has important implications for B. tabaci Q management. PMID:24637851

  16. INVASIVE SPECIES: PREDICTING GEOGRAPHIC DISTRIBUTIONS USING ECOLOGICAL NICHE MODELING

    EPA Science Inventory

    Present approaches to species invasions are reactive in nature. This scenario results in management that perpetually lags behind the most recent invasion and makes control much more difficult. In contrast, spatially explicit ecological niche modeling provides an effective solut...

  17. The role of habitat factors in successful invasion of alien plant Acer negundo in riparian zones.

    NASA Astrophysics Data System (ADS)

    Sikorski, Piotr; Sikorska, Daria

    2016-04-01

    Ash-leaved maple (Acer negundo) is one of the most invasive species occurring in riparian zones. The invasion is especially effective in disturbed areas, as the plant favours anthropogenic sites. The plant was also observed to be able to penetrate into sandy bars, also those separated from the land, inaccessible to people. It's removal is time-consuming and laborious, often involves damage done to sensitive vegetation and the results are doubtful, as the plant quickly regenerates. The invasion patterns and establishment of ash-leaved maple in natural ecosystems are poorly investigated. The aim of this study was to test how habitat factors such as: light availability, soil characteristics and competition contribute to ash-leaved maple effective colonization of natural sand bars free from anthropogenic pressure. In 2014 sand bars located in Vistula River Valley in Warsaw were inventoried and classified basing on their development stage as 1 - initial, 2 - unstable, 3 - stable. Apart from the occurrence of the invasive ash-leaved maple the plants competing with it were recognized and the percentage of the shoots of shrubs and herbaceous plants was estimated. PAR was measured at ground level and 1 meter above ground, the thickness of organic layer formed on the top of the sand was also measured as the indicator of sand bar development stage. The maple's survival in extremely difficult conditions resembles the strategy of willows and poplars naturally occurring in the riparian zones, which are well adapted to this environment. The success of invasion strongly depends on the plants establishment during sand bars initial stage of development. The seedlings growth correlates with the age of the sand bar (r1=0,41, r2=0,42 i r3=0,57). The colonization lasts for 4-6 years and the individuals start to cluster in bigger parches. After that period the maple turns into the phase of competition for space. Habitat factors such as shading (r2=0,41 i r3=0,51) and organic layer

  18. New pasture plants intensify invasive species risk

    PubMed Central

    Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon

    2014-01-01

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  19. Five potential consequences of climate change for invasive species.

    PubMed

    Hellmann, Jessica J; Byers, James E; Bierwagen, Britta G; Dukes, Jeffrey S

    2008-06-01

    Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.

  20. Coevolution between native and invasive plant competitors: implications for invasive species management.

    PubMed

    Leger, Elizabeth A; Espeland, Erin K

    2010-03-01

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely to compete with invaders. When population sizes and genetic diversity of native species are large enough, natives may be able to evolve traits that allow them to co-occur with invasive species. Native species may also evolve to become significant competitors with invasive species, and thus affect the fitness of invaders. Invasive species may respond in turn, creating either transient or continuing coevolution between competing species. In addition to demographic factors such as population size and growth rates, a number of factors including gene flow, genetic drift, the number of selection agents, encounter rates, and genetic diversity may affect the ability of native and invasive species to evolve competitive ability against one another. We discuss how these factors may differ between populations of native and invasive plants, and how this might affect their ability to respond to selection. Management actions that maintain genetic diversity in native species while reducing population sizes and genetic diversity in invasive species could promote the ability of natives to evolve improved competitive ability.

  1. Coevolution between native and invasive plant competitors: implications for invasive species management

    PubMed Central

    Leger, Elizabeth A; Espeland, Erin K

    2010-01-01

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely to compete with invaders. When population sizes and genetic diversity of native species are large enough, natives may be able to evolve traits that allow them to co-occur with invasive species. Native species may also evolve to become significant competitors with invasive species, and thus affect the fitness of invaders. Invasive species may respond in turn, creating either transient or continuing coevolution between competing species. In addition to demographic factors such as population size and growth rates, a number of factors including gene flow, genetic drift, the number of selection agents, encounter rates, and genetic diversity may affect the ability of native and invasive species to evolve competitive ability against one another. We discuss how these factors may differ between populations of native and invasive plants, and how this might affect their ability to respond to selection. Management actions that maintain genetic diversity in native species while reducing population sizes and genetic diversity in invasive species could promote the ability of natives to evolve improved competitive ability. PMID:25567917

  2. Recreational trails as corridors for alien plants in the Rocky Mountains, USA

    USGS Publications Warehouse

    Wells, Floye H.; Lauenroth, William K.; Bradford, John B.

    2012-01-01

    Alien plant species often use areas of heavy human activity for habitat and dispersal. Roads and utility corridors have been shown to harbor more alien species than the surrounding vegetation and are therefore believed to contribute to alien plant persistence and spread. Recreational trails represent another corridor that could harbor alien species and aid their spread. Effective management of invasive species requires understanding how alien plants are distributed at trailheads and trails and how their dispersal may be influenced by native vegetation. Our overall goal was to investigate the distribution of alien plants at trailheads and trails in the Rocky Mountains of Colorado. At trailheads, we found that although the number of alien species was less than the number of native species, alien plant cover ( x̄=50%) did not differ from native plant cover, and we observed a large number of alien seedlings in the soil seed bank, suggesting that alien plants are a large component of trailhead communities and will continue to be so in the future. Along trails, we found higher alien species richness and cover on trail (as opposed to 4 m from the trail) in 3 out of 4 vegetation types, and we observed higher alien richness and cover in meadows than in other vegetation types. Plant communities at both trailheads and trails, as well as seed banks at trailheads, contain substantial diversity and abundance of alien plants. These results suggest that recreational trails in the Rocky Mountains of Colorado may function as corridors that facilitate the spread of alien species into wildlands. Our results suggest that control of alien plants should begin at trailheads where there are large numbers of aliens and that control efforts on trails should be prioritized by vegetation type.

  3. Introduced and invasive cactus species: a global review.

    PubMed

    Novoa, Ana; Le Roux, Johannes J; Robertson, Mark P; Wilson, John R U; Richardson, David M

    2014-12-03

    Understanding which species are introduced and become invasive, and why, are central questions in invasion science. Comparative studies on model taxa have provided important insights, but much more needs to be done to unravel the context dependencies of these findings. The cactus family (Cactaceae), one of the most popular horticultural plant groups, is an interesting case study. Hundreds of cactus species have been introduced outside their native ranges; a few of them are among the most damaging invasive plant species in the world. We reviewed the drivers of introductions and invasions in the family and seek insights that can be used to minimize future risks. We compiled a list of species in the family and determined which have been recorded as invasive. We also mapped current global distributions and modelled the potential global distributions based on distribution data of known invasive taxa. Finally, we identified whether invasiveness is phylogenetically clustered for cacti and whether particular traits are correlated with invasiveness. Only 57 of the 1922 cactus species recognized in this treatment have been recorded as invasive. There are three invasion hotspots: South Africa (35 invasive species recorded), Australia (26 species) and Spain (24 species). However, there are large areas of the world with climates suitable for cacti that are at risk of future invasion-in particular, parts of China, eastern Asia and central Africa. The invasive taxa represent an interesting subset of the total species pool. There is a significant phylogenetic signal: invasive species occur in 2 of the 3 major phylogenetic clades and in 13 of the 130 genera. This phylogenetic signal is not driven by human preference, i.e. horticultural trade, but all invasive species are from 5 of the 12 cactus growth forms. Finally, invasive species tend to have significantly larger native ranges than non-invasive species, and none of the invasive species are of conservation concern in their

  4. Evaluating plant invasions from both habitat and species perspectives

    USGS Publications Warehouse

    Chong, G.W.; Otsuki, Y.; Stohlgren, T.J.; Guenther, D.; Evangelista, P.; Villa, C.; Waters, A.

    2006-01-01

    We present an approach to quantitatively assess nonnative plant invasions at landscape scales from both habitat and species perspectives. Our case study included 34 nonnative species found in 142 plots (0.1 ha) in 14 vegetation types within the Grand Staircase-Escalante National Monument, Utah. A plot invasion index, based on nonnative species richness and cover, showed that only 16 of 142 plots were heavily invaded. A species invasive index, based on frequency, cover, and number of vegetation types invaded, showed that only 7 of 34 plant species were highly invasive. Multiple regressions using habitat characteristics (moisture index, elevation, soil P, native species richness, maximum crust development class, bare ground, and rock) explained 60% of variation in nonnative species richness and 46% of variation in nonnative species cover. Three mesic habitats (aspen, wet meadow, and perennial riparian types) were particularly invaded (31 of 34 nonnative species studied were found in these types). Species-specific logistic regression models for the 7 most invasive species correctly predicted occurrence 89% of the time on average (from 80% for Bromus tectorum, a habitat generalist, to 93% for Tamarix spp., a habitat specialist). Even with such a modest sampling intensity (<0.1% of the landscape), this multiscale sampling scheme was effective at evaluating habitat vulnerability to invasion and the occurrence of the 7 most invasive nonnative species. This approach could be applied in other natural areas to develop strategies to document invasive species and invaded habitats.

  5. Aquatic plant community invasibility and scale-dependent patterns in native and invasive species richness.

    PubMed

    Capers, Robert S; Selsky, Roslyn; Bugbee, Gregory J; White, Jason C

    2007-12-01

    Invasive species richness often is negatively correlated with native species richness at the small spatial scale of sampling plots, but positively correlated in larger areas. The pattern at small scales has been interpreted as evidence that native plants can competitively exclude invasive species. Large-scale patterns have been understood to result from environmental heterogeneity, among other causes. We investigated species richness patterns among submerged and floating-leaved aquatic plants (87 native species and eight invasives) in 103 temperate lakes in Connecticut (northeastern USA) and found neither a consistently negative relationship at small (3-m2) scales, nor a positive relationship at large scales. Native species richness at sampling locations was uncorrelated with invasive species richness in 37 of the 60 lakes where invasive plants occurred; richness was negatively correlated in 16 lakes and positively correlated in seven. No correlation between native and invasive species richness was found at larger spatial scales (whole lakes and counties). Increases in richness with area were uncorrelated with abiotic heterogeneity. Logistic regression showed that the probability of occurrence of five invasive species increased in sampling locations (3 m2, n = 2980 samples) where native plants occurred, indicating that native plant species richness provided no resistance against invasion. However, the probability of three invasive species' occurrence declined as native plant density increased, indicating that density, if not species richness, provided some resistance with these species. Density had no effect on occurrence of three other invasive species. Based on these results, native species may resist invasion at small spatial scales only in communities where density is high (i.e., in communities where competition among individuals contributes to community structure). Most hydrophyte communities, however, appear to be maintained in a nonequilibrial condition by

  6. Introduced and invasive cactus species: a global review

    PubMed Central

    Novoa, Ana; Le Roux, Johannes J.; Robertson, Mark P.; Wilson, John R.U.; Richardson, David M.

    2015-01-01

    Understanding which species are introduced and become invasive, and why, are central questions in invasion science. Comparative studies on model taxa have provided important insights, but much more needs to be done to unravel the context dependencies of these findings. The cactus family (Cactaceae), one of the most popular horticultural plant groups, is an interesting case study. Hundreds of cactus species have been introduced outside their native ranges; a few of them are among the most damaging invasive plant species in the world. We reviewed the drivers of introductions and invasions in the family and seek insights that can be used to minimize future risks. We compiled a list of species in the family and determined which have been recorded as invasive. We also mapped current global distributions and modelled the potential global distributions based on distribution data of known invasive taxa. Finally, we identified whether invasiveness is phylogenetically clustered for cacti and whether particular traits are correlated with invasiveness. Only 57 of the 1922 cactus species recognized in this treatment have been recorded as invasive. There are three invasion hotspots: South Africa (35 invasive species recorded), Australia (26 species) and Spain (24 species). However, there are large areas of the world with climates suitable for cacti that are at risk of future invasion—in particular, parts of China, eastern Asia and central Africa. The invasive taxa represent an interesting subset of the total species pool. There is a significant phylogenetic signal: invasive species occur in 2 of the 3 major phylogenetic clades and in 13 of the 130 genera. This phylogenetic signal is not driven by human preference, i.e. horticultural trade, but all invasive species are from 5 of the 12 cactus growth forms. Finally, invasive species tend to have significantly larger native ranges than non-invasive species, and none of the invasive species are of conservation concern in their

  7. Individual and Temporal Variation in Habitat Association of an Alien Carnivore at Its Invasion Front

    PubMed Central

    Melis, Claudia; Herfindal, Ivar; Dahl, Fredrik; Åhlén, Per-Arne

    2015-01-01

    Gathering information on how invasive species utilize the habitat is important, in order to better aim actions to reduce their negative impact. We studied habitat use and selection of 55 GPS-marked raccoon dogs (30 males, 25 females) at their invasion front in Northern Sweden, with particular focus on differences between males and females, between movement states, and between seasons and times of the day. Daily movement pattern was used to classify GPS-locations into dispersing and settled. We focused on both anthropogenic and natural landscape characteristics. Since we did not have any a priori knowledge about the spatial scale of raccoon dog habitat selection, we first assessed how landscape characteristics of random points changed with distance from the GPS-location they were paired to. Because changes in habitat use became less pronounced at approximately 5 km for all variables, we focused on habitat use at two spatial scales: fine (500 m) and coarse (5 km). Habitat selection was strongest at the coarse scale, and reflected the results found for habitat use. Raccoon dogs selected agricultural areas and wetlands, lower altitudes, and shallow slopes, and avoided forests, open natural areas, and areas close to water and roads. There were no differences in habitat selection between males and females, or between movement states. This lack of sexual segregation increases the probability of encountering potential mates during dispersal, and therefore the likelihood for reproduction in new areas. The seasonal and diurnal pattern of habitat use may provide guidance for where and when to aim management efforts. PMID:25815509

  8. Individual and temporal variation in habitat association of an alien carnivore at its invasion front.

    PubMed

    Melis, Claudia; Herfindal, Ivar; Dahl, Fredrik; Åhlén, Per-Arne

    2015-01-01

    Gathering information on how invasive species utilize the habitat is important, in order to better aim actions to reduce their negative impact. We studied habitat use and selection of 55 GPS-marked raccoon dogs (30 males, 25 females) at their invasion front in Northern Sweden, with particular focus on differences between males and females, between movement states, and between seasons and times of the day. Daily movement pattern was used to classify GPS-locations into dispersing and settled. We focused on both anthropogenic and natural landscape characteristics. Since we did not have any a priori knowledge about the spatial scale of raccoon dog habitat selection, we first assessed how landscape characteristics of random points changed with distance from the GPS-location they were paired to. Because changes in habitat use became less pronounced at approximately 5 km for all variables, we focused on habitat use at two spatial scales: fine (500 m) and coarse (5 km). Habitat selection was strongest at the coarse scale, and reflected the results found for habitat use. Raccoon dogs selected agricultural areas and wetlands, lower altitudes, and shallow slopes, and avoided forests, open natural areas, and areas close to water and roads. There were no differences in habitat selection between males and females, or between movement states. This lack of sexual segregation increases the probability of encountering potential mates during dispersal, and therefore the likelihood for reproduction in new areas. The seasonal and diurnal pattern of habitat use may provide guidance for where and when to aim management efforts.

  9. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    PubMed

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  10. Predicting the economic impact of an invasive species on an ecosystem service.

    PubMed

    Cook, David C; Thomas, Matthew B; Cunningham, Saul A; Anderson, Denis L; De Barro, Paul J

    2007-09-01

    Quantifying the impact of alien invasive species on ecosystem services is an essential step in developing effective practices and policy for invasive species management. Here we develop a stochastic bioeconomic model that enables the economic impact of an invasive pest to be estimated before its arrival, based on relatively poorly specified ecological and economic parameters. We developed the model by using a hypothetical invasion of the varroa bee mite (Varroa destructor) into Australia and the negative flow-on effects that it would have on pollination by reducing honey bee populations, giving rise to a loss of pollination services, reduced crop yields, and additional production costs. If the mite were to continue to be prevented from entering the country over the next 30 years, we estimate that the economic costs avoided would be U.S. $16.4-38.8 million (Aus $21.3-50.5 million) per year. We suggest that current invasion response funding arrangements in Australia, which do not acknowledge these avoided damages, require amendment.

  11. Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting

    PubMed Central

    Fukasawa, Keita; Miyashita, Tadashi; Hashimoto, Takuma; Tatara, Masaya; Abe, Shintaro

    2013-01-01

    Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat's carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management. PMID:24197409

  12. Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting.

    PubMed

    Fukasawa, Keita; Miyashita, Tadashi; Hashimoto, Takuma; Tatara, Masaya; Abe, Shintaro

    2013-12-22

    Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat's carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.

  13. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions

    PubMed Central

    Gregory, Murray R.

    2009-01-01

    Over the past five or six decades, contamination and pollution of the world’s enclosed seas, coastal waters and the wider open oceans by plastics and other synthetic, non-biodegradable materials (generally known as ‘marine debris’) has been an ever-increasing phenomenon. The sources of these polluting materials are both land- and marine-based, their origins may be local or distant, and the environmental consequences are many and varied. The more widely recognized problems are typically associated with entanglement, ingestion, suffocation and general debilitation, and are often related to stranding events and public perception. Among the less frequently recognized and recorded problems are global hazards to shipping, fisheries and other maritime activities. Today, there are rapidly developing research interests in the biota attracted to freely floating (i.e. pelagic) marine debris, commonly known as ‘hangers-on and hitch-hikers’ as well as material sinking to the sea floor despite being buoyant. Dispersal of aggressive alien and invasive species by these mechanisms leads one to reflect on the possibilities that ensuing invasions could endanger sensitive, or at-risk coastal environments (both marine and terrestrial) far from their native habitats. PMID:19528053

  14. Environmental implications of plastic debris in marine settings--entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions.

    PubMed

    Gregory, Murray R

    2009-07-27

    Over the past five or six decades, contamination and pollution of the world's enclosed seas, coastal waters and the wider open oceans by plastics and other synthetic, non-biodegradable materials (generally known as 'marine debris') has been an ever-increasing phenomenon. The sources of these polluting materials are both land- and marine-based, their origins may be local or distant, and the environmental consequences are many and varied. The more widely recognized problems are typically associated with entanglement, ingestion, suffocation and general debilitation, and are often related to stranding events and public perception. Among the less frequently recognized and recorded problems are global hazards to shipping, fisheries and other maritime activities. Today, there are rapidly developing research interests in the biota attracted to freely floating (i.e. pelagic) marine debris, commonly known as 'hangers-on and hitch-hikers' as well as material sinking to the sea floor despite being buoyant. Dispersal of aggressive alien and invasive species by these mechanisms leads one to reflect on the possibilities that ensuing invasions could endanger sensitive, or at-risk coastal environments (both marine and terrestrial) far from their native habitats.

  15. Parasitism of a Hawaiian endemic moth by invasive and purposely introduced Hymenoptera species.

    PubMed

    Kaufman, Leyla V; Wright, Mark G

    2010-04-01

    The impact of invasive alien species on native organisms is a cause for serious concern. This concern is especially relevant in the Hawaiian archipelago because of its high level of endemicity, severe impacts of accidental introductions of invasive species, and long history of purposeful biological control introductions. Results from a previous study showed that the parasitoid assemblage associated with an endemic moth Udea stellata (Butler) comprised seven species: three adventive species, two purposely introduced species, and two of unknown origin. The objectives of this study were to assess the parasitism levels of alien wasps on populations of U. stellata at different sites and to determine the specific stages that were used by the spectrum of parasitoid species that attack U. stellata. Standardized collections of wild larvae were conducted at eight sites located on the islands of Kauai, Oahu, and Hawaii. In total, 3,531 larvae were collected in a 2-yr survey. Of these, 8.0% were collected as first instar, 23.0% as second instar, 39.0% as third instar, 21.0% as fourth instar, 7.1% as fifth instar, and 1.8% as sixth instar. Of the larvae that survived laboratory rearing, 43.0% were parasitized. Information collected in the surveys was complemented with data from life-table studies to determine stage-specific parasitism. All larval stages were susceptible to parasitism by at least one parasitoid species; second and third instars were susceptible to attack by all seven parasitoid species. Adventive parasitoids rather than purposely introduced ones were responsible for the greater part of the apparent mortality observed. At low and low-medium elevations, the parasitoid assemblage was dominated by adventive species. The two purposely introduced parasitoids were present in remote relatively undisturbed sites on the islands Kauai and Hawaii. The sometimes high parasitism rates by adventive species found in this study were shown to have minimal effect at the population

  16. Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value.

    PubMed

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2016-06-01

    With the aim of controlling their proliferation, two invasive alien plants, Lantana camara (LC) and Mimosa pigra (MP), both widespread in Africa, were considered for torrefaction for renewable energy applications. Using thermogravimetric analysis, the influence of heating rate (HR: 2.18-19.82°Cmin(-1)) together with variable temperature and hold time on char yield and HHV (in a bomb calorimeter) were determined. Statistically significant effects of HR on HHV with optima at 10.5°Cmin(-1) for LC and 20°Cmin(-1) for MP were obtained. Increases of HHV up to 0.8MJkg(-1) or energy yield greater than 10%, together with a 3-fold reduction in torrefaction conversion time could be achieved by optimisation of HR. Analysis of the torrefaction volatiles by TG-MS showed that not only hemicelluloses, but also lignin conversion, could influence the optimum HR value.

  17. BIOGEOGRAPHY. The dispersal of alien species redefines biogeography in the Anthropocene.

    PubMed

    Capinha, César; Essl, Franz; Seebens, Hanno; Moser, Dietmar; Pereira, Henrique Miguel

    2015-06-12

    It has been argued that globalization in human-mediated dispersal of species breaks down biogeographic boundaries, yet empirical tests are still missing. We used data on native and alien ranges of terrestrial gastropods to analyze dissimilarities in species composition among 56 globally distributed regions. We found that native ranges confirm the traditional biogeographic realms, reflecting natural dispersal limitations. However, the distributions of gastropods after human transport are primarily explained by the prevailing climate and, to a smaller extent, by distance and trade relationships. Our findings show that human-mediated dispersal is causing a breakdown of biogeographic barriers, and that climate and to some extent socioeconomic relationships will define biogeography in an era of global change.

  18. The role thermal physiology plays in species invasion.

    PubMed

    Kelley, Amanda L

    2014-01-01

    The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression-a cellular mechanism that underlies an organism's thermal tolerance threshold-is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms.

  19. The role thermal physiology plays in species invasion

    PubMed Central

    Kelley, Amanda L.

    2014-01-01

    The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression—a cellular mechanism that underlies an organism's thermal tolerance threshold—is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms. PMID:27293666

  20. Living with Aliens: Effects of Invasive Shrub Honeysuckles on Avian Nesting

    PubMed Central

    Gleditsch, Jason M.; Carlo, Tomás A.

    2014-01-01

    Invasive species have come to the forefront of conservation biology as a major threat to native biodiversity. Habitats dominated by shrub honeysuckles (Lonicera spp.) in the United States have been characterized as “ecological traps” by ecologists. Here we tested this hypothesis by investigating the effects of shrub honeysuckles on the nesting ecology of native birds in seven study sites in central Pennsylvania, USA. We examined how the abundance of shrub honeysuckles influenced the selection of nesting substrates and habitat for a community of common songbirds, and the parental-care behavior and nestling development of gray catbirds (Dumetella carolinensis). We found that birds had a strong bias towards nesting in honeysuckle shrubs, but not necessarily for nesting in honeysuckle-dominated habitats. Nest predation rates were affected by the density of nests in a habitat, but not by the overall abundance of honeysuckles in such habitats. Honeysuckle abundance in the habitat did show significant effects on some parental-care behavioral parameters: catbirds had higher nest visitation rates and shorter visit lengths in areas of high honeysuckle density. On average, Gray catbirds fed fruit 12%±0.31 s.e. of their nestling-feeding bouts, mostly fruits of shrub honeysuckles. Nestlings in sites with high honeysuckle density also showed higher mass:tarsus ratios, suggesting a good (possibly better) physiological condition of catbird nestlings at the time of fledging. Our study shows that honeysuckle-dominated habitats could have equivocal effects on nesting parameters of common species of native birds. We advise more caution in the widespread denomination of novel plant communities with high densities of honeysuckle as “ecological traps” as effects can be null or positive on native birds in certain localities. PMID:25229633

  1. Living with aliens: effects of invasive shrub honeysuckles on avian nesting.

    PubMed

    Gleditsch, Jason M; Carlo, Tomás A

    2014-01-01

    Invasive species have come to the forefront of conservation biology as a major threat to native biodiversity. Habitats dominated by shrub honeysuckles (Lonicera spp.) in the United States have been characterized as "ecological traps" by ecologists. Here we tested this hypothesis by investigating the effects of shrub honeysuckles on the nesting ecology of native birds in seven study sites in central Pennsylvania, USA. We examined how the abundance of shrub honeysuckles influenced the selection of nesting substrates and habitat for a community of common songbirds, and the parental-care behavior and nestling development of gray catbirds (Dumetella carolinensis). We found that birds had a strong bias towards nesting in honeysuckle shrubs, but not necessarily for nesting in honeysuckle-dominated habitats. Nest predation rates were affected by the density of nests in a habitat, but not by the overall abundance of honeysuckles in such habitats. Honeysuckle abundance in the habitat did show significant effects on some parental-care behavioral parameters: catbirds had higher nest visitation rates and shorter visit lengths in areas of high honeysuckle density. On average, Gray catbirds fed fruit 12%±0.31 s.e. of their nestling-feeding bouts, mostly fruits of shrub honeysuckles. Nestlings in sites with high honeysuckle density also showed higher mass:tarsus ratios, suggesting a good (possibly better) physiological condition of catbird nestlings at the time of fledging. Our study shows that honeysuckle-dominated habitats could have equivocal effects on nesting parameters of common species of native birds. We advise more caution in the widespread denomination of novel plant communities with high densities of honeysuckle as "ecological traps" as effects can be null or positive on native birds in certain localities.

  2. Regional diversity reverses the negative impacts of an alien predator on local species-poor communities.

    PubMed

    Loewen, Charlie J G; Vinebrooke, Rolf D

    2016-10-01

    Species diversity is often an implicit source of biological insurance for communities against the impacts of novel perturbations, such as the introduction of an invasive species. High environmental heterogeneity (e.g., a mountainous gradient) is expected to beget greater regional species diversity and variation in functional traits related to environmental tolerances. Thus, heterogeneous metacommunities are expected to provide more tolerant colonists that buffer stressed local communities in the absence of dispersal limitation. We tested the hypothesis that importation of a regional zooplankton pool assembled from a diverse array of lakes and ponds lessens the impacts of a novel predator on local species-poor alpine communities by increasing response diversity (i.e., diversity of tolerances to environmental change) as mediated by variation in functional traits related to predator evasion. We also tested whether impacts varied with temperature, as warming may modify (e.g., dampen or amplify) invasion effects. An eight-week factorial experiment ([fishless vs. introduced Oncorhynchus mykiss (rainbow trout)] × [ambient temperature vs. heated] × [local vs. local + regional species pool]) was conducted using 32 1,000-L mesocosms. Associations between experimental treatments and species functional traits were tested by R-mode linked to Q-mode (RLQ) and fourth-corner analyses. Although the introduced predator suppressed local species richness and community biomass, colonization by several montane zooplankters reversed these negative effects, resulting in increased species diversity and production. Invasion resistance was unaffected by higher temperatures, which failed to elicit any significance impacts on the community. We discovered that the smaller body sizes of imported species drove functional overcompensation (i.e., increased production) in invaded communities. The observed ecological surprise showed how regionally sourced biodiversity from a highly

  3. Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems

    PubMed Central

    Catford, Jane A; Vesk, Peter A; Richardson, David M; Pyšek, Petr

    2012-01-01

    Biological invasions are a global phenomenon that threatens biodiversity, and few, if any, ecosystems are free from alien species. The outcome of human-mediated introductions is affected by the invasiveness of species and invasibility of ecosystems, but research has primarily focused on defining, characterizing and identifying invasive species; ecosystem invasibility has received much less attention. A prerequisite for characterizing invasibility is the ability to compare levels of invasion across ecosystems. In this paper, we aim to identify the best way to quantify the level of invasion by nonnative animals and plants by reviewing the advantages and disadvantages of different metrics. We explore how interpretation and choice of these measures can depend on the objective of a study or management intervention. Based on our review, we recommend two invasion indices and illustrate their use by applying them to two case studies. Relative alien species richness and relative alien species abundance indicate the contribution that alien species make to a community. They are easy to measure, can be applied to various taxa, are independent of scale and are comparable across regions and ecosystems, and historical data are often available. The relationship between relative alien richness and abundance can indicate the presence of dominant alien species and the trajectory of invasion over time, and can highlight ecosystems and sites that are heavily invaded or especially susceptible to invasion. Splitting species into functional groups and examining invasion patterns of transformer species may be particularly instructive for gauging effects of alien invasion on ecosystem structure and function. Establishing standard, transparent ways to define and quantify invasion level will facilitate meaningful comparisons among studies, ecosystem types and regions. It is essential for progress in ecology and will help guide ecosystem restoration and management.

  4. Innovative design for early detection of invasive species

    EPA Science Inventory

    Non-native aquatic species impose significant ecological impacts and rising financial costs in marine and freshwater ecosystems worldwide. Early detection of invasive species, as they enter a vulnerable ecosystem, is critical to successful containment and eradication. ORD, at t...

  5. Climate Change and Aquatic Invasive Species (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Climate Change and Aquatic Invasive Species. This report reviews available literature on climate-change effects on aquatic invasive species (AIS) and examines state-level AIS management activities. Data on management ...

  6. Identifying Invasive Species Educational Needs in Florida: Opportunities for Extension

    ERIC Educational Resources Information Center

    Huang, Pei-wen; Lamm, Alexa J.

    2016-01-01

    Florida's ecology has been adversely affected by invasive species. In Florida, a study was conducted to explore opportunities for Extension educators to contribute to combating the issue of invasive species. Florida residents' responses were captured through the use of an online public opinion survey. The findings revealed a need for invasive…

  7. Predicting the dynamics of local adaptation in invasive species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An invasive plant species may restrict its spread to only one habitat, or, after some time, may continue to spread into a different, secondary, habitat. The question of whether evolution is required for an invasive species to spread from one habitat to another is currently hotly debated. In order fo...

  8. Alien species and their zoonotic parasites in native and introduced ranges: The raccoon dog example.

    PubMed

    Laurimaa, Leidi; Süld, Karmen; Davison, John; Moks, Epp; Valdmann, Harri; Saarma, Urmas

    2016-03-30

    The raccoon dog (Nyctereutes procyonoides) is a canid that is indigenous in East Asia and alien in Europe, where it was introduced more than half a century ago. The aim of this study was to compare the parasite faunas associated with raccoon dogs in their native and introduced ranges, and to identify zoonotic parasite species. We examined 255 carcasses of hunted raccoon dogs from Estonia and recorded a total of 17 helminth species: 4 trematodes, 4 cestodes and 9 nematodes. The most prevalent parasite species were Uncinaria stenocephala (97.6%) and Alaria alata (68.3%). Average parasite species richness was 2.86 (the highest was 9) and only two animals were not parasitized at all. Although the infection intensity was determined by weight and not by sex, all animals infected with more than five helminth species were males. We also found that animals infected with higher numbers of helminth species fed significantly more on natural plants. Intentional consumption of grass may represent a self-medicating behaviour among raccoon dogs. We included the Estonian data into a wider comparison of raccoon dog parasite faunas and found a total of 54 helminth taxa, including 28 of zoonotic potential. In Europe, raccoon dogs are infected with a minimum of 32 helminth species of which 19 are zoonotic; in the native range they are infected with 26 species of which 17 are zoonotic. Most species were nematodes or trematodes, with fewer cestodes described. The recent increase in the number and range of raccoon dogs in Europe and the relatively high number of zoonotic parasite taxa that it harbours suggests that this species should be considered an important source of environmental contamination with zoonotic agents in Europe.

  9. Multidimensional approach to invasive species prevention.

    PubMed

    Briski, Elizabeta; Allinger, Lisa E; Balcer, Mary; Cangelosi, Allegra; Fanberg, Lana; Markee, Tom P; Mays, Nicole; Polkinghorne, Christine N; Prihoda, Kelsey R; Reavie, Euan D; Regan, Deanna H; Reid, Donald M; Saillard, Heidi J; Schwerdt, Tyler; Schaefer, Heidi; TenEyck, Matthew; Wiley, Chris J; Bailey, Sarah A

    2013-02-05

    Nonindigenous species (NIS) cause global biotic homogenization and extinctions, with commercial shipping being a leading vector for spread of aquatic NIS. To reduce transport of NIS by ships, regulations requiring ballast water exchange (BWE) have been implemented by numerous countries. BWE appears to effectively reduce risk for freshwater ports, but provides only moderate protection of marine ports. In the near future, ships may be required to undertake ballast water treatment (BWT) to meet numeric performance standards, and BWE may be phased out of use. However, there are concerns that BWT systems may not operate reliably in fresh or turbid water, or both. Consequently, it has been proposed that BWE could be used in combination with BWT to maximize the positive benefits of both management strategies for protection of freshwater ports. We compared the biological efficacy of "BWE plus BWT" against "BWT alone" at a ballast water treatment experimental test facility. Our comparative evaluation showed that even though BWT alone significantly reduced abundances of all tested organism groups except total heterotrophic bacteria, the BWE plus BWT strategy significantly reduced abundances for all groups and furthermore resulted in significantly lower abundances of most groups when compared to BWT alone. Our study clearly demonstrates potential benefits of combining BWE with BWT to reduce invasion risk of freshwater organisms transported in ships' ballast water, and it should be of interest to policy makers and environmental managers.

  10. Attacking invasive grasses

    USGS Publications Warehouse

    Keeley, Jon E.

    2015-01-01

    In grasslands fire may play a role in the plant invasion process, both by creating disturbances that potentially favour non-native invasions and as a possible tool for controlling alien invasions. Havill et al. (Applied Vegetation Science, 18, 2015, this issue) determine how native and non-native species respond to different fire regimes as a first step in understanding the potential control of invasive grasses.

  11. Exotic taxa less related to native species are more invasive

    PubMed Central

    Strauss, Sharon Y.; Webb, Campbell O.; Salamin, Nicolas

    2006-01-01

    Some species introduced into new geographical areas from their native ranges wreak ecological and economic havoc in their new environment. Although many studies have searched for either species or habitat characteristics that predict invasiveness of exotic species, the match between characteristics of the invader and those of members of the existing native community may be essential to understanding invasiveness. Here, we find that one metric, the phylogenetic relatedness of an invader to the native community, provides a predictive tool for invasiveness. Using a phylogenetic supertree of all grass species in California, we show that highly invasive grass species are, on average, significantly less related to native grasses than are introduced but noninvasive grasses. The match between the invader and the existing native community may explain why exotic pest species are not uniformly noxious in all novel habitats. Relatedness of invaders to the native biota may be one useful criterion for prioritizing management efforts of exotic species. PMID:16581902

  12. Vision of a cyberinfrastructure for nonnative, invasive species management

    USGS Publications Warehouse

    2008-01-01

    Although the quantity of data on the location, status, and management of invasive species is ever increasing, invasive species data sets are often difficult to obtain and integrate. A cyberinfrastructure for such information could make these data available for Internet users. The data can be used to create regional watch lists, to send e-mail alerts when a new species enters a region, to construct models of species' current and future distributions, and to inform management. Although the exchange of environmental data over the Internet in the form of raster data is maturing, and the exchange of species occurrence data is developing quickly, there is room for improvement. In this article, we present a vision for a comprehensive invasive species cyberinfrastructure that is capable of accessing data effectively, creating models of invasive species spread, and distributing this information.

  13. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  14. Geographical constraints are stronger than invasion patterns for European urban floras.

    PubMed

    Ricotta, Carlo; Celesti-Grapow, Laura; Kühn, Ingolf; Rapson, Gillian; Pyšek, Petr; La Sorte, Frank A; Thompson, Ken

    2014-01-01

    Understanding the mechanisms that affect invasion success of alien species is an important prerequisite for the effective management of present and future aliens. To gain insight into this matter we asked the following questions: Are the geographical patterns of species distributions in urban floras different for native compared with alien plant species? Does the introduction of alien species contribute to the homogenization of urban floras? We used a Mantel test on Jaccard dissimilarity matrices of 30 urban floras across the British Isles, Italy and central Europe to compare the spatial distribution of native species with four classes of alien species: archaeophytes, all neophytes, non-invasive neophytes, and invasive neophytes. Archaeophytes and neophytes are species that were introduced into Europe before and after 1500 AD, respectively. To analyze the homogenizing effect of alien species on the native urban floras, we tested for differences in the average dissimilarity of individual cities from their group centroid in ordination space. Our results show that the compositional patterns of native and alien species seem to respond to the same environmental drivers, such that all four classes of alien species were significantly related to native species across urban floras. In this framework, alien species may have an impact on biogeographic patterns of urban floras in ways that reflect their history of introduction and expansion: archaeophytes and invasive neophytes tended to homogenize, while non-invasive neophytes tended to differentiate urban floras.

  15. Lianas as invasive species in North America: Chapter 28

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Pavlovic, Noel B.

    2015-01-01

    Liana diversity is typically low in the temperate zones; however, the influx of non-native invasive liana species in North America has increased local diversity at the expense of native habitats and species. Some of the most illustrative studies of invasive lianas in temperate North America compared the biological traits of invasive lianas with native congeners or ecological analogs. The majority of these studies focused on two species, Celastrus orbiculatus (oriental bittersweet) and Lonicera japonica (Japanese honeysuckle). Temperate zone lianas generally have higher photosynthetic rates than other early successional species and their host trees. Invasive lianas are having an increasing impact on the dynamics and trajectories of North American plant communities. They often exhibit superior growth and survival compared to their native counterparts, and in some cases, invasive lianas may directly contribute to the decline of their native correlates.

  16. Adaptive invasive species distribution models: A framework for modeling incipient invasions

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Angeler, David G.; Corral, Lucia; Fricke, Kent A.

    2015-01-01

    The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

  17. Placing invasive species management in a spatiotemporal context.

    PubMed

    Baker, Christopher M; Bode, Michael

    2016-04-01

    Invasive species are a worldwide issue, both ecologically and economically. A large body of work focuses on various aspects of invasive species control, including how to allocate control efforts to eradicate an invasive population as cost effectively as possible: There are a diverse range of invasive species management problems, and past mathematical analyses generally focus on isolated examples, making it hard to identify and understand parallels between the different contexts. In this study, we use a single spatiotemporal model to tackle the problem of allocating control effort for invasive species when suppressing an island invasive species, and for long-term spatial suppression projects. Using feral cat suppression as an illustrative example, we identify the optimal resource allocation for island and mainland suppression projects. Our results demonstrate how using a single model to solve different problems reveals similar characteristics of the solutions in different scenarios. As well as illustrating the insights offered by linking problems through a spatiotemporal model, we also derive novel and practically applicable results for our case studies. For temporal suppression projects on islands, we find that lengthy projects are more cost effective and that rapid control projects are only economically cost effective when population growth rates are high or diminishing returns on control effort are low. When suppressing invasive species around conservation assets (e.g., national parks or exclusion fences), we find that the size of buffer zones should depend on the ratio of the species growth and spread rate.

  18. Evolutionary responses to global change: lessons from invasive species.

    PubMed

    Moran, Emily V; Alexander, Jake M

    2014-05-01

    Biologists have recently devoted increasing attention to the role of rapid evolution in species' responses to environmental change. However, it is still unclear what evolutionary responses should be expected, at what rates, and whether evolution will save populations at risk of extinction. The potential of biological invasions to provide useful insights has barely been realised, despite the close analogies to species responding to global change, particularly climate change; in both cases, populations encounter novel climatic and biotic selection pressures, with expected evolutionary responses occurring over similar timescales. However, the analogy is not perfect, and invasive species are perhaps best used as an upper bound on expected change. In this article, we review what invasive species can and cannot teach us about likely evolutionary responses to global change and the constraints on those responses. We also discuss the limitations of invasive species as a model and outline directions for future research.

  19. Complex genetic patterns in closely related colonizing invasive species

    EPA Science Inventory

    Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, par...

  20. Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions.

    PubMed

    Hulme, Philip E

    2011-01-01

    • Plant phenology is particularly sensitive to climate and a key indicator of environmental change. Globally, first flowering dates (FFDs) have advanced by several days per decade in response to recent climate warming, but, while earlier flowering should allow plant distributions to increase, a link between FFD and range changes has not been observed. • Here I show for 347 species that the extent to which FFD has responded to climate warming is linked to the degree to which their relative distributions have changed over 30 yr across the British Isles. • Native plant species whose phenology did not track climate change declined in distribution, whereas species that became more widespread all exhibited earlier flowering. In contrast, alien neophytes showed both a stronger phenological response to warming and a more marked increase in distribution, but no link between the two. • These trends were consistent both for relative changes in the national distribution and for local abundance. At the national scale, the more recently an alien species became established in Britain, the more likely it was to increase in distribution irrespective of FFD, suggesting that recent changes in alien species distributions are decoupled from climate and driven by other factors.

  1. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species.

    PubMed

    Slabber, Sarette; Worland, M Roger; Leinaas, Hans Petter; Chown, Steven L

    2007-02-01

    Collembola are abundant and functionally significant arthropods in sub-Antarctic terrestrial ecosystems, and their importance has increased as a consequence of the many invasive alien species that have been introduced to the region. It has also been predicted that current and future climate change will favour alien over indigenous species as a consequence of more favourable responses to warming in the former. It is therefore surprising that little is known about the environmental physiology of sub-Antarctic springtails and that few studies have explicitly tested the hypothesis that invasive species will outperform indigenous ones under warmer conditions. Here we present thermal tolerance data on three invasive (Pogonognathellus flavescens, Isotomurus cf. palustris, Ceratophysella denticulata) and two indigenous (Cryptopygus antarcticus, Tullbergia bisetosa) species of springtails from Marion Island, explicitly testing the idea that consistent differences exist between the indigenous and invasive species both in their absolute limits and the ways in which they respond to acclimation (at temperatures from 0 to 20 degrees C). Phenotypic plasticity is the first in a series of ways in which organisms might respond to altered environments. Using a poorly explored, but highly appropriate technique, we demonstrate that in these species the crystallization temperature (Tc) is equal to the lower lethal temperature. We also show that cooling rate (1 degree C min(-1); 0.1 degrees C min(-1); 0.5 degrees C h(-1) from 5 to -1 degrees C followed by 0.1 degrees C min(-1)) has little effect on Tc. The indigenous species typically have low Tcs (c. -20 to -13 degrees C depending on the acclimation temperature), whilst those of the invasive species tend to be higher (c. -12 to -6 degrees C) at the lower acclimation temperatures. However, Ceratophysella denticulata is an exception with a low Tc (c. -20 to -18 degrees C), and in P. flavescens acclimation to 20 degrees C results in a

  2. Invasive Species: Federal and Selected State Funding to Address Harmful, Nonnative Species

    DTIC Science & Technology

    2000-08-01

    Invasive species -harmful nonnative plants, animals, and microorganisms - pose a serious threat to U.S. agriculture and the environment, with...estimated damages exceeding billions of dollars annually. Invasive species are found in all 50 states, with some states, such as Florida and Hawaii, more...seriously affected than others. Examples of well-known invasive species include the zebra mussel (a mollusk that clogs water intake pipes and filtration

  3. Assessing the effects of climate change on aquatic invasive species.

    PubMed

    Rahel, Frank J; Olden, Julian D

    2008-06-01

    Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.

  4. What can decision analysis do for invasive species management?

    PubMed

    Maguire, Lynn A

    2004-08-01

    Decisions about management of invasive species are difficult for all the reasons typically addressed by multiattribute decision analysis: uncertain outcomes, multiple and conflicting objectives, and many interested parties with differing views on both facts and values. This article illustrates how the tools of multiattribute analysis can improve management of invasive species, with an emphasis on making explicit the social values and preferences that must inform invasive species management. Risk assessment protocols developed previously for invasive species management typically suffer from two interacting flaws: (1) separating risk assessment from risk management, thus disrupting essential connections between the social values at stake in invasive species decisions and the scientific knowledge necessary to predict the likely impacts of management actions, and (2) relying on expert judgment about risk framed in qualitative and value-laden terms, inadvertently mixing the expert's judgment about what is likely to happen with personal preferences. Using the values structuring and probability-modeling elements of formal decision analysis can remedy these difficulties and make invasive species management responsive to both good science and public values. The management of feral pigs in Hawaiian ecosystems illustrates the need for such an integrated approach.

  5. Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe.

    PubMed

    R Kirkendall, Lawrence; Faccoli, Massimo

    2010-09-17

    Invasive bark beetles are posing a major threat to forest resources around the world. DAISIE's web-based and printed databases of invasive species in Europe provide an incomplete and misleading picture of the alien scolytines and platypodines. We present a review of the alien bark beetle fauna of Europe based on primary literature through 2009. We find that there are 18 Scolytinae and one Platypodinae species apparently established in Europe, from 14 different genera. Seventeen species are naturalized. We argue that Trypodendron laeve, commonly considered alien in Europe, is a native species; conversely, we hypothesize that Xyleborus pfeilii, which has always been treated as indigenous, is an alien species from Asia. We also point out the possibility that the Asian larch bark beetle Ips subelongatus is established in European Russia. We show that there has been a marked acceleration in the rate of new introductions to Europe, as is also happening in North America: seven alien species were first recorded in the last decade.We present information on the biology, origins, and distributions of the alien species. All but four are polyphagous, and 11 are inbreeders: two traits which increase invasiveness. Eleven species are native to Asia, six to the Americas, and one is from the Canary Islands. The Mediterranean is especially favorable for invasives, hosting a large proportion of the aliens (9/19). Italy, France and Spain have the largest numbers of alien species (14, 10 and 7, respectively). We point out that the low numbers for at least some countries is likely due to under-reporting.Finally, we discuss the difficulties associated with identifying newly invasive species. Lack of good illustrations and keys hinder identification, particularly for species coming from Asia and Oceania.

  6. Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe

    PubMed Central

    R. Kirkendall, Lawrence; Faccoli, Massimo

    2010-01-01

    Abstract Invasive bark beetles are posing a major threat to forest resources around the world. DAISIE’s web-based and printed databases of invasive species in Europe provide an incomplete and misleading picture of the alien scolytines and platypodines. We present a review of the alien bark beetle fauna of Europe based on primary literature through 2009. We find that there are 18 Scolytinae and one Platypodinae species apparently established in Europe, from 14 different genera. Seventeen species are naturalized. We argue that Trypodendron laeve, commonly considered alien in Europe, is a native species; conversely, we hypothesize that Xyleborus pfeilii, which has always been treated as indigenous, is an alien species from Asia. We also point out the possibility that the Asian larch bark beetle Ips subelongatus is established in European Russia. We show that there has been a marked acceleration in the rate of new introductions to Europe, as is also happening in North America: seven alien species were first recorded in the last decade. We present information on the biology, origins, and distributions of the alien species. All but four are polyphagous, and 11 are inbreeders: two traits which increase invasiveness. Eleven species are native to Asia, six to the Americas, and one is from the Canary Islands. The Mediterranean is especially favorable for invasives, hosting a large proportion of the aliens (9/19). Italy, France and Spain have the largest numbers of alien species (14, 10 and 7, respectively). We point out that the low numbers for at least some countries is likely due to under-reporting. Finally, we discuss the difficulties associated with identifying newly invasive species. Lack of good illustrations and keys hinder identification, particularly for species coming from Asia and Oceania. PMID:21594183

  7. Stochastic models for the Trojan Y-Chromosome eradication strategy of an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D

    2016-01-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we develop a Markov jump process model for this strategy, and we verify that there is a positive probability for wild-type females going extinct within a finite time. Moreover, when sex-reversed Trojan females are introduced at a constant population size, we formulate a stochastic differential equation (SDE) model as an approximation to the proposed Markov jump process model. Using the SDE model, we investigate the probability distribution and expectation of the extinction time of wild-type females by solving Kolmogorov equations associated with these statistics. The results indicate how the probability distribution and expectation of the extinction time are shaped by the initial conditions and the model parameters.

  8. Ecological niche transferability using invasive species as a case study.

    PubMed

    Fernández, Miguel; Hamilton, Healy

    2015-01-01

    Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species' native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species' native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger's I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species' dynamics in the invaded range.

  9. Global phylogenetics of Diuraphis noxia (Hemiptera: Aphididae), an invasive aphid species: Evidence for multiple invasions into North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Critical to the study of an invasive species is understanding the number and origin of invasions that have occurred, as well as the rate or potential of post-invasion adaptation and geographic range expansion. One virulent, invasive insect species that has caused much damage in the United States is...

  10. Invasion dynamics of two alien Carpobrotus (Aizoaceae) taxa on a Mediterranean island: II. Reproductive strategies.

    PubMed

    Suehs, C M; Affre, L; Médail, F

    2004-06-01

    This study compares sexually and asexually produced fruit set, seed production, biomass, germination, and seedling size in Carpobrotus acinaciformis and C. edulis following controlled pollination experiments in order to evaluate the potential role of reproductive traits with respect to the invasive potential of these taxa. C. edulis is slightly agamospermic, completely self-fertile, slightly preferentially self-compatible, experiences no inbreeding depression, and has low hybrid vigour. In contrast, C. acinaciformis does not have reliable agamospermy, is only slightly self-fertile and self-compatible, experiences a slight inbreeding depression, and has a strong hybrid vigour. Both taxa have relatively low, although significantly different germination frequencies, and insignificantly different seedling sizes. Owing to the high performance in hybridisation as compared to all other controlled pollinations in C. acinaciformis, as well as a large amount of previously demonstrated introgression, we refer to the population studied on the island of Bagaud (France) as C. affine acinaciformis. We conclude that both C. edulis and C. affine acinaciformis should be considered as harmful invasive plants in the Mediterranean Basin, the former because of the flexibility of its mating system and high seed production, and the latter because of its strong clonality, high hybrid vigour, and potential for continued introgression from C. edulis genes. These differences require different control strategies, while the avoidance of sympatry is a distinct priority.

  11. Indirect effects of habitat disturbance on invasion: nutritious litter from a grazing resistant plant favors alien over native Collembola

    PubMed Central

    Leinaas, Hans Petter; Bengtsson, Jan; Janion-Scheepers, Charlene; Chown, Steven L

    2015-01-01

    Biological invasions are major threats to biodiversity, with impacts that may be compounded by other forms of environmental change. Observations of high density of the invasive springtail (Collembola), Hypogastrura manubrialis in heavily grazed renosterveld vegetation in the Western Cape, South Africa, raised the question of whether the invasion was favored by changes in plant litter quality associated with habitat disturbance in this vegetation type. To examine the likely mechanisms underlying the high abundance of H. manubrialis, cages with three types of naturally occurring litter with different nutrient content were placed out in the area and collected after different periods of time. Hypogastrura manubrialis was mainly found in the nutrient-rich litter of the yellowbush (Galenia africana), which responds positively to disturbance in the form of overgrazing. This suggests that invasion may have been facilitated by a positive interaction with this grazing resistant plant. By contrast, indigenous Collembola were least abundant in yellowbush litter. Negative correlations between high abundance of H. manubrialis and the abundance and diversity of other species suggest that competitive interactions might underlie low abundance of these other species at the patch level. Group behavior enables H. manubrialis to utilize efficiently this ephemeral, high quality resource, and might improve its competitive ability. The results suggest that interactions among environmental change drivers may lead to unforeseen invasion effects. H. manubrialis is not likely to be very successful in un-grazed renosterveld, but in combination with grazing, favoring the nutrient-rich yellowbush, it may become highly invasive. Field manipulations are required to fully verify these conclusions. PMID:26380678

  12. Indirect effects of habitat disturbance on invasion: nutritious litter from a grazing resistant plant favors alien over native Collembola.

    PubMed

    Leinaas, Hans Petter; Bengtsson, Jan; Janion-Scheepers, Charlene; Chown, Steven L

    2015-08-01

    Biological invasions are major threats to biodiversity, with impacts that may be compounded by other forms of environmental change. Observations of high density of the invasive springtail (Collembola), Hypogastrura manubrialis in heavily grazed renosterveld vegetation in the Western Cape, South Africa, raised the question of whether the invasion was favored by changes in plant litter quality associated with habitat disturbance in this vegetation type. To examine the likely mechanisms underlying the high abundance of H. manubrialis, cages with three types of naturally occurring litter with different nutrient content were placed out in the area and collected after different periods of time. Hypogastrura manubrialis was mainly found in the nutrient-rich litter of the yellowbush (Galenia africana), which responds positively to disturbance in the form of overgrazing. This suggests that invasion may have been facilitated by a positive interaction with this grazing resistant plant. By contrast, indigenous Collembola were least abundant in yellowbush litter. Negative correlations between high abundance of H. manubrialis and the abundance and diversity of other species suggest that competitive interactions might underlie low abundance of these other species at the patch level. Group behavior enables H. manubrialis to utilize efficiently this ephemeral, high quality resource, and might improve its competitive ability. The results suggest that interactions among environmental change drivers may lead to unforeseen invasion effects. H. manubrialis is not likely to be very successful in un-grazed renosterveld, but in combination with grazing, favoring the nutrient-rich yellowbush, it may become highly invasive. Field manipulations are required to fully verify these conclusions.

  13. Near term climate projections for invasive species distributions

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.

    2009-01-01

    Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas. ?? 2008 Springer Science+Business Media B.V.

  14. Population-specific responses to an invasive species

    PubMed Central

    Reichard, Martin; Douda, Karel; Przybyłski, Mirosław; Popa, Oana P.; Karbanová, Eva; Matasová, Klára; Rylková, Kateřina; Polačik, Matej; Blažek, Radim; Smith, Carl

    2015-01-01

    Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling–mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions. PMID:26180070

  15. Population-specific responses to an invasive species.

    PubMed

    Reichard, Martin; Douda, Karel; Przybyłski, Mirosław; Popa, Oana P; Karbanová, Eva; Matasová, Klára; Rylková, Kateřina; Polačik, Matej; Blažek, Radim; Smith, Carl

    2015-08-07

    Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions.

  16. Do invasive species perform better in their new ranges?

    PubMed

    Parker, John D; Torchin, Mark E; Hufbauer, Ruth A; Lemoine, Nathan P; Alba, Christina; Blumenthal, Dana M; Bossdorf, Oliver; Byers, James E; Dunn, Alison M; Heckman, Robert W; Hejda, Martin; Jarosík, Vojtech; Kanarek, Andrew R; Martin, Lynn B; Perkins, Sarah E; Pysek, Petr; Schierenbeck, Kristina; Schlöder, Carmen; van Klinken, Rieks; Vaughn, Kurt J; Williams, Wyatt; Wolfe, Lorne M

    2013-05-01

    A fundamental assumption in invasion biology is that most invasive species exhibit enhanced performance in their introduced range relative to their home ranges. This idea has given rise to numerous hypotheses explaining "invasion success" by virtue of altered ecological and evolutionary pressures. There are surprisingly few data, however, testing the underlying assumption that the performance of introduced populations, including organism size, reproductive output, and abundance, is enhanced in their introduced compared to their native range. Here, we combined data from published studies to test this hypothesis for 26 plant and 27 animal species that are considered to be invasive. On average, individuals of these 53 species were indeed larger, more fecund, and more abundant in their introduced ranges. The overall mean, however, belied significant variability among species, as roughly half of the investigated species (N=27) performed similarly when compared to conspecific populations in their native range. Thus, although some invasive species are performing better in their new ranges, the pattern is not universal, and just as many are performing largely the same across ranges.

  17. Poles Apart: Comparing Trends of Alien Hymenoptera in New Zealand with Europe (DAISIE)

    PubMed Central

    Ward, Darren; Edney-Browne, Emma

    2015-01-01

    Developing generalisations of invasive species is an important part of invasion biology. However, trends and generalisations from one part of the world may not necessarily hold elsewhere. We present the first inventory and analysis of all Hymenoptera alien to New Zealand, and compare patterns from New Zealand with those previously published from Europe (DAISIE). Between the two regions there was broad correlation between families with the highest number of alien species (Braconidae, Encyrtidae, Pteromalidae, Eulophidae, Formicidae, Aphelinidae). However, major differences also existed. The number of species alien to New Zealand is higher than for Europe (334 vs 286), and major differences include: i) the much lower proportion of intentionally released species in New Zealand (21% vs 63% in Europe); and ii) the greater proportion of unintentionally introduced parasitoids in New Zealand (71.2% vs 22.6%). The disharmonic ‘island’ nature of New Zealand is shown, as a high proportion of families (36%) have no native representatives, and alien species also represent >10% of the native fauna for many other families. A much larger proportion of alien species are found in urban areas in New Zealand (60%) compared to Europe (~30%), and higher numbers of alien species were present earlier in New Zealand (especially <1950). Differences in the origins of alien species were also apparent. Unlike Europe, the New Zealand data reveals a change in the origins of alien species over time, with an increasing dominance of alien species from Australasia (a regional neighbour) during the past 25 years. We recommend that further effort be made towards the formation, and analysis, of regional inventories of alien species. This will allow a wider range of taxa and regions to be examined for generalisations, and help assess and prioritise the risk posed by certain taxa towards the economy or environment. PMID:26147445

  18. Poles Apart: Comparing Trends of Alien Hymenoptera in New Zealand with Europe (DAISIE).

    PubMed

    Ward, Darren; Edney-Browne, Emma

    2015-01-01

    Developing generalisations of invasive species is an important part of invasion biology. However, trends and generalisations from one part of the world may not necessarily hold elsewhere. We present the first inventory and analysis of all Hymenoptera alien to New Zealand, and compare patterns from New Zealand with those previously published from Europe (DAISIE). Between the two regions there was broad correlation between families with the highest number of alien species (Braconidae, Encyrtidae, Pteromalidae, Eulophidae, Formicidae, Aphelinidae). However, major differences also existed. The number of species alien to New Zealand is higher than for Europe (334 vs 286), and major differences include: i) the much lower proportion of intentionally released species in New Zealand (21% vs 63% in Europe); and ii) the greater proportion of unintentionally introduced parasitoids in New Zealand (71.2% vs 22.6%). The disharmonic 'island' nature of New Zealand is shown, as a high proportion of families (36%) have no native representatives, and alien species also represent >10% of the native fauna for many other families. A much larger proportion of alien species are found in urban areas in New Zealand (60%) compared to Europe (~30%), and higher numbers of alien species were present earlier in New Zealand (especially <1950). Differences in the origins of alien species were also apparent. Unlike Europe, the New Zealand data reveals a change in the origins of alien species over time, with an increasing dominance of alien species from Australasia (a regional neighbour) during the past 25 years. We recommend that further effort be made towards the formation, and analysis, of regional inventories of alien species. This will allow a wider range of taxa and regions to be examined for generalisations, and help assess and prioritise the risk posed by certain taxa towards the economy or environment.

  19. The Afrotropical Miomantis caffra Saussure 1871 and Miomantis paykullii Stal 1871: first records of alien mantid species in Portugal and Europe, with an updated checklist of Mantodea in Portugal (Insecta: Mantodea)

    PubMed Central

    2014-01-01

    Abstract The recent growing interest on the Mantodea fauna of southern Europe and Portugal in particular, has enabled the discovery of two geographically separated populations of hitherto unknown species in Europe. Analysis of specimens shows that they belong to two Afrotropical mantids: Miomantis caffra Saussure, 1871 and Miomantis paykullii Stal, 1871, thus raising the number of known species in Europe to 39 and in Portugal to 11. While these are remarkable findings, they also represent the first alien mantis species recorded from this continent. As yet, these species appear to be confined to artificial humanised gardened areas but call for more attention to the problem of biological invasions and the need for better bio-security measures for the conservation of natural ecosystems. In the absence of recent revisionary work on the Mantodea of Portugal and given the need to provide an accessible identification tool, both a checklist and a key to species are provided for all species in the country. PMID:25425938

  20. Managing aquatic species of conservation concern in the face of climate change and invasive species.

    PubMed

    Rahel, Frank J; Bierwagen, Britta; Taniguchi, Yoshinori

    2008-06-01

    The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species.

  1. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower

    PubMed Central

    Wen, Bin

    2015-01-01

    Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15–30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20–60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant. PMID:26509675

  2. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower.

    PubMed

    Wen, Bin

    2015-01-01

    Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15-30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20-60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant.

  3. Spatial dynamics of invasion: the geometry of introduced species.

    PubMed

    Korniss, Gyorgy; Caraco, Thomas

    2005-03-07

    Many exotic species combine low probability of establishment at each introduction with rapid population growth once introduction does succeed. To analyse this phenomenon, we note that invaders often cluster spatially when rare, and consequently an introduced exotic's population dynamics should depend on locally structured interactions. Ecological theory for spatially structured invasion relies on deterministic approximations, and determinism does not address the observed uncertainty of the exotic-introduction process. We take a new approach to the population dynamics of invasion and, by extension, to the general question of invasibility in any spatial ecology. We apply the physical theory for nucleation of spatial systems to a lattice-based model of competition between plant species, a resident and an invader, and the analysis reaches conclusions that differ qualitatively from the standard ecological theories. Nucleation theory distinguishes between dynamics of single- and multi-cluster invasion. Low introduction rates and small system size produce single-cluster dynamics, where success or failure of introduction is inherently stochastic. Single-cluster invasion occurs only if the cluster reaches a critical size, typically preceded by a number of failed attempts. For this case, we identify the functional form of the probability distribution of time elapsing until invasion succeeds. Although multi-cluster invasion for sufficiently large systems exhibits spatial averaging and almost-deterministic dynamics of the global densities, an analytical approximation from nucleation theory, known as Avrami's law, describes our simulation results far better than standard ecological approximations.

  4. The amathiiform Ctenostomata (phylum Bryozoa) of New Zealand--including four new species, two of them of probable alien origin.

    PubMed

    Gordon, Dennis P; Spencer-Jones, Mary

    2013-01-01

    The status of the vesiculariid ctenostome genus Amathia in New Zealand has been evaluated on the basis of all known material, including historic specimens in museums and those newly collected during formal surveillance of ports, harbours and vessels for possible alien species. Eight species are recognised, four of them new to science. Amathia gracei n. sp. and Amathia zealandica n. sp. are the only apparently endemic species. Amathia chimonidesi n. sp. appears to be a previously unrecognised alien species and is known only from shipping harbours and/or yacht marinas and some nearby beaches. Amathia similis n. sp. has been known in the Auckland area since the 1960s but was confused with A. distans Busk. Amathia bicornis (Tenison-Woods), A. biseriata Krauss, A. lamourouxi Chimonides and A. wilsoni Kirkpatrick are Australasian species that occur naturally on both sides of the Tasman Sea. Of this latter group, A. bicornis was discovered only at a single locality on the southwest coast of North Island in 1983 on a fucoid seaweed and it may be relatively re-cently self-introduced. A specimen of A. lendigera (Linnaeus) in the Museum of New Zealand, purportedly from Napier, is considered to be based on a misunderstanding or a labelling error and does not represent a failed alien introduction. The Amathia-like vesiculariid Bowerbankia citrina (Hincks) sensu lato is newly recorded for New Zealand. Keys are provided to the amathiiform (i.e. Amathia and Amathia-like) Ctenostomata of New Zealand and to the worldwide species of Amathia and Bowerbankia with zooid clusters spiralled on stoloniform axes.

  5. Emergence and accumulation of novel pathogens suppress an invasive species.

    PubMed

    Stricker, Kerry Bohl; Harmon, Philip F; Goss, Erica M; Clay, Keith; Luke Flory, S

    2016-04-01

    Emerging pathogens are a growing threat to human health, agriculture and the diversity of ecological communities but may also help control problematic species. Here we investigated the diversity, distribution and consequences of emerging fungal pathogens infecting an aggressive invasive grass that is rapidly colonising habitats throughout the eastern USA. We document the recent emergence and accumulation over time of diverse pathogens that are members of a single fungal genus and represent multiple, recently described or undescribed species. We also show that experimental suppression of these pathogens increased host performance in the field, demonstrating the negative effects of emerging pathogens on invasive plants. Our results suggest that invasive species can facilitate pathogen emergence and amplification, raising concerns about movement of pathogens among agricultural, horticultural, and wild grasses. However, one possible benefit of pathogen accumulation is suppression of aggressive invaders over the long term, potentially abating their negative impacts on native communities.

  6. Using Tournament Angler Data to Rapidly Assess the Invasion Status of Alien Sport Fishes (Micropterus spp.) in Southern Africa

    PubMed Central

    Hargrove, John S.; Weyl, Olaf L. F.; Allen, Micheal S.; Deacon, Neil R.

    2015-01-01

    Fishes are one of the most commonly introduced aquatic taxa worldwide, and invasive fish species pose threats to biodiversity and ecosystem function in recipient waters. Considerable research efforts have focused on predicting the invasibility of different fish taxa; however, accurate records detailing the establishment and spread of invasive fishes are lacking for large numbers of fish around the globe. In response to these data limitations, a low-cost method of cataloging and quantifying the temporal and spatial status of fish invasions was explored. Specifically, angler catch data derived from competitive bass angling tournaments was used to document the distribution of 66 non-native populations of black bass (Micropterus spp.) in southern Africa. Additionally, catch data from standardized tournament events were used to assess the abundance and growth of non-native bass populations in southern Africa relative to their native distribution (southern and eastern United States). Differences in metrics of catch per unit effort (average number of fish retained per angler per day), daily bag weights (the average weight of fish retained per angler), and average fish weight were assessed using catch data from 14,890 angler days of tournament fishing (11,045 days from South Africa and Zimbabwe; 3,845 days from the United States). No significant differences were found between catch rates, average daily bag weight, or the average fish weight between countries, suggesting that bass populations in southern Africa reach comparable sizes and numbers relative to waters in their native distribution. Given the minimal cost associated with data collection (i.e. records are collected by tournament organizers), the standardized nature of the events, and consistent bias (i.e. selection for the biggest fish in a population), the use of angler catch data represents a novel approach to infer the status and distribution of invasive sport fish. PMID:26047487

  7. Using Tournament Angler Data to Rapidly Assess the Invasion Status of Alien Sport Fishes (Micropterus spp.) in Southern Africa.

    PubMed

    Hargrove, John S; Weyl, Olaf L F; Allen, Micheal S; Deacon, Neil R

    2015-01-01

    Fishes are one of the most commonly introduced aquatic taxa worldwide, and invasive fish species pose threats to biodiversity and ecosystem function in recipient waters. Considerable research efforts have focused on predicting the invasibility of different fish taxa; however, accurate records detailing the establishment and spread of invasive fishes are lacking for large numbers of fish around the globe. In response to these data limitations, a low-cost method of cataloging and quantifying the temporal and spatial status of fish invasions was explored. Specifically, angler catch data derived from competitive bass angling tournaments was used to document the distribution of 66 non-native populations of black bass (Micropterus spp.) in southern Africa. Additionally, catch data from standardized tournament events were used to assess the abundance and growth of non-native bass populations in southern Africa relative to their native distribution (southern and eastern United States). Differences in metrics of catch per unit effort (average number of fish retained per angler per day), daily bag weights (the average weight of fish retained per angler), and average fish weight were assessed using catch data from 14,890 angler days of tournament fishing (11,045 days from South Africa and Zimbabwe; 3,845 days from the United States). No significant differences were found between catch rates, average daily bag weight, or the average fish weight between countries, suggesting that bass populations in southern Africa reach comparable sizes and numbers relative to waters in their native distribution. Given the minimal cost associated with data collection (i.e. records are collected by tournament organizers), the standardized nature of the events, and consistent bias (i.e. selection for the biggest fish in a population), the use of angler catch data represents a novel approach to infer the status and distribution of invasive sport fish.

  8. Using genetic research to inform imperiled and invasive species management

    USGS Publications Warehouse

    Hunter, Margaret E.; Pawlitz, Rachel J.

    2012-01-01

    The long-term viability of species and populations is related to their potential to migrate, reproduce, and adapt to environmental changes. In the southeast United States, U.S. Geological Survey (USGS) scientists are providing resource managers with genetic information to improve the long-term survival and sustainability of the Nation's aquatic species. Research focused on native and imperiled species can assess the genetic factors influencing their survival and recovery, while work on invasive species can provide information on their proliferation, dispersal, and impacts on native species.

  9. An assessment of stakeholder perceptions and management of noxious alien plants in Spain.

    PubMed

    Andreu, Jara; Vilà, Montserrat; Hulme, Philip E

    2009-06-01

    Despite biological invasions being a worldwide phenomenon causing significant ecological, economic, and human welfare impacts, there is limited understanding regarding how environmental managers perceive the problem and subsequently manage alien species. Spanish environmental managers were surveyed using questionnaires to (1) analyze the extent to which they perceive plant invasions as a problem; (2) identify the status, occurrence, and impacts of noxious alien plant species; (3) assess current effort and expenditure targeting alien plant management; and, finally, (4) identify the criteria they use to set priorities for management. In comparison to other environmental concerns, plant invasions are perceived as only moderately problematic and mechanical control is the most valued and frequently used strategy to cope with plant invasions in Spain. Based on 70 questionnaires received, 193 species are considered noxious, 109 of which have been the subject of management activities. More than 90% of species are found in at least one protected area. According to respondents, the most frequently managed species are the most widespread across administrative regions and the ones perceived as causing the highest impacts. The perception of impact seems to be independent of their invasion status, since only half of the species identified as noxious are believed to be invasive in Spain, while 43% of species thought to only be casual aliens are causing a high impact. Records of management costs are poor and the few data indicate that the total actual expenditure amounted to 50,492,437 euros in the last decade. The majority of respondents stated that management measures are insufficient to control alien plants due to limited economic resources, lack of public awareness and support, and an absence of coordination among different public administrations. Managers also expressed their concern about the fact that much scientific research is concerned with the ecology of alien plants

  10. An Assessment of Stakeholder Perceptions and Management of Noxious Alien Plants in Spain

    NASA Astrophysics Data System (ADS)

    Andreu, Jara; Vilà, Montserrat; Hulme, Philip E.

    2009-06-01

    Despite biological invasions being a worldwide phenomenon causing significant ecological, economic, and human welfare impacts, there is limited understanding regarding how environmental managers perceive the problem and subsequently manage alien species. Spanish environmental managers were surveyed using questionnaires to (1) analyze the extent to which they perceive plant invasions as a problem; (2) identify the status, occurrence, and impacts of noxious alien plant species; (3) assess current effort and expenditure targeting alien plant management; and, finally, (4) identify the criteria they use to set priorities for management. In comparison to other environmental concerns, plant invasions are perceived as only moderately problematic and mechanical control is the most valued and frequently used strategy to cope with plant invasions in Spain. Based on 70 questionnaires received, 193 species are considered noxious, 109 of which have been the subject of management activities. More than 90% of species are found in at least one protected area. According to respondents, the most frequently managed species are the most widespread across administrative regions and the ones perceived as causing the highest impacts. The perception of impact seems to be independent of their invasion status, since only half of the species identified as noxious are believed to be invasive in Spain, while 43% of species thought to only be casual aliens are causing a high impact. Records of management costs are poor and the few data indicate that the total actual expenditure amounted to 50,492,437 € in the last decade. The majority of respondents stated that management measures are insufficient to control alien plants due to limited economic resources, lack of public awareness and support, and an absence of coordination among different public administrations. Managers also expressed their concern about the fact that much scientific research is concerned with the ecology of alien plants

  11. Alien and endangered plants in the Brazilian Cerrado exhibit contrasting relationships with vegetation biomass and N : P stoichiometry.

    PubMed

    Lannes, Luciola S; Bustamante, Mercedes M C; Edwards, Peter J; Venterink, Harry Olde

    2012-11-01

    Although endangered and alien invasive plants are commonly assumed to persist under different environmental conditions, surprisingly few studies have investigated whether this is the case. We examined how endangered and alien species are distributed in relation to community biomass and N : P ratio in the above-ground community biomass in savanna vegetation in the Brazilian Cerrado. For 60 plots, we related the occurrence of endangered (Red List) and alien invasive species to plant species richness, vegetation biomass and N : P ratio, and soil variables. Endangered plants occurred mainly in plots with relatively low above-ground biomass and high N : P ratios, whereas alien invasive species occurred in plots with intermediate to high biomass and low N : P ratios. Occurrences of endangered or alien plants were unrelated to extractable N and P concentrations in the soil. These contrasting distributions in the Cerrado imply that alien species only pose a threat to endangered species if they are able to invade sites occupied by these species and increase the above-ground biomass and/or decrease the N : P ratio of the vegetation. We found some evidence that alien species do increase above-ground community biomass in the Cerrado, but their possible effect on N : P stoichiometry requires further study.

  12. Behavioral syndrome in a native and an invasive hymenoptera species.

    PubMed

    Monceau, Karine; Moreau, Jérôme; Poidatz, Juliette; Bonnard, Olivier; Thiéry, Denis

    2015-08-01

    Recent studies have focused on the role of behavior in biological invasions. Individuals may differ consistently in time for several behavioral traits (personality) which covary (behavioral syndrome) resulting in different behavioral types, some of them favoring invasion. Social hymenopterans have a strong potential to be invaders and their success depends primarily on the foundresses' ability to found viable colonies. They are expected to be active, explorative and bold for optimally establishing their nest. In Europe, 2 hornet species coexist: the native Vespa crabro and the invasive Vespa velutina. These 2 species may compete for nesting sites and we suggest that the initial success of V. velutina has been favored by its behavior in outperforming V. crabro for the traits involved in nest initiation. Here, we (i) defined the personality of V. crabro and V. velutina, (ii) tested for the existence of behavioral syndrome in these species, and (iii) compared their performances using an open-field test. Our results show that V. crabro foundresses behave consistently but not V. velutina; this lack of consistency being mainly due to reduced variance among individuals. This result questions the possibility of detecting consistent behavioral differences in species having recently undergone a strong bottleneck. Both species exhibit the same correlations between activity, boldness and exploration and V. velutina clearly outperforms V. crabro for all traits. Our results suggest that activity, boldness, and exploration are implicated in both hornet nest initiation and invasion process which contributed to explain why social hymenopterans are so successful at colonization.

  13. Mechanistic species distribution modeling reveals a niche shift during invasion.

    PubMed

    Chapman, Daniel S; Scalone, Romain; Štefanić, Edita; Bullock, James M

    2017-04-02

    Niche shifts of non-native plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by re-analyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially-invaded ranges of individual populations. Northern-origin populations that were established outside the generally-accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially-invaded range northwards and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual

  14. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  15. Non-native invasive species and novel ecosystems.

    PubMed

    Simberloff, Daniel

    2015-01-01

    Invasions by non-native species have caused many extinctions and greatly modified many ecosystems and are among the major anthropogenic global changes transforming the earth. Beginning in the mid-1980s, a dramatic burst of research in invasion biology has revealed a plethora of previously unrecognized impacts and laid bare the scope of the phenomenon. Similarly, research on various methods of managing invasions has expanded enormously, yielding incremental improvements in traditional methods and the advent of several new approaches, including the use of species-specific genetic and pheromonal methods. This research has advanced the field of restoration ecology, of which invasion management is a key component. Amidst this research progress, a group of critics has attempted to cast doubt on the extent of damaging impacts caused by non-native invasive species, the feasibility of counteracting them and restoring ecosystems, and the motives of scientists engaged in such endeavors. The criticisms are misguided but can potentially impede management of this pressing problem.

  16. Non-native invasive species and novel ecosystems

    PubMed Central

    2015-01-01

    Invasions by non-native species have caused many extinctions and greatly modified many ecosystems and are among the major anthropogenic global changes transforming the earth. Beginning in the mid-1980s, a dramatic burst of research in invasion biology has revealed a plethora of previously unrecognized impacts and laid bare the scope of the phenomenon. Similarly, research on various methods of managing invasions has expanded enormously, yielding incremental improvements in traditional methods and the advent of several new approaches, including the use of species-specific genetic and pheromonal methods. This research has advanced the field of restoration ecology, of which invasion management is a key component. Amidst this research progress, a group of critics has attempted to cast doubt on the extent of damaging impacts caused by non-native invasive species, the feasibility of counteracting them and restoring ecosystems, and the motives of scientists engaged in such endeavors. The criticisms are misguided but can potentially impede management of this pressing problem. PMID:26097720

  17. Global ecological impacts of invasive species in aquatic ecosystems.

    PubMed

    Gallardo, Belinda; Clavero, Miguel; Sánchez, Marta I; Vilà, Montserrat

    2016-01-01

    The introduction of invasive species, which often differ functionally from the components of the recipient community, generates ecological impacts that propagate along the food web. This review aims to determine how consistent the impacts of aquatic invasions are across taxa and habitats. To that end, we present a global meta-analysis from 151 publications (733 cases), covering a wide range of invaders (primary producers, filter collectors, omnivores and predators), resident aquatic community components (macrophytes, phytoplankton, zooplankton, benthic invertebrates and fish) and habitats (rivers, lakes and estuaries). Our synthesis suggests a strong negative influence of invasive species on the abundance of aquatic communities, particularly macrophytes, zooplankton and fish. In contrast, there was no general evidence for a decrease in species diversity in invaded habitats, suggesting a time lag between rapid abundance changes and local extinctions. Invaded habitats showed increased water turbidity, nitrogen and organic matter concentration, which are related to the capacity of invaders to transform habitats and increase eutrophication. The expansion of invasive macrophytes caused the largest decrease in fish abundance, the filtering activity of filter collectors depleted planktonic communities, omnivores (including both facultative and obligate herbivores) were responsible for the greatest decline in macrophyte abundance, and benthic invertebrates were most negatively affected by the introduction of new predators. These impacts were relatively consistent across habitats and experimental approaches. Based on our results, we propose a framework of positive and negative links between invasive species at four trophic positions and the five different components of recipient communities. This framework incorporates both direct biotic interactions (predation, competition, grazing) and indirect changes to the water physicochemical conditions mediated by invaders (habitat

  18. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    EPA Science Inventory

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  19. CLIMATE CHANGE AND AQUATIC INVASIVE SPECIES (Final Report)

    EPA Science Inventory

    This report reviews available literature on climate-change effects on aquatic invasive species (AIS) and examines state-level AIS management activities. Data on management activities came from publicly available information, was analyzed with respect to climate-change effects, a...

  20. 78 FR 9724 - Invasive Species Advisory Committee; Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... methodologies for implementing performance elements outlined in the 2008-2012 National Invasive Species Management Plan. The meeting agenda is now available on the NISC Web site, www.invasivespecies.gov... obtained from the NISC Web site, www.invasivespecies.gov . Dated: February 6, 2013. Lori...

  1. Effects of Climate Change on Aquatic Invasive Species and ...

    EPA Pesticide Factsheets

    This draft report reviews available literature on climate change effects on aquatic invasive species (AIS) and examines state level AIS management activities. This draft report assesses the state of the science of climate change effects on AIS and examines state level AIS management activities.

  2. 76 FR 75860 - National Forest System Invasive Species Management Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... national forests and grasslands to conduct invasives species management efforts which complement ongoing or... partnerships involving national forests and grasslands; and for the use and sharing of information and... grasslands. 6. Use contract and permit clauses to require that the activities of contractors and...

  3. Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species

    EPA Science Inventory

    Watersipora is an invasive genus of bryozoans, easily dispersed by fouled vessels. We examined Cytochrome c oxidase subunit I haplotypes from introduced populations on the US Pacific coastline to investigate geographic segregation of species and/or haplotypes. In California, the ...

  4. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although corridors have become commonplace in conservation to mitigate negative effects of habitat fragmentation, concerns persist that they may facilitate spread of invasive species. In a large-scale experiment, we measured effects of corridors on invasive fire ants, Solenopsis invicta, and on comm...

  5. Effective control of aquatic invasive species in tropical Australia.

    PubMed

    Januchowski-Hartley, Stephanie; VanDerWal, Jeremy; Sydes, Damon

    2011-09-01

    Often ecologists and natural resource managers can easily access data on invasive species occurrence across a region. Yet, collecting species abundance data over a large area is arguably more important for decision making, but inherently costly, so methods which can provide robust information at low-cost are particularly valuable. Studies of species distribution often use occurrence data to build models of the environmental niche. Environmental suitability derived from such models may be used to predict the potential distributions of species. The ability of such models to predict spatial patterns in abundance have recently been demonstrated. Here we tested the relationship of environmental suitability with local abundance of an aquatic invasive species, olive hymenachne (Hymenachne amplexicaulis) in the Wet Tropics of Australia. Ordinary least squares and quantile regressions revealed a positive relationship between environmental suitability and local abundance of olive hymenachne. We expand on this and use the relationship between environmental suitability and local abundance to quantify the effectiveness of management (reduction in local abundance) under four different management investments. We show that the upper limit of abundance can be used to evaluate management effectiveness based on varying investments, and that ongoing management is the most effective at reducing local abundance. We discuss implications of this in addressing important problems in invasive species management.

  6. Fire management impacts on invasive plants in the western United States.

    PubMed

    Keeley, Jon E

    2006-04-01

    Fire management practices affect alien plant invasions in diverse ways. I considered the impact of six fire management practices on alien invasions: fire suppression, forest fuel reduction, prescription burning in crown-fire ecosystems, fuel breaks, targeting of noxious aliens, and postfire rehabilitation. Most western United States forests have had fire successfully excluded for unnaturally long periods of time, and this appears to have favored the exclusion of alien plant species. Forest fuel reduction programs have the potential for greatly enhancing forest vulnerability to alien invasions. In part this is due to the focus on reestablishing pre-Euro-American fire regimes on a landscape that differs from pre-Euro-American landscapes in the abundance of aggressive non-native species. We may be forced to choose between restoring "natural"fire regimes or altering fire regimes to favor communities of native species. Intensive grazing in many western forests may exacerbate the alien problem after fire and temporally decoupling grazing and fire restoration may reduce the alien threat. Many shrubland ecosystems such as the Intermountain West sagebrush steppe or California chaparral have a natural, high-intensity crown fire regime that is less amenable to forest restoration tactics. Historical use of prescribed fire for type conversion of shrublands to more useful grazing lands has played some role in the massive annual grass invasion that threatens these shrublands. Fuel breaks pose a special invasive plant risk because they promote alien invasion along corridors into wildland areas. Use of prescription burning to eliminate noxious aliens has had questionable success, particularly when applied to disturbance-dependent annuals, and success is most likely when coupled with ecosystem restoration that alters the competitive balance between aliens and natives. Artificial seeding of alien species as a form of postfire stabilization appears to cause more problems than it

  7. Functional morphology underlies performance differences among invasive and non-invasive ruderal Rubus species.

    PubMed

    Caplan, Joshua S; Yeakley, J Alan

    2013-10-01

    The ability of some introduced plant species to outperform native species under altered resource conditions makes them highly productive in ecosystems with surplus resources. However, ruderal native species are also productive when resources are available. The differences in abundance among invasive and non-invasive ruderal plants may be related to differences in ability to maintain access to or store resources for continual use. For a group of ruderal species in the Pacific Northwest of North America (invasive Rubus armeniacus; non-invasive R. ursinus, R. parviflorus, R. spectabilis, and Rosa nutkana), we sought to determine whether differences in functional morphological traits, especially metrics of water access and storage, were consistent with differences in water conductance and growth rate. We also investigated the changes in these traits in response to abundant vs. limited water availability. Rubus armeniacus had among the largest root systems and cane cross-sectional areas, the lowest cane tissue densities, and the most plastic ratios of leaf area to plant mass and of xylem area to leaf area, often sharing its rank with R. ursinus or Rosa nutkana. These three species had the highest water conductance and relative growth rates, though Rubus armeniacus grew the most rapidly when water was not limited. Our results suggest that water access and storage abilities vary with morphology among the ruderal species investigated, and that these abilities, in combination, are greatest in the invasive. In turn, functional morphological traits allow R. armeniacus to maintain rapid gas exchange rates during the dry summers in its invaded range, conferring on it high productivity.

  8. Historic land use influences contemporary establishment of invasive plant species.

    PubMed

    Mattingly, W Brett; Orrock, John L

    2013-08-01

    The legacy of agricultural land use can have widespread and persistent effects on contemporary landscapes. Although agriculture can lead to persistent changes in soil characteristics and plant communities, it remains unclear whether historic agricultural land use can alter the likelihood of contemporary biological invasions. To understand how agricultural land-use history might interact with well-known drivers of invasion, we conducted factorial manipulations of soil disturbance and resource additions within non-agricultural remnant sites and post-agricultural sites invaded by two non-native Lespedeza species. Our results reveal that variation in invader success can depend on the interplay of historic land use and contemporary processes: for both Lespedeza species, establishment was greater in remnant sites, but soil disturbance enhanced establishment irrespective of land-use history, demonstrating that contemporary processes can help to overcome legacy constraints on invader success. In contrast, additions of resources known to facilitate seedling recruitment (N and water) reduced invader establishment in post-agricultural but not in remnant sites, providing evidence that interactions between historic and contemporary processes can also limit invader success. Our findings thus illustrate that a consideration of historic land use may help to clarify the often contingent responses of invasive plants to known determinants of invasibility. Moreover, in finding significantly greater soil compaction at post-agricultural sites, our study provides a putative mechanism for historic land-use effects on contemporary invasive plant establishment. Our work suggests that an understanding of invasion dynamics requires knowledge of anthropogenic events that often occur decades before the introduction of invasive propagules.

  9. Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling

    PubMed Central

    Marras, Stefano; Cucco, Andrea; Antognarelli, Fabio; Azzurro, Ernesto; Milazzo, Marco; Bariche, Michel; Butenschön, Momme; Kay, Susan; Di Bitetto, Massimiliano; Quattrocchi, Giovanni; Sinerchia, Matteo; Domenici, Paolo

    2015-01-01

    Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species. PMID:27293680

  10. Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling.

    PubMed

    Marras, Stefano; Cucco, Andrea; Antognarelli, Fabio; Azzurro, Ernesto; Milazzo, Marco; Bariche, Michel; Butenschön, Momme; Kay, Susan; Di Bitetto, Massimiliano; Quattrocchi, Giovanni; Sinerchia, Matteo; Domenici, Paolo

    2015-01-01

    Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species.

  11. Invasive Plant Species: Inventory, Mapping, and Monitoring - A National Strategy

    USGS Publications Warehouse

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  12. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    PubMed

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms.

  13. Macroparasite fauna of alien grey squirrels (Sciurus carolinensis): composition, variability and implications for native species.

    PubMed

    Romeo, Claudia; Wauters, Lucas A; Ferrari, Nicola; Lanfranchi, Paolo; Martinoli, Adriano; Pisanu, Benoît; Preatoni, Damiano G; Saino, Nicola

    2014-01-01

    Introduced hosts populations may benefit of an "enemy release" through impoverishment of parasite communities made of both few imported species and few acquired local ones. Moreover, closely related competing native hosts can be affected by acquiring introduced taxa (spillover) and by increased transmission risk of native parasites (spillback). We determined the macroparasite fauna of invasive grey squirrels (Sciurus carolinensis) in Italy to detect any diversity loss, introduction of novel parasites or acquisition of local ones, and analysed variation in parasite burdens to identify factors that may increase transmission risk for native red squirrels (S. vulgaris). Based on 277 grey squirrels sampled from 7 populations characterised by different time scales in introduction events, we identified 7 gastro-intestinal helminths and 4 parasite arthropods. Parasite richness is lower than in grey squirrel's native range and independent from introduction time lags. The most common parasites are Nearctic nematodes Strongyloides robustus (prevalence: 56.6%) and Trichostrongylus calcaratus (6.5%), red squirrel flea Ceratophyllus sciurorum (26.0%) and Holarctic sucking louse Neohaematopinus sciuri (17.7%). All other parasites are European or cosmopolitan species with prevalence below 5%. S. robustus abundance is positively affected by host density and body mass, C. sciurorum abundance increases with host density and varies with seasons. Overall, we show that grey squirrels in Italy may benefit of an enemy release, and both spillback and spillover processes towards native red squirrels may occur.

  14. Macroparasite Fauna of Alien Grey Squirrels (Sciurus carolinensis): Composition, Variability and Implications for Native Species

    PubMed Central

    Romeo, Claudia; Wauters, Lucas A.; Ferrari, Nicola; Lanfranchi, Paolo; Martinoli, Adriano; Pisanu, Benoît; Preatoni, Damiano G.; Saino, Nicola

    2014-01-01

    Introduced hosts populations may benefit of an "enemy release" through impoverishment of parasite communities made of both few imported species and few acquired local ones. Moreover, closely related competing native hosts can be affected by acquiring introduced taxa (spillover) and by increased transmission risk of native parasites (spillback). We determined the macroparasite fauna of invasive grey squirrels (Sciurus carolinensis) in Italy to detect any diversity loss, introduction of novel parasites or acquisition of local ones, and analysed variation in parasite burdens to identify factors that may increase transmission risk for native red squirrels (S. vulgaris). Based on 277 grey squirrels sampled from 7 populations characterised by different time scales in introduction events, we identified 7 gastro-intestinal helminths and 4 parasite arthropods. Parasite richness is lower than in grey squirrel's native range and independent from introduction time lags. The most common parasites are Nearctic nematodes Strongyloides robustus (prevalence: 56.6%) and Trichostrongylus calcaratus (6.5%), red squirrel flea Ceratophyllus sciurorum (26.0%) and Holarctic sucking louse Neohaematopinus sciuri (17.7%). All other parasites are European or cosmopolitan species with prevalence below 5%. S. robustus abundance is positively affected by host density and body mass, C. sciurorum abundance increases with host density and varies with seasons. Overall, we show that grey squirrels in Italy may benefit of an enemy release, and both spillback and spillover processes towards native red squirrels may occur. PMID:24505348

  15. Seed bank survival of an invasive species, but not of two native species, declines with invasion.

    PubMed

    Orrock, John L; Christopher, Cory C; Dutra, Humberto P

    2012-04-01

    Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade.

  16. Thermal pollution and settlement of new tropical alien species: The case of Grateloupia yinggehaiensis (Rhodophyta) in the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Wolf, M. A.; Sfriso, A.; Moro, I.

    2014-06-01

    The Venice Lagoon has become increasingly affected by the introduction of allochthonous macroalgae mainly coming from the Indo-Pacific area. In consequence to the recent climate changes and temperature increase, such species could simply find numerous habitats suitable for their growth. One local process that contributes to water temperature changes is thermal pollution. In this study we used the DNA barcoding method to identify a new alien macroalgal species, Grateloupia yinggehaiensis Wang et Luan (Rhodophyta), found near the industrial area of Porto Marghera (Venice, Italy) hosting the Fusina thermoelectric power plant. The microclimate of this area has enabled the spread of this species native of the tropical area of the Hainan Province (China) and probably introduced in the Mediterranean Sea via shellfish transfers.

  17. Allelopathic Potential of Invasive Plantago virginica on Four Lawn Species

    PubMed Central

    Wang, Huatian; Zhou, Yumei; Chen, Yang; Wang, Quanxi; Jiang, Lifen; Luo, Yiqi

    2015-01-01

    Plantago virginica L. has invaded many lawn ecosystems in the Eastern part of China. The invasion has incurred an economic cost to remove them. In order to prevent the invasion, it is critical to understand the invasive mechanisms of this species. However, few studies have been conducted on the allelopathic mechanisms of its invasion. In this study, we examined allelopathic effects of P. virginica on germination of seeds and growth of seedlings of four widely used lawn species. We found extensive allelopathic potential of P. virginica on other lawn species, which varied with species and developmental stage. While most effects of the extracts of P. virginica were inhibitory, some variables in some species were promoted by the addition of the extracts. The extracts of P. virginica significantly inhibited seed germination of Agrostis matsumurae. While the overall differences in seed germination rate of Poa annua were significant among treatments, difference between control and any of the treatments was not significant. The height of seedlings of A. matsumurae and Cynodon dactylon was significantly lower under the treatments of adding extracts of P. virginica. In contrast, growth of seedlings of Festuca elata and P. annua did not show significant differences among treatments. The root length of A. matsumurae, C. dactylon and P. annua was suppressed by the extracts of P. virginica whereas root length of F. elata was not affected. Aboveground biomass of A. matsumurae and F. elata was significantly higher than control, except for F. elata at the concentration of 50mg/mL, whereas aboveground biomass of C. dactylon and P. annua was reduced at higher concentrations of the extracts. Except for A. matsumurae, root biomass of the other three lawn species declined under the treatments with the extracts of P. virginica. Our results revealed that P. virginica had allelopathic potential on four lawn species and supported the theory of “novel weapons hypothesis”. Invasion by P

  18. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis.

    PubMed

    Davidson, Amy Michelle; Jennions, Michael; Nicotra, Adrienne B

    2011-04-01

    Do invasive plant species have greater phenotypic plasticity than non-invasive species? And, if so, how does this affect their fitness relative to native, non-invasive species? What role might this play in plant invasions? To answer these long-standing questions, we conducted a meta-analysis using data from 75 invasive/non-invasive species pairs. Our analysis shows that invasive species demonstrate significantly higher phenotypic plasticity than non-invasive species. To examine the adaptive benefit of this plasticity, we plotted fitness proxies against measures of plasticity in several growth, morphological and physiological traits to test whether greater plasticity is associated with an improvement in estimated fitness. Invasive species were nearly always more plastic in their response to greater resource availability than non-invasives but this plasticity was only sometimes associated with a fitness benefit. Intriguingly, non-invasive species maintained greater fitness homoeostasis when comparing growth between low and average resource availability. Our finding that invasive species are more plastic in a variety of traits but that non-invasive species respond just as well, if not better, when resources are limiting, has interesting implications for predicting responses to global change.

  19. "Invented Invaders": An Engaging Activity to Teach Characteristics Control of Invasive Species

    ERIC Educational Resources Information Center

    Lampert, Evan

    2015-01-01

    Invasive species, defined as exotic species that reach pest status, are major threats to global biodiversity. Although invasive species can belong to any taxonomic group, general characteristics such as rapid growth and reproduction are shared by many invasive species. "Invented Invaders" is a collaborative activity in which students…

  20. Hybridization can facilitate species invasions, even without enhancing local adaptation

    PubMed Central

    Mesgaran, Mohsen B.; Lewis, Mark A.; Ades, Peter K.; Donohue, Kathleen; Ohadi, Sara; Li, Chengjun

    2016-01-01

    The founding population in most new species introductions, or at the leading edge of an ongoing invasion, is likely to be small. Severe Allee effects—reductions in individual fitness at low population density—may then result in a failure of the species to colonize, even if the habitat could support a much larger population. Using a simulation model for plant populations that incorporates demography, mating systems, quantitative genetics, and pollinators, we show that Allee effects can potentially be overcome by transient hybridization with a resident species or an earlier colonizer. This mechanism does not require the invocation of adaptive changes usually attributed to invasions following hybridization. We verify our result in a case study of sequential invasions by two plant species where the outcrosser Cakile maritima has replaced an earlier, inbreeding, colonizer Cakile edentula (Brassicaceae). Observed historical rates of replacement are consistent with model predictions from hybrid-alleviated Allee effects in outcrossers, although other causes cannot be ruled out. PMID:27601582

  1. Biology and invasive species in the western U.S

    USGS Publications Warehouse

    ,

    2005-01-01

    The diversity of environments that characterizes the West is responsible for the region's rich biological heritage. This ecological diversity also means that opportunities for invasive species are many, varied, and complex. Island ecosystems are notoriously vulnerable to invaders as demonstrated in Hawaii and West Coast offshore islands. Aquatic invaders impose high economic and environmental costs in systems as varied as San Francisco Bay and desert springs in the Great Basin. Although the West's arid and montane ecosystems may seem resistant to plant and animal invaders, we now know that ex-otic species have altered physical processes related to fire and hydrology in a manner favoring further expansion and persis-tence of invaders. Natural resource managers value analytical, mapping, and genetics tools developed by USGS scientists to monitor invasive species and help conserve biological systems. USGS biologists conduct research to assist land and water managers' efforts to control invasive species and restore natural systems. Throughout the West, the USGS carries out studies for early detection and rapid assessment of invaders. The following are some examples of how the USGS is making a difference in the western United States.

  2. Alien plant dynamics following fire in mediterranean-climate California shrublands

    USGS Publications Warehouse

    Keeley, J.E.; Baer-Keeley, M.; Fotheringham, C.J.

    2005-01-01

    Over 75 species of alien plants were recorded during the first five years after fire in southern California shrublands, most of which were European annuals. Both cover and richness of aliens varied between years and plant association. Alien cover was lowest in the first postfire year in all plant associations and remained low during succession in chaparral but increased in sage scrub. Alien cover and richness were significantly correlated with year (time since disturbance) and with precipitation in both coastal and interior sage scrub associations. Hypothesized factors determining alien dominance were tested with structural equation modeling. Models that included nitrogen deposition and distance from the coast were not significant, but with those variables removed we obtained a significant model that gave an R2 = 0.60 for the response variable of fifth year alien dominance. Factors directly affecting alien dominance were (1) woody canopy closure and (2) alien seed banks. Significant indirect effects were (3) fire intensity, (4) fire history, (5) prefire stand structure, (6) aridity, and (7) community type. According to this model the most critical factor influencing aliens is the rapid return of the shrub and subshrub canopy. Thus, in these communities a single functional type (woody plants) appears to the most critical element controlling alien invasion and persistence. Fire history is an important indirect factor because it affects both prefire stand structure and postfire alien seed banks. Despite being fire-prone ecosystems, these shrublands are not adapted to fire per se, but rather to a particular fire regime. Alterations in the fire regime produce a very different selective environment, and high fire frequency changes the selective regime to favor aliens. This study does not support the widely held belief that prescription burning is a viable management practice for controlling alien species on semiarid landscapes. ?? 2005 by the Ecological Society of

  3. Unveiling the status of alien animals in the arid zone of Asia

    PubMed Central

    Zhang, Lyubing

    2016-01-01

    Biological invasion is one of the most threatening factors for biodiversity conservation. Lacking information on alien species in certain regions of the world hampers a balanced understanding of invasion processes and efficient data exchange among stakeholders. Current knowledge gaps are in need of urgent concern. We therefore conducted a review on alien animals in Xinjiang, an unknown region of invasion ecology. Xinjiang lies in the heartland of the Asian continent, covering an area of 1,664,900 km2. In the past 64 years, 128 alien animal species were recorded in this region, 39% of which became invasive and led to loss of native biodiversity. Most of these species were introduced through diversification of local agriculture and aquaculture. This process was aggravated by improving transportation and flourishing trade. Multiple linear regression models and correlation analysis were run for explaining influence of environmental and anthropogenic factors on status of alien animals: economically developed areas with abundant water resource, oases in particular, were prone to be hotspots of alien animal species in this arid and semi-arid region. This study also revealed that taxonomically biased and lagged research were critical problems that impeded studies on biological invasions in Xinjiang, and proposed feasible solutions. PMID:26793423

  4. Unveiling the status of alien animals in the arid zone of Asia.

    PubMed

    Zhang, Lyubing; Jiang, Zhigang

    2016-01-01

    Biological invasion is one of the most threatening factors for biodiversity conservation. Lacking information on alien species in certain regions of the world hampers a balanced understanding of invasion processes and efficient data exchange among stakeholders. Current knowledge gaps are in need of urgent concern. We therefore conducted a review on alien animals in Xinjiang, an unknown region of invasion ecology. Xinjiang lies in the heartland of the Asian continent, covering an area of 1,664,900 km(2). In the past 64 years, 128 alien animal species were recorded in this region, 39% of which became invasive and led to loss of native biodiversity. Most of these species were introduced through diversification of local agriculture and aquaculture. This process was aggravated by improving transportation and flourishing trade. Multiple linear regression models and correlation analysis were run for explaining influence of environmental and anthropogenic factors on status of alien animals: economically developed areas with abundant water resource, oases in particular, were prone to be hotspots of alien animal species in this arid and semi-arid region. This study also revealed that taxonomically biased and lagged research were critical problems that impeded studies on biological invasions in Xinjiang, and proposed feasible solutions.

  5. The role of global trade and transport network topology in the human-mediated dispersal of alien species.

    PubMed

    Banks, Natalie Clare; Paini, Dean Ronald; Bayliss, Kirsty Louise; Hodda, Michael

    2015-02-01

    More people and goods are moving further and more frequently via many different trade and transport networks under current trends of globalisation. These networks can play a major role in the unintended introduction of exotic species to new locations. With the continuing rise in global trade, more research attention is being focused on the role of networks in the spread of invasive species. This represents an emerging field of research in invasion science and the substantial knowledge being generated within other disciplines can provide ecologists with new tools with which to study invasions. For the first time, we synthesise studies from several perspectives, approaches and disciplines to derive the fundamental characteristics of network topology determining the likelihood of spread of organisms via trade and transport networks. These characteristics can be used to identify critical points of vulnerability within these networks and enable the development of more effective strategies to prevent invasions.

  6. Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species.

    PubMed

    Mackie, Joshua A; Darling, John A; Geller, Jonathan B

    2012-01-01

    Watersipora is an invasive genus of bryozoans, easily dispersed by fouled vessels. We examined Cytochrome c oxidase subunit I haplotypes from introduced populations on the US Pacific coastline to investigate geographic segregation of species and/or haplotypes. In California, the W. subtorquata group fell into three major sub-groups: W. subtorquata clades A and B, and W. "new sp.". W. subtorquata clades A and B were common in southern California south of Point Conception, a recognized biogeographic boundary, whereas further north, W. subtorquata clade A and W. n. sp. were frequent. The southern California region also had colonies of a morphologically distinct species, W. arcuata, also found in southern Australia and Hawaii; COI variation indicates a common ancestral source(s) in these introductions. The distribution of Watersipora-complex lineages on different coastlines is shown to be temperature correlated. Accordingly, pre-exisitng temperature-based adaptations may play a key role in determining invasion patterns.

  7. Climate Change and Aquatic Invasive Species (Final Report) ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Climate Change and Aquatic Invasive Species. This report reviews available literature on climate-change effects on aquatic invasive species (AIS) and examines state-level AIS management activities. Data on management activities came from publicly available information, was analyzed with respect to climate-change effects, and was reviewed by managers. This report also analyzes state and regional AIS management plans to determine their capacity to incorporate information on changing conditions generally, and climate change specifically. The report is intended for managers and scientists working with AIS to provide them with information on the potential effects of climate change on AIS, strategies for adapting their management to accomodate these environmental changes, and highlight further research needs and gaps.

  8. Mechanisms of aquatic species invasions across the SALCC - an update

    USGS Publications Warehouse

    Benson, Amy J.

    2014-01-01

    Our project represents the first attempt to utilize the NAS Database within the context of a Landscape Conservation Cooperative conservation blueprint. A significant amount of effort during the past year was dedicated to determining the most appropriate use of these data for the purposes of identifying the mechanisms and patterns of aquatic species invasions. Descriptive analyses were first undertaken to characterize the spatial and temporal characteristics of the SALCC subset of NAS data.

  9. Land-use proxies for aquatic species invasions in the Laurentian Great Lakes

    EPA Science Inventory

    Aquatic invasive species adversely impact ecosystems, human health, and the economy of the Laurentian Great Lakes region. Targeted preventative and eradication efforts in response to early detection of invasive species can be both cost advantageous and effective. But where should...

  10. Current practices and future opportunities for policy on climate change and invasive species.

    PubMed

    Pyke, Christopher R; Thomas, Roxanne; Porter, Read D; Hellmann, Jessica J; Dukes, Jeffrey S; Lodge, David M; Chavarria, Gabriela

    2008-06-01

    Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management.

  11. Invasive vascular plant species of limnocrenic karst springs in Poland

    NASA Astrophysics Data System (ADS)

    Spałek, Krzysztof

    2015-04-01

    Natural water reservoirs are very valuable floristic sites in Poland. Among them, the most important for preservation of biodiversity of flora are limnocrenic karst springs. The long-term process of human pressure on habitats of this type caused disturbance of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of last two hundred years, led to systematic disappearance of localities of many plant species connected with rare habitats and also to appear numerous invasive plant species. They are: Acorus calamus, Echinocystis lobata, Elodea canadensis, Erechtites hieraciifolia, Impatiens glandulifera, Solidago canadensis, S. gigantea and S. graminifolia. Fielworks were conducted in 2010-2014.

  12. Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions.

    PubMed

    Lagos, Marcelo E; Barneche, Diego R; White, Craig R; Marshall, Dustin J

    2017-02-17

    Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fauna can cope with such low oxygen conditions, and whether invasive species, long associated with artificial structures in flow-restricted habitats, have adapted to these conditions remains unclear. We measured water flow and oxygen availability in marinas and piers at the scales relevant to sessile marine invertebrates (mm). We then measured the capacity of invasive and native marine invertebrates to maintain metabolic rates under decreasing levels of oxygen using standard laboratory assays. We found that marinas reduce water flow relative to piers, and that local oxygen levels can be zero in low flow conditions. We also found that for species with erect growth forms, invasive species can tolerate much lower levels of oxygen relative to native species. Integrating the field and laboratory data showed that up to 30% of available microhabitats within low flow environments are physiologically stressful for native species, while only 18% of the same habitat is physiologically stressful for invasive species. These results suggest that invasive species have adapted to low oxygen habitats associated with manmade habitats, and artificial structures may be creating niche opportunities for invasive species.

  13. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh.

    PubMed

    Tong, Chuan; Zhang, Linhai; Wang, Weiqi; Gauci, Vincent; Marrs, Rob; Liu, Baigui; Jia, Ruixia; Zeng, Congsheng

    2011-10-01

    We compared the influence of invasion by an alien invasive species (Spartina alterniflora, smooth cordgrass) and a native aggressive species (Phragmites australis, common reed) as they have expanded into the native Cyperus malaccensis (shichito matgrass)-dominated wetland ecosystem in the Min River estuary of southeast China. S. alterniflora is a perennial grass native to North America, which has spread rapidly along the southeast coast of China since its introduction in 1979. Our study compared the above and belowground biomass, net primary production, litter decomposition, plant nutrient stocks and soil organic carbon storage of the grasses in three ecosystems: (1) the native ecosystem dominated by C. malaccensis; (2) ecosystems previously dominated by C. malaccensis but presently replaced by P. australis; and (3) ecosystems previously dominated by C. malaccensis but presently replaced by S. alterniflora. Our results demonstrate that the recent invasion (3 years) of the exotic invasive species S. alterniflora has already significantly increased live aboveground biomass and aboveground plant nutrient stocks. However, there was no significant difference in these variables between native aggressive species P. australis and native C. malaccensis. The majority of belowground root Carbon (C), Nitrogen (N) and phosphorus (P) stocks of the three plant species were all distributed in the upper surface layer and there was a decrease with soil depth. There was little difference in litter decomposition rates among the three grass species; they were ranked in the following order: C. malaccensis>S. alterniflora>P. australis. Litter element concentration showed similar patterns for the three species. However, important differences were found between N and P; the litter N concentrations in each of the three species were greater at the end of the 280 days decomposition than at the start, but P concentrations followed a fluctuating pattern during the decomposition period. Soil

  14. Bartonella species in invasive rats and indigenous rodents from Uganda.

    PubMed

    Billeter, Sarah A; Borchert, Jeff N; Atiku, Linda A; Mpanga, Joseph T; Gage, Kenneth L; Kosoy, Michael Y

    2014-03-01

    The presence of bartonellae in invasive rats (Rattus rattus) and indigenous rodents (Arvicanthis niloticus and Cricetomys gambianus) from two districts in Uganda, Arua and Zombo, was examined by PCR detection and culture. Blood from a total of 228 R. rattus, 31 A. niloticus, and 5 C. gambianus was screened using genus-specific primers targeting the 16S-23S intergenic spacer region. Furthermore, rodent blood was plated on brain heart infusion blood agar, and isolates were verified as Bartonella species using citrate synthase gene- (gltA) specific primers. One hundred and four fleas recovered from R. rattus were also tested for the presence of Bartonella species using the same gltA primer set. An overall prevalence of 1.3% (three of 228) was obtained in R. rattus, whereas 61.3% of 31 A. niloticus and 60% of five C. gambianus were positive for the presence of Bartonella species. Genotypes related to Bartonella elizabethae, a known zoonotic pathogen, were detected in three R. rattus and one C. gambianus. Bartonella strains, similar to bacteria detected in indigenous rodents from other African countries, were isolated from the blood of A. niloticus. Bartonellae, similar to bacteria initially cultured from Ornithodorus sonrai (soft tick) from Senegal, were found in two C. gambianus. Interestingly, bartonellae detected in fleas from invasive rats were similar to bacteria identified in indigenous rodents and not their rat hosts, with an overall prevalence of 6.7%. These results suggest that if fleas are competent vectors of these bartonellae, humans residing in these two districts of Uganda are potentially at greater risk for exposure to Bartonella species from native rodents than from invasive rats. The low prevalence of bartonellae in R. rattus was quite surprising, in contrast, to the detection of these organisms in a large percentage of Rattus species from other geographical areas. A possible reason for this disparity is discussed.

  15. Invasive Species Undeterred by Increasing Urbanization and Climate Change

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Conway, T. M.; Fortin, M.

    2011-12-01

    The future of many species appears bleak with the realization that continued urbanization and climate change will have significant effects on the earth's ecosystems by changing water cycles, habitat availability and inter-species dynamics, among other effects. Invasive species are likely to thrive in these changing disturbed ecosystems due to their ability to capitalize on marginal habitats, and therefore pose a severe threat. Our study utilizes the invasive mute swan as a model species to examine invasive species' relationship with urban landcover and predict how its distribution will change with increasing urbanization and climate change in its non-native range. We first use generalized linear models and classification trees to determine current landscape correlates of mute swans in Ontario, Canada. We determine that, after percentage water cover, the presence of urban areas is the second most important factor in determining the presence of mute swans. This is especially significant considering that mute swans are an aquatic species utilizing the limited wetlands and waterbodies found in urban areas. We then use the machine learning tool MaxEnt to model mute swan distribution in the future by taking into account different scenarios of urbanization and climate change. As the percentage of land cover occupied by urban areas increases, the probability of mute swan occupancy of these areas also increases. The effects of climate change are varying. Climate change will increase temperatures in Ontario, thereby increasing the possible locations for establishment by the mute swan, but it will also result in lower lake levels, which will somewhat reduce the percentage water cover. However, due to the large amount of shoreline available for mute swan establishment, especially on the Great Lakes, these effects on waterbodies will likely not inhibit mute swan establishment and range expansion in the next century. While climate change is important, it is not the only

  16. Intercontinental comparison of habitat levels of invasion between temperate North America and Europe.

    PubMed

    Kalusova, Veronika; Chytry, Milan; Peet, Robert K; Wentworth, Thomas R

    2015-12-01

    Several studies have demonstrated that floras of the New World contain larger proportions of alien species than those of the Old World; however, the differences in fine-scale invasion patterns are poorly known. We compared the levels of invasion in analogous habitats of two environmentally similar regions in temperate North America and Europe (the Carolinas and the Czech Republic), using comprehensive vegetation-plot databases. Native and alien vascular plant species were identified within 4165 vegetation plots assigned to 12 habitats occurring in both areas. The level of invasion was calculated for each habitat (1) as the proportion of aliens recorded cumulatively across multiple plots (habitat scale) and (2) as the mean proportion of aliens per plot (plot scale), both separately for all alien species and for the subgroup of aliens originating in one region and invading the other. The proportions of species native on one continent and invading the other were also calculated for each habitat to compare the alien species exchange between continents. Habitat levels of invasion showed remarkably similar patterns on the two continents. There were significant positive relationships for the levels of invasion, both for all alien species (habitat-scale R2 = 0.907; plot-scale R2 = 0.676) and for those that originated on the opposite continent (habitat-scale R2 = 0.624; plot-scale R2 = 0.708). In both regions, the most and the least invaded habitats were the same, but on average, North American habitats showed higher habitat-scale levels of invasion than their European counterparts. At the same time, a larger proportion of alien species was provided by European habitats for invasion to North America than vice versa. The consistent intercontinental pattern of habitat levels of invasion suggests that these levels are driven by similar mechanisms in distant regions. Habitat conditions are likely to have stronger effect on the level of invasion than the identity of alien

  17. Applying remote sensing to invasive species science—A tamarisk example

    USGS Publications Warehouse

    Morisette, Jeffrey T.

    2011-01-01

    The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. This fact sheet considers the invasive plant species tamarisk (Tamarix spp), addressing three fundamental questions: *Where is it now? *What are the potential or realized ecological impacts of invasion? *Where can it survive and thrive if introduced? It provides peer-review examples of how the U.S. Geological Survey, working with other federal agencies and university partners, are applying remote-sensing technologies to address these key questions.

  18. Rapid spread of invasive genes into a threatened native species.

    PubMed

    Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Smith, Jeramiah J; Voss, S Randal; Shaffer, H Bradley

    2010-02-23

    When introduced or cultivated plants or animals hybridize with their native relatives, the spread of invasive genes into native populations might have biological, aesthetic, and legal implications. Models suggest that the rate of displacement of native by invasive alleles can be rapid and inevitable if they are favored by natural selection. We document the spread of a few introduced genes 90 km into a threatened native species (the California Tiger Salamander) in 60 years. Meanwhile, a majority of genetic markers (65 of 68) show little evidence of spread beyond the region where introductions occurred. Using computer simulations, we found that such a pattern is unlikely to emerge by chance among selectively neutral markers. Therefore, our results imply that natural selection has favored both the movement and fixation of these exceptional invasive alleles. The legal status of introgressed populations (native populations that are slightly genetically modified) is unresolved by the US Endangered Species Act. Our results illustrate that genetic and ecological factors need to be carefully weighed when considering different criteria for protection, because different rules could result in dramatically different geographic areas and numbers of individuals being protected.

  19. Complex genetic patterns in closely related colonizing invasive species

    PubMed Central

    Zhan, Aibin; Darling, John A; Bock, Dan G; Lacoursière-Roussel, Anaïs; MacIsaac, Hugh J; Cristescu, Melania E

    2012-01-01

    Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, particularly among invasive populations. However, genetic complexities and factors responsible for them remain uncharacterized in many cases. Here, we explore these issues in the vase tunicate Ciona intestinalis (Ascidiacea: Enterogona: Cionidae), a model species complex, of which spA and spB are rapidly spreading worldwide. We intensively sampled 26 sites (N = 873) from both coasts of North America, and performed phylogenetic and population genetics analyses based on one mitochondrial fragment (cytochrome c oxidase subunit 3–NADH dehydrogenase subunit I, COX3-ND1) and eight nuclear microsatellites. Our analyses revealed extremely complex genetic patterns in both species on both coasts. We detected a contrasting pattern based on the mitochondrial marker: two major genetic groups in C. intestinalis spA on the west coast versus no significant geographic structure in C. intestinalis spB on the east coast. For both species, geo-graphically distant populations often showed high microsatellite-based genetic affinities whereas neighboring ones often did not. In addition, mitochondrial and nuclear markers provided largely inconsistent genetic patterns. Multiple factors, including random genetic drift associated with demographic changes, rapid selection due to strong local adaptation, and varying propensity for human-mediated propagule dispersal could be responsible for the observed genetic complexities. PMID:22957143

  20. Using Global and Regional Species Distribution Models (SDM) to Infer the Invasive Stage of Latrodectus geometricus (Araneae: Theridiidae) in the Americas.

    PubMed

    Taucare-Ríos, Andrés; Bizama, Gustavo; Bustamante, Ramiro O

    2016-12-01

    The brown widow spider, Latrodectus geometricus C. L. Koch, 1841, is a large spider of the family Theridiidae that belongs to a genus of medical interest owing to its potent neurotoxic venom, which causes severe pain in humans. In America, this alien spider has been found in virtually all countries in the region, mainly associated with human dwellings, but also in agricultural sectors. However, the invasive process and potential distribution of this invasive species across the American continent are completely unknown. In this context, using a combination of both global and regional niche models, it is possible to hypothesize the invasive phase of the species as well as the geographic space where these different phases occur. By comparing the global and regional niches of L. geometricus, we examined its invasive process and potential distribution across the American continent. This work is an innovative approach to understanding the invasion of the brown widow spider in this area and the ecological processes that underlie this invasion. In this context, the global and regional niche comparison constitutes an appropriate tool to account for the complexities of the invasive process, generating different hypotheses amenable to being tested in future studies.

  1. Using Global and Regional Species Distribution Models (SDM) to Infer the Invasive Stage of Latrodectus geometricus (Araneae: Theridiidae) in the Americas.

    PubMed

    Taucare-Ríos, Andrés; Bizama, Gustavo; Bustamante, Ramiro O

    2016-09-17

    The brown widow spider, Latrodectus geometricus C. L. Koch, 1841, is a large spider of the family Theridiidae that belongs to a genus of medical interest owing to its potent neurotoxic venom, which causes severe pain in humans. In America, this alien spider has been found in virtually all countries in the region, mainly associated with human dwellings, but also in agricultural sectors. However, the invasive process and potential distribution of this invasive species across the American continent are completely unknown. In this context, using a combination of both global and regional niche models, it is possible to hypothesize the invasive phase of the species as well as the geographic space where these different phases occur. By comparing the global and regional niches of L. geometricus, we examined its invasive process and potential distribution across the American continent. This work is an innovative approach to understanding the invasion of the brown widow spider in this area and the ecological processes that underlie this invasion. In this context, the global and regional niche comparison constitutes an appropriate tool to account for the complexities of the invasive process, generating different hypotheses amenable to being tested in future studies.

  2. Using habitat suitability models to target invasive plant species surveys.

    PubMed

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P < 0.01), and targeted sampling did detect more species than nontargeted sampling with less

  3. Priority setting for invasive species management: risk assessment of Ponto-Caspian invasive species into Great Britain.

    PubMed

    Gallardo, Belinda; Aldridge, David C

    2013-03-01

    Invasive species drive important ecological and economic losses across wide geographies, with some regions supporting especially large numbers of nonnative species and consequently suffering relatively high impacts. For this reason, integrated risk assessments able to screen a suite of multiple invaders over large geographic areas are needed for prioritizing the allocation of limited resources. A total of 16 Ponto-Caspian aquatic species (10 gammarids, one isopod, two mysids, and three fishes) have been short-listed as recent or potential future invaders of British waters, whose introduction and spread is of high concern. In this study, we use multiple modeling techniques to assess their risk of establishment and spread into Great Britain. Climate suitability maps for these 16 species differed depending on the eastern and western distribution of species in continental Europe, which was related to their respective migration corridor: southern (Danube-Rhine rivers), and northern (Don and Volga rivers and Baltic lakes). Species whose suitability was high across large parts of Great Britain included four gammarids (Cheliorophium robustum, Dikerogammarus bispinosus, D. villosus, and Echinogammarus trichiatus) and a mysid (Hemimysis anomala). A climatic "heat map" combining the results of all 16 species together pointed to the southeast of England as the area most vulnerable to multiple invasions, particularly the Thames, Anglian, Severn, and Humber river basin districts. Regression models further suggested that alkalinity concentration > 120 mg/L in southeast England may favor the establishment of Ponto-Caspian invaders. The production of integrated risk maps for future invaders provides a means for the scientifically informed prioritization of resources toward particular species and geographic regions. Such tools have great utility in helping environmental managers focus efforts on the most effective prevention, management, and monitoring programs.

  4. Colonization History, Host Distribution, Anthropogenic Influence and Landscape Features Shape Populations of White Pine Blister Rust, an Invasive Alien Tree Pathogen

    PubMed Central

    Brar, Simren; Tsui, Clement K. M.; Dhillon, Braham; Bergeron, Marie-Josée; Joly, David L.; Zambino, P. J.; El-Kassaby, Yousry A.; Hamelin, Richard C.

    2015-01-01

    White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales). This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs) and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur. PMID:26010250

  5. A framework for spatial risk assessments: Potential impacts of nonindigenous invasive species on native species

    USGS Publications Warehouse

    Allen, C.R.; Johnson, A.R.; Parris, L.

    2006-01-01

    Many populations of wild animals and plants are declining and face increasing threats from habitat fragmentation and loss as well as exposure to stressors ranging from toxicants to diseases to invasive nonindigenous species. We describe and demonstrate a spatially explicit ecological risk assessment that allows for the incorporation of a broad array of information that may influence the distribution of an invasive species, toxicants, or other stressors, and the incorporation of landscape variables that may influence the spread of a species or substances. The first step in our analyses is to develop species models and quantify spatial overlap between stressor and target organisms. Risk is assessed as the product of spatial overlap and a hazard index based on target species vulnerabilities to the stressor of interest. We illustrate our methods with an example in which the stressor is the ecologically destructive nonindigenous ant, Solenopsis invicta, and the targets are two declining vertebrate species in the state of South Carolina, USA. A risk approach that focuses on landscapes and that is explicitly spatial is of particular relevance as remaining undeveloped lands become increasingly uncommon and isolated and more important in the management and recovery of species and ecological systems. Effective ecosystem management includes the control of multiple stressors, including invasive species with large impacts, understanding where those impacts may be the most severe, and implementing management strategies to reduce impacts. Copyright ?? 2006 by the author(s).

  6. Using habitat suitability models to target invasive plant species surveys

    USGS Publications Warehouse

    Crall, Alycia W.; Jarnevich, Catherine S.; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P 2) = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be

  7. Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat.

    PubMed

    Altieri, Andrew H; Irving, Andrew D

    2017-01-01

    Facilitation cascades generated by co-occurring foundation species can enhance the abundance and diversity of associated organisms. However, it remains poorly understood how differences among native and invasive species in their ability to exploit these positive interactions contribute to emergent patterns of community structure and biotic acceptance. On intertidal shorelines in New England, we examined the patterns of coexistence between the native mud crabs and the invasive Asian shore crab in and out of a facilitation cascade habitat generated by mid intertidal cordgrass and ribbed mussels. These crab species co-occurred in low intertidal cobbles adjacent to the cordgrass-mussel beds, despite experimental findings that the dominant mud crabs can kill and displace Asian shore crabs and thereby limit their successful recruitment to their shared habitat. A difference between the native and invasive species in their utilization of the facilitation cascade likely contributes to this pattern. Only the Asian shore crabs inhabit the cordgrass-mussel beds, despite experimental evidence that both species can similarly benefit from stress amelioration in the beds. Moreover, only Asian shore crabs settle in the beds, which function as a nursery habitat free of lethal mud crabs, and where their recruitment rates are particularly high (nearly an order of magnitude higher than outside beds). Persistence of invasive adult Asian shore crabs among the dominant native mud crabs in the low cobble zone is likely enhanced by a spillover effect of the facilitation cascade in which recruitment-limited Asian shore crabs settle in the mid intertidal cordgrass-mussel beds and subsidize their vulnerable populations in the adjacent low cobble zone. This would explain why the abundances of Asian shore crabs in cobbles are doubled when adjacent to facilitation cascade habitats. The propensity for this exotic species to utilize habitats created by facilitation cascades, despite the lack of a

  8. Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat

    PubMed Central

    Irving, Andrew D.

    2017-01-01

    Facilitation cascades generated by co-occurring foundation species can enhance the abundance and diversity of associated organisms. However, it remains poorly understood how differences among native and invasive species in their ability to exploit these positive interactions contribute to emergent patterns of community structure and biotic acceptance. On intertidal shorelines in New England, we examined the patterns of coexistence between the native mud crabs and the invasive Asian shore crab in and out of a facilitation cascade habitat generated by mid intertidal cordgrass and ribbed mussels. These crab species co-occurred in low intertidal cobbles adjacent to the cordgrass–mussel beds, despite experimental findings that the dominant mud crabs can kill and displace Asian shore crabs and thereby limit their successful recruitment to their shared habitat. A difference between the native and invasive species in their utilization of the facilitation cascade likely contributes to this pattern. Only the Asian shore crabs inhabit the cordgrass–mussel beds, despite experimental evidence that both species can similarly benefit from stress amelioration in the beds. Moreover, only Asian shore crabs settle in the beds, which function as a nursery habitat free of lethal mud crabs, and where their recruitment rates are particularly high (nearly an order of magnitude higher than outside beds). Persistence of invasive adult Asian shore crabs among the dominant native mud crabs in the low cobble zone is likely enhanced by a spillover effect of the facilitation cascade in which recruitment-limited Asian shore crabs settle in the mid intertidal cordgrass–mussel beds and subsidize their vulnerable populations in the adjacent low cobble zone. This would explain why the abundances of Asian shore crabs in cobbles are doubled when adjacent to facilitation cascade habitats. The propensity for this exotic species to utilize habitats created by facilitation cascades, despite the lack

  9. The Control of Invasive Knotweed Species (Fallopia sp.). Research Experiences from Austria

    NASA Astrophysics Data System (ADS)

    Lammeranner, Walter; Schmidt, Christina; Eitler, Manuela; Natascha, Steinbauer

    2013-04-01

    The alien plant species Fallopia japonica (Japanese Knotweed), Fallopia sachalinensis (Sakhalin Knotweed) and the clonal knotweed hybrid Fallopia × bohemica are invasive plant species which spread out within Europe. They often form dense stands along Rivers and have negative impacts on biodiversity and ecosystem functioning and also threaten the stability of river banks. Due to their life form, vitality and their enormous ability to regenerate themselves, they are extremely hard to fight. The control measurements against Fallopia species are therefore complicated and often do not have the desired results. Our research tried two approaches to deal with these invasive plant species. The first approach was the use of soil bioengineering techniques which have considerable potential for the management of Fallopia. In our study at the river Schwechat (Lower Austria) we tested two soil bioengineering methods for the control of Fallopia. The first method was the use of living brush mattresses with willows (Salix sp.) to fight the growth of Fallopia species. Within a second method a black liner was used in combination with willow cuttings. After cutting the Fallopia stands the liner was applied to the river bank and fixed with living willow cutting to the surface. The two areas were compared to untreated river bank areas. At several points of time we compared the aboveground response (number of shoots, basal shoot diameters, plant heights, number of stems, aboveground biomass). Additionally the aboveground plant parameters of the willows were measured. In a second approach it was tested if Fallopia can be suppressed or even exterminated if they are submerged for longer time periods. For the experiments Fallopia rhizomes were planted in plastic containers. After a certain growing period, the plants were cut and documented quantitatively by the measurements of shoot lengths, shoot diameters and aboveground biomass. After the first harvest the containers were flooded with

  10. Space, time and aliens: charting the dynamic structure of Galápagos pollination networks

    PubMed Central

    Traveset, Anna; Chamorro, Susana; Olesen, Jens M.; Heleno, Ruben

    2015-01-01

    Oceanic archipelagos are threatened by the introduction of alien species which can severely disrupt the structure, function and stability of native communities. Here we investigated the pollination interactions in the two most disturbed Galápagos Islands, comparing the three main habitats and the two seasons, and assessing the impacts of alien plant invasions on network structure. We found that the pollination network structure was rather consistent between the two islands, but differed across habitats and seasons. Overall, the arid zone had the largest networks and highest species generalization levels whereas either the transition between habitats or the humid habitat showed lower values. Our data suggest that alien plants integrate easily into the communities, but with low impact on overall network structure, except for an increase in network selectiveness. The humid zone showed the highest nestedness and the lowest modularity, which might be explained by the low species diversity and the higher incidence of alien plants in this habitat. Both pollinators and plants were also more generalized in the hot season, when networks showed to be more nested. Alien species (both plants and pollinators) represented a high fraction (∼56 %) of the total number of interactions in the networks. It is thus likely that, in spite of the overall weak effect we found of alien plant invasion on pollination network structure, these introduced species influence the reproductive success of native ones, and by doing so, they affect the functioning of the community. This certainly deserves further investigation. PMID:26104283

  11. Space, time and aliens: charting the dynamic structure of Galápagos pollination networks.

    PubMed

    Traveset, Anna; Chamorro, Susana; Olesen, Jens M; Heleno, Ruben

    2015-06-23

    Oceanic archipelagos are threatened by the introduction of alien species which can severely disrupt the structure, function and stability of native communities. Here we investigated the pollination interactions in the two most disturbed Galápagos Islands, comparing the three main habitats and the two seasons, and assessing the impacts of alien plant invasions on network structure. We found that the pollination network structure was rather consistent between the two islands, but differed across habitats and seasons. Overall, the arid zone had the largest networks and highest species generalization levels whereas either the transition between habitats or the humid habitat showed lower values. Our data suggest that alien plants integrate easily into the communities, but with low impact on overall network structure, except for an increase in network selectiveness. The humid zone showed the highest nestedness and the lowest modularity, which might be explained by the low species diversity and the higher incidence of alien plants in this habitat. Both pollinators and plants were also more generalized in the hot season, when networks showed to be more nested. Alien species (both plants and pollinators) represented a high fraction (∼56 %) of the total number of interactions in the networks. It is thus likely that, in spite of the overall weak effect we found of alien plant invasion on pollination network structure, these introduced species influence the reproductive success of native ones, and by doing so, they affect the functioning of the community. This certainly deserves further investigation.

  12. Loss of reproductive output caused by an invasive species

    PubMed Central

    Tremblay, Maude E. M.; Morris, Todd J.; Ackerman, Josef D.

    2016-01-01

    We investigated whether Neogobius melanostomus, an invader of biodiversity ‘hot-spots’ in the Laurentian Great Lakes region, facilitates or inhibits unionid mussel recruitment by serving as a host or sink for their parasitic larvae (glochidia). Infestation and metamorphosis rates of four mussel species with at-risk (conservation) status (Epioblasma torulosa rangiana, Epioblasma triquetra, Lampsilis fasciola and Villosa iris) and one common species (Actinonaias ligamentina) on N. melanostomus were compared with rates on known primary and marginal hosts in the laboratory. All species successfully infested N. melanostomus, but only E. triquetra, V. iris and A. ligamentina successfully metamorphosed into juveniles, albeit at very low rates well below those seen on even the marginal hosts. Neogobius melanostomus collected from areas of unionid occurrence in the Grand and Sydenham rivers (Ontario, Canada) exhibited glochidial infection rates of 39.4% and 5.1%, respectively, with up to 30 glochidia representing as many as six unionid species per fish. A mathematical model suggests that N. melanostomus serve more as a sink for glochidia than as a host for unionids, thereby limiting recruitment success. This represents a novel method by which an invasive species affects a native species. PMID:27152202

  13. Loss of reproductive output caused by an invasive species.

    PubMed

    Tremblay, Maude E M; Morris, Todd J; Ackerman, Josef D

    2016-04-01

    We investigated whether Neogobius melanostomus, an invader of biodiversity 'hot-spots' in the Laurentian Great Lakes region, facilitates or inhibits unionid mussel recruitment by serving as a host or sink for their parasitic larvae (glochidia). Infestation and metamorphosis rates of four mussel species with at-risk (conservation) status (Epioblasma torulosa rangiana, Epioblasma triquetra, Lampsilis fasciola and Villosa iris) and one common species (Actinonaias ligamentina) on N. melanostomus were compared with rates on known primary and marginal hosts in the laboratory. All species successfully infested N. melanostomus, but only E. triquetra, V. iris and A. ligamentina successfully metamorphosed into juveniles, albeit at very low rates well below those seen on even the marginal hosts. Neogobius melanostomus collected from areas of unionid occurrence in the Grand and Sydenham rivers (Ontario, Canada) exhibited glochidial infection rates of 39.4% and 5.1%, respectively, with up to 30 glochidia representing as many as six unionid species per fish. A mathematical model suggests that N. melanostomus serve more as a sink for glochidia than as a host for unionids, thereby limiting recruitment success. This represents a novel method by which an invasive species affects a native species.

  14. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  15. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, Nicholas R.; Larson, Diane L.; Huerd, Sheri C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  16. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    PubMed

    Resasco, Julian; Haddad, Nick M; Orrock, John L; Shoemaker, DeWayne; Brudvig, Lars A; Damschen, Ellen I; Tewksbury, Joshua J; Levey, Douglas J

    2014-08-01

    Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species' traits when assessing corridor utility.

  17. INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species

    USGS Publications Warehouse

    Lucy, Frances E; Roy, Helen; Simpson, Annie; Carlton, James T.; Hanson, John Mark; Magellan, Kit; Campbell, Marnie L.; Costello, Mark J.; Pagad, Shyama; Hewitt, Chad L; McDonald, Justin; Cassey, Phillip; Thomaz, Sidinei M; Katsanevakis, Stelios; Zenetos, Argyro; Tricarico, Elena; Boggero, Angela; Groom, Quentin J; Adriaens, Tim; Vanderhoeven, Sonia; Torchin, Mark E.; Hufbauer, Ruth A.; Fuller, Pam; Carman, Mary R; Conn, David Bruce; Vitule, Jean R. S.; Canning-Clode, João; Galil, Bella S; Ojaveer, Henn; Bailey, Sarah A; Therriault, Thomas W; Claudi, Renata; Gazda, Anna; Dick, Jaimie T A; Caffrey, Joe; Witt, Arne; Kenis, Marc; Lehtiniemi, Maiju; Helmisaari, Harry; Panov, Vadim E

    2016-01-01

    To date, the sustainability of many strategic national and international initiatives on IAS have unfortunately been hampered by time-limited grants or funding cycles. Recognising that IAS initiatives need to be globally coordinated and ongoing, we aim to develop a sustainable knowledge sharing association to connect the outputs of IAS research and to inform the consequential management and societal challenges arising from IAS introductions. INVASIVESNET will provide a dynamic and enduring network of networks to ensure the continuity of connections among the IAS community of practice, science and management.

  18. Founding population size of an aquatic invasive species

    USGS Publications Warehouse

    Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox,

    2010-01-01

    Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.

  19. The times are changing: temporal shifts in patterns of fish invasions in central European fresh waters.

    PubMed

    Rabitsch, W; Milasowszky, N; Nehring, S; Wiesner, C; Wolter, C; Essl, F

    2013-01-01

    This study examines the invasion history of alien fish species based on exhaustive national data sets on fish invasions of two contiguous central European countries (Germany and Austria). Fifteen alien fish species are currently established in both countries, constituting 14 and 17% of the total freshwater fish fauna of Germany and Austria, respectively. In both countries, six alien species are present, but not established. The status of five alien species in Germany and three species in Austria remains unknown. Accumulation rates of alien fish species have increased in recent decades with >50% of them reported after 1971. North America and Asia were the primary sources of alien fish species in Germany and Austria up to the 1980s, whereas European species of Ponto-Caspian origin dominate now. Fisheries (including aquaculture) and the animal trade were responsible for most earlier introductions, whereas waterways were the main pathway for recent invaders. The extent of the spatial distribution of alien species was positively correlated with residence time, i.e. the time elapsed since the first national record. Different thermal preferences of early invaders (mostly coldwater species) and new invaders (typically warmwater adapted) may benefit the latter in the face of climate change. It is concluded that new challenges for alien fish management arise and that ecosystem-based approaches as endorsed by the E.U. Water Framework Directive (maintaining or restoring good ecological status of rivers and streams) should become the centrepiece of river management in Europe.

  20. Two invasive acacia species secure generalist pollinators in invaded communities

    NASA Astrophysics Data System (ADS)

    Montesinos, Daniel; Castro, Sílvia; Rodríguez-Echeverría, Susana

    2016-07-01

    Exotic entomophilous plants need to establish effective pollinator interactions in order to succeed after being introduced into a new community, particularly if they are obligatory outbreeders. By establishing these novel interactions in the new non-native range, invasive plants are hypothesised to drive changes in the composition and functioning of the native pollinator community, with potential impacts on the pollination biology of native co-flowering plants. We used two different sites in Portugal, each invaded by a different acacia species, to assess whether two native Australian trees, Acacia dealbata and Acacia longifolia, were able to recruit pollinators in Portugal, and whether the pollinator community visiting acacia trees differed from the pollinator communities interacting with native co-flowering plants. Our results indicate that in the invaded range of Portugal both acacia species were able to establish novel mutualistic interactions, predominantly with generalist pollinators. For each of the two studied sites, only two other co-occurring native plant species presented partially overlapping phenologies. We observed significant differences in pollinator richness and visitation rates among native and non-native plant species, although the study of β diversity indicated that only the native plant Lithodora fruticosa presented a differentiated set of pollinator species. Acacias experienced a large number of visits by numerous pollinator species, but massive acacia flowering resulted in flower visitation rates frequently lower than those of the native co-flowering species. We conclude that the establishment of mutualisms in Portugal likely contributes to the effective and profuse production of acacia seeds in Portugal. Despite the massive flowering of A. dealbata and A. longifolia, native plant species attained similar or higher visitation rates than acacias.

  1. Hosts and parasites as aliens.

    PubMed

    Taraschewski, H

    2006-06-01

    Over the past decades, various free-living animals (hosts) and their parasites have invaded recipient areas in which they had not previously occurred, thus gaining the status of aliens or exotics. In general this happened to a low extent for hundreds of years. With variable frequency, invasions have been followed by the dispersal and establishment of non-indigenous species, whether host or parasite. In the literature thus far, colonizations by both hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways. As to those factors permitting invasive success and colonization strength, various hypotheses have been put forward depending on the scientific background of respective authors and on the conspicuousness of certain invasions. Researchers who have tried to analyse characteristic developmental patterns, the speed of dispersal or the degree of genetic divergence in populations of alien species have come to different conclusions. Among parasitologists, the applied aspects of parasite invasions, such as the negative effects on economically important hosts, have long been at the centre of interest. In this contribution, invasions by hosts as well as parasites are considered comparatively, revealing many similarities and a few differences. Two helminths, the liver fluke, Fasciola hepatica, of cattle and sheep and the swimbladder nematode, Anguillicola crassus, of eels are shown to be useful as model parasites for the study of animal invasions and environmental global change. Introductions of F. hepatica have been associated with imports of cattle or other grazing animals. In various target areas, susceptible lymnaeid snails serving as intermediate hosts were either naturally present and/or were introduced from the donor continent of the parasite (Europe) and/or from other regions which were not within the original range of the parasite, partly reflecting progressive stages of a global biota change. In several

  2. Seed Removal Increased by Scramble Competition with an Invasive Species.

    PubMed

    Minor, Rebecca L; Koprowski, John L

    2015-01-01

    Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert's squirrels (Sciurus aberti) on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis), which consumes similar foods. In the presence of invasive Abert's squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert's squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert's squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert's squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure.

  3. Seed Removal Increased by Scramble Competition with an Invasive Species

    PubMed Central

    Minor, Rebecca L.; Koprowski, John L.

    2015-01-01

    Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert’s squirrels (Sciurus aberti) on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis), which consumes similar foods. In the presence of invasive Abert’s squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert’s squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert’s squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert’s squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure. PMID:26650073

  4. Successful approaches for battling invasive species in developed countries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological invasions increasingly threaten natural resources and reduce biological diversity worldwide. To curtail biological invasions, developed countries have adopted multitire approaches that systematically address the process of invasion, encompassing introduction, establishment, spread and nat...

  5. Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species

    PubMed Central

    Mackie, Joshua A.; Darling, John A.; Geller, Jonathan B.

    2012-01-01

    Watersipora is an invasive genus of bryozoans, easily dispersed by fouled vessels. We examined Cytochrome c oxidase subunit I haplotypes from introduced populations on the US Pacific coastline to investigate geographic segregation of species and/or haplotypes. In California, the W. subtorquata group fell into three major sub-groups: W. subtorquata clades A and B, and W. “new sp.”. W. subtorquata clades A and B were common in southern California south of Point Conception, a recognized biogeographic boundary, whereas further north, W. subtorquata clade A and W. n. sp. were frequent. The southern California region also had colonies of a morphologically distinct species, W. arcuata, also found in southern Australia and Hawaii; COI variation indicates a common ancestral source(s) in these introductions. The distribution of Watersipora-complex lineages on different coastlines is shown to be temperature correlated. Accordingly, pre-exisitng temperature-based adaptations may play a key role in determining invasion patterns. PMID:23213354

  6. When can efforts to control nuisance and invasive species backfire?

    USGS Publications Warehouse

    Zipkin, E.F.; Kraft, C.E.; Cooch, E.G.; Sullivan, P.J.

    2009-01-01

    Population control through harvest has the potential to reduce the abundance of nuisance and invasive species. However, demographic structure and density-dependent processes can confound removal efforts and lead to undesirable consequences, such as overcompensation (an increase in abundance in response to harvest) and instability (population cycling or chaos). Recent empirical studies have demonstrated the potential for increased mortality (such as that caused by harvest) to lead to overcompensation and instability in plant, insect, and fish populations. We developed a general population model with juvenile and adult stages to help determine the conditions under which control harvest efforts can produce unintended outcomes. Analytical and simulation analyses of the model demonstrated that the potential for overcompensation as a result of harvest was significant for species with high fecundity, even when annual stage-specific survivorship values were fairly low. Population instability as a result of harvest occurred less frequently and was only possible with harvest strategies that targeted adults when both fecundity and adult survivorship were high. We considered these results in conjunction with current literature on nuisance and invasive species to propose general guidelines for assessing the risks associated with control harvest based on life history characteristics of target populations. Our results suggest that species with high per capita fecundity (over discrete breeding periods), short juvenile stages, and fairly constant survivorship rates are most likely to respond undesirably to harvest. It is difficult to determine the extent to which overcompensation and instability could occur during real-world removal efforts, and more empirical removal studies should be undertaken to evaluate population-level responses to control harvests. Nevertheless, our results identify key issues that have been seldom acknowledged and are potentially generic across taxa

  7. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies.

  8. Success in Competition for Space in Two Invasive Coral Species in the western Atlantic – Tubastraea micranthus and T. coccinea

    PubMed Central

    Sammarco, Paul W.; Porter, Scott A.; Genazzio, Melissa; Sinclair, James

    2015-01-01

    Invasion success by an alien species is dependent upon rate of reproduction, growth, mortality, physical characteristics of the environment, and successful competition for resources with native species. For sessile, epibenthic marine species, one critical resource is space. We examined competitive success in two invasive Indo-Pacific corals involved in competition for space in the northern Gulf of Mexico—Tubastraea coccinea and T. micranthus—on up to 13 offshore oil/gas platforms south of the Mississippi River. Still-capture photos of thousands of overgrowth interactions between the target corals and other sessile epibenthic fauna were analyzed from ROV videos collected at 8–183 m depth. T. micranthus was observed overgrowing >90% of all sessile epibenthic species which it encountered. Frequencies of competitive success varied significantly between platforms. T. coccinea was competitively superior to all competitors pooled, at the 60% level. There was little variability between T. coccinea populations. T. coccinea encountered the following species most frequently—the encrusting sponges Xestospongia sp. (with the commensal Parazoanthus catenularis), X. carbonaria, Dictyonella funicularis, Mycale carmigropila, Phorbas amaranthus, and Haliclona vansoesti—and was found to be, on average, competitively superior to them. Both T. micranthus and T. coccinea appear to be good competitors for space against these species in the northern Gulf of Mexico. Competitive success in T. micranthus was highest in the NE part of the study area, and lowest in the SW area near the Mississippi River plume. T. coccinea’s competitive success peaked in the SW study area. This suggests that variation in competitive success both within and between populations of these species may be due to differences in local environmental factors. PMID:26684321

  9. Impacts of biological control and invasive species on a non-target native Hawaiian insect.

    PubMed

    Johnson, M Tracy; Follett, Peter A; Taylor, Andrew D; Jones, Vincent P

    2005-02-01

    The potential for classical biological control to cause unintended harm to native species was evaluated in the case of the endemic Hawaiian koa bug, Coleotichus blackburniae White (Hemiptera: Scutelleridae), and parasitoids introduced to Hawaii for control of an agricultural pest, the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Parasitism of C. blackburniae eggs, nymphs and adults by biocontrol agents was quantified across a wide range of habitats and compared to other sources of mortality. Egg mortality due to the biocontrol agent Trissolcus basalis Wollaston (Hymenoptera: Scelionidae) was low (maximum 26%) and confined to elevations below 500 m on a single host plant. Predation, mainly by alien spiders and ants, was the greatest source of egg mortality (maximum 87%). Parasitism of adult C. blackburniae by the biocontrol agent Trichopoda pilipes (F.) (Diptera: Tachinidae) was near zero at 21 of 24 sites surveyed. Three sites with high bug density had higher levels of T. pilipes parasitism, reaching maxima of 70% among adult female bugs, 100% among males and 50% among fifth instars. Male-biased parasitism indicated that T. pilipes is adapted to using male aggregation pheromone for finding C. blackburniae hosts. The relative impacts of biocontrol agents and other sources of mortality were compared using life tables. Invasive species, particularly generalist egg predators, had the greatest impacts on C. blackburniae populations. Effects of intentionally introduced parasitoids were relatively minor, although the tachinid T. pilipes showed potential for large impacts at individual sites. In retrospect, non-target attacks by biological control agents on C. blackburniae were predictable, but the environmental range and magnitude of impacts would have been difficult to foresee.

  10. Using scenarios to assess possible future impacts of invasive species in the Laurentian Great Lakes

    USGS Publications Warehouse

    Lauber, T. Bruce; Stedman, Richard C.; Connelly, Nancy A; Rudstam, Lars G.; Ready, Richard C; Poe, Gregory L; Bunnell, David; Hook, Tomas O.; Koops, Marten A.; Ludsin, Stuart A.; Rutherford, Edward S; Wittmann, Marion E.

    2016-01-01

    The expected impacts of invasive species are key considerations in selecting policy responses to potential invasions. But predicting the impacts of invasive species is daunting, particularly in large systems threatened by multiple invasive species, such as North America’s Laurentian Great Lakes. We developed and evaluated a scenario-building process that relied on an expert panel to assess possible future impacts of aquatic invasive species on recreational fishing in the Great Lakes. To maximize its usefulness to policy makers, this process was designed to be implemented relatively rapidly and consider a range of species. The expert panel developed plausible, internally-consistent invasion scenarios for 5 aquatic invasive species, along with subjective probabilities of those scenarios. We describe these scenarios and evaluate this approach for assessing future invasive species impacts. The panel held diverse opinions about the likelihood of the scenarios, and only one scenario with impacts on sportfish species was considered likely by most of the experts. These outcomes are consistent with the literature on scenario building, which advocates for developing a range of plausible scenarios in decision making because the uncertainty of future conditions makes the likelihood of any particular scenario low. We believe that this scenario-building approach could contribute to policy decisions about whether and how to address the possible impacts of invasive species. In this case, scenarios could allow policy makers to narrow the range of possible impacts on Great Lakes fisheries they consider and help set a research agenda for further refining invasive species predictions.

  11. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    PubMed

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  12. Assessing impacts of invasive phytoplankton: the Baltic Sea case.

    PubMed

    Olenina, Irina; Wasmund, Norbert; Hajdu, Susanna; Jurgensone, Iveta; Gromisz, Sławomira; Kownacka, Janina; Toming, Kaire; Vaiciūte, Diana; Olenin, Sergej

    2010-10-01

    There is an increasing understanding and requirement to take into account the effects of invasive alien species (IAS) in environmental quality assessments. While IAS are listed amongst the most important factors threatening marine biodiversity, information on their impacts remains unquantified, especially for phytoplankton species. This study attempts to assess the impacts of invasive alien phytoplankton in the Baltic Sea during 1980-2008. A bioinvasion impact assessment method (BPL - biopollution level index) was applied to phytoplankton monitoring data collected from eleven sub-regions of the Baltic Sea. BPL takes into account abundance and distribution range of an alien species and the magnitude of the impact on native communities, habitats and ecosystem functioning. Of the 12 alien/cryptogenic phytoplankton species recorded in the Baltic Sea only one (the dinoflagellate Prorocentrum minimum) was categorized as an IAS, causing a recognizable environmental effect.

  13. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chrom...

  14. Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models

    USGS Publications Warehouse

    Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan

    2012-01-01

    Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species

  15. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    SciTech Connect

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.

  16. Impacts of invasive nonnative plant species on the rare forest herb Scutellaria montana

    NASA Astrophysics Data System (ADS)

    Sikkema, Jordan J.; Boyd, Jennifer N.

    2015-11-01

    Invasive plant species and overabundant herbivore populations have the potential to significantly impact rare plant species given their increased risk for local extirpation and extinction. We used interacting invasive species removal and grazer exclusion treatments replicated across two locations in an occurrence of rare Scutellaria montana (large-flowered skullcap) in Chattanooga, Tennessee, USA, to assess: 1) competition by invasive Ligustrum sinense (Chinese privet) and Lonicera japonica (Japanese honeysuckle) and 2) the role of invasive species in mediating Oedocoilus virginianus (white-tailed deer) grazing of S. montana. Contrary to our hypothesis that invasive species presence would suppress S. montana directly via competition, S. montana individuals experienced a seasonal increase in stem height when invasive species were intact but not when invasive species were removed. Marginally significant results indicated that invasive species may afford S. montana protection from grazers, and we suggest that invasive species also could protect S. montana from smaller herbivores and/or positively influence abiotic conditions. In contrast to growth responses, S. montana individuals protected from O. virginianus exhibited a decrease in flowering between seasons relative to unprotected plants, but invasive species did not affect this variable. Although it has been suggested that invasive plant species may negatively influence S. montana growth and fecundity, our findings do not support related concerns. As such, we suggest that invasive species eradication efforts in S. montana habitat could be more detrimental than positive due to associated disturbance. However, the low level of invasion of our study site may not be representative of potential interference in more heavily infested habitat.

  17. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny

    PubMed Central

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-01-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species’ native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the

  18. Will climate change promote future invasions?

    PubMed Central

    Bellard, C.; Thuiller, W.; Leroy, B.; Genovesi, P.; Bakkenes, M.; Courchamp, F.

    2013-01-01

    Biological invasion is increasingly recognized as one of the greatest threats to biodiversity. Using ensemble forecasts from species distribution models to project future suitable areas of the “100 of the world’s worst invasive species” defined by the IUCN, we show that both climate and land use changes will likely cause drastic species range shifts. Looking at potential spatial aggregation of invasive species, we identify three future hotspots of invasion in Europe, northeastern North America, and Oceania. We also emphasize that some regions could lose a significant number of invasive alien species, creating opportunities for ecosystem restoration. From the list of 100, scenarios of potential range distributions show a consistent shrinking for invasive amphibians and birds, while for aquatic and terrestrial invertebrates distributions are projected to substantially increase in most cases. Given the harmful impacts these invasive species currently have on ecosystems, these species will likely dramatically influence the future of biodiversity. PMID:23913552

  19. Impacts of invasive plants on carbon pools depend on both species' traits and local climate.

    PubMed

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2017-04-01

    Invasive plants can alter ecosystem properties, leading to changes in the ecosystem services on which humans depend. However, generalizing about these effects is difficult because invasive plants represent a wide range of life forms, and invaded ecosystems differ in their plant communities and abiotic conditions. We hypothesize that differences in traits between the invader and native species can be used to predict impacts and so aid generalization. We further hypothesize that environmental conditions at invaded sites modify the effect of trait differences and so combine with traits to predict invasion impacts. To test these hypotheses, we used systematic review to compile data on changes in aboveground and soil carbon pools following non-native plant invasion from studies across the World. Maximum potential height (Hmax ) of each species was drawn from trait databases and other sources. We used meta-regression to assess which of invasive species' Hmax , differences in this height trait between native and invasive plants, and climatic water deficit, a measure of water stress, were good predictors of changes in carbon pools following invasion. We found that aboveground biomass in invaded ecosystems relative to uninvaded ones increased as the value of Hmax of invasive relative to native species increased, but that this effect was reduced in more water stressed ecosystems. Changes in soil carbon pools were also positively correlated with the relative Hmax of invasive species, but were not altered by water stress. This study is one of the first to show quantitatively that the impact of invasive species on an ecosystem may depend on differences in invasive and native species' traits, rather than solely the traits of invasive species. Our study is also the first to show that the influence of trait differences can be altered by climate. Further developing our understanding of the impacts of invasive species using this framework could help researchers to identify not only

  20. Toward a global information system for invasive species

    USGS Publications Warehouse

    Ricciardi, Anthony; Steiner, William W.M.; Mack, Richard N.; Simberloff, Daniel

    2000-01-01

    The growing frequency and impact of biological invasions worldwide threaten biodiversity, ecosystem functioning, resource availability, national economies, and human health (Ruesink et al. 1995, Simberloff 1996, Vitousek et al. 1997). Organisms are spreading into new regions at unprecedented rates. As a result, hundreds to thousands of nonindigenous species of invertebrates, vertebrates, plants, bacteria, and fungi have become established in all but the most remote areas of the planet (Vitousek et al. 1997). Recent examples are abundant and, in some cases, alarming. Cholera bacteria and toxic dinoflagellates have been discovered in the ballast waters of cargo ships (McCarthy and Khambaty 1994, Hallegraeff 1998). Asian tiger mosquitos—vectors of yellow fever and encephalitis—have spread to new continents in imported truck tires (Moore et al. 1988). Pasture and crop lands in Australia are being invaded by Parthenium, an aggressive Caribbean weed that causes severe allergic reactions in livestock and humans (Evans 1997). Rapid and widespread dieoffs of native freshwater mussels are occurring in the wake of the zebra mussel invasion in North America (Ricciardi et al. 1998). [[AQ4]Hardwood trees in American cities are being killed by Asian long-horned beetles introduced with wooden packing crates (Haack et al. 1997).

  1. Comparing determinants of alien bird impacts across two continents: implications for risk assessment and management

    PubMed Central

    Evans, Thomas; Kumschick, Sabrina; Dyer, Ellie; Blackburn, Tim

    2014-01-01

    Invasive alien species can have serious adverse impacts on both the environment and the economy. Being able to predict the impacts of an alien species could assist in preventing or reducing these impacts. This study aimed to establish whether there are any life history traits consistently correlated with the impacts of alien birds across two continents, Europe and Australia, as a first step toward identifying life history traits that may have the potential to be adopted as predictors of alien bird impacts. A recently established impact scoring system was used in combination with a literature review to allocate impact scores to alien bird species with self-sustaining populations in Australia. These scores were then tested for correlation with a series of life history traits. The results were compared to data from a previous study in Europe, undertaken using the same methodology, in order to establish whether there are any life history traits consistently correlated with impact across both continents. Habitat generalism was the only life history trait found to be consistently correlated with impact in both Europe and Australia. This trait shows promise as a potential predictor of alien bird impacts. The results support the findings of previous studies in this field, and could be used to inform decisions regarding the prevention and management of future invasions. PMID:25165531

  2. An invasive ant species able to counterattack marabunta raids.

    PubMed

    Dejean, Alain; Azémar, Frédéric; Roux, Olivier

    2014-01-01

    In the Neotropics where it was introduced, the invasive ant Pheidole megacephala counterattacked raids by the army ants Eciton burchellii or E. hamatum. The Eciton workers that returned to their bivouac were attacked and spread-eagled and most of them killed by their outgoing colony mates. Little by little the zone where returning and outgoing Eciton workers encountered one another moved away from the Pheidole nest which was no longer attacked, so that most of the colony was spared. Using a water-based technique rounded out by bioassays, we show that Pheidole compounds were transferred onto the Eciton cuticle during the counterattacks, so that outgoing workers do not recognize returning colony mates, likely perceived as potential prey. Because P. megacephala is an introduced African species, this kind of protection, which cannot be the result of coevolutive processes, corresponds to a kind of by-product due to its aggressiveness during colony defence.

  3. Species displacements are common to two invasive species of leafminer fly in China, Japan and the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under field conditions, species displacements have occurred in different directions between the same invasive species of leafminers (Diptera: Agromyzidae). Liriomyza sativae (Blanchard) was displaced by L. trifolii (Burgess) in the western USA, with evidence suggesting that lower insecticide suscept...

  4. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    ERIC Educational Resources Information Center

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  5. Teaching Farmers and Commercial Pesticide Applicators about Invasive Species in Pesticide Training Workshops

    ERIC Educational Resources Information Center

    Wyatt, Gary J.; Herzfeld, Dean; Haugen-Brown, Tana

    2015-01-01

    Farmers and agricultural professionals who are aware of species likely to invade agricultural landscapes can be active participants in efforts to detect invasive species. To reach this audience we created a short invasive species program and added it to the existing and required pesticide applicator recertification workshops. We highlighted four…

  6. 78 FR 39310 - Voluntary Guidelines to Prevent the Introduction and Spread of Aquatic Invasive Species...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Species; Recreational Activities and Water Gardening AGENCY: Fish and Wildlife Service, Interior. ACTION... Guidelines to Prevent the Introduction and Spread of Aquatic Invasive Species: Water Gardening These... guidelines that would prevent the spread of aquatic invasive species by water gardening. The goal of the...

  7. The effect of light radiation and temperature variability on the invasion of marine fouling species

    NASA Astrophysics Data System (ADS)

    Kim, T.; Micheli, F.

    2009-12-01

    Climate change can alter the community structure as species which have adapted to the changed climate can compete better with other species. It can also influence the recruitment and invasion success of marine introduced species. Climate change involves not only global warming but also global dimming. However, it was not tested which of warming or dimming factors more significantly influence the invasion of marine species. To test this, we manipulated both temperature variability and light radiation by deploying different shading devices (black, white, transparent, and no treatment) for recruitment tiles in the warmer region where the species invasion rate is high. We compared the species frequency and coverage between shaded and non-shaded treatments. Interestingly, under opaque white plates where light radiation is lower than under transparent plates but the temperature is higher than under black plates, had the highest frequency and coverage of invasive fouling species. The recruitment tiles under black plates got second higher invasion of exotic species. We also deployed recruitment tiles in 14 different sites to determine if temperature influences the success of invasive species. The coverage of invasive species over native species increased significantly with increasing temperature. The results suggest that both low radiation and higher temperature facilitates the success of species invasion in the intertidal region.

  8. Discovery of an alien species of mayfly in South America (Ephemeroptera)

    PubMed Central

    Salles, Frederico F.; Gattolliat, Jean-Luc; Angeli, Kamila B.; De-Souza, Márcia R.; Gonçalves, Inês C.; Nessimian, Jorge L.; Sartori, Michel

    2014-01-01

    Abstract Despite its wide, almost worldwide distribution, the mayfly genus Cloeon Leach, 1815 (Ephemeroptera: Baetidae) is restricted in the Western hemisphere to North America, where a single species is reported. In the Neotropics, except for some species wrongly attributed to the genus in the past, there are no records of Cloeon. Recently, however, specimens of true Cloeon were collected along the coast of Espírito Santo, Southeastern Brazil. In order to verify the hypothesis that this species was recently introduced to Brazil, our aim was to identify the species based on morphological and molecular characters and to confirm the presence of true representatives of the genus in the Neotropics. Our results revealed that the specimens found in Brazil belong to the Afrotropical species C. smaeleni Lestage, 1924. The identity of the species, its distribution, along with its previous absence in regularly sampled sites, is a clear sign that the specimens of C. smaeleni found in Espírito Santo are introduced, well established, and that the colonization took place very recently. PMID:24843249

  9. Research on the fundamental principles of China's marine invasive species prevention legislation.

    PubMed

    Bai, Jiayu

    2014-12-15

    China's coastal area is severely damaged by marine invasive species. Traditional tort theory resolves issues relevant to property damage or personal injuries, through which plaintiffs cannot cope with the ecological damage caused by marine invasive species. Several defects exist within the current legal regimes, such as imperfect management systems, insufficient unified technical standards, and unsound legal responsibility systems. It is necessary to pass legislation to prevent the ecological damage caused by marine invasive species. This investigation probes the fundamental principles needed for the administration and legislation of an improved legal framework to combat the problem of invasive species within China's coastal waters.

  10. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.

    PubMed

    Mainali, Kumar P; Warren, Dan L; Dhileepan, Kunjithapatham; McConnachie, Andrew; Strathie, Lorraine; Hassan, Gul; Karki, Debendra; Shrestha, Bharat B; Parmesan, Camille

    2015-12-01

    Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium

  11. Invasive non-native species' provision of refugia for endangered native species.

    PubMed

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  12. Invasive species: Ocean ecosystem case studies for earth systems and environmental sciences

    USGS Publications Warehouse

    Schofield, Pam; Brown, Mary E.

    2016-01-01

    Marine species are increasingly transferred from areas where they are native to areas where they are not. Some nonnative species become invasive, causing undesirable impacts to environment, economy and/or human health. Nonnative marine species can be introduced through a variety of vectors, including shipping, trade, inland corridors (such as canals), and others. Effects of invasive marine species can be dramatic and irreversible. Case studies of four nonnative marine species are given (green crab, comb jelly, lionfish and Caulerpa algae).

  13. Trait convergence and plasticity among native and invasive species in resource-poor environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional trait comparisons provide a framework with which to assess invasibility and invasion resistance. Recent research and meta-analyses have produced equivocal results, finding evidence for both trait convergence and trait divergence among coexisting dominant native and invasive species. Rese...

  14. First Introduction of Two Australian Temnocephalan Species into Africa with an Alien Host: Double Trouble.

    PubMed

    Tavakol, Sareh; Luus-Powell, Wilmien J; Smit, Willem J; Baker, Chantélle; Hoffman, Andre; Halajian, Ali

    2016-12-01

    The redclaw crayfish, Cherax quadricarinatus (Decapoda: Parastacidae), is native to Australia but has been introduced to South Africa as a warm-water aquaculture species. In a South African natural waterbody, examined crayfish had high-intensity infections of 3 temnocephalan species on their body surfaces and within the branchial chambers. Temnocephalans were characterized using light and scanning electron microscopy and identified as Craspedella pedum, Diceratocephala boschmai, and Didymorchis sp. This is the first report of the introduction of Australian temnocephalans, C. pedum and Didymorchis sp., to Africa and expands the known distribution of these species beyond their presumptive native range. The present study also documents a naturalized population of C. quadricarinatus from a natural water body in South Africa, comprising a new geographical locality record.

  15. Invasion dynamics of two alien Carpobrotus (Aizoaceae) taxa on a Mediterranean island: I. Genetic diversity and introgression.

    PubMed

    Suehs, C M; Affre, L; Médail, F

    2004-01-01

    This study, based on morphological and isozyme analysis, clearly discriminates two invasive Carpobrotus taxa, C. edulis and C. acinaciformis, in the Hyères archipelago off the southeastern coast of France. However, three different allelic combinations demonstrate the presence of intermediate individuals resulting from an introgression of part of the C. edulis genome into that of C. acinaciformis. Both taxa have higher than average genetic (C. edulis: P(0.95)=62.5%, A=2.25+/-0.70, H(o)=0.329+/-0.324; C. acinaciformis: P(0.95)=75%, A=2.38+/-0.42, H(o)=0.645+/-0.109) and clonal diversities (C. edulis: IP=0.37; C. acinaciformis: IP=0.48). Furthermore, C. acinaciformis has an excess of heterozygotes (F=-0.585+/-0.217), probably due to introgression. The relationship between the probability of clonal identity for two individuals and distance indicates that C. acinaciformis relies more on clonal reproduction than on sexual recruitment (seed recruitment/vegetative propagation=u/v=0.027), in contrast to C. edulis, whose probability of clonal identity did not vary with distance. The overwhelming clonal growth and high genetic diversities of C. acinaciformis and the previously recorded invasion potential for C. edulis raises concern for intensified invasion via hybridisation.

  16. Evolutionary responses of native plant species to invasive plants: a review.

    PubMed

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  17. Land use intensification differentially benefits alien over native predators in agricultural landscape mosaics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: Both anthropogenic habitat disturbance and the breadth of habitat use by alien species have been found to facilitate invasion into novel environments, and these factors have been hypothesized to be important within coccinellid communities specifically. In this study, we address two questions: (...

  18. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    PubMed

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showe