Science.gov

Sample records for aligned biological networks

  1. Local versus global biological network alignment

    PubMed Central

    Meng, Lei; Striegel, Aaron; Milenković, Tijana

    2016-01-01

    Motivation: Network alignment (NA) aims to find regions of similarities between species’ molecular networks. There exist two NA categories: local (LNA) and global (GNA). LNA finds small highly conserved network regions and produces a many-to-many node mapping. GNA finds large conserved regions and produces a one-to-one node mapping. Given the different outputs of LNA and GNA, when a new NA method is proposed, it is compared against existing methods from the same category. However, both NA categories have the same goal: to allow for transferring functional knowledge from well- to poorly-studied species between conserved network regions. So, which one to choose, LNA or GNA? To answer this, we introduce the first systematic evaluation of the two NA categories. Results: We introduce new measures of alignment quality that allow for fair comparison of the different LNA and GNA outputs, as such measures do not exist. We provide user-friendly software for efficient alignment evaluation that implements the new and existing measures. We evaluate prominent LNA and GNA methods on synthetic and real-world biological networks. We study the effect on alignment quality of using different interaction types and confidence levels. We find that the superiority of one NA category over the other is context-dependent. Further, when we contrast LNA and GNA in the application of learning novel protein functional knowledge, the two produce very different predictions, indicating their complementarity. Our results and software provide guidelines for future NA method development and evaluation. Availability and implementation: Software: http://www.nd.edu/~cone/LNA_GNA Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27357169

  2. BinAligner: a heuristic method to align biological networks

    PubMed Central

    2013-01-01

    The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and

  3. Topological network alignment uncovers biological function and phylogeny

    PubMed Central

    Kuchaiev, Oleksii; Milenković, Tijana; Memišević, Vesna; Hayes, Wayne; Pržulj, Nataša

    2010-01-01

    Sequence comparison and alignment has had an enormous impact on our understanding of evolution, biology and disease. Comparison and alignment of biological networks will probably have a similar impact. Existing network alignments use information external to the networks, such as sequence, because no good algorithm for purely topological alignment has yet been devised. In this paper, we present a novel algorithm based solely on network topology, that can be used to align any two networks. We apply it to biological networks to produce by far the most complete topological alignments of biological networks to date. We demonstrate that both species phylogeny and detailed biological function of individual proteins can be extracted from our alignments. Topology-based alignments have the potential to provide a completely new, independent source of phylogenetic information. Our alignment of the protein–protein interaction networks of two very different species—yeast and human—indicate that even distant species share a surprising amount of network topology, suggesting broad similarities in internal cellular wiring across all life on Earth. PMID:20236959

  4. An Improved Method for Completely Uncertain Biological Network Alignment

    PubMed Central

    Shen, Bin; Zhao, Muwei; Zhong, Wei; He, Jieyue

    2015-01-01

    With the continuous development of biological experiment technology, more and more data related to uncertain biological networks needs to be analyzed. However, most of current alignment methods are designed for the deterministic biological network. Only a few can solve the probabilistic network alignment problem. However, these approaches only use the part of probabilistic data in the original networks allowing only one of the two networks to be probabilistic. To overcome the weakness of current approaches, an improved method called completely probabilistic biological network comparison alignment (C_PBNA) is proposed in this paper. This new method is designed for complete probabilistic biological network alignment based on probabilistic biological network alignment (PBNA) in order to take full advantage of the uncertain information of biological network. The degree of consistency (agreement) indicates that C_PBNA can find the results neglected by PBNA algorithm. Furthermore, the GO consistency (GOC) and global network alignment score (GNAS) have been selected as evaluation criteria, and all of them proved that C_PBNA can obtain more biologically significant results than those of PBNA algorithm. PMID:26000284

  5. Local graph alignment and motif search in biological networks

    NASA Astrophysics Data System (ADS)

    Berg, Johannes; Lässig, Michael

    2004-10-01

    Interaction networks are of central importance in postgenomic molecular biology, with increasing amounts of data becoming available by high-throughput methods. Examples are gene regulatory networks or protein interaction maps. The main challenge in the analysis of these data is to read off biological functions from the topology of the network. Topological motifs, i.e., patterns occurring repeatedly at different positions in the network, have recently been identified as basic modules of molecular information processing. In this article, we discuss motifs derived from families of mutually similar but not necessarily identical patterns. We establish a statistical model for the occurrence of such motifs, from which we derive a scoring function for their statistical significance. Based on this scoring function, we develop a search algorithm for topological motifs called graph alignment, a procedure with some analogies to sequence alignment. The algorithm is applied to the gene regulation network of Escherichia coli.

  6. C-GRAAL: common-neighbors-based global GRAph ALignment of biological networks.

    PubMed

    Memišević, Vesna; Pržulj, Nataša

    2012-07-01

    Networks are an invaluable framework for modeling biological systems. Analyzing protein-protein interaction (PPI) networks can provide insight into underlying cellular processes. It is expected that comparison and alignment of biological networks will have a similar impact on our understanding of evolution, biological function, and disease as did sequence comparison and alignment. Here, we introduce a novel pairwise global alignment algorithm called Common-neighbors based GRAph ALigner (C-GRAAL) that uses heuristics for maximizing the number of aligned edges between two networks and is based solely on network topology. As such, it can be applied to any type of network, such as social, transportation, or electrical networks. We apply C-GRAAL to align PPI networks of eukaryotic and prokaryotic species, as well as inter-species PPI networks, and we demonstrate that the resulting alignments expose large connected and functionally topologically aligned regions. We use the resulting alignments to transfer biological knowledge across species, successfully validating many of the predictions. Moreover, we show that C-GRAAL can be used to align human-pathogen inter-species PPI networks and that it can identify patterns of pathogen interactions with host proteins solely from network topology.

  7. Corbi: a new R package for biological network alignment and querying

    PubMed Central

    2013-01-01

    In the last decade, plenty of biological networks are built from the large scale experimental data produced by the rapidly developing high-throughput techniques as well as literature and other sources. But the huge amount of network data have not been fully utilized due to the limited biological network analysis tools. As a basic and essential bioinformatics method, biological network alignment and querying have been applied in many fields such as predicting new protein-protein interactions (PPI). Although many algorithms were published, the network alignment and querying problems are not solved satisfactorily. In this paper, we extended CNetQ, a novel network querying method based on the conditional random fields model, to solve network alignment problem, by adopting an iterative bi-directional mapping strategy. The new method, called CNetA, was compared with other four methods on fifty simulated and three real PPI network alignment instances by using four structural and five biological measures. The computational experiments on the simulated data, which were generated from a biological network evolutionary model to validate the effectiveness of network alignment methods, show that CNetA gets the best accuracy in terms of both nodes and networks. For the real data, larger biological conserved subnetworks and larger connected subnetworks were identified, compared with the structural-dominated methods and the biological-dominated methods, respectively, which suggests that CNetA can better balances the biological and structural similarities. Further, CNetQ and CNetA have been implemented in a new R package Corbi (http://doc.aporc.org/wiki/Corbi), and freely accessible and easy used web services for CNetQ and CNetA have also been constructed based on the R package. The simulated and real datasets used in this paper are available for downloading at http://doc.aporc.org/wiki/CNetA/. PMID:24565104

  8. SMETANA: Accurate and Scalable Algorithm for Probabilistic Alignment of Large-Scale Biological Networks

    PubMed Central

    Sahraeian, Sayed Mohammad Ebrahim; Yoon, Byung-Jun

    2013-01-01

    In this paper we introduce an efficient algorithm for alignment of multiple large-scale biological networks. In this scheme, we first compute a probabilistic similarity measure between nodes that belong to different networks using a semi-Markov random walk model. The estimated probabilities are further enhanced by incorporating the local and the cross-species network similarity information through the use of two different types of probabilistic consistency transformations. The transformed alignment probabilities are used to predict the alignment of multiple networks based on a greedy approach. We demonstrate that the proposed algorithm, called SMETANA, outperforms many state-of-the-art network alignment techniques, in terms of computational efficiency, alignment accuracy, and scalability. Our experiments show that SMETANA can easily align tens of genome-scale networks with thousands of nodes on a personal computer without any difficulty. The source code of SMETANA is available upon request. The source code of SMETANA can be downloaded from http://www.ece.tamu.edu/~bjyoon/SMETANA/. PMID:23874484

  9. Aligning biological sequences on distributed bus networks: a divisible load scheduling approach.

    PubMed

    Min, Wong Han; Veeravalli, Bharadwaj

    2005-12-01

    In this paper, we design a multiprocessor strategy that exploits the computational characteristics of the algorithms used for biological sequence comparison proposed in the literature. We employ divisible load theory (DLT) that is suitable for handling large scale processing on network based systems. For the first time in the domain of DLT, the problem of aligning biological sequences is attempted. The objective is to minimize the total processing time of the alignment process. In designing our strategy, DLT facilitates a clever partitioning of the entire computation process involved in such a way that the overall time consumed for aligning the sequences is a minimum. The partitioning takes into account the computation speeds of the nodes and the underlying communication network. Since this is a real-life application, the post-processing phase becomes important, and hence we consider propagating the results back in order to generate an exact alignment. We consider several cases in our analysis such as deriving closed-form solutions for the processing time for heterogeneous, homogeneous, and networks with slow links. Further, we attempt to employ a multiinstallment strategy to distribute the tasks such that a higher degree of parallelism can be achieved. For slow networks, our strategy recommends near-optimal solutions. We derive an important condition to identify such cases and propose two heuristic strategies. Also, our strategy can be extended for multisequence alignment by utilizing a clustering strategy such as the Berger-Munson algorithm proposed in the literature. Finally, we use real-life DNA samples of house mouse mitochondrion (Mus Musculus Mitochondrion, NC_001569) consisting of 16,295 residues and the DNA of human mitochondrion (Homo Sapiens Mitochondrion, NC_001807) consisting of 16,571 residues, obtainable from the GenBank, in our rigorous simulation experiments to illustrate all the theoretical findings.

  10. Node Handprinting: A Scalable and Accurate Algorithm for Aligning Multiple Biological Networks.

    PubMed

    Radu, Alex; Charleston, Michael

    2015-07-01

    Due to recent advancements in high-throughput sequencing technologies, progressively more protein-protein interactions have been identified for a growing number of species. Subsequently, the protein-protein interaction networks for these species have been further refined. The increase in the quality and availability of these networks has in turn brought a demand for efficient methods to analyze such networks. The pairwise alignment of these networks has been moderately investigated, with numerous algorithms available, but there is very little progress in the field of multiple network alignment. Multiple alignment of networks from different organisms is ideal at finding abnormally conserved or disparate subnetworks. We present a fast and accurate algorithmic approach, Node Handprinting (NH), based on our previous work with Node Fingerprinting, which enables quick and accurate alignment of multiple networks. We also propose two new metrics for the analysis of multiple alignments, as the current metrics are not as sophisticated as their pairwise alignment counterparts. To assess the performance of NH, we use previously aligned datasets as well as protein interaction networks generated from the public database BioGRID. Our results indicate that NH compares favorably with current methodologies and is the only algorithm capable of performing the more complex alignments.

  11. Optimal Network Alignment with Graphlet Degree Vectors

    PubMed Central

    Milenković, Tijana; Ng, Weng Leong; Hayes, Wayne; Pržulj, Nataša

    2010-01-01

    Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology. PMID:20628593

  12. Global network alignment using multiscale spectral signatures

    PubMed Central

    Patro, Rob; Kingsford, Carl

    2012-01-01

    Motivation: Protein interaction networks provide an important system-level view of biological processes. One of the fundamental problems in biological network analysis is the global alignment of a pair of networks, which puts the proteins of one network into correspondence with the proteins of another network in a manner that conserves their interactions while respecting other evidence of their homology. By providing a mapping between the networks of different species, alignments can be used to inform hypotheses about the functions of unannotated proteins, the existence of unobserved interactions, the evolutionary divergence between the two species and the evolution of complexes and pathways. Results: We introduce GHOST, a global pairwise network aligner that uses a novel spectral signature to measure topological similarity between subnetworks. It combines a seed-and-extend global alignment phase with a local search procedure and exceeds state-of-the-art performance on several network alignment tasks. We show that the spectral signature used by GHOST is highly discriminative, whereas the alignments it produces are also robust to experimental noise. When compared with other recent approaches, we find that GHOST is able to recover larger and more biologically significant, shared subnetworks between species. Availability: An efficient and parallelized implementation of GHOST, released under the Apache 2.0 license, is available at http://cbcb.umd.edu/kingsford_group/ghost Contact: rob@cs.umd.edu PMID:23047556

  13. Pairwise alignment of protein interaction networks.

    PubMed

    Koyutürk, Mehmet; Kim, Yohan; Topkara, Umut; Subramaniam, Shankar; Szpankowski, Wojciech; Grama, Ananth

    2006-03-01

    With an ever-increasing amount of available data on protein-protein interaction (PPI) networks and research revealing that these networks evolve at a modular level, discovery of conserved patterns in these networks becomes an important problem. Although available data on protein-protein interactions is currently limited, recently developed algorithms have been shown to convey novel biological insights through employment of elegant mathematical models. The main challenge in aligning PPI networks is to define a graph theoretical measure of similarity between graph structures that captures underlying biological phenomena accurately. In this respect, modeling of conservation and divergence of interactions, as well as the interpretation of resulting alignments, are important design parameters. In this paper, we develop a framework for comprehensive alignment of PPI networks, which is inspired by duplication/divergence models that focus on understanding the evolution of protein interactions. We propose a mathematical model that extends the concepts of match, mismatch, and gap in sequence alignment to that of match, mismatch, and duplication in network alignment and evaluates similarity between graph structures through a scoring function that accounts for evolutionary events. By relying on evolutionary models, the proposed framework facilitates interpretation of resulting alignments in terms of not only conservation but also divergence of modularity in PPI networks. Furthermore, as in the case of sequence alignment, our model allows flexibility in adjusting parameters to quantify underlying evolutionary relationships. Based on the proposed model, we formulate PPI network alignment as an optimization problem and present fast algorithms to solve this problem. Detailed experimental results from an implementation of the proposed framework show that our algorithm is able to discover conserved interaction patterns very effectively, in terms of both accuracies and computational

  14. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  15. Alignment-free protein interaction network comparison

    PubMed Central

    Ali, Waqar; Rito, Tiago; Reinert, Gesine; Sun, Fengzhu; Deane, Charlotte M.

    2014-01-01

    Motivation: Biological network comparison software largely relies on the concept of alignment where close matches between the nodes of two or more networks are sought. These node matches are based on sequence similarity and/or interaction patterns. However, because of the incomplete and error-prone datasets currently available, such methods have had limited success. Moreover, the results of network alignment are in general not amenable for distance-based evolutionary analysis of sets of networks. In this article, we describe Netdis, a topology-based distance measure between networks, which offers the possibility of network phylogeny reconstruction. Results: We first demonstrate that Netdis is able to correctly separate different random graph model types independent of network size and density. The biological applicability of the method is then shown by its ability to build the correct phylogenetic tree of species based solely on the topology of current protein interaction networks. Our results provide new evidence that the topology of protein interaction networks contains information about evolutionary processes, despite the lack of conservation of individual interactions. As Netdis is applicable to all networks because of its speed and simplicity, we apply it to a large collection of biological and non-biological networks where it clusters diverse networks by type. Availability and implementation: The source code of the program is freely available at http://www.stats.ox.ac.uk/research/proteins/resources. Contact: w.ali@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25161230

  16. Global multiple protein-protein interaction network alignment by combining pairwise network alignments

    PubMed Central

    2015-01-01

    Background A wealth of protein interaction data has become available in recent years, creating an urgent need for powerful analysis techniques. In this context, the problem of finding biologically meaningful correspondences between different protein-protein interaction networks (PPIN) is of particular interest. The PPIN of a species can be compared with that of other species through the process of PPIN alignment. Such an alignment can provide insight into basic problems like species evolution and network component function determination, as well as translational problems such as target identification and elucidation of mechanisms of disease spread. Furthermore, multiple PPINs can be aligned simultaneously, expanding the analytical implications of the result. While there are several pairwise network alignment algorithms, few methods are capable of multiple network alignment. Results We propose SMAL, a MNA algorithm based on the philosophy of scaffold-based alignment. SMAL is capable of converting results from any global pairwise alignment algorithms into a MNA in linear time. Using this method, we have built multiple network alignments based on combining pairwise alignments from a number of publicly available (pairwise) network aligners. We tested SMAL using PPINs of eight species derived from the IntAct repository and employed a number of measures to evaluate performance. Additionally, as part of our experimental investigations, we compared the effectiveness of SMAL while aligning up to eight input PPINs, and examined the effect of scaffold network choice on the alignments. Conclusions A key advantage of SMAL lies in its ability to create MNAs through the use of pairwise network aligners for which native MNA implementations do not exist. Experiments indicate that the performance of SMAL was comparable to that of the native MNA implementation of established methods such as IsoRankN and SMETANA. However, in terms of computational time, SMAL was significantly faster

  17. Accurate multiple network alignment through context-sensitive random walk

    PubMed Central

    2015-01-01

    Background Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. Results In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. Conclusions Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods. PMID:25707987

  18. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    SciTech Connect

    Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.; Grama, Ananth

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  19. L-GRAAL: Lagrangian graphlet-based network aligner

    PubMed Central

    Malod-Dognin, Noël; Pržulj, Nataša

    2015-01-01

    Motivation: Discovering and understanding patterns in networks of protein–protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically and biologically accurate alignments remains a challenge. Results: We introduce a novel global network alignment tool, Lagrangian GRAphlet-based ALigner (L-GRAAL), which directly optimizes both the protein and the interaction functional conservations, using a novel alignment search heuristic based on integer programming and Lagrangian relaxation. We compare L-GRAAL with the state-of-the-art network aligners on the largest available PPI networks from BioGRID and observe that L-GRAAL uncovers the largest common sub-graphs between the networks, as measured by edge-correctness and symmetric sub-structures scores, which allow transferring more functional information across networks. We assess the biological quality of the protein mappings using the semantic similarity of their Gene Ontology annotations and observe that L-GRAAL best uncovers functionally conserved proteins. Furthermore, we introduce for the first time a measure of the semantic similarity of the mapped interactions and show that L-GRAAL also uncovers best functionally conserved interactions. In addition, we illustrate on the PPI networks of baker's yeast and human the ability of L-GRAAL to predict new PPIs. Finally, L-GRAAL's results are the first to show that topological information is more important than sequence information for uncovering functionally conserved interactions. Availability and implementation: L-GRAAL is coded in C++. Software is available at: http://bio-nets.doc.ic.ac.uk/L-GRAAL/. Contact: n

  20. AlignNemo: A Local Network Alignment Method to Integrate Homology and Topology

    PubMed Central

    Guzzi, Pietro H.; Cannataro, Mario; Guerra, Concettina

    2012-01-01

    Local network alignment is an important component of the analysis of protein-protein interaction networks that may lead to the identification of evolutionary related complexes. We present AlignNemo, a new algorithm that, given the networks of two organisms, uncovers subnetworks of proteins that relate in biological function and topology of interactions. The discovered conserved subnetworks have a general topology and need not to correspond to specific interaction patterns, so that they more closely fit the models of functional complexes proposed in the literature. The algorithm is able to handle sparse interaction data with an expansion process that at each step explores the local topology of the networks beyond the proteins directly interacting with the current solution. To assess the performance of AlignNemo, we ran a series of benchmarks using statistical measures as well as biological knowledge. Based on reference datasets of protein complexes, AlignNemo shows better performance than other methods in terms of both precision and recall. We show our solutions to be biologically sound using the concept of semantic similarity applied to Gene Ontology vocabularies. The binaries of AlignNemo and supplementary details about the algorithms and the experiments are available at: sourceforge.net/p/alignnemo. PMID:22719866

  1. Multiple network alignment on quantum computers

    NASA Astrophysics Data System (ADS)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-12-01

    Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  2. Proper evaluation of alignment-free network comparison methods

    PubMed Central

    Milenković, Tijana; Pržulj, Nataša

    2015-01-01

    Motivation: Network comparison is a computationally intractable problem with important applications in systems biology and other domains. A key challenge is to properly quantify similarity between wiring patterns of two networks in an alignment-free fashion. Also, alignment-based methods exist that aim to identify an actual node mapping between networks and as such serve a different purpose. Various alignment-free methods that use different global network properties (e.g. degree distribution) have been proposed. Methods based on small local subgraphs called graphlets perform the best in the alignment-free network comparison task, due to high level of topological detail that graphlets can capture. Among different graphlet-based methods, Graphlet Correlation Distance (GCD) was shown to be the most accurate for comparing networks. Recently, a new graphlet-based method called NetDis was proposed, which was claimed to be superior. We argue against this, as the performance of NetDis was not properly evaluated to position it correctly among the other alignment-free methods. Results: We evaluate the performance of available alignment-free network comparison methods, including GCD and NetDis. We do this by measuring accuracy of each method (in a systematic precision-recall framework) in terms of how well the method can group (cluster) topologically similar networks. By testing this on both synthetic and real-world networks from different domains, we show that GCD remains the most accurate, noise-tolerant and computationally efficient alignment-free method. That is, we show that NetDis does not outperform the other methods, as originally claimed, while it is also computationally more expensive. Furthermore, since NetDis is dependent on the choice of a network null model (unlike the other graphlet-based methods), we show that its performance is highly sensitive to the choice of this parameter. Finally, we find that its performance is not independent on network sizes and

  3. Networks in Cell Biology

    NASA Astrophysics Data System (ADS)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  4. Dominating Biological Networks

    PubMed Central

    Milenković, Tijana; Memišević, Vesna; Bonato, Anthony; Pržulj, Nataša

    2011-01-01

    Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI) networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of “biologically central (BC)” genes (i.e., their protein products), such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network. To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC) role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs) in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its “spine” that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks. PMID:21887225

  5. Functional Aspects of Biological Networks

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim

    2007-03-01

    We discuss biological networks with respect to 1) relative positioning and importance of high degree nodes, 2) function and signaling, 3) logic and dynamics of regulation. Visually the soft modularity of many real world networks can be characterized in terms of number of high and low degrees nodes positioned relative to each other in a landscape analogue with mountains (high-degree nodes) and valleys (low-degree nodes). In these terms biological networks looks like rugged landscapes with separated peaks, hub proteins, which each are roughly as essential as any of the individual proteins on the periphery of the hub. Within each sup-domain of a molecular network one can often identify dynamical feedback mechanisms that falls into combinations of positive and negative feedback circuits. We will illustrate this with examples taken from phage regulation and bacterial uptake and regulation of small molecules. In particular we find that a double negative regulation often are replaced by a single positive link in unrelated organisms with same functional requirements. Overall we argue that network topology primarily reflects functional constraints. References: S. Maslov and K. Sneppen. ``Computational architecture of the yeast regulatory network." Phys. Biol. 2:94 (2005) A. Trusina et al. ``Functional alignment of regulatory networks: A study of temerate phages". Plos Computational Biology 1:7 (2005). J.B. Axelsen et al. ``Degree Landscapes in Scale-Free Networks" physics/0512075 (2005). A. Trusina et al. ``Hierarchy and Anti-Hierarchy in Real and Scale Free networks." PRL 92:178702 (2004) S. Semsey et al. ``Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli". (2006) q-bio.MN/0609042

  6. Pin-Align: A New Dynamic Programming Approach to Align Protein-Protein Interaction Networks

    PubMed Central

    2014-01-01

    To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein interaction networks from IntAct, DIP, and the Stanford Network Database and the results are compared with other well-known algorithms. It is shown that Pin-Align has higher sensitivity and specificity in terms of KEGG Ortholog groups. PMID:25435900

  7. Seed selection strategy in global network alignment without destroying the entire structures of functional modules

    PubMed Central

    2012-01-01

    Background Network alignment is one of the most common biological network comparison methods. Aligning protein-protein interaction (PPI) networks of different species is of great important to detect evolutionary conserved pathways or protein complexes across species through the identification of conserved interactions, and to improve our insight into biological systems. Global network alignment (GNA) problem is NP-complete, for which only heuristic methods have been proposed so far. Generally, the current GNA methods fall into global heuristic seed-and-extend approaches. These methods can not get the best overall consistent alignment between networks for the opinionated local seed. Furthermore These methods are lost in maximizing the number of aligned edges between two networks without considering the original structures of functional modules. Methods We present a novel seed selection strategy for global network alignment by constructing the pairs of hub nodes of networks to be aligned into multiple seeds. Beginning from every hub seed and using the membership similarity of nodes to quantify to what extent the nodes can participate in functional modules associated with current seed topologically we align the networks by modules. By this way we can maintain the functional modules are not damaged during the heuristic alignment process. And our method is efficient in resolving the fatal problem of most conventional algorithms that the initialization selected seeds have a direct influence on the alignment result. The similarity measures between network nodes (e.g., proteins) include sequence similarity, centrality similarity, and dynamic membership similarity and our algorithm can be called Multiple Hubs-based Alignment (MHA). Results When applying our seed selection strategy to several pairs of real PPI networks, it is observed that our method is working to strike a balance, extending the conserved interactions while maintaining the functional modules unchanged. In

  8. A comparative analysis of multiple sequence alignments for biological data.

    PubMed

    Manzoor, Umar; Shahid, Sarosh; Zafar, Bassam

    2015-01-01

    Multiple sequence alignment plays a key role in the computational analysis of biological data. Different programs are developed to analyze the sequence similarity. This paper highlights the algorithmic techniques of the most popular multiple sequence alignment programs. These programs are then evaluated on the basis of execution time and scalability. The overall performance of these programs is assessed to highlight their strengths and weaknesses with reference to their algorithmic techniques. In terms of overall alignment quality, T-Coffee and Mafft attain the highest average scores, whereas K-align has the minimum computation time. PMID:26405947

  9. SUMONA: A supervised method for optimizing network alignment.

    PubMed

    Tuncay, Erhun Giray; Can, Tolga

    2016-08-01

    This study focuses on improving the multi-objective memetic algorithm for protein-protein interaction (PPI) network alignment, Optimizing Network Aligner - OptNetAlign, via integration with other existing network alignment methods such as SPINAL, NETAL and HubAlign. The output of this algorithm is an elite set of aligned networks all of which are optimal with respect to multiple user-defined criteria. However, OptNetAlign is an unsupervised genetic algorithm that initiates its search with completely random solutions and it requires substantial running times to generate an elite set of solutions that have high scores with respect to the given criteria. In order to improve running time, the search space of the algorithm can be narrowed down by focusing on remarkably qualified alignments and trying to optimize the most desired criteria on a more limited set of solutions. The method presented in this study improves OptNetAlign in a supervised fashion by utilizing the alignment results of different network alignment algorithms with varying parameters that depend upon user preferences. Therefore, the user can prioritize certain objectives upon others and achieve better running time performance while optimizing the secondary objectives.

  10. Services supporting collaborative alignment of engineering networks

    NASA Astrophysics Data System (ADS)

    Jansson, Kim; Uoti, Mikko; Karvonen, Iris

    2015-08-01

    Large-scale facilities such as power plants, process factories, ships and communication infrastructures are often engineered and delivered through geographically distributed operations. The competencies required are usually distributed across several contributing organisations. In these complicated projects, it is of key importance that all partners work coherently towards a common goal. VTT and a number of industrial organisations in the marine sector have participated in a national collaborative research programme addressing these needs. The main output of this programme was development of the Innovation and Engineering Maturity Model for Marine-Industry Networks. The recently completed European Union Framework Programme 7 project COIN developed innovative solutions and software services for enterprise collaboration and enterprise interoperability. One area of focus in that work was services for collaborative project management. This article first addresses a number of central underlying research themes and previous research results that have influenced the development work mentioned above. This article presents two approaches for the development of services that support distributed engineering work. Experience from use of the services is analysed, and potential for development is identified. This article concludes with a proposal for consolidation of the two above-mentioned methodologies. This article outlines the characteristics and requirements of future services supporting collaborative alignment of engineering networks.

  11. GraphCrunch 2: Software tool for network modeling, alignment and clustering

    PubMed Central

    2011-01-01

    Background Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. Results We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, Graph

  12. A new graph-based method for pairwise global network alignment

    PubMed Central

    Klau, Gunnar W

    2009-01-01

    Background In addition to component-based comparative approaches, network alignments provide the means to study conserved network topology such as common pathways and more complex network motifs. Yet, unlike in classical sequence alignment, the comparison of networks becomes computationally more challenging, as most meaningful assumptions instantly lead to NP-hard problems. Most previous algorithmic work on network alignments is heuristic in nature. Results We introduce the graph-based maximum structural matching formulation for pairwise global network alignment. We relate the formulation to previous work and prove NP-hardness of the problem. Based on the new formulation we build upon recent results in computational structural biology and present a novel Lagrangian relaxation approach that, in combination with a branch-and-bound method, computes provably optimal network alignments. The Lagrangian algorithm alone is a powerful heuristic method, which produces solutions that are often near-optimal and – unlike those computed by pure heuristics – come with a quality guarantee. Conclusion Computational experiments on the alignment of protein-protein interaction networks and on the classification of metabolic subnetworks demonstrate that the new method is reasonably fast and has advantages over pure heuristics. Our software tool is freely available as part of the LISA library. PMID:19208162

  13. GreedyPlus: An Algorithm for the Alignment of Interface Interaction Networks

    PubMed Central

    Law, Brian; Bader, Gary D.

    2015-01-01

    The increasing ease and accuracy of protein-protein interaction detection has resulted in the ability to map the interactomes of multiple species. We now have an opportunity to compare species to better understand how interactomes evolve. As DNA and protein sequence alignment algorithms were required for comparative genomics, network alignment algorithms are required for comparative interactomics. A number of network alignment methods have been developed for protein-protein interaction networks, where proteins are represented as vertices linked by edges if they interact. Recently, protein interactions have been mapped at the level of amino acid positions, which can be represented as an interface-interaction network (IIN), where vertices represent binding sites, such as protein domains and short sequence motifs. However, current algorithms are not designed to align these networks and generally fail to do so in practice. We present a greedy algorithm, GreedyPlus, for IIN alignment, combining data from diverse sources, including network, protein and binding site properties, to identify putative orthologous relationships between interfaces in available worm and yeast data. GreedyPlus is fast and simple, allowing for easy customization of behaviour, yet still capable of generating biologically meaningful network alignments. PMID:26165520

  14. Optimizing a global alignment of protein interaction networks

    PubMed Central

    Chindelevitch, Leonid; Ma, Cheng-Yu; Liao, Chung-Shou; Berger, Bonnie

    2013-01-01

    Motivation: The global alignment of protein interaction networks is a widely studied problem. It is an important first step in understanding the relationship between the proteins in different species and identifying functional orthologs. Furthermore, it can provide useful insights into the species’ evolution. Results: We propose a novel algorithm, PISwap, for optimizing global pairwise alignments of protein interaction networks, based on a local optimization heuristic that has previously demonstrated its effectiveness for a variety of other intractable problems. PISwap can begin with different types of network alignment approaches and then iteratively adjust the initial alignments by incorporating network topology information, trading it off for sequence information. In practice, our algorithm efficiently refines other well-studied alignment techniques with almost no additional time cost. We also show the robustness of the algorithm to noise in protein interaction data. In addition, the flexible nature of this algorithm makes it suitable for different applications of network alignment. This algorithm can yield interesting insights into the evolutionary dynamics of related species. Availability: Our software is freely available for non-commercial purposes from our Web site, http://piswap.csail.mit.edu/. Contact: bab@csail.mit.edu or csliao@ie.nthu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24048352

  15. Querying Large Biological Network Datasets

    ERIC Educational Resources Information Center

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  16. HubAlign: an accurate and efficient method for global alignment of protein–protein interaction networks

    PubMed Central

    Hashemifar, Somaye; Xu, Jinbo

    2014-01-01

    Motivation: High-throughput experimental techniques have produced a large amount of protein–protein interaction (PPI) data. The study of PPI networks, such as comparative analysis, shall benefit the understanding of life process and diseases at the molecular level. One way of comparative analysis is to align PPI networks to identify conserved or species-specific subnetwork motifs. A few methods have been developed for global PPI network alignment, but it still remains challenging in terms of both accuracy and efficiency. Results: This paper presents a novel global network alignment algorithm, denoted as HubAlign, that makes use of both network topology and sequence homology information, based upon the observation that topologically important proteins in a PPI network usually are much more conserved and thus, more likely to be aligned. HubAlign uses a minimum-degree heuristic algorithm to estimate the topological and functional importance of a protein from the global network topology information. Then HubAlign aligns topologically important proteins first and gradually extends the alignment to the whole network. Extensive tests indicate that HubAlign greatly outperforms several popular methods in terms of both accuracy and efficiency, especially in detecting functionally similar proteins. Availability: HubAlign is available freely for non-commercial purposes at http://ttic.uchicago.edu/∼hashemifar/software/HubAlign.zip Contact: jinboxu@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25161231

  17. An Alignment Model for Collaborative Value Networks

    NASA Astrophysics Data System (ADS)

    Bremer, Carlos; Azevedo, Rodrigo Cambiaghi; Klen, Alexandra Pereira

    This paper presents parts of the work carried out in several global organizations through the development of strategic projects with high tactical and operational complexity. By investing in long-term relationships, strongly operating in the transformation of the competitive model and focusing on the value chain management, the main aim of these projects was the alignment of multiple value chains. The projects were led by the Axia Transformation Methodology as well as by its Management Model and following the principles of Project Management. As a concrete result of the efforts made in the last years in the Brazilian market this work also introduces the Alignment Model which supports the transformation process that the companies undergo.

  18. Duplication models for biological networks.

    PubMed

    Chung, Fan; Lu, Linyuan; Dewey, T Gregory; Galas, David J

    2003-01-01

    Are biological networks different from other large complex networks? Both large biological and nonbiological networks exhibit power-law graphs (number of nodes with degree k, N(k) approximately k(-beta)), yet the exponents, beta, fall into different ranges. This may be because duplication of the information in the genome is a dominant evolutionary force in shaping biological networks (like gene regulatory networks and protein-protein interaction networks) and is fundamentally different from the mechanisms thought to dominate the growth of most nonbiological networks (such as the Internet). The preferential choice models used for nonbiological networks like web graphs can only produce power-law graphs with exponents greater than 2. We use combinatorial probabilistic methods to examine the evolution of graphs by node duplication processes and derive exact analytical relationships between the exponent of the power law and the parameters of the model. Both full duplication of nodes (with all their connections) as well as partial duplication (with only some connections) are analyzed. We demonstrate that partial duplication can produce power-law graphs with exponents less than 2, consistent with current data on biological networks. The power-law exponent for large graphs depends only on the growth process, not on the starting graph.

  19. [Network structures in biological systems].

    PubMed

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  20. A fast approach to global alignment of protein-protein interaction networks

    PubMed Central

    2013-01-01

    Background Global network alignment has been proposed as an effective tool for computing functional orthology. Commonly used global alignment techniques such as IsoRank rely on a two-step process: the first step is an iterative diffusion-based approach for assigning similarity scores to all possible node pairs (matchings); the second step applies a maximum-weight bipartite matching algorithm to this similarity score matrix to identify orthologous node pairs. While demonstrably successful in identifying orthologies beyond those based on sequences, this two-step process is computationally expensive. Recent work on computation of node-pair similarity matrices has demonstrated that the computational cost of the first step can be significantly reduced. The use of these accelerated methods renders the bipartite matching step as the dominant computational cost. This motivates a critical assessment of the tradeoffs of computational cost and solution quality (matching quality, topological matches, and biological significance) associated with the bipartite matching step. In this paper we utilize the state-of-the-art core diffusion-based step in IsoRank for similarity matrix computation, and couple it with two heuristic bipartite matching algorithms – a matrix-based greedy approach, and a tunable, adaptive, auction-based matching algorithm developed by us. We then compare our implementations against the performance and quality characteristics of the solution produced by the reference IsoRank binary, which also implements an optimal matching algorithm. Results Using heuristic matching algorithms in the IsoRank pipeline exhibits dramatic speedup improvements; typically ×30 times faster for the total alignment process in most cases of interest. More surprisingly, these improvements in compute times are typically accompanied by better or comparable topological and biological quality for the network alignments generated. These measures are quantified by the number of conserved

  1. Design principles in biological networks

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha

    Much of biology emerges from networks of interactions. Even in a single bacterium such as Escherichia coli, there are hundreds of coexisting gene and protein networks. Although biological networks are the outcome of evolution, various physical and biological constraints limit their functional capacity. The focus of this thesis is to understand how functional constraints such as optimal growth in mircoorganisms and information flow in signaling pathways shape the metabolic network of bacterium E. coli and the quorum sensing network of marine bacterium Vibrio harveyi, respectively. Metabolic networks convert basic elemental sources into complex building-blocks eventually leading to cell's growth. Therefore, typically, metabolic pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We showed that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Furthermore, we analyzed several representative metabolic modules and find that, in all cases, simple product-feedback inhibition allows nearly optimal growth, in agreement with the predicted growth-rate by the flux-balance analysis (FBA). Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum sensing (QS) systems. The QS circuit of V. harveyi integrates and funnels different ecological information through a common phosphorelay cascade to a set of small regulatory RNAs (sRNAs) that enables collective behavior. We analyzed the signaling properties and information flow in the QS circuit, which provides a model for information flow in signaling networks more generally. A comparative study of post-transcriptional and conventional transcriptional regulation suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. Furthermore, we develop a new framework for analyzing signal

  2. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Kaipeng; Zhang, Zhanpeng; Li, Zhifeng; Qiao, Yu

    2016-10-01

    Face detection and alignment in unconstrained environment are challenging due to various poses, illuminations and occlusions. Recent studies show that deep learning approaches can achieve impressive performance on these two tasks. In this paper, we propose a deep cascaded multi-task framework which exploits the inherent correlation between them to boost up their performance. In particular, our framework adopts a cascaded structure with three stages of carefully designed deep convolutional networks that predict face and landmark location in a coarse-to-fine manner. In addition, in the learning process, we propose a new online hard sample mining strategy that can improve the performance automatically without manual sample selection. Our method achieves superior accuracy over the state-of-the-art techniques on the challenging FDDB and WIDER FACE benchmark for face detection, and AFLW benchmark for face alignment, while keeps real time performance.

  3. Reputation-based collaborative network biology.

    PubMed

    Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Fields, R Brett; Hayes, William; Hoeng, Julia; Park, Jennifer S; Peitsch, Manuel C

    2015-01-01

    A pilot reputation-based collaborative network biology platform, Bionet, was developed for use in the sbv IMPROVER Network Verification Challenge to verify and enhance previously developed networks describing key aspects of lung biology. Bionet was successful in capturing a more comprehensive view of the biology associated with each network using the collective intelligence and knowledge of the crowd. One key learning point from the pilot was that using a standardized biological knowledge representation language such as BEL is critical to the success of a collaborative network biology platform. Overall, Bionet demonstrated that this approach to collaborative network biology is highly viable. Improving this platform for de novo creation of biological networks and network curation with the suggested enhancements for scalability will serve both academic and industry systems biology communities. PMID:25592588

  4. Walking tree heuristics for biological string alignment, gene location, and phylogenies

    NASA Astrophysics Data System (ADS)

    Cull, P.; Holloway, J. L.; Cavener, J. D.

    1999-03-01

    Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.

  5. Multiple deep convolutional neural networks averaging for face alignment

    NASA Astrophysics Data System (ADS)

    Zhang, Shaohua; Yang, Hua; Yin, Zhouping

    2015-05-01

    Face alignment is critical for face recognition, and the deep learning-based method shows promise for solving such issues, given that competitive results are achieved on benchmarks with additional benefits, such as dispensing with handcrafted features and initial shape. However, most existing deep learning-based approaches are complicated and quite time-consuming during training. We propose a compact face alignment method for fast training without decreasing its accuracy. Rectified linear unit is employed, which allows all networks approximately five times faster convergence than a tanh neuron. An eight learnable layer deep convolutional neural network (DCNN) based on local response normalization and a padding convolutional layer (PCL) is designed to provide reliable initial values during prediction. A model combination scheme is presented to further reduce errors, while showing that only two network architectures and hyperparameter selection procedures are required in our approach. A three-level cascaded system is ultimately built based on the DCNNs and model combination mode. Extensive experiments validate the effectiveness of our method and demonstrate comparable accuracy with state-of-the-art methods on BioID, labeled face parts in the wild, and Helen datasets.

  6. Generation of Spatially Aligned Collagen Fiber Networks through Microtransfer Molding

    PubMed Central

    Naik, Nisarga; Caves, Jeffrey

    2013-01-01

    The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. We report an approach for fabricating spatially aligned, fiber-reinforced composites (FRC) with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2 – 50 μm, thickness: 300 nm – 3 μm) exhibit a Young’s modulus of 126 ± 61 MPa and an ultimate tensile strength (UTS) of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young’s modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1–10% v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young’s modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means has been established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146

  7. Generation of spatially aligned collagen fiber networks through microtransfer molding.

    PubMed

    Naik, Nisarga; Caves, Jeffrey; Chaikof, Elliot L; Allen, Mark G

    2014-03-01

    The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. An approach for fabricating spatially aligned, fiber-reinforced composites with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses is reported. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2-50 μm, thickness: 300 nm to 3 μm) exhibit a Young's modulus of 126 ± 61 MPa and an ultimate tensile strength of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young's modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1-10%, v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young's modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means is established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146

  8. Biological network motif detection: principles and practice.

    PubMed

    Wong, Elisabeth; Baur, Brittany; Quader, Saad; Huang, Chun-Hsi

    2012-03-01

    Network motifs are statistically overrepresented sub-structures (sub-graphs) in a network, and have been recognized as 'the simple building blocks of complex networks'. Study of biological network motifs may reveal answers to many important biological questions. The main difficulty in detecting larger network motifs in biological networks lies in the facts that the number of possible sub-graphs increases exponentially with the network or motif size (node counts, in general), and that no known polynomial-time algorithm exists in deciding if two graphs are topologically equivalent. This article discusses the biological significance of network motifs, the motivation behind solving the motif-finding problem, and strategies to solve the various aspects of this problem. A simple classification scheme is designed to analyze the strengths and weaknesses of several existing algorithms. Experimental results derived from a few comparative studies in the literature are discussed, with conclusions that lead to future research directions. PMID:22396487

  9. Novel chelate-induced magnetic alignment of biological membranes.

    PubMed Central

    Prosser, R S; Volkov, V B; Shiyanovskaya, I V

    1998-01-01

    A phospholipid chelate complexed with ytterbium (DMPE-DTPA:Yb3+) is shown to be readily incorporated into a model membrane system, which may then be aligned in a magnetic field such that the average bilayer normal lies along the field. This so-called positively ordered smectic phase, whose lipids consist of less than 1% DMPE-DTPA:Yb3+, is ideally suited to structural studies of membrane proteins by solid-state NMR, low-angle diffraction, and spectroscopic techniques that require oriented samples. The chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine diethylenetriaminepentaacetic acid, which strongly binds the lanthanide ions and serves to orient the membrane in a magnetic field, prevents direct lanthanide-protein interactions and significantly reduces paramagnetic shifts and line broadening. Similar low-spin lanthanide chelates may have applications in field-ordered solution NMR studies of water-soluble proteins and in the design of new magnetically aligned liquid crystalline phases. PMID:9788910

  10. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  11. The Latin American Biological Dosimetry Network (LBDNet).

    PubMed

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M

    2016-09-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included.

  12. Alignment of the Fibrin Network Within an Autologous Plasma Clot.

    PubMed

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2016-01-01

    Autologous plasma clots with longitudinally aligned fibrin fibers could serve as a scaffold for longitudinal axonal regrowth in cases of traumatic peripheral nerve injuries. Three different techniques for assembling longitudinally oriented fibrin fibers during the fibrin polymerization process were investigated as follows: fiber alignment was induced by the application of either a magnetic field or-as a novel approach-electric field or by the induction of orientated flow. Fiber alignment was characterized by scanning electron microscopy analysis followed by image processing using fast Fourier transformation (FFT). Besides FFT output images, area xmin to xmax, as well as full width at half maximum (FWHM) of the FFT graph plot peaks, was calculated to determine the relative degree of fiber alignment. In addition, fluorescently labeled human fibrinogen and mesenchymal stem cells (MSCs) were used to visualize fibrin and cell orientation in aligned and nonaligned plasma clots. Varying degrees of fiber alignment were achieved by the three different methods, with the electric field application producing the highest degree of fiber alignment. The embedded MSCs showed a longitudinal orientation in the electric field-aligned plasma clots. The key feature of this study is the ability to produce autologous plasma clots with aligned fibrin fibers using physical techniques. This orientated internal structure of an autologous biomaterial is promising for distinct therapeutic applications, such as a guiding structure for cell migration and growth dynamics.

  13. Complex Networks: from Graph Theory to Biology

    NASA Astrophysics Data System (ADS)

    Lesne, Annick

    2006-12-01

    The aim of this text is to show the central role played by networks in complex system science. A remarkable feature of network studies is to lie at the crossroads of different disciplines, from mathematics (graph theory, combinatorics, probability theory) to physics (statistical physics of networks) to computer science (network generating algorithms, combinatorial optimization) to biological issues (regulatory networks). New paradigms recently appeared, like that of ‘scale-free networks’ providing an alternative to the random graph model introduced long ago by Erdös and Renyi. With the notion of statistical ensemble and methods originally introduced for percolation networks, statistical physics is of high relevance to get a deep account of topological and statistical properties of a network. Then their consequences on the dynamics taking place in the network should be investigated. Impact of network theory is huge in all natural sciences, especially in biology with gene networks, metabolic networks, neural networks or food webs. I illustrate this brief overview with a recent work on the influence of network topology on the dynamics of coupled excitable units, and the insights it provides about network emerging features, robustness of network behaviors, and the notion of static or dynamic motif.

  14. Generating confidence intervals on biological networks

    PubMed Central

    Thorne, Thomas; Stumpf, Michael PH

    2007-01-01

    Background In the analysis of networks we frequently require the statistical significance of some network statistic, such as measures of similarity for the properties of interacting nodes. The structure of the network may introduce dependencies among the nodes and it will in general be necessary to account for these dependencies in the statistical analysis. To this end we require some form of Null model of the network: generally rewired replicates of the network are generated which preserve only the degree (number of interactions) of each node. We show that this can fail to capture important features of network structure, and may result in unrealistic significance levels, when potentially confounding additional information is available. Methods We present a new network resampling Null model which takes into account the degree sequence as well as available biological annotations. Using gene ontology information as an illustration we show how this information can be accounted for in the resampling approach, and the impact such information has on the assessment of statistical significance of correlations and motif-abundances in the Saccharomyces cerevisiae protein interaction network. An algorithm, GOcardShuffle, is introduced to allow for the efficient construction of an improved Null model for network data. Results We use the protein interaction network of S. cerevisiae; correlations between the evolutionary rates and expression levels of interacting proteins and their statistical significance were assessed for Null models which condition on different aspects of the available data. The novel GOcardShuffle approach results in a Null model for annotated network data which appears better to describe the properties of real biological networks. Conclusion An improved statistical approach for the statistical analysis of biological network data, which conditions on the available biological information, leads to qualitatively different results compared to approaches which

  15. Biological Networks for Cancer Candidate Biomarkers Discovery.

    PubMed

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  16. Biological Networks for Cancer Candidate Biomarkers Discovery

    PubMed Central

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field. PMID:27625573

  17. Biological Networks for Cancer Candidate Biomarkers Discovery

    PubMed Central

    Yan, Wenying; Xue, Wenjin; Chen, Jiajia; Hu, Guang

    2016-01-01

    Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field.

  18. Knowledge-Intensive University Spin-Off Firms in South Africa: Fragile Network Alignment?

    ERIC Educational Resources Information Center

    Kruss, Glenda

    2008-01-01

    This paper analyses the conditions for sustaining spin-off firms from university-based research in South Africa through follow-up case studies of three high-technology networks, using a "network alignment" approach. Commercialization failed in the first case because of a lack of interactive capability and an absence of networks between the…

  19. Asian Network for Biological Sciences (ANBS).

    ERIC Educational Resources Information Center

    Asian Network for Biological Sciences.

    The Asian Network for Biological Sciences (ANBS) is a group of institutions, laboratories, research centers, and scholars who are willing to cooperate in programs and activities aimed at improving teaching and research in the biological sciences. This publication: (1) outlines ANBS aims and objectives; (2) describes major activities in the past;…

  20. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    ERIC Educational Resources Information Center

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  1. Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach.

    PubMed

    Paskiabi, Farnoush Asghari; Mirzaei, Esmaeil; Amani, Amir; Shokrgozar, Mohammad Ali; Saber, Reza; Faridi-Majidi, Reza

    2015-11-01

    This paper proposes an artificial neural networks approach to finding the effects of electrospinning parameters on alignment of poly(ɛ-caprolactone)/poly(glycolic acid) blend nanofibers. Four electrospinning parameters, namely total polymer concentration, working distance, drum speed and applied voltage were considered as input and the standard deviation of the angles of nanofibers, introducing fibers alignments, as the output of the model. The results demonstrated that drum speed and applied voltage are two critical factors influencing nanofibers alignment, however their effect are entirely interdependent. Their effects also are not independent of other electrospinning parameters. In obtaining aligned electrospun nanofibers, the concentration and working distance can also be effective. In vitro cell culture study on random and aligned nanofibers showed directional growth of cells on aligned fibers.

  2. Network Analysis Tools: from biological networks to clusters and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  3. Quantifying evolvability in small biological networks

    SciTech Connect

    Nemenman, Ilya; Mugler, Andrew; Ziv, Etay; Wiggins, Chris H

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  4. Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns

    DOE PAGESBeta

    Tian, Wenhong; Samatova, Nagiza F.

    2013-01-01

    A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach basedmore » on a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less

  5. Reconstructing Causal Biological Networks through Active Learning

    PubMed Central

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  6. Reconstructing Causal Biological Networks through Active Learning.

    PubMed

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  7. CABIN: Collective Analysis of Biological Interaction Networks

    SciTech Connect

    Singhal, Mudita; Domico, Kelly O.

    2007-06-01

    The importance of understanding biological interaction networks has fueled the development of numerous interaction data generation techniques, databases and prediction tools. However not all prediction tools and databases predict interactions with one hundred percent accuracy. Generation of high confidence interaction networks formulates the first step towards deciphering unknown protein functions, determining protein complexes and inventing drugs. The CABIN: Collective Analysis of Biological Interaction Networks software is an exploratory data analysis tool that enables analysis and integration of interactions evidence obtained from multiple sources, thereby increasing the confidence of computational predictions as well as validating experimental observations. CABIN has been written in JavaTM and is available as a plugin for Cytoscape – an open source network visualization tool.

  8. Biological and Environmental Research Network Requirements

    SciTech Connect

    Balaji, V.; Boden, Tom; Cowley, Dave; Dart, Eli; Dattoria, Vince; Desai, Narayan; Egan, Rob; Foster, Ian; Goldstone, Robin; Gregurick, Susan; Houghton, John; Izaurralde, Cesar; Johnston, Bill; Joseph, Renu; Kleese-van Dam, Kerstin; Lipton, Mary; Monga, Inder; Pritchard, Matt; Rotman, Lauren; Strand, Gary; Stuart, Cory; Tatusova, Tatiana; Tierney, Brian; Thomas, Brian; Williams, Dean N.; Zurawski, Jason

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  9. Gene Ontology-based semantic alignment of biological pathways by evolutionary search.

    PubMed

    Gamalielsson, Jonas; Olsson, Björn

    2008-08-01

    A large number of biological pathways have been elucidated recently, and there is a need for methods to analyze these pathways. One class of methods compares pathways semantically in order to discover parts that are evolutionarily conserved between species or to discover intraspecies similarities. Such methods usually require that the topologies of the pathways being compared are known, i.e. that a query pathway is being aligned to a model pathway. However, sometimes the query only consists of an unordered set of gene products. Previous methods for mapping sets of gene products onto known pathways have not been based on semantic comparison of gene products using ontologies or other abstraction hierarchies. Therefore, we here propose an approach that uses a similarity function defined in Gene Ontology (GO) terms to find semantic alignments when comparing paths in biological pathways where the nodes are gene products. A known pathway graph is used as a model, and an evolutionary algorithm (EA) is used to evolve putative paths from a set of experimentally determined gene products. The method uses a measure of GO term similarity to calculate a match score between gene products, and the fitness value of each candidate path alignment is derived from these match scores. A statistical test is used to assess the significance of evolved alignments. The performance of the method has been tested using regulatory pathways for S. cerevisiae and M. musculus.

  10. A data parallel strategy for aligning multiple biological sequences on multi-core computers.

    PubMed

    Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad

    2013-05-01

    In this paper, we address the large-scale biological sequence alignment problem, which has an increasing demand in computational biology. We employ data parallelism paradigm that is suitable for handling large-scale processing on multi-core computers to achieve a high degree of parallelism. Using the data parallelism paradigm, we propose a general strategy which can be used to speed up any multiple sequence alignment method. We applied five different clustering algorithms in our strategy and implemented rigorous tests on an 8-core computer using four traditional benchmarks and artificially generated sequences. The results show that our multi-core-based implementations can achieve up to 151-fold improvements in execution time while losing 2.19% accuracy on average. The source code of the proposed strategy, together with the test sets used in our analysis, is available on request.

  11. Assessing cognitive alignment in different types of dialog by means of a network model.

    PubMed

    Mehler, Alexander; Lücking, Andy; Menke, Peter

    2012-08-01

    We present a network model of dialog lexica, called TiTAN (Two-layer Time-Aligned Network) series. TiTAN series capture the formation and structure of dialog lexica in terms of serialized graph representations. The dynamic update of TiTAN series is driven by the dialog-inherent timing of turn-taking. The model provides a link between neural, connectionist underpinnings of dialog lexica on the one hand and observable symbolic behavior on the other. On the neural side, priming and spreading activation are modeled in terms of TiTAN networking. On the symbolic side, TiTAN series account for cognitive alignment in terms of the structural coupling of the linguistic representations of dialog partners. This structural stance allows us to apply TiTAN in machine learning of data of dialogical alignment. In previous studies, it has been shown that aligned dialogs can be distinguished from non-aligned ones by means of TiTAN -based modeling. Now, we simultaneously apply this model to two types of dialog: task-oriented, experimentally controlled dialogs on the one hand and more spontaneous, direction giving dialogs on the other. We ask whether it is possible to separate aligned dialogs from non-aligned ones in a type-crossing way. Starting from a recent experiment (Mehler, Lücking, & Menke, 2011a), we show that such a type-crossing classification is indeed possible. This hints at a structural fingerprint left by alignment in networks of linguistic items that are routinely co-activated during conversation.

  12. Structural determinants of criticality in biological networks

    PubMed Central

    Valverde, Sergi; Ohse, Sebastian; Turalska, Malgorzata; West, Bruce J.; Garcia-Ojalvo, Jordi

    2015-01-01

    Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness, and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behavior in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organization can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system toward criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality. PMID:26005422

  13. Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    SciTech Connect

    Lee, Jeonyoon; Stein, Itai Y.; Devoe, Mackenzie E.; Lewis, Diana J.; Lachman, Noa; Buschhorn, Samuel T.; Wardle, Brian L.; Kessler, Seth S.

    2015-02-02

    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of ≈14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network.

  14. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    SciTech Connect

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  15. Review of biological network data and its applications.

    PubMed

    Yu, Donghyeon; Kim, Minsoo; Xiao, Guanghua; Hwang, Tae Hyun

    2013-12-01

    Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

  16. Algorithmic and analytical methods in network biology.

    PubMed

    Koyutürk, Mehmet

    2010-01-01

    During the genomic revolution, algorithmic and analytical methods for organizing, integrating, analyzing, and querying biological sequence data proved invaluable. Today, increasing availability of high-throughput data pertaining to functional states of biomolecules, as well as their interactions, enables genome-scale studies of the cell from a systems perspective. The past decade witnessed significant efforts on the development of computational infrastructure for large-scale modeling and analysis of biological systems, commonly using network models. Such efforts lead to novel insights into the complexity of living systems, through development of sophisticated abstractions, algorithms, and analytical techniques that address a broad range of problems, including the following: (1) inference and reconstruction of complex cellular networks; (2) identification of common and coherent patterns in cellular networks, with a view to understanding the organizing principles and building blocks of cellular signaling, regulation, and metabolism; and (3) characterization of cellular mechanisms that underlie the differences between living systems, in terms of evolutionary diversity, development and differentiation, and complex phenotypes, including human disease. These problems pose significant algorithmic and analytical challenges because of the inherent complexity of the systems being studied; limitations of data in terms of availability, scope, and scale; intractability of resulting computational problems; and limitations of reference models for reliable statistical inference. This article provides a broad overview of existing algorithmic and analytical approaches to these problems, highlights key biological insights provided by these approaches, and outlines emerging opportunities and challenges in computational systems biology.

  17. Algorithmic and analytical methods in network biology

    PubMed Central

    Koyutürk, Mehmet

    2011-01-01

    During genomic revolution, algorithmic and analytical methods for organizing, integrating, analyzing, and querying biological sequence data proved invaluable. Today, increasing availability of high-throughput data pertaining functional states of biomolecules, as well as their interactions, enables genome-scale studies of the cell from a systems perspective. The past decade witnessed significant efforts on the development of computational infrastructure for large-scale modeling and analysis of biological systems, commonly using network models. Such efforts lead to novel insights into the complexity of living systems, through development of sophisticated abstractions, algorithms, and analytical techniques that address a broad range of problems, including the following: (1) inference and reconstruction of complex cellular networks; (2) identification of common and coherent patterns in cellular networks, with a view to understanding the organizing principles and building blocks of cellular signaling, regulation, and metabolism; and (3) characterization of cellular mechanisms that underlie the differences between living systems, in terms of evolutionary diversity, development and differentiation, and complex phenotypes, including human disease. These problems pose significant algorithmic and analytical challenges because of the inherent complexity of the systems being studied; limitations of data in terms of availability, scope, and scale; intractability of resulting computational problems; and limitations of reference models for reliable statistical inference. This article provides a broad overview of existing algorithmic and analytical approaches to these problems, highlights key biological insights provided by these approaches, and outlines emerging opportunities and challenges in computational systems biology. PMID:20836029

  18. Functional model of biological neural networks

    PubMed Central

    2010-01-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks. PMID:22132040

  19. Symbolic Dynamics of Biological Feedback Networks

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Krishna, Sandeep; Jensen, Mogens H.

    2009-02-01

    We formulate general rules for a coarse graining of the dynamics, which we term “symbolic dynamics,” of feedback networks with monotonic interactions, such as most biological modules. Networks which are more complex than simple cyclic structures can exhibit multiple different symbolic dynamics. Nevertheless, we show several examples where the symbolic dynamics is dominated by a single pattern that is very robust to changes in parameters and is consistent with the dynamics being dictated by a single feedback loop. Our analysis provides a method for extracting these dominant loops from short time series, even if they only show transient trajectories.

  20. Self-aligned placement of biologically synthesized Coulomb islands within nanogap electrodes for single electron transistor

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Yoshii, Shigeo; Matsukawa, Nozomu; Nishio, Kazuaki; Tsukamoto, Rikako; Yamashita, Ichiro

    2009-02-01

    Biological synthesis and self-aligned placement of a Coulomb island was demonstrated for single electron transistor (SET) fabrication using a cage-shaped protein, apoferritin. Homogenous ϕ7 nm Co3O4 and In oxide nanoparticles (NPs) were synthesized utilizing the apoferritin cavity as a spatially restricted chemical reaction chamber. Apoferritin accommodating a NP (Co3O4, In oxide) showed specific affinity to a Ti surface and self-aligned itself between a pair of Au/Ti nanogap electrodes. After the protein cage was eliminated, two tunnel junctions between the NP and each electrode had the same gap, thereby forming an ideal SET structure. The produced SET exhibited a Coulomb-staircase/oscillation at 4.2 K.

  1. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks

    PubMed Central

    Papoian, Garegin A.

    2016-01-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament’s resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  2. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.

    PubMed

    Popov, Konstantin; Komianos, James; Papoian, Garegin A

    2016-04-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament's resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  3. MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.

    PubMed

    Popov, Konstantin; Komianos, James; Papoian, Garegin A

    2016-04-01

    Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN), for simulating active network evolution and dynamics (available at www.medyan.org). This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament's resulting super-diffusive behavior in the actomyosin-cross-linker system. We discuss the

  4. The alignment of technology and structure through roles and networks.

    PubMed

    Barley, S R

    1990-03-01

    This paper outlines a role-based approach for conceptualizing and investigating the contention in some previous research that technologies change organizational and occupational structures by transforming patterns of action and interaction. Building on Nadel's theory of social structure, the paper argues that the microsocial dynamics occasioned by new technologies reverberate up levels of analysis in an orderly manner. Specifically, a technology's material attributes are said to have an immediate impact on the nonrelational elements of one or more work roles. These changes, in turn, influence the role's relational elements, which eventually affect the structure of an organization's social networks. Consequently, roles and social networks are held to mediate a technology's structural effects. The theory is illustrated by ethnographic and sociometric data drawn from a comparative field study of the use of traditional and computerized imaging devices in two radiology departments. PMID:10106582

  5. Novel topological descriptors for analyzing biological networks

    PubMed Central

    2010-01-01

    Background Topological descriptors, other graph measures, and in a broader sense, graph-theoretical methods, have been proven as powerful tools to perform biological network analysis. However, the majority of the developed descriptors and graph-theoretical methods does not have the ability to take vertex- and edge-labels into account, e.g., atom- and bond-types when considering molecular graphs. Indeed, this feature is important to characterize biological networks more meaningfully instead of only considering pure topological information. Results In this paper, we put the emphasis on analyzing a special type of biological networks, namely bio-chemical structures. First, we derive entropic measures to calculate the information content of vertex- and edge-labeled graphs and investigate some useful properties thereof. Second, we apply the mentioned measures combined with other well-known descriptors to supervised machine learning methods for predicting Ames mutagenicity. Moreover, we investigate the influence of our topological descriptors - measures for only unlabeled vs. measures for labeled graphs - on the prediction performance of the underlying graph classification problem. Conclusions Our study demonstrates that the application of entropic measures to molecules representing graphs is useful to characterize such structures meaningfully. For instance, we have found that if one extends the measures for determining the structural information content of unlabeled graphs to labeled graphs, the uniqueness of the resulting indices is higher. Because measures to structurally characterize labeled graphs are clearly underrepresented so far, the further development of such methods might be valuable and fruitful for solving problems within biological network analysis. PMID:20565796

  6. Reconstruction of phyletic trees by global alignment of multiple metabolic networks

    PubMed Central

    2013-01-01

    Background In the last decade, a considerable amount of research has been devoted to investigating the phylogenetic properties of organisms from a systems-level perspective. Most studies have focused on the classification of organisms based on structural comparison and local alignment of metabolic pathways. In contrast, global alignment of multiple metabolic networks complements sequence-based phylogenetic analyses and provides more comprehensive information. Results We explored the phylogenetic relationships between microorganisms through global alignment of multiple metabolic networks. The proposed approach integrates sequence homology data with topological information of metabolic networks. In general, compared to recent studies, the resulting trees reflect the living style of organisms as well as classical taxa. Moreover, for phylogenetically closely related organisms, the classification results are consistent with specific metabolic characteristics, such as the light-harvesting systems, fermentation types, and sources of electrons in photosynthesis. Conclusions We demonstrate the usefulness of global alignment of multiple metabolic networks to infer phylogenetic relationships between species. In addition, our exhaustive analysis of microbial metabolic pathways reveals differences in metabolic features between phylogenetically closely related organisms. With the ongoing increase in the number of genomic sequences and metabolic annotations, the proposed approach will help identify phenotypic variations that may not be apparent based solely on sequence-based classification. PMID:23368411

  7. Adaptation and optimization of biological transport networks.

    PubMed

    Hu, Dan; Cai, David

    2013-09-27

    It has been hypothesized that topological structures of biological transport networks are consequences of energy optimization. Motivated by experimental observation, we propose that adaptation dynamics may underlie this optimization. In contrast to the global nature of optimization, our adaptation dynamics responds only to local information and can naturally incorporate fluctuations in flow distributions. The adaptation dynamics minimizes the global energy consumption to produce optimal networks, which may possess hierarchical loop structures in the presence of strong fluctuations in flow distribution. We further show that there may exist a new phase transition as there is a critical open probability of sinks, above which there are only trees for network structures whereas below which loops begin to emerge.

  8. PathBLAST: a tool for alignment of protein interaction networks.

    PubMed

    Kelley, Brian P; Yuan, Bingbing; Lewitter, Fran; Sharan, Roded; Stockwell, Brent R; Ideker, Trey

    2004-07-01

    PathBLAST is a network alignment and search tool for comparing protein interaction networks across species to identify protein pathways and complexes that have been conserved by evolution. The basic method searches for high-scoring alignments between pairs of protein interaction paths, for which proteins of the first path are paired with putative orthologs occurring in the same order in the second path. This technique discriminates between true- and false-positive interactions and allows for functional annotation of protein interaction pathways based on similarity to the network of another, well-characterized species. PathBLAST is now available at http://www.pathblast.org/ as a web-based query. In this implementation, the user specifies a short protein interaction path for query against a target protein-protein interaction network selected from a network database. PathBLAST returns a ranked list of matching paths from the target network along with a graphical view of these paths and the overlap among them. Target protein-protein interaction networks are currently available for Helicobacter pylori, Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. Just as BLAST enables rapid comparison of protein sequences between genomes, tools such as PathBLAST are enabling comparative genomics at the network level.

  9. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  10. A biological walker is faster and better recognized when aligned with body axis observer.

    PubMed

    Barbieri, Guillaume; Fouque, Florent; Pozzo, Thierry; Pérennou, Dominic

    2013-09-01

    The representation of the vertical direction is a compromise between the directions given by the egocentric and allocentric references. Dissociations between these two referentials in the discrimination of a biological walker which typically refers to a model of verticality questions the coordinate system (allocentric and/or egocentric) used to perceive it. With a point-light display paradigm, the characteristics of an artificial walking pattern were manipulated in order to offer to 10 healthy participants (5 men/5 women; 24.6±3.4 years) a female or male locomotion which had to be identified as such. The body position of the viewer (sitting/lying) and the walking pattern viewed (aligned/rotated in relation to the egocentric referential) were crossed. Three indices were analyzed and 200 trials recorded: percentage of correct identification, reaction time and confidence score. This paper confirms the validity of the walking pattern model since the more pronounced the gradient of the walking pattern (as female or male) the better the recognition. Furthermore, whatever the body position, artificial walking patterns were more easily identified when they were aligned with the egocentric referential rather than tilted. The participant gender had no influence on the walking pattern recognition. We conclude that the perception of a biological walker referenced to the vertical is exclusively improved by a representation of the spatial information in an egocentric coordinate system. PMID:23768527

  11. Robust Multi-Network Clustering via Joint Cross-Domain Cluster Alignment

    PubMed Central

    Liu, Rui; Cheng, Wei; Tong, Hanghang; Wang, Wei; Zhang, Xiang

    2016-01-01

    Network clustering is an important problem that has recently drawn a lot of attentions. Most existing work focuses on clustering nodes within a single network. In many applications, however, there exist multiple related networks, in which each network may be constructed from a different domain and instances in one domain may be related to instances in other domains. In this paper, we propose a robust algorithm, MCA, for multi-network clustering that takes into account cross-domain relationships between instances. MCA has several advantages over the existing single network clustering methods. First, it is able to detect associations between clusters from different domains, which, however, is not addressed by any existing methods. Second, it achieves more consistent clustering results on multiple networks by leveraging the duality between clustering individual networks and inferring cross-network cluster alignment. Finally, it provides a multi-network clustering solution that is more robust to noise and errors. We perform extensive experiments on a variety of real and synthetic networks to demonstrate the effectiveness and efficiency of MCA. PMID:27239167

  12. Learning and coding in biological neural networks

    NASA Astrophysics Data System (ADS)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  13. New scaling relation for information transfer in biological networks.

    PubMed

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-12-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781-4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös-Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883

  14. New scaling relation for information transfer in biological networks.

    PubMed

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-12-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781-4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös-Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties.

  15. Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers†

    PubMed Central

    Wang, Xianfeng; Chen, Yi Charlie

    2015-01-01

    Self-assembled synthetic materials are typically disordered, and controlling the alignment of such materials at the nanometer scale may be important for a variety of biological applications. In this study, we have applied directional freeze-drying, for the first time, to develop well aligned three dimensional (3D) nanofibrous materials using amino acid like L-phenylalanine (Phe). 3D free-standing Phe nanofibrous monoliths have been successfully prepared using directional freeze-drying, and have presented a unique hierarchical structure with well-aligned nanofibers at the nanometer scale and an ordered compartmental architecture at the micrometer scale. We have found that the physical properties (e.g. nanofiber density and alignment) of the nanofibrous materials could be tuned by controlling the concentration and pH of the Phe solution and the freezing temperature. Moreover, the same strategy (i.e. directional freeze-drying) has been successfully applied to assemble peptide nanofibrous materials using a dipeptide (i.e. diphenylalanine), and to assemble Phe-based nanofibrous composites using polyethylenimine and poly(vinyl alcohol). The tunability of the nanofibrous structures together with the biocompatibility of Phe may make these 3D nanofibrous materials suitable for a variety of applications, including biosensor templates, tissue scaffolds, filtration membranes, and absorbents. The strategy reported here is likely applicable to create aligned nanofibrous structures using other amino acids, peptides, and polymers. PMID:25621167

  16. Alignment of paired molecules of C60 within a hexagonal platform networked through hydrogen-bonds.

    PubMed

    Hisaki, Ichiro; Nakagawa, Shoichi; Sato, Hiroyasu; Tohnai, Norimitsu

    2016-07-28

    We demonstrate, for the first time, that a hydrogen-bonded low-density organic framework can be applied as a platform to achieve periodic alignment of paired molecules of C60, which is the smallest example of a finite-numbered cluster of C60. The framework is a layered assembly of a hydrogen-bonded 2D hexagonal network (LA-H-HexNet) composed of dodecadehydrotribenzo[18]annulene derivatives. PMID:27417325

  17. Langevin dynamics modeling of the water diffusion tensor in partially aligned collagen networks

    NASA Astrophysics Data System (ADS)

    Powell, Sean K.; Momot, Konstantin I.

    2012-09-01

    In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0∘ to 90∘. The corresponding diffusion ellipsoids are prolate for θ<θMA, spherical for θ≈θMA, and oblate for θ>θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.

  18. Noncommutative Biology: Sequential Regulation of Complex Networks.

    PubMed

    Letsou, William; Cai, Long

    2016-08-01

    Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps. PMID:27560383

  19. Noncommutative Biology: Sequential Regulation of Complex Networks

    PubMed Central

    Letsou, William; Cai, Long

    2016-01-01

    Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps. PMID:27560383

  20. Neural networks for determining protein specificity and multiple alignment of binding sites

    SciTech Connect

    Heumann, J.M.; Lapedes, A.S.; Stormo, G.D.

    1994-12-31

    We use a quantitative definition of specificity to develop a neural network for the identification of common protein binding sites in a collection of unaligned DNA fragments. We demonstrate the equivalence of the method to maximizing Information Content of the aligned sites when simple models of the binding energy and the genome are employed. The network method subsumes those simple models and is capable of working with more complicated ones. This is demonstrated using a Markov model of the E. coli genome and a sampling method to approximate the partition function. A variation of Gibbs sampling aids in avoiding local minima.

  1. Increasing the precision of orthology-based complex prediction through network alignment

    PubMed Central

    Aloy, Patrick

    2014-01-01

    Macromolecular assemblies play an important role in almost all cellular processes. However, despite several large-scale studies, our current knowledge about protein complexes is still quite limited, thus advocating the use of in silico predictions to gather information on complex composition in model organisms. Since protein–protein interactions present certain constraints on the functional divergence of macromolecular assemblies during evolution, it is possible to predict complexes based on orthology data. Here, we show that incorporating interaction information through network alignment significantly increases the precision of orthology-based complex prediction. Moreover, we performed a large-scale in silico screen for protein complexes in human, yeast and fly, through the alignment of hundreds of known complexes to whole organism interactomes. Systematic comparison of the resulting network alignments to all complexes currently known in those species revealed many conserved complexes, as well as several novel complex components. In addition to validating our predictions using orthogonal data, we were able to assign specific functional roles to the predicted complexes. In several cases, the incorporation of interaction data through network alignment allowed to distinguish real complex components from other orthologous proteins. Our analyses indicate that current knowledge of yeast protein complexes exceeds that in other organisms and that predicting complexes in fly based on human and yeast data is complementary rather than redundant. Lastly, assessing the conservation of protein complexes of the human pathogen Mycoplasma pneumoniae, we discovered that its complexes repertoire is different from that of eukaryotes, suggesting new points of therapeutic intervention, whereas targeting the pathogen’s Restriction enzyme complex might lead to adverse effects due to its similarity to ATP-dependent metalloproteases in the human host. PMID:24918034

  2. Topological implications of negative curvature for biological and social networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; DasGupta, Bhaskar; Mobasheri, Nasim

    2014-03-01

    Network measures that reflect the most salient properties of complex large-scale networks are in high demand in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk in biological networks, and to the existence of central, influential neighborhoods in both biological and social networks.

  3. Improving accountability through alignment: the role of academic health science centres and networks in England

    PubMed Central

    2014-01-01

    Background As in many countries around the world, there are high expectations on academic health science centres and networks in England to provide high-quality care, innovative research, and world-class education, while also supporting wealth creation and economic growth. Meeting these expectations increasingly depends on partnership working between university medical schools and teaching hospitals, as well as other healthcare providers. However, academic-clinical relationships in England are still characterised by the “unlinked partners” model, whereby universities and their partner teaching hospitals are neither fiscally nor structurally linked, creating bifurcating accountabilities to various government and public agencies. Discussion This article focuses on accountability relationships in universities and teaching hospitals, as well as other healthcare providers that form core constituent parts of academic health science centres and networks. The authors analyse accountability for the tripartite mission of patient care, research, and education, using a four-fold typology of accountability relationships, which distinguishes between hierarchical (bureaucratic) accountability, legal accountability, professional accountability, and political accountability. Examples from North West London suggest that a number of mechanisms can be used to improve accountability for the tripartite mission through alignment, but that the simple creation of academic health science centres and networks is probably not sufficient. Summary At the heart of the challenge for academic health science centres and networks is the separation of accountabilities for patient care, research, and education in different government departments. Given that a fundamental top-down system redesign is now extremely unlikely, local academic and clinical leaders face the challenge of aligning their institutions as a matter of priority in order to improve accountability for the tripartite mission from

  4. OWL reasoning framework over big biological knowledge network.

    PubMed

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.

  5. Computer-Based Semantic Network in Molecular Biology: A Demonstration.

    ERIC Educational Resources Information Center

    Callman, Joshua L.; And Others

    This paper analyzes the hardware and software features that would be desirable in a computer-based semantic network system for representing biology knowledge. It then describes in detail a prototype network of molecular biology knowledge that has been developed using Filevision software and a Macintosh computer. The prototype contains about 100…

  6. Analyzing large biological datasets with association networks

    SciTech Connect

    Karpinets, T. V.; Park, B. H.; Uberbacher, E. C.

    2012-05-25

    Due to advances in high throughput biotechnologies biological information is being collected in databases at an amazing rate, requiring novel computational approaches for timely processing of the collected data into new knowledge. In this study we address this problem by developing a new approach for discovering modular structure, relationships and regularities in complex data. These goals are achieved by converting records of biological annotations of an object, like organism, gene, chemical, sequence, into networks (Anets) and rules (Arules) of the associated annotations. Anets are based on similarity of annotation profiles of objects and can be further analyzed and visualized providing a compact birds-eye view of most significant relationships in the collected data and a way of their clustering and classification. Arules are generated by Apriori considering each record of annotations as a transaction and augmenting each annotation item by its type. Arules provide a way to validate relationships discovered by Anets producing comprehensive statistics on frequently associated annotations and specific confident relationships among them. A combination of Anets and Arules represents condensed information on associations among the collected data, helping to discover new knowledge and generate hypothesis. As an example we have applied the approach to analyze bacterial metadata from the Genomes OnLine Database. The analysis allowed us to produce a map of sequenced bacterial and archaeal organisms based on their genomic, metabolic and physiological characteristics with three major clusters of metadata representing bacterial pathogens, environmental isolates, and plant symbionts. A signature profile of clustered annotations of environmental bacteria if compared with pathogens linked the aerobic respiration, the high GC content and the large genome size to diversity of metabolic activities and physiological features of the organisms.

  7. Biology Question Generation from a Semantic Network

    NASA Astrophysics Data System (ADS)

    Zhang, Lishan

    Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions. To boost students' learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student's current competence so that a suitable question could be selected based on the student's previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group. To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators. A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from

  8. GeneWeaver: data driven alignment of cross-species genomics in biology and disease

    PubMed Central

    Baker, Erich; Bubier, Jason A.; Reynolds, Timothy; Langston, Michael A.; Chesler, Elissa J.

    2016-01-01

    The GeneWeaver data and analytics website (www.geneweaver.org) is a publically available resource for storing, curating and analyzing sets of genes from heterogeneous data sources. The system enables discovery of relationships among genes, variants, traits, drugs, environments, anatomical structures and diseases implicitly found through gene set intersections. Since the previous review in the 2012 Nucleic Acids Research Database issue, GeneWeaver's underlying analytics platform has been enhanced, its number and variety of publically available gene set data sources has been increased, and its advanced search mechanisms have been expanded. In addition, its interface has been redesigned to take advantage of flexible web services, programmatic data access, and a refined data model for handling gene network data in addition to its original emphasis on gene set data. By enumerating the common and distinct biological molecules associated with all subsets of curated or user submitted groups of gene sets and gene networks, GeneWeaver empowers users with the ability to construct data driven descriptions of shared and unique biological processes, diseases and traits within and across species. PMID:26656951

  9. GeneWeaver: data driven alignment of cross-species genomics in biology and disease.

    PubMed

    Baker, Erich; Bubier, Jason A; Reynolds, Timothy; Langston, Michael A; Chesler, Elissa J

    2016-01-01

    The GeneWeaver data and analytics website (www.geneweaver.org) is a publically available resource for storing, curating and analyzing sets of genes from heterogeneous data sources. The system enables discovery of relationships among genes, variants, traits, drugs, environments, anatomical structures and diseases implicitly found through gene set intersections. Since the previous review in the 2012 Nucleic Acids Research Database issue, GeneWeaver's underlying analytics platform has been enhanced, its number and variety of publically available gene set data sources has been increased, and its advanced search mechanisms have been expanded. In addition, its interface has been redesigned to take advantage of flexible web services, programmatic data access, and a refined data model for handling gene network data in addition to its original emphasis on gene set data. By enumerating the common and distinct biological molecules associated with all subsets of curated or user submitted groups of gene sets and gene networks, GeneWeaver empowers users with the ability to construct data driven descriptions of shared and unique biological processes, diseases and traits within and across species.

  10. Discovery of biological networks from diverse functional genomic data

    PubMed Central

    Myers, Chad L; Robson, Drew; Wible, Adam; Hibbs, Matthew A; Chiriac, Camelia; Theesfeld, Chandra L; Dolinski, Kara; Troyanskaya, Olga G

    2005-01-01

    We have developed a general probabilistic system for query-based discovery of pathway-specific networks through integration of diverse genome-wide data. This framework was validated by accurately recovering known networks for 31 biological processes in Saccharomyces cerevisiae and experimentally verifying predictions for the process of chromosomal segregation. Our system, bioPIXIE, a public, comprehensive system for integration, analysis, and visualization of biological network predictions for S. cerevisiae, is freely accessible over the worldwide web. PMID:16420673

  11. Mining biological networks from full-text articles.

    PubMed

    Czarnecki, Jan; Shepherd, Adrian J

    2014-01-01

    The study of biological networks is playing an increasingly important role in the life sciences. Many different kinds of biological system can be modelled as networks; perhaps the most important examples are protein-protein interaction (PPI) networks, metabolic pathways, gene regulatory networks, and signalling networks. Although much useful information is easily accessible in publicly databases, a lot of extra relevant data lies scattered in numerous published papers. Hence there is a pressing need for automated text-mining methods capable of extracting such information from full-text articles. Here we present practical guidelines for constructing a text-mining pipeline from existing code and software components capable of extracting PPI networks from full-text articles. This approach can be adapted to tackle other types of biological network.

  12. Topological properties of robust biological and computational networks

    PubMed Central

    Navlakha, Saket; He, Xin; Faloutsos, Christos; Bar-Joseph, Ziv

    2014-01-01

    Network robustness is an important principle in biology and engineering. Previous studies of global networks have identified both redundancy and sparseness as topological properties used by robust networks. By focusing on molecular subnetworks, or modules, we show that module topology is tightly linked to the level of environmental variability (noise) the module expects to encounter. Modules internal to the cell that are less exposed to environmental noise are more connected and less robust than external modules. A similar design principle is used by several other biological networks. We propose a simple change to the evolutionary gene duplication model which gives rise to the rich range of module topologies observed within real networks. We apply these observations to evaluate and design communication networks that are specifically optimized for noisy or malicious environments. Combined, joint analysis of biological and computational networks leads to novel algorithms and insights benefiting both fields. PMID:24789562

  13. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems

    PubMed Central

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K.; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com PMID:25887162

  14. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems.

    PubMed

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com

  15. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  16. A unified biological modeling and simulation system for analyzing biological reaction networks

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2013-12-01

    In order to understand the biological response in a cell, a researcher has to create a biological network and design an experiment to prove it. Although biological knowledge has been accumulated, we still don't have enough biological models to explain complex biological phenomena. If a new biological network is to be created, integrated modeling software supporting various biological models is required. In this research, we design and implement a unified biological modeling and simulation system, called ezBioNet, for analyzing biological reaction networks. ezBioNet designs kinetic and Boolean network models and simulates the biological networks using a server-side simulation system with Object Oriented Parallel Accelerator Library framework. The main advantage of ezBioNet is that a user can create a biological network by using unified modeling canvas of kinetic and Boolean models and perform massive simulations, including Ordinary Differential Equation analyses, sensitivity analyses, parameter estimates and Boolean network analysis. ezBioNet integrates useful biological databases, including the BioModels database, by connecting European Bioinformatics Institute servers through Web services Application Programming Interfaces. In addition, we employ Eclipse Rich Client Platform, which is a powerful modularity framework to allow various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool and a simulation system for understanding the control mechanism by monitoring the change of each component in a biological network. The simulation result can be managed and visualized on ezBioNet, which is available free of charge at http://ezbionet.sourceforge.net or http://ezbionet.cbnu.ac.kr.

  17. Identification of Important Nodes in Directed Biological Networks: A Network Motif Approach

    PubMed Central

    Wang, Pei; Lü, Jinhu; Yu, Xinghuo

    2014-01-01

    Identification of important nodes in complex networks has attracted an increasing attention over the last decade. Various measures have been proposed to characterize the importance of nodes in complex networks, such as the degree, betweenness and PageRank. Different measures consider different aspects of complex networks. Although there are numerous results reported on undirected complex networks, few results have been reported on directed biological networks. Based on network motifs and principal component analysis (PCA), this paper aims at introducing a new measure to characterize node importance in directed biological networks. Investigations on five real-world biological networks indicate that the proposed method can robustly identify actually important nodes in different networks, such as finding command interneurons, global regulators and non-hub but evolutionary conserved actually important nodes in biological networks. Receiver Operating Characteristic (ROC) curves for the five networks indicate remarkable prediction accuracy of the proposed measure. The proposed index provides an alternative complex network metric. Potential implications of the related investigations include identifying network control and regulation targets, biological networks modeling and analysis, as well as networked medicine. PMID:25170616

  18. Organization principles of biological networks: An explorative study.

    PubMed

    Kohestani, Havva; Giuliani, Alessandro

    2016-03-01

    The definition of general topological principles allowing for graph characterization is an important pre-requisite for investigating structure-function relationships in biological networks. Here we approached the problem by means of an explorative, data-driven strategy, building upon a size-balanced data set made of around 200 distinct biological networks from seven functional classes and simulated networks coming from three mathematical graph models. A clear link between topological structure and biological function did emerge in terms of class membership prediction (average 67% of correct predictions, p<0.0001) with a varying degree of 'peculiarity' across classes going from a very low (25%) recognition efficiency for neural and brain networks to the extremely high (80%) peculiarity of amino acid-amino acid interaction (AAI) networks. We recognized four main dimensions (principal components) as main organization principles of biological networks. These components allowed for an efficient description of network architectures and for the identification of 'not-physiological' (in this case cancer metabolic networks acting as test set) wiring patterns. We highlighted as well the need of developing new theoretical generative models for biological networks overcoming the limitations of present mathematical graph idealizations. PMID:26845173

  19. A Biologically Inspired Network Design Model

    PubMed Central

    Zhang, Xiaoge; Adamatzky, Andrew; Chan, Felix T.S.; Deng, Yong; Yang, Hai; Yang, Xin-She; Tsompanas, Michail-Antisthenis I.; Sirakoulis, Georgios Ch.; Mahadevan, Sankaran

    2015-01-01

    A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach. PMID:26041508

  20. Learning biological network using mutual information and conditional independence

    PubMed Central

    2010-01-01

    Background Biological networks offer us a new way to investigate the interactions among different components and address the biological system as a whole. In this paper, a reverse-phase protein microarray (RPPM) is used for the quantitative measurement of proteomic responses. Results To discover the signaling pathway responsive to RPPM, a new structure learning algorithm of Bayesian networks is developed based on mutual Information, conditional independence, and graph immorality. Trusted biology networks are thus predicted by the new approach. As an application example, we investigate signaling networks of ataxia telangiectasis mutation (ATM). The study was carried out at different time points under different dosages for cell lines with and without gene transfection. To validate the performance ofthe proposed algorithm, comparison experiments were also implemented using three well-known networks. From the experiment results, our approach produces more reliable networks with a relatively small number of wrong connection especially in mid-size networks. By using the proposed method, we predicted different networks for ATM under different doses of radiation treatment, and those networks were compared with results from eight different protein protein interaction (PPI) databases. Conclusions By using a new protein microarray technology in combination with a new computational framework, we demonstrate an application of the methodology to the study of biological networks of ATM cell lines under low dose ionization radiation. PMID:20438656

  1. SBEToolbox: A Matlab Toolbox for Biological Network Analysis.

    PubMed

    Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J

    2013-01-01

    We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.

  2. Biological solutions to transport network design.

    PubMed

    Bebber, Daniel P; Hynes, Juliet; Darrah, Peter R; Boddy, Lynne; Fricker, Mark D

    2007-09-22

    Transport networks are vital components of multicellular organisms, distributing nutrients and removing waste products. Animal and plant transport systems are branching trees whose architecture is linked to universal scaling laws in these organisms. In contrast, many fungi form reticulated mycelia via the branching and fusion of thread-like hyphae that continuously adapt to the environment. Fungal networks have evolved to explore and exploit a patchy environment, rather than ramify through a three-dimensional organism. However, there has been no explicit analysis of the network structures formed, their dynamic behaviour nor how either impact on their ecological function. Using the woodland saprotroph Phanerochaete velutina, we show that fungal networks can display both high transport capacity and robustness to damage. These properties are enhanced as the network grows, while the relative cost of building the network decreases. Thus, mycelia achieve the seemingly competing goals of efficient transport and robustness, with decreasing relative investment, by selective reinforcement and recycling of transport pathways. Fungal networks demonstrate that indeterminate, decentralized systems can yield highly adaptive networks. Understanding how these relatively simple organisms have found effective transport networks through a process of natural selection may inform the design of man-made networks. PMID:17623638

  3. Biological solutions to transport network design.

    PubMed

    Bebber, Daniel P; Hynes, Juliet; Darrah, Peter R; Boddy, Lynne; Fricker, Mark D

    2007-09-22

    Transport networks are vital components of multicellular organisms, distributing nutrients and removing waste products. Animal and plant transport systems are branching trees whose architecture is linked to universal scaling laws in these organisms. In contrast, many fungi form reticulated mycelia via the branching and fusion of thread-like hyphae that continuously adapt to the environment. Fungal networks have evolved to explore and exploit a patchy environment, rather than ramify through a three-dimensional organism. However, there has been no explicit analysis of the network structures formed, their dynamic behaviour nor how either impact on their ecological function. Using the woodland saprotroph Phanerochaete velutina, we show that fungal networks can display both high transport capacity and robustness to damage. These properties are enhanced as the network grows, while the relative cost of building the network decreases. Thus, mycelia achieve the seemingly competing goals of efficient transport and robustness, with decreasing relative investment, by selective reinforcement and recycling of transport pathways. Fungal networks demonstrate that indeterminate, decentralized systems can yield highly adaptive networks. Understanding how these relatively simple organisms have found effective transport networks through a process of natural selection may inform the design of man-made networks.

  4. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  5. Controllability and observability of Boolean networks arising from biology.

    PubMed

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  6. Rigidity and flexibility of biological networks.

    PubMed

    Gáspár, Merse E; Csermely, Peter

    2012-11-01

    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks. PMID:23165349

  7. Network benchmarking: a happy marriage between systems and synthetic biology.

    PubMed

    Minty, Jeremy J; Varedi K, S Marjan; Nina Lin, Xiaoxia

    2009-03-27

    In their new Cell paper, Cantone et al. (2009) present exciting results on constructing and utilizing a small synthetic gene regulatory network in yeast that draws from two rapidly developing fields of systems and synthetic biology.

  8. Biological impacts and context of network theory.

    PubMed

    Almaas, Eivind

    2007-05-01

    Many complex systems can be represented and analyzed as networks, and examples that have benefited from this approach span the natural sciences. For instance, we now know that systems as disparate as the World Wide Web, the Internet, scientific collaborations, food webs, protein interactions and metabolism all have common features in their organization, the most salient of which are their scale-free connectivity distributions and their small-world behavior. The recent availability of large-scale datasets that span the proteome or metabolome of an organism have made it possible to elucidate some of the organizational principles and rules that govern their function, robustness and evolution. We expect that combining the currently separate layers of information from gene regulatory networks, signal transduction networks, protein interaction networks and metabolic networks will dramatically enhance our understanding of cellular function and dynamics.

  9. Identification of the connections in biologically inspired neural networks

    NASA Technical Reports Server (NTRS)

    Demuth, H.; Leung, K.; Beale, M.; Hicklin, J.

    1990-01-01

    We developed an identification method to find the strength of the connections between neurons from their behavior in small biologically-inspired artificial neural networks. That is, given the network external inputs and the temporal firing pattern of the neurons, we can calculate a solution for the strengths of the connections between neurons and the initial neuron activations if a solution exists. The method determines directly if there is a solution to a particular neural network problem. No training of the network is required. It should be noted that this is a first pass at the solution of a difficult problem. The neuron and network models chosen are related to biology but do not contain all of its complexities, some of which we hope to add to the model in future work. A variety of new results have been obtained. First, the method has been tailored to produce connection weight matrix solutions for networks with important features of biological neural (bioneural) networks. Second, a computationally efficient method of finding a robust central solution has been developed. This later method also enables us to find the most consistent solution in the presence of noisy data. Prospects of applying our method to identify bioneural network connections are exciting because such connections are almost impossible to measure in the laboratory. Knowledge of such connections would facilitate an understanding of bioneural networks and would allow the construction of the electronic counterparts of bioneural networks on very large scale integrated (VLSI) circuits.

  10. Toward Network Biology in E. coli Cell.

    PubMed

    Mori, Hirotada; Takeuchi, Rikiya; Otsuka, Yuta; Bowden, Steven; Yokoyama, Katsushi; Muto, Ai; Libourel, Igor; Wanner, Barry L

    2015-01-01

    E. coli has been a critically important model research organism for more than 50 years, particularly in molecular biology. In 1997, the E. coli draft genome sequence was published. Post-genomic techniques and resources were then developed that allowed E. coli to become a model organism for systems biology. Progress made since publication of the E. coli genome sequence will be summarized.

  11. The Structure and Function of Biological Networks

    ERIC Educational Resources Information Center

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  12. Epigenetics and Why Biological Networks are More Controllable than Expected

    NASA Astrophysics Data System (ADS)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  13. Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks.

    PubMed

    Munier, Pierre; Gordeyeva, Korneliya; Bergström, Lennart; Fall, Andreas B

    2016-05-01

    We show that unidirectional freezing of nanocellulose dispersions produces cellular foams with high alignment of the rod-like nanoparticles in the freezing direction. Quantification of the alignment in the long direction of the tubular pores with X-ray diffraction shows high orientation of cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) at particle concentrations above 0.2 wt % (CNC) and 0.08 wt % (CNF). Aggregation of CNF by pH decrease or addition of salt significantly reduces the particle orientation; in contrast, exceeding the concentration where particles gel by mobility constraints had a relatively small effect on the orientation. The dense nanocellulose network formed by directional freezing was sufficiently strong to resist melting. The formed hydrogels were birefringent and displayed anisotropic laser diffraction patterns, suggesting preserved nanocellulose alignment and cellular structure. Nondirectional freezing of the hydrogels followed by sublimation generates foams with a pore structure and nanocellulose alignment resembling the structure of the initial directional freezing.

  14. Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks.

    PubMed

    Munier, Pierre; Gordeyeva, Korneliya; Bergström, Lennart; Fall, Andreas B

    2016-05-01

    We show that unidirectional freezing of nanocellulose dispersions produces cellular foams with high alignment of the rod-like nanoparticles in the freezing direction. Quantification of the alignment in the long direction of the tubular pores with X-ray diffraction shows high orientation of cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) at particle concentrations above 0.2 wt % (CNC) and 0.08 wt % (CNF). Aggregation of CNF by pH decrease or addition of salt significantly reduces the particle orientation; in contrast, exceeding the concentration where particles gel by mobility constraints had a relatively small effect on the orientation. The dense nanocellulose network formed by directional freezing was sufficiently strong to resist melting. The formed hydrogels were birefringent and displayed anisotropic laser diffraction patterns, suggesting preserved nanocellulose alignment and cellular structure. Nondirectional freezing of the hydrogels followed by sublimation generates foams with a pore structure and nanocellulose alignment resembling the structure of the initial directional freezing. PMID:27071304

  15. bioDBnet: the biological database network

    PubMed Central

    Mudunuri, Uma; Che, Anney; Yi, Ming; Stephens, Robert M.

    2009-01-01

    Summary: bioDBnet is an online web resource that provides interconnected access to many types of biological databases. It has integrated many of the most commonly used biological databases and in its current state has 153 database identifiers (nodes) covering all aspects of biology including genes, proteins, pathways and other biological concepts. bioDBnet offers various ways to work with these databases including conversions, extensive database reports, custom navigation and has various tools to enhance the quality of the results. Importantly, the access to bioDBnet is updated regularly, providing access to the most recent releases of each individual database. Availability: http://biodbnet.abcc.ncifcrf.gov Contact: stephensr@mail.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online PMID:19129209

  16. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    DOEpatents

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William; Yegian, Derek; Earnest, Thomas N.; Jaklevic, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2005-07-19

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  17. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    DOEpatents

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William F.; Yegian, Derek T.; Earnest, Thomas N.; Jaklevich, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2007-09-25

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  18. Minimum network constraint on reverse engineering to develop biological regulatory networks.

    PubMed

    Shao, Bin; Wu, Jiayi; Tian, Binghui; Ouyang, Qi

    2015-09-01

    Reconstructing the topological structure of biological regulatory networks from microarray expression data or data of protein expression profiles is one of major tasks in systems biology. In recent years, various mathematical methods have been developed to meet this task. Here, based on our previously reported reverse engineering method, we propose a new constraint, i.e., the minimum network constraint, to facilitate the reconstruction of biological networks. Three well studied regulatory networks (the budding yeast cell cycle network, the fission yeast cell cycle network, and the SOS network of Escherichia coli) were used as the test sets to verify the performance of this method. Numerical results show that the biological networks prefer to use the minimal networks to fulfill their functional tasks, making it possible to apply minimal network criteria in the network reconstruction process. Two scenarios were considered in the reconstruction process: generating data using different initial conditions; and generating data from knock out and over-expression experiments. In both cases, network structures are revealed faithfully in a few steps using our approach.

  19. Reduction techniques for network validation in systems biology.

    PubMed

    Ackermann, J; Einloft, J; Nöthen, J; Koch, I

    2012-12-21

    The rapidly increasing amount of experimental biological data enables the development of large and complex, often genome-scale models of molecular systems. The simulation and analysis of these computer models of metabolism, signal transduction, and gene regulation are standard applications in systems biology, but size and complexity of the networks limit the feasibility of many methods. Reduction of networks provides a hierarchical view of complex networks and gives insight knowledge into their coarse-grained structural properties. Although network reduction has been extensively studied in computer science, adaptation and exploration of these concepts are still lacking for the analysis of biochemical reaction systems. Using the Petri net formalism, we describe two local network structures, common transition pairs and minimal transition invariants. We apply these two structural elements for network reduction. The reduction preserves the CTI-property (covered by transition invariants), which is an important feature for completeness of biological models. We demonstrate this concept for a selection of metabolic networks including a benchmark network of Saccharomyces cerevisiae whose straightforward treatment is not yet feasible even on modern supercomputers. PMID:22982289

  20. Analysis and logical modeling of biological signaling transduction networks

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  1. Biological impacts and context of network theory

    SciTech Connect

    Almaas, E

    2007-01-05

    Many complex systems can be represented and analyzed as networks, and examples that have benefited from this approach span the natural sciences. For instance, we now know that systems as disparate as the World-Wide Web, the Internet, scientific collaborations, food webs, protein interactions and metabolism all have common features in their organization, the most salient of which are their scale-free connectivity distributions and their small-world behavior. The recent availability of large scale datasets that span the proteome or metabolome of an organism have made it possible to elucidate some of the organizational principles and rules that govern their function, robustness and evolution. We expect that combining the currently separate layers of information from gene regulatory-, signal transduction-, protein interaction- and metabolic networks will dramatically enhance our understanding of cellular function and dynamics.

  2. Toward modeling a dynamic biological neural network.

    PubMed

    Ross, M D; Dayhoff, J E; Mugler, D H

    1990-01-01

    Mammalian macular endorgans are linear bioaccelerometers located in the vestibular membranous labyrinth of the inner ear. In this paper, the organization of the endorgan is interpreted on physical and engineering principles. This is a necessary prerequisite to mathematical and symbolic modeling of information processing by the macular neural network. Mathematical notations that describe the functioning system were used to produce a novel, symbolic model. The model is six-tiered and is constructed to mimic the neural system. Initial simulations show that the network functions best when some of the detecting elements (type I hair cells) are excitatory and others (type II hair cells) are weakly inhibitory. The simulations also illustrate the importance of disinhibition of receptors located in the third tier in shaping nerve discharge patterns at the sixth tier in the model system. PMID:11538873

  3. Classifying pairs with trees for supervised biological network inference.

    PubMed

    Schrynemackers, Marie; Wehenkel, Louis; Babu, M Madan; Geurts, Pierre

    2015-08-01

    Networks are ubiquitous in biology, and computational approaches have been largely investigated for their inference. In particular, supervised machine learning methods can be used to complete a partially known network by integrating various measurements. Two main supervised frameworks have been proposed: the local approach, which trains a separate model for each network node, and the global approach, which trains a single model over pairs of nodes. Here, we systematically investigate, theoretically and empirically, the exploitation of tree-based ensemble methods in the context of these two approaches for biological network inference. We first formalize the problem of network inference as a classification of pairs, unifying in the process homogeneous and bipartite graphs and discussing two main sampling schemes. We then present the global and the local approaches, extending the latter for the prediction of interactions between two unseen network nodes, and discuss their specializations to tree-based ensemble methods, highlighting their interpretability and drawing links with clustering techniques. Extensive computational experiments are carried out with these methods on various biological networks that clearly highlight that these methods are competitive with existing methods. PMID:26008881

  4. Classifying pairs with trees for supervised biological network inference.

    PubMed

    Schrynemackers, Marie; Wehenkel, Louis; Babu, M Madan; Geurts, Pierre

    2015-08-01

    Networks are ubiquitous in biology, and computational approaches have been largely investigated for their inference. In particular, supervised machine learning methods can be used to complete a partially known network by integrating various measurements. Two main supervised frameworks have been proposed: the local approach, which trains a separate model for each network node, and the global approach, which trains a single model over pairs of nodes. Here, we systematically investigate, theoretically and empirically, the exploitation of tree-based ensemble methods in the context of these two approaches for biological network inference. We first formalize the problem of network inference as a classification of pairs, unifying in the process homogeneous and bipartite graphs and discussing two main sampling schemes. We then present the global and the local approaches, extending the latter for the prediction of interactions between two unseen network nodes, and discuss their specializations to tree-based ensemble methods, highlighting their interpretability and drawing links with clustering techniques. Extensive computational experiments are carried out with these methods on various biological networks that clearly highlight that these methods are competitive with existing methods.

  5. Course 10: Three Lectures on Biological Networks

    NASA Astrophysics Data System (ADS)

    Magnasco, M. O.

    1 Enzymatic networks. Proofreading knots: How DNA topoisomerases disentangle DNA 1.1 Length scales and energy scales 1.2 DNA topology 1.3 Topoisomerases 1.4 Knots and supercoils 1.5 Topological equilibrium 1.6 Can topoisomerases recognize topology? 1.7 Proposal: Kinetic proofreading 1.8 How to do it twice 1.9 The care and proofreading of knots 1.10 Suppression of supercoils 1.11 Problems and outlook 1.12 Disquisition 2 Gene expression networks. Methods for analysis of DNA chip experiments 2.1 The regulation of gene expression 2.2 Gene expression arrays 2.3 Analysis of array data 2.4 Some simplifying assumptions 2.5 Probeset analysis 2.6 Discussion 3 Neural and gene expression networks: Song-induced gene expression in the canary brain 3.1 The study of songbirds 3.2 Canary song 3.3 ZENK 3.4 The blush 3.5 Histological analysis 3.6 Natural vs. artificial 3.7 The Blush II: gAP 3.8 Meditation

  6. Topology and static response of interaction networks in molecular biology.

    PubMed

    Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel

    2006-02-22

    We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace-Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason-Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230

  7. Topology and static response of interaction networks in molecular biology

    PubMed Central

    Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel

    2005-01-01

    We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace–Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason–Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230

  8. BiologicalNetworks 2.0 - an integrative view of genome biology data

    PubMed Central

    2010-01-01

    Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other) and their relations (interactions, co-expression, co-citations, and other). The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org. PMID:21190573

  9. Non-Hermitian localization in biological networks

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Hatano, Naomichi; Nelson, David R.

    2016-04-01

    We explore the spectra and localization properties of the N -site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N , the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90∘ rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.

  10. Non-Hermitian localization in biological networks.

    PubMed

    Amir, Ariel; Hatano, Naomichi; Nelson, David R

    2016-04-01

    We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N, the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90^{∘} rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns. PMID:27176315

  11. Discriminating direct and indirect connectivities in biological networks.

    PubMed

    Kang, Taek; Moore, Richard; Li, Yi; Sontag, Eduardo; Bleris, Leonidas

    2015-10-13

    Reverse engineering of biological pathways involves an iterative process between experiments, data processing, and theoretical analysis. Despite concurrent advances in quality and quantity of data as well as computing resources and algorithms, difficulties in deciphering direct and indirect network connections are prevalent. Here, we adopt the notions of abstraction, emulation, benchmarking, and validation in the context of discovering features specific to this family of connectivities. After subjecting benchmark synthetic circuits to perturbations, we inferred the network connections using a combination of nonparametric single-cell data resampling and modular response analysis. Intriguingly, we discovered that recovered weights of specific network edges undergo divergent shifts under differential perturbations, and that the particular behavior is markedly different between topologies. Our results point to a conceptual advance for reverse engineering beyond weight inference. Investigating topological changes under differential perturbations may address the longstanding problem of discriminating direct and indirect connectivities in biological networks. PMID:26420864

  12. A survey of visualization tools for biological network analysis

    PubMed Central

    Pavlopoulos, Georgios A; Wegener, Anna-Lynn; Schneider, Reinhard

    2008-01-01

    The analysis and interpretation of relationships between biological molecules, networks and concepts is becoming a major bottleneck in systems biology. Very often the pure amount of data and their heterogeneity provides a challenge for the visualization of the data. There are a wide variety of graph representations available, which most often map the data on 2D graphs to visualize biological interactions. These methods are applicable to a wide range of problems, nevertheless many of them reach a limit in terms of user friendliness when thousands of nodes and connections have to be analyzed and visualized. In this study we are reviewing visualization tools that are currently available for visualization of biological networks mainly invented in the latest past years. We comment on the functionality, the limitations and the specific strengths of these tools, and how these tools could be further developed in the direction of data integration and information sharing. PMID:19040716

  13. Centered Kernel Alignment Enhancing Neural Network Pretraining for MRI-Based Dementia Diagnosis

    PubMed Central

    Cárdenas-Peña, David; Collazos-Huertas, Diego; Castellanos-Dominguez, German

    2016-01-01

    Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and healthy controls (NC). Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN) for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis) and against the best four performing classification methods of the 2014 CADDementia challenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve) at the time it reduces the class biasing. PMID:27148392

  14. Dynamics of Boolean networks controlled by biologically meaningful functions.

    PubMed

    Raeymaekers, L

    2002-10-01

    The remarkably stable dynamics displayed by randomly constructed Boolean networks is one of the most striking examples of the spontaneous emergence of self-organization in model systems composed of many interacting elements (Kauffman, S., J. theor. Biol.22, 437-467, 1969; The Origins of Order, Oxford University Press, Oxford, 1993). The dynamics of such networks is most stable for a connectivity of two inputs per element, and decreases dramatically with increasing number of connections. Whereas the simplicity of this model system allows the tracing of the dynamical trajectories, it leaves out many features of real biological connections. For instance, the dynamics has been studied in detail only for networks constructed by allowing all theoretically possible Boolean rules, whereas only a subset of them make sense in the material world. This paper analyses the effect on the dynamics of using only Boolean functions which are meaningful in a biological sense. This analysis is particularly relevant for nets with more than two inputs per element because biological networks generally appear to be more extensively interconnected. Sets of the meaningful functions were assembled for up to four inputs per element. The use of these rules results in a smaller number of distinct attractors which have a shorter length, with relatively little sensitivity to the size of the network and to the number of inputs per element. Forcing away the activator/inhibitor ratio from the expected value of 50% further enhances the stability. This effect is more pronounced for networks consisting of a majority of activators than for networks with a corresponding majority of inhibitors, indicating that the former allow the evolution of larger genetic networks. The data further support the idea of the usefulness of logical networks as a conceptual framework for the understanding of real-world phenomena.

  15. From biological and social network metaphors to coupled bio-social wireless networks

    PubMed Central

    Barrett, Christopher L.; Eubank, Stephen; Anil Kumar, V.S.; Marathe, Madhav V.

    2010-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  16. Prediction and Testing of Biological Networks Underlying Intestinal Cancer

    PubMed Central

    Mariadason, John M.; Wang, Donghai; Augenlicht, Leonard H.; Chance, Mark R.

    2010-01-01

    Colorectal cancer progresses through an accumulation of somatic mutations, some of which reside in so-called “driver” genes that provide a growth advantage to the tumor. To identify points of intersection between driver gene pathways, we implemented a network analysis framework using protein interactions to predict likely connections – both precedented and novel – between key driver genes in cancer. We applied the framework to find significant connections between two genes, Apc and Cdkn1a (p21), known to be synergistic in tumorigenesis in mouse models. We then assessed the functional coherence of the resulting Apc-Cdkn1a network by engineering in vivo single node perturbations of the network: mouse models mutated individually at Apc (Apc1638N+/−) or Cdkn1a (Cdkn1a−/−), followed by measurements of protein and gene expression changes in intestinal epithelial tissue. We hypothesized that if the predicted network is biologically coherent (functional), then the predicted nodes should associate more specifically with dysregulated genes and proteins than stochastically selected genes and proteins. The predicted Apc-Cdkn1a network was significantly perturbed at the mRNA-level by both single gene knockouts, and the predictions were also strongly supported based on physical proximity and mRNA coexpression of proteomic targets. These results support the functional coherence of the proposed Apc-Cdkn1a network and also demonstrate how network-based predictions can be statistically tested using high-throughput biological data. PMID:20824133

  17. Multivariate system of polarization tomography of biological crystals birefringence networks

    NASA Astrophysics Data System (ADS)

    Zabolotna, N. I.; Pavlov, S. V.; Ushenko, A. G.; Sobko, O. V.; Savich, V. O.

    2014-08-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of benign and malignant tissues of the women reproductive sphere were found.

  18. Improved biological network reconstruction using graph Laplacian regularization.

    PubMed

    Freschi, Valerio

    2011-08-01

    Biological networks reconstruction is a crucial step towards the functional characterization and elucidation of living cells. Computational methods for inferring the structure of these networks are of paramount importance since they provide valuable information regarding organization and behavior of the cell at a system level and also enable careful design of wet-lab experiments. Despite many recent advances, according to the scientific literature, there is room for improvements from both the efficiency and the accuracy point of view in link prediction algorithms. In this article, we propose a new method for the inference of biological networks that makes use of a notion of similarity between graph vertices within the framework of graph regularization for ranking the links to be predicted. The proposed approach results in more accurate classification rates in a wide range of experiments, while the computational complexity is reduced by two orders of magnitude with respect to many current state-of-the-art algorithms.

  19. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.

    PubMed

    Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M

    2016-09-28

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  20. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  1. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.

    PubMed

    Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M

    2016-01-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  2. Composite nanowire networks for biological sensor platforms

    NASA Astrophysics Data System (ADS)

    Jabal, Jamie Marie Francisco

    The main goal of this research is to design, fabricate, and test a nanomaterial-based platform adequate for the measurement of physiological changes in living cells. The two primary objectives toward this end are (1) the synthesis and selection of a suitable nanomaterial and (2) the demonstration of cellular response to a direct stimulus. Determining a useful nanomaterial morphology and behavior within a sensor configuration presented challenges based on cellular integration and access to electrochemical characterization. The prospect for feasible optimization and eventual scale-up in technology were also significant. Constraining criteria are that the nanomaterial detector must (a) be cheap and relatively easy to fabricate controllably, (b) encourage cell attachment, (c) exhibit consistent wettability over time, and (d) facilitate electrochemical processes. The ultimate goal would be to transfer a proof-of-principle and proof-of-design for a whole-cell sensor technology that is cost effective and has a potential for hand-held packaging. Initial tasks were to determine an effective and highly-functional nanomaterial for biosensors by assessing wettability, morphology and conductivity behavior of several candidate materials: gallium nitride nanowires, silicon dioxide nanosprings and nanowires, and titania nanofibers. Electrospinning poly(vinyl pyrrolidone)-coated titania nano- and microfibers (O20 nm--2 microm) into a pseudo-random network is controllable to a uniformity of 1--2° in contact angle. The final electrode can be prepared with a precise wettability ranging from partial wetting to ultrahydrophobic (170°) on a variety of substrates: glass, indium tin oxide, silicon, and aluminum. Fiber mats exhibit excellent mechanical stability against rinsing, and support the incubation of epithelial (skin) and pancreatic cells. Impedance spectroscopy on the whole-cell sensor shows resistive changes attributed to cell growth as well as complex frequency

  3. Integrative Network Biology: Graph Prototyping for Co-Expression Cancer Networks

    PubMed Central

    Kugler, Karl G.; Mueller, Laurin A. J.; Graber, Armin; Dehmer, Matthias

    2011-01-01

    Network-based analysis has been proven useful in biologically-oriented areas, e.g., to explore the dynamics and complexity of biological networks. Investigating a set of networks allows deriving general knowledge about the underlying topological and functional properties. The integrative analysis of networks typically combines networks from different studies that investigate the same or similar research questions. In order to perform an integrative analysis it is often necessary to compare the properties of matching edges across the data set. This identification of common edges is often burdensome and computational intensive. Here, we present an approach that is different from inferring a new network based on common features. Instead, we select one network as a graph prototype, which then represents a set of comparable network objects, as it has the least average distance to all other networks in the same set. We demonstrate the usefulness of the graph prototyping approach on a set of prostate cancer networks and a set of corresponding benign networks. We further show that the distances within the cancer group and the benign group are statistically different depending on the utilized distance measure. PMID:21829532

  4. Automated sample mounting and technical advance alignment system for biological crystallography at a synchrotron source

    SciTech Connect

    Snell, Gyorgy; Cork, Carl; Nordmeyer, Robert; Cornell, Earl; Meigs, George; Yegian, Derek; Jaklevic, Joseph; Jin, Jian; Stevens, Raymond C.; Earnest, Thomas

    2004-01-07

    High-throughput data collection for macromolecular crystallography requires an automated sample mounting system for cryo-protected crystals that functions reliably when integrated into protein-crystallography beamlines at synchrotrons. Rapid mounting and dismounting of the samples increases the efficiency of the crystal screening and data collection processes, where many crystals can be tested for the quality of diffraction. The sample-mounting subsystem has random access to 112 samples, stored under liquid nitrogen. Results of extensive tests regarding the performance and reliability of the system are presented. To further increase throughput, we have also developed a sample transport/storage system based on ''puck-shaped'' cassettes, which can hold sixteen samples each. Seven cassettes fit into a standard dry shipping Dewar. The capabilities of a robotic crystal mounting and alignment system with instrumentation control software and a relational database allows for automated screening and data collection to be developed.

  5. Photovoltaic property of a vertically aligned carbon nanotube hexagonal network assembled with CdS quantum dots.

    PubMed

    Li, Chen; Xia, Jun; Wang, Qilong; Chen, Jing; Li, Chi; Lei, Wei; Zhang, Xiaobing

    2013-08-14

    A vertically aligned carbon nanotube (VACNT) hexagonal network was fabricated by plasma enhanced chemical vapor deposition as an electrode scaffold to assemble CdS quantum dots (QDs). The quantum dot sensitized solar cell (QDSSC) based on a VACNT/CdS hexagonal network shows a short circuit current density of 4.7 mA/cm(2), which is almost twice of that based on screen-printed CNT/CdS thin film with the same thickness. The enhancement of the short circuit current could be attributed to the unique morphology of the VACNT hexagonal network, which provides direct and percolating pathways for the electrons to transfer, enhances the spectral transmission through the hexagonal microchannels to the photoactive QD sites, and also presents more surface area to assembled CdS QDs without consuming extra substrate space. The photovoltaic property of the VACNT/CdS hexagonal network indicates its potential application in the energy conversion devices.

  6. Gene Network Reconstruction by Integration of Prior Biological Knowledge.

    PubMed

    Li, Yupeng; Jackson, Scott A

    2015-03-30

    With the development of high-throughput genomic technologies, large, genome-wide datasets have been collected, and the integration of these datasets should provide large-scale, multidimensional, and insightful views of biological systems. We developed a method for gene association network construction based on gene expression data that integrate a variety of biological resources. Assuming gene expression data are from a multivariate Gaussian distribution, a graphical lasso (glasso) algorithm is able to estimate the sparse inverse covariance matrix by a lasso (L1) penalty. The inverse covariance matrix can be seen as direct correlation between gene pairs in the gene association network. In our work, instead of using a single penalty, different penalty values were applied for gene pairs based on a priori knowledge as to whether the two genes should be connected. The a priori information can be calculated or retrieved from other biological data, e.g., Gene Ontology similarity, protein-protein interaction, gene regulatory network. By incorporating prior knowledge, the weighted graphical lasso (wglasso) outperforms the original glasso both on simulations and on data from Arabidopsis. Simulation studies show that even when some prior knowledge is not correct, the overall quality of the wglasso network was still greater than when not incorporating that information, e.g., glasso.

  7. Global alignment: Finding rearrangements during alignment

    SciTech Connect

    Brudno, Michael; Malde, Sanket; Poliakov, Alexander; Do, Chuong B.; Couronne, Olivier; Dubchak, Inna; Batzoglou, Serafim

    2003-01-06

    Motivation: To compare entire genomes from different species, biologists increasingly need alignment methods that are efficient enough to handle long sequences, and accurate enough to correctly align the conserved biological features between distant species. The two main classes of pairwise alignments are global alignment, where one string is transformed into the other, and local alignment, where all locations of similarity between the two strings are returned. Global alignments are less prone to demonstrating false homology as each letter of one sequence is constrained to being aligned to only one letter of the other. Local alignments, on the other hand, can cope with rearrangements between non-syntenic, orthologous sequences by identifying similar regions in sequences; this, however, comes at the expense of a higher false positive rate due to the inability of local aligners to take into account overall conservation maps.

  8. Reduction of dynamical biochemical reactions networks in computational biology

    PubMed Central

    Radulescu, O.; Gorban, A. N.; Zinovyev, A.; Noel, V.

    2012-01-01

    Biochemical networks are used in computational biology, to model mechanistic details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an important property of these networks, can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to simpler models, in a way that depends only on the orders of magnitude and not on the exact values of the kinetic parameters. The main idea used for such robust simplifications of networks is the concept of dominance among model elements, allowing hierarchical organization of these elements according to their effects on the network dynamics. This concept finds a natural formulation in tropical geometry. We revisit, in the light of these new ideas, the main approaches to model reduction of reaction networks, such as quasi-steady state (QSS) and quasi-equilibrium approximations (QE), and provide practical recipes for model reduction of linear and non-linear networks. We also discuss the application of model reduction to the problem of parameter identification, via backward pruning machine learning techniques. PMID:22833754

  9. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors.

    PubMed

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Park, June; Jhon, Young Min; Seong, Maeng-Je; Hong, Seunghun

    2010-02-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of approximately 1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  10. Classification of biological and non-biological fluvial particles using image processing and artificial neural network

    NASA Astrophysics Data System (ADS)

    Shrestha, Bim Prasad; Shrestha, Nabin Kumar; Poudel, Laxman

    2009-04-01

    Particles flowing along with water largely affect safe drinking water, irrigation, aquatic life preservation and hydropower generation. This research describes activities that lead to development of fluvial particle characterization that includes detection of biological and non-biological particles and shape characterization using Image Processing and Artificial Neural Network (ANN). Fluvial particles are characterized based on multi spectral images processing using ANN. Images of wavelength of 630nm and 670nm are taken as most distinctive characterizing properties of biological and non-biological particles found in Bagmati River of Nepal. The samples were collected at pre-monsoon, monsoon and post-monsoon seasons. Random samples were selected and multi spectral images are processed using MATLAB 6.5. Thirty matrices were built from each sample. The obtained data of 42 rows and 60columns were taken as input training with an output matrix of 42 rows and 2 columns. Neural Network of Perceptron model was created using a transfer function. The system was first validated and later on tested at 18 different strategic locations of Bagmati River of Kathmandu Valley, Nepal. This network classified biological and non biological particles. Development of new non-destructive technique to characterize biological and non-biological particles from fluvial sample in a real time has a significance breakthrough. This applied research method and outcome is an attractive model for real time monitoring of particles and has many applications that can throw a significant outlet to many researches and for effective utilization of water resources. It opened a new horizon of opportunities for basic and applied research at Kathmandu University in Nepal.

  11. Integrated network analysis and effective tools in plant systems biology

    PubMed Central

    Fukushima, Atsushi; Kanaya, Shigehiko; Nishida, Kozo

    2014-01-01

    One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1) network visualization tools, (2) pathway analyses, (3) genome-scale metabolic reconstruction, and (4) the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms. PMID:25408696

  12. Curriculum alignment and higher order thinking in introductory biology in Arkansas public two-year colleges

    NASA Astrophysics Data System (ADS)

    Crandall, Elizabeth Diane

    This dissertation identified the cognitive levels of lecture objectives, lab objectives, and test questions in introductory majors' biology. The study group included courses offered by 27 faculty members at 18 of the 22 community colleges in Arkansas. Using Bloom's Taxonomy to identify cognitive levels, the median lecture learning outcomes were at level 2 (Comprehension) and test assessments at Level 1 (Knowledge). Lab learning outcomes were determined to have a median of level 3 (Analysis). A correlation analysis was performed using SPSS software to determine if there was an association between the Bloom's level of lecture objectives and test assessments. The only significant difference found was at the Analysis level, or Bloom's level 4 (p=.043). Correlation analyses were run for two other data sets. Years of college teaching experience and hours of training in writing objectives and assessments were compared to the Bloom's Taxonomy level of lecture objectives and test items. No significant difference was found for either of these independent variables. This dissertation provides Arkansas two-year college biology faculty with baseline information about the levels of cognitive skills that are required in freshman biology for majors courses. It can serve to initiate conversations about where we are compared to a national study, where we need to be, and how we get there.

  13. An open system network for the biological sciences.

    PubMed Central

    Springer, G. K.; Loch, J. L.; Patrick, T. B.

    1991-01-01

    A description of an open system, distributed computing environment for the Biological Sciences is presented. This system utilizes a transparent interface in a computer network using NCS to implement an application system for molecular biologists to perform various processing activities from their local workstation. This system accepts requests for the services of a remote database server, located across the network, to perform all of the database searches needed to support the activities of the user. This database access is totally transparent to the user of the system and it appears, to the user, that all activities are being carried out on the local workstation. This system is a prototype for a much more extensive system being built to support the research efforts in the Biological Sciences at UMC. PMID:1807659

  14. Binary threshold networks as a natural null model for biological networks

    NASA Astrophysics Data System (ADS)

    Rybarsch, Matthias; Bornholdt, Stefan

    2012-08-01

    Spin models of neural networks and genetic networks are considered elegant as they are accessible to statistical mechanics tools for spin glasses and magnetic systems. However, the conventional choice of variables in spin systems may cause problems in some models when parameter choices are unrealistic from a biological perspective. Obviously, this may limit the role of a model as a template model for biological systems. Perhaps less obviously, also ensembles of random networks are affected and may exhibit different critical properties. We consider here a prototypical network model that is biologically plausible in its local mechanisms. We study a discrete dynamical network with two characteristic properties: Nodes with binary states 0 and 1, and a modified threshold function with Θ0(0)=0. We explore the critical properties of random networks of such nodes and find a critical connectivity Kc=2.0 with activity vanishing at the critical point. Finally, we observe that the present model allows a more natural implementation of recent models of budding yeast and fission yeast cell-cycle control networks.

  15. Binary threshold networks as a natural null model for biological networks.

    PubMed

    Rybarsch, Matthias; Bornholdt, Stefan

    2012-08-01

    Spin models of neural networks and genetic networks are considered elegant as they are accessible to statistical mechanics tools for spin glasses and magnetic systems. However, the conventional choice of variables in spin systems may cause problems in some models when parameter choices are unrealistic from a biological perspective. Obviously, this may limit the role of a model as a template model for biological systems. Perhaps less obviously, also ensembles of random networks are affected and may exhibit different critical properties. We consider here a prototypical network model that is biologically plausible in its local mechanisms. We study a discrete dynamical network with two characteristic properties: Nodes with binary states 0 and 1, and a modified threshold function with Θ(0)(0)=0. We explore the critical properties of random networks of such nodes and find a critical connectivity K(c)=2.0 with activity vanishing at the critical point. Finally, we observe that the present model allows a more natural implementation of recent models of budding yeast and fission yeast cell-cycle control networks. PMID:23005832

  16. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  17. Impact of heuristics in clustering large biological networks.

    PubMed

    Shafin, Md Kishwar; Kabir, Kazi Lutful; Ridwan, Iffatur; Anannya, Tasmiah Tamzid; Karim, Rashid Saadman; Hoque, Mohammad Mozammel; Rahman, M Sohel

    2015-12-01

    Traditional clustering algorithms often exhibit poor performance for large networks. On the contrary, greedy algorithms are found to be relatively efficient while uncovering functional modules from large biological networks. The quality of the clusters produced by these greedy techniques largely depends on the underlying heuristics employed. Different heuristics based on different attributes and properties perform differently in terms of the quality of the clusters produced. This motivates us to design new heuristics for clustering large networks. In this paper, we have proposed two new heuristics and analyzed the performance thereof after incorporating those with three different combinations in a recently celebrated greedy clustering algorithm named SPICi. We have extensively analyzed the effectiveness of these new variants. The results are found to be promising. PMID:26386663

  18. A biologically inspired immunization strategy for network epidemiology.

    PubMed

    Liu, Yang; Deng, Yong; Jusup, Marko; Wang, Zhen

    2016-07-01

    Well-known immunization strategies, based on degree centrality, betweenness centrality, or closeness centrality, either neglect the structural significance of a node or require global information about the network. We propose a biologically inspired immunization strategy that circumvents both of these problems by considering the number of links of a focal node and the way the neighbors are connected among themselves. The strategy thus measures the dependence of the neighbors on the focal node, identifying the ability of this node to spread the disease. Nodes with the highest ability in the network are the first to be immunized. To test the performance of our method, we conduct numerical simulations on several computer-generated and empirical networks, using the susceptible-infected-recovered (SIR) model. The results show that the proposed strategy largely outperforms the existing well-known strategies. PMID:27113785

  19. Systems analysis of biological networks in skeletal muscle function

    PubMed Central

    Smith, Lucas R.; Meyer, Gretchen; Lieber, Richard L.

    2014-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation–contraction coupling enabling Ca2+ release. Ca2+ then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  20. Protozoan HSP90-heterocomplex: molecular interaction network and biological significance.

    PubMed

    Figueras, Maria J; Echeverria, Pablo C; Angel, Sergio O

    2014-05-01

    The HSP90 chaperone is a highly conserved protein from bacteria to higher eukaryotes. In eukaryotes, this chaperone participates in different large complexes, such as the HSP90 heterocomplex, which has important biological roles in cell homeostasis and differentiation. The HSP90-heterocomplex is also named the HSP90/HSP70 cycle because different co-chaperones (HIP, HSP40, HOP, p23, AHA1, immunophilins, PP5) participate in this complex by assembling sequentially, from the early to the mature complex. In this review, we analyze the conservation and relevance of HSP90 and the HSP90-heterocomplex in several protozoan parasites, with emphasis in Plasmodium spp., Toxoplasma spp., Leishmania spp. and Trypanosoma spp. In the last years, there has been an outburst of studies based on yeast two-hybrid methodology, co-immunoprecipitation-mass spectrometry and bioinformatics, which have generated a most comprehensive protein-protein interaction (PPI) network of HSP90 and its co-chaperones. This review analyzes the existing PPI networks of HSP90 and its co-chaperones of some protozoan parasites and discusses the usefulness of these powerful tools to analyze the biological role of the HSP90-heterocomplex in these parasites. The generation of a T. gondii HSP90 heterocomplex PPI network based on experimental data and a recent Plasmodium HSP90 heterocomplex PPI network are also included and discussed. As an example, the putative implication of nuclear transport and chromatin (histones and Sir2) as HSP90-heterocomplex interactors is here discussed.

  1. Perturbation Biology: Inferring Signaling Networks in Cellular Systems

    PubMed Central

    Miller, Martin L.; Gauthier, Nicholas P.; Jing, Xiaohong; Kaushik, Poorvi; He, Qin; Mills, Gordon; Solit, David B.; Pratilas, Christine A.; Weigt, Martin; Braunstein, Alfredo; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2013-01-01

    We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology. PMID:24367245

  2. Protozoan HSP90-heterocomplex: molecular interaction network and biological significance.

    PubMed

    Figueras, Maria J; Echeverria, Pablo C; Angel, Sergio O

    2014-05-01

    The HSP90 chaperone is a highly conserved protein from bacteria to higher eukaryotes. In eukaryotes, this chaperone participates in different large complexes, such as the HSP90 heterocomplex, which has important biological roles in cell homeostasis and differentiation. The HSP90-heterocomplex is also named the HSP90/HSP70 cycle because different co-chaperones (HIP, HSP40, HOP, p23, AHA1, immunophilins, PP5) participate in this complex by assembling sequentially, from the early to the mature complex. In this review, we analyze the conservation and relevance of HSP90 and the HSP90-heterocomplex in several protozoan parasites, with emphasis in Plasmodium spp., Toxoplasma spp., Leishmania spp. and Trypanosoma spp. In the last years, there has been an outburst of studies based on yeast two-hybrid methodology, co-immunoprecipitation-mass spectrometry and bioinformatics, which have generated a most comprehensive protein-protein interaction (PPI) network of HSP90 and its co-chaperones. This review analyzes the existing PPI networks of HSP90 and its co-chaperones of some protozoan parasites and discusses the usefulness of these powerful tools to analyze the biological role of the HSP90-heterocomplex in these parasites. The generation of a T. gondii HSP90 heterocomplex PPI network based on experimental data and a recent Plasmodium HSP90 heterocomplex PPI network are also included and discussed. As an example, the putative implication of nuclear transport and chromatin (histones and Sir2) as HSP90-heterocomplex interactors is here discussed. PMID:24694366

  3. Predicting genetic interactions with random walks on biological networks

    PubMed Central

    Chipman, Kyle C; Singh, Ambuj K

    2009-01-01

    Background Several studies have demonstrated that synthetic lethal genetic interactions between gene mutations provide an indication of functional redundancy between molecular complexes and pathways. These observations help explain the finding that organisms are able to tolerate single gene deletions for a large majority of genes. For example, system-wide gene knockout/knockdown studies in S. cerevisiae and C. elegans revealed non-viable phenotypes for a mere 18% and 10% of the genome, respectively. It has been postulated that the low percentage of essential genes reflects the extensive amount of genetic buffering that occurs within genomes. Consistent with this hypothesis, systematic double-knockout screens in S. cerevisiae and C. elegans show that, on average, 0.5% of tested gene pairs are synthetic sick or synthetic lethal. While knowledge of synthetic lethal interactions provides valuable insight into molecular functionality, testing all combinations of gene pairs represents a daunting task for molecular biologists, as the combinatorial nature of these relationships imposes a large experimental burden. Still, the task of mapping pairwise interactions between genes is essential to discovering functional relationships between molecular complexes and pathways, as they form the basis of genetic robustness. Towards the goal of alleviating the experimental workload, computational techniques that accurately predict genetic interactions can potentially aid in targeting the most likely candidate interactions. Building on previous studies that analyzed properties of network topology to predict genetic interactions, we apply random walks on biological networks to accurately predict pairwise genetic interactions. Furthermore, we incorporate all published non-interactions into our algorithm for measuring the topological relatedness between two genes. We apply our method to S. cerevisiae and C. elegans datasets and, using a decision tree classifier, integrate diverse

  4. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  5. The Default Mode Network Differentiates Biological From Non-Biological Motion.

    PubMed

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. PMID:25217472

  6. PREFACE: Complex Networks: from Biology to Information Technology

    NASA Astrophysics Data System (ADS)

    Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.

    2008-06-01

    The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm

  7. Biological Instability in a Chlorinated Drinking Water Distribution Network

    PubMed Central

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  8. Biological instability in a chlorinated drinking water distribution network.

    PubMed

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  9. Path matching and graph matching in biological networks.

    PubMed

    Yang, Qingwu; Sze, Sing-Hoi

    2007-01-01

    We develop algorithms for the following path matching and graph matching problems: (i) given a query path p and a graph G, find a path p' that is most similar to p in G; (ii) given a query graph G (0) and a graph G, find a graph G (0)' that is most similar to G (0) in G. In these problems, p and G (0) represent a given substructure of interest to a biologist, and G represents a large network in which the biologist desires to find a related substructure. These algorithms allow the study of common substructures in biological networks in order to understand how these networks evolve both within and between organisms. We reduce the path matching problem to finding a longest weighted path in a directed acyclic graph and show that the problem of finding top k suboptimal paths can be solved in polynomial time. This is in contrast with most previous approaches that used exponential time algorithms to find simple paths which are practical only when the paths are short. We reduce the graph matching problem to finding highest scoring subgraphs in a graph and give an exact algorithm to solve the problem when the query graph G (0) is of moderate size. This eliminates the need for less accurate heuristic or randomized algorithms. We show that our algorithms are able to extract biologically meaningful pathways from protein interaction networks in the DIP database and metabolic networks in the KEGG database. Software programs implementing these techniques (PathMatch and GraphMatch) are available at http://faculty.cs.tamu.edu/shsze/pathmatch and http://faculty.cs.tamu.edu/shsze/graphmatch.

  10. Strain-Induced Alignment in Collagen Gels

    PubMed Central

    Vader, David; Kabla, Alexandre; Weitz, David; Mahadevan, Lakshminarayana

    2009-01-01

    Collagen is the most abundant extracellular-network-forming protein in animal biology and is important in both natural and artificial tissues, where it serves as a material of great mechanical versatility. This versatility arises from its almost unique ability to remodel under applied loads into anisotropic and inhomogeneous structures. To explore the origins of this property, we develop a set of analysis tools and a novel experimental setup that probes the mechanical response of fibrous networks in a geometry that mimics a typical deformation profile imposed by cells in vivo. We observe strong fiber alignment and densification as a function of applied strain for both uncrosslinked and crosslinked collagenous networks. This alignment is found to be irreversibly imprinted in uncrosslinked collagen networks, suggesting a simple mechanism for tissue organization at the microscale. However, crosslinked networks display similar fiber alignment and the same geometrical properties as uncrosslinked gels, but with full reversibility. Plasticity is therefore not required to align fibers. On the contrary, our data show that this effect is part of the fundamental non-linear properties of fibrous biological networks. PMID:19529768

  11. Competition for Catalytic Resources Alters Biological Network Dynamics

    NASA Astrophysics Data System (ADS)

    Rondelez, Yannick

    2012-01-01

    Genetic regulation networks orchestrate many complex cellular behaviors. Dynamic operations that take place within cells are thus dependent on the gene expression machinery, enabled by powerful enzymes such as polymerases, ribosomes, or nucleases. These generalist enzymes typically process many different substrates, potentially leading to competitive situations: by saturating the common enzyme, one substrate may down-regulate its competitors. However, most theoretical or experimental models simply omit these effects, focusing on the pattern of genetic regulatory interactions as the main determinant of network function. We show here that competition effects have important outcomes, which can be spotted within the global dynamics of experimental systems. Further we demonstrate that enzyme saturation creates a layer of cross couplings that may foster, but also hamper, the expected behavior of synthetic biology constructs.

  12. Similarities Between Biological and Social Networks in Their Structural Organization

    NASA Astrophysics Data System (ADS)

    Kahng, Byungnam; Lee, Deokjae; Kim, Pureun

    A branching tree is a tree that is generated through a multiplicative branching process starting from a root. A critical branching tree is a branching tree in which the mean branching number of each node is 1, so that the number of offspring neither decays to zero nor flourishes as the branching process goes on. Moreover, a scale-free branching tree is a branching tree in which the number of offspring is heterogeneous, and its distribution follows a power law. Here we examine three structures, two from biology (a phylogenetic tree and the skeletons of a yeast protein interaction network) and one from social science (a coauthorship network), and find that all these structures are scale-free critical branching trees. This suggests that evolutionary processes in such systems take place in bursts and in a self-organized manner.

  13. Inference of asynchronous Boolean network from biological pathways.

    PubMed

    Das, Haimabati; Layek, Ritwik Kumar

    2015-01-01

    Gene regulation is a complex process with multiple levels of interactions. In order to describe this complex dynamical system with tractable parameterization, the choice of the dynamical system model is of paramount importance. The right abstraction of the modeling scheme can reduce the complexity in the inference and intervention design, both computationally and experimentally. This article proposes an asynchronous Boolean network framework to capture the transcriptional regulation as well as the protein-protein interactions in a genetic regulatory system. The inference of asynchronous Boolean network from biological pathways information and experimental evidence are explained using an algorithm. The suitability of this paradigm for the variability of several reaction rates is also discussed. This methodology and model selection open up new research challenges in understanding gene-protein interactive system in a coherent way and can be beneficial for designing effective therapeutic intervention strategy.

  14. Methods of information theory and algorithmic complexity for network biology.

    PubMed

    Zenil, Hector; Kiani, Narsis A; Tegnér, Jesper

    2016-03-01

    We survey and introduce concepts and tools located at the intersection of information theory and network biology. We show that Shannon's information entropy, compressibility and algorithmic complexity quantify different local and global aspects of synthetic and biological data. We show examples such as the emergence of giant components in Erdös-Rényi random graphs, and the recovery of topological properties from numerical kinetic properties simulating gene expression data. We provide exact theoretical calculations, numerical approximations and error estimations of entropy, algorithmic probability and Kolmogorov complexity for different types of graphs, characterizing their variant and invariant properties. We introduce formal definitions of complexity for both labeled and unlabeled graphs and prove that the Kolmogorov complexity of a labeled graph is a good approximation of its unlabeled Kolmogorov complexity and thus a robust definition of graph complexity.

  15. Biologically relevant neural network architectures for support vector machines.

    PubMed

    Jändel, Magnus

    2014-01-01

    Neural network architectures that implement support vector machines (SVM) are investigated for the purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal for storing and retrieving support vectors. Several different CQM-based neural architectures are examined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architectures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception has evolved as an internalized motor programme.

  16. Molecular codes in biological and chemical reaction networks.

    PubMed

    Görlich, Dennis; Dittrich, Peter

    2013-01-01

    Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  17. Aligned, ultra-long graphene nanoribbon network fabrication by nanowire etch masks

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; Sivapalan, Sean; Dorgan, Vincent; Murphy, Catherine; Pop, Eric; Lyding, Joseph

    2011-03-01

    Patterning semi-metallic graphene into quasi one-dimensional structures known as nanoribbons (GNRs) can open a ~ 0.5 eV bandgap by quantum confinement. To circumvent GNR lithographic difficulties, Si nanowires (NWs) were used previously as an etch mask for exfoliated graphene, but with no scalability or alignment control. Conversely, we transfer ~ 1 in 2 graphene sheets off copper to silicon dioxide, giving us a template for array fabrication. We meniscus align both Au NWs (w > = 20 nm , l = 400 nm) andAgNWs (w > = 200 nm , l > = 10 μ m) , respectively , onthegraphenesurface . Byreactiveionetch (RIE) , weremovetheunmaskedgraphene , andweetchtheNWs . BasedonthestartingNWs , theresultingGNRarrayshavelengthsrangingfrom 200 nmtotensofmicrons , andwidthsfrom 10 nmto 250 nm . WecreatesingleGNRsthatcanspanmicron - separatedcontactsandGNRnetworks , similartoagraphenenanomesh . UsingatomicforcemicroscopyandRamanspectroscopy , wedeterminethatwehavemonolayerGNRswithahighdisorderintensityI D / I G ~ 1 , indicating rough edges and graphene grain boundaries, which are deleterious to transport.

  18. Algorithmic Perspectives of Network Transitive Reduction Problems and their Applications to Synthesis and Analysis of Biological Networks

    PubMed Central

    Aditya, Satabdi; DasGupta, Bhaskar; Karpinski, Marek

    2013-01-01

    In this survey paper, we will present a number of core algorithmic questions concerning several transitive reduction problems on network that have applications in network synthesis and analysis involving cellular processes. Our starting point will be the so-called minimum equivalent digraph problem, a classic computational problem in combinatorial algorithms. We will subsequently consider a few non-trivial extensions or generalizations of this problem motivated by applications in systems biology. We will then discuss the applications of these algorithmic methodologies in the context of three major biological research questions: synthesizing and simplifying signal transduction networks, analyzing disease networks, and measuring redundancy of biological networks. PMID:24833332

  19. Reconstruction of Biological Networks by Incorporating Prior Knowledge into Bayesian Network Models

    PubMed Central

    Shin, Dong-Guk

    2012-01-01

    Abstract Bayesian network model is widely used for reverse engineering of biological network structures. An advantage of this model is its capability to integrate prior knowledge into the model learning process, which can lead to improving the quality of the network reconstruction outcome. Some previous works have explored this area with focus on using prior knowledge of the direct molecular links, except for a few recent ones proposing to examine the effects of molecular orderings. In this study, we propose a Bayesian network model that can integrate both direct links and orderings into the model. Random weights are assigned to these two types of prior knowledge to alleviate bias toward certain types of information. We evaluate our model performance using both synthetic data and biological data for the RAF signaling network, and illustrate the significant improvement on network structure reconstruction of the proposing models over the existing methods. We also examine the correlation between the improvement and the abundance of ordering prior knowledge. To address the issue of generating prior knowledge, we propose an approach to automatically extract potential molecular orderings from knowledge resources such as Kyoto Encyclopedia of Genes and Genomes (KEGG) database and Gene Ontology (GO) annotation. PMID:23210479

  20. Reconstruction of biological networks by incorporating prior knowledge into Bayesian network models.

    PubMed

    Pei, Baikang; Shin, Dong-Guk

    2012-12-01

    Bayesian network model is widely used for reverse engineering of biological network structures. An advantage of this model is its capability to integrate prior knowledge into the model learning process, which can lead to improving the quality of the network reconstruction outcome. Some previous works have explored this area with focus on using prior knowledge of the direct molecular links, except for a few recent ones proposing to examine the effects of molecular orderings. In this study, we propose a Bayesian network model that can integrate both direct links and orderings into the model. Random weights are assigned to these two types of prior knowledge to alleviate bias toward certain types of information. We evaluate our model performance using both synthetic data and biological data for the RAF signaling network, and illustrate the significant improvement on network structure reconstruction of the proposing models over the existing methods. We also examine the correlation between the improvement and the abundance of ordering prior knowledge. To address the issue of generating prior knowledge, we propose an approach to automatically extract potential molecular orderings from knowledge resources such as Kyoto Encyclopedia of Genes and Genomes (KEGG) database and Gene Ontology (GO) annotation.

  1. Smarter Tools, Better Teachers: Applying Neural Network Technology to Curriculum Alignment.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    Neural network based intelligent tools, developed for the national security infrastructure, will soon be available for teachers. Neural network software establishes powerful intuitive connections among words, concepts, documents, and search queries. In the school setting, such a search tool could automatically index textbooks, cross-reference any…

  2. Engineering highly organized and aligned single walled carbon nanotube networks for electronic device applications: Interconnects, chemical sensor, and optoelectronics

    NASA Astrophysics Data System (ADS)

    Kim, Young Lae

    For 20 years, single walled carbon nanotubes (SWNTs) have been studied actively due to their unique one-dimensional nanostructure and superior electrical, thermal, and mechanical properties. For these reasons, they offer the potential to serve as building blocks for future electronic devices such as field effect transistors (FETs), electromechanical devices, and various sensors. In order to realize these applications, it is crucial to develop a simple, scalable, and reliable nanomanufacturing process that controllably places aligned SWNTs in desired locations, orientations, and dimensions. Also electronic properties (semiconducting/metallic) of SWNTs and their organized networks must be controlled for the desired performance of devices and systems. These fundamental challenges are significantly limiting the use of SWNTs for future electronic device applications. Here, we demonstrate a strategy to fabricate highly controlled micro/nanoscale SWNT network structures and present the related assembly mechanism to engineer the SWNT network topology and its electrical transport properties. A method designed to evaluate the electrical reliability of such nano- and microscale SWNT networks is also presented. Moreover, we develop and investigate a robust SWNT based multifunctional selective chemical sensor and a range of multifunctional optoelectronic switches, photo-transistors, optoelectronic logic gates and complex optoelectronic digital circuits.

  3. 3D self-consistent percolative model for networks of randomly aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Colasanti, S.; Deep Bhatt, V.; Abdellah, A.; Lugli, P.

    2015-10-01

    A numerical percolative model for simulations of random networks of carbon nanotubes is presented. This algorithm takes into account the real 3D nature of these networks, allowing for a better understanding of their electrical properties. The nanotubes are modeled as non-rigid bendable cylinders with geometrical properties derived according to some statistical distributions inferred from the experiments. For the transport mechanisms we refer to the theory of one-dimensional ballistic channels which is based on the computation of the density of states. The behavior of the entire network is then simulated by coupling a SPICE program with an iterative algorithm that calculates self-consistently the electrostatic potential and the current flow in each node of the network. We performed several simulations on the resistivity of networks with different thicknesses and over different simulation domains. Our results confirm the percolative nature of the electrical transport, which are more pronounced in films close to their percolation threshold.

  4. Applying information visualization principles to biological network displays

    NASA Astrophysics Data System (ADS)

    Munzner, Tamara

    2011-03-01

    We use the principles of information visualization to guide the design of systems to best meet the needs of specific targets group of users, namely biologists who have different tasks involving the visual exploration of biological networks. For many biologists who explore networks of interacting proteins and genes, the topological structure of these node-link graphs is only one part of the story. The Cerebral system supports graph layout in a style inspired by hand-drawn pathway diagrams, where location of the proteins within the cell constrains the location within the drawing, and functional groups of proteins are visually apparent as clusters. It also supports exploration of expression data using linked views, to show these multiple attributes at each node in the graph. The Pathline system attacks the problem of visually encoding the biologically interesting relationships between multiple pathways, multiple genes, and multiple species. We propose new methods based on the principle that perception of spatial position is the most accurate visual channel for all data types. The curvemap view is an alternative to heatmaps, and linearized pathways support the comparison of quantitative display as a primary task while showing topological information at a secondary level.

  5. Community-Reviewed Biological Network Models for Toxicology and Drug Discovery Applications.

    PubMed

    Namasivayam, Aishwarya Alex; Morales, Alejandro Ferreiro; Lacave, Ángela María Fajardo; Tallam, Aravind; Simovic, Borislav; Alfaro, David Garrido; Bobbili, Dheeraj Reddy; Martin, Florian; Androsova, Ganna; Shvydchenko, Irina; Park, Jennifer; Calvo, Jorge Val; Hoeng, Julia; Peitsch, Manuel C; Racero, Manuel González Vélez; Biryukov, Maria; Talikka, Marja; Pérez, Modesto Berraquero; Rohatgi, Neha; Díaz-Díaz, Noberto; Mandarapu, Rajesh; Ruiz, Rubén Amián; Davidyan, Sergey; Narayanasamy, Shaman; Boué, Stéphanie; Guryanova, Svetlana; Arbas, Susana Martínez; Menon, Swapna; Xiang, Yang

    2016-01-01

    Biological network models offer a framework for understanding disease by describing the relationships between the mechanisms involved in the regulation of biological processes. Crowdsourcing can efficiently gather feedback from a wide audience with varying expertise. In the Network Verification Challenge, scientists verified and enhanced a set of 46 biological networks relevant to lung and chronic obstructive pulmonary disease. The networks were built using Biological Expression Language and contain detailed information for each node and edge, including supporting evidence from the literature. Network scoring of public transcriptomics data inferred perturbation of a subset of mechanisms and networks that matched the measured outcomes. These results, based on a computable network approach, can be used to identify novel mechanisms activated in disease, quantitatively compare different treatments and time points, and allow for assessment of data with low signal. These networks are periodically verified by the crowd to maintain an up-to-date suite of networks for toxicology and drug discovery applications. PMID:27429547

  6. Community-Reviewed Biological Network Models for Toxicology and Drug Discovery Applications

    PubMed Central

    Namasivayam, Aishwarya Alex; Morales, Alejandro Ferreiro; Lacave, Ángela María Fajardo; Tallam, Aravind; Simovic, Borislav; Alfaro, David Garrido; Bobbili, Dheeraj Reddy; Martin, Florian; Androsova, Ganna; Shvydchenko, Irina; Park, Jennifer; Calvo, Jorge Val; Hoeng, Julia; Peitsch, Manuel C.; Racero, Manuel González Vélez; Biryukov, Maria; Talikka, Marja; Pérez, Modesto Berraquero; Rohatgi, Neha; Díaz-Díaz, Noberto; Mandarapu, Rajesh; Ruiz, Rubén Amián; Davidyan, Sergey; Narayanasamy, Shaman; Boué, Stéphanie; Guryanova, Svetlana; Arbas, Susana Martínez; Menon, Swapna; Xiang, Yang

    2016-01-01

    Biological network models offer a framework for understanding disease by describing the relationships between the mechanisms involved in the regulation of biological processes. Crowdsourcing can efficiently gather feedback from a wide audience with varying expertise. In the Network Verification Challenge, scientists verified and enhanced a set of 46 biological networks relevant to lung and chronic obstructive pulmonary disease. The networks were built using Biological Expression Language and contain detailed information for each node and edge, including supporting evidence from the literature. Network scoring of public transcriptomics data inferred perturbation of a subset of mechanisms and networks that matched the measured outcomes. These results, based on a computable network approach, can be used to identify novel mechanisms activated in disease, quantitatively compare different treatments and time points, and allow for assessment of data with low signal. These networks are periodically verified by the crowd to maintain an up-to-date suite of networks for toxicology and drug discovery applications. PMID:27429547

  7. Quantum Processes and Dynamic Networks in Physical and Biological Systems.

    NASA Astrophysics Data System (ADS)

    Dudziak, Martin Joseph

    Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain

  8. A Network Biology Approach to Denitrification in Pseudomonas aeruginosa

    PubMed Central

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-01-01

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide. PMID:25706405

  9. Molecular Codes in Biological and Chemical Reaction Networks

    PubMed Central

    Görlich, Dennis; Dittrich, Peter

    2013-01-01

    Shannon’s theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process “meaningful” information from those that do not. Here, we present a formal method to assess a system’s semantic capacity by analyzing a reaction network’s capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems posses different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life. PMID:23372756

  10. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGESBeta

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  11. Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds.

    PubMed

    Wu, Shaohua; Duan, Bin; Liu, Penghong; Zhang, Caidan; Qin, Xiaohong; Butcher, Jonathan T

    2016-07-01

    Nanofibrous scaffolds with defined architectures and anisotropic mechanical properties are attractive for many tissue engineering and regenerative medicine applications. Here, a novel electrospinning system is developed and implemented to fabricate continuous processable uniaxially aligned nanofiber yarns (UANY). UANY were processed into fibrous tissue scaffolds with defined anisotropic material properties using various textile-forming technologies, i.e., braiding, weaving, and knitting techniques. UANY braiding dramatically increased overall stiffness and strength compared to the same number of UANY unbraided. Human adipose derived stem cells (HADSC) cultured on UANY or woven and knitted 3D scaffolds aligned along local fiber direction and were >90% viable throughout 21 days. Importantly, UANY supported biochemical induction of HADSC differentiation toward smooth muscle and osteogenic lineages. Moreover, we integrated an anisotropic woven fiber mesh within a bioactive hydrogel to mimic the complex microstructure and mechanical behavior of valve tissues. Human aortic valve interstitial cells (HAVIC) and human aortic root smooth muscle cells (HASMC) were separately encapsulated within hydrogel/woven fabric composite scaffolds for generating scaffolds with anisotropic biomechanics and valve ECM like microenvironment for heart valve tissue engineering. UANY have great potential as building blocks for generating fiber-shaped tissues or tissue microstructures with complex architectures.

  12. CytoKavosh: a cytoscape plug-in for finding network motifs in large biological networks.

    PubMed

    Masoudi-Nejad, Ali; Ansariola, Mitra; Kashani, Zahra Razaghi Moghadam; Salehzadeh-Yazdi, Ali; Khakabimamaghani, Sahand

    2012-01-01

    Network motifs are small connected sub-graphs that have recently gathered much attention to discover structural behaviors of large and complex networks. Finding motifs with any size is one of the most important problems in complex and large networks. It needs fast and reliable algorithms and tools for achieving this purpose. CytoKavosh is one of the best choices for finding motifs with any given size in any complex network. It relies on a fast algorithm, Kavosh, which makes it faster than other existing tools. Kavosh algorithm applies some well known algorithmic features and includes tricky aspects, which make it an efficient algorithm in this field. CytoKavosh is a Cytoscape plug-in which supports us in finding motifs of given size in a network that is formerly loaded into the Cytoscape work-space (directed or undirected). High performance of CytoKavosh is achieved by dynamically linking highly optimized functions of Kavosh's C++ to the Cytoscape Java program, which makes this plug-in suitable for analyzing large biological networks. Some significant attributes of CytoKavosh is efficiency in time usage and memory and having no limitation related to the implementation in motif size. CytoKavosh is implemented in a visual environment Cytoscape that is convenient for the users to interact and create visual options to analyze the structural behavior of a network. This plug-in can work on any given network and is very simple to use and generates graphical results of discovered motifs with any required details. There is no specific Cytoscape plug-in, specific for finding the network motifs, based on original concept. So, we have introduced for the first time, CytoKavosh as the first plug-in, and we hope that this plug-in can be improved to cover other options to make it the best motif-analyzing tool.

  13. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach

    PubMed Central

    Li, Jun; Zhao, Patrick X.

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  14. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    PubMed

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  15. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    PubMed

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  16. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  17. MicroRNA-regulated networks: the perfect storm for classical molecular biology, the ideal scenario for systems biology.

    PubMed

    Vera, Julio; Lai, Xin; Schmitz, Ulf; Wolkenhauer, Olaf

    2013-01-01

    MicroRNAs (miRNAs) are involved in many regulatory pathways some of which are complex networks enriched in regulatory motifs like positive or negative feedback loops or coherent and incoherent feedforward loops. Their complexity makes the understanding of their regulation difficult and the interpretation of experimental data cumbersome. In this book chapter we claim that systems biology is the appropriate approach to investigate the regulation of these miRNA-regulated networks. Systems biology is an interdisciplinary approach by which biomedical questions on biochemical networks are addressed by integrating experiments with mathematical modelling and simulation. We here introduce the foundations of the systems biology approach, the basic theoretical and computational tools used to perform model-based analyses of miRNA-regulated networks and review the scientific literature in systems biology of miRNA regulation, with a focus on cancer.

  18. Efficient Biologically-based Pattern-recognizing Networks.

    PubMed

    Gur, Moshe; Yadid-Pecht, Orly

    1996-08-01

    A biologiclly-motivated classifying neural network which is based on the feature extraction scheme found in the visual cortex is suggested. A special process is proposed for grading and automatically selecting the "best" features for specific recognition tasks. Ranking is based on a feature's calculated discriminating ability, such that a given class is separated from each and every other class by a given amount. The outcome is a net with less computational complexity than other neural nets, yet one which is more biologically plausible.The main motivation for constructing a reduced net is that the complex circuitry of the brain deals with a huge number of patterns, while a machine-based recognition system usually deals with a limited number of patterns. Results show that feature reduction is drastic and that very compact nets, of the order of tens of neurons, can be used to classify patterns, even in a noisy environment. Copyright 1996 Elsevier Science Ltd

  19. Analysis of reflex modulation with a biologically realistic neural network.

    PubMed

    Stienen, Arno H A; Schouten, Alfred C; Schuurmans, Jasper; van der Helm, Frans C T

    2007-12-01

    In this study, a neuromusculoskeletal model was built to give insight into the mechanisms behind the modulation of reflexive feedback strength as experimentally identified in the human shoulder joint. The model is an integration of a biologically realistic neural network consisting of motoneurons and interneurons, modeling 12 populations of spinal neurons, and a one degree-of-freedom musculoskeletal model, including proprioceptors. The model could mimic the findings of human postural experiments, using presynaptic inhibition of the Ia afferents to modulate the feedback gains. In a pathological case, disabling one specific neural connection between the inhibitory interneurons and the motoneurons could mimic the experimental findings in complex regional pain syndrome patients. It is concluded that the model is a valuable tool to gain insight into the spinal contributions to human motor control. Applications lay in the fields of human motor control and neurological disorders, where hypotheses on motor dysfunction can be tested, like spasticity, clonus, and tremor.

  20. Aligned platinum nanowire networks from surface-oriented lipid cubic phase templates

    NASA Astrophysics Data System (ADS)

    Richardson, S. J.; Burton, M. R.; Staniec, P. A.; Nandhakumar, I. S.; Terrill, N. J.; Elliott, J. M.; Squires, A. M.

    2016-01-01

    Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic `single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain QII samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 +/- 0.3 μm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of QII phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic `single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker

  1. Global alignment, coordination and collaboration in perinatal research: the Global Obstetrics Network (GONet) Initiative.

    PubMed

    Mol, Ben Willem; Ruifrok, Anneloes Elisabeth

    2013-03-01

    Large clinical studies provide information and insight that are used to develop clinical guidelines. In view of the large sample sizes needed, many researchers have initiated multicenter studies. In some situations, the activities of these groups have led to networks, through which multiple trials have been executed over a longer period of time. The Global Obstetrics Network (GONet) was formed to link the different types of networks. The GONet mission is "to provide a forum for international interaction and collaboration among groups that perform clinical trials and observational studies in maternal fetal medicine and obstetrics." The purpose is to foster communication between groups to improve ongoing and future trials. This will open new avenues for cooperation in the design and conduct of large international trials, in seeking funding, and in highlighting evidence. The expectation is that this will lead to better studies and more efficient use of resources and minimize duplication. Furthermore, the group will provide insight and camaraderie, cooperate on data elements to allow future collaborations, and identify and highlight the pressing issues in maternal-fetal medicine. Here we describe the GONet mission, its objectives, structure and function, current collaborators, and plans for the future.

  2. Managing biological networks by using text mining and computer-aided curation

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo

    2015-11-01

    In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.

  3. A Novel Method for Alignment-free DNA Sequence Similarity Analysis Based on the Characterization of Complex Networks

    PubMed Central

    Zhou, Jie; Zhong, Pianyu; Zhang, Tinghui

    2016-01-01

    Determination of sequence similarity is one of the major steps in computational phylogenetic studies. One of the major tasks of computational biologists is to develop novel mathematical descriptors for similarity analysis. DNA clustering is an important technology that automatically identifies inherent relationships among large-scale DNA sequences. The comparison between the DNA sequences of different species helps determine phylogenetic relationships among species. Alignment-free approaches have continuously gained interest in various sequence analysis applications such as phylogenetic inference and metagenomic classification/clustering, particularly for large-scale sequence datasets. Here, we construct a novel and simple mathematical descriptor based on the characterization of cis sequence complex DNA networks. This new approach is based on a code of three cis nucleotides in a gene that could code for an amino acid. In particular, for each DNA sequence, we will set up a cis sequence complex network that will be used to develop a characterization vector for the analysis of mitochondrial DNA sequence phylogenetic relationships among nine species. The resulting phylogenetic relationships among the nine species were determined to be in agreement with the actual situation. PMID:27746676

  4. A Novel Joint Spatial-Code Clustered Interference Alignment Scheme for Large-Scale Wireless Sensor Networks

    PubMed Central

    Wu, Zhilu; Jiang, Lihui; Ren, Guanghui; Zhao, Nan; Zhao, Yaqin

    2015-01-01

    Interference alignment (IA) has been put forward as a promising technique which can mitigate interference and effectively increase the throughput of wireless sensor networks (WSNs). However, the number of users is strictly restricted by the IA feasibility condition, and the interference leakage will become so strong that the quality of service will degrade significantly when there are more users than that IA can support. In this paper, a novel joint spatial-code clustered (JSCC)-IA scheme is proposed to solve this problem. In the proposed scheme, the users are clustered into several groups so that feasible IA can be achieved within each group. In addition, each group is assigned a pseudo noise (PN) code in order to suppress the inter-group interference via the code dimension. The analytical bit error rate (BER) expressions of the proposed JSCC-IA scheme are formulated for the systems with identical and different propagation delays, respectively. To further improve the performance of the JSCC-IA scheme in asymmetric networks, a random grouping selection (RGS) algorithm is developed to search for better grouping combinations. Numerical results demonstrate that the proposed JSCC-IA scheme is capable of accommodating many more users to communicate simultaneously in the same frequency band with better performance. PMID:25602270

  5. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    SciTech Connect

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  6. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    SciTech Connect

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese`s group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  7. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.

    PubMed

    Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don

    2013-12-01

    Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more

  8. Enhancement of COPD biological networks using a web-based collaboration interface.

    PubMed

    Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C; Schlage, Walter K; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya

    2015-01-01

    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be

  9. Enhancement of COPD biological networks using a web-based collaboration interface.

    PubMed

    Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C; Schlage, Walter K; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya

    2015-01-01

    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be

  10. Complex network problems in physics, computer science and biology

    NASA Astrophysics Data System (ADS)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  11. Neural network models for biological waste-gas treatment systems.

    PubMed

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  12. The redox biology network in cancer pathophysiology and therapeutics.

    PubMed

    Manda, Gina; Isvoranu, Gheorghita; Comanescu, Maria Victoria; Manea, Adrian; Debelec Butuner, Bilge; Korkmaz, Kemal Sami

    2015-08-01

    The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the

  13. The redox biology network in cancer pathophysiology and therapeutics

    PubMed Central

    Manda, Gina; Isvoranu, Gheorghita; Comanescu, Maria Victoria; Manea, Adrian; Debelec Butuner, Bilge; Korkmaz, Kemal Sami

    2015-01-01

    The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the

  14. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  15. Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment.

    PubMed

    Liu, Danqing; Broer, Dirk J

    2014-11-18

    Monolithically ordered liquid crystal polymer networks are formed by the photoinitiated polymerization of multifunctional liquid crystal monomers. This paper describes the relevant principles and methods, the basic structure-property relationships in terms of mesogenic properties of the monomers, and the mechanical and optical properties of the polymers. Strategies are discussed to control the molecular orientation by various means and in all three dimensions. The versatility of the process is demonstrated by two examples of films with a patterned molecular order. It is shown that patterned retarders can be made by a two-step polymerization process which is successfully employed in a transflective display principle. A transflective display is a liquid crystal display that operates in both a reflective mode using ambient light and a transmissive mode with light coming from a backlight system. Furthermore, a method is discussed to create a patterned film in a single polymerization process. This film has alternating planar chiral nematic areas next to perpendicularly oriented (so-called homeotropic) areas. When applied as a coating to a substrate, the film changes its surface texture. During exposure to UV light, it switches from a flat to a corrugated state. PMID:24707811

  16. Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment.

    PubMed

    Liu, Danqing; Broer, Dirk J

    2014-11-18

    Monolithically ordered liquid crystal polymer networks are formed by the photoinitiated polymerization of multifunctional liquid crystal monomers. This paper describes the relevant principles and methods, the basic structure-property relationships in terms of mesogenic properties of the monomers, and the mechanical and optical properties of the polymers. Strategies are discussed to control the molecular orientation by various means and in all three dimensions. The versatility of the process is demonstrated by two examples of films with a patterned molecular order. It is shown that patterned retarders can be made by a two-step polymerization process which is successfully employed in a transflective display principle. A transflective display is a liquid crystal display that operates in both a reflective mode using ambient light and a transmissive mode with light coming from a backlight system. Furthermore, a method is discussed to create a patterned film in a single polymerization process. This film has alternating planar chiral nematic areas next to perpendicularly oriented (so-called homeotropic) areas. When applied as a coating to a substrate, the film changes its surface texture. During exposure to UV light, it switches from a flat to a corrugated state.

  17. Exploratory Analysis of Biological Networks through Visualization, Clustering, and Functional Annotation in Cytoscape.

    PubMed

    Baryshnikova, Anastasia

    2016-01-01

    Biological networks define how genes, proteins, and other cellular components interact with one another to carry out specific functions, providing a scaffold for understanding cellular organization. Although in-depth network analysis requires advanced mathematical and computational knowledge, a preliminary visual exploration of biological networks is accessible to anyone with basic computer skills. Visualization of biological networks is used primarily to examine network topology, identify functional modules, and predict gene functions based on gene connectivity within the network. Networks are excellent at providing a bird's-eye view of data sets and have the power of illustrating complex ideas in simple and intuitive terms. In addition, they enable exploratory analysis and generation of new hypotheses, which can then be tested using rigorous statistical and experimental tools. This protocol describes a simple procedure for visualizing a biological network using the genetic interaction similarity network for Saccharomyces cerevisiae as an example. The visualization procedure described here relies on the open-source network visualization software Cytoscape and includes detailed instructions on formatting and loading the data, clustering networks, and overlaying functional annotations. PMID:26988373

  18. Gene regulatory networks and the underlying biology of developmental toxicity

    EPA Science Inventory

    Embryonic cells are specified by large-scale networks of functionally linked regulatory genes. Knowledge of the relevant gene regulatory networks is essential for understanding phenotypic heterogeneity that emerges from disruption of molecular functions, cellular processes or sig...

  19. Contrasting methods for symbolic analysis of biological regulatory networks

    NASA Astrophysics Data System (ADS)

    Wilds, Roy; Glass, Leon

    2009-12-01

    Symbolic dynamics offers a powerful technique to relate the structure and dynamics of complex networks. We contrast the predictions of two methods of symbolic dynamics for the analysis of monotonic networks suggested by models of genetic control systems.

  20. A Glimpse to Background and Characteristics of Major Molecular Biological Networks

    PubMed Central

    Altaf-Ul-Amin, Md.; Katsuragi, Tetsuo; Sato, Tetsuo; Kanaya, Shigehiko

    2015-01-01

    Recently, biology has become a data intensive science because of huge data sets produced by high throughput molecular biological experiments in diverse areas including the fields of genomics, transcriptomics, proteomics, and metabolomics. These huge datasets have paved the way for system-level analysis of the processes and subprocesses of the cell. For system-level understanding, initially the elements of a system are connected based on their mutual relations and a network is formed. Among omics researchers, construction and analysis of biological networks have become highly popular. In this review, we briefly discuss both the biological background and topological properties of major types of omics networks to facilitate a comprehensive understanding and to conceptualize the foundation of network biology. PMID:26491677

  1. Community Structure Reveals Biologically Functional Modules in MEF2C Transcriptional Regulatory Network

    PubMed Central

    Alcalá-Corona, Sergio A.; Velázquez-Caldelas, Tadeo E.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Gene regulatory networks are useful to understand the activity behind the complex mechanisms in transcriptional regulation. A main goal in contemporary biology is using such networks to understand the systemic regulation of gene expression. In this work, we carried out a systematic study of a transcriptional regulatory network derived from a comprehensive selection of all potential transcription factor interactions downstream from MEF2C, a human transcription factor master regulator. By analyzing the connectivity structure of such network, we were able to find different biologically functional processes and specific biochemical pathways statistically enriched in communities of genes into the network, such processes are related to cell signaling, cell cycle and metabolism. In this way we further support the hypothesis that structural properties of biological networks encode an important part of their functional behavior in eukaryotic cells. PMID:27252657

  2. Community Structure Reveals Biologically Functional Modules in MEF2C Transcriptional Regulatory Network.

    PubMed

    Alcalá-Corona, Sergio A; Velázquez-Caldelas, Tadeo E; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Gene regulatory networks are useful to understand the activity behind the complex mechanisms in transcriptional regulation. A main goal in contemporary biology is using such networks to understand the systemic regulation of gene expression. In this work, we carried out a systematic study of a transcriptional regulatory network derived from a comprehensive selection of all potential transcription factor interactions downstream from MEF2C, a human transcription factor master regulator. By analyzing the connectivity structure of such network, we were able to find different biologically functional processes and specific biochemical pathways statistically enriched in communities of genes into the network, such processes are related to cell signaling, cell cycle and metabolism. In this way we further support the hypothesis that structural properties of biological networks encode an important part of their functional behavior in eukaryotic cells. PMID:27252657

  3. Integration of biological networks and gene expression data using Cytoscape.

    PubMed

    Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.

  4. Signal transduction in the activation of spermatozoa compared to other signalling pathways: a biological networks study.

    PubMed

    Bernabò, Nicola; Mattioli, Mauro; Barboni, Barbara

    2015-01-01

    In this paper we represented Spermatozoa Activation (SA) the process that leads male gametes to reach their fertilising ability of sea urchin, Caenorhabditis elegans and human as biological networks, i.e. as networks of nodes (molecules) linked by edges (their interactions). Then, we compared them with networks representing ten pathways of relevant physio-pathological importance and with a computer-generated network. We have found that the number of nodes and edges composing each network is not related with the amount of published papers on each specific topic and that all the topological parameters examined are similar in all the networks, thus conferring them a scale free topology and small world behaviour. In conclusion, SA topology, independently from the reproductive biology of considered organism, as others signalling networks is characterised by robustness against random failure, controllability and efficiency in signal transmission. PMID:26489142

  5. Functional identification of biological neural networks using reservoir adaptation for point processes.

    PubMed

    Gürel, Tayfun; Rotter, Stefan; Egert, Ulrich

    2010-08-01

    The complexity of biological neural networks does not allow to directly relate their biophysical properties to the dynamics of their electrical activity. We present a reservoir computing approach for functionally identifying a biological neural network, i.e. for building an artificial system that is functionally equivalent to the reference biological network. Employing feed-forward and recurrent networks with fading memory, i.e. reservoirs, we propose a point process based learning algorithm to train the internal parameters of the reservoir and the connectivity between the reservoir and the memoryless readout neurons. Specifically, the model is an Echo State Network (ESN) with leaky integrator neurons, whose individual leakage time constants are also adapted. The proposed ESN algorithm learns a predictive model of stimulus-response relations in in vitro and simulated networks, i.e. it models their response dynamics. Receiver Operating Characteristic (ROC) curve analysis indicates that these ESNs can imitate the response signal of a reference biological network. Reservoir adaptation improved the performance of an ESN over readout-only training methods in many cases. This also held for adaptive feed-forward reservoirs, which had no recurrent dynamics. We demonstrate the predictive power of these ESNs on various tasks with cultured and simulated biological neural networks.

  6. A powerful weighted statistic for detecting group differences of directed biological networks

    PubMed Central

    Yuan, Zhongshang; Ji, Jiadong; Zhang, Xiaoshuai; Xu, Jing; Ma, Daoxin; Xue, Fuzhong

    2016-01-01

    Complex disease is largely determined by a number of biomolecules interwoven into networks, rather than a single biomolecule. Different physiological conditions such as cases and controls may manifest as different networks. Statistical comparison between biological networks can provide not only new insight into the disease mechanism but statistical guidance for drug development. However, the methods developed in previous studies are inadequate to capture the changes in both the nodes and edges, and often ignore the network structure. In this study, we present a powerful weighted statistical test for group differences of directed biological networks, which is independent of the network attributes and can capture the changes in both the nodes and edges, as well as simultaneously accounting for the network structure through putting more weights on the difference of nodes locating on relatively more important position. Simulation studies illustrate that this method had better performance than previous ones under various sample sizes and network structures. One application to GWAS of leprosy successfully identifies the specific gene interaction network contributing to leprosy. Another real data analysis significantly identifies a new biological network, which is related to acute myeloid leukemia. One potential network responsible for lung cancer has also been significantly detected. The source R code is available on our website. PMID:27686331

  7. Robustness of the p53 network and biological hackers.

    PubMed

    Dartnell, Lewis; Simeonidis, Evangelos; Hubank, Michael; Tsoka, Sophia; Bogle, I David L; Papageorgiou, Lazaros G

    2005-06-01

    The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses.

  8. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network.

    PubMed

    Hughes, Tyler B; Dang, Na Le; Miller, Grover P; Swamidass, S Joshua

    2016-08-24

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network-the XenoSite reactivity model-using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the

  9. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network.

    PubMed

    Hughes, Tyler B; Dang, Na Le; Miller, Grover P; Swamidass, S Joshua

    2016-08-24

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network-the XenoSite reactivity model-using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the

  10. Long-range alignments of single fullerenes by site-selective inclusion into a double-cavity 2D open network.

    PubMed

    Piot, Luc; Silly, Fabien; Tortech, Ludovic; Nicolas, Yohann; Blanchard, Philippe; Roncali, Jean; Fichou, Denis

    2009-09-16

    We show by means of STM that C(60) molecules can be trapped into specific sites of a 2D double-cavity open network, thus forming long-range alignments of single molecules. Since only one of the two cavities has the right size to host C(60), the smallest cavity remains empty and is thus available to trap additional species of smaller size. This novel 2D supramolecular network opens new perspectives in the design of multicomponent guest-host architectures with electronic functionalities. PMID:19462948

  11. Why network approach can promote a new way of thinking in biology

    PubMed Central

    Giuliani, Alessandro; Filippi, Simonetta; Bertolaso, Marta

    2014-01-01

    This work deals with the particular nature of network-based approach in biology. We will comment about the shift from the consideration of the molecular layer as the definitive place where causative process start to the elucidation of the among elements (at any level of biological organization they are located) interaction network as the main goal of scientific explanation. This shift comes from the intrinsic nature of networks where the properties of a specific node are determined by its position in the entire network (top-down explanation) while the global network characteristics emerge from the nodes wiring pattern (bottom-up explanation). This promotes a “middle-out” paradigm formally identical to the time honored chemical thought holding big promises in the study of biological regulation. PMID:24782892

  12. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    ERIC Educational Resources Information Center

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  13. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240

  14. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    NASA Astrophysics Data System (ADS)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  15. Protein structure alignment beyond spatial proximity.

    PubMed

    Wang, Sheng; Ma, Jianzhu; Peng, Jian; Xu, Jinbo

    2013-01-01

    Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures.

  16. Biological network analysis with CentiScaPe: centralities and experimental dataset integration.

    PubMed

    Scardoni, Giovanni; Tosadori, Gabriele; Faizan, Mohammed; Spoto, Fausto; Fabbri, Franco; Laudanna, Carlo

    2014-01-01

    The growing dimension and complexity of the available experimental data generating biological networks have increased the need for tools that help in categorizing nodes by their topological relevance. Here we present CentiScaPe, a Cytoscape app specifically designed to calculate centrality indexes used for the identification of the most important nodes in a network. CentiScaPe is a comprehensive suite of algorithms dedicated to network nodes centrality analysis, computing several centralities for undirected, directed and weighted networks. The results of the topological analysis can be integrated with data set from lab experiments, like expression or phosphorylation levels for each protein represented in the network. Our app opens new perspectives in the analysis of biological networks, since the integration of topological analysis with lab experimental data enhance the predictive power of the bioinformatics analysis.

  17. How biologically relevant are interaction-based modules in protein networks?

    PubMed Central

    Poyatos, Juan F; Hurst, Laurence D

    2004-01-01

    By applying a graph-based algorithm to yeast protein-interaction networks we have extracted modular structures and show that they can be validated using information from the phylogenetic conservation of the network components. We show that the module cores, the parts with the highest intramodular connectivity, are biologically relevant components of the networks. These constituents correlate only weakly with other levels of organization. We also discuss how such structures could be used for finding targets for antimicrobial drugs. PMID:15535869

  18. Blood flow in microvascular networks: A study in nonlinear biology

    PubMed Central

    Geddes, John B.; Carr, Russell T.; Wu, Fan; Lao, Yingyi; Maher, Meaghan

    2010-01-01

    Plasma skimming and the Fahraeus–Lindqvist effect are well-known phenomena in blood rheology. By combining these peculiarities of blood flow in the microcirculation with simple topological models of microvascular networks, we have uncovered interesting nonlinear behavior regarding blood flow in networks. Nonlinearity manifests itself in the existence of multiple steady states. This is due to the nonlinear dependence of viscosity on blood cell concentration. Nonlinearity also appears in the form of spontaneous oscillations in limit cycles. These limit cycles arise from the fact that the physics of blood flow can be modeled in terms of state dependent delay equations with multiple interacting delay times. In this paper we extend our previous work on blood flow in a simple two node network and begin to explore how topological complexity influences the dynamics of network blood flow. In addition we present initial evidence that the nonlinear phenomena predicted by our model are observed experimentally. PMID:21198135

  19. A biologically inspired neural network for dynamic programming.

    PubMed

    Francelin Romero, R A; Kacpryzk, J; Gomide, F

    2001-12-01

    An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems. PMID:11852439

  20. A biologically inspired neural network for dynamic programming.

    PubMed

    Francelin Romero, R A; Kacpryzk, J; Gomide, F

    2001-12-01

    An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.

  1. Parenclitic networks: uncovering new functions in biological data

    PubMed Central

    Zanin, Massimiliano; Alcazar, Joaquín Medina; Carbajosa, Jesus Vicente; Paez, Marcela Gomez; Papo, David; Sousa, Pedro; Menasalvas, Ernestina; Boccaletti, Stefano

    2014-01-01

    We introduce a novel method to represent time independent, scalar data sets as complex networks. We apply our method to investigate gene expression in the response to osmotic stress of Arabidopsis thaliana. In the proposed network representation, the most important genes for the plant response turn out to be the nodes with highest centrality in appropriately reconstructed networks. We also performed a target experiment, in which the predicted genes were artificially induced one by one, and the growth of the corresponding phenotypes compared to that of the wild-type. The joint application of the network reconstruction method and of the in vivo experiments allowed identifying 15 previously unknown key genes, and provided models of their mutual relationships. This novel representation extends the use of graph theory to data sets hitherto considered outside of the realm of its application, vastly simplifying the characterization of their underlying structure. PMID:24870931

  2. Parenclitic networks: uncovering new functions in biological data

    NASA Astrophysics Data System (ADS)

    Zanin, Massimiliano; Alcazar, Joaquín Medina; Carbajosa, Jesus Vicente; Paez, Marcela Gomez; Papo, David; Sousa, Pedro; Menasalvas, Ernestina; Boccaletti, Stefano

    2014-05-01

    We introduce a novel method to represent time independent, scalar data sets as complex networks. We apply our method to investigate gene expression in the response to osmotic stress of Arabidopsis thaliana. In the proposed network representation, the most important genes for the plant response turn out to be the nodes with highest centrality in appropriately reconstructed networks. We also performed a target experiment, in which the predicted genes were artificially induced one by one, and the growth of the corresponding phenotypes compared to that of the wild-type. The joint application of the network reconstruction method and of the in vivo experiments allowed identifying 15 previously unknown key genes, and provided models of their mutual relationships. This novel representation extends the use of graph theory to data sets hitherto considered outside of the realm of its application, vastly simplifying the characterization of their underlying structure.

  3. Characterization of Adaptation by Morphology in a Planar Biological Network of Plasmodial Slime Mold

    NASA Astrophysics Data System (ADS)

    Ito, Masateru; Okamoto, Riki; Takamatsu, Atsuko

    2011-07-01

    Growth processes of a planar biological network of plasmodium of a true slime mold, Physarum polycephalum, were analyzed quantitatively. The plasmodium forms a transportation network through which protoplasm conveys nutrients, oxygen, and cellular organelles similarly to blood in a mammalian vascular network. To analyze the network structure, vertices were defined at tube bifurcation points. Then edges were defined for the tubes connecting both end vertices. Morphological analysis was attempted along with conventional topological analysis, revealing that the growth process of the plasmodial network structure depends on environmental conditions. In an attractive condition, the network is a polygonal lattice with more than six edges per vertex at the early stage and the hexagonal lattice at a later stage. Through all growing stages, the tube structure was not highly developed but an unstructured protoplasmic thin sheet was dominantly formed. The network size is small. In contrast, in the repulsive condition, the network is a mixture of polygonal lattice and tree-graph. More specifically, the polygonal lattice has more than six edges per vertex in the early stage, then a tree-graph structure is added to the lattice network at a later stage. The thick tube structure was highly developed. The network size, in the meaning of Euclidean distance but not topological one, grows considerably. Finally, the biological meaning of the environment-dependent network structure in the plasmodium is discussed.

  4. Potential unsatisfiability of cyclic constraints on stochastic biological networks biases selection towards hierarchical architectures

    PubMed Central

    Smith, Cameron; Pechuan, Ximo; Puzio, Raymond S.; Biro, Daniel; Bergman, Aviv

    2015-01-01

    Constraints placed upon the phenotypes of organisms result from their interactions with the environment. Over evolutionary time scales, these constraints feed back onto smaller molecular subnetworks comprising the organism. The evolution of biological networks is studied by considering a network of a few nodes embedded in a larger context. Taking into account this fact that any network under study is actually embedded in a larger context, we define network architecture, not on the basis of physical interactions alone, but rather as a specification of the manner in which constraints are placed upon the states of its nodes. We show that such network architectures possessing cycles in their topology, in contrast to those that do not, may be subjected to unsatisfiable constraints. This may be a significant factor leading to selection biased against those network architectures where such inconsistent constraints are more likely to arise. We proceed to quantify the likelihood of inconsistency arising as a function of network architecture finding that, in the absence of sampling bias over the space of possible constraints and for a given network size, networks with a larger number of cycles are more likely to have unsatisfiable constraints placed upon them. Our results identify a constraint that, at least in isolation, would contribute to a bias in the evolutionary process towards more hierarchical -modular versus completely connected network architectures. Together, these results highlight the context dependence of the functionality of biological networks. PMID:26040595

  5. Pattern Learning, Damage and Repair within Biological Neural Networks

    NASA Astrophysics Data System (ADS)

    Siu, Theodore; Fitzgerald O'Neill, Kate; Shinbrot, Troy

    2015-03-01

    Traumatic brain injury (TBI) causes damage to neural networks, potentially leading to disability or even death. Nearly one in ten of these patients die, and most of the remainder suffer from symptoms ranging from headaches and nausea to convulsions and paralysis. In vitro studies to develop treatments for TBI have limited in vivo applicability, and in vitro therapies have even proven to worsen the outcome of TBI patients. We propose that this disconnect between in vitro and in vivo outcomes may be associated with the fact that in vitro tests assess indirect measures of neuronal health, but do not investigate the actual function of neuronal networks. Therefore in this talk, we examine both in vitro and in silico neuronal networks that actually perform a function: pattern identification. We allow the networks to execute genetic, Hebbian, learning, and additionally, we examine the effects of damage and subsequent repair within our networks. We show that the length of repaired connections affects the overall pattern learning performance of the network and we propose therapies that may improve function following TBI in clinical settings.

  6. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach

    PubMed Central

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene. PMID:27294188

  7. Node interference and robustness: performing virtual knock-out experiments on biological networks: the case of leukocyte integrin activation network.

    PubMed

    Scardoni, Giovanni; Montresor, Alessio; Tosadori, Gabriele; Laudanna, Carlo

    2014-01-01

    The increasing availability of large network datasets derived from high-throughput experiments requires the development of tools to extract relevant information from biological networks, and the development of computational methods capable of detecting qualitative and quantitative changes in the topological properties of biological networks is of critical relevance. We introduce the notions of node interference and robustness as measures of the reciprocal influence between nodes within a network. We examine the theoretical significance of these new, centrality-based, measures by characterizing the topological relationships between nodes and groups of nodes. Node interference analysis allows topologically determining the context of functional influence of single nodes. Conversely, the node robustness analysis allows topologically identifying the nodes having the highest functional influence on a specific node. A new Cytoscape plug-in calculating these measures was developed and applied to a protein-protein interaction network specifically regulating integrin activation in human primary leukocytes. Notably, the functional effects of compounds inhibiting important protein kinases, such as SRC, HCK, FGR and JAK2, are predicted by the interference and robustness analysis, are in agreement with previous studies and are confirmed by laboratory experiments. The interference and robustness notions can be applied to a variety of different contexts, including, for instance, the identification of potential side effects of drugs or the characterization of the consequences of genes deletion, duplication or of proteins degradation, opening new perspectives in biological network analysis.

  8. Investigating noise tolerance in an efficient engine for inferring biological regulatory networks.

    PubMed

    Komori, Asako; Maki, Yukihiro; Ono, Isao; Okamoto, Masahiro

    2015-06-01

    Biological systems are composed of biomolecules such as genes, proteins, metabolites, and signaling components, which interact in complex networks. To understand complex biological systems, it is important to be capable of inferring regulatory networks from experimental time series data. In previous studies, we developed efficient numerical optimization methods for inferring these networks, but we have yet to test the performance of our methods when considering the error (noise) that is inherent in experimental data. In this study, we investigated the noise tolerance of our proposed inferring engine. We prepared the noise data using the Langevin equation, and compared the performance of our method with that of alternative optimization methods. PMID:25790786

  9. Computation of the effective mechanical response of biological networks accounting for large configuration changes.

    PubMed

    El Nady, K; Ganghoffer, J F

    2016-05-01

    The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes.

  10. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to

  11. Computation of the effective mechanical response of biological networks accounting for large configuration changes.

    PubMed

    El Nady, K; Ganghoffer, J F

    2016-05-01

    The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes. PMID:26541071

  12. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    PubMed

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory.

  13. Network-based drug discovery by integrating systems biology and computational technologies.

    PubMed

    Leung, Elaine L; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua; Liu, Liang

    2013-07-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple '-omics' databases. The newly developed algorithm- or network-based computational models can tightly integrate '-omics' databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various '-omics' platforms and computational tools would accelerate development of network-based drug discovery and network medicine.

  14. Network-based drug discovery by integrating systems biology and computational technologies

    PubMed Central

    Leung, Elaine L.; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua

    2013-01-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple ‘-omics’ databases. The newly developed algorithm- or network-based computational models can tightly integrate ‘-omics’ databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various ‘-omics’ platforms and computational tools would accelerate development of network-based drug discovery and network medicine. PMID:22877768

  15. Logical Reduction of Biological Networks to Their Most Determinative Components.

    PubMed

    Matache, Mihaela T; Matache, Valentin

    2016-07-01

    Boolean networks have been widely used as models for gene regulatory networks, signal transduction networks, or neural networks, among many others. One of the main difficulties in analyzing the dynamics of a Boolean network and its sensitivity to perturbations or mutations is the fact that it grows exponentially with the number of nodes. Therefore, various approaches for simplifying the computations and reducing the network to a subset of relevant nodes have been proposed in the past few years. We consider a recently introduced method for reducing a Boolean network to its most determinative nodes that yield the highest information gain. The determinative power of a node is obtained by a summation of all mutual information quantities over all nodes having the chosen node as a common input, thus representing a measure of information gain obtained by the knowledge of the node under consideration. The determinative power of nodes has been considered in the literature under the assumption that the inputs are independent in which case one can use the Bahadur orthonormal basis. In this article, we relax that assumption and use a standard orthonormal basis instead. We use techniques of Hilbert space operators and harmonic analysis to generate formulas for the sensitivity to perturbations of nodes, quantified by the notions of influence, average sensitivity, and strength. Since we work on finite-dimensional spaces, our formulas and estimates can be and are formulated in plain matrix algebra terminology. We analyze the determinative power of nodes for a Boolean model of a signal transduction network of a generic fibroblast cell. We also show the similarities and differences induced by the alternative complete orthonormal basis used. Among the similarities, we mention the fact that the knowledge of the states of the most determinative nodes reduces the entropy or uncertainty of the overall network significantly. In a special case, we obtain a stronger result than in previous

  16. The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases

    PubMed Central

    2013-01-01

    Background Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. Results In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. Conclusions The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner. PMID:23883183

  17. Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering.

    PubMed

    Xu, Yuan; Wu, Jinglei; Wang, Haoming; Li, Hanqin; Di, Ning; Song, Lei; Li, Sontao; Li, Dianwei; Xiang, Yang; Liu, Wei; Mo, Xiumei; Zhou, Qiang

    2013-12-01

    Tissue engineering techniques using novel scaffolding materials offer potential alternatives for managing tendon disorders. An ideal tendon tissue engineered scaffold should mimic the three-dimensional (3D) structure of the natural extracellular matrix (ECM) of the native tendon. Here, we propose a novel electrospun nanoyarn network that is morphologically and structurally similar to the ECM of native tendon tissues. The nanoyarn, random nanofiber, and aligned nanofiber scaffolds of a synthetic biodegradable polymer, poly(L-lactide-co-ε-caprolactone) [P(LLA-CL)], and natural collagen I complex were fabricated using electrospinning. These scaffolds were characterized in terms of fiber morphology, pore size, porosity, and chemical and mechanical properties for the purpose of culturing tendon cells (TCs) for tendon tissue engineering. The results indicated a fiber diameter of 632 ± 81 nm for the random nanofiber scaffold, 643 ± 97 nm for the aligned nanofiber scaffold, and 641 ± 68 nm for the nanoyarn scaffold. The yarn in the nanoyarn scaffold was twisted by many nanofibers similar to the structure and inherent nanoscale organization of tendons, indicating an increase in the diameter of 9.51 ± 3.62 μm. The nanoyarn scaffold also contained 3D aligned microstructures with large interconnected pores and high porosity. Fourier transform infrared analyses revealed the presence of collagen in the three scaffolds. The mechanical properties of the sample scaffolds indicated that the scaffolds had desirable mechanical properties for tissue regeneration. Further, the results revealed that TC proliferation and infiltration, and the expression of tendon-related ECM genes, were significantly enhanced on the nanoyarn scaffold compared with that on the random nanofiber and aligned nanofiber scaffolds. This study demonstrates that electrospun P(LLA-CL)/collagen nanoyarn is a novel, 3D, macroporous, aligned scaffold that has potential application in tendon tissue engineering.

  18. Fabrication of Electrospun Poly(L-Lactide-co-ɛ-Caprolactone)/Collagen Nanoyarn Network as a Novel, Three-Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering

    PubMed Central

    Xu, Yuan; Wu, Jinglei; Wang, Haoming; Li, Hanqin; Di, Ning; Song, Lei; Li, Sontao; Li, Dianwei; Xiang, Yang; Liu, Wei

    2013-01-01

    Tissue engineering techniques using novel scaffolding materials offer potential alternatives for managing tendon disorders. An ideal tendon tissue engineered scaffold should mimic the three-dimensional (3D) structure of the natural extracellular matrix (ECM) of the native tendon. Here, we propose a novel electrospun nanoyarn network that is morphologically and structurally similar to the ECM of native tendon tissues. The nanoyarn, random nanofiber, and aligned nanofiber scaffolds of a synthetic biodegradable polymer, poly(l-lactide-co-ɛ-caprolactone) [P(LLA-CL)], and natural collagen I complex were fabricated using electrospinning. These scaffolds were characterized in terms of fiber morphology, pore size, porosity, and chemical and mechanical properties for the purpose of culturing tendon cells (TCs) for tendon tissue engineering. The results indicated a fiber diameter of 632±81 nm for the random nanofiber scaffold, 643±97 nm for the aligned nanofiber scaffold, and 641±68 nm for the nanoyarn scaffold. The yarn in the nanoyarn scaffold was twisted by many nanofibers similar to the structure and inherent nanoscale organization of tendons, indicating an increase in the diameter of 9.51±3.62 μm. The nanoyarn scaffold also contained 3D aligned microstructures with large interconnected pores and high porosity. Fourier transform infrared analyses revealed the presence of collagen in the three scaffolds. The mechanical properties of the sample scaffolds indicated that the scaffolds had desirable mechanical properties for tissue regeneration. Further, the results revealed that TC proliferation and infiltration, and the expression of tendon-related ECM genes, were significantly enhanced on the nanoyarn scaffold compared with that on the random nanofiber and aligned nanofiber scaffolds. This study demonstrates that electrospun P(LLA-CL)/collagen nanoyarn is a novel, 3D, macroporous, aligned scaffold that has potential application in tendon tissue engineering

  19. Sensible method for updating motif instances in an increased biological network.

    PubMed

    Kim, W Y; Kurmar, S

    2015-07-15

    A network motif is defined as an over-represented subgraph pattern in a network. Network motif based techniques have been widely applied in analyses of biological networks such as transcription regulation networks (TRNs), protein-protein interaction networks (PPIs), and metabolic networks. The detection of network motifs involves the computationally expensive enumeration of subgraphs, NP-complete graph isomorphism testing, and significance testing through the generation of many random graphs to determine the statistical uniqueness of a given subgraph. These computational obstacles make network motif analysis unfeasible for many real-world applications. We observe that the fast growth of biotechnology has led to the rapid accretion of molecules (vertices) and interactions (edges) to existing biological network databases. Even with a small percentage of additions, revised networks can have a large number of differing motif instances. Currently, no existing algorithms recalculate motif instances in 'updated' networks in a practical manner. In this paper, we introduce a sensible method for efficiently recalculating motif instances by performing motif enumeration from only updated vertices and edges. Preliminary experimental results indicate that our method greatly reduces computational time by eliminating the repeated enumeration of overlapped subgraph instances detected in earlier versions of the network. The software program implementing this algorithm, defined as SUNMI (Sensible Update of Network Motif Instances), is currently a stand-alone java program and we plan to upgrade it as a web-interactive program that will be available through http://faculty.washington.edu/kimw6/research.htm in near future. Meanwhile it is recommended to contact authors to obtain the stand-alone SUNMI program. PMID:25869675

  20. Biology Inspired Approach for Communal Behavior in Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2006-01-01

    Research in wireless sensor network technology has exploded in the last decade. Promises of complex and ubiquitous control of the physical environment by these networks open avenues for new kinds of science and business. Due to the small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors working in concert. Although the reduction in size has been phenomenal it results in severe limitations on the computing, communicating, and power capabilities of these devices. Under these constraints, research efforts have concentrated on developing techniques for performing relatively simple tasks with minimal energy expense assuming some form of centralized control. Unfortunately, centralized control does not scale to massive size networks and execution of simple tasks in sparsely populated networks will not lead to the sophisticated applications predicted. These must be enabled by new techniques dependent on local and autonomous cooperation between sensors to effect global functions. As a step in that direction, in this work we detail a technique whereby a large population of sensors can attain a global goal using only local information and by making only local decisions without any form of centralized control.

  1. Revealing gene regulation and association through biological networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review had first summarized traditional methods used by plant breeders for genetic improvement, such as QTL analysis and transcriptomic analysis. With accumulating data, we can draw a network that comprises all possible links between members of a community, including protein–protein interaction...

  2. Biological Networks Underlying Soybean Seed Oil Composition and Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is the most important oil crop in the United States. Production of soybean seed oil requires coordinated expression of many biological components and pathways, which is further regulated by seed development and phyto-hormones. A new research project is initiated in my laboratory to delineat...

  3. Use of systems biology to decipher host-pathogen interaction networks and predict biomarkers.

    PubMed

    Dix, A; Vlaic, S; Guthke, R; Linde, J

    2016-07-01

    In systems biology, researchers aim to understand complex biological systems as a whole, which is often achieved by mathematical modelling and the analyses of high-throughput data. In this review, we give an overview of medical applications of systems biology approaches with special focus on host-pathogen interactions. After introducing general ideas of systems biology, we focus on (1) the detection of putative biomarkers for improved diagnosis and support of therapeutic decisions, (2) network modelling for the identification of regulatory interactions between cellular molecules to reveal putative drug targets and (3) module discovery for the detection of phenotype-specific modules in molecular interaction networks. Biomarker detection applies supervised machine learning methods utilizing high-throughput data (e.g. single nucleotide polymorphism (SNP) detection, RNA-seq, proteomics) and clinical data. We demonstrate structural analysis of molecular networks, especially by identification of disease modules as a novel strategy, and discuss possible applications to host-pathogen interactions. Pioneering work was done to predict molecular host-pathogen interactions networks based on dual RNA-seq data. However, currently this network modelling is restricted to a small number of genes. With increasing number and quality of databases and data repositories, the prediction of large-scale networks will also be feasible that can used for multidimensional diagnosis and decision support for prevention and therapy of diseases. Finally, we outline further perspective issues such as support of personalized medicine with high-throughput data and generation of multiscale host-pathogen interaction models.

  4. BiNA: a visual analytics tool for biological network data.

    PubMed

    Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael

    2014-01-01

    Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA--the Biological Network Analyzer--a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/.

  5. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    PubMed

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures. PMID:21576756

  6. Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks.

    PubMed

    Ma'ayan, Avi; Cecchi, Guillermo A; Wagner, John; Rao, A Ravi; Iyengar, Ravi; Stolovitzky, Gustavo

    2008-12-01

    Representation and analysis of complex biological and engineered systems as directed networks is useful for understanding their global structure/function organization. Enrichment of network motifs, which are over-represented subgraphs in real networks, can be used for topological analysis. Because counting network motifs is computationally expensive, only characterization of 3- to 5-node motifs has been previously reported. In this study we used a supercomputer to analyze cyclic motifs made of 3-20 nodes for 6 biological and 3 technological networks. Using tools from statistical physics, we developed a theoretical framework for characterizing the ensemble of cyclic motifs in real networks. We have identified a generic property of real complex networks, antiferromagnetic organization, which is characterized by minimal directional coherence of edges along cyclic subgraphs, such that consecutive links tend to have opposing direction. As a consequence, we find that the lack of directional coherence in cyclic motifs leads to depletion in feedback loops, where the number of nodes affected by feedback loops appears to be at a local minimum compared with surrogate shuffled networks. This topology provides more dynamic stability in large networks.

  7. Uniaxial alignment of nanoconfined columnar mesophases.

    PubMed

    Mouthuy, Pierre-Olivier; Melinte, Sorin; Geerts, Yves H; Jonas, Alain M

    2007-09-01

    By confining discotic phthalocyanines in a network of crisscrossed nanogrooves, we obtain a uniaxial alignment of the columnar mesophase. The alignment process is based on the anisotropy of interface tension between the mesophase and the nanogrooves' walls. Preferential mesophase alignment results from this nonhomogeneity combined with the anisotropy of the network cell dimensions. A simple model is proposed to explain the experimental observations.

  8. Linking experimental results, biological networks and sequence analysis methods using Ontologies and Generalised Data Structures.

    PubMed

    Koehler, Jacob; Rawlings, Chris; Verrier, Paul; Mitchell, Rowan; Skusa, Andre; Ruegg, Alexander; Philippi, Stephan

    2005-01-01

    The structure of a closely integrated data warehouse is described that is designed to link different types and varying numbers of biological networks, sequence analysis methods and experimental results such as those coming from microarrays. The data schema is inspired by a combination of graph based methods and generalised data structures and makes use of ontologies and meta-data. The core idea is to consider and store biological networks as graphs, and to use generalised data structures (GDS) for the storage of further relevant information. This is possible because many biological networks can be stored as graphs: protein interactions, signal transduction networks, metabolic pathways, gene regulatory networks etc. Nodes in biological graphs represent entities such as promoters, proteins, genes and transcripts whereas the edges of such graphs specify how the nodes are related. The semantics of the nodes and edges are defined using ontologies of node and relation types. Besides generic attributes that most biological entities possess (name, attribute description), further information is stored using generalised data structures. By directly linking to underlying sequences (exons, introns, promoters, amino acid sequences) in a systematic way, close interoperability to sequence analysis methods can be achieved. This approach allows us to store, query and update a wide variety of biological information in a way that is semantically compact without requiring changes at the database schema level when new kinds of biological information is added. We describe how this datawarehouse is being implemented by extending the text-mining framework ONDEX to link, support and complement different bioinformatics applications and research activities such as microarray analysis, sequence analysis and modelling/simulation of biological systems. The system is developed under the GPL license and can be downloaded from http://sourceforge.net/projects/ondex/

  9. Detecting modules in biological networks by edge weight clustering and entropy significance

    PubMed Central

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data, finally resulting in more biologically plausible models. In this study, we present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster's notable features, compared to current approaches, lie in: (1) the simultaneous exploitation of network node and edge weights to improve the biological interpretability of the connected components detected, (2) the assessment of their statistical significance, and (3) the identification of emerging topological properties in the detected connected components. WG-Cluster utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects connected components which are then scored and selected according to the statistical significance of their scores, and (iii) an analysis of the convolution between sub-graph mean edge weight and connected component score provides a summarizing view of the connected components. WG-Cluster can be applied to directed and undirected networks of different types of interacting entities and scales up to large omics data sets. Here, we show that WG-Cluster can be

  10. Detecting modules in biological networks by edge weight clustering and entropy significance.

    PubMed

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data, finally resulting in more biologically plausible models. In this study, we present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster's notable features, compared to current approaches, lie in: (1) the simultaneous exploitation of network node and edge weights to improve the biological interpretability of the connected components detected, (2) the assessment of their statistical significance, and (3) the identification of emerging topological properties in the detected connected components. WG-Cluster utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects connected components which are then scored and selected according to the statistical significance of their scores, and (iii) an analysis of the convolution between sub-graph mean edge weight and connected component score provides a summarizing view of the connected components. WG-Cluster can be applied to directed and undirected networks of different types of interacting entities and scales up to large omics data sets. Here, we show that WG-Cluster can be

  11. Biological Implications of Dynamical Phases in Non-equilibrium Networks

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2016-03-01

    Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

  12. Imaging Analysis of Collagen Fiber Networks in Cusps of Porcine Aortic Valves: Effect of their Local Distribution and Alignment on Valve Functionality

    PubMed Central

    Mega, Mor; Marom, Gil; Halevi, Rotem; Hamdan, Ashraf; Bluestein, Danny; Haj-Ali, Rami

    2015-01-01

    The cusps of native Aortic Valve (AV) are composed of collagen bundles embedded in soft tissue, creating a heterogenic tissue with asymmetric alignment in each cusp. This study compares native collagen fiber networks (CFNs) with a goal to better understand their influence on stress distribution and valve kinematics. Images of CFNs from five porcine tricuspid AVs are analyzed and fluid-structure interaction models are generated based on them. Although the valves had similar overall kinematics, the CFNs had distinctive influence on local mechanics. The regions with dilute CFN are more prone to damage since they are subjected to higher stress magnitudes. PMID:26406926

  13. Differential pulse adsorptive stripping voltammetric determination of nanomolar levels of atorvastatin calcium in pharmaceutical and biological samples using a vertically aligned carbon nanotube/graphene oxide electrode.

    PubMed

    Silva, Tiago Almeida; Zanin, Hudson; Vicentini, Fernando Campanhã; Corat, Evaldo José; Fatibello-Filho, Orlando

    2014-06-01

    A novel vertically aligned carbon nanotube/graphene oxide (VACNT-GO) electrode is proposed, and its ability to determine atorvastatin calcium (ATOR) in pharmaceutical and biological samples by differential pulse adsorptive stripping voltammetry (DPAdSV) is evaluated. VACNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method and then treated with oxygen plasma to produce the VACNT-GO electrode. The oxygen plasma treatment exfoliates the carbon nanotube tips exposing graphene foils and inserting oxygen functional groups, these effects improved the VACNT wettability (super-hydrophobic) which is crucial for its electrochemical application. The electrochemical behaviour of ATOR on the VACNT-GO electrode was studied by cyclic voltammetry, which showed that it underwent an irreversible oxidation process at a potential of +1.08 V in pHcond 2.0 (0.2 mol L(-1) buffer phosphate solution). By applying DPAdSV under optimized experimental conditions the analytical curve was found to be linear in the ATOR concentration range of 90 to 3.81 × 10(3) nmol L(-1) with a limit of detection of 9.4 nmol L(-1). The proposed DPAdSV method was successfully applied in the determination of ATOR in pharmaceutical and biological samples, and the results were in close agreement with those obtained by a comparative spectrophotometric method at a confidence level of 95%.

  14. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    SciTech Connect

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  15. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    PubMed

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed.

  16. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  17. Slow poisoning and destruction of networks: Edge proximity and its implications for biological and infrastructure networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumya Jyoti; Sinha, Saptarshi; Roy, Soumen

    2015-02-01

    We propose a network metric, edge proximity, Pe, which demonstrates the importance of specific edges in a network, hitherto not captured by existing network metrics. The effects of removing edges with high Pe might initially seem inconspicuous but are eventually shown to be very harmful for networks. Compared to existing strategies, the removal of edges by Pe leads to a remarkable increase in the diameter and average shortest path length in undirected real and random networks till the first disconnection and well beyond. Pe can be consistently used to rupture the network into two nearly equal parts, thus presenting a very potent strategy to greatly harm a network. Targeting by Pe causes notable efficiency loss in U.S. and European power grid networks. Pe identifies proteins with essential cellular functions in protein-protein interaction networks. It pinpoints regulatory neural connections and important portions of the neural and brain networks, respectively. Energy flow interactions identified by Pe form the backbone of long food web chains. Finally, we scrutinize the potential of Pe in edge controllability dynamics of directed networks.

  18. The BIOSCI electronic newsgroup network for the biological sciences. Final report, October 1, 1992--June 30, 1996

    SciTech Connect

    Kristofferson, D.; Mack, D.

    1996-10-01

    This is the final report for a DOE funded project on BIOSCI Electronic Newsgroup Network for the biological sciences. A usable network for scientific discussion, major announcements, problem solving, etc. has been created.

  19. Networking Biology: The Origins of Sequence-Sharing Practices in Genomics.

    PubMed

    Stevens, Hallam

    2015-10-01

    The wide sharing of biological data, especially nucleotide sequences, is now considered to be a key feature of genomics. Historians and sociologists have attempted to account for the rise of this sharing by pointing to precedents in model organism communities and in natural history. This article supplements these approaches by examining the role that electronic networking technologies played in generating the specific forms of sharing that emerged in genomics. The links between early computer users at the Stanford Artificial Intelligence Laboratory in the 1960s, biologists using local computer networks in the 1970s, and GenBank in the 1980s, show how networking technologies carried particular practices of communication, circulation, and data distribution from computing into biology. In particular, networking practices helped to transform sequences themselves into objects that had value as a community resource. PMID:26593711

  20. Networking Biology: The Origins of Sequence-Sharing Practices in Genomics.

    PubMed

    Stevens, Hallam

    2015-10-01

    The wide sharing of biological data, especially nucleotide sequences, is now considered to be a key feature of genomics. Historians and sociologists have attempted to account for the rise of this sharing by pointing to precedents in model organism communities and in natural history. This article supplements these approaches by examining the role that electronic networking technologies played in generating the specific forms of sharing that emerged in genomics. The links between early computer users at the Stanford Artificial Intelligence Laboratory in the 1960s, biologists using local computer networks in the 1970s, and GenBank in the 1980s, show how networking technologies carried particular practices of communication, circulation, and data distribution from computing into biology. In particular, networking practices helped to transform sequences themselves into objects that had value as a community resource.

  1. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.

    PubMed

    Naudé, Jérémie; Cessac, Bruno; Berry, Hugues; Delord, Bruno

    2013-09-18

    Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks.

  2. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.

    PubMed

    Naudé, Jérémie; Cessac, Bruno; Berry, Hugues; Delord, Bruno

    2013-09-18

    Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks. PMID:24048833

  3. Automated selection of synthetic biology parts for genetic regulatory networks.

    PubMed

    Yaman, Fusun; Bhatia, Swapnil; Adler, Aaron; Densmore, Douglas; Beal, Jacob

    2012-08-17

    Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps. PMID:23651287

  4. Causal inference in biology networks with integrated belief propagation.

    PubMed

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot. PMID:25592596

  5. VAN: an R package for identifying biologically perturbed networks via differential variability analysis

    PubMed Central

    2013-01-01

    Background Large-scale molecular interaction networks are dynamic in nature and are of special interest in the analysis of complex diseases, which are characterized by network-level perturbations rather than changes in individual genes/proteins. The methods developed for the identification of differentially expressed genes or gene sets are not suitable for network-level analyses. Consequently, bioinformatics approaches that enable a joint analysis of high-throughput transcriptomics datasets and large-scale molecular interaction networks for identifying perturbed networks are gaining popularity. Typically, these approaches require the sequential application of multiple bioinformatics techniques – ID mapping, network analysis, and network visualization. Here, we present the Variability Analysis in Networks (VAN) software package: a collection of R functions to streamline this bioinformatics analysis. Findings VAN determines whether there are network-level perturbations across biological states of interest. It first identifies hubs (densely connected proteins/microRNAs) in a network and then uses them to extract network modules (comprising of a hub and all its interaction partners). The function identifySignificantHubs identifies dysregulated modules (i.e. modules with changes in expression correlation between a hub and its interaction partners) using a single expression and network dataset. The function summarizeHubData identifies dysregulated modules based on a meta-analysis of multiple expression and/or network datasets. VAN also converts protein identifiers present in a MITAB-formatted interaction network to gene identifiers (UniProt identifier to Entrez identifier or gene symbol using the function generatePpiMap) and generates microRNA-gene interaction networks using TargetScan and Microcosm databases (generateMicroRnaMap). The function obtainCancerInfo is used to identify hubs (corresponding to significantly perturbed modules) that are already causally

  6. Topological biosignatures: large-scale structure of chemical networks from biology and astrochemistry.

    PubMed

    Jolley, Craig; Douglas, Trevor

    2012-01-01

    The chemical basis of life involves more than simply the presence of biological molecules; biochemical systems embody a complex network of reactions with characteristic topological features. At the same time, chemical complexity is also present in nonbiological contexts, inviting us to clarify the relationship between chemistry and life through comparative studies. This study examines chemical networks from biology (the metabolism of E. coli) and astronomy (gas-phase reactions in dark molecular clouds) to establish common topological features that may be generic for any complex chemical system, as well as clear differences that may be topological signatures of life. The biological and astrochemical networks exhibit different scaling behaviors, and the network motifs found in the two systems show similarities as well as significant differences. The PageRank algorithm was used to quantify the degree to which individual species act primarily as products or reactants; in the metabolic network, these two roles are nearly identical for most species, whereas the astrochemical network shows a clearer partitioning into reactants and products.

  7. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.

    PubMed

    Wang, Ting; Ren, Zhao; Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L; Sweet, Robert A; Wang, Jieru; Chen, Wei

    2016-02-01

    Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer's disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named "FastGGM".

  8. Heart failure: a complex clinical process interpreted by systems biology approach and network medicine.

    PubMed

    Louridas, George E; Lourida, Katerina G

    2014-03-01

    Systems biology is founded on the principles of integrative computational analysis and on the data from genetic and molecular components. The integration of biological components produces interacting networks, modules and phenotypes with remarkable applications in the field of clinical medicine. The evolving concept of network medicine gives a more precise picture of the intrinsic complexity of failing myocardium and its clinical consequences. The present review is focused on the impact of network cardiology in explaining the progressive nature of the clinical syndrome of heart failure. The failing myocardium and the subsequent clinical syndrome of heart failure disclose a dynamical and non-linear system with a progressive picture of clinical deterioration. The classical description of heart failure is based on tissue pathology and clinical presentation, and lately on specific genetic and molecular modifications. This characterization of heart failure has significant limitations to recognize preclinical disease features and to explain the progressive nature of the syndrome. Systems biology detects and evaluates specific networks from molecular, cellular and tissue elements, and assesses their influence on the appearance of clinical phenotypes. The classical reductive concept of heart failure is inadequate to provide data for molecular dysfunctions or defective coordination of the interconnected network components that are central to the genesis and clinical deterioration of heart failure. In heart failure, the recognition of molecular targets within the complex networks will increase the conceptual basis of pharmacology and the identification of novel biomarkers and at the same time will accelerate the discovery of new drugs.

  9. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.

    PubMed

    Wang, Ting; Ren, Zhao; Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L; Sweet, Robert A; Wang, Jieru; Chen, Wei

    2016-02-01

    Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer's disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named "FastGGM". PMID:26872036

  10. Reducing complexity: An iterative strategy for parameter determination in biological networks

    NASA Astrophysics Data System (ADS)

    Binder, Sebastian C.; Hernandez-Vargas, Esteban A.; Meyer-Hermann, Michael

    2015-05-01

    The dynamics of biological networks are fundamental to a variety of processes in many areas of biology and medicine. Understanding of such networks on a systemic level is facilitated by mathematical models describing these networks. However, since mathematical models of signalling networks commonly aim to describe several highly connected biological quantities and many model parameters cannot be measured directly, quantitative dynamic models often present challenges with respect to model calibration. Here, we propose an iterative fitting routine to decompose the problem of fitting a system of coupled ordinary differential equations describing a signalling network into smaller subproblems. Parameters for each differential equation are estimated separately using a Differential Evolution algorithm while all other dynamic quantities in the model are treated as input to the system. The performance of this algorithm is evaluated on artificial networks with known structure and known model parameters and compared to a conventional optimisation procedure for the same problem. Our analysis indicates that the procedure results in a significantly higher quality of fit and more efficient reconstruction of the true parameters than the conventional algorithm.

  11. CORE-Net: exploiting prior knowledge and preferential attachment to infer biological interaction networks.

    PubMed

    Montefusco, F; Cosentino, C; Amato, F

    2010-09-01

    The problem of reverse engineering in the topology of functional interaction networks from time-course experimental data has received considerable attention in literature, due to the potential applications in the most diverse fields, comprising engineering, biology, economics and social sciences. The present work introduces a novel technique, CORE-Net, which addresses this problem focusing on the case of biological interaction networks. The method is based on the representation of the network in the form of a dynamical system and on an iterative convex optimisation procedure. A first advantage of the proposed approach is that it allows to exploit qualitative prior knowledge about the network interactions, of the same kind as typically available from biological literature and databases. A second novel contribution consists of exploiting the growth and preferential attachment mechanisms to improve the inference performances when dealing with networks which exhibit a scale-free topology. The technique is first assessed through numerical tests on in silico random networks, subsequently it is applied to reverse engineering a cell cycle regulatory subnetwork in Saccharomyces cerevisiae from experimental microarray data. These tests show that the combined exploitation of prior knowledge and preferential attachment significantly improves the predictions with respect to other approaches.

  12. Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer's Disease: Role of miRNAs.

    PubMed

    Roth, Wera; Hecker, David; Fava, Eugenio

    2016-01-01

    MicroRNAs (miRNAs) are emerging as significant regulators of mRNA complexity in the human central nervous system (CNS) thereby controlling distinct gene expression profiles in a spatio-temporal manner during development, neuronal plasticity, aging and (age-related) neurodegeneration, including Alzheimer's disease (AD). Increasing effort is expended towards dissecting and deciphering the molecular and genetic mechanisms of neurobiological and pathological functions of these brain-enriched miRNAs. Along these lines, recent data pinpoint distinct miRNAs and miRNA networks being linked to APP splicing, processing and Aβ pathology (Lukiw et al., Front Genet 3:327, 2013), and furthermore, to the regulation of tau and its cellular subnetworks (Lau et al., EMBO Mol Med 5:1613, 2013), altogether underlying the onset and propagation of Alzheimer's disease. MicroRNA profiling studies in Alzheimer's disease suffer from poor consensus which is an acknowledged concern in the field, and constitutes one of the current technical challenges. Hence, a strong demand for experimental and computational systems biology approaches arises, to incorporate and integrate distinct levels of information and scientific knowledge into a complex system of miRNA networks in the context of the transcriptome, proteome and metabolome in a given cellular environment. Here, we will discuss the state-of-the-art technologies and computational approaches on hand that may lead to a deeper understanding of the complex biological networks underlying the pathogenesis of Alzheimer's disease.

  13. The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms

    PubMed Central

    Ramoni, Marco F.

    2010-01-01

    The field of synthetic biology holds an inspiring vision for the future; it integrates computational analysis, biological data and the systems engineering paradigm in the design of new biological machines and systems. These biological machines are built from basic biomolecular components analogous to electrical devices, and the information flow among these components requires the augmentation of biological insight with the power of a formal approach to information management. Here we review the informatics challenges in synthetic biology along three dimensions: in silico, in vitro and in vivo. First, we describe state of the art of the in silico support of synthetic biology, from the specific data exchange formats, to the most popular software platforms and algorithms. Next, we cast in vitro synthetic biology in terms of information flow, and discuss genetic fidelity in DNA manipulation, development strategies of biological parts and the regulation of biomolecular networks. Finally, we explore how the engineering chassis can manipulate biological circuitries in vivo to give rise to future artificial organisms. PMID:19906839

  14. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    NASA Astrophysics Data System (ADS)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  15. Network development in biological gels: role in lymphatic vessel development.

    PubMed

    Roose, Tiina; Fowler, Andrew C

    2008-08-01

    In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801-808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the Cahn-Hilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model. PMID:18622650

  16. Laser polarization fluorescence of the networks of optically anisotropic biological crystals

    NASA Astrophysics Data System (ADS)

    Ushenko, Y. A.; Dubolazov, A. V.; Angelsky, A. P.; Sidor, M. I.; Bodnar, G. B.; Koval, G.; Zabolotna, N. I.; Smolarz, A.; Junisbekov, M. Sh.

    2013-01-01

    The present work is devoted to investigation of mechanisms of optical anisotropy of biological tissues polycrystalline networks and laser polarization fluorescence. The model of complex optical anisotropy, which takes into account both linear and circular birefringence, as well as linear and circular dichroism of fibrillar networks of histological sections of women reproductive sphere is proposed. The data of statistical, correlation and fractal processing of coordinate distributions of laser polarization fluorescence is provided. The technique of azimuthally invariant Mueller-matrix mapping of laser polarization fluorescence of protein networks in the tasks of differentiation of benign and malignant tumors of uterus wall is elaborated.

  17. Customized care 2020: how medical sequencing and network biology will enable personalized medicine.

    PubMed

    Boguski, Mark S; Arnaout, Ramy; Hill, Colin

    2009-01-01

    Applications of next-generation nucleic acid sequencing technologies will lead to the development of precision diagnostics that will, in turn, be a major technology enabler of precision medicine. Terabyte-scale, multidimensional data sets derived using these technologies will be used to reverse engineer the specific disease networks that underlie individual patients' conditions. Modeling and simulation of these networks in the presence of virtual drugs, and combinations of drugs, will identify the most efficacious therapy for precision medicine and customized care. In coming years the practice of medicine will routinely employ network biology analytics supported by high-performance supercomputing.

  18. Engineering cell alignment in vitro.

    PubMed

    Li, Yuhui; Huang, Guoyou; Zhang, Xiaohui; Wang, Lin; Du, Yanan; Lu, Tian Jian; Xu, Feng

    2014-01-01

    Cell alignment plays a critical role in various cell behaviors including cytoskeleton reorganization, membrane protein relocation, nucleus gene expression, and ECM remodeling. Cell alignment is also known to exert significant effects on tissue regeneration (e.g., neuron) and modulate mechanical properties of tissues including skeleton, cardiac muscle and tendon. Therefore, it is essential to engineer cell alignment in vitro for biomechanics, cell biology, tissue engineering and regenerative medicine applications. With advances in nano- and micro-scale technologies, a variety of approaches have been developed to engineer cell alignment in vitro, including mechanical loading, topographical patterning, and surface chemical treatment. In this review, we first present alignments of various cell types and their functionality in different tissues in vivo including muscle and nerve tissues. Then, we provide an overview of recent approaches for engineering cell alignment in vitro. Finally, concluding remarks and perspectives are addressed for future improvement of engineering cell alignment.

  19. Discriminating different classes of biological networks by analyzing the graphs spectra distribution.

    PubMed

    Takahashi, Daniel Yasumasa; Sato, João Ricardo; Ferreira, Carlos Eduardo; Fujita, André

    2012-01-01

    The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.

  20. RANKING RELATIONS USING ANALOGIES IN BIOLOGICAL AND INFORMATION NETWORKS1

    PubMed Central

    Silva, Ricardo; Heller, Katherine; Ghahramani, Zoubin; Airoldi, Edoardo M.

    2013-01-01

    Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects S = {A(1) : B(1), A(2) : B(2), …, A(N) : B(N)}, measures how well other pairs A : B fit in with the set S. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in S? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided. PMID:24587838

  1. Sparse factor model for co-expression networks with an application using prior biological knowledge.

    PubMed

    Blum, Yuna; Houée-Bigot, Magalie; Causeur, David

    2016-06-01

    Inference on gene regulatory networks from high-throughput expression data turns out to be one of the main current challenges in systems biology. Such networks can be very insightful for the deep understanding of interactions between genes. Because genes-gene interactions is often viewed as joint contributions to known biological mechanisms, inference on the dependence among gene expressions is expected to be consistent to some extent with the functional characterization of genes which can be derived from ontologies (GO, KEGG, …). The present paper introduces a sparse factor model as a general framework either to account for a prior knowledge on joint contributions of modules of genes to latent biological processes or to infer on the corresponding co-expression network. We propose an ℓ1 - regularized EM algorithm to fit a sparse factor model for correlation. We demonstrate how it helps extracting modules of genes and more generally improves the gene clustering performance. The method is compared to alternative estimation procedures for sparse factor models of relevance networks in a simulation study. The integration of a biological knowledge based on the gene ontology (GO) is also illustrated on a liver expression data generated to understand adiposity variability in chicken.

  2. Switch-like Transitions Insulate Network Motifs to Modularize Biological Networks.

    PubMed

    Atay, Oguzhan; Doncic, Andreas; Skotheim, Jan M

    2016-08-01

    Cellular decisions are made by complex networks that are difficult to analyze. Although it is common to analyze smaller sub-networks known as network motifs, it is unclear whether this is valid, because these motifs are embedded in complex larger networks. Here, we address the general question of modularity by examining the S. cerevisiae pheromone response. We demonstrate that the feedforward motif controlling the cell-cycle inhibitor Far1 is insulated from cell-cycle dynamics by the positive feedback switch that drives reentry to the cell cycle. Before cells switch on positive feedback, the feedforward motif model predicts the behavior of the larger network. Conversely, after the switch, the feedforward motif is dismantled and has no discernable effect on the cell cycle. When insulation is broken, the feedforward motif no longer predicts network behavior. This work illustrates how, despite the interconnectivity of networks, the activity of motifs can be insulated by switches that generate well-defined cellular states. PMID:27453443

  3. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  4. The Google matrix controls the stability of structured ecological and biological networks

    NASA Astrophysics Data System (ADS)

    Stone, Lewi

    2016-09-01

    May's celebrated theoretical work of the 70's contradicted the established paradigm by demonstrating that complexity leads to instability in biological systems. Here May's random-matrix modelling approach is generalized to realistic large-scale webs of species interactions, be they structured by networks of competition, mutualism or both. Simple relationships are found to govern these otherwise intractable models, and control the parameter ranges for which biological systems are stable and feasible. Our analysis of model and real empirical networks is only achievable on introducing a simplifying Google-matrix reduction scheme, which in the process, yields a practical ecological eigenvalue stability index. These results provide an insight into how network topology, especially connectance, influences species stable coexistence. Constraints controlling feasibility (positive equilibrium populations) in these systems are found more restrictive than those controlling stability, helping explain the enigma of why many classes of feasible ecological models are nearly always stable.

  5. The Google matrix controls the stability of structured ecological and biological networks

    PubMed Central

    Stone, Lewi

    2016-01-01

    May's celebrated theoretical work of the 70's contradicted the established paradigm by demonstrating that complexity leads to instability in biological systems. Here May's random-matrix modelling approach is generalized to realistic large-scale webs of species interactions, be they structured by networks of competition, mutualism or both. Simple relationships are found to govern these otherwise intractable models, and control the parameter ranges for which biological systems are stable and feasible. Our analysis of model and real empirical networks is only achievable on introducing a simplifying Google-matrix reduction scheme, which in the process, yields a practical ecological eigenvalue stability index. These results provide an insight into how network topology, especially connectance, influences species stable coexistence. Constraints controlling feasibility (positive equilibrium populations) in these systems are found more restrictive than those controlling stability, helping explain the enigma of why many classes of feasible ecological models are nearly always stable. PMID:27687986

  6. Root Systems Biology: Integrative Modeling across Scales, from Gene Regulatory Networks to the Rhizosphere1

    PubMed Central

    Hill, Kristine; Porco, Silvana; Lobet, Guillaume; Zappala, Susan; Mooney, Sacha; Draye, Xavier; Bennett, Malcolm J.

    2013-01-01

    Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment. PMID:24143806

  7. Systems Biology Modeling of the Radiation Sensitivity Network: A Biomarker Discovery Platform

    SciTech Connect

    Eschrich, Steven; Zhang Hongling; Zhao Haiyan; Boulware, David; Lee, Ji-Hyun; Bloom, Gregory; Torres-Roca, Javier F.

    2009-10-01

    Purpose: The discovery of effective biomarkers is a fundamental goal of molecular medicine. Developing a systems-biology understanding of radiosensitivity can enhance our ability of identifying radiation-specific biomarkers. Methods and Materials: Radiosensitivity, as represented by the survival fraction at 2 Gy was modeled in 48 human cancer cell lines. We applied a linear regression algorithm that integrates gene expression with biological variables, including ras status (mut/wt), tissue of origin and p53 status (mut/wt). Results: The biomarker discovery platform is a network representation of the top 500 genes identified by linear regression analysis. This network was reduced to a 10-hub network that includes c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1, and IRF1. Nine targets associated with radiosensitization drugs are linked to the network, demonstrating clinical relevance. Furthermore, the model identified four significant radiosensitivity clusters of terms and genes. Ras was a dominant variable in the analysis, as was the tissue of origin, and their interaction with gene expression but not p53. Overrepresented biological pathways differed between clusters but included DNA repair, cell cycle, apoptosis, and metabolism. The c-Jun network hub was validated using a knockdown approach in 8 human cell lines representing lung, colon, and breast cancers. Conclusion: We have developed a novel radiation-biomarker discovery platform using a systems biology modeling approach. We believe this platform will play a central role in the integration of biology into clinical radiation oncology practice.

  8. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs

    PubMed Central

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology. PMID:23577081

  9. The structure of a gene co-expression network reveals biological functions underlying eQTLs.

    PubMed

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology. PMID:23577081

  10. Evaluation of Gene Association Methods for Coexpression Network Construction and Biological Knowledge Discovery

    PubMed Central

    Kumari, Sapna; Nie, Jeff; Chen, Huann-Sheng; Ma, Hao; Stewart, Ron; Li, Xiang; Lu, Meng-Zhu; Taylor, William M.; Wei, Hairong

    2012-01-01

    Background Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. Methods and Results In this study, we compared eight gene association methods – Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson – and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. Conclusions We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction. PMID:23226279

  11. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network

    PubMed Central

    2016-01-01

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network—the XenoSite reactivity model—using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule

  12. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network

    PubMed Central

    2016-01-01

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network—the XenoSite reactivity model—using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule

  13. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    PubMed Central

    He, Fei; Murabito, Ettore; Westerhoff, Hans V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000

  14. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    PubMed

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways.

  15. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    PubMed

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000

  16. Vision-based force measurement using neural networks for biological cell microinjection.

    PubMed

    Karimirad, Fatemeh; Chauhan, Sunita; Shirinzadeh, Bijan

    2014-03-21

    This paper presents a vision-based force measurement method using an artificial neural network model. The proposed model is used for measuring the applied load to a spherical biological cell during micromanipulation process. The devised vision-based method is most useful when force measurement capability is required, but it is very challenging or even infeasible to use a force sensor. Artificial neural networks in conjunction with image processing techniques have been used to estimate the applied load to a cell. A bio-micromanipulation system capable of force measurement has also been established in order to collect the training data required for the proposed neural network model. The geometric characterization of zebrafish embryos membranes has been performed during the penetration of the micropipette prior to piercing. The geometric features are extracted from images using image processing techniques. These features have been used to describe the shape and quantify the deformation of the cell at different indentation depths. The neural network is trained by taking the visual data as the input and the measured corresponding force as the output. Once the neural network is trained with sufficient number of data, it can be used as a precise sensor in bio-micromanipulation setups. However, the proposed neural network model is applicable for indentation of any other spherical elastic object. The results demonstrate the capability of the proposed method. The outcomes of this study could be useful for measuring force in biological cell micromanipulation processes such as injection of the mouse oocyte/embryo. PMID:24411067

  17. Vision-based force measurement using neural networks for biological cell microinjection.

    PubMed

    Karimirad, Fatemeh; Chauhan, Sunita; Shirinzadeh, Bijan

    2014-03-21

    This paper presents a vision-based force measurement method using an artificial neural network model. The proposed model is used for measuring the applied load to a spherical biological cell during micromanipulation process. The devised vision-based method is most useful when force measurement capability is required, but it is very challenging or even infeasible to use a force sensor. Artificial neural networks in conjunction with image processing techniques have been used to estimate the applied load to a cell. A bio-micromanipulation system capable of force measurement has also been established in order to collect the training data required for the proposed neural network model. The geometric characterization of zebrafish embryos membranes has been performed during the penetration of the micropipette prior to piercing. The geometric features are extracted from images using image processing techniques. These features have been used to describe the shape and quantify the deformation of the cell at different indentation depths. The neural network is trained by taking the visual data as the input and the measured corresponding force as the output. Once the neural network is trained with sufficient number of data, it can be used as a precise sensor in bio-micromanipulation setups. However, the proposed neural network model is applicable for indentation of any other spherical elastic object. The results demonstrate the capability of the proposed method. The outcomes of this study could be useful for measuring force in biological cell micromanipulation processes such as injection of the mouse oocyte/embryo.

  18. A survey on methods for modeling and analyzing integrated biological networks.

    PubMed

    Tenazinha, Nuno; Vinga, Susana

    2011-01-01

    Understanding how cellular systems build up integrated responses to their dynamically changing environment is one of the open questions in Systems Biology. Despite their intertwinement, signaling networks, gene regulation and metabolism have been frequently modeled independently in the context of well-defined subsystems. For this purpose, several mathematical formalisms have been developed according to the features of each particular network under study. Nonetheless, a deeper understanding of cellular behavior requires the integration of these various systems into a model capable of capturing how they operate as an ensemble. With the recent advances in the "omics" technologies, more data is becoming available and, thus, recent efforts have been driven toward this integrated modeling approach. We herein review and discuss methodological frameworks currently available for modeling and analyzing integrated biological networks, in particular metabolic, gene regulatory and signaling networks. These include network-based methods and Chemical Organization Theory, Flux-Balance Analysis and its extensions, logical discrete modeling, Petri Nets, traditional kinetic modeling, Hybrid Systems and stochastic models. Comparisons are also established regarding data requirements, scalability with network size and computational burden. The methods are illustrated with successful case studies in large-scale genome models and in particular subsystems of various organisms. PMID:21116043

  19. Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.

  20. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks

    PubMed Central

    2014-01-01

    Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism

  1. MODA: an efficient algorithm for network motif discovery in biological networks.

    PubMed

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

  2. Networks In Real Space: Characteristics and Analysis for Biology and Mechanics

    NASA Astrophysics Data System (ADS)

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.

  3. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks

    PubMed Central

    Blatti, Charles; Sinha, Saurabh

    2016-01-01

    Motivation: Analysis of co-expressed gene sets typically involves testing for enrichment of different annotations or ‘properties’ such as biological processes, pathways, transcription factor binding sites, etc., one property at a time. This common approach ignores any known relationships among the properties or the genes themselves. It is believed that known biological relationships among genes and their many properties may be exploited to more accurately reveal commonalities of a gene set. Previous work has sought to achieve this by building biological networks that combine multiple types of gene–gene or gene–property relationships, and performing network analysis to identify other genes and properties most relevant to a given gene set. Most existing network-based approaches for recognizing genes or annotations relevant to a given gene set collapse information about different properties to simplify (homogenize) the networks. Results: We present a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types that preserve more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only these relevant properties. We then re-rank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algorithm for ranking genes related to Drosophila embryonic development and aggressive responses in the brains of social animals. Availability and Implementation: DRaWR was implemented as

  4. Meeting report from the fourth meeting of the Computational Modeling in Biology Network (COMBINE)

    PubMed Central

    Waltemath, Dagmar; Bergmann, Frank T.; Chaouiya, Claudine; Czauderna, Tobias; Gleeson, Padraig; Goble, Carole; Golebiewski, Martin; Hucka, Michael; Juty, Nick; Krebs, Olga; Le Novère, Nicolas; Mi, Huaiyu; Moraru, Ion I.; Myers, Chris J.; Nickerson, David; Olivier, Brett G.; Rodriguez, Nicolas; Schreiber, Falk; Smith, Lucian; Zhang, Fengkai; Bonnet, Eric

    2014-01-01

    The Computational Modeling in Biology Network (COMBINE) is an initiative to coordinate the development of community standards and formats in computational systems biology and related fields. This report summarizes the topics and activities of the fourth edition of the annual COMBINE meeting, held in Paris during September 16-20 2013, and attended by a total of 96 people. This edition pioneered a first day devoted to modeling approaches in biology, which attracted a broad audience of scientists thanks to a panel of renowned speakers. During subsequent days, discussions were held on many subjects including the introduction of new features in the various COMBINE standards, new software tools that use the standards, and outreach efforts. Significant emphasis went into work on extensions of the SBML format, and also into community-building. This year’s edition once again demonstrated that the COMBINE community is thriving, and still manages to help coordinate activities between different standards in computational systems biology.

  5. Maria Goeppert-Mayer Award Talk: Probing the structure and dynamics of biological networks

    NASA Astrophysics Data System (ADS)

    Albert, Reka

    2011-03-01

    The relationship between the structure and dynamics of networks is one of the central topics in network science. In the context of biological regulatory networks at the molecular to cellular level, the dynamics in question is often thought of as information propagation through the network. Quantitative dynamic models help to achieve an understanding of this process, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting biological signal transduction, and at the same time probing the structure-function relation of these networks. This analysis, however, necessitates the extension of current graph theoretical frameworks to incorporate features such as the positive or negative nature of interactions and synergistic behaviors among multiple components. This talk will present a method for structural analysis in an augmented graph framework that can probe the dynamics of information transfer. The first step is to expand the network to a richer representation that incorporates negative and synergistic regulation by the addition of pseudo-nodes and new edges. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. As a first application of this method we ranked the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on various regulatory networks shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and agrees with dynamic simulation results and experimental observations. Future applications include determining the ESMs that (do

  6. PAGER: constructing PAGs and new PAG–PAG relationships for network biology

    PubMed Central

    Yue, Zongliang; Kshirsagar, Madhura M.; Nguyen, Thanh; Suphavilai, Chayaporn; Neylon, Michael T.; Zhu, Liugen; Ratliff, Timothy; Chen, Jake Y.

    2015-01-01

    In this article, we described a new database framework to perform integrative “gene-set, network, and pathway analysis” (GNPA). In this framework, we integrated heterogeneous data on pathways, annotated list, and gene-sets (PAGs) into a PAG electronic repository (PAGER). PAGs in the PAGER database are organized into P-type, A-type and G-type PAGs with a three-letter-code standard naming convention. The PAGER database currently compiles 44 313 genes from 5 species including human, 38 663 PAGs, 324 830 gene–gene relationships and two types of 3 174 323 PAG–PAG regulatory relationships—co-membership based and regulatory relationship based. To help users assess each PAG’s biological relevance, we developed a cohesion measure called Cohesion Coefficient (CoCo), which is capable of disambiguating between biologically significant PAGs and random PAGs with an area-under-curve performance of 0.98. PAGER database was set up to help users to search and retrieve PAGs from its online web interface. PAGER enable advanced users to build PAG–PAG regulatory networks that provide complementary biological insights not found in gene set analysis or individual gene network analysis. We provide a case study using cancer functional genomics data sets to demonstrate how integrative GNPA help improve network biology data coverage and therefore biological interpretability. The PAGER database can be accessible openly at http://discovery.informatics.iupui.edu/PAGER/. Contact: jakechen@iupui.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072489

  7. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks

    PubMed Central

    Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L.; Sweet, Robert A.; Wang, Jieru; Chen, Wei

    2016-01-01

    Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer’s disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named “FastGGM”. PMID:26872036

  8. Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing

    PubMed Central

    Piñero, Janet; Berenstein, Ariel; Gonzalez-Perez, Abel; Chernomoretz, Ariel; Furlong, Laura I.

    2016-01-01

    Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules. PMID:27080396

  9. Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks.

    PubMed

    Han, Hyun Wook; Ohn, Jung Hun; Moon, Jisook; Kim, Ju Han

    2013-11-01

    Biological networks often show a scale-free topology with node degree following a power-law distribution. Lethal genes tend to form functional hubs, whereas non-lethal disease genes are located at the periphery. Uni-dimensional analyses, however, are flawed. We created and investigated two distinct scale-free networks; a protein-protein interaction (PPI) and a perturbation sensitivity network (PSN). The hubs of both networks exhibit a low molecular evolutionary rate (P < 8 × 10(-12), P < 2 × 10(-4)) and a high codon adaptation index (P < 2 × 10(-16), P < 2 × 10(-8)), indicating that both hubs have been shaped under high evolutionary selective pressure. Moreover, the topologies of PPI and PSN are inversely proportional: hubs of PPI tend to be located at the periphery of PSN and vice versa. PPI hubs are highly enriched with lethal genes but not with disease genes, whereas PSN hubs are highly enriched with disease genes and drug targets but not with lethal genes. PPI hub genes are enriched with essential cellular processes, but PSN hub genes are enriched with environmental interaction processes, having more TATA boxes and transcription factor binding sites. It is concluded that biological systems may balance internal growth signaling and external stress signaling by unifying the two opposite scale-free networks that are seemingly opposite to each other but work in concert between death and disease.

  10. The Everglades Depth Estimation Network (EDEN) for Support of Ecological and Biological Assessments

    USGS Publications Warehouse

    Telis, Pamela A.

    2006-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring, ground-elevation modeling, and water-surface modeling that provides scientists and managers with current (1999-present), online water-depth information for the entire freshwater portion of the Greater Everglades. Presented on a 400-square-meter grid spacing, EDEN offers a consistent and documented dataset that can be used by scientists and managers to (1) guide large-scale field operations, (2) integrate hydrologic and ecological responses, and (3) support biological and ecological assessments that measure ecosystem responses to the implementation of the Comprehensive Everglades Restoration Plan.

  11. Visual analysis of transcriptome data in the context of anatomical structures and biological networks.

    PubMed

    Junker, Astrid; Rohn, Hendrik; Schreiber, Falk

    2012-01-01

    The complexity and temporal as well as spatial resolution of transcriptome datasets is constantly increasing due to extensive technological developments. Here we present methods for advanced visualization and intuitive exploration of transcriptomics data as necessary prerequisites in order to facilitate the gain of biological knowledge. Color-coding of structural images based on the expression level enables a fast visual data analysis in the background of the examined biological system. The network-based exploration of these visualizations allows for comparative analysis of genes with specific transcript patterns and supports the extraction of functional relationships even from large datasets. In order to illustrate the presented methods, the tool HIVE was applied for visualization and exploration of database-retrieved expression data for master regulators of Arabidopsis thaliana flower and seed development in the context of corresponding tissue-specific regulatory networks.

  12. Visual Analysis of Transcriptome Data in the Context of Anatomical Structures and Biological Networks

    PubMed Central

    Junker, Astrid; Rohn, Hendrik; Schreiber, Falk

    2012-01-01

    The complexity and temporal as well as spatial resolution of transcriptome datasets is constantly increasing due to extensive technological developments. Here we present methods for advanced visualization and intuitive exploration of transcriptomics data as necessary prerequisites in order to facilitate the gain of biological knowledge. Color-coding of structural images based on the expression level enables a fast visual data analysis in the background of the examined biological system. The network-based exploration of these visualizations allows for comparative analysis of genes with specific transcript patterns and supports the extraction of functional relationships even from large datasets. In order to illustrate the presented methods, the tool HIVE was applied for visualization and exploration of database-retrieved expression data for master regulators of Arabidopsis thaliana flower and seed development in the context of corresponding tissue-specific regulatory networks. PMID:23162564

  13. Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks

    PubMed Central

    Audouze, Karine; Juncker, Agnieszka Sierakowska; Roque, Francisco J. S. S. A.; Krysiak-Baltyn, Konrad; Weinhold, Nils; Taboureau, Olivier; Jensen, Thomas Skøt; Brunak, Søren

    2010-01-01

    Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human protein-protein association network built upon the integration of chemical toxicology and systems biology. This computational systems chemical biology model reveals uncharacterized connections between compounds and diseases, thus predicting which compounds may be risk factors for human health. Additionally, the network can be used to identify unexpected potential associations between chemicals and proteins. Examples are shown for chemicals associated with breast cancer, lung cancer and necrosis, and potential protein targets for di-ethylhexyl-phthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxin, pirinixic acid and permethrine. The chemical-protein associations are supported through recent published studies, which illustrate the power of our approach that integrates toxicogenomics data with other data types. PMID:20502671

  14. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  15. Curriculum Alignment.

    ERIC Educational Resources Information Center

    Crowell, Ronald; Tissot, Paula

    Curriculum alignment (CA) refers to the congruence of all the elements of a school's curriculum: curriculum goals; instructional program--what is taught and the materials used; and tests used to judge outcomes. CA can be a very powerful can be a very powerful factor in improving schools. Although further research is needed on CA, there is…

  16. From systems biology to photosynthesis and whole-plant modeling: a conceptual model for integrating multi-scale networks

    SciTech Connect

    Weston, David; Hanson, Paul J; Norby, Richard J; Tuskan, Gerald A; Wullschleger, Stan D

    2012-01-01

    Network analysis is now a common statistical tool for molecular biologists. Network algorithms are readily used to model gene, protein and metabolic correlations providing insight into pathways driving biological phenomenon. One output from such an analysis is a candidate gene list that can be responsible, in part, for the biological process of interest. The question remains, however, as to whether molecular network analysis can be used to inform process models at higher levels of biological organization. In our previous work, transcriptional networks derived from three plant species were constructed, interrogated for orthology and then correlated to photosynthetic inhibition at elevated temperature. One unique aspect of that study was the link from co-expression networks to net photosynthesis. In this addendum, we propose a conceptual model where traditional network analysis can be linked to whole-plant models thereby informing predictions on key processes such as photosynthesis, nutrient uptake and assimilation, and C partitioning.

  17. Elastic-Net Copula Granger Causality for Inference of Biological Networks

    PubMed Central

    Siyal, Mohammad Yakoob

    2016-01-01

    Aim In bioinformatics, the inference of biological networks is one of the most active research areas. It involves decoding various complex biological networks that are responsible for performing diverse functions in human body. Among these networks analysis, most of the research focus is towards understanding effective brain connectivity and gene networks in order to cure and prevent related diseases like Alzheimer and cancer respectively. However, with recent advances in data procurement technology, such as DNA microarray analysis and fMRI that can simultaneously process a large amount of data, it yields high-dimensional data sets. These high dimensional dataset analyses possess challenges for the analyst. Background Traditional methods of Granger causality inference use ordinary least-squares methods for structure estimation, which confront dimensionality issues when applied to high-dimensional data. Apart from dimensionality issues, most existing methods were designed to capture only the linear inferences from time series data. Method and Conclusion In this paper, we address the issues involved in assessing Granger causality for both linear and nonlinear high-dimensional data by proposing an elegant form of the existing LASSO-based method that we call “Elastic-Net Copula Granger causality”. This method provides a more stable way to infer biological networks which has been verified using rigorous experimentation. We have compared the proposed method with the existing method and demonstrated that this new strategy outperforms the existing method on all measures: precision, false detection rate, recall, and F1 score. We have also applied both methods to real HeLa cell data and StarPlus fMRI datasets and presented a comparison of the effectiveness of both methods. PMID:27792750

  18. Biologically Derived Soft Conducting Hydrogels Using Heparin-Doped Polymer Networks

    PubMed Central

    2015-01-01

    The emergence of flexible and stretchable electronic components expands the range of applications of electronic devices. Flexible devices are ideally suited for electronic biointerfaces because of mechanically permissive structures that conform to curvilinear structures found in native tissue. Most electronic materials used in these applications exhibit elastic moduli on the order of 0.1–1 MPa. However, many electronically excitable tissues exhibit elasticities in the range of 1–10 kPa, several orders of magnitude smaller than existing components used in flexible devices. This work describes the use of biologically derived heparins as scaffold materials for fabricating networks with hybrid electronic/ionic conductivity and ultracompliant mechanical properties. Photo-cross-linkable heparin–methacrylate hydrogels serve as templates to control the microstructure and doping of in situ polymerized polyaniline structures. Macroscopic heparin-doped polyaniline hydrogel dual networks exhibit impedances as low as Z = 4.17 Ω at 1 kHz and storage moduli of G′ = 900 ± 100 Pa. The conductivity of heparin/polyaniline networks depends on the oxidation state and microstructure of secondary polyaniline networks. Furthermore, heparin/polyaniline networks support the attachment, proliferation, and differentiation of murine myoblasts without any surface treatments. Taken together, these results suggest that heparin/polyaniline hydrogel networks exhibit suitable physical properties as an electronically active biointerface material that can match the mechanical properties of soft tissues composed of excitable cells. PMID:24738911

  19. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis.

    PubMed

    Scott, Robert E; Ghule, Prachi N; Stein, Janet L; Stein, Gary S

    2015-10-01

    The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint is associated with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats, and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes, and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose, and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with P = e(-13) to e(-36) . Cell cycle expression networks show species, sex and tissue variability, and they are enriched in mRNA transcripts associated with mitosis, many of which are associated with chromosomal instability. PMID:25808367

  20. NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Sand, Olivier; Janky, Rekin's; Vanderstocken, Gilles; Deville, Yves; van Helden, Jacques

    2008-07-01

    The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources.

  1. ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.

    PubMed

    Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi

    2015-01-01

    Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks. PMID:26357321

  2. Network expansion and pathway enrichment analysis towards biologically significant findings from microarrays.

    PubMed

    Wu, Xiaogang; Huang, Hui; Wei, Tao; Pandey, Ragini; Reinhard, Christoph; Li, Shuyu D; Chen, Jake Y

    2012-01-01

    In many cases, crucial genes show relatively slight changes between groups of samples (e.g. normal vs. disease), and many genes selected from microarray differential analysis by measuring the expression level statistically are also poorly annotated and lack of biological significance. In this paper, we present an innovative approach - network expansion and pathway enrichment analysis (NEPEA) for integrative microarray analysis. We assume that organized knowledge will help microarray data analysis in significant ways, and the organized knowledge could be represented as molecular interaction networks or biological pathways. Based on this hypothesis, we develop the NEPEA framework based on network expansion from the human annotated and predicted protein interaction (HAPPI) database, and pathway enrichment from the human pathway database (HPD). We use a recently-published microarray dataset (GSE24215) related to insulin resistance and type 2 diabetes (T2D) as case study, since this study provided a thorough experimental validation for both genes and pathways identified computationally from classical microarray analysis and pathway analysis. We perform our NEPEA analysis for this dataset based on the results from the classical microarray analysis to identify biologically significant genes and pathways. Our findings are not only consistent with the original findings mostly, but also obtained more supports from other literatures.

  3. An end-to-end workflow for engineering of biological networks from high-level specifications.

    PubMed

    Beal, Jacob; Weiss, Ron; Densmore, Douglas; Adler, Aaron; Appleton, Evan; Babb, Jonathan; Bhatia, Swapnil; Davidsohn, Noah; Haddock, Traci; Loyall, Joseph; Schantz, Richard; Vasilev, Viktor; Yaman, Fusun

    2012-08-17

    We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells. PMID:23651286

  4. An end-to-end workflow for engineering of biological networks from high-level specifications.

    PubMed

    Beal, Jacob; Weiss, Ron; Densmore, Douglas; Adler, Aaron; Appleton, Evan; Babb, Jonathan; Bhatia, Swapnil; Davidsohn, Noah; Haddock, Traci; Loyall, Joseph; Schantz, Richard; Vasilev, Viktor; Yaman, Fusun

    2012-08-17

    We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells.

  5. Double network bacterial cellulose hydrogel to build a biology-device interface

    NASA Astrophysics Data System (ADS)

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2013-12-01

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  6. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  7. Network news: prime time for systems biology of the plant circadian clock.

    PubMed

    McClung, C Robertson; Gutiérrez, Rodrigo A

    2010-12-01

    Whole-transcriptome analyses have established that the plant circadian clock regulates virtually every plant biological process and most prominently hormonal and stress response pathways. Systems biology efforts have successfully modeled the plant central clock machinery and an iterative process of model refinement and experimental validation has contributed significantly to the current view of the central clock machinery. The challenge now is to connect this central clock to the output pathways for understanding how the plant circadian clock contributes to plant growth and fitness in a changing environment. Undoubtedly, systems approaches will be needed to integrate and model the vastly increased volume of experimental data in order to extract meaningful biological information. Thus, we have entered an era of systems modeling, experimental testing, and refinement. This approach, coupled with advances from the genetic and biochemical analyses of clock function, is accelerating our progress towards a comprehensive understanding of the plant circadian clock network. PMID:20889330

  8. Coordinated motor activity in simulated spinal networks emerges from simple biologically plausible rules of connectivity.

    PubMed

    Dale, Nicholas

    2003-01-01

    The spinal motor circuits of the Xenopus embryo have been simulated in a 400-neuron network. To explore the consequences of differing patterns of synaptic connectivity within the network for the generation of the motor rhythm, a system of biologically plausible rules was devised to control synapse formation by three parameters. Each neuron had an intrinsic probability of synapse formation (P(soma), specified by a space constant lambda) that was a monotonically decreasing function of its soma location in the rostro-caudal axis of the simulated network. The neurons had rostral and caudal going axons of specified length (L(axon)) associated with a probability of synapse formation (P(axon)). The final probability of synapse formation was the product of P(soma) and P(axon). Realistic coordinated activity only occurred when L(axon) and the probabilities of interconnection were sufficiently high. Increasing the values of the three network parameters reduced the burst duration, cycle period, and rostro-caudal delay and increased the reliability with which the network functioned as measured by the coefficient of variance of these parameters. Whereas both L(axon) and P(axon) had powerful and consistent effects on network output, the effects of lambda on burst duration and rostro-caudal delay were more variable and depended on the values of the other two parameters. This network model can reproduce the rostro-caudal coordination of swimming without using coupled oscillator theory. The changes in network connectivity and resulting changes in activity explored by the model mimic the development of the motor pattern for swimming in the real embryo.

  9. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    PubMed

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  10. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  11. Image alignment

    SciTech Connect

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  12. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    PubMed

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. PMID:26542523

  13. A Model of Regulatory Alignment to Enhance the Long-Term Care Survey Process in a Veterans Health Care Network.

    PubMed

    Powers, James S; Preshong, Mark; Smith, Pamela

    2016-09-01

    Regulatory oversight aims to promote quality of care in US nursing homes. A survey of long-term care (LTC) inspection practices in a Veterans Administration network in 2006 revealed great variability in monitoring and reporting processes, with opportunities for improvement. Modern organization theory and the PARIHS Implementation Framework provide a model for process improvement to enhance oversight for LTC facilities. Over a 3-year time frame, 6 facility inspection teams utilized a modified Delphi approach to arrive at and adopt a standardized structured inspection process. In the 2 districts where 10 facility contracts were terminated for quality deficits identified as a result of process improvement, Star Ratings of approved facilities improved (3.2 to 3.3). The 10 facilities terminated had a mean rating of 1.2 (0.48) (t = 3.87, P < .01). Standardization of a structured LTC inspection process enhances organizational oversight and may contribute to improved quality of care.

  14. Formal modeling and analysis of ER-α associated Biological Regulatory Network in breast cancer

    PubMed Central

    Tareen, Samar H.K.; Siddiqa, Amnah; Bibi, Zurah; Ahmad, Jamil

    2016-01-01

    Background Breast cancer (BC) is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s). It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER-α) associated Biological Regulatory Network (BRN) for a small part of complex events that leads to BC metastasis. Methods A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN) to analyze the logical parameters of the involved entities. Results In-silico based discrete and continuous modeling of ER-α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER-α, IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs) such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. Conclusion The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER-α, IGF-1R and EGFR) for wet lab experiments as well as provided valuable insights in the treatment of cancers such as BC

  15. Interfacing a Biosurveillance Portal and an International Network of Institutional Analysts to Detect Biological Threats

    PubMed Central

    Shigematsu, Mika; Chow, Catherine; McKnight, C. Jason; Linge, Jens; Doherty, Brian; Dente, Maria Grazia; Declich, Silvia; Barker, Mike; Barboza, Philippe; Vaillant, Laetitia; Donachie, Alastair; Mawudeku, Abla; Blench, Michael; Arthur, Ray

    2014-01-01

    The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an

  16. Interfacing a biosurveillance portal and an international network of institutional analysts to detect biological threats.

    PubMed

    Riccardo, Flavia; Shigematsu, Mika; Chow, Catherine; McKnight, C Jason; Linge, Jens; Doherty, Brian; Dente, Maria Grazia; Declich, Silvia; Barker, Mike; Barboza, Philippe; Vaillant, Laetitia; Donachie, Alastair; Mawudeku, Abla; Blench, Michael; Arthur, Ray

    2014-01-01

    The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an

  17. Interfacing a biosurveillance portal and an international network of institutional analysts to detect biological threats.

    PubMed

    Riccardo, Flavia; Shigematsu, Mika; Chow, Catherine; McKnight, C Jason; Linge, Jens; Doherty, Brian; Dente, Maria Grazia; Declich, Silvia; Barker, Mike; Barboza, Philippe; Vaillant, Laetitia; Donachie, Alastair; Mawudeku, Abla; Blench, Michael; Arthur, Ray

    2014-01-01

    The Early Alerting and Reporting (EAR) project, launched in 2008, is aimed at improving global early alerting and risk assessment and evaluating the feasibility and opportunity of integrating the analysis of biological, chemical, radionuclear (CBRN), and pandemic influenza threats. At a time when no international collaborations existed in the field of event-based surveillance, EAR's innovative approach involved both epidemic intelligence experts and internet-based biosurveillance system providers in the framework of an international collaboration called the Global Health Security Initiative, which involved the ministries of health of the G7 countries and Mexico, the World Health Organization, and the European Commission. The EAR project pooled data from 7 major internet-based biosurveillance systems onto a common portal that was progressively optimized for biological threat detection under the guidance of epidemic intelligence experts from public health institutions in Canada, the European Centre for Disease Prevention and Control, France, Germany, Italy, Japan, the United Kingdom, and the United States. The group became the first end users of the EAR portal, constituting a network of analysts working with a common standard operating procedure and risk assessment tools on a rotation basis to constantly screen and assess public information on the web for events that could suggest an intentional release of biological agents. Following the first 2-year pilot phase, the EAR project was tested in its capacity to monitor biological threats, proving that its working model was feasible and demonstrating the high commitment of the countries and international institutions involved. During the testing period, analysts using the EAR platform did not miss intentional events of a biological nature and did not issue false alarms. Through the findings of this initial assessment, this article provides insights into how the field of epidemic intelligence can advance through an

  18. Disentangling biological signaling networks by dynamic coupling of signaling lipids to modifying enzymes.

    PubMed

    Blind, Raymond D

    2014-01-01

    An unresolved problem in biological signal transduction is how particular branches of highly interconnected signaling networks can be decoupled, allowing activation of specific circuits within complex signaling architectures. Although signaling dynamics and spatiotemporal mechanisms serve critical roles, it remains unclear if these are the only ways cells achieve specificity within networks. The transcription factor Steroidogenic Factor-1 (SF-1) is an excellent model to address this question, as it forms dynamic complexes with several chemically distinct lipid species (phosphatidylinositols, phosphatidylcholines and sphingolipids). This property is important since lipids bound to SF-1 are modified by lipid signaling enzymes (IPMK & PTEN), regulating SF-1 biological activity in gene expression. Thus, a particular SF-1/lipid complex can interface with a lipid signaling enzyme only if SF-1 has been loaded with a chemically compatible lipid substrate. This mechanism permits dynamic downstream responsiveness to constant upstream input, disentangling specific pathways from the full network. The potential of this paradigm to apply generally to nuclear lipid signaling is discussed, with particular attention given to the nuclear receptor superfamily of transcription factors and their phospholipid ligands.

  19. Modeling a Complex Biological Network with Temporal Heterogeneity: Cardiac Myocyte Plasticity as a Case Study

    NASA Astrophysics Data System (ADS)

    Mazloom, Amin R.; Basu, Kalyan; Mandal, Subhrangsu S.; Das, Sajal K.

    Complex biological systems often characterize nonlinear dynamics. Employing traditional deterministic or stochastic approaches to quantify these dynamics either fail to capture their existing deviant effects or lead to combinatorial explosion. In this work we devised a novel approach that projects the biological functions within a pathway to a network of stochastic events that are random in time and space. By applying this approach recursively to the object system we build the event network of the entire system. The dynamics of the system evolves through the execution of the event network by a simulation engine which comprised of a time prioritized event queue. As a case study we utilized the current method and conducted an in-silico experiment on the metabolic plasticity of a cardiac myocyete. We aimed to quantify the down stream effects of insulin signaling that predominantly controls the plasticity in myocardium. Intriguingly, our in-silico results on transcription regulatory effect of insulin showed a good agreement with experimental data. Meanwhile we were able to characterize the flux change across major metabolic pathways over 48 hours of the in-silico experiment. Our simulation performed a remarkable efficiency by conducting 48 hours of simulation-time in less that 2 hours of processor time.

  20. Learning Biological Networks via Bootstrapping with Optimized GO-based Gene Similarity

    SciTech Connect

    Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.; Baddeley, Robert L.; Riensche, Roderick M.; Jensen, Russell S.; Verhagen, Marc

    2010-08-02

    Microarray gene expression data provide a unique information resource for learning biological networks using "reverse engineering" methods. However, there are a variety of cases in which we know which genes are involved in a given pathology of interest, but we do not have enough experimental evidence to support the use of fully-supervised/reverse-engineering learning methods. In this paper, we explore a novel semi-supervised approach in which biological networks are learned from a reference list of genes and a partial set of links for these genes extracted automatically from PubMed abstracts, using a knowledge-driven bootstrapping algorithm. We show how new relevant links across genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. We describe an application of this approach to the TGFB pathway as a case study and show how the ensuing results prove the feasibility of the approach as an alternate or complementary technique to fully supervised methods.

  1. Networks and their applications to biological systems: From ecological dynamics to gene regulation

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan

    In this dissertation, we study three biological applications of networks. The first one is a biological coevolution model, in which a species is defined by a genome in the form of a finite bitstring and the interactions between species are given by a fixed matrix with randomly distributed elements. Here we study a version of the model, in which the matrix elements are correlated to a controllable degree by means of an averaging scheme. This method allows creation of mutants resembling their ancestors (wildtype). We compare long kinetic Monte Carlo simulations of models with uncorrelated and correlated interactions. We find that while there are quantitative differences, most qualitative features, such as 1/f behavior in power spectral densities for the diversity indices and the power-law distribution of species lifetimes, are not significantly affected by the correlations in the interaction matrix. The second application is the growth of a directed network, in which the growth is constrained by the cost of adding links to the existing nodes. This is a new preferential-attachment scheme, in which a new node attaches to an existing node i with probability pi(k i, k'i ) ∝ ( k'i /ki)gamma, where ki and k'i are the number of outgoing and incoming links at i, respectively, and gamma is a constant. First, we calculate the degree distribution for the outgoing links for a simplified form of this function, pi( ki) ∝ k-1i , both analytically and by Monte Carlo simulations. The distribution decays like kmuk/Gamma(k) for large k, where mu is a constant. We relate this mechanism to simple food-web models by implementing it in the cascade model. We also study the generalized case, pi(ki, k'i ) ∝ ( k'i /ki)gamma, by simulations. The third application is the evolution of robustness to mutations and noise in gene regulatory networks. It has been shown that robustness to mutations and noise can evolve through stabilizing selection for optimal phenotypes in model gene regulatory

  2. Why Traditional Expository Teaching-Learning Approaches May Founder? An Experimental Examination of Neural Networks in Biology Learning

    ERIC Educational Resources Information Center

    Lee, Jun-Ki; Kwon, Yong-Ju

    2011-01-01

    Using functional magnetic resonance imaging (fMRI), this study investigates and discusses neurological explanations for, and the educational implications of, the neural network activations involved in hypothesis-generating and hypothesis-understanding for biology education. Two sets of task paradigms about biological phenomena were designed:…

  3. Social insect colony as a biological regulatory system: modelling information flow in dominance networks

    PubMed Central

    Nandi, Anjan K.; Sumana, Annagiri; Bhattacharya, Kunal

    2014-01-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata—a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure—the ‘feed-forward loop’—a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. PMID:25320069

  4. Social insect colony as a biological regulatory system: modelling information flow in dominance networks.

    PubMed

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal

    2014-12-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.

  5. Social insect colony as a biological regulatory system: modelling information flow in dominance networks.

    PubMed

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal

    2014-12-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. PMID:25320069

  6. International institute for collaborative cell biology and biochemistry--history and memoirs from an international network for biological sciences.

    PubMed

    Cameron, L C

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world.

  7. International Institute for Collaborative Cell Biology and Biochemistry—History and Memoirs from an International Network for Biological Sciences

    PubMed Central

    Cameron, L. C.

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world. PMID:24006381

  8. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    PubMed

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  9. Algorithmic and complexity results for decompositions of biological networks into monotone subsystems.

    PubMed

    DasGupta, Bhaskar; Enciso, German Andres; Sontag, Eduardo; Zhang, Yi

    2007-01-01

    A useful approach to the mathematical analysis of large-scale biological networks is based upon their decompositions into monotone dynamical systems. This paper deals with two computational problems associated to finding decompositions which are optimal in an appropriate sense. In graph-theoretic language, the problems can be recast in terms of maximal sign-consistent subgraphs. The theoretical results include polynomial-time approximation algorithms as well as constant-ratio inapproximability results. One of the algorithms, which has a worst-case guarantee of 87.9% from optimality, is based on the semidefinite programming relaxation approach of Goemans-Williamson [Goemans, M., Williamson, D., 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42 (6), 1115-1145]. The algorithm was implemented and tested on a Drosophila segmentation network and an Epidermal Growth Factor Receptor pathway model, and it was found to perform close to optimally.

  10. An integrative and practical evolutionary optimization for a complex, dynamic model of biological networks.

    PubMed

    Maeda, Kazuhiro; Fukano, Yuya; Yamamichi, Shunsuke; Nitta, Daichi; Kurata, Hiroyuki

    2011-05-01

    Computer simulation is an important technique to capture the dynamics of biochemical networks. Numerical optimization is the key to estimate the values of kinetic parameters so that the dynamic model reproduces the behaviors of the existing experimental data. It is required to develop general strategies for the optimization of complex biochemical networks with a huge space of search parameters, under the condition that kinetic and quantitative data are hardly available. We propose an integrative and practical strategy for optimizing a complex dynamic model by using qualitative and incomplete experimental data. The key technologies are the divide and conquer method for reducing the search space, handling of multiple objective functions representing different types of biological behaviors, and design of rule-based objective functions that are suitable for qualitative and error-prone experimental data. This strategy is applied to optimizing a dynamic model of the yeast cell cycle to demonstrate the feasibility of it.

  11. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    PubMed

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community. PMID:26871500

  12. Partitioning Biological Networks into Highly Connected Clusters with Maximum Edge Coverage.

    PubMed

    Hüffner, Falk; Komusiewicz, Christian; Liebtrau, Adrian; Niedermeier, Rolf

    2014-01-01

    A popular clustering algorithm for biological networks which was proposed by Hartuv and Shamir identifies nonoverlapping highly connected components. We extend the approach taken by this algorithm by introducing the combinatorial optimization problem Highly Connected Deletion, which asks for removing as few edges as possible from a graph such that the resulting graph consists of highly connected components. We show that Highly Connected Deletion is NP-hard and provide a fixed-parameter algorithm and a kernelization. We propose exact and heuristic solution strategies, based on polynomial-time data reduction rules and integer linear programming with column generation. The data reduction typically identifies 75 percent of the edges that are deleted for an optimal solution; the column generation method can then optimally solve protein interaction networks with up to 6,000 vertices and 13,500 edges within five hours. Additionally, we present a new heuristic that finds more clusters than the method by Hartuv and Shamir. PMID:26356014

  13. Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks.

    PubMed

    An, Bo; Tang-Schomer, Min D; Huang, Wenwen; He, Jiuyang; Jones, Justin A; Lewis, Randolph V; Kaplan, David L

    2015-04-01

    Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering. PMID:25701039

  14. Biological neural networks as model systems for designing future parallel processing computers

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  15. Strategy-aligned fuzzy approach for market segment evaluation and selection: a modular decision support system by dynamic network process (DNP)

    NASA Astrophysics Data System (ADS)

    Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah

    2013-05-01

    In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.

  16. Ni foam supported three-dimensional vertically aligned and networked layered CoO nanosheet/graphene hybrid array as a high-performance oxygen evolution electrode

    NASA Astrophysics Data System (ADS)

    Yuan, Weiyong; Zhao, Ming; Yuan, Jia; Li, Chang Ming

    2016-07-01

    The sluggish oxygen evolution reaction (OER) represents a major kinetic bottleneck in water splitting. Herein we report the synthesis of a novel Ni foam (NF) supported 3-D vertically aligned and interconnected layered CoO nanosheet array with controlled density, layer thickness, and interlayer spacing, and the conformal self-assembly of graphene on this nanosheet array. The obtained CoO layered nanosheet/graphene hybrid nanoarray was directly used as an OER electrode, showing a current density of 10 mA cm-2 at an overpotential of 330 mV and a Tafel slope of 79 mV dec-1, both of which are much lower than pristine NF and the nanosheet array without graphene, and are among the lowest reported for Co-based OER catalysts and transition metal oxide-based ones measured under the same conditions. In addition, it can retain 92.4% of the current density after 66 h of chronoamperometry testing at a potential of 1.0 V vs. SCE, and 94.3% of the current density at 1.0 V vs. SCE after 200 cyclic voltammetry cycles (0-1.0 V vs. SCE). The excellent catalytic activity and stability toward OER are ascribed to the 3-D NF supported robustly grown networked layered nanosheet array structure and the synergistic effects between CoO layered nanosheets and graphene.

  17. Integrated Bio-Entity Network: A System for Biological Knowledge Discovery

    PubMed Central

    Bell, Lindsey; Chowdhary, Rajesh; Liu, Jun S.; Niu, Xufeng; Zhang, Jinfeng

    2011-01-01

    A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein–protein interactions, protein/gene regulations, protein–small molecule interactions, protein–GO relationships, protein–pathway relationships, and pathway–disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses—the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs. PMID:21738677

  18. The role of computer networking in investigating unusual disease outbreaks and allegations of biological and toxin weapons use.

    PubMed

    Woodall, J

    1998-01-01

    Computer networking can aid in the epidemiological investigation of unusual disease outbreaks and possible uses of biological weapons. Exchange of computerized data over the Internet has many advantages in facilitating the investigation of the source of a disease outbreak. It is especially useful in the investigation of suspected or alleged releases of biological weapons. Computer networking through the Internet a fosters a truly global disease outbreak early warning system in which both government and non-government sources are contributing. Such information exchange is of great potential benefit to the Biological Weapons Convention and the attempts to develop a verification protocol. PMID:9800103

  19. Incorporation and characterization of biological molecules in droplet-interface bilayer networks for novel active systems

    NASA Astrophysics Data System (ADS)

    Sarles, Stephen A.; Ghanbari Bavarsad, Pegah; Leo, Donald J.

    2009-03-01

    Biological molecules including phospholipids and proteins offer scientists and engineers a diverse selection of materials to develop new types of active materials and smart systems based on ion conduction. The inherent energy-coupling abilities of these components create novel kinds of transduction elements. Networks formed from droplet-interface bilayers (DIB) are a promising construct for creating cell mimics that allow for the assembly and study of these active biological molecules. The current-voltage relationship of symmetric, "lipid-in" dropletinterface bilayers are characterized using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). "Lipid-in" diphytanoyl phosphatidylcholine (DPhPC) droplet-interface bilayers have specific resistances of nearly 10MΩ•cm2 and rupture at applied potentials greater than 300mV, indicating the "lipid-in" approach produces higher quality interfacial membranes than created using the original "lipid-out" method. The incorporation of phospholipids into the droplet interior allows for faster monolayer formation but does not inhibit the selfinsertion of transmembrane proteins into bilayer interfaces that separate adjacent droplets. Alamethicin proteins inserted into single and multi-DIB networks produce a voltage-dependent membrane conductance and current measurements on bilayers containing this type of protein exhibit a reversible, 3-4 order-of-magnitude conductance increase upon application of voltage.

  20. miRNAs confer phenotypic robustness to gene networks by suppressing biological noise

    PubMed Central

    Siciliano, Velia; Garzilli, Immacolata; Fracassi, Chiara; Criscuolo, Stefania; Ventre, Simona; di Bernardo, Diego

    2013-01-01

    miRNAs are small non-coding RNAs able to modulate target-gene expression. It has been postulated that miRNAs confer robustness to biological processes, but a clear experimental evidence is still missing. Using a synthetic biology approach, we demonstrate that microRNAs provide phenotypic robustness to transcriptional regulatory networks by buffering fluctuations in protein levels. Here we construct a network motif in mammalian cells exhibiting a “toggle - switch” phenotype in which two alternative protein expression levels define its ON and OFF states. The motif consists of an inducible transcription factor that self-regulates its own transcription and that of a miRNA against the transcription factor itself. We confirm, using mathematical modeling and experimental approaches, that the microRNA confers robustness to the toggle-switch by enabling the cell to maintain and transmit its state. When absent, a dramatic increase in protein noise level occurs, causing the cell to randomly switch between the two states. PMID:24077216

  1. Interconnection between biological abnormalities in borderline personality disorder: use of the Bayesian networks model.

    PubMed

    De la Fuente, José Manuel; Bengoetxea, Endika; Navarro, Felipe; Bobes, Julio; Alarcón, Renato Daniel

    2011-04-30

    There is agreement in that strengthening the sets of neurobiological data would reinforce the diagnostic objectivity of many psychiatric entities. This article attempts to use this approach in borderline personality disorder (BPD). Assuming that most of the biological findings in BPD reflect common underlying pathophysiological processes we hypothesized that most of the data involved in the findings would be statistically interconnected and interdependent, indicating biological consistency for this diagnosis. Prospectively obtained data on scalp and sleep electroencephalography (EEG), clinical neurologic soft signs, the dexamethasone suppression and thyrotropin-releasing hormone stimulation tests of 20 consecutive BPD patients were used to generate a Bayesian network model, an artificial intelligence paradigm that visually illustrates eventual associations (or inter-dependencies) between otherwise seemingly unrelated variables. The Bayesian network model identified relationships among most of the variables. EEG and TSH were the variables that influence most of the others, especially sleep parameters. Neurological soft signs were linked with EEG, TSH, and sleep parameters. The results suggest the possibility of using objective neurobiological variables to strengthen the validity of future diagnostic criteria and nosological characterization of BPD.

  2. Systems biology approaches to defining transcription regulatory networks in halophilic archaea.

    PubMed

    Darnell, Cynthia L; Schmid, Amy K

    2015-09-15

    To survive complex and changing environmental conditions, microorganisms use gene regulatory networks (GRNs) composed of interacting regulatory transcription factors (TFs) to control the timing and magnitude of gene expression. Genome-wide datasets; such as transcriptomics and protein-DNA interactions; and experiments such as high throughput growth curves; facilitate the construction of GRNs and provide insight into TF interactions occurring under stress. Systems biology approaches integrate these datasets into models of GRN architecture as well as statistical and/or dynamical models to understand the function of networks occurring in cells. Previously, these types of studies have focused on traditional model organisms (e.g. Escherichia coli, yeast). However, recent advances in archaeal genetics and other tools have enabled a systems approach to understanding GRNs in these relatively less studied archaeal model organisms. In this report, we outline a systems biology workflow for generating and integrating data focusing on the TF regulator. We discuss experimental design, outline the process of data collection, and provide the tools required to produce high confidence regulons for the TFs of interest. We provide a case study as an example of this workflow, describing the construction of a GRN centered on multi-TF coordinate control of gene expression governing the oxidative stress response in the hypersaline-adapted archaeon Halobacterium salinarum.

  3. Construction of polycythemia vera protein interaction network and prediction of related biological functions.

    PubMed

    Liu, L-J; Cao, X-J; Zhou, C; Sun, Y; Lv, Q-L; Feng, F-B; Zhang, Y-Y; Sun, C-G

    2016-01-01

    Here, polycythemia vera (PV)-related genes were screened by the Online Mendelian Inheritance in Man (OMIM), and literature pertaining to the identified genes was extracted and a protein-protein interaction network was constructed using various Cytoscape plugins. Various molecular complexes were detected using the Clustervize plugin and a gene ontology-enrichment analysis of the biological pathways, molecular functions, and cellular components of the selected molecular complexes were identified using the BiNGo plugin. Fifty-four PV-related genes were identified in OMIM. The protein-protein interaction network contains 5 molecular complexes with correlation integral values >4. These complexes regulated various biological processes (peptide tyrosinase acidification, cell metabolism, and macromolecular biosynthesis), molecular functions (kinase activity, receptor binding, and cytokine activity), and the cellular components were mainly concentrated in the nucleus, intracellular membrane-bounded organelles, and extracellular region. These complexes were associated with the JAK-STAT signal transduction pathway, neurotrophic factor signaling pathway, and Wnt signaling pathway, which were correlated with chronic myeloid leukemia and acute myeloid leukemia. PMID:26909922

  4. dNSP: a biologically inspired dynamic Neural network approach to Signal Processing.

    PubMed

    Cano-Izquierdo, José Manuel; Ibarrola, Julio; Pinzolas, Miguel; Almonacid, Miguel

    2008-09-01

    The arriving order of data is one of the intrinsic properties of a signal. Therefore, techniques dealing with this temporal relation are required for identification and signal processing tasks. To perform a classification of the signal according with its temporal characteristics, it would be useful to find a feature vector in which the temporal attributes were embedded. The correlation and power density spectrum functions are suitable tools to manage this issue. These functions are usually defined with statistical formulation. On the other hand, in biology there can be found numerous processes in which signals are processed to give a feature vector; for example, the processing of sound by the auditory system. In this work, the dNSP (dynamic Neural Signal Processing) architecture is proposed. This architecture allows representing a time-varying signal by a spatial (thus statical) vector. Inspired by the aforementioned biological processes, the dNSP performs frequency decomposition using an analogical parallel algorithm carried out by simple processing units. The architecture has been developed under the paradigm of a multilayer neural network, where the different layers are composed by units whose activation functions have been extracted from the theory of Neural Dynamic [Grossberg, S. (1988). Nonlinear neural networks principles, mechanisms and architectures. Neural Networks, 1, 17-61]. A theoretical study of the behavior of the dynamic equations of the units and their relationship with some statistical functions allows establishing a parallelism between the unit activations and correlation and power density spectrum functions. To test the capabilities of the proposed approach, several testbeds have been employed, i.e. the frequencial study of mathematical functions. As a possible application of the architecture, a highly interesting problem in the field of automatic control is addressed: the recognition of a controlled DC motor operating state. PMID:18579344

  5. Ontology-supported Research on Vaccine Efficacy, Safety, and Integrative Biological Networks

    PubMed Central

    He, Yongqun

    2016-01-01

    Summary While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including the Vaccine Ontology, Ontology of Adverse Events, and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network (“OneNet”) Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms. PMID:24909153

  6. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    NASA Astrophysics Data System (ADS)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  7. Testing Foundations of Biological Scaling Theory Using Automated Measurements of Vascular Networks

    PubMed Central

    Newberry, Mitchell G; Ennis, Daniel B; Savage, Van M

    2015-01-01

    Scientists have long sought to understand how vascular networks supply blood and oxygen to cells throughout the body. Recent work focuses on principles that constrain how vessel size changes through branching generations from the aorta to capillaries and uses scaling exponents to quantify these changes. Prominent scaling theories predict that combinations of these exponents explain how metabolic, growth, and other biological rates vary with body size. Nevertheless, direct measurements of individual vessel segments have been limited because existing techniques for measuring vasculature are invasive, time consuming, and technically difficult. We developed software that extracts the length, radius, and connectivity of in vivo vessels from contrast-enhanced 3D Magnetic Resonance Angiography. Using data from 20 human subjects, we calculated scaling exponents by four methods—two derived from local properties of branching junctions and two from whole-network properties. Although these methods are often used interchangeably in the literature, we do not find general agreement between these methods, particularly for vessel lengths. Measurements for length of vessels also diverge from theoretical values, but those for radius show stronger agreement. Our results demonstrate that vascular network models cannot ignore certain complexities of real vascular systems and indicate the need to discover new principles regarding vessel lengths. PMID:26317654

  8. [Regulation network and biological roles of LEAFY in Arabidopsis thaliana in floral development].

    PubMed

    Wang, Li-Lin; Liang, Hai-Man; Pang, Ji-Liang; Zhu, Mu-Yuan

    2004-01-01

    Recent research progress on regulation network and biological roles of LFY gene in Arabidopsis thaliana and its homologue genes in floral development are reviewed emphatically in the present paper. LFY gene expresses widely in both vegetative and reproductive tissues in different higher plants, therefore investigation on role of LFY gene on flowering is of general significance. LFY gene plays an important role to promote flower formation by interaction and coordination with other genes,such as TFL, EMF, AP1, AP2, CAL, FWA, FT, AP3, PI, AG, UFO, CO, LD, GA1 etc, and a critical level of LFY expression is essential. LFY gene not only controls flowering-time and floral transition,but also plays an important role in inflorescence and floral organ development. It was situated at the central site in gene network of flowering regulation,positively or negatively regulates the level or activities of flowering-related genes. Some physiological factors, such as carbon sources, phytohormones, affect directly or indirectly the expression and actions of LFY gene. This indicates that level of LFY expression can also be regulated with physiological methods. It is probable that we can explain the principal mechanism of flowering by regulation network of LFY gene.

  9. Measuring information flow in cellular networks by the systems biology method through microarray data.

    PubMed

    Chen, Bor-Sen; Li, Cheng-Wei

    2015-01-01

    In general, it is very difficult to measure the information flow in a cellular network directly. In this study, based on an information flow model and microarray data, we measured the information flow in cellular networks indirectly by using a systems biology method. First, we used a recursive least square parameter estimation algorithm to identify the system parameters of coupling signal transduction pathways and the cellular gene regulatory network (GRN). Then, based on the identified parameters and systems theory, we estimated the signal transductivities of the coupling signal transduction pathways from the extracellular signals to each downstream protein and the information transductivities of the GRN between transcription factors in response to environmental events. According to the proposed method, the information flow, which is characterized by signal transductivity in coupling signaling pathways and information transductivity in the GRN, can be estimated by microarray temporal data or microarray sample data. It can also be estimated by other high-throughput data such as next-generation sequencing or proteomic data. Finally, the information flows of the signal transduction pathways and the GRN in leukemia cancer cells and non-leukemia normal cells were also measured to analyze the systematic dysfunction in this cancer from microarray sample data. The results show that the signal transductivities of signal transduction pathways change substantially from normal cells to leukemia cancer cells.

  10. [Regulation network and biological roles of LEAFY in Arabidopsis thaliana in floral development].

    PubMed

    Wang, Li-Lin; Liang, Hai-Man; Pang, Ji-Liang; Zhu, Mu-Yuan

    2004-01-01

    Recent research progress on regulation network and biological roles of LFY gene in Arabidopsis thaliana and its homologue genes in floral development are reviewed emphatically in the present paper. LFY gene expresses widely in both vegetative and reproductive tissues in different higher plants, therefore investigation on role of LFY gene on flowering is of general significance. LFY gene plays an important role to promote flower formation by interaction and coordination with other genes,such as TFL, EMF, AP1, AP2, CAL, FWA, FT, AP3, PI, AG, UFO, CO, LD, GA1 etc, and a critical level of LFY expression is essential. LFY gene not only controls flowering-time and floral transition,but also plays an important role in inflorescence and floral organ development. It was situated at the central site in gene network of flowering regulation,positively or negatively regulates the level or activities of flowering-related genes. Some physiological factors, such as carbon sources, phytohormones, affect directly or indirectly the expression and actions of LFY gene. This indicates that level of LFY expression can also be regulated with physiological methods. It is probable that we can explain the principal mechanism of flowering by regulation network of LFY gene. PMID:15626683

  11. From mechanical to biological oscillator networks: The role of long range interactions

    NASA Astrophysics Data System (ADS)

    Bountis, T.

    2016-09-01

    The study of one-dimensional particle networks of Classical Mechanics, through Hamiltonian models, has taught us a lot about oscillations of particles coupled to each other by nearest neighbor (short range) interactions. Recently, however, a careful analysis of the role of long range interactions (LRI) has shown that several widely accepted notions concerning chaos and the approach to thermal equilibrium need to be modified, since LRI strongly affects the statistics of certain very interesting, long lasting metastable states. On the other hand, when LRI (in the form of non-local or all-to-all coupling) was introduced in systems of biological oscillators, Kuramoto's theory of synchronization was developed and soon thereafter researchers studied amplitude and phase oscillations in networks of FitzHugh Nagumo and Hindmarsh Rose (HR) neuron models. In these models certain fascinating phenomena called chimera states were discovered where populations of synchronous and asynchronous oscillators are seen to coexist in the same system. Currently, their synchronization properties are being widely investigated in HR mathematical models as well as realistic neural networks, similar to what one finds in simple living organisms like the C.elegans worm.

  12. A network biology approach to denitrification in Pseudomonas aeruginosa

    SciTech Connect

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃), and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.

  13. Finding New Order in Biological Functions from the Network Structure of Gene Annotations

    PubMed Central

    Glass, Kimberly; Girvan, Michelle

    2015-01-01

    The Gene Ontology (GO) provides biologists with a controlled terminology that describes how genes are associated with functions and how functional terms are related to one another. These term-term relationships encode how scientists conceive the organization of biological functions, and they take the form of a directed acyclic graph (DAG). Here, we propose that the network structure of gene-term annotations made using GO can be employed to establish an alternative approach for grouping functional terms that captures intrinsic functional relationships that are not evident in the hierarchical structure established in the GO DAG. Instead of relying on an externally defined organization for biological functions, our approach connects biological functions together if they are performed by the same genes, as indicated in a compendium of gene annotation data from numerous different sources. We show that grouping terms by this alternate scheme provides a new framework with which to describe and predict the functions of experimentally identified sets of genes. PMID:26588252

  14. Hydrologic and biologic influences on stream network nutrient concentrations: Interactions of hydrologic turnover and concentration-dependent nutrient uptake

    NASA Astrophysics Data System (ADS)

    Mallard, John; McGlynn, Brian; Covino, Tim

    2016-04-01

    Stream networks lie in a crucial landscape position between terrestrial ecosystems and downstream water bodies. As such, whether inferring terrestrial watershed processes from watershed outlet nutrient signals or predicting the effect of observed terrestrial processes on stream nutrient signals, it is requisite to understand how stream networks can modulate terrestrial nutrient inputs. To date integrated understanding and modeling of physical and biological influences on nutrient concentrations at the stream network scale have been limited. However, watershed scale groundwater - surface water exchange (hydrologic turnover), concentration-variable biological uptake, and the interaction between the two can strongly modify stream water nutrient concentrations. Stream water and associated nutrients are lost to and replaced from groundwater with distinct nutrient concentrations while in-stream nutrients can also be retained by biological processes at rates that vary with concentration. We developed an empirically based network scale model to simulate the interaction between hydrologic turnover and concentration-dependent nutrient uptake across stream networks. Exchange and uptake parameters were measured using conservative and nutrient tracer addition experiments in the Bull Trout Watershed, central Idaho. We found that the interaction of hydrologic turnover and concentration-dependent uptake combined to modify and subsequently stabilize in-stream concentrations, with specific concentrations dependent on the magnitude of hydrologic turnover, groundwater concentrations, and the shape of nutrient uptake kinetic curves. We additionally found that by varying these physical and biological parameters within measured ranges we were able to generate a spectrum of stream network concentration distributions representing a continuum of shifting magnitudes of physical and biological influences on in-stream concentrations. These findings elucidate the important and variable role of

  15. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    PubMed

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  16. Regulatory component analysis: a semi-blind extraction approach to infer gene regulatory networks with imperfect biological knowledge.

    PubMed

    Wang, Chen; Xuan, Jianhua; Shih, Ie-Ming; Clarke, Robert; Wang, Yue

    2012-08-01

    With the advent of high-throughput biotechnology capable of monitoring genomic signals, it becomes increasingly promising to understand molecular cellular mechanisms through systems biology approaches. One of the active research topics in systems biology is to infer gene transcriptional regulatory networks using various genomic data; this inference problem can be formulated as a linear model with latent signals associated with some regulatory proteins called transcription factors (TFs). As common statistical assumptions may not hold for genomic signals, typical latent variable algorithms such as independent component analysis (ICA) are incapable to reveal underlying true regulatory signals. Liao et al. [1] proposed to perform inference using an approach named network component analysis (NCA), the optimization of which is achieved by a least-squares fitting approach with biological knowledge constraints. However, the incompleteness of biological knowledge and its inconsistency with gene expression data are not considered in the original NCA solution, which could greatly affect the inference accuracy. To overcome these limitations, we propose a linear extraction scheme, namely regulatory component analysis (RCA), to infer underlying regulatory signals even with partial biological knowledge. Numerical simulations show a significant improvement of our proposed RCA over NCA, not only when signal-to-noise-ratio (SNR) is low, but also when the given biological knowledge is incomplete and inconsistent to gene expression data. Furthermore, real biological experiments on E. coli are performed for regulatory network inference in comparison with several typical linear latent variable methods, which again demonstrates the effectiveness and improved performance of the proposed algorithm.

  17. A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation

    PubMed Central

    Metzler, Melissa A.; Venkatesh, Srirangapatnam G.; Lakshmanan, Jaganathan; Carenbauer, Anne L.; Perez, Sara M.; Andres, Sarah A.; Appana, Savitri; Brock, Guy N.; Wittliff, James L.; Darling, Douglas S.

    2015-01-01

    Objective The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process. Methodology A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM) was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation. Results Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a) progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1Mist1 promoter. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp) gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation. Conclusion This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  18. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

    PubMed

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton-Jacobi inequality - constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  19. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  20. Integration, Networking, and Global Biobanking in the Age of New Biology.

    PubMed

    Karimi-Busheri, Feridoun; Rasouli-Nia, Aghdass

    2015-01-01

    Scientific revolution is changing the world forever. Many new disciplines and fields have emerged with unlimited possibilities and opportunities. Biobanking is one of many that is benefiting from revolutionary milestones in human genome, post-genomic, and computer and bioinformatics discoveries. The storage, management, and analysis of massive clinical and biological data sets cannot be achieved without a global collaboration and networking. At the same time, biobanking is facing many significant challenges that need to be addressed and solved including dealing with an ever increasing complexity of sample storage and retrieval, data management and integration, and establishing common platforms in a global context. The overall picture of the biobanking of the future, however, is promising. Many population-based biobanks have been formed, and more are under development. It is certain that amazing discoveries will emerge from this large-scale method of preserving and accessing human samples. Signs of a healthy collaboration between industry, academy, and government are encouraging. PMID:26420609

  1. Ligand Biological Activity Predictions Using Fingerprint-Based Artificial Neural Networks (FANN-QSAR)

    PubMed Central

    Myint, Kyaw Z.; Xie, Xiang-Qun

    2015-01-01

    This chapter focuses on the fingerprint-based artificial neural networks QSAR (FANN-QSAR) approach to predict biological activities of structurally diverse compounds. Three types of fingerprints, namely ECFP6, FP2, and MACCS, were used as inputs to train the FANN-QSAR models. The results were benchmarked against known 2D and 3D QSAR methods, and the derived models were used to predict cannabinoid (CB) ligand binding activities as a case study. In addition, the FANN-QSAR model was used as a virtual screening tool to search a large NCI compound database for lead cannabinoid compounds. We discovered several compounds with good CB2 binding affinities ranging from 6.70 nM to 3.75 μM. The studies proved that the FANN-QSAR method is a useful approach to predict bioactivities or properties of ligands and to find novel lead compounds for drug discovery research. PMID:25502380

  2. Integration, Networking, and Global Biobanking in the Age of New Biology.

    PubMed

    Karimi-Busheri, Feridoun; Rasouli-Nia, Aghdass

    2015-01-01

    Scientific revolution is changing the world forever. Many new disciplines and fields have emerged with unlimited possibilities and opportunities. Biobanking is one of many that is benefiting from revolutionary milestones in human genome, post-genomic, and computer and bioinformatics discoveries. The storage, management, and analysis of massive clinical and biological data sets cannot be achieved without a global collaboration and networking. At the same time, biobanking is facing many significant challenges that need to be addressed and solved including dealing with an ever increasing complexity of sample storage and retrieval, data management and integration, and establishing common platforms in a global context. The overall picture of the biobanking of the future, however, is promising. Many population-based biobanks have been formed, and more are under development. It is certain that amazing discoveries will emerge from this large-scale method of preserving and accessing human samples. Signs of a healthy collaboration between industry, academy, and government are encouraging.

  3. Object-Oriented NeuroSys: Parallel Programs for Simulating Large Networks of Biologically Accurate Neurons

    SciTech Connect

    Pacheco, P; Miller, P; Kim, J; Leese, T; Zabiyaka, Y

    2003-05-07

    Object-oriented NeuroSys (ooNeuroSys) is a collection of programs for simulating very large networks of biologically accurate neurons on distributed memory parallel computers. It includes two principle programs: ooNeuroSys, a parallel program for solving the large systems of ordinary differential equations arising from the interconnected neurons, and Neurondiz, a parallel program for visualizing the results of ooNeuroSys. Both programs are designed to be run on clusters and use the MPI library to obtain parallelism. ooNeuroSys also includes an easy-to-use Python interface. This interface allows neuroscientists to quickly develop and test complex neuron models. Both ooNeuroSys and Neurondiz have a design that allows for both high performance and relative ease of maintenance.

  4. Orientational tomography of optical axes directions distributions of multilayer biological tissues birefringent polycrystalline networks

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Dovhaliuk, Rostyslav Y.

    2013-09-01

    We present a novel measurement method of optic axes orientation distribution which uses a relatively simple measurement setup. The principal difference of our method from other well-known methods lies in direct approach for measuring the orientation of optical axis of polycrystalline networks biological crystals. Our test polarimetry setup consists of HeNe laser, quarter wave plate, two linear polarizers and a CCD camera. We also propose a methodology for processing of measured optic axes orientation distribution which consists of evaluation of statistical, correlational and spectral moments. Such processing of obtained data can be used to classify particular tissue sample as "healthy" or "pathological". For our experiment we use thin layers of histological section of normal and muscular dystrophy tissue sections. It is shown that the difference between mentioned moments` values of normal and pathological samples can be quite noticeable with relative difference up to 6.26.

  5. Sieve-based relation extraction of gene regulatory networks from biological literature

    PubMed Central

    2015-01-01

    Background Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. Results We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice

  6. A predicted functional gene network for the plant pathogen Phytophthora infestans as a framework for genomic biology

    PubMed Central

    2013-01-01

    Background Associations between proteins are essential to understand cell biology. While this complex interplay between proteins has been studied in model organisms, it has not yet been described for the oomycete late blight pathogen Phytophthora infestans. Results We present an integrative probabilistic functional gene network that provides associations for 37 percent of the predicted P. infestans proteome. Our method unifies available genomic, transcriptomic and comparative genomic data into a single comprehensive network using a Bayesian approach. Enrichment of proteins residing in the same or related subcellular localization validates the biological coherence of our predictions. The network serves as a framework to query existing genomic data using network-based methods, which thus far was not possible in Phytophthora. We used the network to study the set of interacting proteins that are encoded by genes co-expressed during sporulation. This identified potential novel roles for proteins in spore formation through their links to proteins known to be involved in this process such as the phosphatase Cdc14. Conclusions The functional association network represents a novel genome-wide data source for P. infestans that also acts as a framework to interrogate other system-wide data. In both capacities it will improve our understanding of the complex biology of P. infestans and related oomycete pathogens. PMID:23865555

  7. Semantic data integration and knowledge management to represent biological network associations.

    PubMed

    Losko, Sascha; Heumann, Klaus

    2009-01-01

    The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data including experimental data from "-omics" platforms, phenotype information, and clinical data. For bioinformatics, several challenges remain: to structure this information as biological networks enabling scientists to identify relevant information; to integrate this information as specific "knowledge bases"; and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation and, thus, the generation of new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we will introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.

  8. A biologically plausible learning rule for the Infomax on recurrent neural networks.

    PubMed

    Hayakawa, Takashi; Kaneko, Takeshi; Aoyagi, Toshio

    2014-01-01

    A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons. PMID:25505404

  9. A biologically plausible learning rule for the Infomax on recurrent neural networks

    PubMed Central

    Hayakawa, Takashi; Kaneko, Takeshi; Aoyagi, Toshio

    2014-01-01

    A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons. PMID:25505404

  10. Functional features, biological pathways, and protein interaction networks of addiction-related genes.

    PubMed

    Sun, Jingchun; Zhao, Zhongming

    2010-05-01

    Addictions are chronic and common brain disorders affected by many genetic, environmental, and behavioral factors. Recent genome-wide linkage and association studies have revealed several promising genomic regions and multiple genes relating to addictions. To explore the underlying biological processes in the development of addictions, we used 62 genes recently reviewed by Li and Burmeister (2009) as representative addiction-related genes, and then we investigated their features in gene function, pathways, and protein interaction networks. We performed enrichment tests of their Gene Ontology (GO) annotations and of their pathways in the Ingenuity Pathways Analysis (IPA) system. The tests revealed that these addiction-related genes were highly enriched in neurodevelopment-related processes. Interestingly, we found circadian rhythm signaling in one of the enriched pathways. Moreover, these addiction-related genes tended to have higher connectivity and shorter characteristic shortest-path distances compared to control genes in the protein-protein interaction (PPI) network. This investigation is the first of such kind in addiction studies, and it is useful for further addiction candidate-gene prioritization and verification, thus helping us to better understand molecular mechanisms of addictions.

  11. Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control.

    PubMed

    Kocaturk, Mehmet; Gulcur, Halil Ozcan; Canbeyli, Resit

    2015-01-01

    In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE) as a practical platform for the development of novel brain-machine interface (BMI) controllers, which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons, which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two-target reaching task in one-dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN) simulations with powerful online data visualization tools and is a low-cost, PC-based, and all-in-one solution for developing neurally inspired BMI controllers. We believe that the BNDE is the first implementation, which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations. PMID:26321943

  12. Partitioning Biological Networks into Highly Connected Clusters with Maximum Edge Coverage.

    PubMed

    Hüffner, Falk; Komusiewicz, Christian; Liebtrau, Adrian; Niedermeier, Rolf

    2013-12-11

    A popular clustering algorithm for biological networks which was proposed by Hartuv and Shamir [IPL 2000] identifies nonoverlapping highly connected components. We extend the approach taken by this algorithm by introducing the combinatorial optimization problem Highly Connected Deletion, which asks for removing as few edges as possible from a graph such that the resulting graph consists of highly connected components. We show that Highly Connected Deletion is NP-hard and provide a fixed-parameter algorithm and a kernelization. We propose exact and heuristic solution strategies, based on polynomial-time data reduction rules and integer linear programming with column generation. The data reduction typically identifies 75% of the edges that are deleted for an optimal solution; the column generation method can then optimally solve protein interaction networks with up to 6,000 vertices and 13,500 edges in less than a day. Additionally, we present a new heuristic that finds more clusters than the method by Hartuv and Shamir. PMID:24344094

  13. Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control

    PubMed Central

    Kocaturk, Mehmet; Gulcur, Halil Ozcan; Canbeyli, Resit

    2015-01-01

    In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE) as a practical platform for the development of novel brain–machine interface (BMI) controllers, which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons, which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two-target reaching task in one-dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN) simulations with powerful online data visualization tools and is a low-cost, PC-based, and all-in-one solution for developing neurally inspired BMI controllers. We believe that the BNDE is the first implementation, which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations. PMID:26321943

  14. In silico model-based inference: a contemporary approach for hypothesis testing in network biology

    PubMed Central

    Klinke, David J.

    2014-01-01

    Inductive inference plays a central role in the study of biological systems where one aims to increase their understanding of the system by reasoning backwards from uncertain observations to identify causal relationships among components of the system. These causal relationships are postulated from prior knowledge as a hypothesis or simply a model. Experiments are designed to test the model. Inferential statistics are used to establish a level of confidence in how well our postulated model explains the acquired data. This iterative process, commonly referred to as the scientific method, either improves our confidence in a model or suggests that we revisit our prior knowledge to develop a new model. Advances in technology impact how we use prior knowledge and data to formulate models of biological networks and how we observe cellular behavior. However, the approach for model-based inference has remained largely unchanged since Fisher, Neyman and Pearson developed the ideas in the early 1900’s that gave rise to what is now known as classical statistical hypothesis (model) testing. Here, I will summarize conventional methods for model-based inference and suggest a contemporary approach to aid in our quest to discover how cells dynamically interpret and transmit information for therapeutic aims that integrates ideas drawn from high performance computing, Bayesian statistics, and chemical kinetics. PMID:25139179

  15. GramAlign: fast alignment driven by grammar-based phylogeny.

    PubMed

    Russell, David J

    2014-01-01

    Multiple sequence alignment involves identifying related subsequences among biological sequences. When matches are found, the associated pieces are shifted so that when sequences are presented as successive rows-one sequence per row-homologous residues line-up in columns. Exact alignment of more than a few sequences is known to be computationally prohibitive. Thus many heuristic algorithms have been developed to produce good alignments in an efficient amount of time by determining an order by which pairs of sequences are progressively aligned and merged. GRAMALIGN is such a progressive alignment algorithm that uses a grammar-based relative complexity distance metric to determine the alignment order. This technique allows for a computationally efficient and scalable program useful for aligning both large numbers of sequences and sets of long sequences quickly. The GRAMALIGN software is available at http://bioinfo.unl.edu/gramalign.php for both source code download and a web-based alignment server.

  16. A biologically inspired neural network model to transformation invariant object recognition

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz

    2007-09-01

    Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to

  17. Simultaneous Alignment and Folding of Protein Sequences

    PubMed Central

    Waldispühl, Jérôme; O'Donnell, Charles W.; Will, Sebastian; Devadas, Srinivas; Backofen, Rolf

    2014-01-01

    Abstract Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple sequence alignment tools in the most difficult low-sequence homology case. It also improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families (partiFold-Align is available at http://partifold.csail.mit.edu/). PMID:24766258

  18. Assessing Vermont's stream health and biological integrity using artificial neural networks and Bayesian methods

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Fytilis, N.; Stevens, L.

    2012-12-01

    Environmental managers are increasingly required to monitor and forecast long-term effects and vulnerability of biophysical systems to human-generated stresses. Ideally, a study involving both physical and biological assessments conducted concurrently (in space and time) could provide a better understanding of the mechanisms and complex relationships. However, costs and resources associated with monitoring the complex linkages between the physical, geomorphic and habitat conditions and the biological integrity of stream reaches are prohibitive. Researchers have used classification techniques to place individual streams and rivers into a broader spatial context (hydrologic or health condition). Such efforts require environmental managers to gather multiple forms of information - quantitative, qualitative and subjective. We research and develop a novel classification tool that combines self-organizing maps with a Naïve Bayesian classifier to direct resources to stream reaches most in need. The Vermont Agency of Natural Resources has developed and adopted protocols for physical stream geomorphic and habitat assessments throughout the state of Vermont. Separate from these assessments, the Vermont Department of Environmental Conservation monitors the biological communities and the water quality in streams. Our initial hypothesis is that the geomorphic reach assessments and water quality data may be leveraged to reduce error and uncertainty associated with predictions of biological integrity and stream health. We test our hypothesis using over 2500 Vermont stream reaches (~1371 stream miles) assessed by the two agencies. In the development of this work, we combine a Naïve Bayesian classifier with a modified Kohonen Self-Organizing Map (SOM). The SOM is an unsupervised artificial neural network that autonomously analyzes inherent dataset properties using input data only. It is typically used to cluster data into similar categories when a priori classes do not exist. The

  19. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    PubMed

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  20. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    PubMed

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  1. Comparative Effectiveness of Biologic Therapy Regimens for Ankylosing Spondylitis: A Systematic Review and a Network Meta-Analysis.

    PubMed

    Chen, Chao; Zhang, XiaoLin; Xiao, Lu; Zhang, XueSong; Ma, XinLong

    2016-03-01

    To establish the comparative effectiveness of all available biologic therapy regimens for ankylosing spondylitis, we performed a systematic review and a Bayesian network meta-analysis of randomized controlled trials. PubMed, Medline, Embase, Cochrane library, and ClinicalTrials.gov were searched from the inception of each database to June 2015. Systematic review and network meta-analysis was reported according to the Preferred Reporting Items of Systematic Reviews and Meta-Analyses Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses. The primary outcome was 20% improvement of Assessments in SpondyloArthritis International Society Response Criteria (ASAS20) at Week 12 or 14; secondary outcomes were ASAS40, ASAS5/6, ASAS partial remission and 50% improvement in baseline Bath ankylosing spondylitis (AS) disease activity index. We reported relative risks and 95% confidence intervals from direct meta-analysis and 95% credible intervals from Bayesian network meta-analysis, and ranked the treatment for outcomes. We also used Grading of Recommendations Assessment, Development and Evaluation criteria to appraise quality of evidence. Fourteen RCTs comprising 2672 active AS patients were included in the network meta-analysis. Most biologic therapy regimens were more effective than placebo regarding all the outcomes assessed, except for secukinumab and tocilizumab. No differences between biologic therapies in the treatment of AS could be found, except for the finding that infliximab 5 mg was superior to tocilizumab. Infliximab 5 mg/kg had the highest probability of being ranked the best for achieving ASAS20, whereas notably, secukinumab had the highest probability of being ranked the second best. Our study suggests that no differences between biologic therapies in the treatment of AS could be found except that infliximab 5 mg was superior to tocilizumab. Infliximab 5 mg/kg seems to be the better biologic therapy regimen for AS

  2. Aligned Nanofibers for Regenerating Arteries, Nerves, and Muscles

    NASA Astrophysics Data System (ADS)

    McClendon, Mark Trosper

    Cells are the fundamental unit of the human body, and therefore the ability to control cell behavior is the most important challenge in regenerative medicine. Peptides are the language of biology which is why synthetic peptide amphiphile (PA) molecules hold great potential as a biomaterial. The work presented in this dissertation explores a variety of liquid crystalline PA nanofibers as a means for directing cell growth. Shaping the alignment of these nanofiber networks requires a deep understanding of their rheological properties which presents a difficult challenge as they exist in complex solid and liquid environments. Using PA molecules that self-assemble into high aspect ratio nanofibers and liquid crystalline solutions, this work investigates the influence of shear flow on macroscopic and microscopic nanofiber alignment. To this end, a shear force applied to PA solutions was systematically varied while the alignment was probed using small angle x-ray scattering. Nanofibers were found to respond to shear flow by aligning parallel to the flow direction. By changing pH and PA chemical sequence it was observed that increasing the interfiber electrostatic repulsive interactions resulted in a greater dependence on shear rate. Nanofiber solutions having greater repulsion did not drastically increase in alignment when the applied strain was increased by two orders of magnitude (1 s -1 to 100 s-1), while solutions with nanofibers having less repulsion increased there alignment four fold with the same strain increase. say exactly what you mean by resulted in greater dependence: did it result in fibers aligning under lower shear rates or higher rates--give the results Anionic PA solutions typically used to encapsulate living cells at neutral pH were found to require minimal shear rates, <1s-1, to achieve significant nanofiber alignment. In an effort to produce tubular hydrogels composed of circumferentially aligned nanofibers, a procedure was designed that used an

  3. Climatic similarity and biological exchange in the worldwide airline transportation network

    PubMed Central

    Tatem, Andrew J; Hay, Simon I

    2007-01-01

    Recent increases in the rates of biological invasion and spread of infectious diseases have been linked to the continued expansion of the worldwide airline transportation network (WAN). Here, the global structure of the WAN is analysed in terms of climatic similarity to illuminate the risk of deliberate or accidental movements of climatically sensitive organisms around the world. From over 44 000 flight routes, we show, for each month of an average year, (i) those scheduled routes that link the most spatially distant but climatically similar airports, (ii) the climatically best-connected airports, and (iii) clusters of airports with similar climatic features. The way in which traffic volumes alter these findings is also examined. Climatic similarity across the WAN is skewed (most geographically close airports are climatically similar) but heavy-tailed (there are considerable numbers of geographically distant but climatically similar airports), with climate similarity highest in the June–August period, matching the annual peak in air traffic. Climatically matched, geographically distant airports form subnetworks within the WAN that change throughout the year. Further, the incorporation of passenger and freight traffic data highlight at greater risk of invasion those airports that are climatically well connected by numerous high capacity routes. PMID:17426013

  4. The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond.

    PubMed

    Mueller, Lukas A; Solow, Teri H; Taylor, Nicolas; Skwarecki, Beth; Buels, Robert; Binns, John; Lin, Chenwei; Wright, Mark H; Ahrens, Robert; Wang, Ying; Herbst, Evan V; Keyder, Emil R; Menda, Naama; Zamir, Dani; Tanksley, Steven D

    2005-07-01

    The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond.

  5. The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond1

    PubMed Central

    Mueller, Lukas A.; Solow, Teri H.; Taylor, Nicolas; Skwarecki, Beth; Buels, Robert; Binns, John; Lin, Chenwei; Wright, Mark H.; Ahrens, Robert; Wang, Ying; Herbst, Evan V.; Keyder, Emil R.; Menda, Naama; Zamir, Dani; Tanksley, Steven D.

    2005-01-01

    The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond. PMID:16010005

  6. An appraisal of biological responses and network of environmental interactions in non-mining and mining impacted coastal waters.

    PubMed

    Fernandes, Christabelle E G; Malik, Ashish; Jineesh, V K; Fernandes, Sheryl O; Das, Anindita; Pandey, Sunita S; Kanolkar, Geeta; Sujith, P P; Velip, Dhillan M; Shaikh, Shagufta; Helekar, Samita; Gonsalves, Maria Judith; Nair, Shanta; LokaBharathi, P A

    2015-08-01

    The coastal waters of Goa and Ratnagiri lying on the West coast of India are influenced by terrestrial influx. However, Goa is influenced anthropogenically by iron-ore mining, while Ratnagiri is influenced by deposition of heavy minerals containing iron brought from the hinterlands. We hypothesize that there could be a shift in biological response along with changes in network of interactions between environmental and biological variables in these mining and non-mining impacted regions, lying 160 nmi apart. Biological and environmental parameters were analyzed during pre-monsoon season. Except silicates, the measured parameters were higher at Goa and related significantly, suggesting bacteria centric, detritus-driven region. At Ratnagiri, phytoplankton biomass related positively with silicate suggesting a region dominated by primary producers. This dominance perhaps got reflected as a higher tertiary yield. Thus, even though the regions are geographically proximate, the different biological response could be attributed to the differences in the web of interactions between the measured variables.

  7. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    PubMed Central

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  8. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Roy, Raktim; Phani Shilpa, P.; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level.

  9. Data-driven, data-intensive computing for modelling and analysis of biological networks: application to bioethanol production

    NASA Astrophysics Data System (ADS)

    Park, Byung-Hoon; Samatova, Nagiza F.; Karpinets, Tatiana; Jallouk, Andrew; Molony, Scott; Horton, Scott; Arcangeli, Steven

    2007-07-01

    Modelling biological networks is inherently data-driven and data-intensive. The combinatorial nature of this type of modelling, however, requires new methods capable of dealing with the enormous size and irregularity of the search. Searching via 'backtracking' is one possible solution that avoids exhaustive searches by constraining the search space to the subspace of feasible solutions. Despite its wide use in many combinatorial optimization problems, there are currently few parallel implementations of backtracking capable of effectively dealing with the memory-intensive nature of the process and the extremely unbalanced loads present. In this paper, a parallel, scalable, and memory-efficient backtracking algorithm within the context of maximal clique enumeration is presented, and its applicability to large-scale biological networks aimed at studying the mechanisms for efficient bioethanol production is discussed.

  10. Scale-free networks in biology: new insights into the fundamentals of evolution?

    PubMed

    Wolf, Yuri I; Karev, Georgy; Koonin, Eugene V

    2002-02-01

    Scale-free network models describe many natural and social phenomena. In particular, networks of interacting components of a living cell were shown to possess scale-free properties. A recent study((1)) compares the system-level properties of metabolic and information networks in 43 archaeal, bacterial and eukaryal species and claims that the scale-free organization of these networks is more conserved during evolution than their content.

  11. DNAAlignEditor: DNA alignment editor tool

    PubMed Central

    Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D

    2008-01-01

    Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684

  12. The virome: a missing component of biological interaction networks in health and disease.

    PubMed

    Handley, Scott A

    2016-01-01

    Host-associated viral populations, viromes, have been understudied relative to their contribution to human physiology. Viruses interact with host gene networks, influencing both health and disease. Analysis of host gene networks in the absence of virome analysis risks missing important network information. PMID:27037032

  13. Common biological networks underlie genetic risk for alcoholism in African- and European-American populations.

    PubMed

    Kos, M Z; Yan, J; Dick, D M; Agrawal, A; Bucholz, K K; Rice, J P; Johnson, E O; Schuckit, M; Kuperman, S; Kramer, J; Goate, A M; Tischfield, J A; Foroud, T; Nurnberger, J; Hesselbrock, V; Porjesz, B; Bierut, L J; Edenberg, H J; Almasy, L

    2013-07-01

    Alcohol dependence (AD) is a heritable substance addiction with adverse physical and psychological consequences, representing a major health and economic burden on societies worldwide. Genes thus far implicated via linkage, candidate gene and genome-wide association studies (GWAS) account for only a small fraction of its overall risk, with effects varying across ethnic groups. Here we investigate the genetic architecture of alcoholism and report on the extent to which common, genome-wide SNPs collectively account for risk of AD in two US populations, African-Americans (AAs) and European-Americans (EAs). Analyzing GWAS data for two independent case-control sample sets, we compute polymarker scores that are significantly associated with alcoholism (P = 1.64 × 10(-3) and 2.08 × 10(-4) for EAs and AAs, respectively), reflecting the small individual effects of thousands of variants derived from patterns of allelic architecture that are population specific. Simulations show that disease models based on rare and uncommon causal variants (MAF < 0.05) best fit the observed distribution of polymarker signals. When scoring bins were annotated for gene location and examined for constituent biological networks, gene enrichment is observed for several cellular processes and functions in both EA and AA populations, transcending their underlying allelic differences. Our results reveal key insights into the complex etiology of AD, raising the possibility of an important role for rare and uncommon variants, and identify polygenic mechanisms that encompass a spectrum of disease liability, with some, such as chloride transporters and glycine metabolism genes, displaying subtle, modifying effects that are likely to escape detection in most GWAS designs.

  14. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells

    PubMed Central

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-01-01

    Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication

  15. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    PubMed

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  16. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    PubMed

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  17. MAVID multiple alignment server.

    PubMed

    Bray, Nicolas; Pachter, Lior

    2003-07-01

    MAVID is a multiple alignment program suitable for many large genomic regions. The MAVID web server allows biomedical researchers to quickly obtain multiple alignments for genomic sequences and to subsequently analyse the alignments for conserved regions. MAVID has been successfully used for the alignment of closely related species such as primates and also for the alignment of more distant organisms such as human and fugu. The server is fast, capable of aligning hundreds of kilobases in less than a minute. The multiple alignment is used to build a phylogenetic tree for the sequences, which is subsequently used as a basis for identifying conserved regions in the alignment. The server can be accessed at http://baboon.math.berkeley.edu/mavid/.

  18. Nearest Alignment Space Termination

    2006-07-13

    Near Alignment Space Termination (NAST) is the Greengenes algorithm that matches up submitted sequences with the Greengenes database to look for similarities and align the submitted sequences based on those similarities.

  19. Biology, Methodology or Chance? The Degree Distributions of Bipartite Ecological Networks

    PubMed Central

    Williams, Richard J.

    2011-01-01

    The distribution of the number of links per species, or degree distribution, is widely used as a summary of the topology of complex networks. Degree distributions have been studied in a range of ecological networks, including both mutualistic bipartite networks of plants and pollinators or seed dispersers and antagonistic bipartite networks of plants and their consumers. The shape of a degree distribution, for example whether it follows an exponential or power-law form, is typically taken to be indicative of the processes structuring the network. The skewed degree distributions of bipartite mutualistic and antagonistic networks are usually assumed to show that ecological or co-evolutionary processes constrain the relative numbers of specialists and generalists in the network. I show that a simple null model based on the principle of maximum entropy cannot be rejected as a model for the degree distributions in most of the 115 bipartite ecological networks tested here. The model requires knowledge of the number of nodes and links in the network, but needs no other ecological information. The model cannot be rejected for 159 (69%) of the 230 degree distributions of the 115 networks tested. It performed equally well on the plant and animal degree distributions, and cannot be rejected for 81 (70%) of the 115 plant distributions and 78 (68%) of the animal distributions. There are consistent differences between the degree distributions of mutualistic and antagonistic networks, suggesting that different processes are constraining these two classes of networks. Fit to the MaxEnt null model is consistently poor among the largest mutualistic networks. Potential ecological and methodological explanations for deviations from the model suggest that spatial and temporal heterogeneity are important drivers of the structure of these large networks. PMID:21390231

  20. BiologicalNetworks - tools enabling the integration of multi-scale data for the host-pathogen studies

    PubMed Central

    2011-01-01

    Background Understanding of immune response mechanisms of pathogen-infected host requires multi-scale analysis of genome-wide data. Data integration methods have proved useful to the study of biological processes in model organisms, but their systematic application to the study of host immune system response to a pathogen and human disease is still in the initial stage. Results To study host-pathogen interaction on the systems biology level, an extension to the previously described BiologicalNetworks system is proposed. The developed methods and data integration and querying tools allow simplifying and streamlining the process of integration of diverse experimental data types, including molecular interactions and phylogenetic classifications, genomic sequences and protein structure information, gene expression and virulence data for pathogen-related studies. The data can be integrated from the databases and user's files for both public and private use. Conclusions The developed system can be used for the systems-level analysis of host-pathogen interactions, including host molecular pathways that are induced/repressed during the infections, co-expressed genes, and conserved transcription factor binding sites. Previously unknown to be associated with the influenza infection genes were identified and suggested for further investigation as potential drug targets. Developed methods and data are available through the Java application (from BiologicalNetworks program at http://www.biologicalnetworks.org) and web interface (at http://flu.sdsc.edu). PMID:21235794

  1. Network news: prime time for systems biology of the plant circadian clock truncated form of the title: Plant circadian clocks

    PubMed Central

    McClung, C. Robertson; Gutiérrez, Rodrigo A.

    2011-01-01

    Summary Whole-transcriptome analyses have established that the plant circadian clock regulates virtually every plant biological process and most prominently hormonal and stress response pathways. Systems biology efforts have successfully modeled the plant central clock machinery and an iterative process of model refinement and experimental validation has contributed significantly to the current view of the central clock machinery. The challenge now is to connect this central clock to the output pathways for understanding how the plant circadian clock contributes to plant growth and fitness in a changing environment. Undoubtedly, systems approaches will be needed to integrate and model the vastly increased volume of experimental data in order to extract meaningful biological information. Thus, we have entered an era of systems modeling, experimental testing, and refinement. This approach, coupled with advances from the genetic and biochemical analyses of clock function, is accelerating our progress towards a comprehensive understanding of the plant circadian clock network. PMID:20889330

  2. Identifying influential nodes in a wound healing-related network of biological processes using mean first-passage time

    NASA Astrophysics Data System (ADS)

    Arodz, Tomasz; Bonchev, Danail

    2015-02-01

    In this study we offer an approach to network physiology, which proceeds from transcriptomic data and uses gene ontology analysis to identify the biological processes most enriched in several critical time points of wound healing process (days 0, 3 and 7). The top-ranking differentially expressed genes for each process were used to build two networks: one with all proteins regulating the transcription of selected genes, and a second one involving the proteins from the signaling pathways that activate the transcription factors. The information from these networks is used to build a network of the most enriched processes with undirected links weighted proportionally to the count of shared genes between the pair of processes, and directed links weighted by the count of relationships connecting genes from one process to genes from the other. In analyzing the network thus built we used an approach based on random walks and accounting for the temporal aspects of the spread of a signal in the network (mean-first passage time, MFPT). The MFPT scores allowed identifying the top influential, as well as the top essential biological processes, which vary with the progress in the healing process. Thus, the most essential for day 0 was found to be the Wnt-receptor signaling pathway, well known for its crucial role in wound healing, while in day 3 this was the regulation of NF-kB casc