Science.gov

Sample records for aligned dna sequences

  1. DNA Sequence Alignment during Homologous Recombination.

    PubMed

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination. PMID:27129270

  2. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  3. Local alignment of two-base encoded DNA sequence

    PubMed Central

    Homer, Nils; Merriman, Barry; Nelson, Stanley F

    2009-01-01

    Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732

  4. DNA sequence alignment by microhomology sampling during homologous recombination

    PubMed Central

    Qi, Zhi; Redding, Sy; Lee, Ja Yil; Gibb, Bryan; Kwon, YoungHo; Niu, Hengyao; Gaines, William A.; Sung, Patrick

    2015-01-01

    Summary Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair ssDNA with a homologous dsDNA template. Here we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real-time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a 9th nucleotide coincides with an additional reduction in binding free energy and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination. PMID:25684365

  5. Optimizing Data Intensive GPGPU Computations for DNA Sequence Alignment

    PubMed Central

    Trapnell, Cole; Schatz, Michael C.

    2009-01-01

    MUMmerGPU uses highly-parallel commodity graphics processing units (GPU) to accelerate the data-intensive computation of aligning next generation DNA sequence data to a reference sequence for use in diverse applications such as disease genotyping and personal genomics. MUMmerGPU 2.0 features a new stackless depth-first-search print kernel and is 13× faster than the serial CPU version of the alignment code and nearly 4× faster in total computation time than MUMmerGPU 1.0. We exhaustively examined 128 GPU data layout configurations to improve register footprint and running time and conclude higher occupancy has greater impact than reduced latency. MUMmerGPU is available open-source at http://mummergpu.sourceforge.net. PMID:20161021

  6. MULTAN: a program to align multiple DNA sequences.

    PubMed Central

    Bains, W

    1986-01-01

    I describe a computer program which can align a large number of nucleic acid sequences with one another. The program uses an heuristic, iterative algorithm which has been tested extensively, and is found to produce useful alignments of a variety of sequence families. The algorithm is fast enough to be practical for the analysis of large number of sequences, and is implemented in a program which contains a variety of other functions to facilitate the analysis of the aligned result. PMID:3003672

  7. MSA-PAD: DNA multiple sequence alignment framework based on PFAM accessed domain information.

    PubMed

    Balech, Bachir; Vicario, Saverio; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano

    2015-08-01

    Here we present the MSA-PAD application, a DNA multiple sequence alignment framework that uses PFAM protein domain information to align DNA sequences encoding either single or multiple protein domains. MSA-PAD has two alignment options: gene and genome mode. PMID:25819080

  8. DNA Align Editor: DNA Alignment Editor Tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SNPAlignEditor is a DNA sequence alignment editor that runs on Windows platforms. The purpose of the program is to provide an intuitive, user-friendly tool for manual editing of multiple sequence alignments by providing functions for input, editing, and output of nucleotide sequence alignments....

  9. WebGMAP: a web service for mapping and aligning cDNA sequences to genomes

    PubMed Central

    Liang, Chun; Liu, Lin; Ji, Guoli

    2009-01-01

    The genomes of thousands of organisms are being sequenced, often with accompanying sequences of cDNAs or ESTs. One of the great challenges in bioinformatics is to make these genomic sequences and genome annotations accessible in a user-friendly manner to general biologists to address interesting biological questions. We have created an open-access web service called WebGMAP (http://www.bioinfolab.org/software/webgmap) that seamlessly integrates cDNA-genome alignment tools, such as GMAP, with easy-to-use data visualization and mining tools. This web service is intended to facilitate community efforts in improving genome annotation, determining accurate gene structures and their variations, and exploring important biological processes such as alternative splicing and alternative polyadenylation. For routine sequence analysis, WebGMAP provides a web-based sequence viewer with many useful functions, including nucleotide positioning, six-frame translations, sequence reverse complementation, and imperfect motif detection and alignment. WebGMAP also provides users with the ability to sort, filter and search for individual cDNA sequences and cDNA-genome alignments. Our EST-Genome-Browser can display annotated gene structures and cDNA-genome alignments at scales from 100 to 50 000 nt. With its ability to highlight base differences between query cDNAs and the genome, our EST-Genome-Browser allows biologists to discover potential point or insertion-deletion variations from cDNA-genome alignments. PMID:19465381

  10. Update of AMmtDB: a database of multi-aligned Metazoa mitochondrial DNA sequences.

    PubMed

    Lanave, Cecilia; Licciulli, Flavio; De Robertis, Mariateresa; Marolla, Alessandra; Attimonelli, Marcella

    2002-01-01

    The AMmtDB database (http://bighost.area.ba.cnr.it/mitochondriome) has been updated by collecting the multi-aligned sequences of Chordata and Invertebrata mitochondrial genes coding for proteins and tRNAs. Links to the multi-aligned mtDNA intraspecies variants, collected in VarMmtDB at the Mitochondriome web site, have been introduced. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. AMmtDB data selected through SRS can be viewed and managed using GeneDoc or other programs for the management of multi-aligned data depending on the user's operative system. The multiple alignments have been produced with CLUSTALW and PILEUP programs and then carefully optimized manually. PMID:11752285

  11. Update of AMmtDB: a database of multi-aligned Metazoa mitochondrial DNA sequences

    PubMed Central

    Lanave, Cecilia; Licciulli, Flavio; De Robertis, Mariateresa; Marolla, Alessandra; Attimonelli, Marcella

    2002-01-01

    The AMmtDB database (http://bighost.area.ba.cnr.it/mitochondriome) has been updated by collecting the multi-aligned sequences of Chordata and Invertebrata mitochondrial genes coding for proteins and tRNAs. Links to the multi-aligned mtDNA intraspecies variants, collected in VarMmtDB at the Mitochondriome web site, have been introduced. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. AMmtDB data selected through SRS can be viewed and managed using GeneDoc or other programs for the management of multi-aligned data depending on the user’s operative system. The multiple alignments have been produced with CLUSTALW and PILEUP programs and then carefully optimized manually. PMID:11752285

  12. Alignment of Escherichia coli K12 DNA sequences to a genomic restriction map.

    PubMed Central

    Rudd, K E; Miller, W; Ostell, J; Benson, D A

    1990-01-01

    We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects. PMID:2183179

  13. SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

    PubMed Central

    2016-01-01

    Next-generation sequencing (NGS) technologies have led to a huge amount of genomic data that need to be analyzed and interpreted. This fact has a huge impact on the DNA sequence alignment process, which nowadays requires the mapping of billions of small DNA sequences onto a reference genome. In this way, sequence alignment remains the most time-consuming stage in the sequence analysis workflow. To deal with this issue, state of the art aligners take advantage of parallelization strategies. However, the existent solutions show limited scalability and have a complex implementation. In this work we introduce SparkBWA, a new tool that exploits the capabilities of a big data technology as Spark to boost the performance of one of the most widely adopted aligner, the Burrows-Wheeler Aligner (BWA). The design of SparkBWA uses two independent software layers in such a way that no modifications to the original BWA source code are required, which assures its compatibility with any BWA version (future or legacy). SparkBWA is evaluated in different scenarios showing noticeable results in terms of performance and scalability. A comparison to other parallel BWA-based aligners validates the benefits of our approach. Finally, an intuitive and flexible API is provided to NGS professionals in order to facilitate the acceptance and adoption of the new tool. The source code of the software described in this paper is publicly available at https://github.com/citiususc/SparkBWA, with a GPL3 license. PMID:27182962

  14. SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data.

    PubMed

    Abuín, José M; Pichel, Juan C; Pena, Tomás F; Amigo, Jorge

    2016-01-01

    Next-generation sequencing (NGS) technologies have led to a huge amount of genomic data that need to be analyzed and interpreted. This fact has a huge impact on the DNA sequence alignment process, which nowadays requires the mapping of billions of small DNA sequences onto a reference genome. In this way, sequence alignment remains the most time-consuming stage in the sequence analysis workflow. To deal with this issue, state of the art aligners take advantage of parallelization strategies. However, the existent solutions show limited scalability and have a complex implementation. In this work we introduce SparkBWA, a new tool that exploits the capabilities of a big data technology as Spark to boost the performance of one of the most widely adopted aligner, the Burrows-Wheeler Aligner (BWA). The design of SparkBWA uses two independent software layers in such a way that no modifications to the original BWA source code are required, which assures its compatibility with any BWA version (future or legacy). SparkBWA is evaluated in different scenarios showing noticeable results in terms of performance and scalability. A comparison to other parallel BWA-based aligners validates the benefits of our approach. Finally, an intuitive and flexible API is provided to NGS professionals in order to facilitate the acceptance and adoption of the new tool. The source code of the software described in this paper is publicly available at https://github.com/citiususc/SparkBWA, with a GPL3 license. PMID:27182962

  15. Update of AMmtDB: a database of multi-aligned metazoa mitochondrial DNA sequences.

    PubMed

    Lanave, C; Attimonelli, M; De Robertis, M; Licciulli, F; Liuni, S; Sbisá, E; Saccone, C

    1999-01-01

    The present paper describes AMmtDB, a database collecting the multi-aligned sequences of vertebrate mitochondrial genes coding for proteins and tRNAs, as well as the multiple alignment of the mammalian mtDNA main regulatory region (D-loop) sequences. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. As far as the genes coding for tRNAs are concerned, the multi-alignments based on the primary and the secondary structures are both provided; for the mammalian D-loop multi-alignments we report the conserved regions of the entire D-loop (CSB1, CSB2, CSB3, the central region, ETAS1 and ETAS2) as defined by Sbisà et al. [ Gene (1997), 205, 125-140). A flatfile format for AMmtDB has been designed allowing its implementation in SRS (http://bio-www.ba.cnr.it:8000/BioWWW/#AMMTDB ). Data selected through SRS can be managed using GeneDoc or other programs for the management of multi-aligned data depending on the user's operative system. The multiple alignments have been produced with CLUSTALV and PILEUP programs and then carefully optimized manually. PMID:9847158

  16. Fast multiple alignment of ungapped DNA sequences using information theory and a relaxation method.

    PubMed

    Schneider, Thomas D; Mastronarde, David N

    1996-12-01

    An information theory based multiple alignment ("Malign") method was used to align the DNA binding sequences of the OxyR and Fis proteins, whose sequence conservation is so spread out that it is difficult to identify the sites. In the algorithm described here, the information content of the sequences is used as a unique global criterion for the quality of the alignment. The algorithm uses look-up tables to avoid recalculating computationally expensive functions such as the logarithm. Because there are no arbitrary constants and because the results are reported in absolute units (bits), the best alignment can be chosen without ambiguity. Starting from randomly selected alignments, a hill-climbing algorithm can track through the immense space of s(n) combinations where s is the number of sequences and n is the number of positions possible for each sequence. Instead of producing a single alignment, the algorithm is fast enough that one can afford to use many start points and to classify the solutions. Good convergence is indicated by the presence of a single well-populated solution class having higher information content than other classes. The existence of several distinct classes for the Fis protein indicates that those binding sites have self-similar features. PMID:19953199

  17. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    PubMed

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  18. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    PubMed Central

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  19. Aptaligner: Automated Software for Aligning Pseudorandom DNA X-Aptamers from Next-Generation Sequencing Data

    PubMed Central

    2015-01-01

    Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects. PMID:24866698

  20. Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data.

    PubMed

    Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E

    2014-06-10

    Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects. PMID:24866698

  1. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences. PMID:26812576

  2. DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment

    NASA Astrophysics Data System (ADS)

    Li, Yushuang; Liu, Qian; Zheng, Xiaoqi

    2016-08-01

    A highly compact and simple 2D graphical representation of DNA sequences, named DUC-Curve, is constructed through mapping four nucleotides to a unit circle with a cyclic order. DUC-Curve could directly detect nucleotide, di-nucleotide compositions and microsatellite structure from DNA sequences. Moreover, it also could be used for DNA sequence alignment. Taking geometric center vectors of DUC-Curves as sequence descriptor, we perform similarity analysis on the first exons of β-globin genes of 11 species, oncogene TP53 of 27 species and twenty-four Influenza A viruses, respectively. The obtained reasonable results illustrate that the proposed method is very effective in sequence comparison problems, and will at least play a complementary role in classification and clustering problems.

  3. Phylo-VISTA: An Interactive Visualization Tool for Multiple DNA Sequence Alignments

    SciTech Connect

    Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.; Brudno, Michael; Batzoglou, Serafim; Bethel, E. Wes; Rubin, Edward M.; Hamann, Bernd; Dubchak, Inna

    2004-04-01

    We have developed Phylo-VISTA (Shah et al., 2003), an interactive software tool for analyzing multiple alignments by visualizing a similarity measure for DNA sequences of multiple species. The complexity of visual presentation is effectively organized using a framework based upon inter-species phylogenetic relationships. The phylogenetic organization supports rapid, user-guided inter-species comparison. To aid in navigation through large sequence datasets, Phylo-VISTA provides a user with the ability to select and view data at varying resolutions. The combination of multi-resolution data visualization and analysis, combined with the phylogenetic framework for inter-species comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments.

  4. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences

    PubMed Central

    Pratas, Diogo; Silva, Raquel M.; Pinho, Armando J.; Ferreira, Paulo J.S.G.

    2015-01-01

    Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrate the power and usefulness of the method we give complete chromosomal information maps for the pairs human-chimpanzee and human-orangutan. The tool by means of which these results were obtained has been made publicly available and is described in detail. PMID:25984837

  5. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences.

    PubMed

    Pratas, Diogo; Silva, Raquel M; Pinho, Armando J; Ferreira, Paulo J S G

    2015-01-01

    Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrate the power and usefulness of the method we give complete chromosomal information maps for the pairs human-chimpanzee and human-orangutan. The tool by means of which these results were obtained has been made publicly available and is described in detail. PMID:25984837

  6. Update of AMmtDB: a database of multi-aligned metazoa mitochondrial DNA sequences.

    PubMed

    Lanave, C; Liuni, S; Licciulli, F; Attimonelli, M

    2000-01-01

    The AMmtDB database (http://bio-www.ba.cnr.it:8000/srs6/ ) has been updated by collecting the multi-aligned sequences of Chordata mitochondrial genes coding for proteins and tRNAs. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. AMmtDB data selected through SRS can be viewed and managed using GeneDoc or other programs for the management of multi-aligned data depending on the user's operative system. The multiple alignments have been produced with CLUSTALW and PILEUP programs and then carefully optimized manually. PMID:10592208

  7. Update of AMmtDB: a database of multi-aligned Metazoa mitochondrial DNA sequences

    PubMed Central

    Lanave, Cecilia; Liuni, Sabino; Licciulli, Flavio; Attimonelli, Marcella

    2000-01-01

    The AMmtDB database (http://bio-www.ba.cnr.it:8000/srs6/ ) has been updated by collecting the multi-aligned sequences of Chordata mitochondrial genes coding for proteins and tRNAs. The genes coding for proteins are multi-aligned based on the translated sequences and both the nucleotide and amino acid multi-alignments are provided. AMmtDB data selected through SRS can be viewed and managed using GeneDoc or other programs for the management of multi-aligned data depending on the user’s operative system. The multiple alignments have been produced with CLUSTALW and PILEUP programs and then carefully optimized manually. PMID:10592208

  8. Design Pattern Mining Using Distributed Learning Automata and DNA Sequence Alignment

    PubMed Central

    Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina

    2014-01-01

    Context Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. Objective This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. Method The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. Results The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. Conclusion The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns. PMID:25243670

  9. Pairwise Sequence Alignment Library

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprintmore » that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  10. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  11. Sequence alignment with tandem duplication

    SciTech Connect

    Benson, G.

    1997-12-01

    Algorithm development for comparing and aligning biological sequences has, until recently, been based on the SI model of mutational events which assumes that modification of sequences proceeds through any of the operations of substitution, insertion or deletion (the latter two collectively termed indels). While this model has worked farily well, it has long been apparent that other mutational events occur. In this paper, we introduce a new model, the DSI model which includes another common mutational event, tandem duplication. Tandem duplication produces tandem repeats which are common in DNA, making up perhaps 10% of the human genome. They are responsible for some human diseases and may serve a multitude of functions in DNA regulation and evolution. Using the DSI model, we develop new exact and heuristic algorithms for comparing and aligning DNA sequences when they contain tandem repeats. 30 refs., 3 figs.

  12. Identification of Anoectochilus based on rDNA ITS sequences alignment and SELDI-TOF-MS.

    PubMed

    Gao, Chuan; Zhang, Fusheng; Zhang, Jun; Guo, Shunxing; Shao, Hongbo

    2009-01-01

    The internal transcribed spacer (ITS) sequences alignment and proteomic difference of Anoectochilus interspecies have been studied by means of ITS molecular identification and surface enhanced laser desorption ionization time of flight mass spectrography. Results showed that variety certification on Anoectochilus by ITS sequences can not determine species, and there is proteomic difference among Anoectochilus interspecies. Moreover, proteomic finger printings of five Anoectochilus species have been established for identifying species, and genetic relationships of five species within Anoectochilus have been deduced according to proteomic differences among five species. PMID:20016748

  13. Identification of Anoectochilus based on rDNA ITS sequences alignment and SELDI-TOF-MS

    PubMed Central

    Gao, Chuan; Zhang, Fusheng; Zhang, Jun; Guo, Shunxing; Shao, Hongbo

    2009-01-01

    The internal transcribed spacer (ITS) sequences alignment and proteomic difference of Anoectochilus interspecies have been studied by means of ITS molecular identification and surface enhanced laser desorption ionization time of flight mass spectrography. Results showed that variety certification on Anoectochilus by ITS sequences can not determine species, and there is proteomic difference among Anoectochilus interspecies. Moreover, proteomic finger printings of five Anoectochilus species have been established for identifying species, and genetic relationships of five species within Anoectochilus have been deduced according to proteomic differences among five species. PMID:20016748

  14. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  15. DNAAlignEditor: DNA alignment editor tool

    PubMed Central

    Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D

    2008-01-01

    Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684

  16. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene

    PubMed Central

    Prasongkit, Jariyanee; Feliciano, Gustavo T.; Rocha, Alexandre R.; He, Yuhui; Osotchan, Tanakorn; Ahuja, Rajeev; Scheicher, Ralph H.

    2015-01-01

    Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green’s function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences. PMID:26634811

  17. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Prasongkit, Jariyanee; Feliciano, Gustavo T.; Rocha, Alexandre R.; He, Yuhui; Osotchan, Tanakorn; Ahuja, Rajeev; Scheicher, Ralph H.

    2015-12-01

    Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green’s function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences.

  18. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.

    PubMed

    Prasongkit, Jariyanee; Feliciano, Gustavo T; Rocha, Alexandre R; He, Yuhui; Osotchan, Tanakorn; Ahuja, Rajeev; Scheicher, Ralph H

    2015-01-01

    Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green's function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences. PMID:26634811

  19. CSA: An efficient algorithm to improve circular DNA multiple alignment

    PubMed Central

    Fernandes, Francisco; Pereira, Luísa; Freitas, Ana T

    2009-01-01

    Background The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. Results In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes. To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. Conclusion The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment algorithms when used in the

  20. Efficient alignment-free DNA barcode analytics

    PubMed Central

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. Results New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Conclusion Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding. PMID:19900305

  1. Blasting and Zipping: Sequence Alignment and Mutual Information

    NASA Astrophysics Data System (ADS)

    Penner, Orion; Grassberger, Peter; Paczuski, Maya

    2009-03-01

    Alignment of biological sequences such as DNA, RNA or proteins is one of the most widely used tools in computational bioscience. While the accomplishments of sequence alignment algorithms are undeniable the fact remains that these algorithms are based upon heuristic scoring schemes. Therefore, these algorithms do not provide model independent and objective measures for how similar two (or more) sequences actually are. Although information theory provides such a similarity measure - the mutual information (MI) - numerous previous attempts to connect sequence alignment and information have not produced realistic estimates for the MI from a given alignment. We report on a simple and flexible approach to get robust estimates of MI from global alignments. The presented results may help establish MI as a reliable tool for evaluating the quality of global alignments, judging the relative merits of different alignment algorithms, and estimating the significance of specific alignments.

  2. Global Alignment System for Large Genomic Sequencing

    2002-03-01

    AVID is a global alignment system tailored for the alignment of large genomic sequences up to megabases in length. Features include the possibility of one sequence being in draft form, fast alignment, robustness and accuracy. The method is an anchor based alignment using maximal matches derived from suffix trees.

  3. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification

    PubMed Central

    Borozan, Ivan; Watt, Stuart; Ferretti, Vincent

    2015-01-01

    Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913

  4. An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm

    PubMed Central

    Kumar, Manish

    2015-01-01

    One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly crossover and mutation were defined and implemented with the proposed method in order to know the population evolution and quality of the sequence aligned. The proposed method is assessed with protein benchmark dataset, e.g., BALIBASE, by comparing the obtained results to those obtained with other alignment algorithms, e.g., SAGA, RBT-GA, PRRP, HMMT, SB-PIMA, CLUSTALX, CLUSTAL W, DIALIGN and PILEUP8 etc. Experiments on a wide range of data have shown that the proposed algorithm is much better (it terms of score) than previously proposed algorithms in its ability to achieve high alignment quality. PMID:27065770

  5. An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm.

    PubMed

    Kumar, Manish

    2015-01-01

    One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly crossover and mutation were defined and implemented with the proposed method in order to know the population evolution and quality of the sequence aligned. The proposed method is assessed with protein benchmark dataset, e.g., BALIBASE, by comparing the obtained results to those obtained with other alignment algorithms, e.g., SAGA, RBT-GA, PRRP, HMMT, SB-PIMA, CLUSTALX, CLUSTAL W, DIALIGN and PILEUP8 etc. Experiments on a wide range of data have shown that the proposed algorithm is much better (it terms of score) than previously proposed algorithms in its ability to achieve high alignment quality. PMID:27065770

  6. Conditional alignment random fields for multiple motion sequence alignment.

    PubMed

    Kim, Minyoung

    2013-11-01

    We consider the multiple time-series alignment problem, typically focusing on the task of synchronizing multiple motion videos of the same kind of human activity. Finding an optimal global alignment of multiple sequences is infeasible, while there have been several approximate solutions, including iterative pairwise warping algorithms and variants of hidden Markov models. In this paper, we propose a novel probabilistic model that represents the conditional densities of the latent target sequences which are aligned with the given observed sequences through the hidden alignment variables. By imposing certain constraints on the target sequences at the learning stage, we have a sensible model for multiple alignments that can be learned very efficiently by the EM algorithm. Compared to existing methods, our approach yields more accurate alignment while being more robust to local optima and initial configurations. We demonstrate its efficacy on both synthetic and real-world motion videos including facial emotions and human activities. PMID:24051737

  7. Volume visualization of multiple alignment of genomic DNA

    SciTech Connect

    Shah, Nameeta; Weber, Gunther H.; Dillard, Scott E.; Hamann, Bernd

    2004-05-01

    Genomes of hundreds of species have been sequenced to date and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We provide results for aligned DNA sequence data and compare it with traditional 1D line plots. Our technique, coupled with 1D line plots, results in effective multiresolution visualization of very large aligned sequence data sets.

  8. Image analysis for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Palaniappan, Kannappan; Huang, Thomas S.

    1991-07-01

    There is a great deal of interest in automating the process of DNA (deoxyribonucleic acid) sequencing to support the analysis of genomic DNA such as the Human and Mouse Genome projects. In one class of gel-based sequencing protocols autoradiograph images are generated in the final step and usually require manual interpretation to reconstruct the DNA sequence represented by the image. The need to handle a large volume of sequence information necessitates automation of the manual autoradiograph reading step through image analysis in order to reduce the length of time required to obtain sequence data and reduce transcription errors. Various adaptive image enhancement, segmentation and alignment methods were applied to autoradiograph images. The methods are adaptive to the local characteristics of the image such as noise, background signal, or presence of edges. Once the two-dimensional data is converted to a set of aligned one-dimensional profiles waveform analysis is used to determine the location of each band which represents one nucleotide in the sequence. Different classification strategies including a rule-based approach are investigated to map the profile signals, augmented with the original two-dimensional image data as necessary, to textual DNA sequence information.

  9. Alignment-Annotator web server: rendering and annotating sequence alignments

    PubMed Central

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-01-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445

  10. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  11. Automated DNA Sequencing System

    SciTech Connect

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  12. Protein multiple sequence alignment by hybrid bio-inspired algorithms.

    PubMed

    Cutello, Vincenzo; Nicosia, Giuseppe; Pavone, Mario; Prizzi, Igor

    2011-03-01

    This article presents an immune inspired algorithm to tackle the Multiple Sequence Alignment (MSA) problem. MSA is one of the most important tasks in biological sequence analysis. Although this paper focuses on protein alignments, most of the discussion and methodology may also be applied to DNA alignments. The problem of finding the multiple alignment was investigated in the study by Bonizzoni and Vedova and Wang and Jiang, and proved to be a NP-hard (non-deterministic polynomial-time hard) problem. The presented algorithm, called Immunological Multiple Sequence Alignment Algorithm (IMSA), incorporates two new strategies to create the initial population and specific ad hoc mutation operators. It is based on the 'weighted sum of pairs' as objective function, to evaluate a given candidate alignment. IMSA was tested using both classical benchmarks of BAliBASE (versions 1.0, 2.0 and 3.0), and experimental results indicate that it is comparable with state-of-the-art multiple alignment algorithms, in terms of quality of alignments, weighted Sums-of-Pairs (SP) and Column Score (CS) values. The main novelty of IMSA is its ability to generate more than a single suboptimal alignment, for every MSA instance; this behaviour is due to the stochastic nature of the algorithm and of the populations evolved during the convergence process. This feature will help the decision maker to assess and select a biologically relevant multiple sequence alignment. Finally, the designed algorithm can be used as a local search procedure to properly explore promising alignments of the search space. PMID:21071394

  13. DNA Sequencing apparatus

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  14. HIVE-Hexagon: High-Performance, Parallelized Sequence Alignment for Next-Generation Sequencing Data Analysis

    PubMed Central

    Santana-Quintero, Luis; Dingerdissen, Hayley; Thierry-Mieg, Jean; Mazumder, Raja; Simonyan, Vahan

    2014-01-01

    Due to the size of Next-Generation Sequencing data, the computational challenge of sequence alignment has been vast. Inexact alignments can take up to 90% of total CPU time in bioinformatics pipelines. High-performance Integrated Virtual Environment (HIVE), a cloud-based environment optimized for storage and analysis of extra-large data, presents an algorithmic solution: the HIVE-hexagon DNA sequence aligner. HIVE-hexagon implements novel approaches to exploit both characteristics of sequence space and CPU, RAM and Input/Output (I/O) architecture to quickly compute accurate alignments. Key components of HIVE-hexagon include non-redundification and sorting of sequences; floating diagonals of linearized dynamic programming matrices; and consideration of cross-similarity to minimize computations. Availability https://hive.biochemistry.gwu.edu/hive/ PMID:24918764

  15. Robust temporal alignment of multimodal cardiac sequences

    NASA Astrophysics Data System (ADS)

    Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel

    2015-03-01

    Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.

  16. Fast single-pass alignment and variant calling using sequencing data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...

  17. Automated DNA sequencing.

    PubMed

    Wallis, Yvonne; Morrell, Natalie

    2011-01-01

    Fluorescent cycle sequencing of PCR products is a multistage process and several methodologies are available to perform each stage. This chapter will describe the more commonly utilised dye-terminator cycle sequencing approach using BigDye® terminator chemistry (Applied Biosystems) ready for analysis on a 3730 DNA genetic analyzer. Even though DNA sequencing is one of the most common and robust techniques performed in molecular laboratories it may not always produce desirable results. The causes of the most common problems will also be discussed in this chapter. PMID:20938839

  18. Volume visualization of multiple alignment of large genomicDNA

    SciTech Connect

    Shah, Nameeta; Dillard, Scott E.; Weber, Gunther H.; Hamann, Bernd

    2005-07-25

    Genomes of hundreds of species have been sequenced to date, and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. As a result, tools using 1D representations are incapable of providing informatory overview for extremely large data sets. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We demonstrate our technique using multi-millions-basepair-long aligned DNA sequence data and compare it with traditional 1D line plots. The results show that our technique is superior in providing an overview of entire data sets. Our technique, coupled with 1D line plots, results in effective multi-resolution visualization of very large aligned sequence data sets.

  19. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    PubMed Central

    Lu, David V.; Brown, Randall H.; Arumugam, Manimozhiyan; Brent, Michael R.

    2009-01-01

    Motivation: The most accurate way to determine the intron–exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. Results: We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created ‘perfect’ simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Availability: Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/ Contact: davidlu@wustl.edu; brent@cse.wustl.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19414532

  20. DNA sequencing: chemical methods

    SciTech Connect

    Ambrose, B.J.B.; Pless, R.C.

    1987-01-01

    Limited base-specific or base-selective cleavage of a defined DNA fragment yields polynucleotide products, the length of which correlates with the positions of the particular base (or bases) in the original fragment. Sverdlov and co-workers recognized the possibility of using this principle for the determination of DNA sequences. In 1977 a fully elaborated method was introduced based on this principle, which allowed routine analysis of DNA sequences over distances greater than 100 nucleotide unite from a defined, radiolabeled terminus. Six procedures for partial cleavage were described. Simultaneous parallel resolution of an appropriate set of partial cleavage mixtures by polyacrylamide gel electrophoresis, followed by visualization of the radioactive bands by autoradiography, allows the deduction of nucleotide sequence.

  1. Indexing Similar DNA Sequences

    NASA Astrophysics Data System (ADS)

    Huang, Songbo; Lam, T. W.; Sung, W. K.; Tam, S. L.; Yiu, S. M.

    To study the genetic variations of a species, one basic operation is to search for occurrences of patterns in a large number of very similar genomic sequences. To build an indexing data structure on the concatenation of all sequences may require a lot of memory. In this paper, we propose a new scheme to index highly similar sequences by taking advantage of the similarity among the sequences. To store r sequences with k common segments, our index requires only O(n + NlogN) bits of memory, where n is the total length of the common segments and N is the total length of the distinct regions in all texts. The total length of all sequences is rn + N, and any scheme to store these sequences requires Ω(n + N) bits. Searching for a pattern P of length m takes O(m + m logN + m log(rk)psc(P) + occlogn), where psc(P) is the number of prefixes of P that appear as a suffix of some common segments and occ is the number of occurrences of P in all sequences. In practice, rk ≤ N, and psc(P) is usually a small constant. We have implemented our solution and evaluated our solution using real DNA sequences. The experiments show that the memory requirement of our solution is much less than that required by BWT built on the concatenation of all sequences. When compared to the other existing solution (RLCSA), we use less memory with faster searching time.

  2. Transposon facilitated DNA sequencing

    SciTech Connect

    Berg, D.E.; Berg, C.M.; Huang, H.V.

    1990-01-01

    The purpose of this research is to investigate and develop methods that exploit the power of bacterial transposable elements for large scale DNA sequencing: Our premise is that the use of transposons to put primer binding sites randomly in target DNAs should provide access to all portions of large DNA fragments, without the inefficiencies of methods involving random subcloning and attendant repetitive sequencing, or of sequential synthesis of many oligonucleotide primers that are used to match systematically along a DNA molecule. Two unrelated bacterial transposons, Tn5 and {gamma}{delta}, are being used because they have both proven useful for molecular analyses, and because they differ sufficiently in mechanism and specificity of transposition to merit parallel development.

  3. Regular language constrained sequence alignment revisited.

    PubMed

    Kucherov, Gregory; Pinhas, Tamar; Ziv-Ukelson, Michal

    2011-05-01

    Imposing constraints in the form of a finite automaton or a regular expression is an effective way to incorporate additional a priori knowledge into sequence alignment procedures. With this motivation, the Regular Expression Constrained Sequence Alignment Problem was introduced, which proposed an O(n²t⁴) time and O(n²t²) space algorithm for solving it, where n is the length of the input strings and t is the number of states in the input non-deterministic automaton. A faster O(n²t³) time algorithm for the same problem was subsequently proposed. In this article, we further speed up the algorithms for Regular Language Constrained Sequence Alignment by reducing their worst case time complexity bound to O(n²t³)/log t). This is done by establishing an optimal bound on the size of Straight-Line Programs solving the maxima computation subproblem of the basic dynamic programming algorithm. We also study another solution based on a Steiner Tree computation. While it does not improve the worst case, our simulations show that both approaches are efficient in practice, especially when the input automata are dense. PMID:21554020

  4. Multiple Sequence Alignment Based on Chaotic PSO

    NASA Astrophysics Data System (ADS)

    Lei, Xiu-Juan; Sun, Jing-Jing; Ma, Qian-Zhi

    This paper introduces a new improved algorithm called chaotic PSO (CPSO) based on the thought of chaos optimization to solve multiple sequence alignment. For one thing, the chaotic variables are generated between 0 and 1 when initializing the population so that the particles are distributed uniformly in the solution space. For another thing, the chaotic sequences are generated using the Logistic mapping function in order to make chaotic search and strengthen the diversity of the population. The simulation results of several benchmark data sets of BAliBase show that the improved algorithm is effective and has good performances for the data sets with different similarity.

  5. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV).

    PubMed

    Martin, Andrew C R

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and 'dotifying' repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/. PMID:25653836

  6. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV)

    PubMed Central

    Martin, Andrew C. R.

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and ’dotifying’ repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/. PMID:25653836

  7. PSAR: measuring multiple sequence alignment reliability by probabilistic sampling

    PubMed Central

    Kim, Jaebum; Ma, Jian

    2011-01-01

    Multiple sequence alignment, which is of fundamental importance for comparative genomics, is a difficult problem and error-prone. Therefore, it is essential to measure the reliability of the alignments and incorporate it into downstream analyses. We propose a new probabilistic sampling-based alignment reliability (PSAR) score. Instead of relying on heuristic assumptions, such as the correlation between alignment quality and guide tree uncertainty in progressive alignment methods, we directly generate suboptimal alignments from an input multiple sequence alignment by a probabilistic sampling method, and compute the agreement of the input alignment with the suboptimal alignments as the alignment reliability score. We construct the suboptimal alignments by an approximate method that is based on pairwise comparisons between each single sequence and the sub-alignment of the input alignment where the chosen sequence is left out. By using simulation-based benchmarks, we find that our approach is superior to existing ones, supporting that the suboptimal alignments are highly informative source for assessing alignment reliability. We apply the PSAR method to the alignments in the UCSC Genome Browser to measure the reliability of alignments in different types of regions, such as coding exons and conserved non-coding regions, and use it to guide cross-species conservation study. PMID:21576232

  8. Score distributions of gapped multiple sequence alignments down to the low-probability tail.

    PubMed

    Fieth, Pascal; Hartmann, Alexander K

    2016-08-01

    Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10^{-160}, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments. PMID:27627266

  9. PROMALS web server for accurate multiple protein sequence alignments.

    PubMed

    Pei, Jimin; Kim, Bong-Hyun; Tang, Ming; Grishin, Nick V

    2007-07-01

    Multiple sequence alignments are essential in homology inference, structure modeling, functional prediction and phylogenetic analysis. We developed a web server that constructs multiple protein sequence alignments using PROMALS, a progressive method that improves alignment quality by using additional homologs from PSI-BLAST searches and secondary structure predictions from PSIPRED. PROMALS shows higher alignment accuracy than other advanced methods, such as MUMMALS, ProbCons, MAFFT and SPEM. The PROMALS web server takes FASTA format protein sequences as input. The output includes a colored alignment augmented with information about sequence grouping, predicted secondary structures and positional conservation. The PROMALS web server is available at: http://prodata.swmed.edu/promals/ PMID:17452345

  10. BarraCUDA - a fast short read sequence aligner using graphics processing units

    PubMed Central

    2012-01-01

    Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497

  11. Genome-wide synteny through highly sensitive sequence alignment: Satsuma

    PubMed Central

    Grabherr, Manfred G.; Russell, Pamela; Meyer, Miriah; Mauceli, Evan; Alföldi, Jessica; Di Palma, Federica; Lindblad-Toh, Kerstin

    2010-01-01

    Motivation: Comparative genomics heavily relies on alignments of large and often complex DNA sequences. From an engineering perspective, the problem here is to provide maximum sensitivity (to find all there is to find), specificity (to only find real homology) and speed (to accommodate the billions of base pairs of vertebrate genomes). Results: Satsuma addresses all three issues through novel strategies: (i) cross-correlation, implemented via fast Fourier transform; (ii) a match scoring scheme that eliminates almost all false hits; and (iii) an asynchronous ‘battleship’-like search that allows for aligning two entire fish genomes (470 and 217 Mb) in 120 CPU hours using 15 processors on a single machine. Availability: Satsuma is part of the Spines software package, implemented in C++ on Linux. The latest version of Spines can be freely downloaded under the LGPL license from http://www.broadinstitute.org/science/programs/genome-biology/spines/ Contact: grabherr@broadinstitute.org PMID:20208069

  12. The Construction and Use of Log-Odds Substitution Scores for Multiple Sequence Alignment

    PubMed Central

    Altschul, Stephen F.; Wootton, John C.; Zaslavsky, Elena; Yu, Yi-Kuo

    2010-01-01

    Most pairwise and multiple sequence alignment programs seek alignments with optimal scores. Central to defining such scores is selecting a set of substitution scores for aligned amino acids or nucleotides. For local pairwise alignment, substitution scores are implicitly of log-odds form. We now extend the log-odds formalism to multiple alignments, using Bayesian methods to construct “BILD” (“Bayesian Integral Log-odds”) substitution scores from prior distributions describing columns of related letters. This approach has been used previously only to define scores for aligning individual sequences to sequence profiles, but it has much broader applicability. We describe how to calculate BILD scores efficiently, and illustrate their uses in Gibbs sampling optimization procedures, gapped alignment, and the construction of hidden Markov model profiles. BILD scores enable automated selection of optimal motif and domain model widths, and can inform the decision of whether to include a sequence in a multiple alignment, and the selection of insertion and deletion locations. Other applications include the classification of related sequences into subfamilies, and the definition of profile-profile alignment scores. Although a fully realized multiple alignment program must rely upon more than substitution scores, many existing multiple alignment programs can be modified to employ BILD scores. We illustrate how simple BILD score based strategies can enhance the recognition of DNA binding domains, including the Api-AP2 domain in Toxoplasma gondii and Plasmodium falciparum. PMID:20657661

  13. The Dynamics of DNA Sequencing.

    ERIC Educational Resources Information Center

    Morvillo, Nancy

    1997-01-01

    Describes a paper-and-pencil activity that helps students understand DNA sequencing and expands student understanding of DNA structure, replication, and gel electrophoresis. Appropriate for advanced biology students who are familiar with the Sanger method. (DDR)

  14. Cover song identification by sequence alignment algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Li; Zhong, Qian; Wang, Szu-Ying; Roychowdhury, Vwani

    2011-10-01

    Content-based music analysis has drawn much attention due to the rapidly growing digital music market. This paper describes a method that can be used to effectively identify cover songs. A cover song is a song that preserves only the crucial melody of its reference song but different in some other acoustic properties. Hence, the beat/chroma-synchronous chromagram, which is insensitive to the variation of the timber or rhythm of songs but sensitive to the melody, is chosen. The key transposition is achieved by cyclically shifting the chromatic domain of the chromagram. By using the Hidden Markov Model (HMM) to obtain the time sequences of songs, the system is made even more robust. Similar structure or length between the cover songs and its reference are not necessary by the Smith-Waterman Alignment Algorithm.

  15. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  16. On Quantum Algorithm for Multiple Alignment of Amino Acid Sequences

    NASA Astrophysics Data System (ADS)

    Iriyama, Satoshi; Ohya, Masanori

    2009-02-01

    The alignment of genome sequences or amino acid sequences is one of fundamental operations for the study of life. Usual computational complexity for the multiple alignment of N sequences with common length L by dynamic programming is O(LN). This alignment is considered as one of the NP problems, so that it is desirable to find a nice algorithm of the multiple alignment. Thus in this paper we propose the quantum algorithm for the multiple alignment based on the works12,1,2 in which the NP complete problem was shown to be the P problem by means of quantum algorithm and chaos information dynamics.

  17. Graphene nanodevices for DNA sequencing.

    PubMed

    Heerema, Stephanie J; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology. PMID:26839258

  18. Graphene nanodevices for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Heerema, Stephanie J.; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology.

  19. A measure of DNA sequence similarity by Fourier Transform with applications on hierarchical clustering.

    PubMed

    Yin, Changchuan; Chen, Ying; Yau, Stephen S-T

    2014-10-21

    Multiple sequence alignment (MSA) is a prominent method for classification of DNA sequences, yet it is hampered with inherent limitations in computational complexity. Alignment-free methods have been developed over past decade for more efficient comparison and classification of DNA sequences than MSA. However, most alignment-free methods may lose structural and functional information of DNA sequences because they are based on feature extractions. Therefore, they may not fully reflect the actual differences among DNA sequences. Alignment-free methods with information conservation are needed for more accurate comparison and classification of DNA sequences. We propose a new alignment-free similarity measure of DNA sequences using the Discrete Fourier Transform (DFT). In this method, we map DNA sequences into four binary indicator sequences and apply DFT to the indicator sequences to transform them into frequency domain. The Euclidean distance of full DFT power spectra of the DNA sequences is used as similarity distance metric. To compare the DFT power spectra of DNA sequences with different lengths, we propose an even scaling method to extend shorter DFT power spectra to equal the longest length of the sequences compared. After the DFT power spectra are evenly scaled, the DNA sequences are compared in the same DFT frequency space dimensionality. We assess the accuracy of the similarity metric in hierarchical clustering using simulated DNA and virus sequences. The results demonstrate that the DFT based method is an effective and accurate measure of DNA sequence similarity. PMID:24911780

  20. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, S.K.

    1998-03-24

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

  1. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, Stefan K.

    1998-01-01

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

  2. Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment

    PubMed Central

    Kam, Alfred; Kwak, Daniel; Leung, Clarence; Wu, Chu; Zarour, Eleyine; Sarmenta, Luis; Blanchette, Mathieu; Waldispühl, Jérôme

    2012-01-01

    Background Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. Methodology/Principal Findings We introduce Phylo, a human-based computing framework applying “crowd sourcing” techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. Conclusions/Significance We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of “human-brain peta-flops” of computation that are spent every day playing games. Phylo is

  3. A Rank-Based Sequence Aligner with Applications in Phylogenetic Analysis

    PubMed Central

    2014-01-01

    Recent tools for aligning short DNA reads have been designed to optimize the trade-off between correctness and speed. This paper introduces a method for assigning a set of short DNA reads to a reference genome, under Local Rank Distance (LRD). The rank-based aligner proposed in this work aims to improve correctness over speed. However, some indexing strategies to speed up the aligner are also investigated. The LRD aligner is improved in terms of speed by storing -mer positions in a hash table for each read. Another improvement, that produces an approximate LRD aligner, is to consider only the positions in the reference that are likely to represent a good positional match of the read. The proposed aligner is evaluated and compared to other state of the art alignment tools in several experiments. A set of experiments are conducted to determine the precision and the recall of the proposed aligner, in the presence of contaminated reads. In another set of experiments, the proposed aligner is used to find the order, the family, or the species of a new (or unknown) organism, given only a set of short Next-Generation Sequencing DNA reads. The empirical results show that the aligner proposed in this work is highly accurate from a biological point of view. Compared to the other evaluated tools, the LRD aligner has the important advantage of being very accurate even for a very low base coverage. Thus, the LRD aligner can be considered as a good alternative to standard alignment tools, especially when the accuracy of the aligner is of high importance. Source code and UNIX binaries of the aligner are freely available for future development and use at http://lrd.herokuapp.com/aligners. The software is implemented in C++ and Java, being supported on UNIX and MS Windows. PMID:25133391

  4. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  5. Deriving non-homogeneous DNA Markov chain models by cluster analysis algorithm minimizing multiple alignment entropy.

    PubMed

    Borodovsky, M; Peresetsky, A

    1994-09-01

    Non-homogeneous Markov chain models can represent biologically important regions of DNA sequences. The statistical pattern that is described by these models is usually weak and was found primarily because of strong biological indications. The general method for extracting similar patterns is presented in the current paper. The algorithm incorporates cluster analysis, multiple alignment and entropy minimization. The method was first tested using the set of DNA sequences produced by Markov chain generators. It was shown that artificial gene sequences, which initially have been randomly set up along the multiple alignment panels, are aligned according to the hidden triplet phase. Then the method was applied to real protein-coding sequences and the resulting alignment clearly indicated the triplet phase and produced the parameters of the optimal 3-periodic non-homogeneous Markov chain model. These Markov models were already employed in the GeneMark gene prediction algorithm, which is used in genome sequencing projects. The algorithm can also handle the case in which the sequences to be aligned reveal different statistical patterns, such as Escherichia coli protein-coding sequences belonging to Class II and Class III. The algorithm accepts a random mix of sequences from different classes, and is able to separate them into two groups (clusters), align each cluster separately, and define a non-homogeneous Markov chain model for each sequence cluster. PMID:7952897

  6. Alignment-free comparison of genome sequences by a new numerical characterization.

    PubMed

    Huang, Guohua; Zhou, Houqing; Li, Yongfan; Xu, Lixin

    2011-07-21

    In order to compare different genome sequences, an alignment-free method has proposed. First, we presented a new graphical representation of DNA sequences without degeneracy, which is conducive to intuitive comparison of sequences. Then, a new numerical characterization based on the representation was introduced to quantitatively depict the intrinsic nature of genome sequences, and considered as a 10-dimensional vector in the mathematical space. Alignment-free comparison of sequences was performed by computing the distances between vectors of the corresponding numerical characterizations, which define the evolutionary relationship. Two data sets of DNA sequences were constructed to assess the performance on sequence comparison. The results illustrate well validity of the method. The new numerical characterization provides a powerful tool for genome comparison. PMID:21536050

  7. Probabilistic sequence alignment of stratigraphic records

    NASA Astrophysics Data System (ADS)

    Lin, Luan; Khider, Deborah; Lisiecki, Lorraine E.; Lawrence, Charles E.

    2014-10-01

    The assessment of age uncertainty in stratigraphically aligned records is a pressing need in paleoceanographic research. The alignment of ocean sediment cores is used to develop mutually consistent age models for climate proxies and is often based on the δ18O of calcite from benthic foraminifera, which records a global ice volume and deep water temperature signal. To date, δ18O alignment has been performed by manual, qualitative comparison or by deterministic algorithms. Here we present a hidden Markov model (HMM) probabilistic algorithm to find 95% confidence bands for δ18O alignment. This model considers the probability of every possible alignment based on its fit to the δ18O data and transition probabilities for sedimentation rate changes obtained from radiocarbon-based estimates for 37 cores. Uncertainty is assessed using a stochastic back trace recursion to sample alignments in exact proportion to their probability. We applied the algorithm to align 35 late Pleistocene records to a global benthic δ18O stack and found that the mean width of 95% confidence intervals varies between 3 and 23 kyr depending on the resolution and noisiness of the record's δ18O signal. Confidence bands within individual cores also vary greatly, ranging from ~0 to >40 kyr. These alignment uncertainty estimates will allow researchers to examine the robustness of their conclusions, including the statistical evaluation of lead-lag relationships between events observed in different cores.

  8. Quantifying the Displacement of Mismatches in Multiple Sequence Alignment Benchmarks

    PubMed Central

    Bawono, Punto; van der Velde, Arjan; Abeln, Sanne; Heringa, Jaap

    2015-01-01

    Multiple Sequence Alignment (MSA) methods are typically benchmarked on sets of reference alignments. The quality of the alignment can then be represented by the sum-of-pairs (SP) or column (CS) scores, which measure the agreement between a reference and corresponding query alignment. Both the SP and CS scores treat mismatches between a query and reference alignment as equally bad, and do not take the separation into account between two amino acids in the query alignment, that should have been matched according to the reference alignment. This is significant since the magnitude of alignment shifts is often of relevance in biological analyses, including homology modeling and MSA refinement/manual alignment editing. In this study we develop a new alignment benchmark scoring scheme, SPdist, that takes the degree of discordance of mismatches into account by measuring the sequence distance between mismatched residue pairs in the query alignment. Using this new score along with the standard SP score, we investigate the discriminatory behavior of the new score by assessing how well six different MSA methods perform with respect to BAliBASE reference alignments. The SP score and the SPdist score yield very similar outcomes when the reference and query alignments are close. However, for more divergent reference alignments the SPdist score is able to distinguish between methods that keep alignments approximately close to the reference and those exhibiting larger shifts. We observed that by using SPdist together with SP scoring we were able to better delineate the alignment quality difference between alternative MSA methods. With a case study we exemplify why it is important, from a biological perspective, to consider the separation of mismatches. The SPdist scoring scheme has been implemented in the VerAlign web server (http://www.ibi.vu.nl/programs/veralignwww/). The code for calculating SPdist score is also available upon request. PMID:25993129

  9. A simple method to control over-alignment in the MAFFT multiple sequence alignment program

    PubMed Central

    Katoh, Kazutaka; Standley, Daron M.

    2016-01-01

    Motivation: We present a new feature of the MAFFT multiple alignment program for suppressing over-alignment (aligning unrelated segments). Conventional MAFFT is highly sensitive in aligning conserved regions in remote homologs, but the risk of over-alignment is recently becoming greater, as low-quality or noisy sequences are increasing in protein sequence databases, due, for example, to sequencing errors and difficulty in gene prediction. Results: The proposed method utilizes a variable scoring matrix for different pairs of sequences (or groups) in a single multiple sequence alignment, based on the global similarity of each pair. This method significantly increases the correctly gapped sites in real examples and in simulations under various conditions. Regarding sensitivity, the effect of the proposed method is slightly negative in real protein-based benchmarks, and mostly neutral in simulation-based benchmarks. This approach is based on natural biological reasoning and should be compatible with many methods based on dynamic programming for multiple sequence alignment. Availability and implementation: The new feature is available in MAFFT versions 7.263 and higher. http://mafft.cbrc.jp/alignment/software/ Contact: katoh@ifrec.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153688

  10. An information theoretic approach to macromolecular modeling: I. Sequence alignments.

    PubMed

    Aynechi, Tiba; Kuntz, Irwin D

    2005-11-01

    We are interested in applying the principles of information theory to structural biology calculations. In this article, we explore the information content of an important computational procedure: sequence alignment. Using a reference state developed from exhaustive sequences, we measure alignment statistics and evaluate gap penalties based on first-principle considerations and gap distributions. We show that there are different gap penalties for different alphabet sizes and that the gap penalties can depend on the length of the sequences being aligned. In a companion article, we examine the information content of molecular force fields. PMID:16254389

  11. Improving multiple sequence alignment by using better guide trees

    PubMed Central

    2015-01-01

    Progressive sequence alignment is one of the most commonly used method for multiple sequence alignment. Roughly speaking, the method first builds a guide tree, and then aligns the sequences progressively according to the topology of the tree. It is believed that guide trees are very important to progressive alignment; a better guide tree will give an alignment with higher accuracy. Recently, we have proposed an adaptive method for constructing guide trees. This paper studies the quality of the guide trees constructed by such method. Our study showed that our adaptive method can be used to improve the accuracy of many different progressive MSA tools. In fact, we give evidences showing that the guide trees constructed by the adaptive method are among the best. PMID:25859903

  12. Look-Align: an interactive web-based multiple sequence alignment viewer with polymorphism analysis support

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed Look-Align, an interactive web-based viewer to display pre-computed multiple sequence alignments. Although initially developed to support the visualization needs of the maize diversity website Panzea (http://www.panzea.org), the viewer is a generic stand-alone tool that can be easi...

  13. Microchips for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Mastrangelo, Carlos H.; Palaniappan, S.; Man, Piu Francis; Burns, Mark A.; Burke, David T.

    1999-08-01

    Genetic information is vital for understanding features and response of an organism. In humans, genetic errors are linked to the development of major diseases such as cancer and diabetes. In order to maximally exploit this information it is necessary to develop miniature sequencing assays that are rapid and inexpensive. In this paper we show how this could be attained with microfluidic chips that contain integrated assays. To date simple silicon/glass chips aimed for sequencing purpose have been realized; but these chips are not yet practical. Some of the solutions that are used to bring these devices closer to commercial applications are discussed.

  14. Refinement by shifting secondary structure elements improves sequence alignments.

    PubMed

    Tong, Jing; Pei, Jimin; Otwinowski, Zbyszek; Grishin, Nick V

    2015-03-01

    Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template-defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile-based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa. PMID:25546158

  15. Refinement by shifting secondary structure elements improves sequence alignments

    PubMed Central

    Tong, Jing; Pei, Jimin; Otwinowski, Zbyszek; Grishin, Nick V.

    2015-01-01

    Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template-defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile-based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa. PMID:25546158

  16. Statistical properties of DNA sequences

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.

    1995-01-01

    We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.

  17. Statistical properties of DNA sequences

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.

    1995-02-01

    We review evidence supporting the idea that the DNA sequence in genese containing non-coding regions is correlated, and that the correlation is remarkably long range - indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the “non-stationarity” feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33 301 coding and 29 453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.

  18. DNA Sequences at a Glance

    PubMed Central

    Pinho, Armando J.; Garcia, Sara P.; Pratas, Diogo; Ferreira, Paulo J. S. G.

    2013-01-01

    Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a flexible exploratory and analytical tool. In this paper we present a new concept, the “information profile”, which provides a quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The computation of the information profiles is computationally tractable: we show that it can be done in time proportional to the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use the genome of the fission yeast Schizosaccharomyces pombe strain 972 h− and five human chromosomes 22 for illustration. We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of sequences from individuals from the same species, and the comparative analysis of sequences from different organisms. The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/dna-at-glance. PMID:24278218

  19. DNA sequences at a glance.

    PubMed

    Pinho, Armando J; Garcia, Sara P; Pratas, Diogo; Ferreira, Paulo J S G

    2013-01-01

    Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a flexible exploratory and analytical tool. In this paper we present a new concept, the "information profile", which provides a quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The computation of the information profiles is computationally tractable: we show that it can be done in time proportional to the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use the genome of the fission yeast Schizosaccharomyces pombe strain 972 h(-) and five human chromosomes 22 for illustration. We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of sequences from individuals from the same species, and the comparative analysis of sequences from different organisms. The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/dna-at-glance. PMID:24278218

  20. Nano-Scale Alignment of Proteins on a Flexible DNA Backbone

    PubMed Central

    Nojima, Tatsuya; Konno, Hiroki; Kodera, Noriyuki; Seio, Kohji; Taguchi, Hideki; Yoshida, Masasuke

    2012-01-01

    Nano-scale alignment of several proteins with freedom of motion is equivalent to an enormous increase in effective local concentration of proteins and will enable otherwise impossible weak and/or cooperative associations between them or with their ligands. For this purpose, a DNA backbone made of six oligodeoxynucleotide (ODN) chains is designed in which five double-stranded segments are connected by four single-stranded flexible linkers. A desired protein with an introduced cysteine is connected covalently to the 5′-end of azido-ODN by catalyst-free click chemistry. Then, six protein-ODN conjugates are assembled with their complementary nucleotide sequences into a single multi-protein-DNA complex, and six proteins are aligned along the DNA backbone. Flexible alignment of proteins is directly observed by high-speed AFM imaging, and association of proteins with weak interaction is demonstrated by fluorescence resonance energy transfer between aligned proteins. PMID:23300700

  1. Structural Complexity of DNA Sequence

    PubMed Central

    Liou, Cheng-Yuan; Cheng, Wei-Chen; Tsai, Huai-Ying

    2013-01-01

    In modern bioinformatics, finding an efficient way to allocate sequence fragments with biological functions is an important issue. This paper presents a structural approach based on context-free grammars extracted from original DNA or protein sequences. This approach is radically different from all those statistical methods. Furthermore, this approach is compared with a topological entropy-based method for consistency and difference of the complexity results. PMID:23662161

  2. DNA Sequencing by Capillary Electrophoresis

    PubMed Central

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  3. Scoring consensus of multiple ECG annotators by optimal sequence alignment.

    PubMed

    Haghpanahi, Masoumeh; Sameni, Reza; Borkholder, David A

    2014-01-01

    Development of ECG delineation algorithms has been an area of intense research in the field of computational cardiology for the past few decades. However, devising evaluation techniques for scoring and/or merging the results of such algorithms, both in the presence or absence of gold standards, still remains as a challenge. This is mainly due to existence of missed or erroneous determination of fiducial points in the results of different annotation algorithms. The discrepancy between different annotators increases when the reference signal includes arrhythmias or significant noise and its morphology deviates from a clean ECG signal. In this work, we propose a new approach to evaluate and compare the results of different annotators under such conditions. Specifically, we use sequence alignment techniques similar to those used in bioinformatics for the alignment of gene sequences. Our approach is based on dynamic programming where adequate mismatch penalties, depending on the type of the fiducial point and the underlying signal, are defined to optimally align the annotation sequences. We also discuss how to extend the algorithm for more than two sequences by using suitable data structures to align multiple annotation sequences with each other. Once the sequences are aligned, different heuristics are devised to evaluate the performance against a gold standard annotation, or to merge the results of multiple annotations when no gold standard exists. PMID:25570339

  4. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1996-05-07

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection. 18 figs.

  5. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1996-01-01

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection.

  6. Mercury BLASTP: Accelerating Protein Sequence Alignment.

    PubMed

    Jacob, Arpith; Lancaster, Joseph; Buhler, Jeremy; Harris, Brandon; Chamberlain, Roger D

    2008-06-01

    Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this paper, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results. PMID:19492068

  7. Mercury BLASTP: Accelerating Protein Sequence Alignment

    PubMed Central

    Jacob, Arpith; Lancaster, Joseph; Buhler, Jeremy; Harris, Brandon; Chamberlain, Roger D.

    2008-01-01

    Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this paper, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results. PMID:19492068

  8. Engineered DNA sequence syntax inspector.

    PubMed

    Hsiau, Timothy Hwei-Chung; Anderson, J Christopher

    2014-02-21

    DNAs encoding polypeptides often contain design errors that cause experiments to prematurely fail. One class of design errors is incorrect or missing elements in the DNA, here termed syntax errors. We have identified three major causes of syntax errors: point mutations from sequencing or manual data entry, gene structure misannotation, and unintended open reading frames (ORFs). The Engineered DNA Sequence Syntax Inspector (EDSSI) is an online bioinformatics pipeline that checks for syntax errors through three steps. First, ORF prediction in input DNA sequences is done by GeneMark; next, homologous sequences are retrieved by BLAST, and finally, syntax errors in the protein sequence are predicted by using the SIFT algorithm. We show that the EDSSI is able to identify previously published examples of syntactical errors and also show that our indel addition to the SIFT program is 97% accurate on a test set of Escherichia coli proteins. The EDSSI is available at http://andersonlab.qb3.berkeley.edu/Software/EDSSI/ . PMID:24364864

  9. Evaluating the Accuracy and Efficiency of Multiple Sequence Alignment Methods

    PubMed Central

    Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Muhammad; Awan, Ali Raza; Aslam, Naeem; Hussain, Tanveer; Naveed, Nasir; Qadri, Salman; Waheed, Usman; Shoaib, Muhammad

    2014-01-01

    A comparison of 10 most popular Multiple Sequence Alignment (MSA) tools, namely, MUSCLE, MAFFT(L-INS-i), MAFFT (FFT-NS-2), T-Coffee, ProbCons, SATe, Clustal Omega, Kalign, Multalin, and Dialign-TX is presented. We also focused on the significance of some implementations embedded in algorithm of each tool. Based on 10 simulated trees of different number of taxa generated by R, 400 known alignments and sequence files were constructed using indel-Seq-Gen. A total of 4000 test alignments were generated to study the effect of sequence length, indel size, deletion rate, and insertion rate. Results showed that alignment quality was highly dependent on the number of deletions and insertions in the sequences and that the sequence length and indel size had a weaker effect. Overall, ProbCons was consistently on the top of list of the evaluated MSA tools. SATe, being little less accurate, was 529.10% faster than ProbCons and 236.72% faster than MAFFT(L-INS-i). Among other tools, Kalign and MUSCLE achieved the highest sum of pairs. We also considered BALiBASE benchmark datasets and the results relative to BAliBASE- and indel-Seq-Gen-generated alignments were consistent in the most cases. PMID:25574120

  10. The sequence of sequencers: The history of sequencing DNA

    PubMed Central

    Heather, James M.; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way. PMID:26554401

  11. Recursive dynamic programming for adaptive sequence and structure alignment

    SciTech Connect

    Thiele, R.; Zimmer, R.; Lengauer, T.

    1995-12-31

    We propose a new alignment procedure that is capable of aligning protein sequences and structures in a unified manner. Recursive dynamic programming (RDP) is a hierarchical method which, on each level of the hierarchy, identifies locally optimal solutions and assembles them into partial alignments of sequences and/or structures. In contrast to classical dynamic programming, RDP can also handle alignment problems that use objective functions not obeying the principle of prefix optimality, e.g. scoring schemes derived from energy potentials of mean force. For such alignment problems, RDP aims at computing solutions that are near-optimal with respect to the involved cost function and biologically meaningful at the same time. Towards this goal, RDP maintains a dynamic balance between different factors governing alignment fitness such as evolutionary relationships and structural preferences. As in the RDP method gaps are not scored explicitly, the problematic assignment of gap cost parameters is circumvented. In order to evaluate the RDP approach we analyse whether known and accepted multiple alignments based on structural information can be reproduced with the RDP method.

  12. Dynamical model for DNA sequences

    NASA Astrophysics Data System (ADS)

    Allegrini, P.; Barbi, M.; Grigolini, P.; West, B. J.

    1995-11-01

    We address the problem of DNA sequences, developing a ``dynamical'' method based on the assumption that the statistical properties of DNA paths are determined by the joint action of two processes, one deterministic with long-range correlations, and the other random and δ-function correlated. The generator of the deterministic evolution is a nonlinear map, belonging to a class of maps recently tailored to mimic the processes of weak chaos that are responsible for the birth of anomalous diffusion. It is assumed that the deterministic process corresponds to unknown biological rules that determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional environment on the biological process under study. We prove that the resulting diffusion process, if the effect of the random process is neglected, is an α-stable Lévy process with 1<α<2. We also show that, if the diffusion process is determined by the joint action of the deterministic and the random process, the correlation effects of the ``deterministic dynamics'' are cancelled on the short-range scale, but show up in the long-range one. We denote our prescription to generate statistical sequences as the copying mistake map (CMM). We carry out our analysis of several DNA sequences and their CMM realizations with a variety of techniques, and we especially focus on a method of regression to equilibrium, which we call the Onsager analysis. With these techniques we establish the statistical equivalence of the real DNA sequences with their CMM realizations. We show that long-range correlations are present in exons as well as in introns, but are difficult to detect, since the exon ``dynamics'' is shown to be determined by the entanglement of three distinct and independent CMM's.

  13. ANTICALIgN: visualizing, editing and analyzing combined nucleotide and amino acid sequence alignments for combinatorial protein engineering.

    PubMed

    Jarasch, Alexander; Kopp, Melanie; Eggenstein, Evelyn; Richter, Antonia; Gebauer, Michaela; Skerra, Arne

    2016-07-01

    ANTIC ALIGN: is an interactive software developed to simultaneously visualize, analyze and modify alignments of DNA and/or protein sequences that arise during combinatorial protein engineering, design and selection. ANTIC ALIGN: combines powerful functions known from currently available sequence analysis tools with unique features for protein engineering, in particular the possibility to display and manipulate nucleotide sequences and their translated amino acid sequences at the same time. ANTIC ALIGN: offers both template-based multiple sequence alignment (MSA), using the unmutated protein as reference, and conventional global alignment, to compare sequences that share an evolutionary relationship. The application of similarity-based clustering algorithms facilitates the identification of duplicates or of conserved sequence features among a set of selected clones. Imported nucleotide sequences from DNA sequence analysis are automatically translated into the corresponding amino acid sequences and displayed, offering numerous options for selecting reading frames, highlighting of sequence features and graphical layout of the MSA. The MSA complexity can be reduced by hiding the conserved nucleotide and/or amino acid residues, thus putting emphasis on the relevant mutated positions. ANTIC ALIGN: is also able to handle suppressed stop codons or even to incorporate non-natural amino acids into a coding sequence. We demonstrate crucial functions of ANTIC ALIGN: in an example of Anticalins selected from a lipocalin random library against the fibronectin extradomain B (ED-B), an established marker of tumor vasculature. Apart from engineered protein scaffolds, ANTIC ALIGN: provides a powerful tool in the area of antibody engineering and for directed enzyme evolution. PMID:27261456

  14. Image-based temporal alignment of echocardiographic sequences

    NASA Astrophysics Data System (ADS)

    Danudibroto, Adriyana; Bersvendsen, Jørn; Mirea, Oana; Gerard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    Temporal alignment of echocardiographic sequences enables fair comparisons of multiple cardiac sequences by showing corresponding frames at given time points in the cardiac cycle. It is also essential for spatial registration of echo volumes where several acquisitions are combined for enhancement of image quality or forming larger field of view. In this study, three different image-based temporal alignment methods were investigated. First, a method based on dynamic time warping (DTW). Second, a spline-based method that optimized the similarity between temporal characteristic curves of the cardiac cycle using 1D cubic B-spline interpolation. Third, a method based on the spline-based method with piecewise modification. These methods were tested on in-vivo data sets of 19 echo sequences. For each sequence, the mitral valve opening (MVO) time was manually annotated. The results showed that the average MVO timing error for all methods are well under the time resolution of the sequences.

  15. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  16. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  17. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.

    PubMed

    Hong, Changjin; Tewfik, Ahmed H

    2009-01-01

    Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm. PMID:19875856

  18. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  19. Genome-based phylogeny of dsDNA viruses by a novel alignment-free method.

    PubMed

    Gao, Yang; Luo, Liaofu

    2012-01-15

    Sequence alignment is not directly applicable to whole genome phylogeny since several events such as rearrangements make full length alignments impossible. Here, a novel alignment-free method derived from the standpoint of information theory is proposed and used to construct the whole-genome phylogeny for a population of viruses from 13 viral families comprising 218 dsDNA viruses. The method is based on information correlation (IC) and partial information correlation (PIC). We observe that (i) the IC-PIC tree segregates the population into clades, the membership of each is remarkably consistent with biologist's systematics only with little exceptions; (ii) the IC-PIC tree reveals potential evolutionary relationships among some viral families; and (iii) the IC-PIC tree predicts the taxonomic positions of certain "unclassified" viruses. Our approach provides a new way for recovering the phylogeny of viruses, and has practical applications in developing alignment-free methods for sequence classification. PMID:22100880

  20. A novel approach to multiple sequence alignment using hadoop data grids.

    PubMed

    Sudha Sadasivam, G; Baktavatchalam, G

    2010-01-01

    Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences. PMID:21224205

  1. Alignment of high-throughput sequencing data inside in-memory databases.

    PubMed

    Firnkorn, Daniel; Knaup-Gregori, Petra; Lorenzo Bermejo, Justo; Ganzinger, Matthias

    2014-01-01

    In times of high-throughput DNA sequencing techniques, performance-capable analysis of DNA sequences is of high importance. Computer supported DNA analysis is still an intensive time-consuming task. In this paper we explore the potential of a new In-Memory database technology by using SAP's High Performance Analytic Appliance (HANA). We focus on read alignment as one of the first steps in DNA sequence analysis. In particular, we examined the widely used Burrows-Wheeler Aligner (BWA) and implemented stored procedures in both, HANA and the free database system MySQL, to compare execution time and memory management. To ensure that the results are comparable, MySQL has been running in memory as well, utilizing its integrated memory engine for database table creation. We implemented stored procedures, containing exact and inexact searching of DNA reads within the reference genome GRCh37. Due to technical restrictions in SAP HANA concerning recursion, the inexact matching problem could not be implemented on this platform. Hence, performance analysis between HANA and MySQL was made by comparing the execution time of the exact search procedures. Here, HANA was approximately 27 times faster than MySQL which means, that there is a high potential within the new In-Memory concepts, leading to further developments of DNA analysis procedures in the future. PMID:25160230

  2. Nanopore DNA sequencing with MspA.

    PubMed

    Derrington, Ian M; Butler, Tom Z; Collins, Marcus D; Manrao, Elizabeth; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H

    2010-09-14

    Nanopore sequencing has the potential to become a direct, fast, and inexpensive DNA sequencing technology. The simplest form of nanopore DNA sequencing utilizes the hypothesis that individual nucleotides of single-stranded DNA passing through a nanopore will uniquely modulate an ionic current flowing through the pore, allowing the record of the current to yield the DNA sequence. We demonstrate that the ionic current through the engineered Mycobacterium smegmatis porin A, MspA, has the ability to distinguish all four DNA nucleotides and resolve single-nucleotides in single-stranded DNA when double-stranded DNA temporarily holds the nucleotides in the pore constriction. Passing DNA with a series of double-stranded sections through MspA provides proof of principle of a simple DNA sequencing method using a nanopore. These findings highlight the importance of MspA in the future of nanopore sequencing. PMID:20798343

  3. Nanopore DNA sequencing with MspA

    PubMed Central

    Derrington, Ian M.; Butler, Tom Z.; Collins, Marcus D.; Manrao, Elizabeth; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H.

    2010-01-01

    Nanopore sequencing has the potential to become a direct, fast, and inexpensive DNA sequencing technology. The simplest form of nanopore DNA sequencing utilizes the hypothesis that individual nucleotides of single-stranded DNA passing through a nanopore will uniquely modulate an ionic current flowing through the pore, allowing the record of the current to yield the DNA sequence. We demonstrate that the ionic current through the engineered Mycobacterium smegmatis porin A, MspA, has the ability to distinguish all four DNA nucleotides and resolve single-nucleotides in single-stranded DNA when double-stranded DNA temporarily holds the nucleotides in the pore constriction. Passing DNA with a series of double-stranded sections through MspA provides proof of principle of a simple DNA sequencing method using a nanopore. These findings highlight the importance of MspA in the future of nanopore sequencing. PMID:20798343

  4. SRP-RNA sequence alignment and secondary structure.

    PubMed Central

    Larsen, N; Zwieb, C

    1991-01-01

    The secondary structures of the RNAs from the signal recognition particle, termed SRP-RNA, were derived buy comparative analyses of an alignment of 39 sequences. The models are minimal in that only base pairs are included for which there is comparative evidence. The structures represent refinements of earlier versions and include a new short helix. PMID:1707519

  5. IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.

    PubMed

    Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam

    2015-01-01

    IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix. PMID:25861209

  6. IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments

    PubMed Central

    Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam

    2015-01-01

    IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix. PMID:25861209

  7. An optimization approach and its application to compare DNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Liwei; Li, Chao; Bai, Fenglan; Zhao, Qi; Wang, Ying

    2015-02-01

    Studying the evolutionary relationship between biological sequences has become one of the main tasks in bioinformatics research by means of comparing and analyzing the gene sequence. Many valid methods have been applied to the DNA sequence alignment. In this paper, we propose a novel comparing method based on the Lempel-Ziv (LZ) complexity to compare biological sequences. Moreover, we introduce a new distance measure and make use of the corresponding similarity matrix to construct phylogenic tree without multiple sequence alignment. Further, we construct phylogenic tree for 24 species of Eutherian mammals and 48 countries of Hepatitis E virus (HEV) by an optimization approach. The results indicate that this new method improves the efficiency of sequence comparison and successfully construct phylogenies.

  8. Towards modeling DNA sequences as automata

    NASA Astrophysics Data System (ADS)

    Burks, Christian; Farmer, Doyne

    1984-01-01

    We seek to describe a starting point for modeling the evolution and role of DNA sequences within the framework of cellular automata by discussing the current understanding of genetic information storage in DNA sequences. This includes alternately viewing the role of DNA in living organisms as a simple scheme and as a complex scheme; a brief review of strategies for identifying and classifying patterns in DNA sequences; and finally, notes towards establishing DNA-like automata models, including a discussion of the extent of experimentally determined DNA sequence data present in the database at Los Alamos.

  9. Fluorescence-detected DNA sequencing

    SciTech Connect

    Haugland, R.P.

    1990-01-01

    Our research effort funded by this grant primarily focused on development of suitable fluorescent dyes for DNA sequencing studies. Prior to our efforts, the dyes being sued in commercial DNA sequencers were various versions of fluorescein dyes for the shorter wavelengths and of rhodamine dyes for the longer wavelengths. Our initial goal was to synthesize a set of four dyes that could all be excited by the 488 and 514 nm line of the argon laser lines and that have emission spectra that minimize spectral overlap. The specific result sought was higher fluorescent intensity, particularly of the longest wavelength dyes than was available using existing dyes. Another important property of the desired set of dyes was uniform ionic charge in order to have minimum interference on the electrophoretic mobility during the sequencing. During the period of this grant we prepared and characterized four types of dyes: fluorescent bifluorophores, derivatives of rhodamine dyes, derivatives of rhodol dyes and derivatives of boron dipyrromethene difluoride (BODIPY{trademark}) dyes.

  10. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes.

    PubMed

    Jeon, Yoon-Seong; Lee, Kihyun; Park, Sang-Cheol; Kim, Bong-Soo; Cho, Yong-Joon; Ha, Sung-Min; Chun, Jongsik

    2014-02-01

    EzEditor is a Java-based molecular sequence editor allowing manipulation of both DNA and protein sequence alignments for phylogenetic analysis. It has multiple features optimized to connect initial computer-generated multiple alignment and subsequent phylogenetic analysis by providing manual editing with reference to biological information specific to the genes under consideration. It provides various functionalities for editing rRNA alignments using secondary structure information. In addition, it supports simultaneous editing of both DNA sequences and their translated protein sequences for protein-coding genes. EzEditor is, to our knowledge, the first sequence editing software designed for both rRNA- and protein-coding genes with the visualization of biologically relevant information and should be useful in molecular phylogenetic studies. EzEditor is based on Java, can be run on all major computer operating systems and is freely available from http://sw.ezbiocloud.net/ezeditor/. PMID:24425826

  11. Particle sizer and DNA sequencer

    DOEpatents

    Olivares, Jose A.; Stark, Peter C.

    2005-09-13

    An electrophoretic device separates and detects particles such as DNA fragments, proteins, and the like. The device has a capillary which is coated with a coating with a low refractive index such as Teflon.RTM. AF. A sample of particles is fluorescently labeled and injected into the capillary. The capillary is filled with an electrolyte buffer solution. An electrical field is applied across the capillary causing the particles to migrate from a first end of the capillary to a second end of the capillary. A detector light beam is then scanned along the length of the capillary to detect the location of the separated particles. The device is amenable to a high throughput system by providing additional capillaries. The device can also be used to determine the actual size of the particles and for DNA sequencing.

  12. Distributed sequence alignment applications for the public computing architecture.

    PubMed

    Pellicer, S; Chen, G; Chan, K C C; Pan, Y

    2008-03-01

    The public computer architecture shows promise as a platform for solving fundamental problems in bioinformatics such as global gene sequence alignment and data mining with tools such as the basic local alignment search tool (BLAST). Our implementation of these two problems on the Berkeley open infrastructure for network computing (BOINC) platform demonstrates a runtime reduction factor of 1.15 for sequence alignment and 16.76 for BLAST. While the runtime reduction factor of the global gene sequence alignment application is modest, this value is based on a theoretical sequential runtime extrapolated from the calculation of a smaller problem. Because this runtime is extrapolated from running the calculation in memory, the theoretical sequential runtime would require 37.3 GB of memory on a single system. With this in mind, the BOINC implementation not only offers the reduced runtime, but also the aggregation of the available memory of all participant nodes. If an actual sequential run of the problem were compared, a more drastic reduction in the runtime would be seen due to an additional secondary storage I/O overhead for a practical system. Despite the limitations of the public computer architecture, most notably in communication overhead, it represents a practical platform for grid- and cluster-scale bioinformatics computations today and shows great potential for future implementations. PMID:18334454

  13. Genetic mapping and DNA sequencing

    SciTech Connect

    Speed, T.; Waterman, M.S.

    1996-12-31

    The Human Genome Initiative has as its primary objective the characterization of the human genome. High-resolution linkage maps of genetic markers will play an important role in completing the human genome project. This is one of two volumes based on the proceedings of the 1994 IMA Summer Program on Molecular Biology and comprises Weeks 1 and 2 of the four-week program. This volume focuses on genetic mapping and DNA sequencing. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Rapid automatic detection and alignment of repeats in protein sequences.

    PubMed

    Heger, A; Holm, L

    2000-11-01

    Many large proteins have evolved by internal duplication and many internal sequence repeats correspond to functional and structural units. We have developed an automatic algorithm, RADAR, for segmenting a query sequence into repeats. The segmentation procedure has three steps: (i) repeat length is determined by the spacing between suboptimal self-alignment traces; (ii) repeat borders are optimized to yield a maximal integer number of repeats, and (iii) distant repeats are validated by iterative profile alignment. The method identifies short composition biased as well as gapped approximate repeats and complex repeat architectures involving many different types of repeats in the query sequence. No manual intervention and no prior assumptions on the number and length of repeats are required. Comparison to the Pfam-A database indicates good coverage, accurate alignments, and reasonable repeat borders. Screening the Swissprot database revealed 3,000 repeats not annotated in existing domain databases. A number of these repeats had been described in the literature but most were novel. This illustrates how in times when curated databases grapple with ever increasing backlogs, automatic (re)analysis of sequences provides an efficient way to capture this important information. PMID:10966575

  15. Sequence Alignment Tools: One Parallel Pattern to Rule Them All?

    PubMed Central

    2014-01-01

    In this paper, we advocate high-level programming methodology for next generation sequencers (NGS) alignment tools for both productivity and absolute performance. We analyse the problem of parallel alignment and review the parallelisation strategies of the most popular alignment tools, which can all be abstracted to a single parallel paradigm. We compare these tools to their porting onto the FastFlow pattern-based programming framework, which provides programmers with high-level parallel patterns. By using a high-level approach, programmers are liberated from all complex aspects of parallel programming, such as synchronisation protocols, and task scheduling, gaining more possibility for seamless performance tuning. In this work, we show some use cases in which, by using a high-level approach for parallelising NGS tools, it is possible to obtain comparable or even better absolute performance for all used datasets. PMID:25147803

  16. Reconfigurable systems for sequence alignment and for general dynamic programming.

    PubMed

    Jacobi, Ricardo P; Ayala-Rincón, Mauricio; Carvalho, Luis G A; Llanos, Carlos H; Hartenstein, Reiner W

    2005-01-01

    Reconfigurable systolic arrays can be adapted to efficiently resolve a wide spectrum of computational problems; parallelism is naturally explored in systolic arrays and reconfigurability allows for redefinition of the interconnections and operations even during run time (dynamically). We present a reconfigurable systolic architecture that can be applied for the efficient treatment of several dynamic programming methods for resolving well-known problems, such as global and local sequence alignment, approximate string matching and longest common subsequence. The dynamicity of the reconfigurability was found to be useful for practical applications in the construction of sequence alignments. A VHDL (VHSIC hardware description language) version of this new architecture was implemented on an APEX FPGA (Field programmable gate array). It would be several magnitudes faster than the software algorithm alternatives. PMID:16342039

  17. Prokaryotic Phylogeny Based on Complete Genomes Without Sequence Alignment

    NASA Astrophysics Data System (ADS)

    Hao, Bailin; Qi, Ji; Wang, Bin

    We present a brief review of a series of on-going work on bacterial phylogeny. We propose a new method to infer relatedness of prokaryotes from their complete genome data without using sequence alignment, leading to results comparable with the bacteriologist's systematics as reflected in the latest 2001 edition of Bergey's Manual of Systematic Bacteriology.1 We only touch on the mathematical aspects of the method. The biological implications of our results will be published elsewhere.

  18. Variable copy number DNA sequences in rice.

    PubMed

    Kikuchi, S; Takaiwa, F; Oono, K

    1987-12-01

    We have cloned two types of variable copy number DNA sequences from the rice embryo genome. One of these sequences, which was cloned in pRB301, was amplified about 50-fold during callus formation and diminished in copy number to the embryonic level during regeneration. The other clone, named pRB401, showed the reciprocal pattern. The copy numbers of both sequences were changed even in the early developmental stage and eliminated from nuclear DNA along with growth of the plant. Sequencing analysis of the pRB301 insert revealed some open reading frames and direct repeat structures, but corresponding sequences were not identified in the EMBL and LASL DNA databases. Sequencing of the nuclear genomic fragment cloned in pRB401 revealed the presence of the 3'rps12-rps7 region of rice chloroplast DNA. Our observations suggest that during callus formation (dedifferentiation), regeneration and the growth process the copy numbers of some DNA sequences are variable and that nuclear integrated chloroplast DNA acts as a variable copy number sequence in the rice genome. Based on data showing a common sequence in mitochondria and chloroplast DNA of maize (Stern and Lonsdale 1982) and that the rps12 gene of tobacco chloroplast DNA is a divided gene (Torazawa et al. 1986), it is suggested that the sequence on the inverted repeat structure of chloroplast DNA may have the character of a movable genetic element. PMID:3481021

  19. Exploring Dance Movement Data Using Sequence Alignment Methods

    PubMed Central

    Chavoshi, Seyed Hossein; De Baets, Bernard; Neutens, Tijs; De Tré, Guy; Van de Weghe, Nico

    2015-01-01

    Despite the abundance of research on knowledge discovery from moving object databases, only a limited number of studies have examined the interaction between moving point objects in space over time. This paper describes a novel approach for measuring similarity in the interaction between moving objects. The proposed approach consists of three steps. First, we transform movement data into sequences of successive qualitative relations based on the Qualitative Trajectory Calculus (QTC). Second, sequence alignment methods are applied to measure the similarity between movement sequences. Finally, movement sequences are grouped based on similarity by means of an agglomerative hierarchical clustering method. The applicability of this approach is tested using movement data from samba and tango dancers. PMID:26181435

  20. The Value of DNA Sequencing - TCGA

    Cancer.gov

    DNA sequencing: what it tells us about DNA changes in cancer, how looking across many tumors will help to identify meaningful changes and potential drug targets, and how genomics is changing the way we think about cancer.

  1. MACSIMS : multiple alignment of complete sequences information management system

    PubMed Central

    Thompson, Julie D; Muller, Arnaud; Waterhouse, Andrew; Procter, Jim; Barton, Geoffrey J; Plewniak, Frédéric; Poch, Olivier

    2006-01-01

    Background In the post-genomic era, systems-level studies are being performed that seek to explain complex biological systems by integrating diverse resources from fields such as genomics, proteomics or transcriptomics. New information management systems are now needed for the collection, validation and analysis of the vast amount of heterogeneous data available. Multiple alignments of complete sequences provide an ideal environment for the integration of this information in the context of the protein family. Results MACSIMS is a multiple alignment-based information management program that combines the advantages of both knowledge-based and ab initio sequence analysis methods. Structural and functional information is retrieved automatically from the public databases. In the multiple alignment, homologous regions are identified and the retrieved data is evaluated and propagated from known to unknown sequences with these reliable regions. In a large-scale evaluation, the specificity of the propagated sequence features is estimated to be >99%, i.e. very few false positive predictions are made. MACSIMS is then used to characterise mutations in a test set of 100 proteins that are known to be involved in human genetic diseases. The number of sequence features associated with these proteins was increased by 60%, compared to the features available in the public databases. An XML format output file allows automatic parsing of the MACSIM results, while a graphical display using the JalView program allows manual analysis. Conclusion MACSIMS is a new information management system that incorporates detailed analyses of protein families at the structural, functional and evolutionary levels. MACSIMS thus provides a unique environment that facilitates knowledge extraction and the presentation of the most pertinent information to the biologist. A web server and the source code are available at . PMID:16792820

  2. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, Andrew M.; Dawson, John

    1993-01-01

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source.

  3. Extracting protein alignment models from the sequence database.

    PubMed Central

    Neuwald, A F; Liu, J S; Lipman, D J; Lawrence, C E

    1997-01-01

    Biologists often gain structural and functional insights into a protein sequence by constructing a multiple alignment model of the family. Here a program called Probe fully automates this process of model construction starting from a single sequence. Central to this program is a powerful new method to locate and align only those, often subtly, conserved patterns essential to the family as a whole. When applied to randomly chosen proteins, Probe found on average about four times as many relationships as a pairwise search and yielded many new discoveries. These include: an obscure subfamily of globins in the roundworm Caenorhabditis elegans ; two new superfamilies of metallohydrolases; a lipoyl/biotin swinging arm domain in bacterial membrane fusion proteins; and a DH domain in the yeast Bud3 and Fus2 proteins. By identifying distant relationships and merging families into superfamilies in this way, this analysis further confirms the notion that proteins evolved from relatively few ancient sequences. Moreover, this method automatically generates models of these ancient conserved regions for rapid and sensitive screening of sequences. PMID:9108146

  4. Palindromic sequence artifacts generated during next generation sequencing library preparation from historic and ancient DNA.

    PubMed

    Star, Bastiaan; Nederbragt, Alexander J; Hansen, Marianne H S; Skage, Morten; Gilfillan, Gregor D; Bradbury, Ian R; Pampoulie, Christophe; Stenseth, Nils Chr; Jakobsen, Kjetill S; Jentoft, Sissel

    2014-01-01

    Degradation-specific processes and variation in laboratory protocols can bias the DNA sequence composition from samples of ancient or historic origin. Here, we identify a novel artifact in sequences from historic samples of Atlantic cod (Gadus morhua), which forms interrupted palindromes consisting of reverse complementary sequence at the 5' and 3'-ends of sequencing reads. The palindromic sequences themselves have specific properties - the bases at the 5'-end align well to the reference genome, whereas extensive misalignments exists among the bases at the terminal 3'-end. The terminal 3' bases are artificial extensions likely caused by the occurrence of hairpin loops in single stranded DNA (ssDNA), which can be ligated and amplified in particular library creation protocols. We propose that such hairpin loops allow the inclusion of erroneous nucleotides, specifically at the 3'-end of DNA strands, with the 5'-end of the same strand providing the template. We also find these palindromes in previously published ancient DNA (aDNA) datasets, albeit at varying and substantially lower frequencies. This artifact can negatively affect the yield of endogenous DNA in these types of samples and introduces sequence bias. PMID:24608104

  5. Ancient DNA sequence revealed by error-correcting codes.

    PubMed

    Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo

    2015-01-01

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228

  6. Ancient DNA sequence revealed by error-correcting codes

    PubMed Central

    Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo

    2015-01-01

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228

  7. CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs.

    PubMed

    Hung, Che-Lun; Lin, Yu-Shiang; Lin, Chun-Yuan; Chung, Yeh-Ching; Chung, Yi-Fang

    2015-10-01

    For biological applications, sequence alignment is an important strategy to analyze DNA and protein sequences. Multiple sequence alignment is an essential methodology to study biological data, such as homology modeling, phylogenetic reconstruction and etc. However, multiple sequence alignment is a NP-hard problem. In the past decades, progressive approach has been proposed to successfully align multiple sequences by adopting iterative pairwise alignments. Due to rapid growth of the next generation sequencing technologies, a large number of sequences can be produced in a short period of time. When the problem instance is large, progressive alignment will be time consuming. Parallel computing is a suitable solution for such applications, and GPU is one of the important architectures for contemporary parallel computing researches. Therefore, we proposed a GPU version of ClustalW v2.0.11, called CUDA ClustalW v1.0, in this work. From the experiment results, it can be seen that the CUDA ClustalW v1.0 can achieve more than 33× speedups for overall execution time by comparing to ClustalW v2.0.11. PMID:26052076

  8. Fibonacci Sequence and Supramolecular Structure of DNA.

    PubMed

    Shabalkin, I P; Grigor'eva, E Yu; Gudkova, M V; Shabalkin, P I

    2016-05-01

    We proposed a new model of supramolecular DNA structure. Similar to the previously developed by us model of primary DNA structure [11-15], 3D structure of DNA molecule is assembled in accordance to a mathematic rule known as Fibonacci sequence. Unlike primary DNA structure, supramolecular 3D structure is assembled from complex moieties including a regular tetrahedron and a regular octahedron consisting of monomers, elements of the primary DNA structure. The moieties of the supramolecular DNA structure forming fragments of regular spatial lattice are bound via linker (joint) sequences of the DNA chain. The lattice perceives and transmits information signals over a considerable distance without acoustic aberrations. Linker sequences expand conformational space between lattice segments allowing their sliding relative to each other under the action of external forces. In this case, sliding is provided by stretching of the stacked linker sequences. PMID:27265133

  9. Sequence and Structure Dependent DNA-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Kopchick, Benjamin; Qiu, Xiangyun

    Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.

  10. Alignment-free analysis of barcode sequences by means of compression-based methods

    PubMed Central

    2013-01-01

    Background The key idea of DNA barcode initiative is to identify, for each group of species belonging to different kingdoms of life, a short DNA sequence that can act as a true taxon barcode. DNA barcode represents a valuable type of information that can be integrated with ecological, genetic, and morphological data in order to obtain a more consistent taxonomy. Recent studies have shown that, for the animal kingdom, the mitochondrial gene cytochrome c oxidase I (COI), about 650 bp long, can be used as a barcode sequence for identification and taxonomic purposes of animals. In the present work we aims at introducing the use of an alignment-free approach in order to make taxonomic analysis of barcode sequences. Our approach is based on the use of two compression-based versions of non-computable Universal Similarity Metric (USM) class of distances. Our purpose is to justify the employ of USM also for the analysis of short DNA barcode sequences, showing how USM is able to correctly extract taxonomic information among those kind of sequences. Results We downloaded from Barcode of Life Data System (BOLD) database 30 datasets of barcode sequences belonging to different animal species. We built phylogenetic trees of every dataset, according to compression-based and classic evolutionary methods, and compared them in terms of topology preservation. In the experimental tests, we obtained scores with a percentage of similarity between evolutionary and compression-based trees between 80% and 100% for the most of datasets (94%). Moreover we carried out experimental tests using simulated barcode datasets composed of 100, 150, 200 and 500 sequences, each simulation replicated 25-fold. In this case, mean similarity scores between evolutionary and compression-based trees span between 83% and 99% for all simulated datasets. Conclusions In the present work we aims at introducing the use of an alignment-free approach in order to make taxonomic analysis of barcode sequences. Our

  11. Fractal MapReduce decomposition of sequence alignment

    PubMed Central

    2012-01-01

    Background The dramatic fall in the cost of genomic sequencing, and the increasing convenience of distributed cloud computing resources, positions the MapReduce coding pattern as a cornerstone of scalable bioinformatics algorithm development. In some cases an algorithm will find a natural distribution via use of map functions to process vectorized components, followed by a reduce of aggregate intermediate results. However, for some data analysis procedures such as sequence analysis, a more fundamental reformulation may be required. Results In this report we describe a solution to sequence comparison that can be thoroughly decomposed into multiple rounds of map and reduce operations. The route taken makes use of iterated maps, a fractal analysis technique, that has been found to provide a "alignment-free" solution to sequence analysis and comparison. That is, a solution that does not require dynamic programming, relying on a numeric Chaos Game Representation (CGR) data structure. This claim is demonstrated in this report by calculating the length of the longest similar segment by inspecting only the USM coordinates of two analogous units: with no resort to dynamic programming. Conclusions The procedure described is an attempt at extreme decomposition and parallelization of sequence alignment in anticipation of a volume of genomic sequence data that cannot be met by current algorithmic frameworks. The solution found is delivered with a browser-based application (webApp), highlighting the browser's emergence as an environment for high performance distributed computing. Availability Public distribution of accompanying software library with open source and version control at http://usm.github.com. Also available as a webApp through Google Chrome's WebStore http://chrome.google.com/webstore: search with "usm". PMID:22551205

  12. Graphical representation for DNA sequences via joint diagonalization of matrix pencil.

    PubMed

    Yu, Hong-Jie; Huang, De-Shuang

    2013-05-01

    Graphical representations provide us with a tool allowing visual inspection of the sequences. To visualize and compare different DNA sequences, a novel alignment-free method is proposed in this paper for both graphical representation and similarity analysis of sequences. We introduce a transformation to represent each DNA sequence with neighboring nucleotide matrix. Then, based on approximate joint diagonalization theory, we transform each DNA primary sequence into a corresponding eigenvalue vector (EVV), which can be considered as numerical characterization of DNA sequence. Meanwhile, we get graphical representation for DNA sequence via the plot of EVV in 2-D plane. Moreover, using k-means, we cluster these feature curves of sequences into several reasonable subclasses. In addition, similarity analyses are performed by computing the distances among the obtained vectors. This approach contains more sequence information, and it analyzes all the involved sequence information jointly rather than separately. A typical dendrogram constructed by this method demonstrates the effectiveness of our approach. PMID:24592449

  13. Atypical regions in large genomic DNA sequences

    SciTech Connect

    Scherer, S. |; McPeek, M.S.; Speed, T.P.

    1994-07-19

    Large genomic DNA sequences contain regions with distinctive patterns of sequence organization. The authors describe a method using logarithms of probabilities based on seventh-order Markov chains to rapidly identify genomic sequences that do not resemble models of genome organization built from compilations of octanucleotide usage. Data bases have been constructed from Escherichia coli and Saccharomyces cerevisiae DNA sequences of >1000 nt and human sequences of >10,000 nt. Atypical genes and clusters of genes have been located in bacteriophage, yeast, and primate DNA sequences. The authors consider criteria for statistical significance of the results, offer possible explanations for the observed variation in genome organization, and give additional applications of these methods in DNA sequence analysis.

  14. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  15. Prokaryotic Phylogeny Based on Complete Genomes Without Sequence Alignment

    NASA Astrophysics Data System (ADS)

    Hao, Bailin; Qi, Ji; Wang, Bin

    2003-04-01

    This is a brief review of a series of on-going work on bacterial phylogeny. We have proposed a new method to infer relatedness of prokaryotes from their complete genome data without using sequence alignment. It has led to results comparable with the bacteriologists' systematics as reflected in the latest 2001 edition of the Bergey's Manual of Systematic Bacteriology1. In what follows we only touch on the mathematical aspects of the method. The biological implications of our results will be published elsewhere.

  16. Conservation patterns in angiosperm rDNA ITS2 sequences.

    PubMed Central

    Hershkovitz, M A; Zimmer, E A

    1996-01-01

    The two internal transcribed spacers (ITS1 and ITS2) of nuclear ribosomal DNA have become commonly exploited sources of informative variation for interspecific-/intergeneric-level phylogenetic analyses among angiosperms and other eukaryotes. We present an alignment in which one-third to one-half of the ITS2 sequence is alignable above the family level in angiosperms and a phenetic analysis showing that ITS2 contains information sufficient to diagnose lineages at several hierarchical levels. Base compositional analysis shows that angiosperm ITS2 is inherently GC-rich, and that the proportion of T is much more variable than that for other bases. We propose a general model of angiosperm ITS2 secondary structure that shows common pairing relationships for most of the conserved sequence tracts. Variations in our secondary structure predictions for sequences from different taxa indicate that compensatory mutation is not limited to paired positions. PMID:8760866

  17. Sequence Affects the Cyclization of DNA Minicircles.

    PubMed

    Wang, Qian; Pettitt, B Montgomery

    2016-03-17

    Understanding how the sequence of a DNA molecule affects its dynamic properties is a central problem affecting biochemistry and biotechnology. The process of cyclizing short DNA, as a critical step in molecular cloning, lacks a comprehensive picture of the kinetic process containing sequence information. We have elucidated this process by using coarse-grained simulations, enhanced sampling methods, and recent theoretical advances. We are able to identify the types and positions of structural defects during the looping process at a base-pair level. Correlations along a DNA molecule dictate critical sequence positions that can affect the looping rate. Structural defects change the bending elasticity of the DNA molecule from a harmonic to subharmonic potential with respect to bending angles. We explore the subelastic chain as a possible model in loop formation kinetics. A sequence-dependent model is developed to qualitatively predict the relative loop formation time as a function of DNA sequence. PMID:26938490

  18. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega

    PubMed Central

    Sievers, Fabian; Wilm, Andreas; Dineen, David; Gibson, Toby J; Karplus, Kevin; Li, Weizhong; Lopez, Rodrigo; McWilliam, Hamish; Remmert, Michael; Söding, Johannes; Thompson, Julie D; Higgins, Desmond G

    2011-01-01

    Multiple sequence alignments are fundamental to many sequence analysis methods. Most alignments are computed using the progressive alignment heuristic. These methods are starting to become a bottleneck in some analysis pipelines when faced with data sets of the size of many thousands of sequences. Some methods allow computation of larger data sets while sacrificing quality, and others produce high-quality alignments, but scale badly with the number of sequences. In this paper, we describe a new program called Clustal Omega, which can align virtually any number of protein sequences quickly and that delivers accurate alignments. The accuracy of the package on smaller test cases is similar to that of the high-quality aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases like Pfam. PMID:21988835

  19. Using DNA looping to measure sequence dependent DNA elasticity

    NASA Astrophysics Data System (ADS)

    Kandinov, Alan; Raghunathan, Krishnan; Meiners, Jens-Christian

    2012-10-01

    We are using tethered particle motion (TPM) microscopy to observe protein-mediated DNA looping in the lactose repressor system in DNA constructs with varying AT / CG content. We use these data to determine the persistence length of the DNA as a function of its sequence content and compare the data to direct micromechanical measurements with constant-force axial optical tweezers. The data from the TPM experiments show a much smaller sequence effect on the persistence length than the optical tweezers experiments.

  20. Complementary DNA sequencing: Expressed sequence tags and human genome project

    SciTech Connect

    Adams, M.D.; Kelley, J.M.; Gocayne, J.D.; Dubnick, M.; Wu, A.; Olde, B.; Moreno, R.F.; Kerlavage, A.R.; McCombie, W.R.; Venter, J.C. ); Polymeropoulos, M.H.; Hong Xiao; Merril, C.R. )

    1991-06-21

    Automated partial DNA sequencing was conducted on more than 600 randomly selected human brain complementary DNA (cDNA) clones to generate expressed sequence tags (ESTs). ESTs have applications in the discovery of new human genes, mapping of the human genome, and identification of coding regions in genomic sequences. Of the sequences generated, 337 represent new genes, including 48 with significant similarity to genes from other organisms, such as a yeast RNA polymerase II subunit; Drosophila kinesin, Notch, and Enhancer of split; and a murine tyrosine kinase receptor. Forty-six ESTs were mapped to chromosomes after amplification by the polymerase chain reaction. This fast approach to cDNA characterization will facilitate the tagging of most human genes in a few years at a fraction of the cost of complete genomic sequencing, provide new genetic markers, and serve as a resource in diverse biological research fields.

  1. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  2. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search.

    PubMed

    Wheeler, Ward C

    2003-06-01

    A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. PMID:12901383

  3. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, R.A.; Huang, X.C.; Quesada, M.A.

    1995-07-25

    A DNA sequencing method is described which uses single lane or channel electrophoresis. Sequencing fragments are separated in the lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radioisotope labels. 5 figs.

  4. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, Richard A.; Huang, Xiaohua C.; Quesada, Mark A.

    1995-01-01

    A DNA sequencing method described which uses single lane or channel electrophoresis. Sequencing fragments are separated in said lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radio-isotope labels.

  5. Probabilistic sequence alignment of Late Pleistocene benthic δ18O data

    NASA Astrophysics Data System (ADS)

    Lawrence, C.; Lin, L.; Lisiecki, L. E.; Stern, J.

    2013-12-01

    The stratigraphic alignment of ocean sediment cores plays a vital role in paleoceanographic research because it is used to develop mutually consistent age models for climate proxies measured in these cores. The most common proxy used for alignment is the The stratigraphic alignment of ocean sediment cores plays a vital role in paleoceanographic research because it is used to develop mutually consistent age models for climate proxies measured in these cores. The most common proxy used for alignment is the δ18O of calcite from benthic or planktonic foraminifera because a large fraction of δ18O variance derives from the global signal of ice volume. To date, alignment has been performed either by manual, qualitative comparison or by deterministic algorithms (Martinson, Pisias et al. Quat. Res. 27 1987; Lisiecki and Lisiecki Paleoceanography 17, 2002; Huybers and Wunsch, Paleoceanography 19, 2004). Here we present a probabilistic sequence alignment algorithm which provides 95% confidence bands for the alignment of pairs of benthic δ18O records. The probabilistic algorithm presented here is based on a hidden Markov model (HMM) (Levinson, Rabiner et al. Bell Systems Technical Journal, 62,1983) similar to those that have been used extensively to align DNA and protein sequences (Durbin, Eddy et al. Biological Sequence Analysis, Ch. 4, 1998). However, here the need to the alignment of sequences stems from expansion and/or contraction in the records due to changes in sedimentation rates rather than the insertion or deletion of residues. Transition probabilities that are used in this HMM to model changes in sedimentation rates are based on radiocarbon estimates of sedimentation rates. The probabilistic algorithm considers all possible alignments with these predefined sedimentation rates. Exact calculations are completed using dynamic programming recursions. The algorithm yields the probability distributions of the age at each point in the record, which are probabilistically

  6. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    PubMed Central

    2012-01-01

    Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants. PMID:22883984

  7. A Fast and Scalable Kymograph Alignment Algorithm for Nanochannel-Based Optical DNA Mappings

    PubMed Central

    Noble, Charleston; Nilsson, Adam N.; Freitag, Camilla; Beech, Jason P.; Tegenfeldt, Jonas O.; Ambjörnsson, Tobias

    2015-01-01

    Optical mapping by direct visualization of individual DNA molecules, stretched in nanochannels with sequence-specific fluorescent labeling, represents a promising tool for disease diagnostics and genomics. An important challenge for this technique is thermal motion of the DNA as it undergoes imaging; this blurs fluorescent patterns along the DNA and results in information loss. Correcting for this effect (a process referred to as kymograph alignment) is a common preprocessing step in nanochannel-based optical mapping workflows, and we present here a highly efficient algorithm to accomplish this via pattern recognition. We compare our method with the one previous approach, and we find that our method is orders of magnitude faster while producing data of similar quality. We demonstrate proof of principle of our approach on experimental data consisting of melt mapped bacteriophage DNA. PMID:25875920

  8. Fractal analysis of DNA sequence data

    SciTech Connect

    Berthelsen, C.L.

    1993-01-01

    DNA sequence databases are growing at an almost exponential rate. New analysis methods are needed to extract knowledge about the organization of nucleotides from this vast amount of data. Fractal analysis is a new scientific paradigm that has been used successfully in many domains including the biological and physical sciences. Biological growth is a nonlinear dynamic process and some have suggested that to consider fractal geometry as a biological design principle may be most productive. This research is an exploratory study of the application of fractal analysis to DNA sequence data. A simple random fractal, the random walk, is used to represent DNA sequences. The fractal dimension of these walks is then estimated using the [open quote]sandbox method[close quote]. Analysis of 164 human DNA sequences compared to three types of control sequences (random, base-content matched, and dimer-content matched) reveals that long-range correlations are present in DNA that are not explained by base or dimer frequencies. The study also revealed that the fractal dimension of coding sequences was significantly lower than sequences that were primarily noncoding, indicating the presence of longer-range correlations in functional sequences. The multifractal spectrum is used to analyze fractals that are heterogeneous and have a different fractal dimension for subsets with different scalings. The multifractal spectrum of the random walks of twelve mitochondrial genome sequences was estimated. Eight vertebrate mtDNA sequences had uniformly lower spectra values than did four invertebrate mtDNA sequences. Thus, vertebrate mitochondria show significantly longer-range correlations than to invertebrate mitochondria. The higher multifractal spectra values for invertebrate mitochondria suggest a more random organization of the sequences. This research also includes considerable theoretical work on the effects of finite size, embedding dimension, and scaling ranges.

  9. Fractal Analysis of DNA Sequence Data

    NASA Astrophysics Data System (ADS)

    Berthelsen, Cheryl Lynn

    DNA sequence databases are growing at an almost exponential rate. New analysis methods are needed to extract knowledge about the organization of nucleotides from this vast amount of data. Fractal analysis is a new scientific paradigm that has been used successfully in many domains including the biological and physical sciences. Biological growth is a nonlinear dynamic process and some have suggested that to consider fractal geometry as a biological design principle may be most productive. This research is an exploratory study of the application of fractal analysis to DNA sequence data. A simple random fractal, the random walk, is used to represent DNA sequences. The fractal dimension of these walks is then estimated using the "sandbox method." Analysis of 164 human DNA sequences compared to three types of control sequences (random, base -content matched, and dimer-content matched) reveals that long-range correlations are present in DNA that are not explained by base or dimer frequencies. The study also revealed that the fractal dimension of coding sequences was significantly lower than sequences that were primarily noncoding, indicating the presence of longer-range correlations in functional sequences. The multifractal spectrum is used to analyze fractals that are heterogeneous and have a different fractal dimension for subsets with different scalings. The multifractal spectrum of the random walks of twelve mitochondrial genome sequences was estimated. Eight vertebrate mtDNA sequences had uniformly lower spectra values than did four invertebrate mtDNA sequences. Thus, vertebrate mitochondria show significantly longer-range correlations than do invertebrate mitochondria. The higher multifractal spectra values for invertebrate mitochondria suggest a more random organization of the sequences. This research also includes considerable theoretical work on the effects of finite size, embedding dimension, and scaling ranges.

  10. A two-locus DNA sequence database for identifying host-specific pathogens and phylogenetic diversity within the Fusarium oxysporum species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An electronically portable two-locus DNA sequence database, comprising partial sequences of the translation elongation factor gene (EF-1a, 634 bp alignment) and nearly complete sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA, 2220 bp alignment) for 850 isolates spanning the phy...

  11. Terminal region sequence variations in variola virus DNA.

    PubMed

    Massung, R F; Loparev, V N; Knight, J C; Totmenin, A V; Chizhikov, V E; Parsons, J M; Safronov, P F; Gutorov, V V; Shchelkunov, S N; Esposito, J J

    1996-07-15

    Genome DNA terminal region sequences were determined for a Brazilian alastrim variola minor virus strain Garcia-1966 that was associated with an 0.8% case-fatality rate and African smallpox strains Congo-1970 and Somalia-1977 associated with variola major (9.6%) and minor (0.4%) mortality rates, respectively. A base sequence identity of > or = 98.8% was determined after aligning 30 kb of the left- or right-end region sequences with cognate sequences previously determined for Asian variola major strains India-1967 (31% death rate) and Bangladesh-1975 (18.5% death rate). The deduced amino acid sequences of putative proteins of > or = 65 amino acids also showed relatively high identity, although the Asian and African viruses were clearly more related to each other than to alastrim virus. Alastrim virus contained only 10 of 70 proteins that were 100% identical to homologs in Asian strains, and 7 alastrim-specific proteins were noted. PMID:8661439

  12. Applying machine learning techniques to DNA sequence analysis

    SciTech Connect

    Shavlik, J.W. . Dept. of Computer Sciences); Noordewier, M.O. . Dept. of Computer Science)

    1992-01-01

    We are primarily developing a machine teaming (ML) system that modifies existing knowledge about specific types of biological sequences. It does this by considering sample members and nonmembers of the sequence motif being teamed. Using this information, our teaming algorithm produces a more accurate representation of the knowledge needed to categorize future sequences. Specifically, our KBANN algorithm maps inference rules about a given recognition task into a neural network. Neural network training techniques then use the training examples to refine these inference rules. We call these rules a domain theory, following the convention in the machine teaming community. We have been applying this approach to several problems in DNA sequence analysis. In addition, we have been extending the capabilities of our teaming system along several dimensions. We have also been investigating parallel algorithms that perform sequence alignments in the presence of frameshift errors.

  13. Counterintuitive DNA Sequence Dependence in Supercoiling-Induced DNA Melting

    PubMed Central

    Vlijm, Rifka; v.d. Torre, Jaco; Dekker, Cees

    2015-01-01

    The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force Fchar, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: Fchar = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix. PMID:26513573

  14. DNA sequencing: bench to bedside and beyond†

    PubMed Central

    Hutchison, Clyde A.

    2007-01-01

    Fifteen years elapsed between the discovery of the double helix (1953) and the first DNA sequencing (1968). Modern DNA sequencing began in 1977, with development of the chemical method of Maxam and Gilbert and the dideoxy method of Sanger, Nicklen and Coulson, and with the first complete DNA sequence (phage ϕX174), which demonstrated that sequence could give profound insights into genetic organization. Incremental improvements allowed sequencing of molecules >200 kb (human cytomegalovirus) leading to an avalanche of data that demanded computational analysis and spawned the field of bioinformatics. The US Human Genome Project spurred sequencing activity. By 1992 the first ‘sequencing factory’ was established, and others soon followed. The first complete cellular genome sequences, from bacteria, appeared in 1995 and other eubacterial, archaebacterial and eukaryotic genomes were soon sequenced. Competition between the public Human Genome Project and Celera Genomics produced working drafts of the human genome sequence, published in 2001, but refinement and analysis of the human genome sequence will continue for the foreseeable future. New ‘massively parallel’ sequencing methods are greatly increasing sequencing capacity, but further innovations are needed to achieve the ‘thousand dollar genome’ that many feel is prerequisite to personalized genomic medicine. These advances will also allow new approaches to a variety of problems in biology, evolution and the environment. PMID:17855400

  15. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A. ); Arlinghaus, H.F. )

    1993-01-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  16. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A.; Arlinghaus, H.F.

    1993-06-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  17. Data management for re-sequencing DNA

    SciTech Connect

    Ying Jiahsu; Gilson, H.; Long, K.; Gibbs, R.A.

    1993-12-31

    The human genome project has greatly stimulated the advancement of techniques to sequence large fragments of DNA. The development of improved molecular methods has also simplified the process of comparing shorter, homologous DNA sequences from different individuals and species. This process of `re-sequencing` DNA has applications in medical genetics, in evolutionary studies, and for the identification of complex molecular variation that may explain multifactorial traits. Intrinsic differences in the processes of `sequencing` and `re-sequencing` suggest new requirements for data management tools. A data management scheme for a `re-sequencing` project is demonstrated using the Virtual Notebook System, a flexible multi-user tool designed as a metaphor of the laboratory notebook.

  18. PROMALS3D web server for accurate multiple protein sequence and structure alignments.

    PubMed

    Pei, Jimin; Tang, Ming; Grishin, Nick V

    2008-07-01

    Multiple sequence alignments are essential in computational sequence and structural analysis, with applications in homology detection, structure modeling, function prediction and phylogenetic analysis. We report PROMALS3D web server for constructing alignments for multiple protein sequences and/or structures using information from available 3D structures, database homologs and predicted secondary structures. PROMALS3D shows higher alignment accuracy than a number of other advanced methods. Input of PROMALS3D web server can be FASTA format protein sequences, PDB format protein structures and/or user-defined alignment constraints. The output page provides alignments with several formats, including a colored alignment augmented with useful information about sequence grouping, predicted secondary structures and consensus sequences. Intermediate results of sequence and structural database searches are also available. The PROMALS3D web server is available at: http://prodata.swmed.edu/promals3d/. PMID:18503087

  19. Multiple sequence alignment based on combining genetic algorithm with chaotic sequences.

    PubMed

    Gao, C; Wang, B; Zhou, C J; Zhang, Q

    2016-01-01

    In bioinformatics, sequence alignment is one of the most common problems. Multiple sequence alignment is an NP (nondeterministic polynomial time) problem, which requires further study and exploration. The chaos optimization algorithm is a type of chaos theory, and a procedure for combining the genetic algorithm (GA), which uses ergodicity, and inherent randomness of chaotic iteration. It is an efficient method to solve the basic premature phenomenon of the GA. Applying the Logistic map to the GA and using chaotic sequences to carry out the chaotic perturbation can improve the convergence of the basic GA. In addition, the random tournament selection and optimal preservation strategy are used in the GA. Experimental evidence indicates good results for this process. PMID:27420977

  20. Cardiac motion estimation by joint alignment of tagged MRI sequences.

    PubMed

    Oubel, E; De Craene, M; Hero, A O; Pourmorteza, A; Huguet, M; Avegliano, G; Bijnens, B H; Frangi, A F

    2012-01-01

    Image registration has been proposed as an automatic method for recovering cardiac displacement fields from tagged Magnetic Resonance Imaging (tMRI) sequences. Initially performed as a set of pairwise registrations, these techniques have evolved to the use of 3D+t deformation models, requiring metrics of joint image alignment (JA). However, only linear combinations of cost functions defined with respect to the first frame have been used. In this paper, we have applied k-Nearest Neighbors Graphs (kNNG) estimators of the α-entropy (H(α)) to measure the joint similarity between frames, and to combine the information provided by different cardiac views in an unified metric. Experiments performed on six subjects showed a significantly higher accuracy (p<0.05) with respect to a standard pairwise alignment (PA) approach in terms of mean positional error and variance with respect to manually placed landmarks. The developed method was used to study strains in patients with myocardial infarction, showing a consistency between strain, infarction location, and coronary occlusion. This paper also presents an interesting clinical application of graph-based metric estimators, showing their value for solving practical problems found in medical imaging. PMID:22000567

  1. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, A.M.; Dawson, J.

    1993-12-14

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source. 6 figures.

  2. Nucleotide sequence of bacteriophage fd DNA.

    PubMed Central

    Beck, E; Sommer, R; Auerswald, E A; Kurz, C; Zink, B; Osterburg, G; Schaller, H; Sugimoto, K; Sugisaki, H; Okamoto, T; Takanami, M

    1978-01-01

    The sequence of the 6,408 nucleotides of bacteriophage fd DNA has been determined. This allows to deduce the exact organisation of the filamentous phage genome and provides easy access to DNA segments of known structure and function. PMID:745987

  3. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and 3-dimensional structural information

    PubMed Central

    Pei, Jimin; Grishin, Nick V.

    2015-01-01

    SUMMARY Multiple sequence alignment (MSA) is an essential tool with many applications in bioinformatics and computational biology. Accurate MSA construction for divergent proteins remains a difficult computational task. The constantly increasing protein sequences and structures in public databases could be used to improve alignment quality. PROMALS3D is a tool for protein MSA construction enhanced with additional evolutionary and structural information from database searches. PROMALS3D automatically identifies homologs from sequence and structure databases for input proteins, derives structure-based constraints from alignments of 3-dimensional structures, and combines them with sequence-based constraints of profile-profile alignments in a consistency-based framework to construct high-quality multiple sequence alignments. PROMALS3D output is a consensus alignment enriched with sequence and structural information about input proteins and their homologs. PROMALS3D web server and package are available at http://prodata.swmed.edu/PROMALS3D. PMID:24170408

  4. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2014-01-01

    Multiple sequence alignment (MSA) is an essential tool with many applications in bioinformatics and computational biology. Accurate MSA construction for divergent proteins remains a difficult computational task. The constantly increasing protein sequences and structures in public databases could be used to improve alignment quality. PROMALS3D is a tool for protein MSA construction enhanced with additional evolutionary and structural information from database searches. PROMALS3D automatically identifies homologs from sequence and structure databases for input proteins, derives structure-based constraints from alignments of three-dimensional structures, and combines them with sequence-based constraints of profile-profile alignments in a consistency-based framework to construct high-quality multiple sequence alignments. PROMALS3D output is a consensus alignment enriched with sequence and structural information about input proteins and their homologs. PROMALS3D Web server and package are available at http://prodata.swmed.edu/PROMALS3D. PMID:24170408

  5. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  6. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  7. Decoding long nanopore sequencing reads of natural DNA.

    PubMed

    Laszlo, Andrew H; Derrington, Ian M; Ross, Brian C; Brinkerhoff, Henry; Adey, Andrew; Nova, Ian C; Craig, Jonathan M; Langford, Kyle W; Samson, Jenny Mae; Daza, Riza; Doering, Kenji; Shendure, Jay; Gundlach, Jens H

    2014-08-01

    Nanopore sequencing of DNA is a single-molecule technique that may achieve long reads, low cost and high speed with minimal sample preparation and instrumentation. Here, we build on recent progress with respect to nanopore resolution and DNA control to interpret the procession of ion current levels observed during the translocation of DNA through the pore MspA. As approximately four nucleotides affect the ion current of each level, we measured the ion current corresponding to all 256 four-nucleotide combinations (quadromers). This quadromer map is highly predictive of ion current levels of previously unmeasured sequences derived from the bacteriophage phi X 174 genome. Furthermore, we show nanopore sequencing reads of phi X 174 up to 4,500 bases in length, which can be unambiguously aligned to the phi X 174 reference genome, and demonstrate proof-of-concept utility with respect to hybrid genome assembly and polymorphism detection. This work provides a foundation for nanopore sequencing of long, natural DNA strands. PMID:24964173

  8. The expanding scope of DNA sequencing

    PubMed Central

    Shendure, Jay; Aiden, Erez Lieberman

    2014-01-01

    In just seven years, next-generation technologies have reduced the cost and increased the speed of DNA sequencing by four orders of magnitude, and experiments requiring many millions of sequencing reads are now routine. In research, sequencing is being applied not only to assemble genomes and to investigate the genetic basis of human disease, but also to explore myriad phenomena in organismic and cellular biology. In the clinic, the utility of sequence data is being intensively evaluated in diverse contexts, including reproductive medicine, oncology and infectious disease. A recurrent theme in the development of new sequencing applications is the creative ‘recombination’ of existing experimental building blocks. However, there remain many potentially high-impact applications of next-generation DNA sequencing that are not yet fully realized. PMID:23138308

  9. Sequencing Intractable DNA to Close Microbial Genomes

    SciTech Connect

    Hurt, Jr., Richard Ashley; Brown, Steven D; Podar, Mircea; Palumbo, Anthony Vito; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled intractable resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such difficult regions in the non-contiguous finished Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. These developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  10. Osmylated DNA, a novel concept for sequencing DNA using nanopores

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    2015-03-01

    Saenger sequencing has led the advances in molecular biology, while faster and cheaper next generation technologies are urgently needed. A newer approach exploits nanopores, natural or solid-state, set in an electrical field, and obtains base sequence information from current variations due to the passage of a ssDNA molecule through the pore. A hurdle in this approach is the fact that the four bases are chemically comparable to each other which leads to small differences in current obstruction. ‘Base calling’ becomes even more challenging because most nanopores sense a short sequence and not individual bases. Perhaps sequencing DNA via nanopores would be more manageable, if only the bases were two, and chemically very different from each other; a sequence of 1s and 0s comes to mind. Osmylated DNA comes close to such a sequence of 1s and 0s. Osmylation is the addition of osmium tetroxide bipyridine across the C5-C6 double bond of the pyrimidines. Osmylation adds almost 400% mass to the reactive base, creates a sterically and electronically notably different molecule, labeled 1, compared to the unreactive purines, labeled 0. If osmylated DNA were successfully sequenced, the result would be a sequence of osmylated pyrimidines (1), and purines (0), and not of the actual nucleobases. To solve this problem we studied the osmylation reaction with short oligos and with M13mp18, a long ssDNA, developed a UV-vis assay to measure extent of osmylation, and designed two protocols. Protocol A uses mild conditions and yields osmylated thymidines (1), while leaving the other three bases (0) practically intact. Protocol B uses harsher conditions and effectively osmylates both pyrimidines, but not the purines. Applying these two protocols also to the complementary of the target polynucleotide yields a total of four osmylated strands that collectively could define the actual base sequence of the target DNA.

  11. B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.

    PubMed

    Cui, Yingbo; Liao, Xiangke; Zhu, Xiaoqian; Wang, Bingqiang; Peng, Shaoliang

    2016-03-01

    Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision. PMID:26358141

  12. Dynamics and control of DNA sequence amplification

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  13. Dynamics and control of DNA sequence amplification

    NASA Astrophysics Data System (ADS)

    Marimuthu, Karthikeyan; Chakrabarti, Raj

    2014-10-01

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  14. Quadruplex DNA: sequence, topology and structure

    PubMed Central

    Burge, Sarah; Parkinson, Gary N.; Hazel, Pascale; Todd, Alan K.; Neidle, Stephen

    2006-01-01

    G-quadruplexes are higher-order DNA and RNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential quadruplex sequences have been identified in G-rich eukaryotic telomeres, and more recently in non-telomeric genomic DNA, e.g. in nuclease-hypersensitive promoter regions. The natural role and biological validation of these structures is starting to be explored, and there is particular interest in them as targets for therapeutic intervention. This survey focuses on the folding and structural features on quadruplexes formed from telomeric and non-telomeric DNA sequences, and examines fundamental aspects of topology and the emerging relationships with sequence. Emphasis is placed on information from the high-resolution methods of X-ray crystallography and NMR, and their scope and current limitations are discussed. Such information, together with biological insights, will be important for the discovery of drugs targeting quadruplexes from particular genes. PMID:17012276

  15. Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignments.

    PubMed

    O' Lee, Dominic J; Wynveen, Aaron; Albrecht, Tim; Kornyshev, Alexei A

    2015-01-28

    Homologous gene shuffling between DNA molecules promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition has remained an unsolved puzzle of molecular biology. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has, however, been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular, electrostatic ones. In this proposed mechanism, sequences that have the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts. The difference between the two energies is termed the "recognition energy." Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignment. This dependence on sliding is termed the "recognition well." We find there is a recognition well for anti-parallel, homologous DNA tracts, but only a very shallow one, so that their interaction will differ little from the interaction between two nonhomologous tracts. This fact may be utilized in single molecule experiments specially targeted to test the theory. As well as this, we test previous theoretical approximations in calculating the recognition well for parallel molecules against MC simulations and consider more rigorously the optimization of the orientations of the fragments about their long axes upon calculating these recognition energies. The more rigorous treatment affects the recognition energy a little, when the molecules are considered rigid. When torsional flexibility of the DNA molecules is introduced, we find excellent agreement between the analytical

  16. Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignments

    NASA Astrophysics Data System (ADS)

    O'Lee, Dominic J.; Wynveen, Aaron; Albrecht, Tim; Kornyshev, Alexei A.

    2015-01-01

    Homologous gene shuffling between DNA molecules promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition has remained an unsolved puzzle of molecular biology. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has, however, been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular, electrostatic ones. In this proposed mechanism, sequences that have the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts. The difference between the two energies is termed the "recognition energy." Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignment. This dependence on sliding is termed the "recognition well." We find there is a recognition well for anti-parallel, homologous DNA tracts, but only a very shallow one, so that their interaction will differ little from the interaction between two nonhomologous tracts. This fact may be utilized in single molecule experiments specially targeted to test the theory. As well as this, we test previous theoretical approximations in calculating the recognition well for parallel molecules against MC simulations and consider more rigorously the optimization of the orientations of the fragments about their long axes upon calculating these recognition energies. The more rigorous treatment affects the recognition energy a little, when the molecules are considered rigid. When torsional flexibility of the DNA molecules is introduced, we find excellent agreement between the analytical

  17. Determining Word Sequence Variation Patterns in Clinical Documents using Multiple Sequence Alignment

    PubMed Central

    Meng, Frank; Morioka, Craig A.; El-Saden, Suzie

    2011-01-01

    Sentences and phrases that represent a certain meaning often exhibit patterns of variation where they differ from a basic structural form by one or two words. We present an algorithm that utilizes multiple sequence alignments (MSAs) to generate a representation of groups of phrases that possess the same semantic meaning but also share in common the same basic word sequence structure. The MSA enables the determination not only of the words that compose the basic word sequence, but also of the locations within the structure that exhibit variation. The algorithm can be utilized to generate patterns of text sequences that can be used as the basis for a pattern-based classifier, as a starting point to bootstrap the pattern building process for a regular expression-based classifiers, or serve to reveal the variation characteristics of sentences and phrases within a particular domain. PMID:22195152

  18. HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.

    PubMed

    O'Driscoll, Aisling; Belogrudov, Vladislav; Carroll, John; Kropp, Kai; Walsh, Paul; Ghazal, Peter; Sleator, Roy D

    2015-04-01

    The recent exponential growth of genomic databases has resulted in the common task of sequence alignment becoming one of the major bottlenecks in the field of computational biology. It is typical for these large datasets and complex computations to require cost prohibitive High Performance Computing (HPC) to function. As such, parallelised solutions have been proposed but many exhibit scalability limitations and are incapable of effectively processing "Big Data" - the name attributed to datasets that are extremely large, complex and require rapid processing. The Hadoop framework, comprised of distributed storage and a parallelised programming framework known as MapReduce, is specifically designed to work with such datasets but it is not trivial to efficiently redesign and implement bioinformatics algorithms according to this paradigm. The parallelisation strategy of "divide and conquer" for alignment algorithms can be applied to both data sets and input query sequences. However, scalability is still an issue due to memory constraints or large databases, with very large database segmentation leading to additional performance decline. Herein, we present Hadoop Blast (HBlast), a parallelised BLAST algorithm that proposes a flexible method to partition both databases and input query sequences using "virtual partitioning". HBlast presents improved scalability over existing solutions and well balanced computational work load while keeping database segmentation and recompilation to a minimum. Enhanced BLAST search performance on cheap memory constrained hardware has significant implications for in field clinical diagnostic testing; enabling faster and more accurate identification of pathogenic DNA in human blood or tissue samples. PMID:25625550

  19. Sequencing mitochondrial DNA polymorphisms by hybridization

    SciTech Connect

    Chee, M.S.; Lockhart, D.J.; Hubbell, E.

    1994-09-01

    We have investigated the use of DNA chips for genetic analysis, using human mitochondrial DNA (mtDNA) as a model. The DNA chips are made up of ordered arrays of DNA oligonucleotide probes, synthesized on a glass substrate using photolithographic techniques. The synthesis site for each different probe is specifically addressed by illumination of the substrate through a photolithographic mask, achieving selective deprotection Nucleoside phosphoramidites bearing photolabile protecting groups are coupled only to exposed sites. Repeated cycles of deprotection and coupling generate all the probes in parallel. The set of 4{sup N} N-mer probes can be synthesized in only 4N steps. Any subset can be synthesized in 4N steps. Any subset can be synthesized in 4N or fewer steps. Sequences amplified from the D-loop region of human mitochondrial DNA (mtDNA) were fluorescently labelled and hybridized to DNA chips containing probes specific for mtDNA. Each nucleotide of a 1.3 kb region spanning the D loop is represented by four probes on the chip. Each probe has a different base at the position of interest: together they comprise a set of A, C, G and T probes which are otherwise identical. In principle, only one probe-target hybrid will be a perfect match. The other three will be single base mismatches. Fluorescence imaging of the hybridized chip allows quantification of hybridization signals. Heterozygous mixtures of sequences can also be characterized. We have developed software to quantitate and interpret the hybridization signals, and to call the sequence automatically. Results of sequence analysis of human mtDNAs will be presented.

  20. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    NASA Astrophysics Data System (ADS)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  1. Pyrosequencing sheds light on DNA sequencing.

    PubMed

    Ronaghi, M

    2001-01-01

    DNA sequencing is one of the most important platforms for the study of biological systems today. Sequence determination is most commonly performed using dideoxy chain termination technology. Recently, pyrosequencing has emerged as a new sequencing methodology. This technique is a widely applicable, alternative technology for the detailed characterization of nucleic acids. Pyrosequencing has the potential advantages of accuracy, flexibility, parallel processing, and can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides, and gel-electrophoresis. This article considers key features regarding different aspects of pyrosequencing technology, including the general principles, enzyme properties, sequencing modes, instrumentation, and potential applications. PMID:11156611

  2. Fluorogenic DNA Sequencing in PDMS Microreactors

    PubMed Central

    Sims, Peter A.; Greenleaf, William J.; Duan, Haifeng; Xie, X. Sunney

    2012-01-01

    We have developed a multiplex sequencing-by-synthesis method combining terminal-phosphate labeled fluorogenic nucleotides (TPLFNs) and resealable microreactors. In the presence of phosphatase, the incorporation of a non-fluorescent TPLFN into a DNA primer by DNA polymerase results in a fluorophore. We immobilize DNA templates within polydimethylsiloxane (PDMS) microreactors, sequentially introduce one of the four identically labeled TPLFNs, seal the microreactors, allow template-directed TPLFN incorporation, and measure the signal from the fluorophores trapped in the microreactors. This workflow allows sequencing in a manner akin to pyrosequencing but without constant monitoring of each microreactor. With cycle times of <10 minutes, we demonstrate 30 base reads with ∼99% raw accuracy. “Fluorogenic pyrosequencing” combines benefits of pyrosequencing, such as rapid turn-around, native DNA generation, and single-color detection, with benefits of fluorescence-based approaches, such as highly sensitive detection and simple parallelization. PMID:21666670

  3. Statistical and linguistic features of DNA sequences

    NASA Technical Reports Server (NTRS)

    Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We present evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationary" feature of the sequence of base pairs by applying a new algorithm called Detrended Fluctuation Analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and noncoding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to all eukaryotic DNA sequences (33 301 coding and 29 453 noncoding) in the entire GenBank database. We describe a simple model to account for the presence of long-range power-law correlations which is based upon a generalization of the classic Levy walk. Finally, we describe briefly some recent work showing that the noncoding sequences have certain statistical features in common with natural languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function. We suggest that noncoding regions in plants and invertebrates may display a smaller entropy and larger redundancy than coding regions, further supporting the possibility that noncoding regions of DNA may carry biological information.

  4. A Bioluminometric Method of DNA Sequencing

    NASA Technical Reports Server (NTRS)

    Ronaghi, Mostafa; Pourmand, Nader; Stolc, Viktor; Arnold, Jim (Technical Monitor)

    2001-01-01

    Pyrosequencing is a bioluminometric single-tube DNA sequencing method that takes advantage of co-operativity between four enzymes to monitor DNA synthesis. In this sequencing-by-synthesis method, a cascade of enzymatic reactions yields detectable light, which is proportional to incorporated nucleotides. Pyrosequencing has the advantages of accuracy, flexibility and parallel processing. It can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides and gel-electrophoresis. In this chapter, the use of this technique for different applications is discussed.

  5. Nanopore Technology: A Simple, Inexpensive, Futuristic Technology for DNA Sequencing.

    PubMed

    Gupta, P D

    2016-10-01

    In health care, importance of DNA sequencing has been fully established. Sanger's Capillary Electrophoresis DNA sequencing methodology is time consuming, cumbersome, hence become more expensive. Lately, because of its versatility DNA sequencing became house hold name, and therefore, there is an urgent need of simple, fast, inexpensive, DNA sequencing technology. In the beginning of this century efforts were made, and Nanopore DNA sequencing technology was developed; still it is infancy, nevertheless, it is the futuristic technology. PMID:27605732

  6. Replication pattern of human repeated DNA sequences.

    PubMed

    Meneveri, R; Agresti, A; Breviario, D; Ginelli, E

    1984-10-01

    Either aphidicolin- or thymidine-synchronized human HL-60 cells were used to study the replication pattern of a family of human repetitive DNA sequences, the Eco RI 340 bp family (alpha RI-DNA), and of the ladders of fragments generated in total human DNA after digestion with XbaI and HaeIII (alpha satellite sequences). DNAs replicated in early, middle-early, middle-late and late S periods were labelled with BUdR or with [3H]thymidine. The efficiency of the cell synchronization procedure was confirmed by the transition from a high-GC to a high-AT average base composition of the DNA synthesized going from early to late S periods. By hybridizing EcoRI 340 bp repetitive fragments to BUdR-DNAs it was found that this family of sequences is replicated throughout the entire S period. Comparing fluorograph densitometric scans of [3H]DNAs to the scans of ethidium bromide patterns of total HL-60 DNA digested with XbaI and HaeIII, it was observed that DNA synthesized in different S periods is characterized by approximately the same ladder of fragments, while the intensity of each band may vary through the S phase; in particular, the XbaI 2.4 kb fragment becomes undetectable in late S. PMID:6089891

  7. Multiple sequence alignment: a major challenge to large-scale phylogenetics

    PubMed Central

    Liu, Kevin; Linder, C. Randal; Warnow, Tandy

    2011-01-01

    Over the last decade, dramatic advances have been made in developing methods for large-scale phylogeny estimation, so that it is now feasible for investigators with moderate computational resources to obtain reasonable solutions to maximum likelihood and maximum parsimony, even for datasets with a few thousand sequences. There has also been progress on developing methods for multiple sequence alignment, so that greater alignment accuracy (and subsequent improvement in phylogenetic accuracy) is now possible through automated methods. However, these methods have not been tested under conditions that reflect properties of datasets confronted by large-scale phylogenetic estimation projects. In this paper we report on a study that compares several alignment methods on a benchmark collection of nucleotide sequence datasets of up to 78,132 sequences. We show that as the number of sequences increases, the number of alignment methods that can analyze the datasets decreases. Furthermore, the most accurate alignment methods are unable to analyze the very largest datasets we studied, so that only moderately accurate alignment methods can be used on the largest datasets. As a result, alignments computed for large datasets have relatively large error rates, and maximum likelihood phylogenies computed on these alignments also have high error rates. Therefore, the estimation of highly accurate multiple sequence alignments is a major challenge for Tree of Life projects, and more generally for large-scale systematics studies. PMID:21113338

  8. Sequence change and phylogenetic signal in muscoid COII DNA sequences.

    PubMed

    Szalanski, Allen L; Owens, Carrie B

    2003-08-01

    The complete DNA sequence of the mtDNA cytochrome oxidase II gene from house fly, Musca domestica, face fly, Musca autumnalis, stable fly, Stomoxys calcitrans, horn fly, Haematobia irritans, and black garbage fly, Hydrotaea aenescens, are reported. The nucleotide sequence codes for a 229 amino acid peptide. The COII sequence is A + T rich (74.1%), with up to 12.3% nucleotide and 8.4% amino acid divergence among the five taxa. Of the 688 nucleotides encoding for the gene, 135 nucleotide sites (19.6%) are variable, and 55 (8.0%) are phylogenetically informative. A phylogenetic analysis using three calliphorids as the outgroup taxa, indicates that the two haematophagus species, horn fly and stable fly, form a sister group. PMID:14631656

  9. cDNA sequences of two apolipoproteins from lamprey

    SciTech Connect

    Pontes, M.; Xu, X.; Graham, D.; Riley, M.; Doolittle, R.F.

    1987-03-24

    The messages for two small but abundant apolipoproteins found in lamprey blood plasma were cloned with the aid of oligonucleotide probes based on amino-terminal sequences. In both cases, numerous clones were identified in a lamprey liver cDNA library, consistent with the great abundance of these proteins in lamprey blood. One of the cDNAs (LAL1) has a coding region of 105 amino acids that corresponds to a 21-residue signal peptide, a putative 8-residue propeptide, and the 76-residue mature protein found in blood. The other cDNA (LAL2) codes for a total of 191 residues, the first 23 of which constitute a signal peptide. The two proteins, which occur in the high-density lipoprotein fraction of ultracentrifuged plasma, have amino acid compositions similar to those of apolipoproteins found in mammalian blood; computer analysis indicates that the sequences are largely helix-permissive. When the sequences were searched against an amino acid sequence data base, rat apolipoprotein IV was the best matching candidate in both cases. Although a reasonable alignment can be made with that sequence and LAL1, definitive assignment of the two lamprey proteins to typical mammalian classes cannot be made at this point.

  10. DNA Sequencing in Cultural Heritage.

    PubMed

    Vai, Stefania; Lari, Martina; Caramelli, David

    2016-02-01

    During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies. PMID:27572991

  11. A microchannel electrophoresis DNA sequencing system

    SciTech Connect

    Madabhushi, R S; Warth, T; Balch, J W; Bass, M; Brewer, L R; Copeland, A C; Davidson, J C; Fitch, J P; Kegelmeyer, L M; Kimbrough, J R; McCready, P; Nelson, D; Pastrone, R L; Richardson, P M; Swierkowski, S P; Tarte, L A; Vainer, M

    1999-01-01

    In order to increase the DNA sequencing throughput of the Joint Genome Institute, we have developed a microchannel electrophoresis system. The critical new and unique elements of this system include 1) a process for the production of arrays of 96 and 384 microchannels on bonded glass substrates up to 14 x 58 cm and 2) new sieving media for high resolution and high speed separations. With custom fabrication apparatus, microchannels are etched in a borosilicate substrate, and then fusion bonded to a top substrate 1.1 mm thick that has access holes formed in it. SEM examination shows a typical microchannel to be 40 micrometers deep x 180 micrometers wide by 46 cm long. This technology offers significant advantages over discrete capillaries or conventional slab-gel approaches. High throughput DNA sequencing with over 550 base pairs resolution has been achieved in roughly half the time of conventional sequencers. In February 1999, we begin a pre-production evaluation protocol for the microchannel and for three glass capillary electrophoresis systems (two from industry and one developed by Lawrence Berkeley National Laboratory for the Joint Genome Institute). In order to utilize these instruments for DNA production sequencing, we have been evaluating and implementing software to convert raw electropherograms into called DNA bases with an associated probability of error. Our original intent was to utilize the DNA base calling software known as Plan and Phred developed by the University of Washington. This software has been outstanding for our slab gel electrophoresis systems currently in the production facility. In our tests and evaluations of this software applied to microchannel data, we observed that the electropherograms are of a different statistical and underlying signal structure compared to slab gels. Even with substantial modifications to the software, base calling performance was not satisfactory for the microchannel data. In this paper, we will present o The

  12. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  13. Similarity evaluation of DNA sequences based on frequent patterns and entropy

    PubMed Central

    2015-01-01

    Background DNA sequence analysis is an important research topic in bioinformatics. Evaluating the similarity between sequences, which is crucial for sequence analysis, has attracted much research effort in the last two decades, and a dozen of algorithms and tools have been developed. These methods are based on alignment, word frequency and geometric representation respectively, each of which has its advantage and disadvantage. Results In this paper, for effectively computing the similarity between DNA sequences, we introduce a novel method based on frequency patterns and entropy to construct representative vectors of DNA sequences. Experiments are conducted to evaluate the proposed method, which is compared with two recently-developed alignment-free methods and the BLASTN tool. When testing on the β-globin genes of 11 species and using the results from MEGA as the baseline, our method achieves higher correlation coefficients than the two alignment-free methods and the BLASTN tool. Conclusions Our method is not only able to capture fine-granularity information (location and ordering) of DNA sequences via sequence blocking, but also insensitive to noise and sequence rearrangement due to considering only the maximal frequent patterns. It outperforms major existing methods or tools. PMID:25707937

  14. Slider—maximum use of probability information for alignment of short sequence reads and SNP detection

    PubMed Central

    Malhis, Nawar; Butterfield, Yaron S. N.; Ester, Martin; Jones, Steven J. M.

    2009-01-01

    Motivation: A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Results: Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality. Contact: nmalhis@bcgsc.ca Supplementary information and availability: http://www.bcgsc.ca/platform/bioinfo/software/slider PMID:18974170

  15. Progressive structure-based alignment of homologous proteins: Adopting sequence comparison strategies.

    PubMed

    Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2012-09-01

    Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. PMID:22676903

  16. DNA sequencing via transverse electronic transport

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan; Zwolak, Michael; di Ventra, Massimiliano

    2006-03-01

    Recently, it was theoretically shown that transverse current measurements could be used to distinguish the different bases of single stranded DNA. [1] If electrodes are embedded in a device, e.g., a nanopore, which allows translocation of ss-DNA, the strand can be sequenced by continuous measurement of the current in the direction perpendicular to the DNA backbone. [1] However, variations of the electronic signatures of each base in a real device due to structural fluctuations, counter-ions, water and other sources of noise will be important obstacles to overcome in order to make this theoretical proposal a reality. In order to explore these effects we have coupled molecular dynamics simulations with transport calculations to obtain the real time transverse current of ss-DNA translocating into a nanopore. We find that distributions of currents for each base are indeed different even in the presence of all the sources of noise discussed above. These results support even more the original proposal [1] that fast DNA sequencing could be done using transverse current measurements. Work supported by the National Humane Genome Research Institute. [1] M. Zwolak and M. Di Ventra, ``Electronic Signature of DNA Nucleotides via Transverse Transport'', Nano Lett. 5, 421 (2005).

  17. Imaging of DNA sequences with chemiluminescence

    SciTech Connect

    Tizard, R.; Cate, R.L.; Ramachandran, K.L.; Wysk, M.; Voyta, J.C.; Murphy, O.J.; Bronstein, I. )

    1990-06-01

    We have coupled a chemiluminescent detection method that uses an alkaline phosphatase label to the genomic DNA sequencing protocol of Church and Gilbert . Images of sequence ladders are obtained on x-ray film with exposure times of less than 30 min, as compared to 40 h required for a similar exposure with a 32P-labeled oligomer. Chemically cleaved DNA from a sequencing gel is transferred to a nylon membrane, and specific sequence ladders are selected by hybridization to DNA oligonucleotides labeled with alkaline phosphatase or with biotin, leading directly or indirectly to deposition of enzyme. If a biotinylated probe is used, an incubation with avidin-alkaline phosphatase conjugate follows. The membrane is soaked in the chemiluminescent substrate (AMPPD) and is exposed to film. Dephosphorylation of AMPPD leads in a two-step pathway to a highly localized emission of visible light. The demonstrated shorter exposure times may improve the efficiency of a serial reprobing strategy such as the multiplex sequencing approach of Church and Kieffer-Higgins.

  18. The DNA sequence of human chromosome 7.

    PubMed

    Hillier, Ladeana W; Fulton, Robert S; Fulton, Lucinda A; Graves, Tina A; Pepin, Kymberlie H; Wagner-McPherson, Caryn; Layman, Dan; Maas, Jason; Jaeger, Sara; Walker, Rebecca; Wylie, Kristine; Sekhon, Mandeep; Becker, Michael C; O'Laughlin, Michelle D; Schaller, Mark E; Fewell, Ginger A; Delehaunty, Kimberly D; Miner, Tracie L; Nash, William E; Cordes, Matt; Du, Hui; Sun, Hui; Edwards, Jennifer; Bradshaw-Cordum, Holland; Ali, Johar; Andrews, Stephanie; Isak, Amber; Vanbrunt, Andrew; Nguyen, Christine; Du, Feiyu; Lamar, Betty; Courtney, Laura; Kalicki, Joelle; Ozersky, Philip; Bielicki, Lauren; Scott, Kelsi; Holmes, Andrea; Harkins, Richard; Harris, Anthony; Strong, Cynthia Madsen; Hou, Shunfang; Tomlinson, Chad; Dauphin-Kohlberg, Sara; Kozlowicz-Reilly, Amy; Leonard, Shawn; Rohlfing, Theresa; Rock, Susan M; Tin-Wollam, Aye-Mon; Abbott, Amanda; Minx, Patrick; Maupin, Rachel; Strowmatt, Catrina; Latreille, Phil; Miller, Nancy; Johnson, Doug; Murray, Jennifer; Woessner, Jeffrey P; Wendl, Michael C; Yang, Shiaw-Pyng; Schultz, Brian R; Wallis, John W; Spieth, John; Bieri, Tamberlyn A; Nelson, Joanne O; Berkowicz, Nicolas; Wohldmann, Patricia E; Cook, Lisa L; Hickenbotham, Matthew T; Eldred, James; Williams, Donald; Bedell, Joseph A; Mardis, Elaine R; Clifton, Sandra W; Chissoe, Stephanie L; Marra, Marco A; Raymond, Christopher; Haugen, Eric; Gillett, Will; Zhou, Yang; James, Rose; Phelps, Karen; Iadanoto, Shawn; Bubb, Kerry; Simms, Elizabeth; Levy, Ruth; Clendenning, James; Kaul, Rajinder; Kent, W James; Furey, Terrence S; Baertsch, Robert A; Brent, Michael R; Keibler, Evan; Flicek, Paul; Bork, Peer; Suyama, Mikita; Bailey, Jeffrey A; Portnoy, Matthew E; Torrents, David; Chinwalla, Asif T; Gish, Warren R; Eddy, Sean R; McPherson, John D; Olson, Maynard V; Eichler, Evan E; Green, Eric D; Waterston, Robert H; Wilson, Richard K

    2003-07-10

    Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame. PMID:12853948

  19. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  20. Repetitive DNA sequences in Mycoplasma pneumoniae.

    PubMed Central

    Wenzel, R; Herrmann, R

    1988-01-01

    Two types of different repetitive DNA sequences called RepMP1 and RepMP2 were identified in the genome of Mycoplasma pneumoniae. The number of these repeated elements, their nucleotide sequence and their localization on a physical map of the M. pneumoniae genome were determined. The results show that RepMP1 appears at least 10 times and RepMP2 at least 8 times in the genome. The repeated elements are dispersed on the chromosome and, in three cases, linked to each other by a homologous DNA sequence of 400 bp. The elements themselves are 300 bp (for RepMP1) and 150 bp (for RepMP2) long showing a high degree of homology. One copy of RepMP2 is a translated part of the gene for the major cytadhesin protein P1 which is responsible for the adsorption of M. pneumoniae to its host cell. Images PMID:3138660

  1. Sequence-specific DNA nicking endonucleases.

    PubMed

    Xu, Shuang-yong

    2015-08-01

    A group of small HNH nicking endonucleases (NEases) was discovered recently from phage or prophage genomes that nick double-stranded DNA sites ranging from 3 to 5 bp in the presence of Mg2+ or Mn2+. The cosN site of phage HK97 contains a gp74 nicking site AC↑CGC, which is similar to AC↑CGR (R=A/G) of N.ϕGamma encoded by Bacillus phage Gamma. A minimal nicking domain of 76 amino acid residues from N.ϕGamma could be fused to other DNA binding partners to generate chimeric NEases with new specificities. The biological roles of a few small HNH endonucleases (HNHE, gp74 of HK97, gp37 of ϕSLT, ϕ12 HNHE) have been demonstrated in phage and pathogenicity island DNA packaging. Another group of NEases with 3- to 7-bp specificities are either natural components of restriction systems or engineered from type IIS restriction endonucleases. A phage group I intron-encoded HNH homing endonucleases, I-PfoP3I was found to nick DNA sites of 14-16 bp. I-TslI encoded by T7-like ΦI appeared to nick DNA sites with a 9-bp core sequence. DNA nicking and labeling have been applied to optical mapping to aid genome sequence assembly and detection of large insertion/deletion mutations in genomic DNA of cancer cells. Nicking enzyme-mediated amplification reaction has been applied to rapid diagnostic testing of influenza A and B in clinical setting and for construction of DNA-based Boolean logic gates. The clustered regularly interspaced short palindromic repeats-ribonucleoprotein complex consisting of engineered Cas9 nickases in conjunction with tracerRNA:crRNA or a single-guide RNA have been successfully used in genome modifications. PMID:26352356

  2. Construction and evaluation of a capillary electrophoresis DNA sequencer

    SciTech Connect

    Drossman, H.

    1992-01-01

    This dissertation describes the construction and evaluation of an automated DNA sequencer using capillary gel electrophoresis (CGE) for separating single-strand DNA fragments and a fluorescence detector for analyzing labeled fragments. Theories governing the electrophoretic separation of DNA, dispersion processes in CGE and high sensitivity fluorescence detection are reviewed. The CGE DNA sequencer is compared with current DNA sequencing instruments and with projections of future DNA sequencing instruments. Parameters affecting the limits of detection, DNA sample loading, sample mobility and resolution are evaluated. Predictions for the future of capillary electrophoresis for large-scale sequencing projects are presented.

  3. Toward a visualization of DNA sequences.

    PubMed

    Cox, David N; Tharp, Alan L

    2010-01-01

    Most biologists associate pattern discovery in DNA with finding repetitive sequences or commonalities across several sequences. However, pattern discovery is not limited to finding repetitions and commonalities. Pattern discovery also involves identifying objects and distinguishing objects from one another. Human vision is unmatched in its ability to identify and distinguish objects. Considerable research into human vision has revealed to a fair degree the visual cues that our brains use to segment an image into separate regions and entities. In this paper, we consider some of these visual cues to construct a novel graphical representation of a DNA sequence. We exploit one of these cues, proximity, to segment DNA into visibly distinct regions and structures. We also demonstrate how to manipulate proximity to identify motifs visually. Lastly, we demonstrate how an additional cue, color, can be used to visualize the Shannon entropy associated with different structures. The presence of large numbers of such regions and structures in DNA suggests that they likely play some important biological role and would be interesting targets for further research. PMID:20865527

  4. DNA Sequencing Using an Engineered Protein Nanopore

    NASA Astrophysics Data System (ADS)

    Gundlach, Jens H.

    2010-03-01

    Inexpensive and fast sequencing of DNA is of paramount importance to medicine, the life sciences and to many other applications. Because of the nanometer diameter of DNA a nanometer-scale reader directly interfaced to macroscopic observables seems particularly attractive. We are working on a new single molecule technique based on a biological pore embedded in a lipid bilayer. When a voltage is applied across the bilayer an ion current is measured that flows through the nanometer opening of the pore. Poly-negatively charged single stranded DNA passes through the pore and reduces the ion current with the remaining ion current being indicative of the nucleotide type in the constriction of the pore. The protein pore that we introduced to the field, MspA, has a shape ideally suited to nanopore sequencing, has robustness comparable to solid state devices, is easily reproduced with sub-nanometer level precision and is engineerable using genetic mutations. I will present proof-of-principle data showing that this technique can lead to a direct very inexpensive and fast sequencing technology. The experimental electronic signatures of the DNA translocation process provide an ideal test bed for molecular dynamics simulations, which in turn allows developing intuition and prediction of nanoscale dynamics.

  5. Linking GPS and travel diary data using sequence alignment in a study of children's independent mobility

    PubMed Central

    2011-01-01

    Background Global positioning systems (GPS) are increasingly being used in health research to determine the location of study participants. Combining GPS data with data collected via travel/activity diaries allows researchers to assess where people travel in conjunction with data about trip purpose and accompaniment. However, linking GPS and diary data is problematic and to date the only method has been to match the two datasets manually, which is time consuming and unlikely to be practical for larger data sets. This paper assesses the feasibility of a new sequence alignment method of linking GPS and travel diary data in comparison with the manual matching method. Methods GPS and travel diary data obtained from a study of children's independent mobility were linked using sequence alignment algorithms to test the proof of concept. Travel diaries were assessed for quality by counting the number of errors and inconsistencies in each participant's set of diaries. The success of the sequence alignment method was compared for higher versus lower quality travel diaries, and for accompanied versus unaccompanied trips. Time taken and percentage of trips matched were compared for the sequence alignment method and the manual method. Results The sequence alignment method matched 61.9% of all trips. Higher quality travel diaries were associated with higher match rates in both the sequence alignment and manual matching methods. The sequence alignment method performed almost as well as the manual method and was an order of magnitude faster. However, the sequence alignment method was less successful at fully matching trips and at matching unaccompanied trips. Conclusions Sequence alignment is a promising method of linking GPS and travel diary data in large population datasets, especially if limitations in the trip detection algorithm are addressed. PMID:22142322

  6. Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties

    PubMed Central

    Neuwald, Andrew F.; Altschul, Stephen F.

    2016-01-01

    We describe a Bayesian Markov chain Monte Carlo (MCMC) sampler for protein multiple sequence alignment (MSA) that, as implemented in the program GISMO and applied to large numbers of diverse sequences, is more accurate than the popular MSA programs MUSCLE, MAFFT, Clustal-Ω and Kalign. Features of GISMO central to its performance are: (i) It employs a “top-down” strategy with a favorable asymptotic time complexity that first identifies regions generally shared by all the input sequences, and then realigns closely related subgroups in tandem. (ii) It infers position-specific gap penalties that favor insertions or deletions (indels) within each sequence at alignment positions in which indels are invoked in other sequences. This favors the placement of insertions between conserved blocks, which can be understood as making up the proteins’ structural core. (iii) It uses a Bayesian statistical measure of alignment quality based on the minimum description length principle and on Dirichlet mixture priors. Consequently, GISMO aligns sequence regions only when statistically justified. This is unlike methods based on the ad hoc, but widely used, sum-of-the-pairs scoring system, which will align random sequences. (iv) It defines a system for exploring alignment space that provides natural avenues for further experimentation through the development of new sampling strategies for more efficiently escaping from suboptimal traps. GISMO’s superior performance is illustrated using 408 protein sets containing, on average, 235 sequences. These sets correspond to NCBI Conserved Domain Database alignments, which have been manually curated in the light of available crystal structures, and thus provide a means to assess alignment accuracy. GISMO fills a different niche than other MSA programs, namely identifying and aligning a conserved domain present within a large, diverse set of full length sequences. The GISMO program is available at http://gismo.igs.umaryland.edu/. PMID

  7. Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties.

    PubMed

    Neuwald, Andrew F; Altschul, Stephen F

    2016-05-01

    We describe a Bayesian Markov chain Monte Carlo (MCMC) sampler for protein multiple sequence alignment (MSA) that, as implemented in the program GISMO and applied to large numbers of diverse sequences, is more accurate than the popular MSA programs MUSCLE, MAFFT, Clustal-Ω and Kalign. Features of GISMO central to its performance are: (i) It employs a "top-down" strategy with a favorable asymptotic time complexity that first identifies regions generally shared by all the input sequences, and then realigns closely related subgroups in tandem. (ii) It infers position-specific gap penalties that favor insertions or deletions (indels) within each sequence at alignment positions in which indels are invoked in other sequences. This favors the placement of insertions between conserved blocks, which can be understood as making up the proteins' structural core. (iii) It uses a Bayesian statistical measure of alignment quality based on the minimum description length principle and on Dirichlet mixture priors. Consequently, GISMO aligns sequence regions only when statistically justified. This is unlike methods based on the ad hoc, but widely used, sum-of-the-pairs scoring system, which will align random sequences. (iv) It defines a system for exploring alignment space that provides natural avenues for further experimentation through the development of new sampling strategies for more efficiently escaping from suboptimal traps. GISMO's superior performance is illustrated using 408 protein sets containing, on average, 235 sequences. These sets correspond to NCBI Conserved Domain Database alignments, which have been manually curated in the light of available crystal structures, and thus provide a means to assess alignment accuracy. GISMO fills a different niche than other MSA programs, namely identifying and aligning a conserved domain present within a large, diverse set of full length sequences. The GISMO program is available at http://gismo.igs.umaryland.edu/. PMID:27192614

  8. Local Renyi entropic profiles of DNA sequences

    PubMed Central

    Vinga, Susana; Almeida, Jonas S

    2007-01-01

    Background In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. Results The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at . Conclusion The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures. PMID:17939871

  9. Upcoming challenges for multiple sequence alignment methods in the high-throughput era

    PubMed Central

    Kemena, Carsten; Notredame, Cedric

    2009-01-01

    This review focuses on recent trends in multiple sequence alignment tools. It describes the latest algorithmic improvements including the extension of consistency-based methods to the problem of template-based multiple sequence alignments. Some results are presented suggesting that template-based methods are significantly more accurate than simpler alternative methods. The validation of existing methods is also discussed at length with the detailed description of recent results and some suggestions for future validation strategies. The last part of the review addresses future challenges for multiple sequence alignment methods in the genomic era, most notably the need to cope with very large sequences, the need to integrate large amounts of experimental data, the need to accurately align non-coding and non-transcribed sequences and finally, the need to integrate many alternative methods and approaches. Contact: cedric.notredame@crg.es PMID:19648142

  10. Linguistic features of noncoding DNA sequences

    NASA Astrophysics Data System (ADS)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C.-K.; Simons, M.; Stanley, H. E.

    1994-12-01

    We extend the Zipf approach to analyzing linguistic texts to the statistical study of DNA base pair sequences, and find that the noncoding regions are more similar to natural languages than the coding regions. We also adapt the Shannon approach to quantifying the ``redundancy'' of a linguistic text in terms of a measurable entropy function, and demonstrate that noncoding regions in eukaryotes display a smaller entropy and larger redundancy B than coding regions, supporting the possibility that noncoding regions of DNA may carry biological information.

  11. Metagenomics: DNA sequencing of environmental samples

    SciTech Connect

    Tringe, Susannah Green; Rubin, Edward M.

    2005-09-01

    While genomics has classically focused on pure,easy-to-obtain samples, such as microbes that grow readily in culture orlarge animals and plants, these organisms represent but a fraction of theliving or once living organisms of interest. Many species are difficultto study in isolation, because they fail to grow in laboratory culture,depend on other organisms for critical processes, or have become extinct.DNA sequence-based methods circumvent these obstacles, as DNA can bedirectly isolated from live or dead cells in a variety of contexts, andhave led to the emergence of a new field referred to asmetagenomics.

  12. Compilation of DNA sequences of Escherichia coli

    PubMed Central

    Kröger, Manfred

    1989-01-01

    We have compiled the DNA sequence data for E.coli K12 available from the GENBANK and EMBO databases and over a period of several years independently from the literature. We have introduced all available genetic map data and have arranged the sequences accordingly. As far as possible the overlaps are deleted and a total of 940,449 individual bp is found to be determined till the beginning of 1989. This corresponds to a total of 19.92% of the entire E.coli chromosome consisting of about 4,720 kbp. This number may actually be higher by some extra 2% derived from the sequence of lysogenic bacteriophage lambda and the various insertion sequences. This compilation may be available in machine readable form from one of the international databanks in some future. PMID:2654890

  13. AREM: Aligning Short Reads from ChIP-Sequencing by Expectation Maximization

    NASA Astrophysics Data System (ADS)

    Newkirk, Daniel; Biesinger, Jacob; Chon, Alvin; Yokomori, Kyoko; Xie, Xiaohui

    High-throughput sequencing coupled to chromatin immunoprecipitation (ChIP-Seq) is widely used in characterizing genome-wide binding patterns of transcription factors, cofactors, chromatin modifiers, and other DNA binding proteins. A key step in ChIP-Seq data analysis is to map short reads from high-throughput sequencing to a reference genome and identify peak regions enriched with short reads. Although several methods have been proposed for ChIP-Seq analysis, most existing methods only consider reads that can be uniquely placed in the reference genome, and therefore have low power for detecting peaks located within repeat sequences. Here we introduce a probabilistic approach for ChIP-Seq data analysis which utilizes all reads, providing a truly genome-wide view of binding patterns. Reads are modeled using a mixture model corresponding to K enriched regions and a null genomic background. We use maximum likelihood to estimate the locations of the enriched regions, and implement an expectation-maximization (E-M) algorithm, called AREM (aligning reads by expectation maximization), to update the alignment probabilities of each read to different genomic locations. We apply the algorithm to identify genome-wide binding events of two proteins: Rad21, a component of cohesin and a key factor involved in chromatid cohesion, and Srebp-1, a transcription factor important for lipid/cholesterol homeostasis. Using AREM, we were able to identify 19,935 Rad21 peaks and 1,748 Srebp-1 peaks in the mouse genome with high confidence, including 1,517 (7.6%) Rad21 peaks and 227 (13%) Srebp-1 peaks that were missed using only uniquely mapped reads. The open source implementation of our algorithm is available at http://sourceforge.net/projects/arem

  14. Efficient mapping of genomic sequences to optimize multiple pairwise alignment in hybrid cluster platforms.

    PubMed

    Montañola, Alberto; Roig, Concepció; Hernández, Porfidio

    2014-01-01

    Multiple sequence alignment (MSA), used in biocomputing to study similarities between different genomic sequences, is known to require important memory and computation resources. Nowadays, researchers are aligning thousands of these sequences, creating new challenges in order to solve the problem using the available resources efficiently. Determining the efficient amount of resources to allocate is important to avoid waste of them, thus reducing the economical costs required in running for example a specific cloud instance. The pairwise alignment is the initial key step of the MSA problem, which will compute all pair alignments needed. We present a method to determine the optimal amount of memory and computation resources to allocate by the pairwise alignment, and we will validate it through a set of experimental results for different possible inputs. These allow us to determine the best parameters to configure the applications in order to use effectively the available resources of a given system. PMID:25339085

  15. Highly multiplexed DNA sequencing by capillary electrophoresis

    SciTech Connect

    Yeung, E.S.; Ueno, K.; Chang, H.T.

    1994-12-31

    It is obvious that irrespective of whichever basic technology is eventually selected to sequence the entire human genome there are substantial gains to be made if a high degree of multiplexing of parallel runs can be implemented. Such multiplexing should not involve expensive instrumentation and should not require additional personnel, or else the main objective of cost reduction will not be satisfied even though the total time for sequencing is reduced. In the last two years, several research groups have shown that capillary electrophoresis (CE) is an attractive alternative for DNA sequencing. Part of the improvement in sequencing speed in CE is counteracted by the inherent ability of slab gels for accommodating multiple lanes in a single run. Recently, the authors have developed several excitation schemes for highly multiplexed capillary electrophoresis. Detection at the pM level was demonstrated. The authors report here the use of a novel excitation geometry to simultaneously monitor 100 capillary tubes during electrophoresis. This represents a truly parallel multiplexing scheme for high-speed DNA sequencing.

  16. Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model

    PubMed Central

    Neuwald, Andrew F; Liu, Jun S

    2004-01-01

    Background Certain protein families are highly conserved across distantly related organisms and belong to large and functionally diverse superfamilies. The patterns of conservation present in these protein sequences presumably are due to selective constraints maintaining important but unknown structural mechanisms with some constraints specific to each family and others shared by a larger subset or by the entire superfamily. To exploit these patterns as a source of functional information, we recently devised a statistically based approach called contrast hierarchical alignment and interaction network (CHAIN) analysis, which infers the strengths of various categories of selective constraints from co-conserved patterns in a multiple alignment. The power of this approach strongly depends on the quality of the multiple alignments, which thus motivated development of theoretical concepts and strategies to improve alignment of conserved motifs within large sets of distantly related sequences. Results Here we describe a hidden Markov model (HMM), an algebraic system, and Markov chain Monte Carlo (MCMC) sampling strategies for alignment of multiple sequence motifs. The MCMC sampling strategies are useful both for alignment optimization and for adjusting position specific background amino acid frequencies for alignment uncertainties. Associated statistical formulations provide an objective measure of alignment quality as well as automatic gap penalty optimization. Improved alignments obtained in this way are compared with PSI-BLAST based alignments within the context of CHAIN analysis of three protein families: Giα subunits, prolyl oligopeptidases, and transitional endoplasmic reticulum (p97) AAA+ ATPases. Conclusion While not entirely replacing PSI-BLAST based alignments, which likewise may be optimized for CHAIN analysis using this approach, these motif-based methods often more accurately align very distantly related sequences and thus can provide a better measure of

  17. ASTRAL, a hyperspectral imaging DNA sequencer

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin M.; Wren, Jonathan; Davé, Varshal K.; Bai, Diane; Anderson, Richard D.; Rayner, Simon; Evans, Glen A.; Dabiri, Ali E.; Garner, Harold R.

    1998-05-01

    We are developing a prototype automatic DNA sequencer which utilizes polyacrylamide slab gels imaged through a novel optical detection system. The design of this prototype sequencer allows the ability to perform direct optical coupling over the entire read area of the gel and hyperspectrographic separation and detection of the fluorescence emission. The machine has no moving parts. All the major components incorporated in this prototype are all currently available "off the shelf," thus reducing equipment development time and decreasing costs. Software developed for data acquisition, analysis, and conversion to other standard formats facilitates compatibility.

  18. DNA sequences, recombinant DNA molecules and processes producing human phospholipase inhibitor polypeptides

    SciTech Connect

    Wallner, B.P.; Pepinsky, R.B.; Garwin, J.L.

    1989-11-07

    This patent describes a recombinant DNA molecule. In comprises a DNA sequence coding for a phospholopase inhibitor polypeptide and being selected from the group consisting of: the cDNA insert of ALC, DNA sequences which code on expression for a phospholopase inhibitor, and DNA sequences which are degenerate as a result of the genetic code to either of the foregoing DNA sequences and which code on expression for a phospholipase inhibitor.

  19. GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality.

    PubMed

    Wu, Thomas D; Reeder, Jens; Lawrence, Michael; Becker, Gabe; Brauer, Matthew J

    2016-01-01

    The programs GMAP and GSNAP, for aligning RNA-Seq and DNA-Seq datasets to genomes, have evolved along with advances in biological methodology to handle longer reads, larger volumes of data, and new types of biological assays. The genomic representation has been improved to include linear genomes that can compare sequences using single-instruction multiple-data (SIMD) instructions, compressed genomic hash tables with fast access using SIMD instructions, handling of large genomes with more than four billion bp, and enhanced suffix arrays (ESAs) with novel data structures for fast access. Improvements to the algorithms have included a greedy match-and-extend algorithm using suffix arrays, segment chaining using genomic hash tables, diagonalization using segmental hash tables, and nucleotide-level dynamic programming procedures that use SIMD instructions and eliminate the need for F-loop calculations. Enhancements to the functionality of the programs include standardization of indel positions, handling of ambiguous splicing, clipping and merging of overlapping paired-end reads, and alignments to circular chromosomes and alternate scaffolds. The programs have been adapted for use in pipelines by integrating their usage into R/Bioconductor packages such as gmapR and HTSeqGenie, and these pipelines have facilitated the discovery of numerous biological phenomena. PMID:27008021

  20. Sequencing and Analysis of Neanderthal Genomic DNA

    PubMed Central

    Noonan, James P.; Coop, Graham; Kudaravalli, Sridhar; Smith, Doug; Krause, Johannes; Alessi, Joe; Chen, Feng; Platt, Darren; Pääbo, Svante; Pritchard, Jonathan K.; Rubin, Edward M.

    2008-01-01

    Our knowledge of Neanderthals is based on a limited number of remains and artifacts from which we must make inferences about their biology, behavior, and relationship to ourselves. Here, we describe the characterization of these extinct hominids from a new perspective, based on the development of a Neanderthal metagenomic library and its high-throughput sequencing and analysis. Several lines of evidence indicate that the 65,250 base pairs of hominid sequence so far identified in the library are of Neanderthal origin, the strongest being the ascertainment of sequence identities between Neanderthal and chimpanzee at sites where the human genomic sequence is different. These results enabled us to calculate the human-Neanderthal divergence time based on multiple randomly distributed autosomal loci. Our analyses suggest that on average the Neanderthal genomic sequence we obtained and the reference human genome sequence share a most recent common ancestor ~706,000 years ago, and that the human and Neanderthal ancestral populations split ~370,000 years ago, before the emergence of anatomically modern humans. Our finding that the Neanderthal and human genomes are at least 99.5% identical led us to develop and successfully implement a targeted method for recovering specific ancient DNA sequences from metagenomic libraries. This initial analysis of the Neanderthal genome advances our understanding of the evolutionary relationship of Homo sapiens and Homo neanderthalensis and signifies the dawn of Neanderthal genomics. PMID:17110569

  1. Pattern recognition and probabilistic measures in alignment-free sequence analysis.

    PubMed

    Schwende, Isabel; Pham, Tuan D

    2014-05-01

    With the massive production of genomic and proteomic data, the number of available biological sequences in databases has reached a level that is not feasible anymore for exact alignments even when just a fraction of all sequences is used. To overcome this inevitable time complexity, ultrafast alignment-free methods are studied. Within the past two decades, a broad variety of nonalignment methods have been proposed including dissimilarity measures on classical representations of sequences like k-words or Markov models. Furthermore, articles were published that describe distance measures on alternative representations such as compression complexity, spectral time series or chaos game representation. However, alignments are still the standard method for real world applications in biological sequence analysis, and the time efficient alignment-free approaches are usually applied in cases when the accustomed algorithms turn out to fail or be too inconvenient. PMID:24096012

  2. Imaging of DNA sequences with chemiluminescence

    SciTech Connect

    Tizard, R.; Cate, R.L.; Ramachandran, K.L.; Wysk, M.; Bronstein, I.; Voyta, J.C.; Murphy, O.J.

    1989-12-31

    We have coupled a chemiluminescent method for detecting oligonucleotides labeled with alkaline phosphatase to the genomic DNA sequencing protocol of Church and Gilbert. Images of sequence ladders obtained on x-ray film in a 30 minute exposure are comparable to those from a 40 hour exposure with 3000 Ci/mmol {sup 32}P probes. Chemically cleaved DNA from a sequencing gel is transferred to a nylon membrane, and specific sequence ladders are selected by hybridization to an oligonucleotide probe conjugated either to biotin or to alkaline phosphates. If biotinylated probe is used, then an avidin-alkaline phosphatase conjugate is subsequently bound. This membrane, bearing immobilized alkaline phosphatase, is incubated with the commercially available chemiluminescent substrate disodium 3-(4-methoxyspiro[1,2-dioxetone-3,2{prime}-tricyclo[3.3.1.1.{sup 3.7}]decan]-4-yl)phenyl phosphate. (AMPPD) Dephosphorylation of AMPPD leads in a two step pathway to a highly localized emission of visible light.

  3. Imaging of DNA sequences with chemiluminescence

    SciTech Connect

    Tizard, R.; Cate, R.L.; Ramachandran, K.L.; Wysk, M. ); Bronstein, I.; Voyta, J.C.; Murphy, O.J. )

    1989-01-01

    We have coupled a chemiluminescent method for detecting oligonucleotides labeled with alkaline phosphatase to the genomic DNA sequencing protocol of Church and Gilbert. Images of sequence ladders obtained on x-ray film in a 30 minute exposure are comparable to those from a 40 hour exposure with 3000 Ci/mmol {sup 32}P probes. Chemically cleaved DNA from a sequencing gel is transferred to a nylon membrane, and specific sequence ladders are selected by hybridization to an oligonucleotide probe conjugated either to biotin or to alkaline phosphates. If biotinylated probe is used, then an avidin-alkaline phosphatase conjugate is subsequently bound. This membrane, bearing immobilized alkaline phosphatase, is incubated with the commercially available chemiluminescent substrate disodium 3-(4-methoxyspiro(1,2-dioxetone-3,2{prime}-tricyclo(3.3.1.1.{sup 3.7})decan)-4-yl)phenyl phosphate. (AMPPD) Dephosphorylation of AMPPD leads in a two step pathway to a highly localized emission of visible light.

  4. Accurate restoration of DNA sequences. Progress report

    SciTech Connect

    Churchill, G.A.

    1994-05-01

    The primary of this project are the development of (1) a general stochastic model for DNA sequencing errors (2) algorithms to restore the original DNA sequence and (3) statistical methods to assess the accuracy of this restoration. A secondary objective is to develop new algorithms for fragment assembly. Initially a stochastic model that assumes errors are independent and uniformly distributed will be developed. Generalizations of the basic model will be developed to account for (1) decay of accuracy along fragments, (2) variable error rates among fragments, (3) sequence dependent errors (e.g. homopolymeric, runs), and (4) strand--specific systematic errors (e.g. compressions). The emphasis of this project will be the development of a theoretical basis for determining sequence accuracy. However, new algorithms are proposed and these will be implemented as software (in the C programming language). This software will be tested using real and simulated data. It will be modular in design and will be made available for distribution to the scientific community.

  5. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1988-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3368330

  6. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1989-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2654889

  7. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1990-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227

  8. PhyPA: Phylogenetic method with pairwise sequence alignment outperforms likelihood methods in phylogenetics involving highly diverged sequences.

    PubMed

    Xia, Xuhua

    2016-09-01

    While pairwise sequence alignment (PSA) by dynamic programming is guaranteed to generate one of the optimal alignments, multiple sequence alignment (MSA) of highly divergent sequences often results in poorly aligned sequences, plaguing all subsequent phylogenetic analysis. One way to avoid this problem is to use only PSA to reconstruct phylogenetic trees, which can only be done with distance-based methods. I compared the accuracy of this new computational approach (named PhyPA for phylogenetics by pairwise alignment) against the maximum likelihood method using MSA (the ML+MSA approach), based on nucleotide, amino acid and codon sequences simulated with different topologies and tree lengths. I present a surprising discovery that the fast PhyPA method consistently outperforms the slow ML+MSA approach for highly diverged sequences even when all optimization options were turned on for the ML+MSA approach. Only when sequences are not highly diverged (i.e., when a reliable MSA can be obtained) does the ML+MSA approach outperforms PhyPA. The true topologies are always recovered by ML with the true alignment from the simulation. However, with MSA derived from alignment programs such as MAFFT or MUSCLE, the recovered topology consistently has higher likelihood than that for the true topology. Thus, the failure to recover the true topology by the ML+MSA is not because of insufficient search of tree space, but by the distortion of phylogenetic signal by MSA methods. I have implemented in DAMBE PhyPA and two approaches making use of multi-gene data sets to derive phylogenetic support for subtrees equivalent to resampling techniques such as bootstrapping and jackknifing. PMID:27377322

  9. Predicting and improving the protein sequence alignment quality by support vector regression

    PubMed Central

    Lee, Minho; Jeong, Chan-seok; Kim, Dongsup

    2007-01-01

    Background For successful protein structure prediction by comparative modeling, in addition to identifying a good template protein with known structure, obtaining an accurate sequence alignment between a query protein and a template protein is critical. It has been known that the alignment accuracy can vary significantly depending on our choice of various alignment parameters such as gap opening penalty and gap extension penalty. Because the accuracy of sequence alignment is typically measured by comparing it with its corresponding structure alignment, there is no good way of evaluating alignment accuracy without knowing the structure of a query protein, which is obviously not available at the time of structure prediction. Moreover, there is no universal alignment parameter option that would always yield the optimal alignment. Results In this work, we develop a method to predict the quality of the alignment between a query and a template. We train the support vector regression (SVR) models to predict the MaxSub scores as a measure of alignment quality. The alignment between a query protein and a template of length n is transformed into a (n + 1)-dimensional feature vector, then it is used as an input to predict the alignment quality by the trained SVR model. Performance of our work is evaluated by various measures including Pearson correlation coefficient between the observed and predicted MaxSub scores. Result shows high correlation coefficient of 0.945. For a pair of query and template, 48 alignments are generated by changing alignment options. Trained SVR models are then applied to predict the MaxSub scores of those and to select the best alignment option which is chosen specifically to the query-template pair. This adaptive selection procedure results in 7.4% improvement of MaxSub scores, compared to those when the single best parameter option is used for all query-template pairs. Conclusion The present work demonstrates that the alignment quality can be

  10. Modular sequence elements associated with origin regions in eukaryotic chromosomal DNA.

    PubMed Central

    Dobbs, D L; Shaiu, W L; Benbow, R M

    1994-01-01

    We have postulated that chromosomal replication origin regions in eukaryotes have in common clusters of certain modular sequence elements (Benbow, Zhao, and Larson, BioEssays 14, 661-670, 1992). In this study, computer analyses of DNA sequences from six origin regions showed that each contained one or more potential initiation regions consisting of a putative DUE (DNA unwinding element) aligned with clusters of SAR (scaffold associated region), and ARS (autonomously replicating sequence) consensus sequences, and pyrimidine tracts. The replication origins analyzed were from the following loci: Tetrahymena thermophila macronuclear rDNA gene, Chinese hamster ovary dihydrofolate reductase amplicon, human c-myc proto-oncogene, chicken histone H5 gene, Drosophila melanogaster chorion gene cluster on the third chromosome, and Chinese hamster ovary rhodopsin gene. The locations of putative initiation regions identified by the computer analyses were compared with published data obtained using diverse methods to map initiation sites. For at least four loci, the potential initiation regions identified by sequence analysis aligned with previously mapped initiation events. A consensus DNA sequence, WAWTTDDWWWDHWGWHMAWTT, was found within the potential initiation regions in every case. An additional 35 kb of combined flanking sequences from the six loci were also analyzed, but no additional copies of this consensus sequence were found. Images PMID:8041609

  11. Investigation of mtDNA control region sequences in an Egyptian population sample.

    PubMed

    Elmadawy, Mostafa Ali; Nagai, Atsushi; Gomaa, Ghada M; Hegazy, Hanaa M R; Shaaban, Fawzy Eid; Bunai, Yasuo

    2013-11-01

    The sequences of mitochondrial DNA (mtDNA) control region were investigated in 101 unrelated individuals living in the northern region of Nile delta (Gharbia, N=55 and Kafrelsheikh, N=46). DNA was extracted from blood stained filter papers or buccal swabs. HV1, HV2 and HV3 were PCR amplified and sequenced; the resulted sequences were aligned and compared with revised Cambridge sequence (rCRS). The results revealed presence of total 93 different haplotypes, 86 of them are unique and 7 are shared haplotypes, the most common haplotype, was observed with a frequency, 2.97% of population sample. High mtDNA diversity was observed with genetic diversity and power of discrimination, 0.9982 and 0.9883, respectively. In this dataset the west Eurasian haplogroups predominated over the African haplogroups. The results would be useful for forensic examinations and human genetic studies. PMID:23910099

  12. A statistical physics perspective on alignment-independent protein sequence comparison

    PubMed Central

    Chattopadhyay, Amit K.; Nasiev, Diar; Flower, Darren R.

    2015-01-01

    Motivation: Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Results: Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from ‘first passage probability distribution’ to summarize statistics of ensemble averaged amino acid propensity values. In this article, we introduce and elaborate this approach. Contact: d.r.flower@aston.ac.uk PMID:25810434

  13. Human DNA sequence homologous to the transforming gene (mos) of Moloney murine sarcoma virus.

    PubMed Central

    Watson, R; Oskarsson, M; Vande Woude, G F

    1982-01-01

    We describe the molecular cloning of a 9-kilo-base-pair BamHI fragment from human placental DNA containing a sequence homologous to the transforming gene (v-mos) of Moloney murine sarcoma virus. The DNA sequence of the homologous region of human DNA (termed humos) was resolved and compared to that of the mouse cellular homolog of v-mos (termed mumos) [Van Beveren, C., van Straaten, F., Galleshaw, J.A. & Verma, I.M. (1981) Cell 27, 97-108]. The humos gene contained an open reading frame of 346 codons that was aligned with the equivalent mumos DNA sequence by the introduction of two gaps of 15 and 3 bases into the mumos DNA and a single gap of 9 bases into the humos DNA. The aligned coding sequences were 77% homologous and terminated at equivalent opal codons. The humos open reading frame initiated at an ATG found internally in the mumos coding sequence. The polypeptides predicted from the DNA sequence to be encoded by humos and mumos also were found to be extensively homologous, and 253 of 337 amino acids were shared between the two polypeptides. The first five NH2-terminal and last two COOH-terminal amino acids of the humos gene product were in common with those of mumos. In addition, near the middle of the polypeptide chains, four regions ranging from 19 to 26 consecutive amino acids were conserved. However, we have not been able to transform mouse cells with transfected humos DNA fragments or with hybrid DNA recombinants containing humos and retroviral long terminal repeat (LTR) sequences. Images PMID:6287464

  14. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  15. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    SciTech Connect

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  16. Antimutator Mutations in the α Subunit of Escherichia Coli DNA Polymerase III: Identification of the Responsible Mutations and Alignment with Other DNA Polymerases

    PubMed Central

    Fijalkowska, I. J.; Schaaper, R. M.

    1993-01-01

    The dnaE gene of Escherichia coli encodes the DNA polymerase (α subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions. PMID:8375647

  17. Porcine parvovirus: DNA sequence and genome organization.

    PubMed

    Ranz, A I; Manclús, J J; Díaz-Aroca, E; Casal, J I

    1989-10-01

    We have determined the nucleotide sequence of an almost full-length clone of porcine parvovirus (PPV). The sequence is 4973 nucleotides (nt) long. The 3' end of virion DNA shows a Y-shaped configuration homologous to rodent parvoviruses. The 5' end of virion DNA shows a repetition of 127 nt at the carboxy terminus of the capsid proteins. The overall organization of the PPV genome is similar to those of other autonomous parvoviruses. There are two large open reading frames (ORFs) that almost entirely cover the genome, both located in the same frame of the complementary strand. The left ORF encodes the non-structural protein NS1 and the right ORF encodes the capsid proteins (VP1, VP2 and VP3). Promoter analysis, location of splicing sites and putative amino acid sequences for the viral proteins show a high homology of PPV with feline panleukopenia virus and canine parvoviruses (FPV and CPV) and rodent parvovirus. Therefore we conclude that PPV is related to the Kilham rat virus (KRV) group of autonomous parvoviruses formed by KRV, minute virus of mice, Lu III, H-1, FPV and CPV. PMID:2794971

  18. Current Methods for Automated Filtering of Multiple Sequence Alignments Frequently Worsen Single-Gene Phylogenetic Inference

    PubMed Central

    Tan, Ge; Muffato, Matthieu; Ledergerber, Christian; Herrero, Javier; Goldman, Nick; Gil, Manuel; Dessimoz, Christophe

    2015-01-01

    Phylogenetic inference is generally performed on the basis of multiple sequence alignments (MSA). Because errors in an alignment can lead to errors in tree estimation, there is a strong interest in identifying and removing unreliable parts of the alignment. In recent years several automated filtering approaches have been proposed, but despite their popularity, a systematic and comprehensive comparison of different alignment filtering methods on real data has been lacking. Here, we extend and apply recently introduced phylogenetic tests of alignment accuracy on a large number of gene families and contrast the performance of unfiltered versus filtered alignments in the context of single-gene phylogeny reconstruction. Based on multiple genome-wide empirical and simulated data sets, we show that the trees obtained from filtered MSAs are on average worse than those obtained from unfiltered MSAs. Furthermore, alignment filtering often leads to an increase in the proportion of well-supported branches that are actually wrong. We confirm that our findings hold for a wide range of parameters and methods. Although our results suggest that light filtering (up to 20% of alignment positions) has little impact on tree accuracy and may save some computation time, contrary to widespread practice, we do not generally recommend the use of current alignment filtering methods for phylogenetic inference. By providing a way to rigorously and systematically measure the impact of filtering on alignments, the methodology set forth here will guide the development of better filtering algorithms. PMID:26031838

  19. Current Methods for Automated Filtering of Multiple Sequence Alignments Frequently Worsen Single-Gene Phylogenetic Inference.

    PubMed

    Tan, Ge; Muffato, Matthieu; Ledergerber, Christian; Herrero, Javier; Goldman, Nick; Gil, Manuel; Dessimoz, Christophe

    2015-09-01

    Phylogenetic inference is generally performed on the basis of multiple sequence alignments (MSA). Because errors in an alignment can lead to errors in tree estimation, there is a strong interest in identifying and removing unreliable parts of the alignment. In recent years several automated filtering approaches have been proposed, but despite their popularity, a systematic and comprehensive comparison of different alignment filtering methods on real data has been lacking. Here, we extend and apply recently introduced phylogenetic tests of alignment accuracy on a large number of gene families and contrast the performance of unfiltered versus filtered alignments in the context of single-gene phylogeny reconstruction. Based on multiple genome-wide empirical and simulated data sets, we show that the trees obtained from filtered MSAs are on average worse than those obtained from unfiltered MSAs. Furthermore, alignment filtering often leads to an increase in the proportion of well-supported branches that are actually wrong. We confirm that our findings hold for a wide range of parameters and methods. Although our results suggest that light filtering (up to 20% of alignment positions) has little impact on tree accuracy and may save some computation time, contrary to widespread practice, we do not generally recommend the use of current alignment filtering methods for phylogenetic inference. By providing a way to rigorously and systematically measure the impact of filtering on alignments, the methodology set forth here will guide the development of better filtering algorithms. PMID:26031838

  20. In-Plane Switching Mode for Liquid Crystal Displays Using a DNA Alignment Layer.

    PubMed

    Cha, Yun Jeong; Gim, Min-Jun; Oh, Kyunghwan; Yoon, Dong Ki

    2015-06-24

    We successfully fabricated the in-plane switching mode (IPS) LC display (LCD) based on a double stranded DNA (dsDNA) alignment layer. As widely known, the DNA has the right-handed double helical structure that has naturally grown grooves with a very regular period, which can be used as an alignment layer to control the orientation of liquid crystal (LC) molecules. The LC molecules on this topographical layer of DNA material align obliquely at a specific angle with respect to the direction of DNA chains, providing an instant and convenient tool for the fabrication of the IPS display compared to the conventional ways such as rubbing and mechanical shearing methods. The electro-optical performance and response time of this device were also investigated. Our result will be of great use in further exploration of the electro-optical properties of the other biomaterials. PMID:26066312

  1. An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    NASA Astrophysics Data System (ADS)

    Bajcsy, Peter

    2006-12-01

    This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.

  2. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  3. Recent advances in DNA sequencing techniques

    NASA Astrophysics Data System (ADS)

    Singh, Rama Shankar

    2013-06-01

    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  4. Poincaré recurrences of DNA sequences

    NASA Astrophysics Data System (ADS)

    Frahm, K. M.; Shepelyansky, D. L.

    2012-01-01

    We analyze the statistical properties of Poincaré recurrences of Homo sapiens, mammalian, and other DNA sequences taken from the Ensembl Genome data base with up to 15 billion base pairs. We show that the probability of Poincaré recurrences decays in an algebraic way with the Poincaré exponent β≈4 even if the oscillatory dependence is well pronounced. The correlations between recurrences decay with an exponent ν≈0.6 that leads to an anomalous superdiffusive walk. However, for Homo sapiens sequences, with the largest available statistics, the diffusion coefficient converges to a finite value on distances larger than one million base pairs. We argue that the approach based on Poncaré recurrences determines new proximity features between different species and sheds a new light on their evolution history.

  5. Elucidating population histories using genomic DNA sequences.

    PubMed

    Vigilant, Linda

    2009-04-01

    In 1993, Cliff Jolly suggested that rather than debating species definitions and classifications, energy would be better spent investigating multidimensional patterns of variation and gene flow among populations. Until now, however, genetic studies of wild primate populations have been limited to very small portions of the genome. Access to complete genome sequences of humans, chimpanzees, macaques, and other primates makes it possible to design studies surveying substantial amounts of DNA sequence variation at multiple genetic loci in representatives of closely related but distinct wild primate populations. Such data can be analyzed with new approaches that estimate not only when populations diverged but also the relative amounts and directions of subsequent gene flow. These analyses will reemphasize the difficulty of achieving consistent species and subspecies definitions by revealing the extent of variation in the amount and duration of gene flow accompanying population divergences. PMID:19817223

  6. Direct Detection and Sequencing of Damaged DNA Bases

    PubMed Central

    2011-01-01

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597

  7. SNP discovery through de novo deep sequencing using the next generation of DNA sequencers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....

  8. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE PAGESBeta

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  9. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes

    PubMed Central

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-01-01

    Motivation: In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. Results: In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Availability: Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license. Contact: epruesse@mpi-bremen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22556368

  10. A distributed system for fast alignment of next-generation sequencing data

    PubMed Central

    Srimani, Jaydeep K.; Wu, Po-Yen; Phan, John H.; Wang, May D.

    2016-01-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  11. Improving DNA sequencing accuracy and throughput

    SciTech Connect

    Nelson, D.O. |

    1996-12-31

    LLNL is beginning to explore statistical approaches to the problem of determining the DNA sequence underlying data obtained from fluorescence-based gel electrophoresis. Among the features of this problem that make it interesting to statisticians include: (1) the underlying mechanics of electrophoresis is quite complex and still not completely understood; (2) the yield of fragments of any given size can be quite small and variable; (3) the mobility of fragments of a given size can depend on the terminating base; (4) the data consists of samples from one or more continuous, non-stationary signals; (5) boundaries between segments generated by distinct elements of the underlying sequence are ill-defined or nonexistent in the signal; and (6) the sampling rate of the signal greatly exceeds the rate of evolution of the underlying discrete sequence. Current approaches to base calling address only some of these issues, and usually in a heuristic, ad hoc way. In this article we describe some of our initial efforts towards increasing base calling accuracy and throughput by providing a rational, statistical foundation to the process of deducing sequence from signal. 31 refs., 12 figs.

  12. PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL

    PubMed Central

    2012-01-01

    Background In recent years, an exponential growing number of tools for protein sequence analysis, editing and modeling tasks have been put at the disposal of the scientific community. Despite the vast majority of these tools have been released as open source software, their deep learning curves often discourages even the most experienced users. Results A simple and intuitive interface, PyMod, between the popular molecular graphics system PyMOL and several other tools (i.e., [PSI-]BLAST, ClustalW, MUSCLE, CEalign and MODELLER) has been developed, to show how the integration of the individual steps required for homology modeling and sequence/structure analysis within the PyMOL framework can hugely simplify these tasks. Sequence similarity searches, multiple sequence and structural alignments generation and editing, and even the possibility to merge sequence and structure alignments have been implemented in PyMod, with the aim of creating a simple, yet powerful tool for sequence and structure analysis and building of homology models. Conclusions PyMod represents a new tool for the analysis and the manipulation of protein sequences and structures. The ease of use, integration with many sequence retrieving and alignment tools and PyMOL, one of the most used molecular visualization system, are the key features of this tool. Source code, installation instructions, video tutorials and a user's guide are freely available at the URL http://schubert.bio.uniroma1.it/pymod/index.html PMID:22536966

  13. Skeleton-based human action recognition using multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Ding, Wenwen; Liu, Kai; Cheng, Fei; Zhang, Jin; Li, YunSong

    2015-05-01

    Human action recognition and analysis is an active research topic in computer vision for many years. This paper presents a method to represent human actions based on trajectories consisting of 3D joint positions. This method first decompose action into a sequence of meaningful atomic actions (actionlets), and then label actionlets with English alphabets according to the Davies-Bouldin index value. Therefore, an action can be represented using a sequence of actionlet symbols, which will preserve the temporal order of occurrence of each of the actionlets. Finally, we employ sequence comparison to classify multiple actions through using string matching algorithms (Needleman-Wunsch). The effectiveness of the proposed method is evaluated on datasets captured by commodity depth cameras. Experiments of the proposed method on three challenging 3D action datasets show promising results.

  14. Support for linguistic macrofamilies from weighted sequence alignment

    PubMed Central

    Jäger, Gerhard

    2015-01-01

    Computational phylogenetics is in the process of revolutionizing historical linguistics. Recent applications have shed new light on controversial issues, such as the location and time depth of language families and the dynamics of their spread. So far, these approaches have been limited to single-language families because they rely on a large body of expert cognacy judgments or grammatical classifications, which is currently unavailable for most language families. The present study pursues a different approach. Starting from raw phonetic transcription of core vocabulary items from very diverse languages, it applies weighted string alignment to track both phonetic and lexical change. Applied to a collection of ∼1,000 Eurasian languages and dialects, this method, combined with phylogenetic inference, leads to a classification in excellent agreement with established findings of historical linguistics. Furthermore, it provides strong statistical support for several putative macrofamilies contested in current historical linguistics. In particular, there is a solid signal for the Nostratic/Eurasiatic macrofamily. PMID:26403857

  15. Support for linguistic macrofamilies from weighted sequence alignment.

    PubMed

    Jäger, Gerhard

    2015-10-13

    Computational phylogenetics is in the process of revolutionizing historical linguistics. Recent applications have shed new light on controversial issues, such as the location and time depth of language families and the dynamics of their spread. So far, these approaches have been limited to single-language families because they rely on a large body of expert cognacy judgments or grammatical classifications, which is currently unavailable for most language families. The present study pursues a different approach. Starting from raw phonetic transcription of core vocabulary items from very diverse languages, it applies weighted string alignment to track both phonetic and lexical change. Applied to a collection of ∼1,000 Eurasian languages and dialects, this method, combined with phylogenetic inference, leads to a classification in excellent agreement with established findings of historical linguistics. Furthermore, it provides strong statistical support for several putative macrofamilies contested in current historical linguistics. In particular, there is a solid signal for the Nostratic/Eurasiatic macrofamily. PMID:26403857

  16. Detecting seeded motifs in DNA sequences.

    PubMed

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at http://telethon.bio.unipd.it/bioinfo/MOST. PMID:16141193

  17. Detecting seeded motifs in DNA sequences

    PubMed Central

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at . PMID:16141193

  18. Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing

    PubMed Central

    Teasdale, M. D.; van Doorn, N. L.; Fiddyment, S.; Webb, C. C.; O'Connor, T.; Hofreiter, M.; Collins, M. J.; Bradley, D. G.

    2015-01-01

    Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock. PMID:25487331

  19. Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing.

    PubMed

    Teasdale, M D; van Doorn, N L; Fiddyment, S; Webb, C C; O'Connor, T; Hofreiter, M; Collins, M J; Bradley, D G

    2015-01-19

    Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock. PMID:25487331

  20. Determining orientation and direction of DNA sequences

    DOEpatents

    Goodwin, Edwin H.; Meyne, Julianne

    2000-01-01

    Determining orientation and direction of DNA sequences. A method by which fluorescence in situ hybridization can be made strand specific is described. Cell cultures are grown in a medium containing a halogenated nucleotide. The analog is partially incorporated in one DNA strand of each chromatid. This substitution takes place in opposite strands of the two sister chromatids. After staining with the fluorescent DNA-binding dye Hoechst 33258, cells are exposed to long-wavelength ultraviolet light which results in numerous strand nicks. These nicks enable the substituted strand to be denatured and solubilized by heat, treatment with high or low pH aqueous solutions, or by immersing the strands in 2.times.SSC (0.3M NaCl+0.03M sodium citrate), to name three procedures. It is unnecessary to enzymatically digest the strands using Exo III or another exonuclease in order to excise and solubilize nucleotides starting at the sites of the nicks. The denaturing/solubilizing process removes most of the substituted strand while leaving the prereplication strand largely intact. Hybridization of a single-stranded probe of a tandem repeat arranged in a head-to-tail orientation will result in hybridization only to the chromatid with the complementary strand present.

  1. Flexible, Fast and Accurate Sequence Alignment Profiling on GPGPU with PaSWAS

    PubMed Central

    Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J. L.; Nap, Jan Peter

    2015-01-01

    Motivation To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. Results With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation. PMID:25830241

  2. Nanopore DNA sequencing and epigenetic detection with a MspA nanopore

    NASA Astrophysics Data System (ADS)

    Laszlo, Andrew H.

    epigenetic base modifications such as DNA methylation and describe challenges in detecting such modifications. I then introduce nanopore sequencing and discuss how it has potential to address challenges in both sequencing and modified base detection. Chapter 1 concludes with a summary of previous nanopore work that has formed the foundation for this thesis. Chapter 2 describes our work using a DNA polymerase to control DNA translocation through the pore. Chapter 3 discusses how the DNA polymerase/MspA based system developed in Chapter 2 can be used to detect epigenetically modified bases 5-methylcytosine and 5-hydroxymethylcytosine. In Chapter 4 I describe our work to generate and decode long nanopore reads of DNA. Homemade alignment algorithms are used to align nanopore reads to known sequence with applications ranging from species identification to hybrid genome assembly. Chapter 5 concludes the thesis and lays out a road map for the ultimate realization of de novo nanopore DNA sequencing and commercialization of an MspA-based device.

  3. Using Huffman coding method to visualize and analyze DNA sequences.

    PubMed

    Qi, Zhao-Hui; Li, Ling; Qi, Xiao-Qin

    2011-11-30

    On the basis of the Huffman coding method, we propose a new graphical representation of DNA sequence. The representation can avoid degeneracy and loss of information in the transfer of data from a DNA sequence to its graphical representation. Then a multicomponent vector from the representation is introduced to characterize quantitatively DNA sequences. The components of the vector are derived from the graphical representation of DNA primary sequence. The examination of similarities and dissimilarities among the complete coding sequences of β-globin gene of 11 species and six ND6 proteins shows the utility of the scheme. PMID:21953557

  4. Mitochondrial DNA control region sequences study in Saraiki population from Pakistan.

    PubMed

    Hayat, Sikandar; Akhtar, Tanveer; Siddiqi, Muhammad Hassan; Rakha, Allah; Haider, Naeem; Tayyab, Muhammad; Abbas, Ghazanfar; Ali, Azam; Bokhari, Syed Yassir Abbas; Tariq, Muhammad Akram; Khan, Fazle Majid

    2015-03-01

    The analysis of mitochondrial DNA (mtDNA) control region was carried in 85 unrelated Sariki individuals living in the different provinces of Pakistan. DNA was extracted from blood preserved in EDTA vacutainers. Hypervariable regions (HV1, HV2 & HV3) were PCR amplified and sequenced. Sequencing results were aligned and compared with revised Cambridge reference sequence (rCRS). The sequencing results showed presence of total 63 different haplotypes, 58 of them are unique and 05 are common haplotypes shared by more than one individual. The most common haplotype observed was (W6) with a frequency 12.9% of population sample. The Saraiki population was detected with genetic diversity (0.9570) and power of discrimination (0.9458). This study will be beneficial for forensic casework. PMID:25465675

  5. Non-random DNA fragmentation in next-generation sequencing

    PubMed Central

    Poptsova, Maria S.; Il'icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-01-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed “reads” are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions. PMID:24681819

  6. Non-random DNA fragmentation in next-generation sequencing

    NASA Astrophysics Data System (ADS)

    Poptsova, Maria S.; Il'Icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-03-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed ``reads'' are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.

  7. Self-consistently optimized statistical mechanical energy functions for sequence structure alignment.

    PubMed Central

    Koretke, K. K.; Luthey-Schulten, Z.; Wolynes, P. G.

    1996-01-01

    A quantitative form of the principle of minimal frustration is used to obtain from a database analysis statistical mechanical energy functions and gap parameters for aligning sequences to three-dimensional structures. The analysis that partially takes into account correlations in the energy landscape improves upon the previous approximations of Goldstein et al. (1994, 1995) (Goldstein R, Luthey-Schulten Z, Wolynes P, 1994, Proceedings of the 27th Hawaii International Conference on System Sciences. Los Alamitos, California: IEEE Computer Society Press. pp 306-315; Goldstein R, Luthey-Schulten Z, Wolynes P, 1995, In: Elber R, ed. New developments in theoretical studies of proteins. Singapore: World Scientific). The energy function allows for ordering of alignments based on the compatibility of a sequence to be in a given structure (i.e., lowest energy) and therefore removes the necessity of using percent identity or similarity as scoring parameters. The alignments produced by the energy function on distant homologues with low percent identity (less than 21%) are generally better than those generated with evolutionary information. The lowest energy alignment generated with the energy function for sequences containing prosite signatures but unknown structures is a structure containing the same prosite signature, providing a check on the robustness of the algorithm. Finally, the energy function can make use of known experimental evidence as constraints within the alignment algorithm to aid in finding the correct structural alignment. PMID:8762136

  8. Alignment-Free Sequence Comparison Based on Next-Generation Sequencing Reads

    PubMed Central

    Song, Kai; Ren, Jie; Zhai, Zhiyuan; Liu, Xuemei

    2013-01-01

    Abstract Next-generation sequencing (NGS) technologies have generated enormous amounts of shotgun read data, and assembly of the reads can be challenging, especially for organisms without template sequences. We study the power of genome comparison based on shotgun read data without assembly using three alignment-free sequence comparison statistics, D2, \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document} $$\\textbf{\\textit{D}}_{\\bf 2}^{\\bf *}$$ \\end{document}, and \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document} $$\\textbf{\\textit{D}}_{\\bf 2}^S$$ \\end{document}, both theoretically and by simulations. Theoretical formulas for the power of detecting the relationship between two sequences related through a common motif model are derived. It is shown that both \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document} $$\\textbf{\\textit{D}}_{\\bf 2}^{\\bf *}$$ \\end{document} and \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin

  9. Use of an automated capillary DNA sequencer to investigate the interaction of cisplatin with telomeric DNA sequences.

    PubMed

    Paul, Moumita; Murray, Vincent

    2012-03-01

    The determination of the sequence selectivity of DNA-damaging agents is very important in elucidating the mechanism of action of anti-tumour drugs. The development of automated capillary DNA sequencers with fluorescent labelling has enabled a more precise method for DNA sequence specificity analysis. In this work we utilized the ABI 3730 capillary sequencer with laser-induced fluorescence to examine the sequence selectivity of cisplatin with purified DNA sequences. The use of this automated machine enabled a higher degree of precision of both position and intensity of cisplatin-DNA adducts than previously possible with manual and automated slab gel procedures. A problem with artefact bands was overcome by ethanol precipitation. It was found that cisplatin strongly formed adducts with telomeric DNA sequences. PMID:21678458

  10. Improvements to GALA and dbERGE II: databases featuring genomic sequence alignment, annotation and experimental results.

    PubMed

    Elnitski, Laura; Giardine, Belinda; Shah, Prachi; Zhang, Yi; Riemer, Cathy; Weirauch, Matthew; Burhans, Richard; Miller, Webb; Hardison, Ross C

    2005-01-01

    We describe improvements to two databases that give access to information on genomic sequence similarities, functional elements in DNA and experimental results that demonstrate those functions. GALA, the database of Genome ALignments and Annotations, is now a set of interlinked relational databases for five vertebrate species, human, chimpanzee, mouse, rat and chicken. For each species, GALA records pairwise and multiple sequence alignments, scores derived from those alignments that reflect the likelihood of being under purifying selection or being a regulatory element, and extensive annotations such as genes, gene expression patterns and transcription factor binding sites. The user interface supports simple and complex queries, including operations such as subtraction and intersections as well as clustering and finding elements in proximity to features. dbERGE II, the database of Experimental Results on Gene Expression, contains experimental data from a variety of functional assays. Both databases are now run on the DB2 database management system. Improved hardware and tuning has reduced response times and increased querying capacity, while simplified query interfaces will help direct new users through the querying process. Links are available at http://www.bx.psu.edu/. PMID:15608239

  11. SeqTrace: A Graphical Tool for Rapidly Processing DNA Sequencing Chromatograms

    PubMed Central

    Stucky, Brian J.

    2012-01-01

    Modern applications of Sanger DNA sequencing often require converting a large number of chromatogram trace files into high-quality DNA sequences for downstream analyses. Relatively few nonproprietary software tools are available to assist with this process. SeqTrace is a new, free, and open-source software application that is designed to automate the entire workflow by facilitating easy batch processing of large numbers of trace files. SeqTrace can identify, align, and compute consensus sequences from matching forward and reverse traces, filter low-quality base calls, and end-trim finished sequences. The software features a graphical interface that includes a full-featured chromatogram viewer and sequence editor. SeqTrace runs on most popular operating systems and is freely available, along with supporting documentation, at http://seqtrace.googlecode.com/. PMID:22942788

  12. DNA Shape versus Sequence Variations in the Protein Binding Process.

    PubMed

    Chen, Chuanying; Pettitt, B Montgomery

    2016-02-01

    The binding process of a protein with a DNA involves three stages: approach, encounter, and association. It has been known that the complexation of protein and DNA involves mutual conformational changes, especially for a specific sequence association. However, it is still unclear how the conformation and the information in the DNA sequences affects the binding process. What is the extent to which the DNA structure adopted in the complex is induced by protein binding, or is instead intrinsic to the DNA sequence? In this study, we used the multiscale simulation method to explore the binding process of a protein with DNA in terms of DNA sequence, conformation, and interactions. We found that in the approach stage the protein can bind both the major and minor groove of the DNA, but uses different features to locate the binding site. The intrinsic conformational properties of the DNA play a significant role in this binding stage. By comparing the specific DNA with the nonspecific in unbound, intermediate, and associated states, we found that for a specific DNA sequence, ∼40% of the bending in the association forms is intrinsic and that ∼60% is induced by the protein. The protein does not induce appreciable bending of nonspecific DNA. In addition, we proposed that the DNA shape variations induced by protein binding are required in the early stage of the binding process, so that the protein is able to approach, encounter, and form an intermediate at the correct site on DNA. PMID:26840719

  13. Inferring coalescence times from DNA sequence data.

    PubMed

    Tavaré, S; Balding, D J; Griffiths, R C; Donnelly, P

    1997-02-01

    The paper is concerned with methods for the estimation of the coalescence time (time since the most recent common ancestor) of a sample of intraspecies DNA sequences. The methods take advantage of prior knowledge of population demography, in addition to the molecular data. While some theoretical results are presented, a central focus is on computational methods. These methods are easy to implement, and, since explicit formulae tend to be either unavailable or unilluminating, they are also more useful and more informative in most applications. Extensions are presented that allow for the effects of uncertainty in our knowledge of population size and mutation rates, for variability in population sizes, for regions of different mutation rate, and for inference concerning the coalescence time of the entire population. The methods are illustrated using recent data from the human Y chromosome. PMID:9071603

  14. DIALIGN at GOBICS—multiple sequence alignment using various sources of external information

    PubMed Central

    Al Ait, Layal; Yamak, Zaher; Morgenstern, Burkhard

    2013-01-01

    DIALIGN is an established tool for multiple sequence alignment that is particularly useful to detect local homologies in sequences with low overall similarity. In recent years, various versions of the program have been developed, some of which are fully automated, whereas others are able to accept user-specified external information. In this article, we review some versions of the program that are available through ‘Göttingen Bioinformatics Compute Server’. In addition to previously described implementations, we present a new release of DIALIGN called ‘DIALIGN-PFAM’, which uses hits to the PFAM database for improved protein alignment. Our software is available through http://dialign.gobics.de/. PMID:23620293

  15. On 2D graphical representation of DNA sequence of nondegeneracy

    NASA Astrophysics Data System (ADS)

    Zhang, Yusen; Liao, Bo; Ding, Kequan

    2005-08-01

    Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.

  16. Mulan: Multiple-Sequence Local Alignment and Visualization for Studying Function and Evolution

    SciTech Connect

    Ovcharenko, I; Loots, G; Giardine, B; Hou, M; Ma, J; Hardison, R; Stubbs, L; Miller, W

    2004-07-14

    Multiple sequence alignment analysis is a powerful approach for understanding phylogenetic relationships, annotating genes and detecting functional regulatory elements. With a growing number of partly or fully sequenced vertebrate genomes, effective tools for performing multiple comparisons are required to accurately and efficiently assist biological discoveries. Here we introduce Mulan (http://mulan.dcode.org/), a novel method and a network server for comparing multiple draft and finished-quality sequences to identify functional elements conserved over evolutionary time. Mulan brings together several novel algorithms: the tba multi-aligner program for rapid identification of local sequence conservation and the multiTF program for detecting evolutionarily conserved transcription factor binding sites in multiple alignments. In addition, Mulan supports two-way communication with the GALA database; alignments of multiple species dynamically generated in GALA can be viewed in Mulan, and conserved transcription factor binding sites identified with Mulan/multiTF can be integrated and overlaid with extensive genome annotation data using GALA. Local multiple alignments computed by Mulan ensure reliable representation of short-and large-scale genomic rearrangements in distant organisms. Mulan allows for interactive modification of critical conservation parameters to differentially predict conserved regions in comparisons of both closely and distantly related species. We illustrate the uses and applications of the Mulan tool through multi-species comparisons of the GATA3 gene locus and the identification of elements that are conserved differently in avians than in other genomes allowing speculation on the evolution of birds. Source code for the aligners and the aligner-evaluation software can be freely downloaded from http://bio.cse.psu.edu/.

  17. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    PubMed

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-01

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. PMID:27084948

  18. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud

    PubMed Central

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-01-01

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. PMID:27084948

  19. Duplication count distributions in DNA sequences

    NASA Astrophysics Data System (ADS)

    Sindi, Suzanne S.; Hunt, Brian R.; Yorke, James A.

    2008-12-01

    We study quantitative features of complex repetitive DNA in several genomes by studying sequences that are sufficiently long that they are unlikely to have repeated by chance. For each genome we study, we determine the number of identical copies, the “duplication count,” of each sequence of length 40, that is of each “40-mer.” We say a 40-mer is “repeated” if its duplication count is at least 2. We focus mainly on “complex” 40-mers, those without short internal repetitions. We find that we can classify most of the complex repeated 40-mers into two categories: one category has its copies clustered closely together on one chromosome, the other has its copies distributed widely across multiple chromosomes. For each genome and each of the categories above, we compute N(c) , the number of 40-mers that have duplication count c , for each integer c . In each case, we observe a power-law-like decay in N(c) as c increases from 3 to 50 or higher. In particular, we find that N(c) decays much more slowly than would be predicted by evolutionary models where each 40-mer is equally likely to be duplicated. We also analyze an evolutionary model that does reflect the slow decay of N(c) .

  20. What Advances Are Being Made in DNA Sequencing?

    MedlinePlus

    ... the future. For more information about DNA sequencing technologies and their use: Genetics Home Reference discusses whether ... the University of Washington describes the different sequencing technologies and what the new technologies have meant for ...

  1. ALVIS: interactive non-aggregative visualization and explorative analysis of multiple sequence alignments.

    PubMed

    Schwarz, Roland F; Tamuri, Asif U; Kultys, Marek; King, James; Godwin, James; Florescu, Ana M; Schultz, Jörg; Goldman, Nick

    2016-05-01

    Sequence Logos and its variants are the most commonly used method for visualization of multiple sequence alignments (MSAs) and sequence motifs. They provide consensus-based summaries of the sequences in the alignment. Consequently, individual sequences cannot be identified in the visualization and covariant sites are not easily discernible. We recently proposed Sequence Bundles, a motif visualization technique that maintains a one-to-one relationship between sequences and their graphical representation and visualizes covariant sites. We here present Alvis, an open-source platform for the joint explorative analysis of MSAs and phylogenetic trees, employing Sequence Bundles as its main visualization method. Alvis combines the power of the visualization method with an interactive toolkit allowing detection of covariant sites, annotation of trees with synapomorphies and homoplasies, and motif detection. It also offers numerical analysis functionality, such as dimension reduction and classification. Alvis is user-friendly, highly customizable and can export results in publication-quality figures. It is available as a full-featured standalone version (http://www.bitbucket.org/rfs/alvis) and its Sequence Bundles visualization module is further available as a web application (http://science-practice.com/projects/sequence-bundles). PMID:26819408

  2. ALVIS: interactive non-aggregative visualization and explorative analysis of multiple sequence alignments

    PubMed Central

    Schwarz, Roland F.; Tamuri, Asif U.; Kultys, Marek; King, James; Godwin, James; Florescu, Ana M.; Schultz, Jörg; Goldman, Nick

    2016-01-01

    Sequence Logos and its variants are the most commonly used method for visualization of multiple sequence alignments (MSAs) and sequence motifs. They provide consensus-based summaries of the sequences in the alignment. Consequently, individual sequences cannot be identified in the visualization and covariant sites are not easily discernible. We recently proposed Sequence Bundles, a motif visualization technique that maintains a one-to-one relationship between sequences and their graphical representation and visualizes covariant sites. We here present Alvis, an open-source platform for the joint explorative analysis of MSAs and phylogenetic trees, employing Sequence Bundles as its main visualization method. Alvis combines the power of the visualization method with an interactive toolkit allowing detection of covariant sites, annotation of trees with synapomorphies and homoplasies, and motif detection. It also offers numerical analysis functionality, such as dimension reduction and classification. Alvis is user-friendly, highly customizable and can export results in publication-quality figures. It is available as a full-featured standalone version (http://www.bitbucket.org/rfs/alvis) and its Sequence Bundles visualization module is further available as a web application (http://science-practice.com/projects/sequence-bundles). PMID:26819408

  3. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    PubMed

    Bertolini, Francesca; Ghionda, Marco Ciro; D'Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures. PMID:25923709

  4. A Next Generation Semiconductor Based Sequencing Approach for the Identification of Meat Species in DNA Mixtures

    PubMed Central

    Bertolini, Francesca; Ghionda, Marco Ciro; D’Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures. PMID:25923709

  5. Multiple sequence alignment algorithm based on a dispersion graph and ant colony algorithm.

    PubMed

    Chen, Weiyang; Liao, Bo; Zhu, Wen; Xiang, Xuyu

    2009-10-01

    In this article, we describe a representation for the processes of multiple sequences alignment (MSA) and used it to solve the problem of MSA. By this representation, we took every possible aligning result into account by defining the representation of gap insertion, the value of heuristic information in every optional path and scoring rule. On the basis of the proposed multidimensional graph, we used the ant colony algorithm to find the better path that denotes a better aligning result. In our article, we proposed the instance of three-dimensional graph and four-dimensional graph and advanced a special ichnographic representation to analyze MSA. It is yet only an experimental software, and we gave an example for finding the best aligning result by three-dimensional graph and ant colony algorithm. Experimental results show that our method can improve the solution quality on MSA benchmarks. PMID:19130503

  6. DNA Sequence Determination by Hybridization: A Strategy for Efficient Large-Scale Sequencing

    NASA Astrophysics Data System (ADS)

    Drmanac, R.; Drmanac, S.; Strezoska, Z.; Paunesku, T.; Labat, I.; Zeremski, M.; Snoddy, J.; Funkhouser, W. K.; Koop, B.; Hood, L.; Crkvenjakov, R.

    1993-06-01

    The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project.

  7. DNA sequence determination by hybridization: A strategy for efficient large-scale sequencing

    SciTech Connect

    Drmanac, R.; Drmanac, S.; Strezoska, Z.; Paunesku, T.; Labat, I.; Zeremski, M.; Snoody, J.; Crkvenjakov, R. ); Funkhouser, W.K.; Koop, B.; Hood, L. )

    1993-06-11

    The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project. 22 refs., 3 figs.

  8. Kinetoplast DNA minicircles: regions of extensive sequence divergence.

    PubMed Central

    Rogers, W O; Wirth, D F

    1987-01-01

    Previous work has shown that the kinetoplast minicircle DNA of Leishmania species exhibits species-specific sequence divergence and this observation has led to the development of a DNA probe-based diagnostic test for leishmaniasis. In the work reported here, we demonstrate that the minicircle is composed of three types of DNA sequences with differing specificities reflecting different rates of DNA sequence change. A library of cloned fragments of kinetoplast DNA (kDNA) from Leishmania mexicana amazonensis was prepared and the cloned subfragments were found to contain DNA sequences with different taxonomic specificities based on hybridization analysis with various species of Leishmania. Four groups of subfragments were found, those that hybridized with a large number of Leishmania sp. as well as sequences unique to the species, subspecies, or isolate. Analysis of nested deletions of a single, full-length minicircle demonstrates that these different taxonomic specificities are contained within a single minicircle. This implies that different regions of a single minicircle have DNA sequences that diverge at different rates. These sequences represent potentially valuable tools in diagnostic, epidemiologic, and ecological studies of leishmaniasis and provide the basis for a model of kDNA sequence evolution. Images PMID:3025880

  9. A Phylogenetic Analysis of the Brassicales Clade Based on an Alignment-Free Sequence Comparison Method

    PubMed Central

    Hatje, Klas; Kollmar, Martin

    2012-01-01

    Phylogenetic analyses reveal the evolutionary derivation of species. A phylogenetic tree can be inferred from multiple sequence alignments of proteins or genes. The alignment of whole genome sequences of higher eukaryotes is a computational intensive and ambitious task as is the computation of phylogenetic trees based on these alignments. To overcome these limitations, we here used an alignment-free method to compare genomes of the Brassicales clade. For each nucleotide sequence a Chaos Game Representation (CGR) can be computed, which represents each nucleotide of the sequence as a point in a square defined by the four nucleotides as vertices. Each CGR is therefore a unique fingerprint of the underlying sequence. If the CGRs are divided by grid lines each grid square denotes the occurrence of oligonucleotides of a specific length in the sequence (Frequency Chaos Game Representation, FCGR). Here, we used distance measures between FCGRs to infer phylogenetic trees of Brassicales species. Three types of data were analyzed because of their different characteristics: (A) Whole genome assemblies as far as available for species belonging to the Malvidae taxon. (B) EST data of species of the Brassicales clade. (C) Mitochondrial genomes of the Rosids branch, a supergroup of the Malvidae. The trees reconstructed based on the Euclidean distance method are in general agreement with single gene trees. The Fitch–Margoliash and Neighbor joining algorithms resulted in similar to identical trees. Here, for the first time we have applied the bootstrap re-sampling concept to trees based on FCGRs to determine the support of the branchings. FCGRs have the advantage that they are fast to calculate, and can be used as additional information to alignment based data and morphological characteristics to improve the phylogenetic classification of species in ambiguous cases. PMID:22952468

  10. Method enabling fast partial sequencing of cDNA clones.

    PubMed

    Nordström, T; Gharizadeh, B; Pourmand, N; Nyren, P; Ronaghi, M

    2001-05-15

    Pyrosequencing is a nonelectrophoretic single-tube DNA sequencing method that takes advantage of cooperativity between four enzymes to monitor DNA synthesis. To investigate the feasibility of the recently developed technique for tag sequencing, 64 colonies of a selected cDNA library from human were sequenced by both pyrosequencing and Sanger DNA sequencing. To determine the needed length for finding a unique DNA sequence, 100 sequence tags from human were retrieved from the database and different lengths from each sequence were randomly analyzed. An homology search based on 20 and 30 nucleotides produced 97 and 98% unique hits, respectively. An homology search based on 100 nucleotides could identify all searched genes. Pyrosequencing was employed to produce sequence data for 30 nucleotides. A similar search using BLAST revealed 16 different genes. Forty-six percent of the sequences shared homology with one gene at different positions. Two of the 64 clones had unique sequences. The search results from pyrosequencing were in 100% agreement with conventional DNA sequencing methods. The possibility of using a fully automated pyrosequencer machine for future high-throughput tag sequencing is discussed. PMID:11355860

  11. A Novel Constraint for Thermodynamically Designing DNA Sequences

    PubMed Central

    Zhang, Qiang; Wang, Bin; Wei, Xiaopeng; Zhou, Changjun

    2013-01-01

    Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired) hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE) to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap. PMID:24015217

  12. A novel constraint for thermodynamically designing DNA sequences.

    PubMed

    Zhang, Qiang; Wang, Bin; Wei, Xiaopeng; Zhou, Changjun

    2013-01-01

    Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired) hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE) to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap. PMID:24015217

  13. Guanine-rich sequences inhibit proofreading DNA polymerases

    PubMed Central

    Zhu, Xiao-Jing; Sun, Shuhui; Xie, Binghua; Hu, Xuemei; Zhang, Zunyi; Qiu, Mengsheng; Dai, Zhong-Min

    2016-01-01

    DNA polymerases with proofreading activity are important for accurate amplification of target DNA. Despite numerous efforts have been made to improve the proofreading DNA polymerases, they are more susceptible to be failed in PCR than non-proofreading DNA polymerases. Here we showed that proofreading DNA polymerases can be inhibited by certain primers. Further analysis showed that G-rich sequences such as GGGGG and GGGGHGG can cause PCR failure using proofreading DNA polymerases but not Taq DNA polymerase. The inhibitory effect of these G-rich sequences is caused by G-quadruplex and is dose dependent. G-rich inhibitory sequence-containing primers can be used in PCR at a lower concentration to amplify its target DNA fragment. PMID:27349576

  14. A Parallel Non-Alignment Based Approach to Efficient Sequence Comparison using Longest Common Subsequences

    NASA Astrophysics Data System (ADS)

    Bhowmick, S.; Shafiullah, M.; Rai, H.; Bastola, D.

    2010-11-01

    Biological sequence comparison programs have revolutionized the practice of biochemistry, and molecular and evolutionary biology. Pairwise comparison of genomic sequences is a popular method of choice for analyzing genetic sequence data. However the quality of results from most sequence comparison methods are significantly affected by small perturbations in the data and furthermore, there is a dearth of computational tools to compare sequences beyond a certain length. In this paper, we describe a parallel algorithm for comparing genetic sequences using an alignment free-method based on computing the Longest Common Subsequence (LCS) between genetic sequences. We validate the quality of our results by comparing the phylogenetic tress obtained from ClustalW and LCS. We also show through complexity analysis of the isoefficiency and by empirical measurement of the running time that our algorithm is very scalable.

  15. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    PubMed Central

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897

  16. Bayesian restoration of a hidden Markov chain with applications to DNA sequencing.

    PubMed

    Churchill, G A; Lazareva, B

    1999-01-01

    Hidden Markov models (HMMs) are a class of stochastic models that have proven to be powerful tools for the analysis of molecular sequence data. A hidden Markov model can be viewed as a black box that generates sequences of observations. The unobservable internal state of the box is stochastic and is determined by a finite state Markov chain. The observable output is stochastic with distribution determined by the state of the hidden Markov chain. We present a Bayesian solution to the problem of restoring the sequence of states visited by the hidden Markov chain from a given sequence of observed outputs. Our approach is based on a Monte Carlo Markov chain algorithm that allows us to draw samples from the full posterior distribution of the hidden Markov chain paths. The problem of estimating the probability of individual paths and the associated Monte Carlo error of these estimates is addressed. The method is illustrated by considering a problem of DNA sequence multiple alignment. The special structure for the hidden Markov model used in the sequence alignment problem is considered in detail. In conclusion, we discuss certain interesting aspects of biological sequence alignments that become accessible through the Bayesian approach to HMM restoration. PMID:10421527

  17. Simultaneous Bayesian Estimation of Alignment and Phylogeny under a Joint Model of Protein Sequence and Structure

    PubMed Central

    Herman, Joseph L.; Challis, Christopher J.; Novák, Ádám; Hein, Jotun; Schmidler, Scott C.

    2014-01-01

    For sequences that are highly divergent, there is often insufficient information to infer accurate alignments, and phylogenetic uncertainty may be high. One way to address this issue is to make use of protein structural information, since structures generally diverge more slowly than sequences. In this work, we extend a recently developed stochastic model of pairwise structural evolution to multiple structures on a tree, analytically integrating over ancestral structures to permit efficient likelihood computations under the resulting joint sequence–structure model. We observe that the inclusion of structural information significantly reduces alignment and topology uncertainty, and reduces the number of topology and alignment errors in cases where the true trees and alignments are known. In some cases, the inclusion of structure results in changes to the consensus topology, indicating that structure may contain additional information beyond that which can be obtained from sequences. We use the model to investigate the order of divergence of cytoglobins, myoglobins, and hemoglobins and observe a stabilization of phylogenetic inference: although a sequence-based inference assigns significant posterior probability to several different topologies, the structural model strongly favors one of these over the others and is more robust to the choice of data set. PMID:24899668

  18. Assessing Activity Pattern Similarity with Multidimensional Sequence Alignment based on a Multiobjective Optimization Evolutionary Algorithm

    PubMed Central

    Kwan, Mei-Po; Xiao, Ningchuan; Ding, Guoxiang

    2015-01-01

    Due to the complexity and multidimensional characteristics of human activities, assessing the similarity of human activity patterns and classifying individuals with similar patterns remains highly challenging. This paper presents a new and unique methodology for evaluating the similarity among individual activity patterns. It conceptualizes multidimensional sequence alignment (MDSA) as a multiobjective optimization problem, and solves this problem with an evolutionary algorithm. The study utilizes sequence alignment to code multiple facets of human activities into multidimensional sequences, and to treat similarity assessment as a multiobjective optimization problem that aims to minimize the alignment cost for all dimensions simultaneously. A multiobjective optimization evolutionary algorithm (MOEA) is used to generate a diverse set of optimal or near-optimal alignment solutions. Evolutionary operators are specifically designed for this problem, and a local search method also is incorporated to improve the search ability of the algorithm. We demonstrate the effectiveness of our method by comparing it with a popular existing method called ClustalG using a set of 50 sequences. The results indicate that our method outperforms the existing method for most of our selected cases. The multiobjective evolutionary algorithm presented in this paper provides an effective approach for assessing activity pattern similarity, and a foundation for identifying distinctive groups of individuals with similar activity patterns. PMID:26190858

  19. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing

    PubMed Central

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-01-01

    Motivation: Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. Results: We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5′-end processing and 3′-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. Availability and Implementation: The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA

  20. Advances in high throughput DNA sequence data compression.

    PubMed

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz

    2016-06-01

    Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted. PMID:26846812

  1. Preparing DNA Libraries for Multiplexed Paired-End Deep Sequencing for Illumina GA Sequencers

    PubMed Central

    Son, Mike S.; Taylor, Ronald K.

    2011-01-01

    Whole genome sequencing, also known as deep sequencing, is becoming a more affordable and efficient way to identify SNP mutations, deletions and insertions in DNA sequences across several different strains. Two major obstacles preventing the widespread use of deep sequencers are the costs involved in services used to prepare DNA libraries for sequencing and the overall accuracy of the sequencing data. This Unit describes the preparation of DNA libraries for multiplexed paired-end sequencing using the Illumina GA series sequencer. Self-preparation of DNA libraries can help reduce overall expenses, especially if optimization is required for the different samples, and use of the Illumina GA Sequencer can improve the quality of the data. PMID:21400673

  2. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  3. Affordable Hands-On DNA Sequencing and Genotyping: An Exercise for Teaching DNA Analysis to Undergraduates

    ERIC Educational Resources Information Center

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C…

  4. Next Generation Sequencing to Characterize Mitochondrial Genomic DNA Heteroplasmy

    PubMed Central

    Huang, Taosheng

    2015-01-01

    This protocol is to describe the methodology to characterize mitochondria DNA (mtDNA) heteroplasmy with parallel sequencing. Mitochondria play a very important role in important cellular functions. Each eukaryotic cell contains hundreds of mitochondria with hundreds of mitochondria genomes. The mutant mtDNA and the wild type may co-exist as heteroplasmy, and cause human disease. The purpose of this methodology is to simultaneously determine mtDNA sequence and to quantify the heteroplasmy level. The protocol includes two-fragment mitochondria genome DNA PCR amplification. The PCR product is then mixed at an equimolar ratio. The samples will be barcoded and sequenced with high-throughput next-generation sequencing technology. We found that this technology is highly sensitive, specific, and accurate in determining mtDNA mutations and the degree of heteroplasmic level. PMID:21975941

  5. A max-margin model for efficient simultaneous alignment and folding of RNA sequences

    PubMed Central

    Do, Chuong B.; Foo, Chuan-Sheng; Batzoglou, Serafim

    2008-01-01

    Motivation: The need for accurate and efficient tools for computational RNA structure analysis has become increasingly apparent over the last several years: RNA folding algorithms underlie numerous applications in bioinformatics, ranging from microarray probe selection to de novo non-coding RNA gene prediction. In this work, we present RAF (RNA Alignment and Folding), an efficient algorithm for simultaneous alignment and consensus folding of unaligned RNA sequences. Algorithmically, RAF exploits sparsity in the set of likely pairing and alignment candidates for each nucleotide (as identified by the CONTRAfold or CONTRAlign programs) to achieve an effectively quadratic running time for simultaneous pairwise alignment and folding. RAF's fast sparse dynamic programming, in turn, serves as the inference engine within a discriminative machine learning algorithm for parameter estimation. Results: In cross-validated benchmark tests, RAF achieves accuracies equaling or surpassing the current best approaches for RNA multiple sequence secondary structure prediction. However, RAF requires nearly an order of magnitude less time than other simultaneous folding and alignment methods, thus making it especially appropriate for high-throughput studies. Availability: Source code for RAF is available at:http://contra.stanford.edu/contrafold/ Contact: chuongdo@cs.stanford.edu PMID:18586747

  6. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present

    PubMed Central

    Chen, Cheng-Yao

    2014-01-01

    Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies. PMID:25009536

  7. Methylated DNA immunoprecipitation and high-throughput sequencing (MeDIP-seq) using low amounts of genomic DNA.

    PubMed

    Zhao, Ming-Tao; Whyte, Jeffrey J; Hopkins, Garrett M; Kirk, Mark D; Prather, Randall S

    2014-06-01

    DNA modifications, such as methylation and hydroxymethylation, are pivotal players in modulating gene expression, genomic imprinting, X-chromosome inactivation, and silencing repetitive sequences during embryonic development. Aberrant DNA modifications lead to embryonic and postnatal abnormalities and serious human diseases, such as cancer. Comprehensive genome-wide DNA methylation and hydroxymethylation studies provide a way to thoroughly understand normal development and to identify potential epigenetic mutations in human diseases. Here we established a working protocol for methylated DNA immunoprecipitation combined with next-generation sequencing [methylated DNA immunoprecipitation (MeDIP)-seq] for low starting amounts of genomic DNA. By using spike-in control DNA sets with standard cytosine, 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC), we demonstrate the preferential binding of antibodies to 5mC and 5hmC, respectively. MeDIP-PCRs successfully targeted highly methylated genomic loci with starting genomic DNA as low as 1 ng. The enrichment efficiency declined for constant spiked-in controls but increased for endogenous methylated regions. A MeDIP-seq library was constructed starting with 1 ng of DNA, with the majority of fragments between 250 bp and 600 bp. The MeDIP-seq reads showed higher quality than the Input control. However, after being preprocessed by Cutadapt, MeDIP (97.53%) and Input (94.98%) reads showed comparable alignment rates. SeqMonk visualization tools indicated MeDIP-seq reads were less uniformly distributed across the genome than Input reads. Several commonly known unmethylated and methylated genomic loci showed consistent methylation patterns in the MeDIP-seq data. Thus, we provide proof-of-principle that MeDIP-seq technology is feasible to profile genome-wide DNA methylation in minute DNA samples, such as oocytes, early embryos, and human biopsies. PMID:24773292

  8. Laser Desorption Mass Spectrometry for DNA Sequencing and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Golovlev, V. V.; Isola, N. R.; Allman, S. L.

    1998-03-01

    Rapid DNA sequencing and/or analysis is critically important for biomedical research. In the past, gel electrophoresis has been the primary tool to achieve DNA analysis and sequencing. However, gel electrophoresis is a time-consuming and labor-extensive process. Recently, we have developed and used laser desorption mass spectrometry (LDMS) to achieve sequencing of ss-DNA longer than 100 nucleotides. With LDMS, we succeeded in sequencing DNA in seconds instead of hours or days required by gel electrophoresis. In addition to sequencing, we also applied LDMS for the detection of DNA probes for hybridization LDMS was also used to detect short tandem repeats for forensic applications. Clinical applications for disease diagnosis such as cystic fibrosis caused by base deletion and point mutation have also been demonstrated. Experimental details will be presented in the meeting. abstract.

  9. Next Generation Sequencing of Ancient DNA: Requirements, Strategies and Perspectives

    PubMed Central

    Knapp, Michael; Hofreiter, Michael

    2010-01-01

    The invention of next-generation-sequencing has revolutionized almost all fields of genetics, but few have profited from it as much as the field of ancient DNA research. From its beginnings as an interesting but rather marginal discipline, ancient DNA research is now on its way into the centre of evolutionary biology. In less than a year from its invention next-generation-sequencing had increased the amount of DNA sequence data available from extinct organisms by several orders of magnitude. Ancient DNA research is now not only adding a temporal aspect to evolutionary studies and allowing for the observation of evolution in real time, it also provides important data to help understand the origins of our own species. Here we review progress that has been made in next-generation-sequencing of ancient DNA over the past five years and evaluate sequencing strategies and future directions. PMID:24710043

  10. Nanopores: A journey towards DNA sequencing

    PubMed Central

    Wanunu, Meni

    2013-01-01

    Much more than ever, nucleic acids are recognized as key building blocks in many of life's processes, and the science of studying these molecular wonders at the single-molecule level is thriving. A new method of doing so has been introduced in the mid 1990's. This method is exceedingly simple: a nanoscale pore that spans across an impermeable thin membrane is placed between two chambers that contain an electrolyte, and voltage is applied across the membrane using two electrodes. These conditions lead to a steady stream of ion flow across the pore. Nucleic acid molecules in solution can be driven through the pore, and structural features of the biomolecules are observed as measurable changes in the trans-membrane ion current. In essence, a nanopore is a high-throughput ion microscope and a single-molecule force apparatus. Nanopores are taking center stage as a tool that promises to read a DNA sequence, and this promise has resulted in overwhelming academic, industrial, and national interest. Regardless of the fate of future nanopore applications, in the process of this 16-year-long exploration, many studies have validated the indispensability of nanopores in the toolkit of single-molecule biophysics. This review surveys past and current studies related to nucleic acid biophysics, and will hopefully provoke a discussion of immediate and future prospects for the field. PMID:22658507

  11. SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation

    PubMed Central

    Muhire, Brejnev Muhizi; Varsani, Arvind; Martin, Darren Patrick

    2014-01-01

    The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV). There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT), a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms). PMID:25259891

  12. Food Fish Identification from DNA Extraction through Sequence Analysis

    ERIC Educational Resources Information Center

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  13. Alignment and Graphene-Assisted Decoration of Lyotropic Chromonic Liquid Crystals Containing DNA Origami Nanostructures.

    PubMed

    Martens, Kevin; Funck, Timon; Kempter, Susanne; Roller, Eva-Maria; Liedl, Tim; Blaschke, Benno M; Knecht, Peter; Garrido, José Antonio; Zhang, Bingru; Kitzerow, Heinz

    2016-03-01

    Composites of DNA origami nanostructures dispersed in a lyotropic chromonic liquid crystal are studied by polarizing optical microscopy. The homogeneous aqueous dispersions can be uniformly aligned by confinement between two glass substrates, either parallel to the substrates owing to uniaxial rubbing or perpendicular to the substrates using ozonized graphene layers. These opportunities of uniform alignment may pave the way for tailored anisometric plasmonic DNA nanostructures to photonic materials. In addition, a decorated texture with nonuniform orientation is observed on substrates coated with pristine graphene. When the water is allowed to evaporate slowly, microscopic crystal needles appear, which are aligned along the local orientation of the director. This decoration method can be used for studying the local orientational order and the defects in chromonic liquid crystals. PMID:26849188

  14. Characteristics of cloned repeated DNA sequences in the barley genome

    SciTech Connect

    Anan'ev, E.V.; Bochkanov, S.S.; Ryzhik, M.V.; Sonina, N.V.; Chernyshev, A.I.; Shchipkova, N.I.; Yakovleva, E.Yu.

    1986-12-01

    A partial clone library of barley DNA fragments based on plasmid pBR325 was created. The cloned EcoRI-fragments of chromosomal DNA are from 2 to 14 kbp in length. More than 95% of the barley DNA inserts comprise repeated sequences of different complexity and copy number. Certain of these DNA sequences are from families comprising at least 1% of the barley genome. A significant proportion of the clones hybridize with numerous sets of restriction fragments of genome DNA and they are dispersed throughout the barley chromosomes.

  15. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server.

    PubMed

    Cannone, Jamie J; Sweeney, Blake A; Petrov, Anton I; Gutell, Robin R; Zirbel, Craig L; Leontis, Neocles

    2015-07-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960

  16. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server

    PubMed Central

    Cannone, Jamie J.; Sweeney, Blake A.; Petrov, Anton I.; Gutell, Robin R.; Zirbel, Craig L.; Leontis, Neocles

    2015-01-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960

  17. Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer

    PubMed Central

    Bernard, Guillaume; Chan, Cheong Xin; Ragan, Mark A.

    2016-01-01

    Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution. PMID:27363362

  18. Sequence-Specific DNA Binding by a Short Peptide Dimer

    NASA Astrophysics Data System (ADS)

    Talanian, Robert V.; McKnight, C. James; Kim, Peter S.

    1990-08-01

    A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4^circC. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.

  19. Deconvolving the recognition of DNA shape from sequence.

    PubMed

    Abe, Namiko; Dror, Iris; Yang, Lin; Slattery, Matthew; Zhou, Tianyin; Bussemaker, Harmen J; Rohs, Remo; Mann, Richard S

    2015-04-01

    Protein-DNA binding is mediated by the recognition of the chemical signatures of the DNA bases and the 3D shape of the DNA molecule. Because DNA shape is a consequence of sequence, it is difficult to dissociate these modes of recognition. Here, we tease them apart in the context of Hox-DNA binding by mutating residues that, in a co-crystal structure, only recognize DNA shape. Complexes made with these mutants lose the preference to bind sequences with specific DNA shape features. Introducing shape-recognizing residues from one Hox protein to another swapped binding specificities in vitro and gene regulation in vivo. Statistical machine learning revealed that the accuracy of binding specificity predictions improves by adding shape features to a model that only depends on sequence, and feature selection identified shape features important for recognition. Thus, shape readout is a direct and independent component of binding site selection by Hox proteins. PMID:25843630

  20. A parallel approach of COFFEE objective function to multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.

    2015-09-01

    The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.

  1. Use of robotics in high-throughput DNA sequencing.

    PubMed

    Keeney, Stephen

    2011-01-01

    Until relatively recently, full sequencing of genes consisting of more than several exons was not considered practicable within a routine diagnostic context. As a result, many approaches to unknown mutation detection in a specific gene involved a mutation pre-screening step to limit the amount of DNA sequencing required. Protocols to pre-screen for mutations and limit the amount of DNA sequencing may not localise every base change present and/or require considerable levels of manual intervention. Advances in technology, allied with careful protocol design, now permit direct DNA sequencing to be applied to larger areas of gene sequence, allowing unequivocal mutation identification in the area of a gene being analysed. The protocol described below utilises robotic systems, allied to custom-designed PCR primers, to facilitate rapid DNA sequencing of multiple gene targets. The general approach is amenable to adaptation for use with multi-channel pipettes. PMID:20938842

  2. SVM-BALSA: Remote Homology Detection based on Bayesian Sequence Alignment

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Oehmen, Chris S.; Matzke, Melissa M.

    2005-11-10

    Using biopolymer sequence comparison methods to identify evolutionarily related proteins is one of the most common tasks in bioinformatics. Recently, support vector machines (SVMs) utilizing statistical learning theory have been employed in the problem of remote homology detection and shown to outperform iterative profile methods such as PSI-BLAST. In this study we demonstrate the utilization of a Bayesian alignment score, which accounts for the uncertainty of all possible alignments, in the SVM construction improves sensitivity compared to the traditional dynamic programming implementation.

  3. Comparative Topological Analysis of Neuronal Arbors via Sequence Representation and Alignment

    NASA Astrophysics Data System (ADS)

    Gillette, Todd Aaron

    Neuronal morphology is a key mediator of neuronal function, defining the profile of connectivity and shaping signal integration and propagation. Reconstructing neurite processes is technically challenging and thus data has historically been relatively sparse. Data collection and curation along with more efficient and reliable data production methods provide opportunities for the application of informatics to find new relationships and more effectively explore the field. This dissertation presents a method for aiding the development of data production as well as a novel representation and set of analyses for extracting morphological patterns. The DIADEM Challenge was organized for the purposes of determining the state of the art in automated neuronal reconstruction and what existing challenges remained. As one of the co-organizers of the Challenge, I developed the DIADEM metric, a tool designed to measure the effectiveness of automated reconstruction algorithms by comparing resulting reconstructions to expert-produced gold standards and identifying errors of various types. It has been used in the DIADEM Challenge and in the testing of several algorithms since. Further, this dissertation describes a topological sequence representation of neuronal trees amenable to various forms of sequence analysis, notably motif analysis, global pairwise alignment, clustering, and multiple sequence alignment. Motif analysis of neuronal arbors shows a large difference in bifurcation type proportions between axons and dendrites, but that relatively simple growth mechanisms account for most higher order motifs. Pairwise global alignment of topological sequences, modified from traditional sequence alignment to preserve tree relationships, enabled cluster analysis which displayed strong correspondence with known cell classes by cell type, species, and brain region. Multiple alignment of sequences in selected clusters enabled the extraction of conserved features, revealing mouse

  4. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, S.; Richardson, C.

    1997-03-25

    A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.

  5. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles

    1997-01-01

    Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.

  6. Alignment of Red-Sequence Cluster Dwarf Galaxies: From the Frontier Fields to the Local Universe

    NASA Astrophysics Data System (ADS)

    Barkhouse, Wayne Alan; Archer, Haylee; Burgad, Jaford; Foote, Gregory; Rude, Cody; Lopez-Cruz, Omar

    2015-08-01

    Galaxy clusters are the largest virialized structures in the universe. Due to their high density and mass, they are an excellent laboratory for studying the environmental effects on galaxy evolution. Numerical simulations have predicted that tidal torques acting on dwarf galaxies as they fall into the cluster environment will cause the major axis of the galaxies to align with their radial position vector (a line that extends from the cluster center to the galaxy's center). We have undertaken a study to measure the redshift evolution of the alignment of red-sequence cluster dwarf galaxies based on a sample of 57 low-redshift Abell clusters imaged at KPNO using the 0.9-meter telescope, and 64 clusters from the WINGS dataset. To supplement our low-redshift sample, we have included galaxies selected from the Hubble Space Telescope Frontier fields. Leveraging the HST data allows us to look for evolutionary changes in the alignment of red-sequence cluster dwarf galaxies over a redshift range of 0 < z < 0.35. The alignment of the major axis of the dwarf galaxies is measured by fitting a Sersic function to each red-sequence galaxy using GALFIT. The quality of each model is checked visually after subtracting the model from the galaxy. The cluster sample is then combined by scaling each cluster by r200. We present our preliminary results based on the alignment of the red-sequence dwarf galaxies with: 1) the major axis of the brightest cluster galaxy, 2) the major axis of the cluster defined by the position of cluster members, and 3) a radius vector pointing from the cluster center to individual dwarf galaxies. Our combined cluster sample is sub-divided into different radial regions and redshift bins.

  7. Spectral entropy criteria for structural segmentation in genomic DNA sequences

    NASA Astrophysics Data System (ADS)

    Chechetkin, V. R.; Lobzin, V. V.

    2004-07-01

    The spectral entropy is calculated with Fourier structure factors and characterizes the level of structural ordering in a sequence of symbols. It may efficiently be applied to the assessment and reconstruction of the modular structure in genomic DNA sequences. We present the relevant spectral entropy criteria for the local and non-local structural segmentation in DNA sequences. The results are illustrated with the model examples and analysis of intervening exon-intron segments in the protein-coding regions.

  8. Progress towards DNA sequencing at the single molecule level

    SciTech Connect

    Goodwin, P.M.; Affleck, R.L.; Ambrose, W.P.

    1995-12-01

    We describe progress towards sequencing DNA at the single molecule level. Our technique involves incorporation of fluorescently tagged nucleotides into a targeted sequence, anchoring the labeled DNA strand in a flowing stream, sequential exonuclease digestion of the DNA strand, and efficient detection and identification of single tagged nucleotides. Experiments demonstrating strand specific exonuclease digestion of fluorescently labeled DNA anchored in flow as well as the detection of single cleaved fluorescently tagged nucleotides from a small number of anchored DNA fragments axe described. We find that the turnover rate of Esherichia coli exonuclease III on fluorescently labeled DNA in flow at 36{degree}C is {approximately}7 nucleotides per DNA strand per second, which is approximately the same as that measured for this enzyme on native DNA under static, saturated (excess enzyme) conditions. Experiments demonstrating the efficient detection of single fluorescent molecules delivered electrokinetically to a {approximately}3 pL probe volume are also described.

  9. Advanced microinstrumentation for rapid DNA sequencing and large DNA fragment separation

    SciTech Connect

    Balch, J.; Davidson, J.; Brewer, L.; Gingrich, J.; Koo, J.; Mariella, R.; Carrano, A.

    1995-01-25

    Our efforts to develop novel technology for a rapid DNA sequencer and large fragment analysis system based upon gel electrophoresis are described. We are using microfabrication technology to build dense arrays of high speed micro electrophoresis lanes that will ultimately increase the sequencing rate of DNA by at least 100 times the rate of current sequencers. We have demonstrated high resolution DNA fragment separation needed for sequencing in polyacrylamide microgels formed in glass microchannels. We have built prototype arrays of microchannels having up to 48 channels. Significant progress has also been made in developing a sensitive fluorescence detection system based upon a confocal microscope design that will enable the diagnostics and detection of DNA fragments in ultrathin microchannel gels. Development of a rapid DNA sequencer and fragment analysis system will have a major impact on future DNA instrumentation used in clinical, molecular and forensic analysis of DNA fragments.

  10. A gene-specific DNA sequencing chip for exploring molecular evolutionary change.

    PubMed

    Fedrigo, Olivier; Naylor, Gavin

    2004-01-01

    Sequencing by hybridization (SBH) approaches to DNA sequencing face two conflicting constraints. First, in order to ensure that the target DNA binds reliably, the oligonucleotide probes that are attached to the chip array must be >15 bp in length. Secondly, the total number of possible 15 bp oligonucleotides is too large (>4(15)) to fit on a chip with current technology. To circumvent the conflict between these two opposing constraints, we present a novel gene-specific DNA chip design. Our design is based on the idea that not all conceivable oligonucleotides need to be placed on a chip--only those that capture sequence combinations occurring in nature. Our approach uses a training set of aligned sequences that code for the gene in question. We compute the minimum number of oligonucleotides (generally 15-30 bp in length) that need to be placed on a DNA chip to capture the variation implied by the training set using a graph search algorithm. We tested the approach in silico using cytochrome-b sequences. Results indicate that on average, 98% of the sequence of an unknown target can be determined using the approach. PMID:14973200

  11. Analysis of separate isolates of Bordetella pertussis repeated DNA sequences.

    PubMed

    McPheat, W L; Hanson, J H; Livey, I; Robertson, J S

    1989-06-01

    Two independent isolates of a Bordetella pertussis repeated DNA unit were sequenced and shown to be an insertion sequence element with five nucleotide differences between the two copies. The sequences were 1053 bp in length with near-perfect terminal inverted repeats of 28 bp, had three open reading frames, and were each flanked by short direct repeats. The two insertion sequences showed considerable homology to two other B. pertussis repeated DNA sequences reported recently: IS481 and a 530 bp repeated DNA unit. The B. pertussis insertion sequence would appear to comprise a group of closely related sequences differing mainly in flanking direct repeats and the terminal inverted repeats. The two isolates reported here, which were from the adenylate cyclase and agglutinogen 2 regions of the genome, were numbered IS48lvl and IS48lv2 respectively. PMID:2559151

  12. Advances in DNA sequencing technologies for high resolution HLA typing.

    PubMed

    Cereb, Nezih; Kim, Hwa Ran; Ryu, Jaejun; Yang, Soo Young

    2015-12-01

    This communication describes our experience in large-scale G group-level high resolution HLA typing using three different DNA sequencing platforms - ABI 3730 xl, Illumina MiSeq and PacBio RS II. Recent advances in DNA sequencing technologies, so-called next generation sequencing (NGS), have brought breakthroughs in deciphering the genetic information in all living species at a large scale and at an affordable level. The NGS DNA indexing system allows sequencing multiple genes for large number of individuals in a single run. Our laboratory has adopted and used these technologies for HLA molecular testing services. We found that each sequencing technology has its own strengths and weaknesses, and their sequencing performances complement each other. HLA genes are highly complex and genotyping them is quite challenging. Using these three sequencing platforms, we were able to meet all requirements for G group-level high resolution and high volume HLA typing. PMID:26423536

  13. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  14. Accuracy of sequence alignment and fold assessment using reduced amino acid alphabets.

    PubMed

    Melo, Francisco; Marti-Renom, Marc A

    2006-06-01

    Reduced or simplified amino acid alphabets group the 20 naturally occurring amino acids into a smaller number of representative protein residues. To date, several reduced amino acid alphabets have been proposed, which have been derived and optimized by a variety of methods. The resulting reduced amino acid alphabets have been applied to pattern recognition, generation of consensus sequences from multiple alignments, protein folding, and protein structure prediction. In this work, amino acid substitution matrices and statistical potentials were derived based on several reduced amino acid alphabets and their performance assessed in a large benchmark for the tasks of sequence alignment and fold assessment of protein structure models, using as a reference frame the standard alphabet of 20 amino acids. The results showed that a large reduction in the total number of residue types does not necessarily translate into a significant loss of discriminative power for sequence alignment and fold assessment. Therefore, some definitions of a few residue types are able to encode most of the relevant sequence/structure information that is present in the 20 standard amino acids. Based on these results, we suggest that the use of reduced amino acid alphabets may allow to increasing the accuracy of current substitution matrices and statistical potentials for the prediction of protein structure of remote homologs. PMID:16506243

  15. TCS: a web server for multiple sequence alignment evaluation and phylogenetic reconstruction

    PubMed Central

    Chang, Jia-Ming; Di Tommaso, Paolo; Lefort, Vincent; Gascuel, Olivier; Notredame, Cedric

    2015-01-01

    This article introduces the Transitive Consistency Score (TCS) web server; a service making it possible to estimate the local reliability of protein multiple sequence alignments (MSAs) using the TCS index. The evaluation can be used to identify the aligned positions most likely to contain structurally analogous residues and also most likely to support an accurate phylogenetic reconstruction. The TCS scoring scheme has been shown to be accurate predictor of structural alignment correctness among commonly used methods. It has also been shown to outperform common filtering schemes like Gblocks or trimAl when doing MSA post-processing prior to phylogenetic tree reconstruction. The web server is available from http://tcoffee.crg.cat/tcs. PMID:25855806

  16. Multiplexed Sequence Encoding: A Framework for DNA Communication.

    PubMed

    Zakeri, Bijan; Carr, Peter A; Lu, Timothy K

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication-data encoding, data transfer & data extraction-and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system-Multiplexed Sequence Encoding (MuSE)-that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. PMID:27050646

  17. Multiplexed Sequence Encoding: A Framework for DNA Communication

    PubMed Central

    Zakeri, Bijan; Carr, Peter A.; Lu, Timothy K.

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication—data encoding, data transfer & data extraction—and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system—Multiplexed Sequence Encoding (MuSE)—that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. PMID:27050646

  18. Comparison of alignment software for genome-wide bisulphite sequence data

    PubMed Central

    Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Morison, Ian M.

    2012-01-01

    Recent advances in next generation sequencing (NGS) technology now provide the opportunity to rapidly interrogate the methylation status of the genome. However, there are challenges in handling and interpretation of the methylation sequence data because of its large volume and the consequences of bisulphite modification. We sequenced reduced representation human genomes on the Illumina platform and efficiently mapped and visualized the data with different pipelines and software packages. We examined three pipelines for aligning bisulphite converted sequencing reads and compared their performance. We also comment on pre-processing and quality control of Illumina data. This comparison highlights differences in methods for NGS data processing and provides guidance to advance sequence-based methylation data analysis for molecular biologists. PMID:22344695

  19. Quantitative Comparison of Large-Scale DNA Enrichment Sequencing Data.

    PubMed

    Lienhard, Matthias; Chavez, Lukas

    2016-01-01

    DNA enrichment followed by sequencing (DNA-IP seq) is a versatile tool in molecular biology with a wide variety of applications. Computational analysis of differential DNA enrichment between conditions is important for identifying epigenetic alterations in disease compared to healthy controls and for revealing dynamic epigenetic modifications throughout normal and distorted cell differentiation and development. We present a protocol for genome-wide comparative analysis of DNA-IP sequencing data to identify statistically significant differential sequencing coverage between two conditions by considering variation across replicates. The protocol provides a detailed description for the comparative analysis of DNA-IP sequencing data including basic data processing, quality controls, and identification of differential enrichment using the Bioconductor package "MEDIPS". PMID:27008016

  20. Evidence of Statistical Inconsistency of Phylogenetic Methods in the Presence of Multiple Sequence Alignment Uncertainty

    PubMed Central

    Md Mukarram Hossain, A.S.; Blackburne, Benjamin P.; Shah, Abhijeet; Whelan, Simon

    2015-01-01

    Evolutionary studies usually use a two-step process to investigate sequence data. Step one estimates a multiple sequence alignment (MSA) and step two applies phylogenetic methods to ask evolutionary questions of that MSA. Modern phylogenetic methods infer evolutionary parameters using maximum likelihood or Bayesian inference, mediated by a probabilistic substitution model that describes sequence change over a tree. The statistical properties of these methods mean that more data directly translates to an increased confidence in downstream results, providing the substitution model is adequate and the MSA is correct. Many studies have investigated the robustness of phylogenetic methods in the presence of substitution model misspecification, but few have examined the statistical properties of those methods when the MSA is unknown. This simulation study examines the statistical properties of the complete two-step process when inferring sequence divergence and the phylogenetic tree topology. Both nucleotide and amino acid analyses are negatively affected by the alignment step, both through inaccurate guide tree estimates and through overfitting to that guide tree. For many alignment tools these effects become more pronounced when additional sequences are added to the analysis. Nucleotide sequences are particularly susceptible, with MSA errors leading to statistical support for long-branch attraction artifacts, which are usually associated with gross substitution model misspecification. Amino acid MSAs are more robust, but do tend to arbitrarily resolve multifurcations in favor of the guide tree. No inference strategies produce consistently accurate estimates of divergence between sequences, although amino acid MSAs are again more accurate than their nucleotide counterparts. We conclude with some practical suggestions about how to limit the effect of MSA uncertainty on evolutionary inference. PMID:26139831

  1. Compiling Multicopy Single-Stranded DNA Sequences from Bacterial Genome Sequences

    PubMed Central

    Yoo, Wonseok; Lim, Dongbin

    2016-01-01

    A retron is a bacterial retroelement that encodes an RNA gene and a reverse transcriptase (RT). The former, once transcribed, works as a template primer for reverse transcription by the latter. The resulting DNA is covalently linked to the upstream part of the RNA; this chimera is called multicopy single-stranded DNA (msDNA), which is extrachromosomal DNA found in many bacterial species. Based on the conserved features in the eight known msDNA sequences, we developed a detection method and applied it to scan National Center for Biotechnology Information (NCBI) RefSeq bacterial genome sequences. Among 16,844 bacterial sequences possessing a retron-type RT domain, we identified 48 unique types of msDNA. Currently, the biological role of msDNA is not well understood. Our work will be a useful tool in studying the distribution, evolution, and physiological role of msDNA. PMID:27103888

  2. Diversity Measures in Environmental Sequences Are Highly Dependent on Alignment Quality—Data from ITS and New LSU Primers Targeting Basidiomycetes

    PubMed Central

    Fischer, Christiane; Daniel, Rolf; Wubet, Tesfaye

    2012-01-01

    The ribosomal DNA comprised of the ITS1-5.8S-ITS2 regions is widely used as a fungal marker in molecular ecology and systematics but cannot be aligned with confidence across genetically distant taxa. In order to study the diversity of Agaricomycotina in forest soils, we designed primers targeting the more alignable 28S (LSU) gene, which should be more useful for phylogenetic analyses of the detected taxa. This paper compares the performance of the established ITS1F/4B primer pair, which targets basidiomycetes, to that of two new pairs. Key factors in the comparison were the diversity covered, off-target amplification, rarefaction at different Operational Taxonomic Unit (OTU) cutoff levels, sensitivity of the method used to process the alignment to missing data and insecure positional homology, and the congruence of monophyletic clades with OTU assignments and BLAST-derived OTU names. The ITS primer pair yielded no off-target amplification but also exhibited the least fidelity to the expected phylogenetic groups. The LSU primers give complementary pictures of diversity, but were more sensitive to modifications of the alignment such as the removal of difficult-to align stretches. The LSU primers also yielded greater numbers of singletons but also had a greater tendency to produce OTUs containing sequences from a wider variety of species as judged by BLAST similarity. We introduced some new parameters to describe alignment heterogeneity based on Shannon entropy and the extent and contents of the OTUs in a phylogenetic tree space. Our results suggest that ITS should not be used when calculating phylogenetic trees from genetically distant sequences obtained from environmental DNA extractions and that it is inadvisable to define OTUs on the basis of very heterogeneous alignments. PMID:22363808

  3. Bioinformatic identification of novel regulatory DNA sequence motifs in Streptomyces coelicolor

    PubMed Central

    Studholme, David J; Bentley, Stephen D; Kormanec, Jan

    2004-01-01

    Background Streptomyces coelicolor is a bacterium with a vast repertoire of metabolic functions and complex systems of cellular development. Its genome sequence is rich in genes that encode regulatory proteins to control these processes in response to its changing environment. We wished to apply a recently published bioinformatic method for identifying novel regulatory sequence signals to gain new insights into regulation in S. coelicolor. Results The method involved production of position-specific weight matrices from alignments of over-represented words of DNA sequence. We generated 2497 weight matrices, each representing a candidate regulatory DNA sequence motif. We scanned the genome sequence of S. coelicolor against each of these matrices. A DNA sequence motif represented by one of the matrices was found preferentially in non-coding sequences immediately upstream of genes involved in polysaccharide degradation, including several that encode chitinases. This motif (TGGTCTAGACCA) was also found upstream of genes encoding components of the phosphoenolpyruvate phosphotransfer system (PTS). We hypothesise that this DNA sequence motif represents a regulatory element that is responsive to availability of carbon-sources. Other motifs of potential biological significance were found upstream of genes implicated in secondary metabolism (TTAGGTtAGgCTaACCTAA), sigma factors (TGACN19TGAC), DNA replication and repair (ttgtCAGTGN13TGGA), nucleotide conversions (CTACgcNCGTAG), and ArsR (TCAGN12TCAG). A motif found upstream of genes involved in chromosome replication (TGTCagtgcN7Tagg) was similar to a previously described motif found in UV-responsive promoters. Conclusions We successfully applied a recently published in silico method to identify conserved sequence motifs in S. coelicolor that may be biologically significant as regulatory elements. Our data are broadly consistent with and further extend data from previously published studies. We invite experimental testing of

  4. An Evolution Based Biosensor Receptor DNA Sequence Generation Algorithm

    PubMed Central

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M.; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements. PMID:22315543

  5. Laser desorption mass spectrometry for DNA analysis and sequencing

    SciTech Connect

    Chen, C.H.; Taranenko, N.I.; Tang, K.; Allman, S.L.

    1995-03-01

    Laser desorption mass spectrometry has been considered as a potential new method for fast DNA sequencing. Our approach is to use matrix-assisted laser desorption to produce parent ions of DNA segments and a time-of-flight mass spectrometer to identify the sizes of DNA segments. Thus, the approach is similar to gel electrophoresis sequencing using Sanger`s enzymatic method. However, gel, radioactive tagging, and dye labeling are not required. In addition, the sequencing process can possibly be finished within a few hundred microseconds instead of hours and days. In order to use mass spectrometry for fast DNA sequencing, the following three criteria need to be satisfied. They are (1) detection of large DNA segments, (2) sensitivity reaching the femtomole region, and (3) mass resolution good enough to separate DNA segments of a single nucleotide difference. It has been very difficult to detect large DNA segments by mass spectrometry before due to the fragile chemical properties of DNA and low detection sensitivity of DNA ions. We discovered several new matrices to increase the production of DNA ions. By innovative design of a mass spectrometer, we can increase the ion energy up to 45 KeV to enhance the detection sensitivity. Recently, we succeeded in detecting a DNA segment with 500 nucleotides. The sensitivity was 100 femtomole. Thus, we have fulfilled two key criteria for using mass spectrometry for fast DNA sequencing. The major effort in the near future is to improve the resolution. Different approaches are being pursued. When high resolution of mass spectrometry can be achieved and automation of sample preparation is developed, the sequencing speed to reach 500 megabases per year can be feasible.

  6. cDNA-derived amino acid sequences of myoglobins from nine species of whales and dolphins.

    PubMed

    Iwanami, Kentaro; Mita, Hajime; Yamamoto, Yasuhiko; Fujise, Yoshihiro; Yamada, Tadasu; Suzuki, Tomohiko

    2006-10-01

    We determined the myoglobin (Mb) cDNA sequences of nine cetaceans, of which six are the first reports of Mb sequences: sei whale (Balaenoptera borealis), Bryde's whale (Balaenoptera edeni), pygmy sperm whale (Kogia breviceps), Stejneger's beaked whale (Mesoplodon stejnegeri), Longman's beaked whale (Indopacetus pacificus), and melon-headed whale (Peponocephala electra), and three confirm the previously determined chemical amino acid sequences: sperm whale (Physeter macrocephalus), common minke whale (Balaenoptera acutorostrata) and pantropical spotted dolphin (Stenella attenuata). We found two types of Mb in the skeletal muscle of pantropical spotted dolphin: Mb I with the same amino acid sequence as that deposited in the protein database, and Mb II, which differs at two amino acid residues compared with Mb I. Using an alignment of the amino acid or cDNA sequences of cetacean Mb, we constructed a phylogenetic tree by the NJ method. Clustering of cetacean Mb amino acid and cDNA sequences essentially follows the classical taxonomy of cetaceans, suggesting that Mb sequence data is valid for classification of cetaceans at least to the family level. PMID:16962803

  7. Characterization of Expressed Sequence Tags From a Gallus gallus Pineal Gland cDNA Library

    PubMed Central

    Hartman, Stefanie; Touchton, Greg; Wynn, Jessica; Geng, Tuoyu; Chong, Nelson W.

    2005-01-01

    The pineal gland is the circadian oscillator in the chicken, regulating diverse functions ranging from egg laying to feeding. Here, we describe the isolation and characterization of expressed sequence tags (ESTs) isolated from a chicken pineal gland cDNA library. A total of 192 unique sequences were analysed and submitted to GenBank; 6% of the ESTs matched neither GenBank cDNA sequences nor the newly assembled chicken genomic DNA sequence, three ESTs aligned with sequences designated to be on the Z_random, while one matched a W chromosome sequence and could be useful in cataloguing functionally important genes on this sex chromosome. Additionally, single nucleotide polymorphisms (SNPs) were identified and validated in 10 ESTs that showed 98% or higher sequence similarity to known chicken genes. Here, we have described resources that may be useful in comparative and functional genomic analysis of genes expressed in an important organ, the pineal gland, in a model and agriculturally important organism. PMID:18629218

  8. Enzyme sequence similarity improves the reaction alignment method for cross-species pathway comparison

    SciTech Connect

    Ovacik, Meric A.; Androulakis, Ioannis P.

    2013-09-15

    Pathway-based information has become an important source of information for both establishing evolutionary relationships and understanding the mode of action of a chemical or pharmaceutical among species. Cross-species comparison of pathways can address two broad questions: comparison in order to inform evolutionary relationships and to extrapolate species differences used in a number of different applications including drug and toxicity testing. Cross-species comparison of metabolic pathways is complex as there are multiple features of a pathway that can be modeled and compared. Among the various methods that have been proposed, reaction alignment has emerged as the most successful at predicting phylogenetic relationships based on NCBI taxonomy. We propose an improvement of the reaction alignment method by accounting for sequence similarity in addition to reaction alignment method. Using nine species, including human and some model organisms and test species, we evaluate the standard and improved comparison methods by analyzing glycolysis and citrate cycle pathways conservation. In addition, we demonstrate how organism comparison can be conducted by accounting for the cumulative information retrieved from nine pathways in central metabolism as well as a more complete study involving 36 pathways common in all nine species. Our results indicate that reaction alignment with enzyme sequence similarity results in a more accurate representation of pathway specific cross-species similarities and differences based on NCBI taxonomy.

  9. A Comprehensive Approach to Clustering of Expressed Human Gene Sequence: The Sequence Tag Alignment and Consensus Knowledge Base

    PubMed Central

    Miller, Robert T.; Christoffels, Alan G.; Gopalakrishnan, Chella; Burke, John; Ptitsyn, Andrey A.; Broveak, Tania R.; Hide, Winston A.

    1999-01-01

    The expressed human genome is being sequenced and analyzed by disparate groups producing disparate data. The majority of the identified coding portion is in the form of expressed sequence tags (ESTs). The need to discover exonic representation and expression forms of full-length cDNAs for each human gene is frustrated by the partial and variable quality nature of this data delivery. A highly redundant human EST data set has been processed into integrated and unified expressed transcript indices that consist of hierarchically organized human transcript consensi reflecting gene expression forms and genetic polymorphism within an index class. The expression index and its intermediate outputs include cleaned transcript sequence, expression, and alignment information and a higher fidelity subset, SANIGENE. The STACK_PACK clustering system has been applied to dbEST release 121598 (GenBank version 110). Sixty-four percent of 1,313,103 Homo sapiens ESTs are condensed into 143,885 tissue level multiple sequence clusters; linking through clone-ID annotations produces 68,701 total assemblies, such that 81% of the original input set is captured in a STACK multiple sequence or linked cluster. Indexing of alignments by substituent EST accession allows browsing of the data structure and its cross-links to UniGene. STACK metaclusters consolidate a greater number of ESTs by a factor of 1.86 with respect to the corresponding UniGene build. Fidelity comparison with genome reference sequence AC004106 demonstrates consensus expression clusters that reflect significantly lower spurious repeat sequence content and capture alternate splicing within a whole body index cluster and three STACK v.2.3 tissue-level clusters. Statistics of a staggered release whole body index build of STACK v.2.0 are presented. PMID:10568754

  10. Biological nanopore MspA for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Manrao, Elizabeth A.

    Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore

  11. DNA sequence analysis with droplet-based microfluidics

    PubMed Central

    Abate, Adam R.; Hung, Tony; Sperling, Ralph A.; Mary, Pascaline; Rotem, Assaf; Agresti, Jeremy J.; Weiner, Michael A.; Weitz, David A.

    2014-01-01

    Droplet-based microfluidic techniques can form and process micrometer scale droplets at thousands per second. Each droplet can house an individual biochemical reaction, allowing millions of reactions to be performed in minutes with small amounts of total reagent. This versatile approach has been used for engineering enzymes, quantifying concentrations of DNA in solution, and screening protein crystallization conditions. Here, we use it to read the sequences of DNA molecules with a FRET-based assay. Using probes of different sequences, we interrogate a target DNA molecule for polymorphisms. With a larger probe set, additional polymorphisms can be interrogated as well as targets of arbitrary sequence. PMID:24185402

  12. DNA Methyltransferase Accessibility Protocol for Individual Templates by Deep Sequencing

    PubMed Central

    Darst, Russell P.; Nabilsi, Nancy H.; Pardo, Carolina E.; Riva, Alberto; Kladde, Michael P.

    2013-01-01

    A single-molecule probe of chromatin structure can uncover dynamic chromatin states and rare epigenetic variants of biological importance that bulk measures of chromatin structure miss. In bisulfite genomic sequencing, each sequenced clone records the methylation status of multiple sites on an individual molecule of DNA. An exogenous DNA methyltransferase can thus be used to image nucleosomes and other protein–DNA complexes. In this chapter, we describe the adaptation of this technique, termed Methylation Accessibility Protocol for individual templates, to modern high-throughput sequencing, which both simplifies the workflow and extends its utility. PMID:22929770

  13. An Optimal Seed Based Compression Algorithm for DNA Sequences

    PubMed Central

    Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan

    2016-01-01

    This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms. PMID:27555868

  14. KMAD: knowledge-based multiple sequence alignment for intrinsically disordered proteins

    PubMed Central

    Lange, Joanna; Wyrwicz, Lucjan S.; Vriend, Gert

    2016-01-01

    Summary: Intrinsically disordered proteins (IDPs) lack tertiary structure and thus differ from globular proteins in terms of their sequence–structure–function relations. IDPs have lower sequence conservation, different types of active sites and a different distribution of functionally important regions, which altogether make their multiple sequence alignment (MSA) difficult. The KMAD MSA software has been written specifically for the alignment and annotation of IDPs. It augments the substitution matrix with knowledge about post-translational modifications, functional domains and short linear motifs. Results: MSAs produced with KMAD describe well-conserved features among IDPs, tend to agree well with biological intuition, and are a good basis for designing new experiments to shed light on this large, understudied class of proteins. Availability and implementation: KMAD web server is accessible at http://www.cmbi.ru.nl/kmad/. A standalone version is freely available. Contact: vriend@cmbi.ru.nl PMID:26568635

  15. A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery

    PubMed Central

    Yen, Ian E. H.; Lin, Xin; Zhang, Jiong; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems. PMID:27559428

  16. seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments.

    PubMed

    Flot, J-F

    2010-01-01

    The program phase is widely used for Bayesian inference of haplotypes from diploid genotypes; however, manually creating phase input files from sequence alignments is an error-prone and time-consuming process, especially when dealing with numerous variable sites and/or individuals. Here, a web tool called seqphase is presented that generates phase input files from fasta sequence alignments and converts phase output files back into fasta. During the production of the phase input file, several consistency checks are performed on the dataset and suitable command line options to be used for the actual phase data analysis are suggested. seqphase was written in perl and is freely accessible over the Internet at the address http://www.mnhn.fr/jfflot/seqphase. PMID:21565002

  17. Profiling DNA Methylomes from Microarray to Genome-Scale Sequencing

    PubMed Central

    Huang, Yi-Wen; Huang, Tim H.-M.; Wang, Li-Shu

    2010-01-01

    DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome. With advances on next-generation sequencing technologies, it is now possible to globally map the DNA cytosine methylation at single-base resolution, providing new insights into the regulation and dynamics of DNA methylation in genomes. PMID:20218736

  18. Profiling DNA methylomes from microarray to genome-scale sequencing.

    PubMed

    Huang, Yi-Wei; Huang, Tim H-M; Wang, Li-Shu

    2010-04-01

    DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome. With advances on next-generation sequencing technologies, it is now possible to globally map the DNA cytosine methylation at single-base resolution, providing new insights into the regulation and dynamics of DNA methylation in genomes. PMID:20218736

  19. Current-voltage characteristics of double-strand DNA sequences

    NASA Astrophysics Data System (ADS)

    Bezerril, L. M.; Moreira, D. A.; Albuquerque, E. L.; Fulco, U. L.; de Oliveira, E. L.; de Sousa, J. S.

    2009-09-01

    We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.

  20. Population identification of Sarcoptes hominis and Sarcoptes canis in China using DNA sequences.

    PubMed

    Zhao, YaE; Cao, ZhiGuo; Cheng, Juan; Hu, Li; Ma, JunXian; Yang, YuanJun; Wang, XiaoPeng; Zeng, JiHui; Wang, TianPing

    2015-03-01

    There has been no consistent conclusion on whether Sarcoptes mites parasitizing in humans and animals are the same species. To identify Sarcoptes (S.) hominis and S. canis in China, gDNA was extracted from individual mites (five from patients with scabies and five from dogs with mange) for amplification of rDNA ITS2, mtDNA 16S, and cox1 fragment sequences. Then, the sequences obtained were aligned with those from different hosts and geographical locations retrieved from GenBank and sequence analyses were conducted. Phylogenetic trees based on 317-bp mtDNA cox1 showed five distinctive branches (species) of Sarcoptes mites, four for S. hominis (S. hominis Chinese, S. nr. hominis Chinese, S. hominis Australian, and S. hominis Panamanian) and one for S. animal (S. animal). S. animal included mites from nine animal species, with S. canis China, S. canis Australia, and S. canis USA clustering as a subbranch. Further sequence divergence analysis revealed no overlap between intraspecific (≤ 2.6 %) and interspecific (2.6-10.5 %) divergences in 317-bp mtDNA cox1. However, overlap was detected between intra- and interspecific divergences in 311-bp rDNA ITS2 or 275-bp mtDNA 16S when the divergences exceeded 1.0 %, which resulted in failure in identification of Sarcoptes. The results showed that the 317-bp mtDNA cox1 could be used as a DNA barcode for molecular identification of Sarcoptes mites. In addition, geographical isolation was observed between S. hominis Chinese, S. hominis Australian, and S. hominis Panamanian, but not between all S. canis. S. canis and the other S. animal belonged to the same species. PMID:25547078

  1. RBT-GA: a novel metaheuristic for solving the multiple sequence alignment problem

    PubMed Central

    Taheri, Javid; Zomaya, Albert Y

    2009-01-01

    Background Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees. Results This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem. Conclusion RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences. PMID:19594869

  2. JAR3D Webserver: Scoring and aligning RNA loop sequences to known 3D motifs.

    PubMed

    Roll, James; Zirbel, Craig L; Sweeney, Blake; Petrov, Anton I; Leontis, Neocles

    2016-07-01

    Many non-coding RNAs have been identified and may function by forming 2D and 3D structures. RNA hairpin and internal loops are often represented as unstructured on secondary structure diagrams, but RNA 3D structures show that most such loops are structured by non-Watson-Crick basepairs and base stacking. Moreover, different RNA sequences can form the same RNA 3D motif. JAR3D finds possible 3D geometries for hairpin and internal loops by matching loop sequences to motif groups from the RNA 3D Motif Atlas, by exact sequence match when possible, and by probabilistic scoring and edit distance for novel sequences. The scoring gauges the ability of the sequences to form the same pattern of interactions observed in 3D structures of the motif. The JAR3D webserver at http://rna.bgsu.edu/jar3d/ takes one or many sequences of a single loop as input, or else one or many sequences of longer RNAs with multiple loops. Each sequence is scored against all current motif groups. The output shows the ten best-matching motif groups. Users can align input sequences to each of the motif groups found by JAR3D. JAR3D will be updated with every release of the RNA 3D Motif Atlas, and so its performance is expected to improve over time. PMID:27235417

  3. Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis.

    PubMed

    Bonham-Carter, Oliver; Steele, Joe; Bastola, Dhundy

    2014-11-01

    Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective for this work owing to their inherent computational expense when processing large amounts of sequence data. These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and other inherent biological events. New approaches from information theory, frequency analysis and data compression are available and provide powerful alternatives to dynamic programming. These new methods are often preferred, as their algorithms are simpler and are not affected by synteny-related problems. In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods based on statistical analysis from word frequencies. We provide several clear examples to demonstrate applications and the interpretations over several different areas of alignment-free analysis such as base-base correlations, feature frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric. Additionally, we provide detailed discussion and an example of analysis by Lempel-Ziv techniques from data compression. PMID:23904502

  4. Finite-temperature local protein sequence alignment: percolation and free-energy distribution.

    PubMed

    Wolfsheimer, S; Melchert, O; Hartmann, A K

    2009-12-01

    Sequence alignment is a tool in bioinformatics that is used to find homological relationships in large molecular databases. It can be mapped on the physical model of directed polymers in random media. We consider the finite-temperature version of local sequence alignment for proteins and study the transition between the linear phase and the biologically relevant logarithmic phase, where the free energy grows linearly or logarithmically with the sequence length. By means of numerical simulations and finite-size-scaling analysis, we determine the phase diagram in the plane that is spanned by the gap costs and the temperature. We use the most frequently used parameter set for protein alignment. The critical exponents that describe the parameter-driven transition are found to be explicitly temperature dependent. Furthermore, we study the shape of the (free-) energy distribution close to the transition by rare-event simulations down to probabilities on the order 10(-64). It is well known that in the logarithmic region, the optimal score distribution (T=0) is described by a modified Gumbel distribution. We confirm that this also applies for the free-energy distribution (T>0). However, in the linear phase, the distribution crosses over to a modified Gaussian distribution. PMID:20365196

  5. Large-Scale Multiple Sequence Alignment and Tree Estimation Using SATé

    PubMed Central

    Liu, Kevin; Warnow, Tandy

    2016-01-01

    SATé is a method for estimating multiple sequence alignments and trees that has been shown to produce highly accurate results for datasets with large numbers of sequences. Running SATé using its default settings is very simple, but improved accuracy can be obtained by modifying its algorithmic parameters. We provide a detailed introduction to the algorithmic approach used by SATé, and instructions for running a SATé analysis using the GUI under default settings. We also provide a discussion of how to modify these settings to obtain improved results, and how to use SATé in a phylogenetic analysis pipeline. PMID:24170406

  6. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA.

    PubMed Central

    Jones, D H; Winistorfer, S C

    1992-01-01

    We present a novel method for the PCR amplification of unknown DNA that flanks a known segment directly from human genomic DNA. PCR requires that primer annealing sites be present on each end of the DNA segment that is to be amplified. In this method, known DNA is placed on the uncharacterized side of the sequence of interest via DNA polymerase mediated generation of a PCR template that is shaped like a pan with a handle. Generation of this template permits specific amplification of the unknown sequence. Taq (DNA) polymerase was used to form the original template and to generate the PCR product. 2.2 kb of the beta-globin gene, and 657 bp of the 5' flanking region of the cystic fibrosis transmembrane conductance regulator gene, were amplified directly from human genomic DNA using primers that initially flank only one side of the region amplified. This method will provide a powerful tool for acquiring DNA sequence information. Images PMID:1371352

  7. Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA

    PubMed Central

    2015-01-01

    With the aim of developing a DNA sequencing methodology, we theoretically examine the feasibility of using nanoplasmonics to control the translocation of a DNA molecule through a solid-state nanopore and to read off sequence information using surface-enhanced Raman spectroscopy. Using molecular dynamics simulations, we show that high-intensity optical hot spots produced by a metallic nanostructure can arrest DNA translocation through a solid-state nanopore, thus providing a physical knob for controlling the DNA speed. Switching the plasmonic field on and off can displace the DNA molecule in discrete steps, sequentially exposing neighboring fragments of a DNA molecule to the pore as well as to the plasmonic hot spot. Surface-enhanced Raman scattering from the exposed DNA fragments contains information about their nucleotide composition, possibly allowing the identification of the nucleotide sequence of a DNA molecule transported through the hot spot. The principles of plasmonic nanopore sequencing can be extended to detection of DNA modifications and RNA characterization. PMID:26401685

  8. Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA.

    PubMed

    Belkin, Maxim; Chao, Shu-Han; Jonsson, Magnus P; Dekker, Cees; Aksimentiev, Aleksei

    2015-11-24

    With the aim of developing a DNA sequencing methodology, we theoretically examine the feasibility of using nanoplasmonics to control the translocation of a DNA molecule through a solid-state nanopore and to read off sequence information using surface-enhanced Raman spectroscopy. Using molecular dynamics simulations, we show that high-intensity optical hot spots produced by a metallic nanostructure can arrest DNA translocation through a solid-state nanopore, thus providing a physical knob for controlling the DNA speed. Switching the plasmonic field on and off can displace the DNA molecule in discrete steps, sequentially exposing neighboring fragments of a DNA molecule to the pore as well as to the plasmonic hot spot. Surface-enhanced Raman scattering from the exposed DNA fragments contains information about their nucleotide composition, possibly allowing the identification of the nucleotide sequence of a DNA molecule transported through the hot spot. The principles of plasmonic nanopore sequencing can be extended to detection of DNA modifications and RNA characterization. PMID:26401685

  9. Semiconductor-based DNA sequencing of histone modification states.

    PubMed

    Cheng, Christine S; Rai, Kunal; Garber, Manuel; Hollinger, Andrew; Robbins, Dana; Anderson, Scott; Macbeth, Alyssa; Tzou, Austin; Carneiro, Mauricio O; Raychowdhury, Raktima; Russ, Carsten; Hacohen, Nir; Gershenwald, Jeffrey E; Lennon, Niall; Nusbaum, Chad; Chin, Lynda; Regev, Aviv; Amit, Ido

    2013-01-01

    The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues. PMID:24157732

  10. Semiconductor-based DNA sequencing of histone modification states

    PubMed Central

    Cheng, Christine S.; Rai, Kunal; Garber, Manuel; Hollinger, Andrew; Robbins, Dana; Anderson, Scott; Macbeth, Alyssa; Tzou, Austin; Carneiro, Mauricio O.; Raychowdhury, Raktima; Russ, Carsten; Hacohen, Nir; Gershenwald, Jeffrey E.; Lennon, Niall; Nusbaum, Chad; Chin, Lynda; Regev, Aviv; Amit, Ido

    2013-01-01

    The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues. PMID:24157732

  11. ATRF Houses the Latest DNA Sequencing Technologies | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer By the end of October, the Advanced Technology Research Facility (ATRF) will be one of the few facilities in the world to house all of the latest DNA sequencing technologies.

  12. Microchannel DNA Sequencing by End-Labelled Free Solution Electrophoresis

    SciTech Connect

    Barron, A.

    2005-09-29

    The further development of End-Labeled Free-Solution Electrophoresis will greatly simplify DNA separation and sequencing on microfluidic devices. The development and optimization of drag-tags is critical to the success of this research.

  13. DNA sequencing using polymerase substrate-binding kinetics

    PubMed Central

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  14. DNA sequencing using polymerase substrate-binding kinetics.

    PubMed

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  15. Levenshtein error-correcting barcodes for multiplexed DNA sequencing

    PubMed Central

    2013-01-01

    Background High-throughput sequencing technologies are improving in quality, capacity and costs, providing versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can be mixed and loaded together on the same sequencing track. This so-called multiplexing approach relies on a specific DNA tag or barcode that is attached to the sequencing or amplification primer and hence appears at the beginning of the sequence in every read. After sequencing, each sample read is identified on the basis of the respective barcode sequence. Alterations of DNA barcodes during synthesis, primer ligation, DNA amplification, or sequencing may lead to incorrect sample identification unless the error is revealed and corrected. This can be accomplished by implementing error correcting algorithms and codes. This barcoding strategy increases the total number of correctly identified samples, thus improving overall sequencing efficiency. Two popular sets of error-correcting codes are Hamming codes and Levenshtein codes. Result Levenshtein codes operate only on words of known length. Since a DNA sequence with an embedded barcode is essentially one continuous long word, application of the classical Levenshtein algorithm is problematic. In this paper we demonstrate the decreased error correction capability of Levenshtein codes in a DNA context and suggest an adaptation of Levenshtein codes that is proven of efficiently correcting nucleotide errors in DNA sequences. In our adaption we take the DNA context into account and redefine the word length whenever an insertion or deletion is revealed. In simulations we show the superior error correction capability of the new method compared to traditional Levenshtein and Hamming based codes in the presence of multiple errors. Conclusion We present an adaptation of Levenshtein codes to DNA contexts capable of correction of a pre-defined number of insertion, deletion, and substitution mutations. Our improved

  16. Multiple Amino Acid Sequence Alignment Nitrogenase Component 1: Insights into Phylogenetics and Structure-Function Relationships

    PubMed Central

    Howard, James B.; Kechris, Katerina J.; Rees, Douglas C.; Glazer, Alexander N.

    2013-01-01

    Amino acid residues critical for a protein's structure-function are retained by natural selection and these residues are identified by the level of variance in co-aligned homologous protein sequences. The relevant residues in the nitrogen fixation Component 1 α- and β-subunits were identified by the alignment of 95 protein sequences. Proteins were included from species encompassing multiple microbial phyla and diverse ecological niches as well as the nitrogen fixation genotypes, anf, nif, and vnf, which encode proteins associated with cofactors differing at one metal site. After adjusting for differences in sequence length, insertions, and deletions, the remaining >85% of the sequence co-aligned the subunits from the three genotypes. Six Groups, designated Anf, Vnf , and Nif I-IV, were assigned based upon genetic origin, sequence adjustments, and conserved residues. Both subunits subdivided into the same groups. Invariant and single variant residues were identified and were defined as “core” for nitrogenase function. Three species in Group Nif-III, Candidatus Desulforudis audaxviator, Desulfotomaculum kuznetsovii, and Thermodesulfatator indicus, were found to have a seleno-cysteine that replaces one cysteinyl ligand of the 8Fe:7S, P-cluster. Subsets of invariant residues, limited to individual groups, were identified; these unique residues help identify the gene of origin (anf, nif, or vnf) yet should not be considered diagnostic of the metal content of associated cofactors. Fourteen of the 19 residues that compose the cofactor pocket are invariant or single variant; the other five residues are highly variable but do not correlate with the putative metal content of the cofactor. The variable residues are clustered on one side of the cofactor, away from other functional centers in the three dimensional structure. Many of the invariant and single variant residues were not previously recognized as potentially critical and their identification provides the bases

  17. Discovering simple DNA sequences by the algorithmic significance method.

    PubMed

    Milosavljević, A; Jurka, J

    1993-08-01

    A new method, 'algorithmic significance', is proposed as a tool for discovery of patterns in DNA sequences. The main idea is that patterns can be discovered by finding ways to encode the observed data concisely. In this sense, the method can be viewed as a formal version of the Occam's Razor principle. In this paper the method is applied to discover significantly simple DNA sequences. We define DNA sequences to be simple if they contain repeated occurrences of certain 'words' and thus can be encoded in a small number of bits. Such definition includes minisatellites and microsatellites. A standard dynamic programming algorithm for data compression is applied to compute the minimal encoding lengths of sequences in linear time. An electronic mail server for identification of simple sequences based on the proposed method has been installed at the Internet address pythia/anl.gov. PMID:8402207

  18. Nuclear and mitochondrial DNA sequences from two Denisovan individuals.

    PubMed

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V; Derevianko, Anatoly P; Prüfer, Kay; Kelso, Janet; Pääbo, Svante

    2015-12-22

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  19. Nuclear and mitochondrial DNA sequences from two Denisovan individuals

    PubMed Central

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V.; Derevianko, Anatoly P.; Prüfer, Kay; Pääbo, Svante

    2015-01-01

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  20. Effects of sequence on DNA wrapping around histones

    NASA Astrophysics Data System (ADS)

    Ortiz, Vanessa

    2011-03-01

    A central question in biophysics is whether the sequence of a DNA strand affects its mechanical properties. In epigenetics, these are thought to influence nucleosome positioning and gene expression. Theoretical and experimental attempts to answer this question have been hindered by an inability to directly resolve DNA structure and dynamics at the base-pair level. In our previous studies we used a detailed model of DNA to measure the effects of sequence on the stability of naked DNA under bending. Sequence was shown to influence DNA's ability to form kinks, which arise when certain motifs slide past others to form non-native contacts. Here, we have now included histone-DNA interactions to see if the results obtained for naked DNA are transferable to the problem of nucleosome positioning. Different DNA sequences interacting with the histone protein complex are studied, and their equilibrium and mechanical properties are compared among themselves and with the naked case. NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM T15LM007359).

  1. Efficient DNA sequencing on microtiter plates using dried reagents and Bst DNA polymerase.

    PubMed

    Earley, J J; Kuivaniemi, H; Prockop, D J; Tromp, G

    1993-01-01

    Sequenase, Taq DNA polymerase and Bst DNA polymerase were tested for sequencing of DNA on microtiter plates using dried down reagents. Several parameters were investigated to expedite the drying process while minimizing damage to the enzyme. Sequenase did not tolerate drying very well, and frequently generated sequences with weak signals and many sites of premature termination. With Taq DNA polymerase it was possible to obtain sequences of good quality. However, there was considerable variation of results between experiments and between batches of microtiter plates. Bst DNA polymerase generated sequences of excellent quality. It was stable for more than a week in dried-down state at -20 degrees C and at least overnight at room temperature. The method described here using Bst DNA polymerase is well suited for laboratory robots and workstations that typically employ 96-well microtiter plates. PMID:8173079

  2. The Kinetic Mechanism for DNA Unwinding by Multiple Molecules of Dda Helicase Aligned on DNA†

    PubMed Central

    Eoff, Robert L.; Raney, Kevin D.

    2010-01-01

    Helicases catalyze the separation of double-stranded nucleic acids to form single-stranded intermediates. Using transient state kinetic methods we have determined the kinetic properties of DNA unwinding under conditions that favor a monomeric form of the Dda helicase as well as conditions that allow multiple molecules to function on the same substrate. Multiple helicase molecules can align like a train on the DNA track. The number of base pairs unwound in a single binding event for Dda is increased from ~19 bp for the monomeric form to ~64 bp when as many as four Dda molecules are aligned on the same substrate, while the kinetic step-size (3.2 ± 0.7 bp) and unwinding rate (242 ± 25 bp s−1) appear to be independent of the number of Dda molecules present on a given substrate. The data support a model in which the helicase molecules bound to the same substrate move along the DNA track independently during DNA unwinding. The observed increase in processivity arises from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. These results are in contrast to previous reports in which multiple Dda molecules on the same track greatly enhanced the rate and amplitude for displacement of protein blocks on the track. Therefore, only when the progress of the lead molecule in the train is impeded by some type of block, such as a protein bound to DNA, do the trailing molecules interact with the lead molecule in order to overcome the block. The fact that trailing helicase molecules have little impact on the lead molecule in the train during routine DNA unwinding suggests that the trailing molecules are moving at similar rates as the lead molecule. This result implicates a step in the translocation mechanism as contributing greatly to the overall rate-limiting step for unwinding of duplex DNA. PMID:20408588

  3. The DNA damage checkpoint allows recombination between divergent DNA sequences in budding yeast

    PubMed Central

    George, Carolyn M.; Lyndaker, Amy M.; Alani, Eric

    2011-01-01

    In the early steps of homologous recombination, single-stranded DNA (ssDNA) from a broken chromosome invades homologous sequence located in a sister or homolog donor. In genomes that contain numerous repetitive DNA elements or gene paralogs, recombination can potentially occur between non-allelic/divergent (homeologous) sequences that share sequence identity. Such recombination events can lead to lethal chromosomal deletions or rearrangements. However, homeologous recombination events can be suppressed through rejection mechanisms that involve recognition of DNA mismatches in heteroduplex DNA by mismatch repair factors, followed by active unwinding of the heteroduplex DNA by helicases. Because factors required for heteroduplex rejection are hypothesized to be targets and/or effectors of the DNA damage response (DDR), a cell cycle control mechanism that ensures timely and efficient repair, we tested whether the DDR, and more specifically, the RAD9 gene, had a role in regulating rejection. We performed these studies using a DNA repair assay that measures repair by single-strand annealing (SSA) of a double-strand break (DSB) using homeologous DNA templates. We found that repair of homeologous DNA sequences, but not identical sequences, induced a RAD9- dependent cell cycle delay in the G2 stage of the cell cycle. Repair through a divergent DNA template occurred more frequently in RAD9 compared to rad9Δ strains. However, repair in rad9Δ mutants could be restored to wild-type levels if a G2 delay was induced by nocodazole. These results suggest that cell cycle arrest induced by the Rad9-dependent DDR allows repair between divergent DNA sequences despite the potential for creating deleterious genome rearrangements, and illustrates the importance of additional cellular mechanisms that act to suppress recombination between divergent DNA sequences. PMID:21978436

  4. HLA typing by direct DNA sequencing.

    PubMed

    Smith, Linda K

    2012-01-01

    Sequencing-based typing is a high resolution method for the identification of HLA polymorphisms. The majority of HLA Class I alleles can be discriminated by their exon 2 and 3 sequence, and for Class II alleles, exon 2 is generally sufficient. There are polymorphic positions in other exons which may require additional sequencing to exclude certain alleles with differences outside exon 2 and 3, depending on the clinical requirement and relevant accredition guidelines. The process involves selective amplification of target alleles by PCR, agarose gel electrophoresis of the PCR products to assess the quantity and quality, followed by purification of PCR amplicons to remove excess primer and dNTPs. Cycle sequencing reactions using Applied Biosystems™ BigDye(®) Terminator Ready Reaction v1.1 or v3.1 Kit are performed, then purification of sequence reactions before electrophoresing using Applied Biosystems™ 3730 or 3730XL Genetic Analyser (or similar). Data is processed by specialised software packages, which compare the sample sequence to the sequences of all possible theoretical allele combinations to assign an accurate genotype. Examination of all nucleotides, both at conserved and polymorphic positions enables the direct identification of new alleles, which may not be possible with techniques such as SSP and SSO typing. PMID:22665229

  5. Fast and Sensitive Alignment of Microbial Whole Genome Sequencing Reads to Large Sequence Datasets on a Desktop PC: Application to Metagenomic Datasets and Pathogen Identification

    PubMed Central

    2014-01-01

    Next generation sequencing (NGS) of metagenomic samples is becoming a standard approach to detect individual species or pathogenic strains of microorganisms. Computer programs used in the NGS community have to balance between speed and sensitivity and as a result, species or strain level identification is often inaccurate and low abundance pathogens can sometimes be missed. We have developed Taxoner, an open source, taxon assignment pipeline that includes a fast aligner (e.g. Bowtie2) and a comprehensive DNA sequence database. We tested the program on simulated datasets as well as experimental data from Illumina, IonTorrent, and Roche 454 sequencing platforms. We found that Taxoner performs as well as, and often better than BLAST, but requires two orders of magnitude less running time meaning that it can be run on desktop or laptop computers. Taxoner is slower than the approaches that use small marker databases but is more sensitive due the comprehensive reference database. In addition, it can be easily tuned to specific applications using small tailored databases. When applied to metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can provide strain level identification. Taxoner is written in C for Linux operating systems. The code and documentation are available for research applications at http://code.google.com/p/taxoner. PMID:25077800

  6. Studies on structure-based sequence alignment and phylogenies of beta-lactamases.

    PubMed

    Salahuddin, Parveen; Khan, Asad U

    2014-01-01

    The β-lactamases enzymes cleave the amide bond in β-lactam ring, rendering β-lactam antibiotics harmless to bacteria. In this communication we have studied structure-function relationship and phylogenies of class A, B and D beta-lactamases using structure-based sequence alignment and phylip programs respectively. The data of structure-based sequence alignment suggests that in different isolates of TEM-1, mutations did not occur at or near sequence motifs. Since deletions are reported to be lethal to structure and function of enzyme. Therefore, in these variants antibiotic hydrolysis profile and specificity will be affected. The alignment data of class A enzyme SHV-1, CTX-M-15, class D enzyme, OXA-10, and class B enzyme VIM-2 and SIM-1 show sequence motifs along with other part of polypeptide are essentially conserved. These results imply that conformations of betalactamases are close to native state and possess normal hydrolytic activities towards beta-lactam antibiotics. However, class B enzyme such as IMP-1 and NDM-1 are less conserved than other class A and D studied here because mutation and deletions occurred at critically important region such as active site. Therefore, the structure of these beta-lactamases will be altered and antibiotic hydrolysis profile will be affected. Phylogenetic studies suggest that class A and D beta-lactamases including TOHO-1 and OXA-10 respectively evolved by horizontal gene transfer (HGT) whereas other member of class A such as TEM-1 evolved by gene duplication mechanism. Taken together, these studies justify structure-function relationship of beta-lactamases and phylogenetic studies suggest these enzymes evolved by different mechanisms. PMID:24966539

  7. Studies on structure-based sequence alignment and phylogenies of beta-lactamases

    PubMed Central

    Salahuddin, Parveen; Khan, Asad U

    2014-01-01

    The β-lactamases enzymes cleave the amide bond in β-lactam ring, rendering β-lactam antibiotics harmless to bacteria. In this communication we have studied structure-function relationship and phylogenies of class A, B and D beta-lactamases using structure-based sequence alignment and phylip programs respectively. The data of structure-based sequence alignment suggests that in different isolates of TEM-1, mutations did not occur at or near sequence motifs. Since deletions are reported to be lethal to structure and function of enzyme. Therefore, in these variants antibiotic hydrolysis profile and specificity will be affected. The alignment data of class A enzyme SHV-1, CTX-M-15, class D enzyme, OXA-10, and class B enzyme VIM-2 and SIM-1 show sequence motifs along with other part of polypeptide are essentially conserved. These results imply that conformations of betalactamases are close to native state and possess normal hydrolytic activities towards beta-lactam antibiotics. However, class B enzyme such as IMP-1 and NDM-1 are less conserved than other class A and D studied here because mutation and deletions occurred at critically important region such as active site. Therefore, the structure of these beta-lactamases will be altered and antibiotic hydrolysis profile will be affected. Phylogenetic studies suggest that class A and D beta-lactamases including TOHO-1 and OXA-10 respectively evolved by horizontal gene transfer (HGT) whereas other member of class A such as TEM-1 evolved by gene duplication mechanism. Taken together, these studies justify structure-function relationship of beta-lactamases and phylogenetic studies suggest these enzymes evolved by different mechanisms. PMID:24966539

  8. Amplification of human papillomavirus DNA sequences by using conserved primers.

    PubMed Central

    Gregoire, L; Arella, M; Campione-Piccardo, J; Lancaster, W D

    1989-01-01

    The polymerase chain reaction has potential for use in the detection of small amounts of human papillomavirus (HPV) viral nucleic acids present in clinical specimens. However, new HPV types for which no probes exist would remain undetected by using type-specific primers for the polymerase chain reaction before hybridization. Primers corresponding to highly conserved HPV sequences may be useful for detecting low amounts of known HPV DNA as well as new HPV types. Here we analyze a pair of primers derived from conserved sequences within the E1 open reading frame for HPV sequence amplification by using the polymerase chain reaction. The longest perfect homology among HPV sequences is a 12-mer within the first exon of E1M. A region of conserved amino acids coded by the E1 open reading frame allowed the detection of another highly conserved region about 850 base pairs downstream. Two 21-mers derived from these conserved regions were used to amplify sequences from all HPV DNAs used as templates. The amplified DNA was shown to be specific for HPV sequences within the E1 open reading frame. DNA from HPVs whose sequences were not available were amplified by using these two primers. HPV DNA sequences in clinical specimens could also be amplified with the primers. Images PMID:2556429

  9. Channel catfish, Ictalurus punctatus, cyclophilin B cDNA sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclophilin B is a member of highly conserved immunophilins and ubiquitously found intracellularly. The complete sequence of the channel catfish cyclophilin B cDNA gene consisted of 996 nucleotides. Analysis of the nucleotide sequence reveals one open reading frame and 5’- and 3’-end untranslated...

  10. An integer programming approach to DNA sequence assembly.

    PubMed

    Chang, Youngjung; Sahinidis, Nikolaos V

    2011-08-10

    De novo sequence assembly is a ubiquitous combinatorial problem in all DNA sequencing technologies. In the presence of errors in the experimental data, the assembly problem is computationally challenging, and its solution may not lead to a unique reconstruct. The enumeration of all alternative solutions is important in drawing a reliable conclusion on the target sequence, and is often overlooked in the heuristic approaches that are currently available. In this paper, we develop an integer programming formulation and global optimization solution strategy to solve the sequence assembly problem with errors in the data. We also propose an efficient technique to identify all alternative reconstructs. When applied to examples of sequencing-by-hybridization, our approach dramatically increases the length of DNA sequences that can be handled with global optimality certificate to over 10,000, which is more than 10 times longer than previously reported. For some problem instances, alternative solutions exhibited a wide range of different ability in reproducing the target DNA sequence. Therefore, it is important to utilize the methodology proposed in this paper in order to obtain all alternative solutions to reliably infer the true reconstruct. These alternative solutions can be used to refine the obtained results and guide the design of further experiments to correctly reconstruct the target DNA sequence. PMID:21864794

  11. Estimation of a Killer Whale (Orcinus orca) Population's Diet Using Sequencing Analysis of DNA from Feces.

    PubMed

    Ford, Michael J; Hempelmann, Jennifer; Hanson, M Bradley; Ayres, Katherine L; Baird, Robin W; Emmons, Candice K; Lundin, Jessica I; Schorr, Gregory S; Wasser, Samuel K; Park, Linda K

    2016-01-01

    Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca) in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%). Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population's summer diet. PMID:26735849

  12. Do short, frequent DNA sequence motifs mould the epigenome?

    PubMed

    Quante, Timo; Bird, Adrian

    2016-04-01

    'Epigenome' refers to the panoply of chemical modifications borne by DNA and its associated proteins that locally affect genome function. Epigenomic patterns are thought to be determined by external constraints resulting from development, disease and the environment, but DNA sequence is also a potential influence. We propose that domains of relatively uniform DNA base composition may modulate the epigenome through cell type-specific proteins that recognize short, frequent sequence motifs. Differential recruitment of epigenomic modifiers may adjust gene expression in multigene blocks as an alternative to tuning the activity of each gene separately, thus simplifying gene expression programming. PMID:26837845

  13. Feature-based multiexposure image-sequence fusion with guided filter and image alignment

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Du, Junping; Zhang, Zhenhong

    2015-01-01

    Multiexposure fusion images have a higher dynamic range and reveal more details than a single captured image of a real-world scene. A clear and intuitive feature-based fusion technique for multiexposure image sequences is conceptually proposed. The main idea of the proposed method is to combine three image features [phase congruency (PC), local contrast, and color saturation] to obtain weight maps of the images. Then, the weight maps are further refined using a guided filter which can improve their accuracy. The final fusion result is constructed using the weighted sum of the source image sequence. In addition, for multiexposure image-sequence fusion involving dynamic scenes containing moving objects, ghost artifacts can easily occur if fusion is directly performed. Therefore, an image-alignment method is first used to adjust the input images to correspond to a reference image, after which fusion is performed. Experimental results demonstrate that the proposed method has a superior performance compared to the existing methods.

  14. Alignment of Short Reads: A Crucial Step for Application of Next-Generation Sequencing Data in Precision Medicine

    PubMed Central

    Ye, Hao; Meehan, Joe; Tong, Weida; Hong, Huixiao

    2015-01-01

    Precision medicine or personalized medicine has been proposed as a modernized and promising medical strategy. Genetic variants of patients are the key information for implementation of precision medicine. Next-generation sequencing (NGS) is an emerging technology for deciphering genetic variants. Alignment of raw reads to a reference genome is one of the key steps in NGS data analysis. Many algorithms have been developed for alignment of short read sequences since 2008. Users have to make a decision on which alignment algorithm to use in their studies. Selection of the right alignment algorithm determines not only the alignment algorithm but also the set of suitable parameters to be used by the algorithm. Understanding these algorithms helps in selecting the appropriate alignment algorithm for different applications in precision medicine. Here, we review current available algorithms and their major strategies such as seed-and-extend and q-gram filter. We also discuss the challenges in current alignment algorithms, including alignment in multiple repeated regions, long reads alignment and alignment facilitated with known genetic variants. PMID:26610555

  15. A tabu search algorithm for post-processing multiple sequence alignment.

    PubMed

    Riaz, Tariq; Yi, Wang; Li, Kuo-Bin

    2005-02-01

    Tabu search is a meta-heuristic approach that is proven to be useful in solving combinatorial optimization problems. We implement the adaptive memory features of tabu search to refine a multiple sequence alignment. Adaptive memory helps the search process to avoid local optima and explores the solution space economically and effectively without getting trapped into cycles. The algorithm is further enhanced by introducing extended tabu search features such as intensification and diversification. The neighborhoods of a solution are generated stochastically and a consistency-based objective function is employed to measure its quality. The algorithm is tested with the datasets from BAliBASE benchmarking database. We have observed through experiments that tabu search is able to improve the quality of multiple alignments generated by other software such as ClustalW and T-Coffee. The source code of our algorithm is available at http://www.bii.a-star.edu.sg/~tariq/tabu/. PMID:15751117

  16. Sequence specificity of DNA cleavage by Micrococcus luteus. gamma. endonuclease

    SciTech Connect

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-04-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by ..gamma..-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus ..gamma.. endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to ..gamma.. radiation.

  17. Electronic Transport and Thermopower in Aperiodic DNA Sequences

    NASA Astrophysics Data System (ADS)

    Roche, Stephan; Maciá, Enrique

    A detailed study of charge transport properties of synthetic and genomic DNA sequences is reported. Genomic sequences of the Chromosome 22, λ-bacteriophage, and D1s80 genes of Human and Pygmy chimpanzee are considered in this work, and compared with both periodic and quasiperiodic (Fibonacci) sequences of nucleotides. Charge transfer efficiency is compared for all these different sequences, and large variations in charge transfer efficiency, stemming from sequence-dependent effects, are reported. In addition, basic characteristics of tunneling currents, including contact effects, are described. Finally, the thermoelectric power of nucleobases connected in between metallic contacts at different temperatures is presented.

  18. A Microfluidic DNA Library Preparation Platform for Next-Generation Sequencing

    PubMed Central

    Sinha, Anupama; Bent, Zachary W.; Solberg, Owen D.; Williams, Kelly P.; Langevin, Stanley A.; Renzi, Ronald F.; Van De Vreugde, James L.; Meagher, Robert J.; Schoeniger, Joseph S.; Lane, Todd W.; Branda, Steven S.; Bartsch, Michael S.; Patel, Kamlesh D.

    2013-01-01

    Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories. PMID:23894387

  19. DNA linking number change induced by sequence-specific DNA-binding proteins

    PubMed Central

    Chen, Bo; Xiao, Yazhong; Liu, Chang; Li, Chenzhong; Leng, Fenfei

    2010-01-01

    Sequence-specific DNA-binding proteins play a key role in many fundamental biological processes, such as transcription, DNA replication and recombination. Very often, these DNA-binding proteins introduce structural changes to the target DNA-binding sites including DNA bending, twisting or untwisting and wrapping, which in many cases induce a linking number change (ΔLk) to the DNA-binding site. Due to the lack of a feasible approach, ΔLk induced by sequence-specific DNA-binding proteins has not been fully explored. In this paper we successfully constructed a series of DNA plasmids that carry many tandem copies of a DNA-binding site for one sequence-specific DNA-binding protein, such as λ O, LacI, GalR, CRP and AraC. In this case, the protein-induced ΔLk was greatly amplified and can be measured experimentally. Indeed, not only were we able to simultaneously determine the protein-induced ΔLk and the DNA-binding constant for λ O and GalR, but also we demonstrated that the protein-induced ΔLk is an intrinsic property for these sequence-specific DNA-binding proteins. Our results also showed that protein-mediated DNA looping by AraC and LacI can induce a ΔLk to the plasmid DNA templates. Furthermore, we demonstrated that the protein-induced ΔLk does not correlate with the protein-induced DNA bending by the DNA-binding proteins. PMID:20185570

  20. DREAM: A Simple Method for DNA Methylation Profiling by High-throughput Sequencing.

    PubMed

    Jelinek, Jaroslav; Madzo, Jozef

    2016-01-01

    The digital restriction enzyme analysis of methylation (DREAM) is a simple method for DNA methylation analysis at tens of thousands of CpG sites across the genome. The method creates specific signatures at unmethylated and methylated CpG sites by sequential digests of genomic DNA with restriction endonucleases SmaI and XmaI, respectively. Both enzymes have the same CCCGGG recognition site; however, they differ in their sensitivity to CpG methylation and their cutting pattern. SmaI cuts only unmethylated sites leaving blunt 5'-GGG ends. XmaI cuts remaining methylated CC(me)CGG sites leaving 5'-CCGGG ends. Restriction fragments with distinct signatures at their ends are ligated to Illumina sequencing adaptors with sample-specific barcodes. High-throughput sequencing of pooled libraries follows. Sequencing reads are mapped to the restriction sites in the reference genome, and signatures corresponding to methylation status of individual DNA molecules are resolved. Methylation levels at target CpG sites are calculated as the proportion of sequencing reads with the methylated signature to the total number of reads mapping to the particular restriction site. Aligning the reads to the reference genome of any species is straightforward, since the method does not rely on bisulfite conversion of DNA. Sequencing of 25 million reads per human DNA library yields over 50,000 unique CpG sites with high coverage enabling accurate determination of DNA methylation levels. DREAM has a background less than 1 % making it suitable for accurate detection of low methylation levels. In summary, the method is simple, robust, highly reproducible, and cost-effective. PMID:27581143

  1. Folding complex DNA nanostructures from limited sets of reusable sequences

    PubMed Central

    Niekamp, Stefan; Blumer, Katy; Nafisi, Parsa M.; Tsui, Kathy; Garbutt, John; Douglas, Shawn M.

    2016-01-01

    Scalable production of DNA nanostructures remains a substantial obstacle to realizing new applications of DNA nanotechnology. Typical DNA nanostructures comprise hundreds of DNA oligonucleotide strands, where each unique strand requires a separate synthesis step. New design methods that reduce the strand count for a given shape while maintaining overall size and complexity would be highly beneficial for efficiently producing DNA nanostructures. Here, we report a method for folding a custom template strand by binding individual staple sequences to multiple locations on the template. We built several nanostructures for well-controlled testing of various design rules, and demonstrate folding of a 6-kb template by as few as 10 unique strand sequences binding to 10 ± 2 locations on the template strand. PMID:27036861

  2. Elongation method for electronic structure calculations of random DNA sequences.

    PubMed

    Orimoto, Yuuichi; Liu, Kai; Aoki, Yuriko

    2015-10-30

    We applied ab initio order-N elongation (ELG) method to calculate electronic structures of various deoxyribonucleic acid (DNA) models. We aim to test potential application of the method for building a database of DNA electronic structures. The ELG method mimics polymerization reactions on a computer and meets the requirements for linear scaling computational efficiency and high accuracy, even for huge systems. As a benchmark test, we applied the method for calculations of various types of random sequenced A- and B-type DNA models with and without counterions. In each case, the ELG method maintained high accuracy with small errors in energy on the order of 10(-8) hartree/atom compared with conventional calculations. We demonstrate that the ELG method can provide valuable information such as stabilization energies and local densities of states for each DNA sequence. In addition, we discuss the "restarting" feature of the ELG method for constructing a database that exhaustively covers DNA species. PMID:26337429

  3. Bayesian classification for promoter prediction in human DNA sequences

    NASA Astrophysics Data System (ADS)

    Bercher, J.-F.; Jardin, P.; Duriez, B.

    2006-11-01

    Many Computational methods are yet available for data retrieval and analysis of genomic sequences, but some functional sites are difficult to characterize. In this work, we examine the problem of promoter localization in human DNA sequences. Promoters are regulatory regions that governs the expression of genes, and their prediction is reputed difficult, so that this issue is still open. We present the Chaos Game representation (CGR) of DNA sequences which has many interesting properties, and the notion of `genomic signature' that proved relevant in phylogeny applications. Based on this notion, we develop a (naïve) bayesian classifier, evaluate its performances, and show that its adaptive implementation enable to reveal or assess core-promoter positions along a DNA sequence.

  4. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension

    PubMed Central

    Di Tommaso, Paolo; Moretti, Sebastien; Xenarios, Ioannis; Orobitg, Miquel; Montanyola, Alberto; Chang, Jia-Ming; Taly, Jean-François; Notredame, Cedric

    2011-01-01

    This article introduces a new interface for T-Coffee, a consistency-based multiple sequence alignment program. This interface provides an easy and intuitive access to the most popular functionality of the package. These include the default T-Coffee mode for protein and nucleic acid sequences, the M-Coffee mode that allows combining the output of any other aligners, and template-based modes of T-Coffee that deliver high accuracy alignments while using structural or homology derived templates. These three available template modes are Expresso for the alignment of protein with a known 3D-Structure, R-Coffee to align RNA sequences with conserved secondary structures and PSI-Coffee to accurately align distantly related sequences using homology extension. The new server benefits from recent improvements of the T-Coffee algorithm and can align up to 150 sequences as long as 10 000 residues and is available from both http://www.tcoffee.org and its main mirror http://tcoffee.crg.cat. PMID:21558174

  5. Cloning and sequencing of chloroperoxidase cDNA.

    PubMed Central

    Fang, G H; Kenigsberg, P; Axley, M J; Nuell, M; Hager, L P

    1986-01-01

    An oligod-d(T) 12-18 primed cDNA library has been prepared from Caldariomyces fumago mRNA. A clone containing a full-length insert was sequenced on the supercoiled plasmid, pBR322. The complete primary sequence of chloroperoxidase has been derived. We have also determined about 73% of the peptide sequence by amino acid sequencing. The DNA sequence data matches all of the available known peptide sequences. The mature polypeptide contains 300 amino acids having a combined molecular weight of 32,974 daltons. A putative signal peptide of 21 amino acids is proposed from DNA sequence data. The chloroperoxidase gene encodes three potential glycosylation sites recognized as Asn-X-Thr/Ser sequences. Three cysteine residues are found in the protein sequence. A small region around Cys87 bears a minimal homology to the active site of cytochrome P450cam. No other heme protein homologues can be detected. We propose that Cys87 serves as a thiolate ligand to the iron of heme prosthetic group. A rare arginine codon, AGG, is used three times out of twelve in contrast to the very infrequent use of this codon in E. coli or yeast. PMID:3774552

  6. DNA sequence of the yeast transketolase gene.

    PubMed

    Fletcher, T S; Kwee, I L; Nakada, T; Largman, C; Martin, B M

    1992-02-18

    Transketolase (EC 2.2.1.1) is the enzyme that, together with aldolase, forms a reversible link between the glycolytic and pentose phosphate pathways. We have cloned and sequenced the transketolase gene from yeast (Saccharomyces cerevisiae). This is the first transketolase gene of the pentose phosphate shunt to be sequenced from any source. The molecular mass of the proposed translated protein is 73,976 daltons, in good agreement with the observed molecular mass of about 75,000 daltons. The 5'-nontranslated region of the gene is similar to other yeast genes. There is no evidence of 5'-splice junctions or branch points in the sequence. The 3'-nontranslated region contains the polyadenylation signal (AATAAA), 80 base pairs downstream from the termination codon. A high degree of homology is found between yeast transketolase and dihydroxyacetone synthase (formaldehyde transketolase) from the yeast Hansenula polymorpha. The overall sequence identity between these two proteins is 37%, with four regions of much greater similarity. The regions from amino acid residues 98-131, 157-182, 410-433, and 474-489 have sequence identities of 74%, 66%, 83%, and 82%, respectively. One of these regions (157-182) includes a possible thiamin pyrophosphate (TPP) binding domain, and another (410-433) may contain the catalytic domain. PMID:1737042

  7. Rényi continuous entropy of DNA sequences.

    PubMed

    Vinga, Susana; Almeida, Jonas S

    2004-12-01

    Entropy measures of DNA sequences estimate their randomness or, inversely, their repeatability. L-block Shannon discrete entropy accounts for the empirical distribution of all length-L words and has convergence problems for finite sequences. A new entropy measure that extends Shannon's formalism is proposed. Renyi's quadratic entropy calculated with Parzen window density estimation method applied to CGR/USM continuous maps of DNA sequences constitute a novel technique to evaluate sequence global randomness without some of the former method drawbacks. The asymptotic behaviour of this new measure was analytically deduced and the calculation of entropies for several synthetic and experimental biological sequences was performed. The results obtained were compared with the distributions of the null model of randomness obtained by simulation. The biological sequences have shown a different p-value according to the kernel resolution of Parzen's method, which might indicate an unknown level of organization of their patterns. This new technique can be very useful in the study of DNA sequence complexity and provide additional tools for DNA entropy estimation. The main MATLAB applications developed and additional material are available at the webpage . Specialized functions can be obtained from the authors. PMID:15501469

  8. DNA sequence organization in the genomes of five marine invertebrates.

    PubMed

    Goldberg, R B; Crain, W R; Ruderman, J V; Moore, G P; Barnett, T R; Higgins, R C; Gelfand, R A; Galau, G A; Britten, R J; Davidson, E H

    1975-07-21

    The arrangement of repetitive and non-repetitive sequence was studied in the genomic DNA of the oyster (Crassostrea virginica), the surf clam (Spisula solidissima), the horseshoe crab (Limulus polyphemus), a nemertean worm (Cerebratulus lacteus) and a jelly-fish (Aurelia aurita). Except for the jellyfish these animals belong to the protostomial branch of animal evolution, for which little information regarding DNA sequence organization has previously been available. The reassociation kinetics of short (250-300 nucleotide) and long (2,000-3,000 nucleotide) DNA fragments was studied by the hydroxyapatite method. It was shown that in each case a major fraction of the DNA consists of single copy sequences less than about 3,000 nucleotides in length, interspersed with short repetitive sequences. The lengths of the repetitive sequences were estimated by optical hyperchromicity and S1 nuclease measurements made on renaturation products. All the genomes studied include a prominent fraction of interspersed repetitive sequences about 300 nucleotides in length, as well as longer repetitive sequence regions. PMID:238802

  9. Sequence of figwort mosaic virus DNA (caulimovirus group).

    PubMed Central

    Richins, R D; Scholthof, H B; Shepherd, R J

    1987-01-01

    The nucleotide sequence of an infectious clone of figwort mosaic virus (FMV) was determined using the dideoxynucleotide chain termination method. The double-stranded DNA genome (7743 base pairs) contained eight open reading frames (ORFs), seven of which corresponded approximately in size and location to the ORFs found in the genome of cauliflower mosaic virus (CaMV) and carnation etched ring virus (CERV). ORFs I and V of FMV demonstrated the highest degrees of nucleotide and amino acid sequence homology with the equivalent coding regions of CaMV and CERV. Regions II, III and IV showed somewhat less homology with the analogous regions of CaMV and CERV, and ORF VI showed homology with the corresponding gene of CaMV and CERV in only a short segment near the middle of the putative gene product. A 16 nucleotide sequence, complementary to the 3' terminus of methionine initiator tRNA (tRNAimet) and presumed to be the primer binding site for initiation of reverse transcription to produce minus strand DNA, was found in the FMV genome near the discontinuity in the minus strand. Sequences near the three interruptions in the plus strand of FMV DNA bear strong resemblance to similarly located sequences of 3 other caulimoviruses and are inferred to be initiation sites for second strand DNA synthesis. Additional conserved sequences in the small and large intergenic regions are pointed out including a highly conserved 35 bp sequence that occurs in the latter region. PMID:3671088

  10. Sequence of figwort mosaic virus DNA (caulimovirus group).

    PubMed

    Richins, R D; Scholthof, H B; Shepherd, R J

    1987-10-26

    The nucleotide sequence of an infectious clone of figwort mosaic virus (FMV) was determined using the dideoxynucleotide chain termination method. The double-stranded DNA genome (7743 base pairs) contained eight open reading frames (ORFs), seven of which corresponded approximately in size and location to the ORFs found in the genome of cauliflower mosaic virus (CaMV) and carnation etched ring virus (CERV). ORFs I and V of FMV demonstrated the highest degrees of nucleotide and amino acid sequence homology with the equivalent coding regions of CaMV and CERV. Regions II, III and IV showed somewhat less homology with the analogous regions of CaMV and CERV, and ORF VI showed homology with the corresponding gene of CaMV and CERV in only a short segment near the middle of the putative gene product. A 16 nucleotide sequence, complementary to the 3' terminus of methionine initiator tRNA (tRNAimet) and presumed to be the primer binding site for initiation of reverse transcription to produce minus strand DNA, was found in the FMV genome near the discontinuity in the minus strand. Sequences near the three interruptions in the plus strand of FMV DNA bear strong resemblance to similarly located sequences of 3 other caulimoviruses and are inferred to be initiation sites for second strand DNA synthesis. Additional conserved sequences in the small and large intergenic regions are pointed out including a highly conserved 35 bp sequence that occurs in the latter region. PMID:3671088

  11. Measurement of the sequence specificity of covalent DNA modification by antineoplastic agents using Taq DNA polymerase.

    PubMed Central

    Ponti, M; Forrow, S M; Souhami, R L; D'Incalci, M; Hartley, J A

    1991-01-01

    A polymerase stop assay has been developed to determine the DNA nucleotide sequence specificity of covalent modification by antineoplastic agents using the thermostable DNA polymerase from Thermus aquaticus and synthetic labelled primers. The products of linear amplification are run on sequencing gels to reveal the sites of covalent drug binding. The method has been studied in detail for a number of agents including nitrogen mustards, platinum analogues and mitomycin C, and the sequence specificities obtained accord with those obtained by other procedures. The assay is advantageous in that it is not limited to a single type of DNA lesion (as in the piperidine cleavage assay for guanine-N7 alkylation), does not require a strand breakage step, and is more sensitive than other primer extension procedures which have only one cycle of polymerization. In particular the method has considerable potential for examining the sequence selectivity of damage and repair in single copy gene sequences in genomic DNA from cells. Images PMID:2057351

  12. Antibody-specific model of amino acid substitution for immunological inferences from alignments of antibody sequences.

    PubMed

    Mirsky, Alexander; Kazandjian, Linda; Anisimova, Maria

    2015-03-01

    Antibodies are glycoproteins produced by the immune system as a dynamically adaptive line of defense against invading pathogens. Very elegant and specific mutational mechanisms allow B lymphocytes to produce a large and diversified repertoire of antibodies, which is modified and enhanced throughout all adulthood. One of these mechanisms is somatic hypermutation, which stochastically mutates nucleotides in the antibody genes, forming new sequences with different properties and, eventually, higher affinity and selectivity to the pathogenic target. As somatic hypermutation involves fast mutation of antibody sequences, this process can be described using a Markov substitution model of molecular evolution. Here, using large sets of antibody sequences from mice and humans, we infer an empirical amino acid substitution model AB, which is specific to antibody sequences. Compared with existing general amino acid models, we show that the AB model provides significantly better description for the somatic evolution of mice and human antibody sequences, as demonstrated on large next generation sequencing (NGS) antibody data. General amino acid models are reflective of conservation at the protein level due to functional constraints, with most frequent amino acids exchanges taking place between residues with the same or similar physicochemical properties. In contrast, within the variable part of antibody sequences we observed an elevated frequency of exchanges between amino acids with distinct physicochemical properties. This is indicative of a sui generis mutational mechanism, specific to antibody somatic hypermutation. We illustrate this property of antibody sequences by a comparative analysis of the network modularity implied by the AB model and general amino acid substitution models. We recommend using the new model for computational studies of antibody sequence maturation, including inference of alignments and phylogenetic trees describing antibody somatic hypermutation in

  13. Spatially localized generation of nucleotide sequence-specific DNA damage.

    PubMed

    Oh, D H; King, B A; Boxer, S G; Hanawalt, P C

    2001-09-25

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen-DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320-400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA-psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen-TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  14. Open-Phylo: a customizable crowd-computing platform for multiple sequence alignment.

    PubMed

    Kwak, Daniel; Kam, Alfred; Becerra, David; Zhou, Qikuan; Hops, Adam; Zarour, Eleyine; Kam, Arthur; Sarmenta, Luis; Blanchette, Mathieu; Waldispühl, Jérôme

    2013-01-01

    Citizen science games such as Galaxy Zoo, Foldit, and Phylo aim to harness the intelligence and processing power generated by crowds of online gamers to solve scientific problems. However, the selection of the data to be analyzed through these games is under the exclusive control of the game designers, and so are the results produced by gamers. Here, we introduce Open-Phylo, a freely accessible crowd-computing platform that enables any scientist to enter our system and use crowds of gamers to assist computer programs in solving one of the most fundamental problems in genomics: the multiple sequence alignment problem. PMID:24148814

  15. Two Simple and Efficient Algorithms to Compute the SP-Score Objective Function of a Multiple Sequence Alignment

    PubMed Central

    Ranwez, Vincent

    2016-01-01

    Background Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Results Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement. PMID:27505054

  16. Selective enrichment of damaged DNA molecules for ancient genome sequencing

    PubMed Central

    2014-01-01

    Contamination by present-day human and microbial DNA is one of the major hindrances for large-scale genomic studies using ancient biological material. We describe a new molecular method, U selection, which exploits one of the most distinctive features of ancient DNA—the presence of deoxyuracils—for selective enrichment of endogenous DNA against a complex background of contamination during DNA library preparation. By applying the method to Neanderthal DNA extracts that are heavily contaminated with present-day human DNA, we show that the fraction of useful sequence information increases ∼10-fold and that the resulting sequences are more efficiently depleted of human contamination than when using purely computational approaches. Furthermore, we show that U selection can lead to a four- to fivefold increase in the proportion of endogenous DNA sequences relative to those of microbial contaminants in some samples. U selection may thus help to lower the costs for ancient genome sequencing of nonhuman samples also. PMID:25081630

  17. Detection, sequence patterns and function of unusual DNA structures.

    PubMed Central

    Anderson, J N

    1986-01-01

    Unusual DNA structures were detected by an electrophoretic procedure in which DNA fragments were separated according to size on agarose gels and then by shape on polyacrylamide gels. Fragments from yeast centromeres migrated faster in polyacrylamide than predicted from their base composition and size and this property was attributed to a nonrandom distribution of oligomeric A tracts that exhibited minima at 10-11 base intervals. Fragments from seven loci in 107 kb of DNA migrated anomalously slow and these fragments contained blocks of A2-6 in a 10-11 base periodicity which is indicative of bent DNA. The most pronounced bent sequences were found within yeast ARS1 and centered at 245 and 240 bp from the left and right ends of the adenovirus genome. Each sequence is approximately 150 bp away from a replication origin and the adenovirus sequences are within 50 bp of enhancers. Nuclear matrix attachment sites, which are also adjacent to enhancers, contain sequences characteristic of bent DNA. These results suggest that bent structures reside at the base of DNA loops in chromosomes. Images PMID:3786134

  18. Improved Algorithm for Analysis of DNA Sequences Using Multiresolution Transformation

    PubMed Central

    Inbamalar, T. M.; Sivakumar, R.

    2015-01-01

    Bioinformatics and genomic signal processing use computational techniques to solve various biological problems. They aim to study the information allied with genetic materials such as the deoxyribonucleic acid (DNA), the ribonucleic acid (RNA), and the proteins. Fast and precise identification of the protein coding regions in DNA sequence is one of the most important tasks in analysis. Existing digital signal processing (DSP) methods provide less accurate and computationally complex solution with greater background noise. Hence, improvements in accuracy, computational complexity, and reduction in background noise are essential in identification of the protein coding regions in the DNA sequences. In this paper, a new DSP based method is introduced to detect the protein coding regions in DNA sequences. Here, the DNA sequences are converted into numeric sequences using electron ion interaction potential (EIIP) representation. Then discrete wavelet transformation is taken. Absolute value of the energy is found followed by proper threshold. The test is conducted using the data bases available in the National Centre for Biotechnology Information (NCBI) site. The comparative analysis is done and it ensures the efficiency of the proposed system. PMID:26000337

  19. Improved algorithm for analysis of DNA sequences using multiresolution transformation.

    PubMed

    Inbamalar, T M; Sivakumar, R

    2015-01-01

    Bioinformatics and genomic signal processing use computational techniques to solve various biological problems. They aim to study the information allied with genetic materials such as the deoxyribonucleic acid (DNA), the ribonucleic acid (RNA), and the proteins. Fast and precise identification of the protein coding regions in DNA sequence is one of the most important tasks in analysis. Existing digital signal processing (DSP) methods provide less accurate and computationally complex solution with greater background noise. Hence, improvements in accuracy, computational complexity, and reduction in background noise are essential in identification of the protein coding regions in the DNA sequences. In this paper, a new DSP based method is introduced to detect the protein coding regions in DNA sequences. Here, the DNA sequences are converted into numeric sequences using electron ion interaction potential (EIIP) representation. Then discrete wavelet transformation is taken. Absolute value of the energy is found followed by proper threshold. The test is conducted using the data bases available in the National Centre for Biotechnology Information (NCBI) site. The comparative analysis is done and it ensures the efficiency of the proposed system. PMID:26000337

  20. Mitochondrial DNA Sequence Analysis - Validation and Use for Forensic Casework.

    PubMed

    Holland, M M; Parsons, T J

    1999-06-01

    With the discovery of the polymerase chain reaction (PCR) in the mid-1980's, the last in a series of critical molecular biology techniques (to include the isolation of DNA from human and non-human biological material, and primary sequence analysis of DNA) had been developed to rapidly analyze minute quantities of mitochondrial DNA (mtDNA). This was especially true for mtDNA isolated from challenged sources, such as ancient or aged skeletal material and hair shafts. One of the beneficiaries of this work has been the forensic community. Over the last decade, a significant amount of research has been conducted to develop PCR-based sequencing assays for the mtDNA control region (CR), which have subsequently been used to further characterize the CR. As a result, the reliability of these assays has been investigated, the limitations of the procedures have been determined, and critical aspects of the analysis process have been identified, so that careful control and monitoring will provide the basis for reliable testing. With the application of these assays to forensic identification casework, mtDNA sequence analysis has been properly validated, and is a reliable procedure for the examination of biological evidence encountered in forensic criminalistic cases. PMID:26255820

  1. Sequence specificity of psoralen photobinding to DNA: a quantitative approach.

    PubMed

    Gia, O; Magno, S M; Garbesi, A; Colonna, F P; Palumbo, M

    1992-12-01

    The effects of different DNA sequences on the photoreaction of various furocoumarin derivatives was investigated from a quantitative point of view using a number of self-complementary oligonucleotides. These contained 5'-TA and 5'-AT residues, having various flanking sequences. The furocoumarins included classical bifunctional derivatives, such as 8-methoxy- and 5-methoxypsoralen, as well as monofunctional compounds, such as angelicin and benzopsoralen. Taking into an account the thermodynamic constant for noncovalent binding of each psoralen to each DNA sequence, the rate constants for the photobinding process to each fragment were evaluated. The extent of photoreaction is greatly affected by the DNA sequence examined. While sequences of the type 5'-(GTAC)n are quite reactive towards all furocoumarins, 5'-TATA exhibited a reduced rate of photobinding using monofunctional psoralens. In addition terminal 5'-TA groups were the least reactive with 5- and 8-methoxypsoralen, but not with angelicin or benzopsoralen. Also 5'-AT-containing fragments exhibited remarkably variable responses toward monofunctional or bifunctional psoralen derivatives. As a general trend the photoreactivity rate of the former is less sequence-sensitive, the ratio between maximum and minimum being less than 2 for the examined fragments. The same ratio is about 3.4 for 8-methoxypsoralen and 6.2 for 5-methoxypsoralen. This approach, in combination with footprinting studies, appears to be quite useful for a quantitative investigation of the process of covalent binding of psoralens to specific sites in DNA. PMID:1445915

  2. Mapping DNA polymerase errors by single-molecule sequencing.

    PubMed

    Lee, David F; Lu, Jenny; Chang, Seungwoo; Loparo, Joseph J; Xie, Xiaoliang S

    2016-07-27

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replication product is tagged with a unique nucleotide sequence before amplification. This allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases. PMID:27185891

  3. Label-free DNA sequencing using Millikan detection.

    PubMed

    Dettloff, Roger; Leiske, Danielle; Chow, Andrea; Farinas, Javier

    2015-10-15

    A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucleotides attached to the bead. The velocity of beads tethered via a polymer to a microfluidic channel and subjected to an oscillating electric field was measured using dark-field microscopy and used to determine how many nucleotides were incorporated during each sequencing-by-synthesis cycle. Increases in bead velocity of approximately 1% were reliably detected during DNA polymerization, allowing for sequencing of short DNA templates. The method could lead to a low-cost, high-throughput sequencing platform that could enable routine sequencing in medical applications. PMID:26151683

  4. Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks

    PubMed Central

    Ma, Qicheng; Chirn, Gung-Wei; Cai, Richard; Szustakowski, Joseph D; Nirmala, NR

    2005-01-01

    Background The sequencing of the human genome has enabled us to access a comprehensive list of genes (both experimental and predicted) for further analysis. While a majority of the approximately 30000 known and predicted human coding genes are characterized and have been assigned at least one function, there remains a fair number of genes (about 12000) for which no annotation has been made. The recent sequencing of other genomes has provided us with a huge amount of auxiliary sequence data which could help in the characterization of the human genes. Clustering these sequences into families is one of the first steps to perform comparative studies across several genomes. Results Here we report a novel clustering algorithm (CLUGEN) that has been used to cluster sequences of experimentally verified and predicted proteins from all sequenced genomes using a novel distance metric which is a neural network score between a pair of protein sequences. This distance metric is based on the pairwise sequence similarity score and the similarity between their domain structures. The distance metric is the probability that a pair of protein sequences are of the same Interpro family/domain, which facilitates the modelling of transitive homology closure to detect remote homologues. The hierarchical average clustering method is applied with the new distance metric. Conclusion Benchmarking studies of our algorithm versus those reported in the literature shows that our algorithm provides clustering results with lower false positive and false negative rates. The clustering algorithm is applied to cluster several eukaryotic genomes and several dozens of prokaryotic genomes. PMID:16202129

  5. Theoretical modelling of epigenetically modified DNA sequences.

    PubMed

    Carvalho, Alexandra Teresa Pires; Gouveia, Maria Leonor; Raju Kanna, Charan; Wärmländer, Sebastian K T S; Platts, Jamie; Kamerlin, Shina Caroline Lynn

    2015-01-01

    We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT) methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts. PMID:26448859

  6. Correlations in DNA sequences across the three domains of life

    NASA Astrophysics Data System (ADS)

    Guharay, Sabyasachi; Hunt, Brian R.; Yorke, James A.; White, Owen R.

    2000-11-01

    We report statistical studies of correlation properties of ∼7500 gene sequences, covering coding (exon) and non-coding (intron) sequences for DNA and primary amino acid sequences for proteins, across all three domains of life, namely Eukaryotes (cells with nuclei), Prokaryotes (bacteria) and Archaea (archaebacteria). Mutual information function, power spectrum and Hölder exponent analyses show exons with somewhat greater correlation content than the introns studied. These results are further confirmed with hypothesis testing. While ∼30% of the Eukaryote coding sequences show distinct correlations above noise threshold, this is true for only ∼10% of the Prokaryote and Archaea coding sequences. For protein sequences, we observe correlation lengths similar to that of “random” sequences.

  7. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    PubMed Central

    2011-01-01

    Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349

  8. Spatial Control of DNA Reaction Networks by DNA Sequence

    PubMed Central

    Allen, Peter B.; Chen, Xi; Ellington, Andrew D.

    2013-01-01

    We have developed a set of DNA circuits that execute during gel electrophoresis to yield immobile, fluorescent features in the gel. The parallel execution of orthogonal circuits led to the simultaneous production of different fluorescent lines at different positions in the gel. The positions of the lines could be rationally manipulated by changing the mobilities of the reactants. The ability to program at the nanoscale so as to produce patterns at the macroscale is a step towards programmable, synthetic chemical systems for generating defined spatiotemporal patterns. PMID:23143151

  9. Spatially localized generation of nucleotide sequence-specific DNA damage

    PubMed Central

    Oh, Dennis H.; King, Brett A.; Boxer, Steven G.; Hanawalt, Philip C.

    2001-01-01

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen–DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320–400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA–psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen–TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  10. Dialects of the DNA uptake sequence in Neisseriaceae.

    PubMed

    Frye, Stephan A; Nilsen, Mariann; Tønjum, Tone; Ambur, Ole Herman

    2013-04-01

    In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation in

  11. Nucleotide sequence alignment of hdcA from Gram-positive bacteria.

    PubMed

    Diaz, Maria; Ladero, Victor; Redruello, Begoña; Sanchez-Llana, Esther; Del Rio, Beatriz; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2016-03-01

    The decarboxylation of histidine -carried out mainly by some gram-positive bacteria- yields the toxic dietary biogenic amine histamine (Ladero et al. 2010 〈10.2174/157340110791233256〉 [1], Linares et al. 2016 〈http://dx.doi.org/10.1016/j.foodchem.2015.11.013〉〉 [2]). The reaction is catalyzed by a pyruvoyl-dependent histidine decarboxylase (Linares et al. 2011 〈10.1080/10408398.2011.582813〉 [3]), which is encoded by the gene hdcA. In order to locate conserved regions in the hdcA gene of Gram-positive bacteria, this article provides a nucleotide sequence alignment of all the hdcA sequences from Gram-positive bacteria present in databases. For further utility and discussion, see 〈http://dx.doi.org/ 10.1016/j.foodcont.2015.11.035〉〉 [4]. PMID:26958625

  12. Nucleotide sequence alignment of hdcA from Gram-positive bacteria

    PubMed Central

    Diaz, Maria; Ladero, Victor; Redruello, Begoña; Sanchez-Llana, Esther; del Rio, Beatriz; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A.

    2016-01-01

    The decarboxylation of histidine -carried out mainly by some gram-positive bacteria- yields the toxic dietary biogenic amine histamine (Ladero et al. 2010 〈10.2174/157340110791233256〉 [1], Linares et al. 2016 〈http://dx.doi.org/10.1016/j.foodchem.2015.11.013〉〉 [2]). The reaction is catalyzed by a pyruvoyl-dependent histidine decarboxylase (Linares et al. 2011 〈10.1080/10408398.2011.582813〉 [3]), which is encoded by the gene hdcA. In order to locate conserved regions in the hdcA gene of Gram-positive bacteria, this article provides a nucleotide sequence alignment of all the hdcA sequences from Gram-positive bacteria present in databases. For further utility and discussion, see 〈http://dx.doi.org/ 10.1016/j.foodcont.2015.11.035〉〉 [4]. PMID:26958625

  13. Utilizing mapping targets of sequences underrepresented in the reference assembly to reduce false positive alignments

    PubMed Central

    Miga, Karen H.; Eisenhart, Christopher; Kent, W. James

    2015-01-01

    The human reference assembly remains incomplete due to the underrepresentation of repeat-rich sequences that are found within centromeric regions and acrocentric short arms. Although these sequences are marginally represented in the assembly, they are often fully represented in whole-genome short-read datasets and contribute to inappropriate alignments and high read-depth signals that localize to a small number of assembled homologous regions. As a consequence, these regions often provide artifactual peak calls that confound hypothesis testing and large-scale genomic studies. To address this problem, we have constructed mapping targets that represent roughly 8% of the human genome generally omitted from the human reference assembly. By integrating these data into standard mapping and peak-calling pipelines we demonstrate a 10-fold reduction in signals in regions common to the blacklisted region and identify a comprehensive set of regions that exhibit mapping sensitivity with the presence of the repeat-rich targets. PMID:26163063

  14. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution.

    PubMed

    Cao, Hieu Xuan; Vu, Giang Thi Ha; Wang, Wenqin; Appenroth, Klaus J; Messing, Joachim; Schubert, Ingo

    2016-01-01

    Duckweeds are aquatic monocotyledonous plants of potential economic interest with fast vegetative propagation, comprising 37 species with variable genome sizes (0.158-1.88 Gbp). The genomic sequence of Spirodela polyrhiza, the smallest and the most ancient duckweed genome, needs to be aligned to its chromosomes as a reference and prerequisite to study the genome and karyotype evolution of other duckweed species. We selected physically mapped bacterial artificial chromosomes (BACs) containing Spirodela DNA inserts with little or no repetitive elements as probes for multicolor fluorescence in situ hybridization (mcFISH), using an optimized BAC pooling strategy, to validate its physical map and correlate it with its chromosome complement. By consecutive mcFISH analyses, we assigned the originally assembled 32 pseudomolecules (supercontigs) of the genomic sequences to the 20 chromosomes of S. polyrhiza. A Spirodela cytogenetic map containing 96 BAC markers with an average distance of 0.89 Mbp was constructed. Using a cocktail of 41 BACs in three colors, all chromosome pairs could be individualized simultaneously. Seven ancestral blocks emerged from duplicated chromosome segments of 19 Spirodela chromosomes. The chromosomally integrated genome of S. polyrhiza and the established prerequisites for comparative chromosome painting enable future studies on the chromosome homoeology and karyotype evolution of duckweed species. PMID:26305472

  15. Internet-Accessible DNA Sequence Database for Identifying Fusaria from Human and Animal Infections ▿

    PubMed Central

    O'Donnell, Kerry; Sutton, Deanna A.; Rinaldi, Michael G.; Sarver, Brice A. J.; Balajee, S. Arunmozhi; Schroers, Hans-Josef; Summerbell, Richard C.; Robert, Vincent A. R. G.; Crous, Pedro W.; Zhang, Ning; Aoki, Takayuki; Jung, Kyongyong; Park, Jongsun; Lee, Yong-Hwan; Kang, Seogchan; Park, Bongsoo; Geiser, David M.

    2010-01-01

    Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated with human or animal mycoses encountered in clinical microbiology laboratories. The database comprises partial sequences from three nuclear genes: translation elongation factor 1α (EF-1α), the largest subunit of RNA polymerase (RPB1), and the second largest subunit of RNA polymerase (RPB2). These three gene fragments can be amplified by PCR and sequenced using primers that are conserved across the phylogenetic breadth of Fusarium. Phylogenetic analyses of the combined data set reveal that, with the exception of two monotypic lineages, all clinically relevant fusaria are nested in one of eight variously sized and strongly supported species complexes. The monophyletic lineages have been named informally to facilitate communication of an isolate's clade membership and genetic diversity. To identify isolates to the species included within the database, partial DNA sequence data from one or more of the three genes can be used as a BLAST query against the database which is Web accessible at FUSARIUM-ID (http://isolate.fusariumdb.org) and the Centraalbureau voor Schimmelcultures (CBS-KNAW) Fungal Biodiversity Center (http://www.cbs.knaw.nl/fusarium). Alternatively, isolates can be identified via phylogenetic analysis by adding sequences of unknowns to the DNA sequence alignment, which can be downloaded from the two aforementioned websites. The utility of this database should increase significantly as members of the clinical microbiology community deposit in internationally accessible culture collections (e.g., CBS-KNAW or the Fusarium Research Center) cultures of novel mycosis-associated fusaria, along with associated, corrected sequence chromatograms and data, so that the

  16. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections.

    PubMed

    O'Donnell, Kerry; Sutton, Deanna A; Rinaldi, Michael G; Sarver, Brice A J; Balajee, S Arunmozhi; Schroers, Hans-Josef; Summerbell, Richard C; Robert, Vincent A R G; Crous, Pedro W; Zhang, Ning; Aoki, Takayuki; Jung, Kyongyong; Park, Jongsun; Lee, Yong-Hwan; Kang, Seogchan; Park, Bongsoo; Geiser, David M

    2010-10-01

    Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated with human or animal mycoses encountered in clinical microbiology laboratories. The database comprises partial sequences from three nuclear genes: translation elongation factor 1α (EF-1α), the largest subunit of RNA polymerase (RPB1), and the second largest subunit of RNA polymerase (RPB2). These three gene fragments can be amplified by PCR and sequenced using primers that are conserved across the phylogenetic breadth of Fusarium. Phylogenetic analyses of the combined data set reveal that, with the exception of two monotypic lineages, all clinically relevant fusaria are nested in one of eight variously sized and strongly supported species complexes. The monophyletic lineages have been named informally to facilitate communication of an isolate's clade membership and genetic diversity. To identify isolates to the species included within the database, partial DNA sequence data from one or more of the three genes can be used as a BLAST query against the database which is Web accessible at FUSARIUM-ID (http://isolate.fusariumdb.org) and the Centraalbureau voor Schimmelcultures (CBS-KNAW) Fungal Biodiversity Center (http://www.cbs.knaw.nl/fusarium). Alternatively, isolates can be identified via phylogenetic analysis by adding sequences of unknowns to the DNA sequence alignment, which can be downloaded from the two aforementioned websites. The utility of this database should increase significantly as members of the clinical microbiology community deposit in internationally accessible culture collections (e.g., CBS-KNAW or the Fusarium Research Center) cultures of novel mycosis-associated fusaria, along with associated, corrected sequence chromatograms and data, so that the

  17. A novel chaotic image encryption scheme using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Yuan; Zhang, Ying-Qian; Bao, Xue-Mei

    2015-10-01

    In this paper, we propose a novel image encryption scheme based on DNA (Deoxyribonucleic acid) sequence operations and chaotic system. Firstly, we perform bitwise exclusive OR operation on the pixels of the plain image using the pseudorandom sequences produced by the spatiotemporal chaos system, i.e., CML (coupled map lattice). Secondly, a DNA matrix is obtained by encoding the confused image using a kind of DNA encoding rule. Then we generate the new initial conditions of the CML according to this DNA matrix and the previous initial conditions, which can make the encryption result closely depend on every pixel of the plain image. Thirdly, the rows and columns of the DNA matrix are permuted. Then, the permuted DNA matrix is confused once again. At last, after decoding the confused DNA matrix using a kind of DNA decoding rule, we obtain the ciphered image. Experimental results and theoretical analysis show that the scheme is able to resist various attacks, so it has extraordinarily high security.

  18. Multidimensional mutual information methods for the analysis of covariation in multiple sequence alignments

    PubMed Central

    2014-01-01

    Background Several methods are available for the detection of covarying positions from a multiple sequence alignment (MSA). If the MSA contains a large number of sequences, information about the proximities between residues derived from covariation maps can be sufficient to predict a protein fold. However, in many cases the structure is already known, and information on the covarying positions can be valuable to understand the protein mechanism and dynamic properties. Results In this study we have sought to determine whether a multivariate (multidimensional) extension of traditional mutual information (MI) can be an additional tool to study covariation. The performance of two multidimensional MI (mdMI) methods, designed to remove the effect of ternary/quaternary interdependencies, was tested with a set of 9 MSAs each containing <400 sequences, and was shown to be comparable to that of the newest methods based on maximum entropy/pseudolikelyhood statistical models of protein sequences. However, while all the methods tested detected a similar number of covarying pairs among the residues separated by < 8 Å in the reference X-ray structures, there was on average less than 65% overlap between the top scoring pairs detected by methods that are based on different principles. Conclusions Given the large variety of structure and evolutionary history of different proteins it is possible that a single best method to detect covariation in all proteins does not exist, and that for each protein family the best information can be derived by merging/comparing results obtained with different methods. This approach may be particularly valuable in those cases in which the size of the MSA is small or the quality of the alignment is low, leading to significant differences in the pairs detected by different methods. PMID:24886131

  19. Rapid DNA sequencing by horizontal ultrathin gel electrophoresis.

    PubMed Central

    Brumley, R L; Smith, L M

    1991-01-01

    A horizontal polyacrylamide gel electrophoresis apparatus has been developed that decreases the time required to separate the DNA fragments produced in enzymatic sequencing reactions. The configuration of this apparatus and the use of circulating coolant directly under the glass plates result in heat exchange that is approximately nine times more efficient than passive thermal transfer methods commonly used. Bubble-free gels as thin as 25 microns can be routinely cast on this device. The application to these ultrathin gels of electric fields up to 250 volts/cm permits the rapid separation of multiple DNA sequencing reactions in parallel. When used in conjunction with 32P-based autoradiography, the DNA bands appear substantially sharper than those obtained in conventional electrophoresis. This increased sharpness permits shorter autoradiographic exposure times and longer sequence reads. Images PMID:1870968

  20. Compilation of DNA sequences of Escherichia coli (update 1991)

    PubMed Central

    Kröger, Manfred; Wahl, Ralf; Rice, Peter

    1991-01-01

    We have compiled the DNA sequence data for E.coli available from the GENBANK and EMBL data libraries and over a period of several years independently from the literature. This is the third listing replacing and increasing the former listing roughly by one fifth. However, in order to save space this printed version contains DNA sequence information only. The complete compilation is now available in machine readable form from the EMBL data library (ECD release 6). After deletion of all detected overlaps a total of 1 492 282 individual bp is found to be determined till the beginning of 1991. This corresponds to a total of 31.62% of the entire E.coli chromosome consisting of about 4,720 kbp. This number may actually be higher by some extra 2,5% derived from lysogenic bacteriophage lambda and various DNA sequences already received for statistical purposes only. PMID:2041799

  1. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1987-10-07

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  2. Sequence-specific binding of luzopeptin to DNA.

    PubMed Central

    Fox, K R; Davies, H; Adams, G R; Portugal, J; Waring, M J

    1988-01-01

    We have examined the binding of luzopeptin, an antitumor antibiotic, to five DNA fragments of varying base composition. The drug forms a tight, possibly covalent, complex with the DNA causing a reduction in mobility on nondenaturing polyacrylamide gels and some smearing of the bands consistent with intramolecular cross-linking of DNA duplexes. DNAase I and micrococcal nuclease footprinting experiments suggest that the drug binds best to regions containing alternating A and T residues, although no consensus di- or trinucleotide sequence emerges. Binding to other sites is not excluded and at moderate ligand concentrations the DNA is almost totally protected from enzyme attack. Ligand-induced enhancement of DNAase I cleavage is observed at both AT and GC-rich regions. The sequence selectivity and characteristics of luzopeptin binding are quite different from those of echinomycin, a bifunctional intercalator of related structure. Images PMID:3362673

  3. Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy

    PubMed Central

    Schmid, Andreas K.; Davis, Ronald W.

    2016-01-01

    DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging. PMID:27149617

  4. Multiple Base Substitution Corrections in DNA Sequence Evolution

    NASA Astrophysics Data System (ADS)

    Kowalczuk, M.; Mackiewicz, P.; Szczepanik, D.; Nowicka, A.; Dudkiewicz, M.; Dudek, M. R.; Cebrat, S.

    We discuss the Jukes and Cantor's one-parameter model and Kimura's two-parameter model unability to describe evolution of asymmetric DNA molecules. The standard distance measure between two DNA sequences, which is the number of substitutions per site, should include the effect of multiple base substitutions separately for each type of the base. Otherwise, the respective tables of substitutions cannot reconstruct the asymmetric DNA molecule with respect to the composition. Basing on Kimura's neutral theory, we have derived a linear law for the correlation of the mean survival time of nucleotides under constant mutation pressure and their fraction in the genome. According to the law, the corrections to Kimura's theory have been discussed to describe evolution of genomes with asymmetric nucleotide composition. We consider the particular case of the strongly asymmetric Borrelia burgdorferi genome and we discuss in detail the corrections, which should be introduced into the distance measure between two DNA sequences to include multiple base substitutions.

  5. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, James H.; Keller, Richard A.; Martin, John C.; Moyzis, Robert K.; Ratliff, Robert L.; Shera, E. Brooks; Stewart, Carleton C.

    1990-01-01

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed.

  6. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1990-10-09

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  7. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    PubMed Central

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  8. Amino acid sequence alignment of bacterial and mammalian pancreatic serine proteases based on topological equivalences.

    PubMed

    James, M N; Delbaere, L T; Brayer, G D

    1978-06-01

    The three-dimensional structures of the bacterial serine proteases SGPA, SGPB, and alpha-lytic protease have been compared with those of the pancreatic enzymes alpha-chymotrypsin and elastase. This comparison shows that approximately 60% (55-64%) of the alpha-carbon atom positions of the bacterial serine proteases are topologically equivalent to the alpha-carbon atom positions of the pancreatic enzymes. The corresponding value for a comparison of the bacterial enzymes among themselves is approximately 84%. The results of these topological comparisons have been used to deduce an experimentally sound sequence alignment for these several enzymes. This alignment shows that there is extensive tertiary structural homology among the bacteria and pancreatic enzymes without significant primary sequence identity (less than 21%). The acquisition of a zymogen function by the pancreatic enzymes is accompanied by two major changes to the bacterial enzymes' architecture: an insertion of 9 residues to increase the length of the N-terminal loop, and one of 12 residues to a loop near the activation salt bridge. In addition, in these two enzyme families, the methionine loop (residues 164-182) adopts very different comformations which are associated with their altered substrate specificities. PMID:96920

  9. Ancient mtDNA sequences from the First Australians revisited

    PubMed Central

    Subramanian, Sankar; Wright, Joanne L.; Endicott, Phillip; Westaway, Michael Carrington; Huynen, Leon; Parson, Walther; Millar, Craig D.; Willerslev, Eske; Lambert, David M.

    2016-01-01

    The publication in 2001 by Adcock et al. [Adcock GJ, et al. (2001) Proc Natl Acad Sci USA 98(2):537–542] in PNAS reported the recovery of short mtDNA sequences from ancient Australians, including the 42,000-y-old Mungo Man [Willandra Lakes Hominid (WLH3)]. This landmark study in human ancient DNA suggested that an early modern human mitochondrial lineage emerged in Asia and that the theory of modern human origins could no longer be considered solely through the lens of the “Out of Africa” model. To evaluate these claims, we used second generation DNA sequencing and capture methods as well as PCR-based and single-primer extension (SPEX) approaches to reexamine the same four Willandra Lakes and Kow Swamp 8 (KS8) remains studied in the work by Adcock et al. Two of the remains sampled contained no identifiable human DNA (WLH15 and WLH55), whereas the Mungo Man (WLH3) sample contained no Aboriginal Australian DNA. KS8 reveals human mitochondrial sequences that differ from the previously inferred sequence. Instead, we recover a total of five modern European contaminants from Mungo Man (WLH3). We show that the remaining sample (WLH4) contains ∼1.4% human DNA, from which we assembled two complete mitochondrial genomes. One of these was a previously unidentified Aboriginal Australian haplotype belonging to haplogroup S2 that we sequenced to a high coverage. The other was a contaminating modern European mitochondrial haplotype. Although none of the sequences that we recovered matched those reported by Adcock et al., except a contaminant, these findings show the feasibility of obtaining important information from ancient Aboriginal Australian remains. PMID:27274055

  10. Ancient mtDNA sequences from the First Australians revisited.

    PubMed

    Heupink, Tim H; Subramanian, Sankar; Wright, Joanne L; Endicott, Phillip; Westaway, Michael Carrington; Huynen, Leon; Parson, Walther; Millar, Craig D; Willerslev, Eske; Lambert, David M

    2016-06-21

    The publication in 2001 by Adcock et al. [Adcock GJ, et al. (2001) Proc Natl Acad Sci USA 98(2):537-542] in PNAS reported the recovery of short mtDNA sequences from ancient Australians, including the 42,000-y-old Mungo Man [Willandra Lakes Hominid (WLH3)]. This landmark study in human ancient DNA suggested that an early modern human mitochondrial lineage emerged in Asia and that the theory of modern human origins could no longer be considered solely through the lens of the "Out of Africa" model. To evaluate these claims, we used second generation DNA sequencing and capture methods as well as PCR-based and single-primer extension (SPEX) approaches to reexamine the same four Willandra Lakes and Kow Swamp 8 (KS8) remains studied in the work by Adcock et al. Two of the remains sampled contained no identifiable human DNA (WLH15 and WLH55), whereas the Mungo Man (WLH3) sample contained no Aboriginal Australian DNA. KS8 reveals human mitochondrial sequences that differ from the previously inferred sequence. Instead, we recover a total of five modern European contaminants from Mungo Man (WLH3). We show that the remaining sample (WLH4) contains ∼1.4% human DNA, from which we assembled two complete mitochondrial genomes. One of these was a previously unidentified Aboriginal Australian haplotype belonging to haplogroup S2 that we sequenced to a high coverage. The other was a contaminating modern European mitochondrial haplotype. Although none of the sequences that we recovered matched those reported by Adcock et al., except a contaminant, these findings show the feasibility of obtaining important information from ancient Aboriginal Australian remains. PMID:27274055

  11. Biased distribution of DNA uptake sequences towards genome maintenance genes.

    PubMed

    Davidsen, Tonje; Rødland, Einar A; Lagesen, Karin; Seeberg, Erling; Rognes, Torbjørn; Tønjum, Tone

    2004-01-01

    Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H.influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions. These results imply that the high frequency of DUS in genome maintenance genes is conserved among phylogenetically divergent species and thus are of significant biological importance. Increased DUS density is expected to enhance DNA uptake and the over-representation of DUS in genome maintenance genes might reflect facilitated recovery of genome preserving functions. For example, transient and beneficial increase in genome instability can be allowed during pathogenesis simply through loss of antimutator genes, since these DUS-containing sequences will be preferentially recovered. Furthermore, uptake of such genes could provide a mechanism for facilitated recovery from DNA damage after genotoxic stress. PMID:14960717

  12. Sequence-selective binding of an ellipticine derivative to DNA.

    PubMed Central

    Bailly, C; OhUigin, C; Rivalle, C; Bisagni, E; Hénichart, J P; Waring, M J

    1990-01-01

    The DNA sequence specificity of an ellipticine derivative bearing an aminoalkyl side chain has been determined by a variety of footprinting methods. The drug exhibits sequence selective binding and discriminates against runs of adenines or thymines. Binding is shown to occur at various sequences with a preference for GC rich regions of DNA. A large enhancement of DNAase I and of hydroxyl radical cleavage in regions rich in A's or T's is observed together with hyperreactivity of adenines towards diethylpyrocarbonate in the presence of drug. This indicates the occurrence of drug-induced changes in critical conformational features of DNA. The total absence of hyperreactivity of guanine residues towards diethylpyrocarbonate appears to be related to the sequence selectivity of drug binding. No alteration of the dimethyl sulphate and methylene blue-induced cleavage of DNA is observed. Irradiation of ellipticine derivative-DNA complexes with UV light followed by alkali treatment leads to selective photocleavage at guanine residues, consistent with the deduced degree of selectivity of the binding reaction. Images PMID:2173825

  13. Distribution of repetitious sequences in chick nuclear DNA

    PubMed Central

    Tapiero, H.; Monier, M.N.; Shaool, D.; Harel, J.

    1974-01-01

    By an improved method of hydroxylapatite chromatography, the reassociated sequences of chick nuclear DNA were isolated, and their base composition analysed. By increasing the amount of reassociation, the G + C content of the renatured sequences decreased progressively to reach a mean value corresponding to that of the total DNA. In order to study the distribution of the families, or group of families having different amount of reassociation, DNA was fractionated by CsC1 density gradient centrifugation. Fractions having different G + C content were obtained, and their reassociation rates analysed. At high Cot value of renaturation (Cot=50) the amount of reassociated sequences included in the high or in the low buoyant density DNA fractions was approximately the same, but their G + C content was as expected different. At lower Cot values of renaturation (between Cot of 0.2 and the Cot of 10), the results indicated an heterogeneity of the repeated sequences in the A + T rich DNA fractions, as compared to the G + C rich ones. PMID:4213036

  14. Sequence dependence of transcription factor-mediated DNA looping

    PubMed Central

    Johnson, Stephanie; Lindén, Martin; Phillips, Rob

    2012-01-01

    DNA is subject to large deformations in a wide range of biological processes. Two key examples illustrate how such deformations influence the readout of the genetic information: the sequestering of eukaryotic genes by nucleosomes and DNA looping in transcriptional regulation in both prokaryotes and eukaryotes. These kinds of regulatory problems are now becoming amenable to systematic quantitative dissection with a powerful dialogue between theory and experiment. Here, we use a single-molecule experiment in conjunction with a statistical mechanical model to test quantitative predictions for the behavior of DNA looping at short length scales and to determine how DNA sequence affects looping at these lengths. We calculate and measure how such looping depends upon four key biological parameters: the strength of the transcription factor binding sites, the concentration of the transcription factor, and the length and sequence of the DNA loop. Our studies lead to the surprising insight that sequences that are thought to be especially favorable for nucleosome formation because of high flexibility lead to no systematically detectable effect of sequence on looping, and begin to provide a picture of the distinctions between the short length scale mechanics of nucleosome formation and looping. PMID:22718983

  15. Mitochondrial DNA sequences from a 7000-year old brain.

    PubMed Central

    Pääbo, S; Gifford, J A; Wilson, A C

    1988-01-01

    Pieces of mitochondrial DNA from a 7000-year-old human brain were amplified by the polymerase chain reaction and sequenced. Albumin and high concentrations of polymerase were required to overcome a factor in the brain extract that inhibits amplification. For this and other sources of ancient DNA, we find an extreme inverse dependence of the amplification efficiency on the length of the sequence to be amplified. This property of ancient DNA distinguishes it from modern DNA and thus provides a new criterion of authenticity for use in research on ancient DNA. The brain is from an individual recently excavated from Little Salt Spring in southwestern Florida and the anthropologically informative sequences it yielded are the first obtained from archaeologically retrieved remains. The sequences show that this ancient individual belonged to a mitochondrial lineage that is rare in the Old World and not previously known to exist among Native Americans. Our finding brings to three the number of maternal lineages known to have been involved in the prehistoric colonization of the New World. Images PMID:3186445

  16. MapNext: a software tool for spliced and unspliced alignments and SNP detection of short sequence reads

    PubMed Central

    2009-01-01

    Background Next-generation sequencing technologies provide exciting avenues for studies of transcriptomics and population genomics. There is an increasing need to conduct spliced and unspliced alignments of short transcript reads onto a reference genome and estimate minor allele frequency from sequences of population samples. Results We have designed and implemented MapNext, a software tool for both spliced and unspliced alignments of short sequence reads onto reference sequences, and automated SNP detection using neighbourhood quality standards. MapNext provides four main analyses: (i) unspliced alignment and clustering of reads, (ii) spliced alignment of transcript reads over intron boundaries, (iii) SNP detection and estimation of minor allele frequency from population sequences, and (iv) storage of result data in a database to make it available for more flexible queries and for further analyses. The software tool has been tested using both simulated and real data. Conclusion MapNext is a comprehensive and powerful tool for both spliced and unspliced alignments of short reads and automated SNP detection from population sequences. The simplicity, flexibility and efficiency of MapNext makes it a valuable tool for transcriptomic and population genomic research. PMID:19958476

  17. Mitochondrial DNA sequences in the nuclear genome of a locust.

    PubMed

    Gellissen, G; Bradfield, J Y; White, B N; Wyatt, G R

    The endosymbiotic theory of the origin of mitochondria is widely accepted, and implies that loss of genes from the mitochondria to the nucleus of eukaryotic cells has occurred over evolutionary time. However, evidence at the DNA sequence level for gene transfer between these organelles has so far been limited to a single example, the demonstration that a mitochondrial ATPase subunit gene of Neurospora crassa has an homologous partner in the nuclear genome. From a gene library of the insect, Locusta migratoria, we have now isolated two clones, representing separate fragments of nuclear DNA, which contain sequences homologous to the mitochondrial genes for ribosomal RNA, as well as regions of homology with highly repeated nuclear sequences. The results suggest the transfer of sequences between mitochondrial and nuclear genomes, followed by evolutionary divergence. PMID:6298629

  18. DNA Qualification Workflow for Next Generation Sequencing of Histopathological Samples

    PubMed Central

    Simbolo, Michele; Gottardi, Marisa; Corbo, Vincenzo; Fassan, Matteo; Mafficini, Andrea; Malpeli, Giorgio; Lawlor, Rita T.; Scarpa, Aldo

    2013-01-01

    Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for

  19. DNA qualification workflow for next generation sequencing of histopathological samples.

    PubMed

    Simbolo, Michele; Gottardi, Marisa; Corbo, Vincenzo; Fassan, Matteo; Mafficini, Andrea; Malpeli, Giorgio; Lawlor, Rita T; Scarpa, Aldo

    2013-01-01

    Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for

  20. Extraction of high quality k-words for alignment-free sequence comparison.

    PubMed

    Gunasinghe, Upuli; Alahakoon, Damminda; Bedingfield, Susan

    2014-10-01

    The weighted Euclidean distance (D(2)) is one of the earliest dissimilarity measures used for alignment free comparison of biological sequences. This distance measure and its variants have been used in numerous applications due to its fast computation, and many variants of it have been subsequently introduced. The D(2) distance measure is based on the count of k-words in the two sequences that are compared. Traditionally, all k-words are compared when computing the distance. In this paper we show that similar accuracy in sequence comparison can be achieved by using a selected subset of k-words. We introduce a term variance based quality measure for identifying the important k-words. We demonstrate the application of the proposed technique in phylogeny reconstruction and show that up to 99% of the k-words can be filtered out for certain datasets, resulting in faster sequence comparison. The paper also presents an exploratory analysis based evaluation of optimal k-word values and discusses the impact of using subsets of k-words in such optimal instances. PMID:24846728

  1. Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing

    PubMed Central

    Genest, Paul-Andre; Baugh, Loren; Taipale, Alex; Zhao, Wanqi; Jan, Sabrina; van Luenen, Henri G.A.M.; Korlach, Jonas; Clark, Tyson; Luong, Khai; Boitano, Matthew; Turner, Steve; Myler, Peter J.; Borst, Piet

    2015-01-01

    Base J (β-D-glucosyl-hydroxymethyluracil) replaces 1% of T in the Leishmania genome and is only found in telomeric repeats (99%) and in regions where transcription starts and stops. This highly restricted distribution must be co-determined by the thymidine hydroxylases (JBP1 and JBP2) that catalyze the initial step in J synthesis. To determine the DNA sequences recognized by JBP1/2, we used SMRT sequencing of DNA segments inserted into plasmids grown in Leishmania tarentolae. We show that SMRT sequencing recognizes base J in DNA. Leishmania DNA segments that normally contain J also picked up J when present in the plasmid, whereas control sequences did not. Even a segment of only 10 telomeric (GGGTTA) repeats was modified in the plasmid. We show that J modification usually occurs at pairs of Ts on opposite DNA strands, separated by 12 nucleotides. Modifications occur near G-rich sequences capable of forming G-quadruplexes and JBP2 is needed, as it does not occur in JBP2-null cells. We propose a model whereby de novo J insertion is mediated by JBP2. JBP1 then binds to J and hydroxylates another T 13 bp downstream (but not upstream) on the complementary strand, allowing JBP1 to maintain existing J following DNA replication. PMID:25662217

  2. DNA sequence of the maize transposable element Dissociation.

    PubMed

    Döring, H P; Tillmann, E; Starlinger, P

    The DNA sequence of the terminal 4.2 kilobases (kb) of the 30-kb insertion in the endosperm sucrose synthase gene of maize mutant sh-m5933 shows that it comprises two identical 2,040-base pair (bp) segments, one inserted in the reverse direction into the other. We suggest that the 2,040-bp sequence is an example of the transposable element Dissociation described by Barbara McClintock. PMID:6318121

  3. Fast DNA sequencing by electrical means inches closer

    NASA Astrophysics Data System (ADS)

    Di Ventra, Massimiliano

    2013-08-01

    The sequencing of the human genome offered a glimpse of future medical practices, where information retrieved from the genome could be harnessed to inform treatment decisions. However, making DNA sequencing accessible enough for widespread use poses a number of challenges. This perspective article traces the progress made in the field so far and looks at how close we may be already to real-life applications.

  4. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis.

    PubMed

    Ambur, Ole Herman; Frye, Stephan A; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  5. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  6. SSR_pipeline--computer software for the identification of microsatellite sequences from paired-end Illumina high-throughput DNA sequence data

    USGS Publications Warehouse

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (SSRs; for example, microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains three analysis modules along with a fourth control module that can be used to automate analyses of large volumes of data. The modules are used to (1) identify the subset of paired-end sequences that pass quality standards, (2) align paired-end reads into a single composite DNA sequence, and (3) identify sequences that possess microsatellites conforming to user specified parameters. Each of the three separate analysis modules also can be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc). All modules are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, Windows). The program suite relies on a compiled Python extension module to perform paired-end alignments. Instructions for compiling the extension from source code are provided in the documentation. Users who do not have Python installed on their computers or who do not have the ability to compile software also may choose to download packaged executable files. These files include all Python scripts, a copy of the compiled extension module, and a minimal installation of Python in a single binary executable. See program documentation for more information.

  7. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai. PMID:23996126

  8. Essential DNA sequence for the replication of Rts1.

    PubMed Central

    Itoh, Y; Kamio, Y; Terawaki, Y

    1987-01-01

    The promoter sequence of the mini-Rts1 repA gene encoding the 33,000-dalton RepA protein that is essential for replication was defined by RNA polymerase protection experiments and by analyzing RepA protein synthesized in maxicells harboring mini-Rts1 derivatives deleted upstream of or within the presumptive promoter region. The -10 region of the promoter which shows homology to the incII repeat sequences overlaps two inverted repeats. One of the repeats forms a pair with a sequence in the -35 region, and the other forms a pair with the translation initiation region. The replication origin region, ori(Rts1), which was determined by supplying RepA protein in trans, was localized within 188 base pairs in a region containing three incII repeats and four GATC sequences. Dyad dnaA boxes that exist upstream from the GATC sequences appeared to be dispensable for the origin function, but deletion of both dnaA boxes from ori(Rts1) resulted in reduced replication frequency, suggesting that host-encoded DnaA protein is involved in the replication of Rts1 as a stimulatory element. Combination of the minimal repA and ori(Rts1) segments, even in the reverse orientation compared with the natural sequence, resulted in reconstitution of an autonomously replicating molecule. Images PMID:3546265

  9. Inter-familial relationships of the shorebirds (Aves: Charadriiformes) based on nuclear DNA sequence data

    PubMed Central

    Ericson, Per GP; Envall, Ida; Irestedt, Martin; Norman, Janette A

    2003-01-01

    Background Phylogenetic hypotheses of higher-level relationships in the order Charadriiformes based on morphological data, partly disagree with those based on DNA-DNA hybridisation data. So far, these relationships have not been tested by analysis of DNA sequence data. Herein we utilize 1692 bp of aligned, nuclear DNA sequences obtained from 23 charadriiform species, representing 15 families. We also test earlier suggestions that bustards and sandgrouses may be nested with the charadriiforms. The data is analysed with methods based on the parsimony and maximum-likelihood criteria. Results Several novel phylogenetic relationships were recovered and strongly supported by the data, regardless of which method of analysis was employed. These include placing the gulls and allied groups as a sistergroup to the sandpiper-like birds, and not to the plover-like birds. The auks clearly belong to the clade with the gulls and allies, and are not basal to most other charadriiform birds as suggested in analyses of morphological data. Pluvialis, which has been supposed to belong to the plover family (Charadriidae), represents a basal branch that constitutes the sister taxon to a clade with plovers, oystercatchers and avocets. The thick-knees and sheathbills unexpectedly cluster together. Conclusion The DNA sequence data contains a strong phylogenetic signal that results in a well-resolved phylogenetic tree with many strongly supported internodes. Taxonomically it is the most inclusive study of shorebird families that relies on nucleotide sequences. The presented phylogenetic hypothesis provides a solid framework for analyses of macroevolution of ecological, morphological and behavioural adaptations observed within the order Charadriiformes. PMID:12875664

  10. Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness.

    PubMed

    Coleman, A W; Mai, J C

    1997-08-01

    The determination of the secondary structure of the internal transcribed spacer (ITS) regions separating nuclear ribosomal RNA genes of Chlorophytes has improved the fidelity of alignment of nuclear ribosomal ITS sequences from related organisms. Application of this information to sequences from green algae and plants suggested that a subset of the ITS-2 positions is relatively conserved. Organisms that can mate are identical at all of these 116 positions, or differ by at most, one nucleotide change. Here we sequenced and compared the ITS-1 and ITS-2 of 40 green flagellates in search of the nearest relative to Chlamydomonas reinhardtii. The analysis clearly revealed one unique candidate, C. incerta. Several ancillary benefits of the analysis included the identification of mislabelled cultures, the resolution of confusion concerning C. smithii, the discovery of misidentified sequences in GenBank derived from a green algal contaminant, and an overview of evolutionary relationships among the Volvocales, which is congruent with that derived from rDNA gene sequence comparisons but improves upon its resolution. The study further delineates the taxonomic level at which ITS sequences, in comparison to ribosomal gene sequences, are most useful in systematic and other studies. PMID:9236277

  11. Simultaneous alignment and folding of 28S rRNA sequences uncovers phylogenetic signal in structure variation.

    PubMed

    Letsch, Harald O; Greve, Carola; Kück, Patrick; Fleck, Günther; Stocsits, Roman R; Misof, Bernhard

    2009-12-01

    Secondary structure models of mitochondrial and nuclear (r)RNA sequences are frequently applied to aid the alignment of these molecules in phylogenetic analyses. Additionally, it is often speculated that structure variation of (r)RNA sequences might profitably be used as phylogenetic markers. The benefit of these approaches depends on the reliability of structure models. We used a recently developed approach to show that reliable inference of large (r)RNA secondary structures as a prerequisite of simultaneous sequence and structure alignment is feasible. The approach iteratively establishes local structure constraints of each sequence and infers fully folded individual structures by constrained MFE optimization. A comparison of structure edit distances of individual constraints and fully folded structures showed pronounced phylogenetic signal in fully folded structures. As model sequences we characterized secondary structures of 28S rRNA sequences of selected insects and examined their phylogenetic signal according to established phylogenetic hypotheses. PMID:19654047

  12. A novel 2-D graphical representation of DNA sequences of low degeneracy

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Randic, Milan; Basak, Subhash C.

    2001-12-01

    Some 2-D and 3-D graphical representations of DNA sequences have been given by Nandy, Leong and Mogenthaler, and Randic et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a novel graphical representation of DNA sequences by taking four special vectors in 2-D space to represent the four nucleic aci