Science.gov

Sample records for aligned dust grains

  1. Differential Heating of Magnetically Aligned Dust Grains

    NASA Astrophysics Data System (ADS)

    Vaillancourt, John E.; Andersson, B.

    2013-01-01

    We use far-infrared photometric maps from IRAS and Herschel to search for the differential heating of asymmetric dust grains aligned with respect to an interstellar magnetic field and heated by a localized radiation source. The grains are known to be asymmetric and have a net alignment of their axes from observations of background starlight polarization. Modern theories on grain alignment suggest that photons from stars embedded in the foreground cloud are a key ingredient of the physical mechanism responsible for alignment (i.e., radiative torques). This theory predicts a relation between the grain alignment efficiency and the angle between the magnetic field and the direction to the aligning radiation source. This effect has been tentatively observed in a source with a very simple geometry (Andersson et al. 2011): the aligning photons are primarily from a single localized source (i.e., a single star) and the local magnetic field direction is known to be fairly uniform. Such a region also has consequences for the distribution of grain heating. For example, asymmetric grains whose largest cross-sections are normal to the incident stellar radiation will reach warmer equilibrium temperatures compared to grains whose largest cross-section is parallel to that direction. This should be observed as an azimuthal dependence of the dust color temperature. We present evidence of such a dependence using IRAS data at 60 and 100 micron. We expect this effect to be stronger using longer wavelength (i.e., 160 micron) data better coupled to the "big-grain" dust population, grains which are also more efficiently aligned with the local magnetic field. Here we also present the results of our on-going work to search for this signal using Herschel maps towards three candidate stars.

  2. Simulation study of spheroidal dust gains charging: Applicable to dust grain alignment

    SciTech Connect

    Zahed, H.; Sobhanian, S.; Mahmoodi, J.; Khorram, S.

    2006-09-15

    The charging process of nonspherical dust grains in an unmagnetized plasma as well as in the presence of a magnetic field is studied. It is shown that unlike the spherical dust grain, due to nonhomogeneity of charge distribution on the spheroidal dust surface, the resultant electric forces on electrons and ions are different. This process produces some surface charge density gradient on the nonspherical grain surface. Effects of a magnetic field and other plasma parameters on the properties of the dust particulate are studied. It has been shown that the alignment direction could be changed or even reversed with the magnetic field and plasma parameters. Finally, the charge distribution on the spheroidal grain surface is studied for different ambient parameters including plasma temperature, neutral collision frequency, and the magnitude of the magnetic field.

  3. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 Angstroms, and the grain rotation rates are obtained by analyzing the low frequency (approximately 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  4. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.

  5. Properties and Alignment of Interstellar Dust Grains toward Type Ia Supernovae with Anomalous Polarization Curves

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem

    2017-02-01

    Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios (R V < 2) and wavelengths of maximum polarization (λ max < 0.4 μm) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SN 2008fp, and SN 2014J). We find that to reproduce low values of R V , a significant enhancement in the mass of small grains of radius a < 0.1 μm is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ max ∼ 0.15 μm, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.

  6. Dust Grain Alignment and Magnetic Field Strength in the Wall of the Local Bubble

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Medan, Ilija

    2017-01-01

    We use archival data on polarization (Berdyugin 2014) and extinction in the wall of the Local Bubble to study the grain alignment efficiency and the magnetic field strength. We find that the grain alignment efficiency variations can be directly tied to the location of the known OB-associations within 200pc from the Sun, strongly supporting modern, radiation-driven dust grain alignment. Based on the Davis-Chandrasekhar-Fermi method, we find a bimodal magnetic field-strength distribution, where the locations of the strongest fields correlate with the directions towards the near-by OB associations. We hypothesize that this strengthening is due to compression of the bubble wall by the opposing outflows in the Local Bubble and from the surrounding OB associations.

  7. Quantum Suppression of Alignment in Ultrasmall Grains: Microwave Emission from Spinning Dust will be Negligibly Polarized

    NASA Astrophysics Data System (ADS)

    Draine, B. T.; Hensley, Brandon S.

    2016-11-01

    The quantization of energy levels in small, cold, free-flying nanoparticles suppresses dissipative processes that convert grain rotational kinetic energy into heat. For interstellar grains small enough to have ˜GHz rotation rates, the suppression of dissipation can be extreme. As a result, alignment of such grains is suppressed. This applies both to alignment of the grain body with its angular momentum {\\boldsymbol{J}}, and to alignment of {\\boldsymbol{J}} with the local magnetic field {\\boldsymbol{B}} 0. If the anomalous microwave emission is rotational emission from spinning grains, then it will be negligibly polarized at GHz frequencies, with P ≲ 10-6 at ν > 10 GHz.

  8. On the radiation driven alignment of dust grains: Detection of the polarization hole in a starless core

    NASA Astrophysics Data System (ADS)

    Alves, F. O.; Frau, P.; Girart, J. M.; Franco, G. A. P.; Santos, F. P.; Wiesemeyer, H.

    2014-09-01

    Aims: We aim to investigate the polarization properties of a starless core in an early evolutionary stage. Linear polarization data reveal the properties of the dust grains in the distinct phases of the interstellar medium. Our goal is to investigate how the polarization degree and angle correlate with the cloud and core gas. Methods: We use optical, near infrared, and submillimeter polarization observations on the starless object Pipe-109 in the Pipe nebula. Our data cover a physical scale range of 0.08 to 0.4 pc, comprising the dense gas, envelope, and the surrounding cloud. Results: The cloud polarization is well traced by the optical data. The near infrared polarization is produced by a mixed population of grains from the core border and the cloud gas. The optical and near infrared polarization toward the cloud reaches the maximum possible value and saturates with respect to the visual extinction. The core polarization is predominantly traced by the submillimeter data and has a steep decrease with respect to the visual extinction. Modeling of the submillimeter polarization indicates a magnetic field main direction projected onto the plane-of-sky and loss of grain alignment for densities higher than 6 × 104 cm-3 (or AV> 30 mag). Conclusions: The object is immersed in a magnetized medium with a very ordered magnetic field. The absence of internal source of radiation significantly affects the polarization efficiencies in the core, creating a polarization hole at the center of the starless core. This result supports the theory of dust grain alignment via radiative torques Based on data acquired with the Atacama Pathfinder Experiment (APEX) and the 1.6 m telescope at Observatorio do Pico dos Dias (LNA/MCTI).The data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/L1

  9. Disorientation of Suprathermally Rotating Grains and the Grain Alignment Problem

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Draine, B. T.

    1997-09-01

    We discuss the dynamics of dust grains subjected to torques arising from H2 formation. In particular, we discuss grain dynamics when a grain spins down and goes through a ``crossover'' event. As first pointed out by Spitzer & McGlynn, the grain angular momentum before and after a crossover event are correlated, and the degree of this correlation critically affects the alignment of dust grains by paramagnetic dissipation. We calculate the correlation including the important effects of thermal fluctuations within the grain material. These fluctuations limit the degree to which the grain angular momentum J is coupled with the grain principal axis a1 of maximal inertia. We show that this imperfect coupling of a1 with J plays a critical role during crossovers and can substantially increase the efficiency of paramagnetic alignment for grains larger than 0.1 μm. As a result, we show that for reasonable choices of parameters, the observed alignment of a >~ 0.1 μm grains could be achieved by paramagnetic dissipation in suprathermally rotating grains, if radiative torques caused by starlight were not present. We also show that the efficiency of mechanical alignment in the limit of long alignment times is not altered by the thermal fluctuations in the grain material. This paper is dedicated to the memory of Lyman Spitzer, Jr.

  10. Composite circumstellar dust grains

    NASA Astrophysics Data System (ADS)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  11. Observational Evidence for Radiative Interstellar Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.; Potter, S. B.; Andersson, B.; Potter, S.

    2011-11-01

    The alignment mechanisms of interstellar dust grains is a long standing astrophysical problem. Interstellar polarization was first discovered in 1949 and soon thereafter attributed to dichroic extinction caused by asymmetric dust grains aligned with the magnetic field. For a long time the alignment mechanism was thought to involve paramagnetic relaxation in rapidly spinning dust grains. Modern theory indicates that the classical alignment mechanisms are likely not efficient, but rather favor alignment through direct radiative torques. We have used multi-band polarimetry towards stars probing six nearby clouds to show that the wavelength of maximum polarization is linearly correlated with the visual extinction (Andersson & Potter 2007; AP07; where further details can be found). We find a universal relation with a common positive slope between the clouds and a DC offset correlated with the average of the total-to-selective extinction < RV > . These results provide strong observational support for radiatively driven grain alignment. Recent observations of an additional set of ≍60 sightlines in the Taurus cloud confirm and strengthen these results.

  12. Fractal dust grains in plasma

    SciTech Connect

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  13. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  14. A Unified Model of Grain Alignment: Radiative Alignment of Interstellar Grains with Magnetic Inclusions

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.

    2016-11-01

    The radiative torque (RAT) alignment of interstellar grains with ordinary paramagnetic susceptibilities has been supported by earlier studies. The alignment of such grains depends on the so-called RAT parameter q max, which is determined by the grain shape. In this paper, we elaborate on our model of RAT alignment for grains with enhanced magnetic susceptibility due to iron inclusions, such that RAT alignment is magnetically enhanced, which we term the MRAT mechanism. Such grains can be aligned with high angular momentum at the so-called high-J attractor points, achieving a high degree of alignment. Using our analytical model of RATs, we derive the critical value of the magnetic relaxation parameter δ m to produce high-J attractor points as functions of q max and the anisotropic radiation angle relative to the magnetic field ψ. We find that if about 10% of the total iron abundance present in silicate grains is forming iron clusters, this is sufficient to produce high-J attractor points for all reasonable values of q max. To calculate the degree of grain alignment, we carry out numerical simulations of MRAT alignment by including stochastic excitations from gas collisions and magnetic fluctuations. We show that large grains can achieve perfect alignment when the high-J attractor point is present, regardless of the values of q max. Our obtained results pave the way for the physical modeling of polarized thermal dust emission as well as magnetic dipole emission. We also find that millimeter-sized grains in accretion disks may be aligned with the magnetic field if they are incorporated with iron nanoparticles.

  15. Grain dust and the lungs.

    PubMed Central

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  16. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  17. On the Efficiency of Grain Alignment in Dark Clouds

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Goodman, Alyssa A.; Myers, Philip C.

    1997-11-01

    A quantitative analysis of grain alignment in the filamentary dark cloud L1755 in Ophiuchus is presented. We show that the observed decrease of the polarization-to-extinction ratio for the inner parts of this quiescent dark cloud can be explained as a result of the decrease of the efficiency of grain alignment. We make quantitative estimates of grain alignment efficiency for six mechanisms involving grains with either thermal or suprathermal rotation, interacting with either magnetic field or gaseous flow. We also make semiquantitative estimates of grain alignment by radiative torques. We show that in conditions typical of dark cloud interiors, all known major mechanisms of grain alignment fail. All the studied mechanisms predict polarization at least an order of magnitude below the currently detectable levels of ~1%. On the contrary, in the dark cloud environments where Av < 1, the grain alignment can be much more efficient. There the alignment of suprathermally rotating grains with superparamagnetic inclusions, and possibly also radiative torques, account for observed polarization. These results apply to L1755, which we model in detail, and probably also to B216 and other similar dark clouds. Our study suggests an explanation for the difference in results obtained through polarimetry of background starlight and polarized thermal emission from the dust itself. We conjecture that the emission polarimetry selectively reveals aligned grains in the environment far from thermodynamic equilibrium, as opposed to starlight polarization studies that probe the alignment of grains all the way along the line of sight, including the interiors of dark quiescent clouds, where no alignment is possible. We dedicate this paper to the memory of Edward M. Purcell and Lyman Spitzer, Jr., two pioneers in the quantitative study of the interstellar medium.

  18. Grain fever syndrome induced by inhalation of airborne grain dust.

    PubMed

    doPico, G A; Flaherty, D; Bhansali, P; Chavaje, N

    1982-05-01

    To study the clinical and physiologic manifestations of the grain fever syndrome and the potentially pathogenic role of complement activation, 12 subjects (six grain workers and six healthy non-grain workers) underwent inhalation provocations with airborne grain dust. The clinical response was characterized by facial warmth, headache, malaise, myalgias, feverish sensation, chilliness, throat and tracheal burning sensation, chest tightness, dyspnea, cough, and expectoration. Fever developed in four grain workers and two controls. Leukocytosis, ranging between 11,700 and 24,300 leukocytes/mm3 with left shift, developed in five grain workers and five controls. There was no evidence of complement activation by the classical or alternate pathway. None of the subjects had serum precipitins to grain dust. The pulmonary response was characterized by a decrease in FEV1, FVC, MMF, Vmax50, and Vmax75, with significant rise in pulmonary resistance and consistent change in dynamic compliance but without changes in static compliance or diffusing capacity. Hence, grain dust inhalation induced diffuse airways obstruction without detectable parenchymal reaction. The airways response to high concentrations of grain dust inhalation were unrelated to the presence of immediate skin hypersensitivity. Although we cannot exclude the etiopathogenetic role of an immunologic reaction to grain dust, our data do not support the hypothesis that the grain fever syndrome is a precipitin-mediated allergic pneumonitis. More likely, the manifestations of grain fever probably reflect the host reaction to grain dust bacterial endotoxins and/or nonallergic mediator release by grain or grain dust constituents.

  19. Dust grains in planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, D.; Hamilton, D. P.

    2011-10-01

    Micrometeoroid impacts on small moons or ring particles generate dusty debris of all sizes. Grains launched from parent bodies on Kepler orbits become electrically charged due to interactions with the plasma environment and solar photons. The tenuous dusty rings are essentially collisionless systems and hence sub-micron grains, released and charged in the rotating magnetic field of their host planet, follow trajectories under the combined forces of electromagnetism and gravity. Depending on their launch distance and charge-to-mass ratio, some grains can be unstable to either radial perturbations (positively-charged grains only), or vertical perturbations (both positive and negative charges). These instabilities act on short timescales and cause grains to collide with the planet or escape in less than an orbit. [5] compiled numerical data and analytical solutions to the boundaries between stable and unstable trajectories, for the idealized case of a planet with an aligned dipolar magnetic field. The effect of a vertically offset or moderately tilted dipolar magnetic field configuration increases the class of grains that are vertically unstable, but has little effect on the short-term radial instability. We present numerical stability maps for each of the giant planets.

  20. Experimental Study of Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  1. Dynamics of Dust Grains Near the Sun

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Tambovtseva, L. V.

    The orbital motion of interplanetary dust grains in sublimation zone near the Sun is revised in detail for grains of obsidian, basalt, astronomical silicate and graphite. Effects of gravity, radiation pressure for a spherical source with limb darkening, and solar wind pressure on dust grains were taken into account. The influence of sputtering, thermal velocity and tangential velocity component of the solar wind particles on lifetime of the grains moving on prograde and retrograde orbits is investigated. It is obtained that = radiation pressure/gravity is constant everywhere including the region close to the Sun. It is shown that the temperature of submicron dust grains does not exceed 1500 K for silicate grains and 2000 K for graphite ones anywhere in solar corona. Both the dust rings observed near 9r and the dust free zone near 6.5r can be explained by basalt-like grains. These dust rings and those observed earlier near 4r, formed by obsidian-like grains, were not found during the solar eclipse in 1991. This is possible if the bulk of the grains belong to population II (Le Sergeant D'Hendecourt and Lamy, 1980) (in this case small particles with radii s < 0.5 m do not form a region of high concentration) of if dust have a cometary origin. Dust grains with optical properties similar to astronomical silicate sublimating far from the Sun, go onto elliptic orbits and reach the Earth. These grains can be candidates for -meteoroids) ("apex" particles) with the mass 10-12 g which were observed in the inner Solar System during Helios ½ missions.

  2. Analytic and Simulation Studies of Dust Grain Interaction and Structuring

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Joyce, Glenn; Ganguli, Gurudas

    For dust grains in stationary plasma, a quantitative assessment is made of the effect of centrifugal potential barriers on ion trajectories near a grain. It is shown that in most situations of interest the barriers are weak and only marginally affect the validity of the orbital-motion-limited (OML) theory. The OML theory is then used to show that the electrostatic interaction between grains is always repulsive. The ion-shadowing force is calculated, and it is shown that this force can lead to a weak net attraction between grains at long range, under certain conditions with large grains, dense plasma, and/or low gas pressure. For grains in streaming plasma at or near the sheath, it is shown that nonlinear effects are weak and the grains can be represented as dressed particles interacting via the dynamically shielded Coulomb interaction, which includes wakefields, Landau damping, and collisional damping. The Dynamically Shielded Dust (DSD) simulation code, which is based on this model, is described and a simulation is shown for strongly coupled grains in flowing plasma. The simulation shows ordering of the grains into rigid strings aligned with the ion flow, and looser glass-like organization of the strings in the transverse plane. The presence of strings with odd and even numbers of grains results in stratification of the grains into planes with an alternating structure.

  3. Dust Spectroscopy and the Nature of Grains

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.

  4. Dust grains from the heart of supernovae

    NASA Astrophysics Data System (ADS)

    Bocchio, Marco; Marassi, Stefania; Schneider, Raffaella; Bianchi, Simone; Limongi, Marco; Chieffi, A.

    2016-06-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. We have developed a new code (GRASH_Rev) which follows the newly-formed dust evolution throughout the supernova explosion until the merging of the forward shock with the circumstellar ISM. We have considered four well studied SNe in the Milky Way and Large Magellanic Cloud: SN1987A, CasA, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations and estimate that between 1 and 8% of the observed mass will survive, leading to a SN dust production rate of (3.9± 3.7)×10^(-4) MM_{⊙})/yr in the Milky Way. This value is one order of magnitude larger than the dust production rate by AGB stars but insufficient to counterbalance the dust destruction by SNe, therefore requiring dust accretion in the gas phase.

  5. Porous dust grains in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Kirchschlager, Florian; Wolf, Sebastian

    2013-07-01

    We investigate the impact of porous dust grains on the structure and observable appearance of circumstellar disks (Kirchschlager & Wolf 2013). Our study is motivated by observations and laboratory studies which indicate that dust grains in various astrophysical environments are porous. In addition, the modeling of the spatial structure and grain size distribution of debris disks reveals that under the assumption of spherical compact grains the resulting minimum grain size is often significantly larger than the blowout size, which might be a hint for porosity. Using the discrete dipole approximation, we compute the optical properties of spherical, porous grains (Draine & Flatau 1994, 2010). Subsequently, we calculate the blowout sizes for various debris disk systems and grain porosities. We find that the blowout size increases with particle porosity and stellar temperature. In addition, the lower dust equilibrium temperature of porous particles results in a shift of the maximum of the thermal reemission of debris disks towards longer wavelengths. For our studies of the impact of dust grain porosity in protoplanetary disks we use the radiative transfer software MC3D, which is based on the Monte-Carlo method and solves the radiative transfer problem self-consistently (Wolf et al. 1999, Wolf 2003). We find that the spectral energy distribution of protoplanetary disks shows significant differences between the cases of porous and compact grains. In particular, the flux in the optical wavelength range is increased for porous grains. Furthermore, the silicate peak at ~9.8 microns exhibits a strong dependence on the degree of grain porosity. We also investigate the temperature distribution in the disk. In the midplane no influence of porosity is detectable, but in the vertical direction minor changes of a few Kelvin are found. To complete our study we outline the differences between the two grain types in maps of the linear polarization. We detect a polarization reversal in

  6. Ultrathin amorphous coatings on lunar dust grains.

    PubMed

    Bibring, J P; Duraud, J P; Durrieu, L; Jouret, C; Maurette, M; Meunier, R

    1972-02-18

    UItrathin amorphous coatings have been observed by high-voltage electron microscopy on micrometer-sized dust grains from the Apollo 11, Apollo 12, Apollo 14, and Luna 16 missions. Calibration experiments show that these coatings result from an "ancient" implantation of solar wind ions in the grains. This phenomenon has interdisciplinary applications concerning the past activity of the sun, the lunar albedo, the ancient lunar atmosphere and magnetic field, the carbon content of lunar soils, and lunar dynamic processes.

  7. Dust grains from the heart of supernovae

    NASA Astrophysics Data System (ADS)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the

  8. Early Solar Nebula Grains - Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    This chapter examines the compositions, mineralogy, sources, and geochemical significance of interplanetary dust particles (IDPs). Despite their micrometer-scale dimensions and nanogram masses, it is now possible, primarily as a result of advances in small particle handling techniques and analytical instrumentation, to examine IDPs at close to atomic-scale resolution. The most widely used instruments for IDP studies are presently the analytical electron microscope, synchrotron facilities, and the ion microprobe. These laboratory analytical techniques are providing fundamental insights about IDP origins, mechanisms of formation, and grain processing phenomena that were important in the early solar system and presolar environments. At the same time, laboratory data from IDPs are being compared with astronomical data from dust in comets, circumstellar disks, and the interstellar medium. The direct comparison of grains in the laboratory with grains in astronomical environments is known as "astromineralogy."

  9. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    SciTech Connect

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-04-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.

  10. Experimental investigations of the optical and physical properties of interstellar and lunar dust grains

    NASA Astrophysics Data System (ADS)

    Tankosic, Dragana

    2010-10-01

    Dust grains constitute a major component of matter in the universe. About half of all elements in the interstellar medium (ISM) heavier than helium are in the form of dust. Dust particles are formed in astrophysical environments by processes such as stellar outflows and supernovae. Ejected into the ISM, they lead to the formation of diffuse and dense molecular clouds of gas and dust. The gas and dust in the interstellar clouds undergo a variety of complex physical and chemical evolutionary processes leading to the formation of stars and planetary systems, forming a cosmic dust cycle. Micron/submicron size cosmic dust grains have a significant role in physical and dynamical processes in the galaxy, the ISM, and the interplanetary and planetary environments. Therefore, the knowledge of the physical, optical, and charging properties of the cosmic dust provides valuable information about many issues related to the role of dust in astrophysical environments. An experimental facility based on an electrodynamic balance (EDB) has been developed at NASA- Marshall Space Flight Center (MSFC) for investigation of several different properties and processes of individual, levitated micron/submicron size dust grains in simulated space environments. This dissertation focuses on experimental investigations in the following areas: (1) Radiation pressure on individual micron-sized dust grains; (2) Rotation and alignment of micron-sized dust grains simulating rotation of dust grains in astrophysical environment; (3) Charging of analogs of individual cosmic dust grains and lunar dust grains by UV radiation; (4) Charging of Apollo 11 & 17 lunar dust grains by electron impact simulating the charging of lunar dust by the solar wind plasma. The experimental results obtained on individual micron/submicron-size dust grains in the EDB facility at NASA/MSFC in each of the above four areas were unique and first to be reported. Experimental studies of the physical and optical properties of

  11. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  12. Ion implantation effects in 'cosmic' dust grains

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Meunier, R.; Jouffrey, B.; Jouret, C.

    1974-01-01

    Cosmic dust grains, whatever their origin may be, have probably suffered a complex sequence of events including exposure to high doses of low-energy nuclear particles and cycles of turbulent motions. High-voltage electron microscope observations of micron-sized grains either naturally exposed to space environmental parameters on the lunar surface or artificially subjected to space simulated conditions strongly suggest that such events could drastically modify the mineralogical composition of the grains and considerably ease their aggregation during collisions at low speeds. Furthermore, combined mass spectrometer and ionic analyzer studies show that small carbon compounds can be both synthesized during the implantation of a mixture of low-energy D, C, N ions in various solids and released in space by ion sputtering.

  13. OBSERVATIONS OF ENHANCED RADIATIVE GRAIN ALIGNMENT NEAR HD 97300

    SciTech Connect

    Andersson, B-G; Potter, S. B. E-mail: sbp@saao.ac.z

    2010-09-10

    We have obtained optical multi-band polarimetry toward sightlines through the Chamaeleon I cloud, particularly in the vicinity of the young B9/A0 star HD 97300. We show, in agreement with earlier studies, that the radiation field impinging on the cloud in the projected vicinity of the star is dominated by the flux from the star, as evidenced by a local enhancement in the grain heating. By comparing the differential grain heating with the differential change in the location of the peak of the polarization curve, we show that the grain alignment is enhanced by the increase in the radiation field. We also find a weak, but measurable, variation in the grain alignment with the relative angle between the radiation field anisotropy and the magnetic field direction. Such an anisotropy in the grain alignment is consistent with a unique prediction of modern radiative alignment torque theory and provides direct support for radiatively driven grain alignment.

  14. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  15. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  16. Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains

    NASA Technical Reports Server (NTRS)

    Yorke, H.; Suttner, G.; Lin, D.

    1999-01-01

    Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and due to corresponding changes in the medium's opacity significantly influence the evolution during early phase of star formation.

  17. Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains

    NASA Technical Reports Server (NTRS)

    Yorke, H.; Lin, D.; Suttner, G.

    1999-01-01

    Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and -- due to corresponding changes in the medium's opacity significantly -- influence the evolution during early phases of star formation.

  18. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    PubMed Central

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  19. Experimental Investigations of the Physical and Optical Properties of Individual Micron/Submicron-Size Dust Grains in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; LeClair, A.

    2014-01-01

    Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.

  20. Laboratory Investigation of Space and Planetary Dust Grains

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  1. Complex role of secondary electron emissions in dust grain charging in space environments: measurements on Apollo 11 & 17 dust grains

    NASA Astrophysics Data System (ADS)

    Abbas, Mian; Tankosic, Dragana; Spann, James; Leclair, Andre C.

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, by electron/ion collisions, and sec-ondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstel-lar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynam-ical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10-400 eV energy range. The charging rates of positively and negatively charged particles of 0.2 to 13 µm diam-eters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong parti-cle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  2. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  3. Properties of grains derived from IRAS observations of dust

    NASA Technical Reports Server (NTRS)

    Wesselius, P. R.; Chlewicki, Grzegorz; Laureijs, Rene J.

    1989-01-01

    The authors used the results of Infrared Astronomy Satellite (IRAS) observations of diffuse medium dust to develop a theoretical model of the infrared properties of grains. Recent models based entirely on traditional observations of extinction and polarization include only particles whose equilibrium temperatures do not exceed 20 K in the diffuse interstellar medium. These classical grains, for which the authors have adopted the multipopulation model developed by Hong and Greenberg (1980), can explain only the emission in the IRAS 100 micron band. The measurements at shorter wavelengths (12, 25 and 60 microns) require two new particle populations. Vibrational fluorescence from aromatic molecules provides the most likely explanation for the emission observed at 12 microns, with polycyclic aeromatic hydrocarbons (PAHs) containing about 10 percent of cosmic carbon. A simplified model of the emission process shows that PAH molecules can also explain most of the emission measured by IRAS at 25 microns. The authors identified the warm particles responsible for the excess 60 microns emission with small (a approx. equals 0.01 microns) iron grains. A compilation of the available data on the optical properties of iron indicates that the diffuse medium temperature of small iron particles should be close to 50 K and implies that a large, possibly dominant, fraction of cosmic iron must be locked up in metallic particles in order to match the observed 60 microns intensities. The model matches the infrared fluxes typically observed by IRAS in the diffuse medium and can also reproduce the infrared surface brightness distribution in individual clouds. In particular, the combination of iron and classical cool grains can explain the surprising observations of the 60/100 microns flux ratio in clouds, which is either constant or increases slightly towards higher opacities. The presence of metallic grains has significant implications for the physics of the interstellar medium, including

  4. Interaction of dust grains with CMEs in the F corona

    NASA Astrophysics Data System (ADS)

    Ragot, B. R.; Kahler, S. W.

    2002-05-01

    The density of interplanetary dust increases Sunward to reach its maximum in the solar F corona. Although current models predict a broad range of plausible values for the total density of grains at a given distance from the Sun, the number of grains interacting with a CME around 4 solar radii is large enough to raise questions about the influence of the dust grains on the dynamics of CMEs. To answer these questions we estimate the various forces exerted on the dust grains in a CME. The enhanced magnetic field within CMEs results in the Lorentz force being the dominant force for practically all submicron particles, trapping the ones smaller than 0.1 micron and deflecting the others. For larger grains the solar gravitational force dominates, but the Lorentz force still exceeds the radiation pressure force up to almost 10 microns. In the absence of sputtering the ion drag force would become larger than the Lorentz force at about 20 microns, depending on the CME parameters. At 4 solar radii, however, a dominant contribution from the sputtered particles is expected in the ion drag force, due to the high temperature of the grains. The ion drag force from CMEs may therefore even exceed the radiation pressure force. It is in any case much larger than the Pointing-Robertson force. In conclusion it is clear that for all grain sizes, the presence of CMEs has critical effects on the dynamics of the dust grains in the F corona. It appears, however, that the dust grains have no influence on the dynamics of CMEs. The total energy lost by a CME through its interaction with the dust grains is, in the most optimistic estimate, less than one percent of the CME kinetic energy.

  5. Charging time for dust grain on surface exposed to plasma

    SciTech Connect

    Sheridan, T. E.

    2013-04-14

    We consider the charging of a dust grain sitting on a surface exposed to plasma. The stochastic model of Sheridan and Hayes [Appl. Phys. Lett. 98, 091501 (2011)] is solved analytically for the charging time, which is found to be directly proportional to the square root of the electron temperature and inversely proportional to both the grain radius and plasma density.

  6. Investigation of light scattering on a single dust grain

    NASA Astrophysics Data System (ADS)

    Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana; Barton, Petr

    2016-07-01

    Complex phenomenon of light scattering by dust grains plays an important role in all dust--light interactions, especially in space, e.g., light passing through dense dusty clouds in the space as well as in the upper atmosphere, dust charging by photoemission, etc. When the wavelength of the incident light is about the size of the grain, the Mie theory is often used to characterize the scattering process. Unfortunately, we have only very limited knowledge of necessary material constants for most of the space-related materials and also the solution of Mie equations for general grain shapes is difficult or unknown. We develop an apparatus for observations of light scattering on small (micrometer-sized) arbitrary shaped dust grains. We directly measure the scattering by levitating grains in the field created by the standing-wave ultrasonic trap, where we can study single grains or small grain clusters. The experiment is performed at atmospheric air --- unlike other experiments, where grains were measured in water or other liquids. Therefore, the background effects are significantly reduced. Currently, the trap is under development and first tests are carried out. Besides initial results, we focus on theoretical computations of the ultrasonic field of the selected trap.

  7. Peculiarities of the Field Electron Emission from Dust Grains

    SciTech Connect

    Richterova, I.; Beranek, M.; Pavlu, J.; Nemecek, Z.; Safrankova, J.

    2008-09-07

    The goal of the paper is investigation of the electron field emission that limits the attainable grain charge and can prevent electrostatic fragmentation of loosely bounded aggregates of dust grains. We have found that the effective work function of the spherical amorphous carbon grains does not depend on the relative beam energy. Preliminary results on an influence of the ion treatment/cleaning using the simultaneous electron and ion bombardments are discussed.

  8. Infrared studies of dust grains in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Tielens, Alexander G. G. M.; Werner, Michael W.

    1989-01-01

    IR reflection nebulae, regions of dust which are illuminated by nearby embedded sources, were observed in several regions of ongoing star formation. Near IR observation and theoretical modelling of the scattered light form IR reflection nebulae can provide information about the dust grain properties in star forming regions. IR reflection nebulae were modelled as plane parallel slabs assuming isotropically scattering grains. For the grain scattering properties, graphite and silicate grains were used with a power law grain size distribution. Among the free parameters of the model are the stellar luminosity and effective temperature, the optical depth of the nebula, and the extinction by foreground material. The typical results from this model are presented and discussed.

  9. GRAIN SORTING IN COMETARY DUST FROM THE OUTER SOLAR NEBULA

    SciTech Connect

    Wozniakiewicz, P. J.; Bradley, J. P.; Ishii, H. A.; Brownlee, D. E.; Kearsley, A. T.; Burchell, M. J.; Price, M. C.

    2012-12-01

    Most young stars are surrounded by a disk of gas and dust. Close to the hot stars, amorphous dust grains from the parent molecular cloud are reprocessed into crystals that are then distributed throughout the accretion disk. In some disks, there is a reduction in crystalline grain size with heliocentric distance from the star. We investigated crystalline grain size distributions in chondritic porous (CP) interplanetary dust particles (IDPs) believed to be from small, icy bodies that accreted in outer regions of the solar nebula. The grains are Mg-rich silicates and Fe-rich sulfides, the two most abundant minerals in CP IDPs. We find that they are predominantly <0.25 {mu}m in radius with a mean grain size that varies from one CP IDP to another. We report a size-density relationship between the silicates and sulfides. A similar size-density relationship between much larger silicate and sulfide grains in meteorites from the asteroid belt is ascribed to aerodynamic sorting. Since the silicate and sulfide grains in CP IDPs are theoretically too small for aerodynamic sorting, their size-density relationship may be due to another process capable of sorting small grains.

  10. Trajectories and distribution of interstellar dust grains in the heliosphere

    DOE PAGES

    Slavin, Jonathan D.; Frisch, Priscilla C.; Müller, Hans-Reinhard; ...

    2012-11-01

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. Here, we present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculationsmore » done separately for each polarity. Small grains a gr ≲ 0.01 μm are completely excluded from the inner heliosphere. Large grains, a gr ≳ 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. Our result points to the need to include the time variation in the SWMF polarity during grain propagation. This provides valuable insights for interpretation of the in situ dust observations from Ulysses.« less

  11. Trajectories and distribution of interstellar dust grains in the heliosphere

    SciTech Connect

    Slavin, Jonathan D.; Frisch, Priscilla C.; Müller, Hans-Reinhard; Heerikhuisen, Jacob; Pogorelov, Nikolai V.; Reach, William T.; Zank, Gary

    2012-11-01

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. Here, we present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a gr ≲ 0.01 μm are completely excluded from the inner heliosphere. Large grains, a gr ≳ 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. Our result points to the need to include the time variation in the SWMF polarity during grain propagation. This provides valuable insights for interpretation of the in situ dust observations from Ulysses.

  12. Studies of dust grain properties in infrared reflection nebulae.

    PubMed

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  13. Tracing Dust Grains from Supernovae to The Solar Nebulae

    NASA Astrophysics Data System (ADS)

    Luebbers, Ian; Goodson, Matthew; Heitsch, Fabian

    2016-01-01

    Short-lived radioisotopes (SLRs) were present in the early solar system, providing evidence that the solar system was impacted by a supernova prior to or during its formation. However, hydrodynamical models of the injection of SLRs fail to achieve sufficient mixing, presenting a challenge to this hypothesis. We propose the injection of SLRs via dust grains in an attempt to overcome the mixing barrier. To test this hypothesis we simulate injection into a presolar gas cloud under various assumptions. Our results suggest that SLR transport in dust grains is a viable mechanism for generating observed SLR abundances.

  14. Study of the process of dust grain discharging in the afterglow of an RF discharge

    SciTech Connect

    Filatova, I. I.; Trukhachev, F. M.; Chubrik, N. I.

    2011-12-15

    The process of decay of dust structures formed of polydisperse grains injected into an RF discharge is investigated. The dust grain velocities after switching-off of the discharge are measured. The number density, dimensions, and residual charges of dust grains are estimated from the balance of forces acting on the grains after discharge is switched off.

  15. Astrophysical dust grains in stars, the interstellar medium, and the solar system

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1991-01-01

    Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.

  16. Dust Particles Alignments and Transitions in a Plasma Sheath

    SciTech Connect

    Stokes, J. D. E.; Samarian, A. A.; Vladimirov, S. V.

    2008-09-07

    The alignments and transitions of two dust particles in a plasma sheath have been investigated. It is shown that the Hamiltonian description of a non-Hamiltonian system can be used to predict qualitative features of possible equilibria in a variety of confinement potentials and can provide useful plasma diagnostics. The results compare favorably with simulation and are used to create new experimental hypotheses. In particular, the symmetry breaking transition of the particles as they leave the horizontal plane admits a Hamiltonian description which is used to elucidate the wake parameter.

  17. Stochastic histories of dust grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Liffman, Kurt; Clayton, D. D.

    1989-01-01

    The purpose is to study an evolving system of refractory dust grains within the Interstellar Medium (ISM). This is done via a combination of Monte Carlo processes and a system of partial differential equations, where refractory dust grains formed within supernova remnants and ejecta from high mass loss stars are subjected to the processes of sputtering and collisional fragmentation in the diffuse media and accretion within the cold molecular clouds. In order to record chemical detail, the authors take each new particle to consist of a superrefractory core plus a more massive refractory mantle. The particles are allowed to transfer to and fro between the different phases of the interstellar medium (ISM) - on a time scale of 10(exp 8) years - until either the particles are destroyed or the program finishes at a Galaxy time of 6x10(exp 9) years. The resulting chemical and size spectrum(s) are then applied to various astrophysical problems with the following results. For an ISM which has no collisional fragmentation of the dust grains, roughly 10 percent by mass of the most refractory material survives the rigors of the ISM intact, which leaves open the possibility that fossilized isotopically anomalous material may have been present within the primordial solar nebula. Stuctured or layered refractory dust grains within the model cannot explain the observed interstellar depletions of refractory material. Fragmentation due to grain-grain collisions in the diffuse phase plus the accretion of material in the molecular cloud phase can under certain circumstances cause a bimodal distribution in grain size.

  18. COMPARTMENTALIZATION OF THE INFLAMMATORY RESPONSE TO INHALED GRAIN DUST

    EPA Science Inventory


    Interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha, and the secreted form of the IL-1 receptor antagonist (sIL-1RA) are involved in the inflammatory response to inhaled grain dust. Previously, we found considerable production of these cytokines in the lower...

  19. Aligned submicron grains in archeological potteries with high TRM anisotropy

    NASA Astrophysics Data System (ADS)

    Fukuma, K.; Ooga, M.; Isobe, H.

    2010-12-01

    Potteries have been often used to obtain archeointensity data because of the extremely high success rates in Thellier experiments. Since high anisotropy of thermoremanent magnetization (TRM) are commonly observed for potteries, anisotropy correction is routinely applied to make archeointensity data reliable. Such a TRM anisotropy is characterized by the foliated structure parallel to the surface and has been interpreted to reflect aligned magnetic minerals during molding. However, the high thermal stability and the higher degrees of TRM anisotropies than those of low-field susceptibility suggest that pottery TRM resides in fine-grained magnetic minerals formed during firing. Molding is not sufficient to explain highly anisotropic TRM of potteries. We measured TRM susceptibility tensors on potteries manufactured from 14th to 17th centuries in Japan. These potteries were fired up to about 1200°C resulting in partial vitrification. The ratios of maximum and minimum eigenvalues of the TRM susceptibility tensors are well distributed and reaches 1.8 for most anisotropic samples. The Curie temperature ranges from 500°C to 550°C implying titanium-poor titanomagnetite as TRM carriers, and the narrow unblocking temperature indicates that the low-titanium titanomagnetites are in or close to the single-domain size range. Submicron titanomagnetite grains were commonly observed on the polished sections under a FE-SEM. Some of the grains occur as inclusions in iron-bearing silicates such as pyroxene or hornblende, and other grains reside in glass matrix. In addition, vesiculated clay minerals contain highly elongated titanomagnetite grains. Such clay minerals seem stretched parallel to the pottery surface and inside titanomagnetite grains are also elongated along the surface. Relative abundance of titanomagnetite inclusions in silicates or glass against in clay minerals should control the degree of TRM anisotropy. Foliated TRM anisotropies originate from both alignment of clay

  20. Changes of Dust Grain Properties Under Particle Bombardment

    SciTech Connect

    Pavlu, J.; Richterova, I.; Safrankova, J.; Nemecek, Z.; Fujita, D.

    2008-09-07

    The dust in space environments is exposed to particle bombardment. Under an impact of ions, electrons, and photons, the charge of a particular grain changes and, in some cases, the grain structure can be modified. The present study deals with spherical melamine formaldehyde resin grains that are frequently used in many dusty plasmas and microgravity experiments and it concentrates on the influence of the electron beam impact on a grain size. We have performed series of experiments based on the SEM technique. Our investigation has shown that the electron impact can cause a significant increase of the grain size. We discuss changes of material properties and consequences for its applications in laboratory and space experiments.

  1. Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Flynn, George J.; Wirick, Sue; Keller, Lindsay P.

    2013-10-01

    The chondritic porous interplanetary dust particles (CP IDPs), fragments of asteroids and comets collected by NASA high-altitude research aircraft from the Earth's stratosphere, are recognized as the least altered samples of the original dust of the Solar Nebula available for laboratory examination. We performed high-resolution, ~25 nm/pixel, x-ray imaging and spectroscopy on ultramicrotome sections of CP IDPs, which are aggregates of >104 grains, and identified and characterized ~100 nm thick coatings of organic matter on the surfaces of the individual grains. We estimated the minimum tensile strength of this organic glue to be ~150 to 325 N/m2, comparable to the strength of the weakest cometary meteors, based on the observation that the individual grains of ~5 μm diameter aggregate CP IDPs are not ejected from the particle by electrostatic repulsion due to charging of these IDPs to 10 to 15 volts at 1 A.U. in space. Since organic coatings can increase the sticking coefficient over that of bare mineral grains, these organic grain coatings are likely to have been a significant aid in grain sticking in the Solar Nebula, allowing the first dust particles to aggregate over a much wider range of collision speeds than for bare mineral grains.

  2. PROPERTIES OF DUST GRAINS PROBED WITH EXTINCTION CURVES

    SciTech Connect

    Nozawa, Takaya; Fukugita, Masataka

    2013-06-10

    Modern data of the extinction curve from the ultraviolet to the near-infrared are revisited to study properties of dust grains in the Milky Way (MW) and the Small Magellanic Cloud (SMC). We confirm that the graphite-silicate mixture of grains yields the observed extinction curve with the simple power-law distribution of the grain size but with a cutoff at some maximal size: the parameters are tightly constrained to be q = 3.5 {+-} 0.2 for the size distribution a {sup -q} and the maximum radius a{sub max} = 0.24 {+-} 0.05 {mu}m, for both MW and SMC. The abundance of grains, and hence the elemental abundance, is constrained from the reddening versus hydrogen column density, E(B - V)/N{sub H}. If we take the solar elemental abundance as the standard for the MW, >56% of carbon should be in graphite dust, while it is <40% in the SMC using its available abundance estimate. This disparity and the relative abundance of C to Si explain the difference of the two curves. We find that 50%-60% of carbon may not necessarily be in graphite but in the amorphous or glassy phase. Iron may also be in the metallic phase or up to {approx}80% in magnetite rather than in silicates, so that the Mg/Fe ratio in astronomical olivine is arbitrary. With these substitutions, the parameters of the grain size remain unchanged. The mass density of dust grains relative to hydrogen is {rho}{sub dust}/{rho}{sub H}= 1 / (120{sup +10}{sub -16}) for the MW and 1 / (760{sup +70}{sub -90}) for the SMC under the elemental abundance constraints. We underline the importance of the wavelength dependence of the extinction curve in the near-infrared in constructing the dust model: if A{sub {lambda}}{proportional_to}{lambda}{sup -{gamma}} with {gamma} {approx_equal} 1.6, the power-law grain-size model fails, whereas it works if {gamma} {approx_equal} 1.8-2.0.

  3. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  4. A Wealth of Dust Grains in Quasar Winds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This plot of data captured by NASA's Spitzer Space Telescope reveals dust entrained in the winds rushing away from a quasar, or growing black hole. The quasar, called PG2112+059, is located deep inside a galaxy 8 billion light-years away. Astronomers believe the dust might have been forged in the winds, which would help explain where dust in the very early universe came from.

    The data were captured by Spitzer's infrared spectrograph, an instrument that splits apart light from the quasar into a spectrum that reveals telltale signs of different minerals. Each type of mineral, or dust grain, has a unique signature, as can be seen in the graph, or spectrum, above.

    The strongest features are from the mineral amorphous olivine, or glass (purple); the mineral forsterite found in sand (blue); and the mineral corundum found in rubies (light blue). The detection of forsterite and corundum is highly unusual in galaxies without quasars. Therefore, their presence is a key clue that these grains might have been created in the quasar winds and not by dying stars as they are in our Milky Way galaxy. Forsterite is destroyed quickly in normal galaxies by radiation, so it must be continually produced to be detected by Spitzer.

    Corundum is hard, and provides a seed that softer, more common minerals usually cover up. As a result, corundum is usually not seen in spectra of galaxies. Since Spitzer did detect the mineral, it is probably forming in a clumpy environment, which is expected in quasar winds. All together, the signatures of the unusual minerals in this spectrum point towards dust grains forming in the winds blowing away from quasars.

  5. Magnetic Signatures of Charged Dust Grains in the Enceladus Plume

    NASA Astrophysics Data System (ADS)

    Simon, S.

    2014-12-01

    One of the most striking discoveries of the Cassini mission was the large plume of water vapor and dust, emanating from the south-polar regions of the small icy moon Enceladus. The interaction between this plume and Saturn's magnetospheric plasma generates large-scale perturbations of the ambient magnetospheric field (called the Alfven wing) which have been detected by Cassini during all 20 targeted Enceladus flybys carried out so far. In recent years, it was found that absorption of magnetospheric electrons by negatively charged dust grains within the plume has a tremendous impact on the magnetic draping pattern: due to the lack of "free" magnetospheric electrons, the Hall current is carried almost exclusively by the positive ions, corresponding to a negative sign of the Hall conductance. This effect breaks the symmetry of the magnetic draping pattern between Enceladus' Saturn-facing and Saturn-averted hemispheres and has been identified in all available magnetic field datasets from Cassini. In this presentation, we will review the physical mechanisms that lead to the "magnetic visibility" of the electron-absorbing dust population in the Enceladus plume. We will also discuss how magnetic field data can be applied to constrain e.g., the charging times of the dust grains and the pick-up of negatively charged nanograins from the plume.

  6. Studies of dust grain properties in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Tielens, A. G. G. M.; Werner, M. W.

    1990-01-01

    A model has been developed for reflection nebulae around luminous IR sources embedded in dense dust clouds. The shape of the IR spectrum is shown to be the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of the model results with IR observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse ISM, or consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains. By adding water-ice mantles to the silicate and graphite cores, the 3.08 micron ice-band feature observed in the spectra of several IR reflection nebulae has been modeled. It is shown that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains.

  7. Effects of turbulent dust grain motion to interstellar chemistry

    NASA Astrophysics Data System (ADS)

    Ge, J. X.; He, J. H.; Yan, H. R.

    2016-02-01

    Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon interstellar chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modelling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarized as follows: (1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; (2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about 10; (3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviours too. These effects usually begin to emerge from a typical DC model age of about 105 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations on to positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.

  8. Dust production in debris discs: constraints on the smallest grains

    NASA Astrophysics Data System (ADS)

    Thebault, P.

    2016-03-01

    Context. The surface energy constraint puts a limit on the smallest fragment ssurf that can be produced after a collision. Based on analytical considerations, this mechanism has been recently identified as being having the potential to prevent the production of small dust grains in debris discs and to cut off their size distribution at sizes larger than the blow-out size. Aims: We numerically investigate the importance of this effect to find out under which conditions it can leave a signature in the small-size end of a disc's particle size distribution (PSD). An important part of this work is to map out, in a disc at steady-state, what is the most likely collisional origin for μm-sized dust grains, in terms of the sizes of their collisional progenitors. Methods: For the first time, we implement the surface energy constraint into a collisional evolution code. We consider a typical debris disc extending from 50 to 100 au and two different stellar types: sun-like and A star. We also consider two levels of stirring in the disc: dynamically "hot" (⟨e⟩ = 0.075) and "cold" (⟨e⟩ = 0.01). In all cases, we derive ssurf maps as a function of target and projectile sizes, st and sp, and compare them to equivalent maps for the dust-production rate. We then compute disc-integrated profiles of the PSD and estimate the imprint of the surface energy constraint. Results: We find that the (sp,st) regions of high ssurf values do not coincide with those of high dust production rates. As a consequence, the surface energy constraint generally has a weak effect on the system's PSD. The maximum ssurf-induced depletion of μm-sized grains is ~30% and is obtained for a sun-like star and a dynamically "hot" case. For the e = 0.01 cases, the surface energy effect is negligible compared to the massive small grain depletion that is induced by another mechanism: the "natural" imbalance between dust production and destruction rates in low-stirring discs.

  9. Seeing the Universe in a Grain of Dust

    SciTech Connect

    Hazi, A

    2005-09-20

    Imagine traveling halfway to Jupiter--3.2 billion kilometers--for a small handful of comet dust. That's the mission for the National Aeronautics and Space Administration's (NASA's) Stardust spacecraft launched on February 7, 1999. This past January, Stardust flew by Comet Wild 2's nucleus and through a halo of gases and dust at the comet's head, collecting cometary dust particles released from the surface just hours before. In 2006, the spacecraft will deliver the less than 1 milligram of particles to Earth. A Lawrence Livermore team is perfecting ways to extract and analyze the tiny particles using its new focused-ion-beam instrument and SuperSTEM, a scanning transmission electron microscope. Stardust is the first NASA space mission dedicated solely to collecting comet dust and will be the first to return material from a comet to Earth. Comets are the oldest and most primitive bodies in the solar system. They are formed from frozen gas, water, and interstellar dust and may have brought water to Earth, making life possible. Wild 2--pronounced ''Vilt 2'' after the name of its Swiss discoverer--was formed with the Sun and the rest of the solar system 4.5 billion years ago. For billions of years, it has circled the Sun in the Kuiper Belt, a region beyond the orbit of Neptune. Scientists think comets from this region have escaped the warming, vaporization, and collisions that have altered matter in the inner solar system. Unlike Halley's Comet, which has been altered as a result of orbiting the Sun for a long time, Wild 2's pristine composition is expected to offer a rich source of information about the solar system's potential building blocks. As the 5-meter-long Stardust spacecraft traveled through Wild 2's dust and gas cloud, to within about 100 kilometers of the comet's nucleus, particles were captured in the spacecraft's collector grid. The 1,000-square-centimeter grid is filled with the silica-based material aerogel, whose lightness minimizes damage to the grains

  10. Potential around a dust grain in collisional plasma

    SciTech Connect

    Moulick, R. Goswami, K. S.

    2015-04-15

    The ion neutral collision can lead to interesting phenomena in dust charging, totally different from the expectations based on the traditional orbit motion limited theory. The potential around a dust grain is investigated for the collisional plasma considering the presence of ion neutral collisions. Fluid equations are solved for the one dimensional radial coordinate. It is observed that with the gradual increase in ion neutral collision, the potential structure around the dust grain changes its shape and is different from the usual Debye-Hückel potential. The shift however starts from a certain value of ion neutral collision and the electron-ion density varies accordingly. The potential variation is interesting and reconfirms the fact that there exists a region of attraction for negative charges. The collision modeling is done for the full range of plasma, i.e., considering the bulk and the sheath jointly. The potential variation with collision is also shown explicitly and the variation is found to cope up with the earlier observations.

  11. Dust grain coagulation modelling : From discrete to continuous

    NASA Astrophysics Data System (ADS)

    Paruta, P.; Hendrix, T.; Keppens, R.

    2016-07-01

    In molecular clouds, stars are formed from a mixture of gas, plasma and dust particles. The dynamics of this formation is still actively investigated and a study of dust coagulation can help to shed light on this process. Starting from a pre-existing discrete coagulation model, this work aims to mathematically explore its properties and its suitability for numerical validation. The crucial step is in our reinterpretation from its original discrete to a well-defined continuous form, which results in the well-known Smoluchowski coagulation equation. This opens up the possibility of exploiting previous results in order to prove the existence and uniqueness of a mass conserving solution for the evolution of dust grain size distribution. Ultimately, to allow for a more flexible numerical implementation, the problem is rewritten as a non-linear hyperbolic integro-differential equation and solved using a finite volume discretisation. It is demonstrated that there is an exact numerical agreement with the initial discrete model, with improved accuracy. This is of interest for further work on dynamically coupled gas with dust simulations.

  12. Angle-dependent radiative grain alignment. Confirmation of a magnetic field - radiation anisotropy angle dependence on the efficiency of interstellar grain alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Pintado, O.; Potter, S. B.; Straižys, V.; Charcos-Llorens, M.

    2011-10-01

    Context. Interstellar grain alignment studies are currently experiencing a renaissance due to the development of a new quantitative theory based on radiative alignment torques (RAT). One of the distinguishing predictions of this theory is a dependence of the grain alignment efficiency on the relative angle (Ψ) between the magnetic field and the anisotropy direction of the radiation field. In an earlier study we found observational evidence for such an effect from observations of the polarization around the star HD 97300 in the Chamaeleon I cloud. However, due to the large uncertainties in the measured visual extinctions, the result was uncertain. Aims: By acquiring explicit spectral classification of the polarization targets, we have sought to perform a more precise reanalysis of the existing polarimetry data. Methods: We have obtained new spectral types for the stars in our for our polarization sample, which we combine with photometric data from the literature to derive accurate visual extinctions for our sample of background field stars. This allows a high accuracy test of the grain alignment efficiency as a function of Ψ. Results: We confirm and improve the measured accuracy of the variability of the grain alignment efficiency with Ψ, seen in the earlier study. We note that the grain temperature (heating) also shows a dependence on Ψ which we interpret as a natural effect of the projection of the grain surface to the illuminating radiation source. This dependence also allows us to derive an estimate of the fraction of aligned grains in the cloud.

  13. An improved model for interplanetary dust grain fluxes to the outer planets

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.

    2015-12-01

    We present an improved model for interplanetary dust grain fluxes in the outer solar system constrained by in-situ dust density observations. A dynamical dust grain tracing code is used to establish relative dust grain densities and three-dimensional velocity distributions in the outer solar system for four main sources of dust grains: Jupiter-family comets, Halley-type comets, Oort-Cloud comets, and Edgeworth-Kuiper Belt objects. Model densities are constrained by in-situ dust measurements by the New Horizons Student Dust Counter, the Pioneer 10 meteoroid detector, and the Galileo Dust Detection System (DDS). The model predicts that Jupiter-family comet grains dominate the interplanetary dust grain mass flux inside approximately 10 AU, Oort-Cloud cometary grains may dominate between 10 and 25 AU, and Edgeworth-Kuiper Belt grains are dominant outside 25 AU. The model also predicts that while the total interplanetary mass flux at Jupiter roughly matches that inferred by the analysis of the Galileo DDS measurements, mass fluxes to Saturn, Uranus, and Neptune are at least one order-of-magnitude lower than that predicted by extrapolations of dust grain flux models from 1 AU. We present modeled mass fluxes to various moons, atmospheres, and ring systems of the outer planets.

  14. Polarimetric Models of Circumstellar Discs Including Aggregate Dust Grains

    NASA Astrophysics Data System (ADS)

    Mohan, Mahesh

    The work conducted in this thesis examines the nature of circumstellar discs by investigating irradiance and polarization of scattered light. Two circumstellar discs are investigated. Firstly, H-band high contrast imaging data on the transitional disc of the Herbig Ae/Be star HD169142 are presented. The images were obtained through the polarimetric differential imaging (PDI) technique on the Very Large Telescope (VLT) using the adaptive optics system NACO. Our observations use longer exposure times, allowing us to examine the edges of the disc. Analysis of the observations shows distinct signs of polarization due to circumstellar material, but due to excessive saturation and adaptive optics errors further information on the disc could not be inferred. The HD169142 disc is then modelled using the 3D radiative transfer code Hyperion. Initial models were constructed using a two disc structure, however recent PDI has shown the existence of an annular gap. In addition to this the annular gap is found not to be devoid of dust. This then led to the construction of a four-component disc structure. Estimates of the mass of dust in the gap (2.10E-6 Msun) are made as well as for the planet (1.53E-5 Msun (0.016 Mjupiter)) suspected to be responsible for causing the gap. The predicted polarization was also estimated for the disc, peaking at ~14 percent. The use of realistic dust grains (ballistic aggregate particles) in Monte Carlo code is also examined. The fortran code DDSCAT is used to calculate the scattering properties for aggregates which are used to replace the spherical grain models used by the radiative transfer code Hyperion. Currently, Hyperion uses four independent elements to define the scattering matrix, therefore the use of rotational averaging and a 50/50 percent population of grains and their enantiomers were explored to reduce the number of contributing scattering elements from DDSCAT. A python script was created to extract the scattering data from the DDSCAT

  15. Catalysis by Dust Grains in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Kress, Monika E.; Tielens, Alexander G. G. M.

    1996-01-01

    In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, we have applied our time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10(exp -5) to 1 bar and temperatures from 450 to 650 K. Under these physical conditions, the reaction 3H2 + CO yields CH4 + H2O is readily catalyzed by an iron or nickel surface, whereas the same reaction is kinetically inhibited in the gas phase. Our model results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.

  16. Busting Dust: From Cosmic Grains to Terrestrial Microbes

    NASA Astrophysics Data System (ADS)

    Mendis, D. A.

    Electrostatic charging can have important consequences for both the growth and disruption of microparticulates immersed in a plasma. In this topical review, my emphasis is on the latter process, while I extend the term microparticulates not only to include ordinary inanimate cosmic or terrestrial dust but also to include terrestrial microbes whose sizes range from tens of nanometers (viruses) to tens of micrometers (bacteria). Following a description of the basic mechanism of electrostatic disruption of a solid body, I will discuss the role of size, shape and surface irregularity on the process. I will also consider the mitigating role of electric field emission of electrons on the disruption process of a negatively charged grain as its size falls below a critical size. I will conclude by reviewing some early evidence for the electrostatic disruption of cosmic grains, and the very recent evidence for the electrostatic disruption of the bacterial cell membranes in terrestrial sterilization experiments.

  17. THE DYNAMICS OF DUST GRAINS IN THE OUTER SOLAR SYSTEM

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R. E-mail: rrr@astro.princeton.ed

    2010-11-10

    We study the dynamics of large dust grains {approx}>1 {mu}m with orbits outside of the heliosphere (beyond 250 AU). Motion of the solar system through the interstellar medium (ISM) at a velocity of 26 km s{sup -1} subjects these particles to gas and Coulomb drag (grains are expected to be photoelectrically charged) as well as the Lorentz force and the electric force caused by the induction electric field. We show that to zeroth order the combined effect of these forces can be well described in the framework of the classical Stark problem: particle motion in a Keplerian potential subject to an additional constant force. Based on this analogy, we elucidate the circumstances in which the motion becomes unbound, and show that under local ISM conditions dust grains smaller than {approx}100 {mu}m originating in the Oort Cloud (e.g., in collisions of comets) beyond 10{sup 4} AU are ejected from the solar system under the action of the electric force. Orbital motion of larger, bound grains is described analytically using the orbit-averaged Hamiltonian approach and consists of orbital plane precession at a fixed semimajor axis, accompanied by the periodic variations of the inclination and eccentricity (the latter may approach unity in some cases). A more detailed analysis of the combined effect of gas and Coulomb drag shows it is possible to reduce particle semimajor axes, but that the degree of orbital decay is limited (a factor of several at best) by passages through atomic and molecular clouds, which easily eject small particles.

  18. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  19. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    NASA Astrophysics Data System (ADS)

    Abbas, M.; Tankosic, D.; Craven, P.; Hoover, R.; Taylor, L.; Spann, J.; Leclair, A.; West, E.

    The lunar surface is covered with a thick layer of sub-micron micron size dust grains formed by meteoritic impact over billions of years The fine dust grains are levitated and transported on the lunar surface and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind Even without any physical activity the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon The current dust charging and levitation models however do not fully explain the observed phenomena Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains In this paper we present the first laboratory measurements of the photoelectric yields of individual sub-micron micron size dust grains selected from sample returns of

  20. Computation of Ion Drag Force and Charge on a Static Spherical Dust Grain in RF Plasma

    SciTech Connect

    Ikkurthi, V. R.; Melzer, A.; Matyash, K.; Schneider, R.

    2008-09-07

    The ion drag force and charge on a spherical dust grain located in RF discharge plasma is computed using a 3-dimensional Particle-Particle Particle-Mesh (P3M) code. Our plasma model includes finite-size effects for dust grains and allows to self-consistently resolve the dust grain charging due to absorption of plasma electrons and ions. Ion drag and dust charge have been computed for various sizes of dust particles placed at various locations in the discharge. The results for ion drag have been compared with previous collisionless models and affect of collisions on drag has been discussed in detail.

  1. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  2. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Spann, James F., Jr.; Craven, Paul D.; West, E.; Pratico, Jared; Scheianu, D.; Tankosic, D.; Venturini, C. C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 1 - 100 micrometer diameter are levitated in a vacuum chamber at pressures approx. 10(exp -5) torr and exposed to a collimated beam of UV radiation in the 120-300 nanometers spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV radiation wavelength with a spectral resolution of 8 nanometers. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on Al2O3 and silicate particles, and in particular on JSC-1 Mars regolith simulants, to determine the photoelectron yields and surface equilibrium potentials of dust particles when exposed to UV radiation in the 120-250 micrometers spectral range. A brief discussion of the experimental procedure, the results of photoemission experiments, and comparisons with theoretical models will be presented.

  3. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  4. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that

  5. Ablation of high-Z material dust grains in edge plasmas of magnetic fusion devices

    SciTech Connect

    Marenkov, E. D.; Krasheninnikov, S. I.

    2014-12-15

    The model, including shielding effects of high-Z dust grain ablation in tokamak edge plasma, is presented. In a contrast to shielding models developed for pellets ablation in a hot plasma core, this model deals with the dust grain ablation in relatively cold edge plasma. Using some simplifications, a closed set of equations determining the grain ablation rate Γ is derived and analyzed both analytically and numerically. The scaling law for Γ versus grain radius and ambient plasma parameters is obtained and confirmed by the results of numerical solutions. The results obtained are compared with both dust grain models containing no shielding effects and the pellet ablation models.

  6. Cycloid motions of grains in a dust plasma

    NASA Astrophysics Data System (ADS)

    Yong-Liang, Zhang; Fan, Feng; Fu-Cheng, Liu; Li-Fang, Dong; Ya-Feng, He

    2016-02-01

    Hypocycloid and epicycloid motions of irregular grains (pine pollen) are observed for the first time in a dust plasma in a two-dimensional (2D) horizontal plane. These cycloid motions can be regarded as a combination of a primary circle and a secondary circle. An inverse Magnus force originating from the spin of the irregular grain gives rise to the primary circle. Radial confinement resulting from the electrostatic force and the ion drag force, together with inverse Magnus force, plays an important role in the formation of the secondary circle. In addition, the cyclotron radius is seen to change periodically during the cycloid motion. Force analysis and comparison experiments have shown that the cycloid motions are distinctive features of an irregular grain immersed in a plasma. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, and the Midwest Universities Comprehensive Strength Promotion Project.

  7. Measurement of photoemission and secondary emission from laboratory dust grains

    NASA Technical Reports Server (NTRS)

    Hazelton, Robert C.; Yadlowsky, Edward J.; Settersten, Thomas B.; Spanjers, Gregory G.; Moschella, John J.

    1995-01-01

    The overall goal of this project is experimentally determine the emission properties of dust grains in order to provide theorists and modelers with an accurate data base to use in codes that predict the charging of grains in various plasma environments encountered in the magnetospheres of the planets. In general these modelers use values which have been measured on planar, bulk samples of the materials in question. The large enhancements expected due to the small size of grains can have a dramatic impact upon the predictions and the ultimate utility of these predictions. The first experimental measurement of energy resolved profiles of the secondary electron emission coefficient, 6, of sub-micron diameter particles has been accomplished. Bismuth particles in the size range of .022 to .165 micrometers were generated in a moderate pressure vacuum oven (average size is a function of oven temperature and pressure) and introduced into a high vacuum chamber where they interacted with a high energy electron beam (0.4 to 20 keV). Large enhancements in emission were observed with a peak value, delta(sub max) = 4. 5 measured for the ensemble of particles with a mean size of .022 micrometers. This is in contrast to the published value, delta(sub max) = 1.2, for bulk bismuth. The observed profiles are in general agreement with recent theoretical predictions made by Chow et al. at UCSD.

  8. Circular polarization by scattering from spheroidal dust grains

    NASA Astrophysics Data System (ADS)

    Gledhill, T. M.; McCall, A.

    2000-05-01

    Large degrees of circular polarization at near-infrared wavelengths have been reported in the OMC1 star-forming region. This discovery, in combination with compelling evidence for the existence of non-spherical aligned grains in star formation regions, has prompted us to investigate scattering from spheroidal particles as a possible mechanism for the production of large circular polarization in reflection nebulae. We use a dipole calculation to model the small particle limit and a T-matrix code to treat arbitrarily sized particles. We find that size distributions of perfectly aligned spheroids, with only modest 2:1 axis ratios, are capable of producing circular polarization of up to 50 per cent when scattering unpolarized incident light. This is the case even for dielectric materials, such as `astronomical silicate', as long as sufficient large particles are included in the size distribution. We consider the effects of particle alignment and find that spinning oblate spheroids should be much more efficient circular polarizers than equivalent prolate spheroids.

  9. Secondary Emission from Non-spherical Dust Grains with Rough Surfaces: Application to Lunar Dust

    NASA Astrophysics Data System (ADS)

    Richterová, I.; Němeček, Z.; Beránek, M.; Šafránková, J.; Pavlů, J.

    2012-12-01

    Electrons impinging on a target can release secondary electrons and/or they can be scattered out of the target. It is well established that the number of escaping electrons per primary electron depends on the target composition and dimensions, the energy, and incidence angle of the primary electrons, but there are suggestions that the target's shape and surface roughness also influence the secondary emission. We present a further modification of the model of secondary electron emission from dust grains which is applied to non-spherical grains and grains with defined surface roughness. It is shown that the non-spherical grains give rise to a larger secondary electron yield, whereas the surface roughness leads to a decrease in the yield. Moreover, these effects can be distinguished: the shape effect is prominent for high primary energies, whereas the surface roughness predominantly affects the yield at the low-energy range. The calculations use the Lunar Highlands Type NU-LHT-2M simulant as a grain material and the results are compared with previously published laboratory and in situ measurements.

  10. SECONDARY EMISSION FROM NON-SPHERICAL DUST GRAINS WITH ROUGH SURFACES: APPLICATION TO LUNAR DUST

    SciTech Connect

    Richterova, I.; Nemecek, Z.; Beranek, M.; Safrankova, J.; Pavlu, J.

    2012-12-20

    Electrons impinging on a target can release secondary electrons and/or they can be scattered out of the target. It is well established that the number of escaping electrons per primary electron depends on the target composition and dimensions, the energy, and incidence angle of the primary electrons, but there are suggestions that the target's shape and surface roughness also influence the secondary emission. We present a further modification of the model of secondary electron emission from dust grains which is applied to non-spherical grains and grains with defined surface roughness. It is shown that the non-spherical grains give rise to a larger secondary electron yield, whereas the surface roughness leads to a decrease in the yield. Moreover, these effects can be distinguished: the shape effect is prominent for high primary energies, whereas the surface roughness predominantly affects the yield at the low-energy range. The calculations use the Lunar Highlands Type NU-LHT-2M simulant as a grain material and the results are compared with previously published laboratory and in situ measurements.

  11. Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.

    2008-01-01

    It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.

  12. Different-sized dust grains and the chemical evolution of protostellar objects

    NASA Astrophysics Data System (ADS)

    Kochina, O. V.; Wiebe, D. S.

    2014-04-01

    Results of modeling the chemical evolution of protostellar objects are presented. The models take into account the existence of different dust populations with distinct grain sizes, total mass fractions, and temperatures. In addition to "classical" dust grains, the models include an entirely different second dust population, with dust grain sizes of 30 Å and a higher temperature. Two chemical-evolution models are compared, one taking into account only classical dust and the other including both dust populations. The influence of a complex dust composition on the general evolution of the molecular contents of prestellar cores and the abundances of a number of chemical species is studied. At early evolutionary stages, differences are mainly determined by the modification changes in the photoprocesses' balance due to efficient UV absorption by the second population of dust grains and in collisional reactions with the dust grains. At late stages, distinctions between the models are also determined by the increasing dominance of additional reaction channels. The species that respond to the presence of small grains in different ways are separated into different groups. Allowing for the presence of small grains makes it possible to significantly lower the water abundance in the gas phase.

  13. Wakes formed by dust grains in supersonically flowing plasmas

    SciTech Connect

    Willis, C. T. N.; Coppins, M.; Bacharis, M.; Allen, J. E.

    2011-10-15

    Interesting wake effects are found in simulations of dust grains in supersonically flowing plasma. A Mach cone is formed at an angle to the flow determined by the ratio of flow to Bohm speed. The latter is well approximated by [k(T{sub e}+{gamma}T{sub i})/m{sub i}]{sup 1/2} with {gamma}=3. For ion temperatures significantly lower than the electron temperature, a second (inner) cone forms due to flow convergence. An ''ion vacuum'' and stagnation point occur downstream. These latter effects cannot be described by conventional (cold-ion) gas dynamics. Critically, none of the cones observed are shocks but are more akin to weak discontinuities.

  14. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies

  15. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    NASA Astrophysics Data System (ADS)

    Tankosic, Dragana; Abbas, M. M.

    2013-06-01

    The dust charging by electron impact is an important dust charging process in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. However, these models are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. Our laboratory measurements on individual, positively charged, micron-size dust grains levitated carried out in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2 micron silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82 micron) generally discharge to lower equilibrium potentials at both electron energies

  16. Effect of Dust Grains on Solitary Kinetic Alfven Wave

    SciTech Connect

    Li Yangfang; Wu, D. J.; Morfill, G. E.

    2008-09-07

    Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.

  17. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    SciTech Connect

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro E-mail: stakeru@nagoya-u.jp

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  18. The evolution of hydrocarbon dust grains in the interstellar medium and its influence on the infrared spectra of dust

    NASA Astrophysics Data System (ADS)

    Murga, M. S.; Khoperskov, S. A.; Wiebe, D. S.

    2016-07-01

    Computations of the evolution of the distributions of the size and degree of aromatization of interstellar dust grains, destruction by radiation and collisions with gas particles, and fragmentation during collisions with other grains are presented. The results of these computations are used to model dust emission spectra. The evolution of an ensemble of dust particles sensitively depends on the initial size distribution of the grains. Radiation in the considered range of fluxes mainly aromatizes grains. With the exception of the smallest grains, it is mainly erosion during collisions with gas particles that leads to the destruction of grains. In the presence of particle velocities above 50 km/s, characteristic for shocks in supernova remnants, grains greater than 20 Å in size are absent. The IR emission spectrum changes appreciably during the evolution of the dust, and depends on the adopted characteristics of the grains, in particular, the energy of their C-Cbonds ( E 0). Aromatic bands are not observed in the near-IR (2-15 μm) when E 0 is low, even when the medium characteristics are typical for the average interstellarmedium in our Galaxy; this indicates a preference for high E 0 values. The influence of the characteristics of the medium on the intensity ratios for the dust emission in various photometric bands is considered. The I 3.4/ I 11.3 intensity ratio is most sensitive to the degree of aromatization of small grains. The I 3.3/ I 70+160 ratio is a sensitive indicator of the contribution of aromatic grains to the total mass of dust.

  19. The influence of dust grain porosity on the analysis of debris disc observations

    NASA Astrophysics Data System (ADS)

    Brunngräber, Robert; Wolf, Sebastian; Kirchschlager, Florian; Ertel, Steve

    2017-02-01

    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution - the so-called `blowout size' - is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend.

  20. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Kaur, Daljeet; Gahlot, Ajay; Sharma, Jyotsna

    2014-10-15

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  1. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  2. Photometry of dust grains of comet 67P and connection with nucleus regions

    NASA Astrophysics Data System (ADS)

    Cremonese, G.; Simioni, E.; Ragazzoni, R.; Bertini, I.; La Forgia, F.; Pajola, M.; Oklay, N.; Fornasier, S.; Lazzarin, M.; Lucchetti, A.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Agarwal, J.; Barucci, M. A.; Bertaux, J.-L.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Fulle, M.; Groussin, O.; Güttler, C.; Gutierrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J.-R.; Kueppers, M.; Kürt, E.; Lara, L. M.; Magrin, S.; Lopez Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Preusker, F.; Scholten, F.; Thomas, N.; Tubiana, C.; Vincent, J.-B.

    2016-04-01

    Aims: Multiple pairs of high-resolution images of the dust coma of comet 67P/Churyumov-Gerasimenko have been collected by OSIRIS onboard Rosetta allowing extraction and analysis of dust grain tracks. Methods: We developed a quasi automatic method to recognize and to extract dust tracks in the Osiris images providing size, FWHM and photometric data. The dust tracks characterized by a low signal-to-noise ratio were checked manually. We performed the photometric analysis of 70 dust grain tracks observed on two different Narrow Angle Camera images in the two filters F24 and F28, centered at λ = 480.7 nm and at λ = 743.7 nm, respectively, deriving the color and the reddening of each one. We then extracted several images of the nucleus observed with the same filters and with the same phase angle to be compared with the dust grain reddening. Results: Most of the dust grain reddening is very similar to the nucleus values, confirming they come from the surface or subsurface layer. The histogram of the dust grain reddening has a secondary peak at negative values and shows some grains with values higher than the nucleus, suggesting a different composition from the surface grains. One hypothesis comes from the negative values point at the presence of hydrated minerals in the comet.

  3. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: DEPENDENCE OF THE SURFACE POTENTIAL ON THE GRAIN SIZE

    SciTech Connect

    Nemecek, Z.; Pavlu, J.; Safrankova, J.; Beranek, M.; Richterova, I.; Vaverka, J.; Mann, I.

    2011-09-01

    The secondary electron emission is believed to play an important role for the dust charging at and close to the lunar surface. However, our knowledge of emission properties of the dust results from model calculations and rather rare laboratory investigations. The present paper reports laboratory measurements of the surface potential on Lunar Highlands Type regolith simulants with sizes between 0.3 and 3 {mu}m in an electron beam with energy below 700 eV. This investigation is focused on a low-energy part, i.e., {<=}100 eV. We found that the equilibrium surface potential of this simulant does not depend on the grain size in our ranges of grain dimensions and the beam energies, however, it is a function of the primary electron beam energy. The measurements are confirmed by the results of the simulation model of the secondary emission from the spherical samples. Finally, we compare our results with those obtained in laboratory experiments as well as those inferred from in situ observations.

  4. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  5. On the dynamics of propeller-like dust grain in plasma

    SciTech Connect

    Krasheninnikov, S. I.

    2013-11-15

    The equations of motion of a dust grain with non-spherical shape in plasma are generalized by incorporating the effects associated with propeller-like features of the grain's shape. For the grain shape close to rotationally symmetric, the stability of “stationary” (in terms of variables used in the grain dynamic equations) solutions are considered. It is found that propeller-like features of the grain's shape can crucially alter stability of such “stationary” states.

  6. Enhanced electromagnetic emission from plasmas containing positive dust grains and electrons

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Shukla, Nitin; Stenflo, L.

    2007-05-01

    Large amplitude high-frequency (HF) electromagnetic (EM) waves can scatter off dust-acoustic waves in plasmas containing positive dust grains and electrons, and can thus be responsible for HF enhanced electromagnetic emissions (EEE). An expression for the ensemble average of the squared HF-EEE vector potential is therefore derived, following the standard parametric interaction formalism and adopting the Rostoker superposition principle. The results should be useful for deducing the dust plasma parameters (e.g. the dust number density and dust charge) in situ, and HF intense EM beams can thus be used for diagnosis of positive dust-electron plasmas in space and laboratories.

  7. Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust -- interstellar grains?

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    1994-07-01

    Ultrafine-grained matrix is a unique and fundamental building block of chondritic porous (CP) interplanetary dust particles. Most IDPs so far determined to be of cometary origin belong to the CP class. The matrix in CP IDPs is not homogeneous but rather a loose mixture of discrete single crystals (e.g., olivine, pyroxene, Fe sulfides) and polyphase grains. The petrographic diversity observed among the polyphase grains suggest that they were formed under variable physiochemical conditions. One particular class of polyphase grains are a dominant component in cometary IDPs. Although their occurrence is well documented, the terminology used to describe them is confused. They have been called many names. Here they are simply called GEMS (Glass with Embedded Metal and Sulfides). The bulk compositions of GEMS are within a factor of 3 chondritic (solar) for all major elements except C. Quantitative thin-film X-ray (EDS) analyses have shown that GEMS are systematically depleted in Mg and Si, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Electron energy-loss spectroscopy (EELS) suggests that the excess O is present as hydroxyl (-OH) groups. These same chemical 'anomalies' were observed in solar-wind-irradiated amorphous rims on the surfaces of IDPs, suggesting that the compositions of GEMS reflect prior exposure to ionizing radiation. In order to test this hypothesis, a sample of Allende (CV3) matrix was exposed to proton flux. Radiation-damaged amorphous rims on olivine and pyroxene crystals in the Allende sample were found to be depleted in Mg and Ca, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Thus, the compositions of GEMS are indeed consistent with exposure to ionizing radiation. This study suggests that chemical as well as isotopic anomalies may be used to identify presolar interstellar grains in primitive meteoritic materials.

  8. Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust -- interstellar grains?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.

    1994-01-01

    Ultrafine-grained matrix is a unique and fundamental building block of chondritic porous (CP) interplanetary dust particles. Most IDPs so far determined to be of cometary origin belong to the CP class. The matrix in CP IDPs is not homogeneous but rather a loose mixture of discrete single crystals (e.g., olivine, pyroxene, Fe sulfides) and polyphase grains. The petrographic diversity observed among the polyphase grains suggest that they were formed under variable physiochemical conditions. One particular class of polyphase grains are a dominant component in cometary IDPs. Although their occurrence is well documented, the terminology used to describe them is confused. They have been called many names. Here they are simply called GEMS (Glass with Embedded Metal and Sulfides). The bulk compositions of GEMS are within a factor of 3 chondritic (solar) for all major elements except C. Quantitative thin-film X-ray (EDS) analyses have shown that GEMS are systematically depleted in Mg and Si, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Electron energy-loss spectroscopy (EELS) suggests that the excess O is present as hydroxyl (-OH) groups. These same chemical 'anomalies' were observed in solar-wind-irradiated amorphous rims on the surfaces of IDPs, suggesting that the compositions of GEMS reflect prior exposure to ionizing radiation. In order to test this hypothesis, a sample of Allende (CV3) matrix was exposed to proton flux. Radiation-damaged amorphous rims on olivine and pyroxene crystals in the Allende sample were found to be depleted in Mg and Ca, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Thus, the compositions of GEMS are indeed consistent with exposure to ionizing radiation. This study suggests that chemical as well as isotopic anomalies may be used to identify presolar interstellar grains in primitive meteoritic materials.

  9. NUMERICAL SIMULATIONS OF SUPERNOVA DUST DESTRUCTION. I. CLOUD-CRUSHING AND POST-PROCESSED GRAIN SPUTTERING

    SciTech Connect

    Silvia, Devin W.; Smith, Britton D.; Michael Shull, J. E-mail: britton.smith@colorado.ed

    2010-06-01

    We investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova (SN) remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the overdensity of the ejecta clumps and the speed of the reverse shocks. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the timescale of the simulations. In general, our results indicate that grains with radii less than 0.1 {mu}m are sputtered to much smaller radii and often destroyed completely, while larger grains survive their interaction with the reverse shock. We also find that, for high ejecta densities, the percentage of dust that survives is strongly dependent on the relative velocity between the clump and the reverse shock, causing up to 50% more destruction for the highest velocity shocks. The fraction of dust destroyed varies widely across grain species, ranging from total destruction of Al{sub 2}O{sub 3} grains to minimal destruction of Fe grains (only 20% destruction in the most extreme cases). C and SiO{sub 2} grains show moderate to strong sputtering as well, with 38% and 80% mass loss. The survival rate of grains formed by early SNe is crucial in determining whether or not they can act as the 'dust factories' needed to explain high-redshift dust.

  10. Image charge effects on electron capture by dust grains in dusty plasmas.

    PubMed

    Jung, Y D; Tawara, H

    2001-07-01

    Electron-capture processes by negatively charged dust grains from hydrogenic ions in dusty plasmas are investigated in accordance with the classical Bohr-Lindhard model. The attractive interaction between the electron in a hydrogenic ion and its own image charge inside the dust grain is included to obtain the total interaction energy between the electron and the dust grain. The electron-capture radius is determined by the total interaction energy and the kinetic energy of the released electron in the frame of the projectile dust grain. The classical straight-line trajectory approximation is applied to the motion of the ion in order to visualize the electron-capture cross section as a function of the impact parameter, kinetic energy of the projectile ion, and dust charge. It is found that the image charge inside the dust grain plays a significant role in the electron-capture process near the surface of the dust grain. The electron-capture cross section is found to be quite sensitive to the collision energy and dust charge.

  11. SEP events and wake region lunar dust charging with grain radii

    NASA Astrophysics Data System (ADS)

    Chandran, S. B. Rakesh; Rajesh, S. R.; Abraham, A.; Renuka, G.; Venugopal, Chandu

    2017-01-01

    Our lunar surface is exposed to all kinds of radiations from the Sun, since it lacks a global magnetic field. Like lunar surface, dust particles are also exposed to plasmas and UV radiation and, consequently they carry electrostatic charges. During Solar Energetic Particle events (SEPs) secondary electron emission plays a vital role in charging of lunar dusts. To study the lunar dust charging during SEPs on lunar wake region, we derived an expression for lunar dust potential and analysed how it varies with different electron temperatures and grain radii. Because of high energetic solar fluxes, secondary yield (δ) values reach up to 2.3 for 0.5 μm dust grain. We got maximum yield at an energy of 550 eV which is in well agreement with lunar sample experimental observation (Anderegg et al., 1972). It is observed that yield value increases with electron energy, reaches to a maximum value and then decreases. During SEPs heavier dust grains show larger yield values because of the geometry of the grains. On the wake region, the dust potential reaches up to -497 V for 0.5 μm dust grain. The electric field of these grains could present a significant threat to manned and unmanned missions to the Moon.

  12. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  13. Lunar Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; LeClair, A. C.; Spann, J. F.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  14. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  15. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    SciTech Connect

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  16. Rapid formation of large dust grains in the luminous supernova 2010jl.

    PubMed

    Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C

    2014-07-17

    The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

  17. Processes accompanying the charging of dust grains in the ionospheric plasma

    SciTech Connect

    Kopnin, S. I.; Morzhakova, A. A.; Popel, S. I.; Shukla, P. K.

    2011-08-15

    The influence of the neutral component of the dusty ionospheric plasma on the process of dust grain charging is analyzed. Microscopic ion fluxes onto a dust grain are calculated with allowance for the interaction with the neutral components of the ionospheric plasma for both negatively and positively charged dust grains. For the latter case, which takes place in the presence of intense UV or X-ray solar radiation, the electron heating caused by the photoelectric effect is also investigated. It is found that the efficiency of electron heating depends on the density of neutral particles. The altitudes at which these effects appreciably influence the charging of different types of nano- and microscale dust grains are determined. It is shown that these effects should be taken into account in describing noctilucent clouds, polar mesosphere summer echoes, and physical phenomena involving grains of meteoric origin.

  18. A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP

    SciTech Connect

    Casassus, Simon; Marino, Sebastian; Pérez, Sebastian; Christiaens, Valentin; Plas, Gerrit van der; Wright, Chris M.; Maddison, Sarah T.; Wootten, Al; Roman, Pablo; Moral, Victor; Pinilla, Paola; Wyatt, Mark; Ménard, Francois

    2015-10-20

    A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at submillimeter wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply confined and should follow a distribution that is markedly different from the gas. However, gas tracers such as {sup 12}CO and the infrared emission from small grains are both very optically thick where the submillimeter continuum originates, so previous observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core accretion. Here we report multifrequency observations of HD 142527, from 34 to 700 GHz, that reveal a compact concentration of grains approaching centimeter sizes, with a few Earth masses, embedded in a large-scale crescent of smaller, submillimeter-sized particles. The emission peaks at wavelengths shorter than ∼1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is efficient enough for grains observable at centimeter wavelengths to lead to compact concentrations.

  19. A Compact Concentration of Large Grains in the HD 142527 Protoplanetary Dust Trap

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Wright, Chris M.; Marino, Sebastian; Maddison, Sarah T.; Wootten, Al; Roman, Pablo; Pérez, Sebastian; Pinilla, Paola; Wyatt, Mark; Moral, Victor; Ménard, Francois; Christiaens, Valentin; Cieza, Lucas; van der Plas, Gerrit

    2015-10-01

    A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at submillimeter wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply confined and should follow a distribution that is markedly different from the gas. However, gas tracers such as 12CO and the infrared emission from small grains are both very optically thick where the submillimeter continuum originates, so previous observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core accretion. Here we report multifrequency observations of HD 142527, from 34 to 700 GHz, that reveal a compact concentration of grains approaching centimeter sizes, with a few Earth masses, embedded in a large-scale crescent of smaller, submillimeter-sized particles. The emission peaks at wavelengths shorter than ∼1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is efficient enough for grains observable at centimeter wavelengths to lead to compact concentrations.

  20. Solitary dust sound waves in a plasma with two-temperature ions and distributed grain size

    SciTech Connect

    Prudskikh, V. V.

    2009-01-15

    The propagation of weakly nonlinear dust sound waves in a dusty plasma containing two different-temperature ion species is explored. The nonlinear equations describing both the quadratic and cubic plasma nonlinearities are derived. It is shown that the properties of dust sound waves depend substantially on the grain size distribution. In particular, for solitary dust sound waves with a positive potential to exist in a plasma with distributed grain size, it is necessary that the difference between the temperatures of two ion species be larger than that in the case of equal-size grains.

  1. PROPERTIES OF NEWLY FORMED DUST GRAINS IN THE LUMINOUS TYPE IIn SUPERNOVA 2010jl

    SciTech Connect

    Maeda, K.; Nozawa, T.; Folatelli, G.; Moriya, T. J.; Nomoto, K.; Bersten, M.; Quimby, R.; Sahu, D. K.; Anupama, G. C.; Minowa, Y.; Pyo, T.-S.; Motohara, K.; Kitagawa, Y.; Ueno, I.; Kawabata, K. S.; Yamanaka, M.; Kozasa, T.; Iye, M.

    2013-10-10

    Supernovae (SNe) have been proposed to be the main production sites of dust grains in the universe. However, our knowledge of their importance to dust production is limited by observationally poor constraints on the nature and amount of dust particles produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova 2010jl around one and a half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ∼1350-1450 K at this epoch. The mass of the dust grains is derived to be ∼(7.5-8.5) × 10{sup –4} M{sub ☉}. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate of the typical size of the newly formed dust grains (∼< 0.1 μm, and most likely ∼< 0.01 μm). We believe the dust grains were formed in a dense cooling shell as a result of a strong SN-circumstellar media (CSM) interaction. The dust grains occupy ∼10% of the emitting volume, suggesting an inhomogeneous, clumpy structure. The average CSM density must be ∼> 3 × 10{sup 7} cm{sup –3}, corresponding to a mass loss rate of ∼> 0.02 M{sub ☉} yr{sup –1} (for a mass loss wind velocity of ∼100 km s{sup –1}). This strongly supports a scenario in which SN 2010jl and probably other luminous SNe IIn are powered by strong interactions within very dense CSM, perhaps created by Luminous-Blue-Variable-like eruptions within the last century before the explosion.

  2. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    NASA Astrophysics Data System (ADS)

    Tankosic, D.; Abbas, M. M.

    2012-11-01

    Dust grains immersed in ambient plasmas and radiation, are charged and coupled to the plasma through electric and magnetic fields. Dust grains in various astrophysical/planetary environments are generally charged by: (a) photoelectric emissions with incident radiation at photon energies higher than the work function of the material and (b) sticking of low energy electrons and ions of the surrounding plasma or by secondary electron emissions induced by incident electrons/ions at sufficiently high energies. Consequenly, the particle charge is an important parameter that influences physical and dynamical processes in the interplanetary and interstellar medium, planetary rings, interstellar dust clouds, comets and the outer atmospheres of planets. The charging properties of individual micron-size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Currently, very limited experimental data are available for charging of individual micron-size dust grains. In this paper we give a review of the results of the measurements on charging of analogs of the interstellar as well as Apollo 11 and 17 lunar dust grains carried out on the Electrodynamic Balance Facility at the NASA-MSFC.

  3. A comparison of Halley dust with meteorites, interplanetary dust and interstellar grains

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1988-01-01

    The variability of the mineral forming elements in the submicron Halley grains provides a powerful basis for comparison of Halley with the different classes of meteoritic materials that have been studied in the lab. The degree of variability in the Halley samples is larger than that seen in chondrites implying that Halley is more heterogeneous at the submicron scale. A critical distinction is that Halley contains abundant pure Mg silicates at the size scale while the carbon rich meteorites do not. The submicron dispersion composition seen in Halley is dramatically different from the narrowly constrained compositions seen in CI and CM (type 1 and 2) carbonaceous chondrites. These meteorites are carbon rich but are dominated by a hydrated silicate with a very narrow range of Mg/Si ratio. The Halley results are also unlike the composition variations seen in most of interplanetary dust types that are dominated by hydrated materials. The only known class of meteoritic material that appear to closely resemble the Halley data is a class of cosmic dust composed entirely of anhydrous minerals. The composition implies that Halley is dominated by olivine, pyroxene, iron sulfide, glass and amorphous carbonaceous matter.

  4. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    NASA Astrophysics Data System (ADS)

    Schaffer, L.; Burns, J. A.

    1994-09-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Finally, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  5. Capture of Cometary Dust Grains in Impacts at 6.1 km s-1

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Foster, N.; Kearsley, A.; Wozniakiewicz, P.

    2009-12-01

    The NASA Stardust mission to comet 81P/Wild 2 collected grains of cometary dust freshly ejected from the comet during a fly-by at a speed of 6.1 km s-1. These were captured on aluminum foils and in blocks of silica aerogel. The dust underwent a severe shock during capture. The nature of the shock process depends on the properties of the dust and the collecting media. On the aluminium, the shock process and impact damage is typical of that between high-density (or hard materials) at high velocity, resulting in craters lined with impactor residues. The peak shock pressures are estimated at 60-80 GPa. Two main crater types are seen, simple bowl shaped and multiple pit craters: these reflect the degree of consolidation of the original dust grain. Capture in the low density aerogel was via a more gradual slowing of the dust grains accompanied by a variety of effects on the grains (complete break up of weak grains vs. ablation of well consolidated grains). The relation between the structure of the dust grains and the resulting impact features in both collector materials is discussed.

  6. On vapor shielding of dust grains of iron, molybdenum, and tungsten in fusion plasmas

    SciTech Connect

    Brown, B. T.; Smirnov, R. D. Krasheninnikov, S. I.

    2014-02-15

    The shielding effects of ablation cloud around a small dust grain composed of iron, molybdenum, or tungsten in fusion plasmas are considered. These include collisional dissipation of momentum flux of impinging plasma ions, heat transfer by secondary plasma created due to electron impact ionization of the ablated atoms, and radiative plasma power losses in the ablation cloud. The maximum radius, which limits applicability of existing dust-plasma interaction models neglecting the cloud shielding effects, for dust grains of the considered high-Z metals is calculated as function of plasma parameters. The thermal bifurcation triggered by thermionic electron emission from dust grains, observed for some of the considered materials, is analyzed. The results are compared with previous calculations for dust composed of low-Z fusion related materials, i.e., lithium, beryllium, and carbon.

  7. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    SciTech Connect

    Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.

    2015-11-15

    In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  8. Mechanisms of dust grain charging in plasma with allowance for electron emission processes

    NASA Astrophysics Data System (ADS)

    Mol'kov, S. I.; Savin, V. N.

    2017-02-01

    The process of dust grain charging is described with allowance for secondary, ion-induced, photoelectric, and thermal electron emission from the grain surface. The roughness of the grain surface is taken into account. An intermediate charging regime involving ion-atom collisions and electron ionization in the perturbed plasma region is analyzed using the moment equations and Poisson's equation. A calculation method is proposed that allows one to take into account the influence of all the above effects and determine the radius of the plasma region perturbed by the dust grain.

  9. Dust grain growth and the formation of the extremely primitive star SDSS J102915+172927

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Schneider, Raffaella; Nozawa, Takaya; Omukai, Kazuyuki; Limongi, Marco; Yoshida, Naoki; Chieffi, Alessandro

    2014-04-01

    Dust grains in low-metallicity star-forming regions may be responsible for the formation of the first low-mass stars. The minimal conditions to activate dust-induced fragmentation require the gas to be pre-enriched above a critical dust-to-gas mass ratio D_cr = [2.6-6.3] × 10^{-9}. The recently discovered Galactic halo star SDSS J102915+172927 has a stellar mass of 0.8 M⊙ and a metallicity of Z ˜ 4.5 × 10-5 Z⊙ and represents an optimal candidate for the dust-induced low-mass star formation. Indeed, the critical dust-to-gas mass ratio can be overcome provided that at least 0.4 M⊙ of dust condenses in Pop III supernova ejecta, allowing for moderate destruction by the reverse shock. Here, we show that grain growth during the collapse of the parent gas cloud is sufficiently rapid to activate dust cooling and fragmentation into low-mass stars, even if dust formation in the first supernovae is less efficient or strong dust destruction does occur. We find that carbon grains do not experience grain growth because at densities below nH ˜ 106 cm-3 carbon atoms are locked into CO molecules. Silicates and magnetite grains accrete gas-phase species in the density range 109 < nH < 1012 cm-3, until their gas-phase abundance drops to zero, reaching condensation efficiencies ≈1. The corresponding increase in the dust-to-gas mass ratio allows dust-induced cooling and fragmentation to be activated at 1012 < nH < 1014 cm-3, before the collapsing cloud becomes optically thick to continuum radiation.

  10. Grain-size signature of Saharan dust over the Atlantic Ocean at 12°N

    NASA Astrophysics Data System (ADS)

    van der Does, Michelle; Korte, Laura; Munday, Chris; Brummer, Geert-Jan; Stuut, Jan-Berend

    2015-04-01

    Every year, an estimated 200 million tons of Saharan dust are deposited in the Atlantic Ocean. On its way from source to sink, the dust can be influenced by many climatic processes, but it also affects climate itself in various ways that are far from understood. In order to constrain the relations between atmospheric dust and climate, we deployed ten submarine sediment traps along a transect in the Atlantic Ocean at 12˚N, at 1200m and 3500m water depth. These have been sampling Saharan dust settling in the ocean since October 2012. Samples of seven of these sediment traps have been successfully recovered during RV Pelagia cruise 64PE378 in November 2013. The transect also includes three floating dust collectors and two on-land dust collectors, and all the instruments lie directly underneath the largest dust plume originating from the African continent. This study focuses on the size of the dust particles, which can have an effect on the positive or negative radiation balance in the atmosphere. Small particles in the high atmosphere can reflect incoming radiation and therefore have a cooling effect on climate. Large particles in the lower atmosphere have the opposite effect by absorbing reflected radiation from the Earth's surface. Mineral dust also affects carbon export to the deep ocean by providing mineral ballast for organic particles, and the size of the dust particles directly relates to the downward transport velocity. Here I will present the measured grain-size distributions of samples from seven sediment traps recovered from the 12°N-latitude transect. The data show seasonal variations, with finer grained dust particles during winter and spring, and coarser grained particles during summer and fall. Samples from multiple years should give more details about the dust's seasonality. Also a fining trend of the grain sizes of the dust particles from source (Africa) to sink (Caribbean) is observed, which is also expected due to intuitive relationships between

  11. Chemical enrichment of the pre-solar cloud by supernova dust grains

    NASA Astrophysics Data System (ADS)

    Goodson, Matthew D.; Luebbers, Ian; Heitsch, Fabian; Frazer, Christopher C.

    2016-11-01

    The presence of short-lived radioisotopes (SLRs) in Solar system meteorites has been interpreted as evidence that the Solar system was exposed to a supernova shortly before or during its formation. Yet results from hydrodynamical models of SLR injection into the proto-solar cloud or disc suggest that gas-phase mixing may not be efficient enough to reproduce the observed abundances. As an alternative, we explore the injection of SLRs via dust grains as a way to overcome the mixing barrier. We numerically model the interaction of a supernova remnant containing SLR-rich dust grains with a nearby molecular cloud. The dust grains are subject to drag forces and both thermal and non-thermal sputtering. We confirm that the expanding gas shell stalls upon impact with the dense cloud and that gas-phase SLR injection occurs slowly due to hydrodynamical instabilities at the cloud surface. In contrast, dust grains of sufficient size ( ≳ 1 μm) decouple from the gas and penetrate into the cloud within 0.1 Myr. Once inside the cloud, the dust grains are destroyed by sputtering, releasing SLRs and rapidly enriching the dense (potentially star-forming) regions. Our results suggest that SLR transport on dust grains is a viable mechanism to explain SLR enrichment.

  12. Supernova Remnants As Laboratories For Determining The Properties Of Ejecta Dust And The Processing Of Dust Grains In Shocks

    NASA Astrophysics Data System (ADS)

    Dwek, Eli

    Recent infrared satellites, such as the Spitzer, Herschel, and WISE, have obtained a wealth of spectral and broadband data on the infrared (IR) emission from dust in supernova remnants (SNRs). Supernovae (SNe) are important producers of newly condensed dust during the early free-expansion phase of their evolution, and the dominant destroyers of dust during the subsequent remnant phase of their evolution. The infrared observations hold the key for determining their role in the origin and evolution of dust in the universe. We propose to model the composition, abundance, and size distribution of the dust in select Galactic and Magellanic Cloud remnants. As explained in detail below, the remnants were selected for the availability of IR and X-ray observations. All selected remnants have Spitzer IRS spectral data in the 5-35 μm regions which allow us to determine the effect of grain processing in the shock. Some have spectral maps that allow the distinction between the IR emission from SN-condensed and swept up circumstellar and interstellar dust. All remnants have also been covered by Spitzer, Herschel, and WISE imaging, and have existing X-ray Chandra and/or XMM observations. The dust in some remnants is radiatively-heated by a pulsar wind nebula, and in others collisionally- heated by shocked X-ray or line emitting gas. We will use physical models to calculate the radiative and collisional heating of SNR dust, the equilibrium or fluctuating dust temperatures, and the resulting IR emission for various dust compositions and size distributions. Specific examples of Cas A, SN1987A, the Crab Nebula, and Puppis A, are discussed in detail to illustrate our modeling approach. Our study will be the first comprehensive and physical analysis of a large sample of SNRs in different evolutionary states and different astrophysical environments. They will cover a wide range of interactions between the dust grains and their surroundings, including the radioactively- powered and

  13. Vertical grain size distribution in dust devils: Analyses of in situ samples from southern Morocco

    NASA Astrophysics Data System (ADS)

    Raack, J.; Reiss, D.; Ori, G. G.; Taj-Eddine, K.

    2014-04-01

    Dust devils are vertical convective vortices occurring on Earth and Mars [1]. Entrained particle sizes such as dust and sand lifted by dust devils make them visible [1]. On Earth, finer particles (<~50 μm) can be entrained in the boundary layer and transported over long distances [e.g., 2]. The lifetime of entrained particles in the atmosphere depends on their size, where smaller particles maintain longer into the atmosphere [3]. Mineral aerosols such as desert dust are important for human health, weather, climate, and biogeochemistry [4]. The entrainment of dust particles by dust devil and its vertical grain size distribution is not well constrained. In situ grain size samples from active dust devils were so far derived by [5,6,7] in three different continents: Africa, Australia, and North America, respectively. In this study we report about in situ samples directly derived from active dust devils in the Sahara Desert (Erg Chegaga) in southern Morocco in 2012 to characterize the vertical grain size distribution within dust devils.

  14. Transient dust in warm debris disks. Detection of Fe-rich olivine grains

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Juhász, A.; Henning, Th.; Mutschke, H.; Tamanai, A.; Moór, A.; Ábrahám, P.

    2012-06-01

    Context. Debris disks trace remnant reservoirs of leftover planetesimals in planetary systems. In the past years, a handful of "warm" debris disks have been discovered in which emission in excess starts in the mid-infrared. An interesting subset of these warm debris disks shows emission features in mid-infrared spectra, which points towards the presence of μm-sized dust grains, with temperatures above hundreds K. Given the ages of the host stars, the presence of these small grains is puzzling, and raises questions about their origin and survival in time. Aims: This study focuses on determining the mineralogy of the dust around seven debris disks with evidence for warm dust, based on Spitzer/IRS spectroscopic data, to provide new insights into the origin of the dust grains. Methods: We developed and present a new radiative transfer code (Debra) dedicated to spectral energy distribution (SED) modeling of optically thin disks. The Debra code is designed such that it can simultaneously determine dust composition and disk properties. We used this code on the SEDs of seven warm debris disks, in combination with recent laboratory experiments on dust optical properties. Results: We find that most, if not all, debris disks in our sample are experiencing a transient phase, suggesting a production of small dust grains on relatively short timescales. Dust replenishment should be efficient on timescales of months for at least three sources. From a mineralogical point of view, we find that crystalline pyroxene grains (enstatite) have low abundances compared to crystalline olivine grains. The main result of our study is that we find evidence for Fe-rich crystalline olivine grains (Fe/[Mg + Fe] ~ 0.2) for several debris disks. This finding contrasts with studies of gas-rich protoplanetary disks, where Fe-bearing crystalline grains are usually not observed. Conclusions: These Fe-rich olivine grains, and the overall differences between the mineralogy of dust in Class II disks

  15. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect

    El-Shewy, E. K.; Abdelwahed, H. G.; Elmessary, M. A.

    2011-11-15

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  16. Influence of charging process and size distribution of dust grain on the electric conductivity of dusty plasma

    SciTech Connect

    Duan Jizheng; Wang Canglong; Zhang Jianrong; Ma Shengqian; Hong Xueren; Sun Jianan; Duan Wenshan; Yang Lei

    2012-08-15

    The effects of dust size distribution and charging process of dust grains on the complex electric conductivity of dusty plasmas have been investigated in the present paper. Comparisons are made between real dusty plasma in which there are many different dust grain species and the mono-sized dusty plasma (MDP) in which there is only one kind of dust grain whose size is the average dust size. In some cases the complex electric conductivity of real dusty plasma is larger than that of MDP, while in other cases it is smaller than that of MDP, it depends on the dust size distribution function.

  17. Influence of charging process and size distribution of dust grain on the electric conductivity of dusty plasma

    NASA Astrophysics Data System (ADS)

    Duan, Ji-Zheng; Wang, Cang-Long; Zhang, Jian-Rong; Ma, Sheng-Qian; Hong, Xue-Ren; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2012-08-01

    The effects of dust size distribution and charging process of dust grains on the complex electric conductivity of dusty plasmas have been investigated in the present paper. Comparisons are made between real dusty plasma in which there are many different dust grain species and the mono-sized dusty plasma (MDP) in which there is only one kind of dust grain whose size is the average dust size. In some cases the complex electric conductivity of real dusty plasma is larger than that of MDP, while in other cases it is smaller than that of MDP, it depends on the dust size distribution function.

  18. Analytical study of spheroidal dust grains in plasma

    SciTech Connect

    Zahed, H.; Mahmoodi, J.; Sobhanian, S.

    2006-05-15

    Using the modified spheroidal equations, the potential of a spheroidal conducting grain, floated in a plasma, is calculated. The electric field and capacitance for both prolate and oblate spheroidal grains are investigated. The solutions, obtained up to the second-order approximation, show that the plasma screening causes the equipotential surfaces around the grain to be more elongated or flattened than the potential spheroids of the Laplace equation. This leads to the variation of the plasma concentration around the grain.

  19. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  20. GIADA On-Board Rosetta: Early Dust Grain Detections and Dust Coma Characterization of Comet 67P/C-G

    NASA Astrophysics Data System (ADS)

    Rotundi, A.; Della Corte, V.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Sordini, R.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Fulle, M.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Grün, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zakharov, V.; Zarnecki, J.

    2014-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) flying on-board Rosetta is devoted to study the cometary dust environment of 67P/Churiumov-Gerasimenko. GIADA is composed of 3 sub-systems: the GDS (Grain Detection System), based on grain detection through light scattering; an IS (Impact Sensor), giving momentum measurement detecting the impact on a sensed plate connected with 5 piezoelectric sensors; the MBS (MicroBalances System), constituted of 5 Quartz Crystal Microbalances (QCMs), giving cumulative deposited dust mass by measuring the variations of the sensors' frequency. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the velocity distribution of dust grains emitted from the cometary nucleus.No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such large heliocentric distances are available up to date. We present here the first results obtained from the beginning of the Rosetta scientific phase. We will report dust grains early detection at about 800 km from the nucleus in August 2014 and the following measurements that allowed us characterizing the 67P/C-G dust environment at distances less than 100 km from the nucleus and single grains dynamical properties. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project

  1. Modelling grain alignment by radiative torques and hydrogen formation torques in reflection nebula

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.; Andersson, B.-G.

    2015-04-01

    Reflection nebulae - dense cores - illuminated by surrounding stars offer a unique opportunity to directly test our quantitative model of grain alignment based on radiative torques (RATs) and to explore new effects arising from additional torques. In this paper, we first perform detailed modelling of grain alignment by RATs for the IC 63 reflection nebula illuminated both by a nearby γ Cas star and the diffuse interstellar radiation field. We calculate linear polarization pλ of background stars by radiatively aligned grains and explore the variation of fractional polarization (pλ/AV) with visual extinction AV across the cloud. Our results show that the variation of pV/AV versus AV from the dayside of IC 63 to its centre can be represented by a power law (p_V/A_V∝ A_V^{η }) with different slopes depending on AV. We find a shallow slope η ˜ -0.1 for AV < 3 and a very steep slope η ˜ -2 for AV > 4. We then consider the effects of additional torques due to H2 formation and model grain alignment by joint action of RATs and H2 torques. We find that pV/AV tends to increase with an increasing magnitude of H2 torques. In particular, the theoretical predictions obtained for pV/AV and peak wavelength λmax in this case show an improved agreement with the observational data. Our results reinforce the predictive power of the RAT alignment mechanism in a broad range of environmental conditions and show the effect of pinwheel torques in environments with efficient H2 formation. Physical parameters involved in H2 formation may be constrained using detailed modelling of grain alignment combined with observational data. In addition, we discuss implications of our modelling for interpreting latest observational data by Planck and other ground-based instruments.

  2. Charging of dust grains in a nonequilibrium plasma of a stratified glow discharge

    NASA Astrophysics Data System (ADS)

    Sukhinin, G. I.; Fedoseev, A. V.

    2007-12-01

    A theoretical model is presented that describes the charging of dust grains in the positive plasma column of a stratified glow dc discharge in argon. A one-dimensional self-consistent model is used to obtain axial profiles of the electric field, as well as the electron energy distribution function along the axis of the discharge tube. Radial profiles of the electric field are determined in the ambipolar diffusion approximation. It is assumed that, in the radial direction, the electron distribution function depends only on the total electron energy. Two-dimensional distributions of the discharge plasma parameters are calculated and used to determine the potential and charge of a test dust grain at a certain point within the discharge and the electrostatic forces acting on it. It is shown that the grain charge distribution depends strongly on the nonequilibrium electron distribution function and on the nonuniform distribution of the electric field in a stratified glow discharge. A discussion is presented on the suspension of dust grains, the separation of grains by size in the discharge striations, and a possible mechanism for the onset of vortex dust motion at the edge of a dust cloud.

  3. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  4. Lunar Surface and Dust Grain Potentials during the Earth’s Magnetosphere Crossing

    NASA Astrophysics Data System (ADS)

    Vaverka, J.; Richterová, I.; Pavlu˚, J.; Šafránková, J.; Němeček, Z.

    2016-07-01

    Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itself and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.

  5. Modified Jeans Instability for Dust Grains in a Plasma

    SciTech Connect

    Delzanno, G.L.; Lapenta, G.

    2005-05-06

    An investigation of the properties of linear stability is conducted for a system consisting of particles having mass m and charge q, interacting through the gravitational and electrostatic force (Jeans instability). However, in light of recent works showing that dust particles in a plasma can have a Lennard-Jones-like shielding potential, a new set of equations has been derived, where the electrostatic interaction among the dust particles is Lennard-Jones-like instead of Coulomb-like. A new condition for the gravitational instability is derived, showing a broader spectrum of unstable modes with faster growth rates.

  6. Observation of Dust Grain Sputtering in a Shock

    NASA Astrophysics Data System (ADS)

    Raymond, John C.; Ghavamian, P.; Williams, B. J.; Blair, W. P.; Borkowski, K. J.; Gaetz, T. J.; Sankrit, R.

    2014-01-01

    We have detected emission in C IV λλ1548,1551 from C atoms sputtered from dust in the gas behind a shock wave in the Cygnus Loop using COS on HST. The intensity agrees approximately with predictions from model calculations that match the Spitzer 24 μm and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates assumed. However, the CIV intensity 10" behind the shock is too high compared to the intensities at the shock and 25" behind it. Projection effects and a complex geometry are probably responsible for the discrepancy.

  7. Dust ion acoustic solitary waves in a collisional dusty plasma with dust grains having Gaussian distribution

    SciTech Connect

    Maitra, Sarit; Banerjee, Gadadhar

    2014-11-15

    The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented.

  8. Effect of particles attachment to multi-sized dust grains present in electrostatic sheaths of discharge plasmas

    SciTech Connect

    Zaham, B.; Tahraoui, A. Chekour, S.; Benlemdjaldi, D.

    2014-12-15

    The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grains trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.

  9. THE IMPORTANCE OF PHYSICAL MODELS FOR DERIVING DUST MASSES AND GRAIN SIZE DISTRIBUTIONS IN SUPERNOVA EJECTA. I. RADIATIVELY HEATED DUST IN THE CRAB NEBULA

    SciTech Connect

    Temim, Tea; Dwek, Eli

    2013-09-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 M{sub Sun }, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 {mu}m. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  10. The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli

    2013-01-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  11. Discovery of Jovian dust streams and interstellar grains by the ULYSSES spacecraft

    NASA Astrophysics Data System (ADS)

    Grun, E.; Zook, H. A.; Baguhl, M.; Balogh, A.; Bame, S. J.; Fechtig, H.; Forsyth, R.; Hanner, M. S.; Horanyi, M.; Kissel, J.; Lindblad, B.-A.; Linkert, D.; Linkert, G.; Mann, I.; McDonnell, J. A. M.; Morfill, G. E.; Phillips, J. L.; Polanskey, C.; Schwehm, G.; Siddique, N.; Staubach, P.; Svestka, J.; Taylor, A.

    1993-04-01

    Within 1 AU from Jupiter, the dust detector aboard the Ulysses spacecraft during the flyby on February 8, 1992 recorded periodic bursts of submicron dust particles with durations ranging from several hours to two days and occurring at about monthly intervals. These particles arrived at Ulysses in collimate streams radiating from close to the line-of-sight direction to Jupiter, suggesting a Jovian origin for the periodic bursts. Ulysses also detected a flux of micron-sized dust particles moving in high-velocity retrograde orbits. These grains are identified here as being of interstellar origin.

  12. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; Gerakines, P. A.

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  13. The Effect of Grain Size on Radon Exhalation Rate in Natural-dust and Stone-dust Samples

    NASA Astrophysics Data System (ADS)

    Kumari, Raj; Kant, Krishan; Garg, Maneesha

    Radiation dose to human population due to inhalation of radon and its progeny contributes more than 50% of the total dose from the natural sources which is the second leading cause of lung cancer after smoking. In the present work the dependence of radon exhalation rate on the physical sample parameters of stone dust and natural dust were studied. The samples under study were first crushed, grinded, dried and then passed through sieves with different pore sizes to get samples of various grain sizes (μm). The average value of radon mass exhalation rate is 5.95±2.7 mBqkg-1hr-1 and average value of radon surface exhalation rate is 286±36 mBqm-2 hr-1 for stone dust, and the average value of radon mass exhalation rate is 9.02±5.37 mBqkg-1hr-1 and average value of radon surface exhalation rate is 360±67 mBqm-2 hr-1 for natural dust. The exhalation rate was found to increase with the increase in grain size of the sample. The obtained values of radon exhalation rate for all the samples are found to be under the radon exhalation rate limit reported worldwide.

  14. Solar Cycle Variations of the F Corona Brightness Resulting from the Interaction of Dust Grains with CMEs

    NASA Astrophysics Data System (ADS)

    Ragot, B.; Kahler, S.

    2002-12-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light intensity dominates that of the electron K corona above about 4 Rs. We consider the effects of interactions between the dust and the particles and fields of coronal mass ejections (CMEs). The dominant forces, with and without CMEs, acting on the dust close to the Sun are calculated for dust grain radii ranging from 0.01 to 100 microns. Dust grain orbits are then computed to compare the drift rates from assumed grain injections at 5 Rs to lower orbits for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish the two periods. The CMEs result in significantly shorter drift times of the large (> 3 microns) dust grains, hence faster depletion rates and lower dust grain densities, at solar maxima. This would explain a relatively strong (> 30%) solar cycle variation of the near infrared brightness close to the dust plane of symmetry. While trapping the smallest of the grains, the CMEs also help scatter in latitude the grains of intermediate size (0.1 to 3 microns). The consequences for the optical brightness should be a time variation correlated to the solar cycle, not to exceed 10% at high latitude with a better isotropy reached at solar maxima. Limits on the dust size spectra are set from the basic features of the optical and infrared brightness distributions and variations.

  15. GIADA - Grain Impact Analyzer and Dust Accumulator - Onboard Rosetta spacecraft: Extended calibrations

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Sordini, R.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Rotundi, A.; Rietmeijer, F. J. M.; Fulle, M.; Mazzotta-Epifani, E.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Morales, R.; Cosi, M.

    2016-09-01

    Despite a long tradition of dust instruments flown on-board space mission, the largest number of these can be considered unique as they used different detection techniques. GIADA (Grain Impact Analyzer and Dust Accumulator), is one of the dust instruments on-board the Rosetta spacecraft and is devoted to measure the dust dynamical parameters in the coma of comet 67P/Churyumov-Gerasimenko. It couples two different techniques to measure the mass and speed of individual dust particles. We report here the results of an extended calibration activity carried-out, during the hibernation phase of the Rosetta mission, on the GIADA Proto Flight Model (PFM) operative in a clean room in our laboratory. The main aims of an additional calibration campaign are: to verify the algorithms and procedures for data calibration developed before Rosetta launch; to improve the comprehension of GIADA response after the increased knowledge on cometary dust, e.g. the composition of dust particles after Stardust mission. These calibration improvements implied a final step, which consisted in defining transfer functions to correlate the new calibration curves obtained for the GIADA PFM to those to be used for GIADA onboard the Rosetta spacecraft. The extended calibration activity allowed us to analyze GIADA data acquired in the 67P/C-G coma permitting to infer additional information on cometary dust particles, e.g. density and tensile strength.

  16. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland.

    PubMed

    Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Dutkiewicz, Jacek

    2007-01-01

    During combine harvesting of 5 various cereal crops (rye, barley, oats, buckwheat, corn) 24 samples of grain and 24 samples of settled grain dust were collected on farms located in the Lublin province of eastern Poland. The samples were examined for the concentration of total microfungi, Fusarium species, deoxynivalenol (DON), nivalenol (NIV), and ochratoxin A (OTA). Microfungi able to grow on malt agar were present in 79.2% of grain samples and in 91.7% of grain dust samples in the concentrations of 1.0-801.3x10(3) cfu/g and 1.5-12440.0x10(3) cfu/g, respectively. The concentration of microfungi in grain dust samples was significantly greater than in grain samples (p<0.01). Fusarium strains were isolated from 54.2% of grain samples and from 58.3% of grain dust samples in the concentrations of 0.1-375.0x10(3) cfu/g and 4.0-7,700.0x10(3) cfu/g, respectively. They were found in all samples of grain and grain dust from rye, barley and corn, but only in 0-16.7% of samples of grain and grain dust from oats and buckwheat. DON was found in 79.2% of grain samples and in 100% of grain dust samples in the concentrations of 0.001-0.18 microg/g and 0.006-0.283 microg/g, respectively. NIV was detected in 62.5% of grain samples and in 94.4% of grain dust samples in the concentrations of 0.004-0.502 microg/g and 0.005-0.339 microg/g, respectively. OTA was detected in 58.3% of grain samples and in 91.7% of grain dust samples in the concentrations of 0.00039- 0.00195 microg/g and 0.00036-0.00285 microg/g, respectively. The concentrations of DON, total fusariotoxins (DON+NIV) and OTA were significantly greater in grain dust samples than in grain samples (p<0.05, p<0.05, and p<0.001, respectively). The concentration of Fusarium poae in the samples of rye grain and dust was significantly correlated with the concentrations of DON (p<0.05), NIV (p<0.01), and total fusariotoxins (p<0.05). Similarly, the concentration of Fusarium culmorum in the samples of barley grain and dust was

  17. Collision of ion acoustic solitary waves in a magnetized plasma: Effect of dust grains and trapped electrons

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Kumar, Ravinder; Lonngren, Karl E.; Nishida, Yasushi

    2015-12-01

    The head-on collision of two ion acoustic solitary waves is investigated in a magnetized plasma containing trapped electrons and dust grains. For completeness, the fluctuations in dust grain charge are taken into account. By using the extended Poincaré-Lighthill-Kuo (PLK) perturbation method, an analytical expression is obtained for the phase shift that takes place due to the collision of the waves. How the phase shift behaves under the combined effect of trapped electrons and dust grains along with the finite temperature of ions is examined. A focus is given to uncover the situations of fluctuating charge and fixed charge on the dust grains in the plasma. Interestingly, the solitary waves acquire a larger phase shift and are delayed more in the case of dust grains having a fluctuating charge.

  18. H2O grain size and the amount of dust in Mars' residual North polar cap

    USGS Publications Warehouse

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  19. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on

  20. Tracking eolian dust with helium and thorium: Impacts of grain size and provenance

    NASA Astrophysics Data System (ADS)

    McGee, David; Winckler, Gisela; Borunda, Alejandra; Serno, Sascha; Anderson, Robert F.; Recasens, Cristina; Bory, Aloys; Gaiero, Diego; Jaccard, Samuel L.; Kaplan, Michael; McManus, Jerry F.; Revel, Marie; Sun, Youbin

    2016-02-01

    Reconstructions of the deposition rate of windblown mineral dust in ocean sediments offer an important means of tracking past climate changes and of assessing the radiative and biogeochemical impacts of dust in past climates. Dust flux estimates in ocean sediments have commonly been based on the operationally defined lithogenic fraction of sediment samples. More recently, dust fluxes have been estimated from measurements of helium and thorium, as rare isotopes of these elements (He-3 and Th-230) allow estimates of sediment flux, and the dominant isotopes (He-4 and Th-232) are uniquely associated with the lithogenic fraction of marine sediments. In order to improve the fidelity of dust flux reconstructions based on He and Th, we present a survey of He and Th concentrations in sediments from dust source areas in East Asia, Australia and South America. Our data show systematic relationships between He and Th concentrations and grain size, with He concentrations decreasing and Th concentrations increasing with decreasing grain size. We find consistent He and Th concentrations in the fine fraction (<5 μm) of samples from East Asia, Australia and Central South America (Puna-Central West Argentina), with Th concentrations averaging 14 μg/g and He concentrations averaging 2 μcc STP/g. We recommend use of these values for estimating dust fluxes in sediments where dust is dominantly fine-grained, and suggest that previous studies may have systematically overestimated Th-based dust fluxes by 30%. Source areas in Patagonia appear to have lower He and Th contents than other regions, as fine fraction concentrations average 0.8 μcc STP/g and 9 μg/g for 4He and 232Th, respectively. The impact of grain size on lithogenic He and Th concentrations should be taken into account in sediments proximal to dust sources where dust grain size may vary considerably. Our data also have important implications for the hosts of He in long-traveled dust and for the 3He/4He ratio used for

  1. Modelling dust processing and the evolution of grain sizes in the ISM using the method of moments

    NASA Astrophysics Data System (ADS)

    Mattsson, Lars

    2016-11-01

    Interstellar dust grains do not have a single well-defined origin. Stars are demonstrably dust producers, but also efficient destroyers of cosmic dust. Dust destruction in the ISM is believed to be the result of SN shocks hitting the ambient ISM gas (and dust) and lead to an increased rate of ion sputtering, which reduces the dust mass. Grains located in cold molecular clouds can on the other hand grow by condensation, thus providing a replenishment mechanism or even a dominant channel of dust formation. In dense environments grains may coagulate and form large composite grains and aggregates and if grains collide with large enough energies they may be shattered, forming a range of smaller debris grains. The present paper presents a statistical modelling approach using the method of moments, which is computationally very inexpensive and may therefore be an attractive option when combining dust processing with, e.g., detailed simulations of interstellar gas dynamics. A solar-neighbourhood-like toy model of interstellar dust evolution is presented as an example.

  2. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    PubMed Central

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  3. Dynamics of aspherical dust grains in a cometary atmosphere: I. axially symmetric grains in a spherically symmetric atmosphere

    NASA Astrophysics Data System (ADS)

    Ivanovski, S. L.; Zakharov, V. V.; Della Corte, V.; Crifo, J.-F.; Rotundi, A.; Fulle, M.

    2017-01-01

    In-situ measurements of individual dust grain parameters in the immediate vicinity of a cometary nucleus are being carried by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. For the interpretations of these observational data, a model of dust grain motion as realistic as possible is requested. In particular, the results of the Stardust mission and analysis of samples of interplanetary dust have shown that these particles are highly aspherical, which should be taken into account in any credible model. The aim of the present work is to study the dynamics of ellipsoidal shape particles with various aspect ratios introduced in a spherically symmetric expanding gas flow and to reveal the possible differences in dynamics between spherical and aspherical particles. Their translational and rotational motion under influence of the gravity and of the aerodynamic force and torque is numerically integrated in a wide range of physical parameters values including those of comet 67P/Churyumov-Gerasimenko. The main distinctions of the dynamics of spherical and ellipsoidal particles are discussed. The aerodynamic characteristics of the ellipsoidal particles, and examples of their translational and rotational motion in the postulated gas flow are presented.

  4. Protostellar disc formation enabled by removal of small dust grains

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien; Nakamura, Fumitaka

    2016-08-01

    It has been shown that a realistic level of magnetization of dense molecular cloud cores can suppress the formation of a rotationally supported disc (RSD) through catastrophic magnetic braking in the axisymmetric ideal MHD limit. In this study, we present conditions for the formation of RSDs through non-ideal MHD effects computed self-consistently from an equilibrium chemical network. We find that removing from the standard MRN distribution the large population of very small grains (VSGs) of ˜ 10 Å to few 100 Å that dominate the coupling of the bulk neutral matter to the magnetic field increases the ambipolar diffusivity by ˜ 1-2 orders of magnitude at densities below 1010/cm-3. The enhanced ambipolar diffusion (AD) in the envelope reduces the amount of magnetic flux dragged by the collapse into the circumstellar disc-forming region. Therefore, magnetic braking is weakened and more angular momentum can be retained. With continuous high angular momentum inflow, RSDs of tens of au are able to form, survive, and even grow in size, depending on other parameters including cosmic ray ionization rate, magnetic field strength, and rotation speed. Some discs become self-gravitating and evolve into rings in our 2D (axisymmetric) simulations, which have the potential to fragment into (close) multiple systems in 3D. We conclude that disc formation in magnetized cores is highly sensitive to chemistry, especially to grain sizes. A moderate grain coagulation/growth to remove the large population of VSGs, either in the prestellar phase or during free-fall collapse, can greatly promote AD and help formation of tens of au RSDs.

  5. Temperature Spectra of Interstellar Dust Grains Heated by Cosmic Rays. I. Translucent Clouds

    NASA Astrophysics Data System (ADS)

    Kalvāns, Juris

    2016-06-01

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas-grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f T , s-1, determines how often a certain temperature T CR, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f T and T CR spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μm and such grains covered with ice mantles of thickness 0.1a and 0.3a. Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A V = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T CR spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T CR values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20-30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.

  6. The Influence of Abrasion on Martian Dust Grains: Evidence from a Study of Antigorite Grains

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Drief, Ahmed; Dyar, M. Darby

    2003-01-01

    Grinding was shown to greatly affect the structure and a number of properties of antigorite grains in a study by Drief and Nieto. Grinding is likely to influence the structure of most clay mineral grains and has been shown recently to influence the structure of kaolinite. The antigorite structure includes curved waves of layered silicate as shown by D dony et al.. Our study was performed in order to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. This project includes a combination of SEM, reflectance spectroscopy and Moessbauer spectroscopy.

  7. A CONCENTRATION OF CENTIMETER-SIZED GRAINS IN THE OPHIUCHUS IRS 48 DUST TRAP

    SciTech Connect

    Marel, N. van der; Pinilla, P.; Tobin, J.; Kempen, T. van; Andrews, S.; Ricci, L.; Birnstiel, T.

    2015-09-01

    Azimuthally asymmetric dust distributions observed with the Atacama Large Millimeter/submillimeter Array (ALMA) in transition disks have been interpreted as dust traps. We present Very Large Array Ka band (34 GHz or 0.9 cm) and ALMA Cycle 2 Band 9 (680 GHz or 0.45 mm) observations at a 0.″2 resolution of the Oph IRS 48 disk, which suggest that larger particles could be more azimuthally concentrated than smaller dust grains, assuming an axisymmetric temperature field or optically thin 680 GHz emission. Fitting an intensity model to both data demonstrates that the azimuthal extent of the millimeter emission is 2.3 ± 0.9 times as wide as the centimeter emission, marginally consistent with the particle trapping mechanism under the above assumptions. The 34 GHz continuum image also reveals evidence for ionized gas emission from the star. Both the morphology and the spectral index variations are consistent with an increase of large particles in the center of the trap, but uncertainties remain due to the continuum optical depth at 680 GHz. Particle trapping has been proposed in planet formation models to allow dust particles to grow beyond millimeter sizes in the outer regions of protoplanetary disks. The new observations in the Oph IRS 48 disk provide support for the dust trapping mechanism for centimeter-sized grains, although additional data are required for definitive confirmation.

  8. Characteristics of nonlinear dust acoustic waves in a Lorentzian dusty plasma with effect of adiabatic and nonadiabatic grain charge fluctuation

    NASA Astrophysics Data System (ADS)

    Denra, Raicharan; Paul, Samit; Sarkar, Susmita

    2016-12-01

    In this paper, characteristics of small amplitude nonlinear dust acoustic wave have been investigated in a unmagnetized, collisionless, Lorentzian dusty plasma where electrons and ions are inertialess and modeled by generalized Lorentzian Kappa distribution. Dust grains are inertial and equilibrium dust charge is negative. Both adiabatic and nonadiabatic fluctuation of charges on dust grains have been taken under consideration. For adiabatic dust charge variation reductive perturbation analysis gives rise to a KdV equation that governs the nonlinear propagation of dust acoustic waves having soliton solutions. For nonadiabatic dust charge variation nonlinear propagation of dust acoustic wave obeys KdV-Burger equation and gives rise to dust acoustic shock waves. Numerical estimation for adiabatic grain charge variation shows the existence of rarefied soliton whose amplitude and width varies with grain charges. Amplitude and width of the soliton have been plotted for different electron Kappa indices keeping ion velocity distribution Maxwellian. For non adiabatic dust charge variation, ratio of the coefficients of Burger term and dispersion term have been plotted against charge fluctuation for different kappa indices. All these results approach to the results of Maxwellian plasma if both electron and ion kappa tends to infinity.

  9. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  10. Nonlinear pulsational eigenmodes of a planar collisional dust molecular cloud with grain-charge fluctuation

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Borah, B.

    2013-09-01

    We try to present a theoretical evolutionary model leading to the excitations of nonlinear pulsational eigenmodes in a planar (1D) collisional dust molecular cloud (DMC) on the Jeans scale. The basis of the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium for simplification. It is a self-gravitating multi-fluid consisting of the Boltzmann distributed warm electrons and ions, and the inertial cold dust grains with partial ionization. Dust-charge fluctuations, convections and all the possible collisions are included. The grain-charge behaves as a dynamical variable owing mainly to the attachment of the electrons and ions to the grain-surfaces randomly. The adopted technique is centered around a mathematical model based on new solitary spectral patterns within the hydrodynamic framework. The collective dynamics of the patterns is governed by driven Korteweg-de Vries ( d-KdV) and Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis. Then, simplified analytical and numerical solutions are presented. The grain-charge fluctuation and collision processes play a key role in the DMC stability. The sensitive dependence of the eigenmode amplitudes on diverse relevant plasma parameters is discussed. The significance of the main results in astrophysical, laboratory and space environments are concisely summarized.

  11. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    SciTech Connect

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J. E-mail: ncalvet@umich.edu E-mail: lingleby@umich.edu E-mail: cespaillat@cfa.harvard.edu E-mail: dmw@pas.rochester.edu

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  12. Grain-scale alignment of melt in sheared partially molten rocks: implications for viscous anisotropy

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Quintanilla-Terminel, Alejandra; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Presence of melt significantly influences rheological properties of partially molten rocks by providing fast diffusional pathways. Under stress, melt aligns at the grain scale and this alignment induces viscous anisotropy in the deforming aggregate. One of the consequences of viscous anisotropy is melt segregation into melt-rich sheets oriented at low angle to the shear plane on much larger scales than the grain scale. The magnitude and orientation of viscous anisotropy with respect to the applied stress are important parameters for constitutive models (Takei and Holtzman 2009) that must be constrained by experimental studies. In this contribution, we analyze the shape preferred orientation (SPO) of individual grain-scale melt pockets in deformed partially molten mantle rocks. The starting materials were obtained by isostatically hot-pressing olivine + basalt and olivine + chromite + basalt powders. These partially molten rocks were deformed in general shear or torsion at a confining pressure, Pc = 300 MPa, temperature, T = 1200° - 1250° C, and strain rates of 10-3 - 10-5 s-1to finite shear strains, γ, of 0.5 - 5. After the experiment, high resolution backscattered electron images were obtained using a SEM equipped with a field emission gun. Individual melt pockets were segmented and their SPO analyzed using the paror and surfor methods and Fourier transforms (Heilbronner and Barret 2014). Melt segregation into melt-rich sheets inclined at 15° -20° antithetic with respect to the shear plane occurs in three-phase system (olivine + chromite + basalt) and in two-phase systems (olivine + basalt) twisted to high strain. The SPO of individual melt pockets within the melt-rich bands is moderately strong (b/a ≈ 0.8) and is always steeper (20° -40°) than the average melt-rich band orientation. In the two-phase system (olivine + basalt) sheared to lower strains, no distinct melt-rich sheets are observed. Individual grain-scale melt pockets are oriented at 45° -55

  13. The Interparticle Interaction Between a Vertically Aligned Dust Particle Pair in a Complex Plasma

    NASA Astrophysics Data System (ADS)

    Qiao, Ke; Ding, Zhiyue; Kong, Jie; Matthews, Lorin; Hyde, Truell

    2016-10-01

    The interaction between dust particles is a fundamental topic in complex plasma. In experiments on earth, the interparticle interaction in the horizontal direction (i.e., perpendicular to the gravitational force) is generally recognized to be a Yukawa potential. However, the interaction in the vertical direction is much more complicated, primarily due to the ion flow in the plasma sheath. In this research, we introduce a non-intrusive method to study the interaction between a vertically aligned dust particle pair confined in a glass box placed on the lower powered electrode within a GEC reference cell. This system is investigated for varying rf powers to obtain the trend of the interparticle interaction strength, which is contrasted with theoretical results. Using spontaneous thermal fluctuations of the neutral gas as the only driving force, we obtain the normal mode spectra of the dust pair, revealing not only the oscillation frequencies, but also the vibration amplitudes of the normal modes. The interaction strength between the upper and lower particle is obtained quantitatively from these mode spectra, showing strong nonreciprocity in both the vertical and horizontal directions. It will also be shown that the resulting horizontal attractive force of the upper particle on the lower particle can be larger than the horizontal confinement produced by the glass box alone. NSF / DOE funding is gratefully acknowledged - PHY1414523 & PHY1262031.

  14. Helical structures in vertically aligned dust particle chains in a complex plasma.

    PubMed

    Hyde, Truell W; Kong, Jie; Matthews, Lorin S

    2013-05-01

    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ(2)=(ω(0h)/ω(0v))(2) (where ω(0h,v) are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. E 85, 016406 (2012)].

  15. Segmented Mirror Image Degradation Due to Surface Dust, Alignment and Figure

    NASA Technical Reports Server (NTRS)

    Schreur, Julian J.

    1999-01-01

    In 1996 an algorithm was developed to include the effects of surface roughness in the calculation of the point spread function of a telescope mirror. This algorithm has been extended to include the effects of alignment errors and figure errors for the individual elements, and an overall contamination by surface dust. The final algorithm builds an array for a guard-banded pupil function of a mirror that may or may not have a central hole, a central reflecting segment, or an outer ring of segments. The central hole, central reflecting segment, and outer ring may be circular or polygonal, and the outer segments may have trimmed comers. The modeled point spread functions show that x-tilt and y-tilt, or the corresponding R-tilt and theta-tilt for a segment in an outer ring, is readily apparent for maximum wavefront errors of 0.1 lambda. A similar sized piston error is also apparent, but integral wavelength piston errors are not. Severe piston error introduces a focus error of the opposite sign, so piston could be adjusted to compensate for segments with varying focal lengths. Dust affects the image principally by decreasing the Strehl ratio, or peak intensity of the image. For an eight-meter telescope a 25% coverage by dust produced a scattered light intensity of 10(exp -9) of the peak intensity, a level well below detectability.

  16. DELIVERY OF DUST GRAINS FROM COMET C/2013 A1 (SIDING SPRING) TO MARS

    SciTech Connect

    Tricarico, Pasquale; Samarasinha, Nalin H.; Sykes, Mark V.; Li, Jian-Yang; Farnham, Tony L.; Kelley, Michael S. P.; Farnocchia, Davide; Stevenson, Rachel; Bauer, James M.; Lock, Robert E.

    2014-06-01

    Comet C/2013 A1 (Siding Spring) will have a close encounter with Mars on 2014 October 19. We model the dynamical evolution of dust grains from the time of their ejection from the comet nucleus to the close encounter with Mars, and determine the flux at Mars. Constraints on the ejection velocity from Hubble Space Telescope observations indicate that the bulk of the grains will likely miss Mars, although it is possible that a few percent of the grains with higher velocities will reach Mars, peaking approximately 90-100 minutes after the close approach of the nucleus, and consisting mostly of millimeter-radius grains ejected from the comet nucleus at a heliocentric distance of approximately 9 AU or larger. At higher velocities, younger grains from submillimeter to several millimeters can also reach Mars, although an even smaller fraction of grains is expected have these velocities, with negligible effect on the peak timing. Using NEOWISE observations of the comet, we can estimate that the maximum fluence will be of the order of 10{sup –7} grains m{sup –2}. We include a detailed analysis of how the expected fluence depends on the grain density, ejection velocity, and size-frequency distribution, to account for current model uncertainties and in preparation of possible refined model values in the near future.

  17. Intrinsic fluctuations of dust grain charge in multi-component plasmas

    SciTech Connect

    Shotorban, B.

    2014-03-15

    A master equation is formulated to model the states of the grain charge in a general multi-component plasma, where there are electrons and various kinds of positive or negative ions that are singly or multiply charged. A Fokker-Planck equation is developed from the master equation through the system-size expansion method. The Fokker-Planck equation has a Gaussian solution with a mean and variance governed by two initial-value differential equations involving the rates of the attachment of ions and electrons to the dust grain. Also, a Langevin equation and a discrete stochastic method are developed to model the time variation of the grain charge. Grain charging in a plasma containing electrons, protons, and alpha particles with Maxwellian distributions is considered as an example problem. The Gaussian solution is in very good agreement with the master equation solution numerically obtained for this problem.

  18. A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Price, Daniel J.; Laibe, Guillaume

    2015-07-01

    We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This `diffusion approximation for dust' is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using smoothed particle hydrodynamics that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.

  19. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the

  20. Atomistic and infrared study of CO-water amorphous ice onto olivine dust grain

    NASA Astrophysics Data System (ADS)

    Escamilla-Roa, Elizabeth; Moreno, Fernando; López-Moreno, J. Juan; Sainz-Díaz, C. Ignacio

    2017-01-01

    This work is a study of CO and H2O molecules as adsorbates that interact on the surface of olivine dust grains. Olivine (forsterite) is present on the Earth, planetary dust, in the interstellar medium (ISM) and in particular in comets. The composition of amorphous ice is very important for the interpretation of processes that occur in the solar system and the ISM. Dust particles in ISM are composed of a heterogeneous mixture of amorphous or crystalline silicates (e.g. olivine) organic material, carbon, and other minor constituents. These dust grains are embedded in a matrix of ices, such as H2O, CO, CO2, NH3, and CH4. We consider that any amorphous ice will interact and grow faster on dust grain surfaces. In this work we explore the adsorption of CO-H2O amorphous ice onto several (100) forsterite surfaces (dipolar and non-dipolar), by using first principle calculations based on density functional theory (DFT). These models are applied to two possible situations: i) adsorption of CO molecules mixed into an amorphous ice matrix (gas mixture) and adsorbed directly onto the forsterite surface. This interaction has lower adsorption energy than polar molecules (H2O and NH3) adsorbed on this surface; ii) adsorption of CO when the surface has previously been covered by amorphous water ice (onion model). In this case the calculations show that adsorption energy is low, indicating that this interaction is weak and therefore the CO can be desorbed with a small increase of temperature. Vibration spectroscopy for the most stable complex was also studied and the frequencies were in good agreement with experimental frequency values.

  1. Grain-size dependence of the magnetic properties of street dusts from Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Dytłow, Sylwia; Winkler, Aldo; Sagnotti, Leonardo

    2015-04-01

    In recent years, in connection with a substantial development of transportation in urban areas, vehicular traffic increased its importance as source of pollution and consequent cause of health problems in urban environments. In fact, it is well established that the concentration and size of pollution related particulate matter (PM) are important factors affecting human health. The aim of this study is to identify the variations of the magnetic properties and of the chemical composition of different granulometric fractions from street dusts collected at four locations in Warsaw: the city center, a suburb, a tramline and a big crossroad. Dust samples were mechanically sieved and classified using the laboratory shaker with a standard sieve set (0.5 mm, 0.25 mm, 0.1 mm and 0.071 mm). Data show a distribution of magnetic susceptibility (χ) in the wide range of 80-370 × 10-8 m3kg-1. Comparison of magnetic parameters shows that the street dust contains the pollution characteristics for air and soil. The samples were characterized by uniform magnetic mineralogy, typical for fine-grained magnetite, in a grain size range between pseudo-single-domain and fine multi-domain, with a small contribution from ultrafine superparamagnetic particles (~2-3.5 %). The street dust contains, as usual for the urban areas, spherical magnetic particles produced by fossil fuel combustion processes and mixture of irregular angular iron-oxides grains containing other elements. The magnetic susceptibility and hysteresis properties of the dusts have been analyzed in detail; the temperature variation of the saturation of remanent magnetization and of the magnetic susceptibility revealed that the main magnetic mineral, for all the fractions, is almost stoichiometric magnetite, with the finest fractions (d=0.1 mm, 0.071 mm and d

  2. Newly developed techniques for the analysis of micrometer-sized interplanetary dust particles and comet grains

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    1991-04-01

    Electron transparent sections (30-100 nm thick) of interplanetary dust particles and other fine-grained meteoric materials are produced using an ultramicrotome equipped with a diamond knife. An analytical electron microscope (AEM) is employed to examine indigenous physical properties (e.g., porosity), mineralogy, and petrography. Large data sets of quantitative point count analysis obtained from thin sections enable direct mineralogical comparison of IDPs and Halley.

  3. A grain of sand or a handful of dust?

    NASA Astrophysics Data System (ADS)

    Wagner, Fabian

    2013-03-01

    The recent paper by Girod et al (2013) analyses the implications of stringent global GHG mitigation targets for the intensities of, inter alia , broad consumption categories like food, shelter and transport. This type of scenario modeling analysis and inverse reasoning helps us to better understand the potential or required contribution of changes in consumption patterns to mitigation. This is welcome because while there is a growing literature on the behavioral and consumption dimensions of mitigation, there is still no widely accepted framework for studying systematically the interactions between supply and demand, behavior and technology, production and consumption. So we are left with the question: what do we need to do exactly to stabilize GHG concentrations? Intuitively, we take our cue from Aristotelian logic: if A implies B, then in order to avoid B we had better prevent A. At this level it is clear that we need either to decarbonize our energy systems to start with, or to suck out CO2 from the atmosphere. When multiple causes are at work, however, our neat Aristotelian picture is no longer appropriate (Cartwright 2003). Leaving capturing and storage aside, we need to decarbonize our systems, but we also need to reduce the energy intensity, change our personal habits, eat less meat, use more public transportation, etc. What is the right balance between these factors? Can we do just one thing, say, eat less meat, but not another, and still achieve some pretty ambitious mitigation goals? In other words, what are necessary and what are sufficient sets of measures to reach these goals? Let us first look at the question of necessary measures. This gets tricky when applied to individual consumers: it is somewhat akin to the notorious question whether a heap of sand is still a heap when you take away one grain (Sainsbury 2011). If you are inclined to say yes, think once more. What happens when you take away another one, and another one, and another one, and so

  4. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  5. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emission

    NASA Astrophysics Data System (ADS)

    Tankosic, D.; Abbas, M. M.

    2012-03-01

    We present some examples of the complex nature of secondary electron emissions from lunar dust grains levitated in an electrodynamic balance, and show that the measurements are unaffected by the variation of the AC field employed in the experiments.

  6. Constraining dust properties in circumstellar envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of carbon dust

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-10-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.

  7. Excitation of Kelvin Helmholtz instability by an ion beam in a plasma with negatively charged dust grains

    SciTech Connect

    Rani, Kavita; Sharma, Suresh C.

    2015-02-15

    An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.

  8. Planck early results. XX. New light on anomalous microwave emission from spinning dust grains

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cappellini, B.; Cardoso, J.-F.; Casassus, S.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, T. R.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Procopio, P.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reich, W.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Varis, J.; Verstraete, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wilkinson, A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and ρ Ophiuchi molecular clouds. The spectra are well fitted by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20-40 GHz and are detected at high significances of 17.1σ for Perseus and 8.4σ for ρ Ophiuchi. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density atomic gas appears to play a minor role. In ρ Ophiuchi, the ~30 GHz peak is dominated by dense molecular gas, but there is an indication of an extended tail at frequencies 50-100 GHz, which can be accounted for by irradiated low density atomic gas. The dust parameters are consistent with those derived from other measurements. We have also searched the Planck map at 28.5 GHz for candidate AME regions, by subtracting a simple model of the synchrotron, free-free, and thermal dust. We present spectra for two of the candidates; S140 and S235 are bright Hii regions that show evidence for AME, and are well fitted by spinning dust models. Corresponding author: C. Dickinson, Clive.Dickinson@manchester.ac.uk

  9. Study of the dusty environment of comet 67P/Churyumov-Gerasimenko with allowance of dust grains aspherisity

    NASA Astrophysics Data System (ADS)

    Ivanovski, Stavro L.; Zakharov, Vladimir V.; Della Corte, Vincenzo; rotundi, alessandra; Crifo, Jean-Francois; Fulle, Marco

    2016-10-01

    The Grain Impact Analyser and Dust Accumulator (GIADA) instrument onboard the Rosetta spacecraft has been measuring speed, mass and, with the support of calibrations curves, their geometrical cross section, of individual dust particles in the coma of comet 67P/Churyumov-Gerasimenko since 1st August 2014.In this work we consider the observational period November - December 2015 during which GIADA registered a high dust particles detection rate. We performed numerical simulations of dust grains dynamics measured by GIADA during this period. As a shape model of dust grains we used not only spheres, but also, as a first departure from the sphere, ellipsoids of revolution, prolate and oblate with various aspect ratios. The size range under consideration is from 50 to 500 microns, in diameter, which corresponds to the particle size range measured by GIADA in the period of interest.We discuss the influence of the grain's shape model on the dust spatial distribution and dynamics of individual grains. The results allow to constrain the density range of the collected particles based on the comparison between their computed terminal velocities and the GIADA measured dust speeds.

  10. Size distribution of dust grains: A problem of self-similarity

    NASA Technical Reports Server (NTRS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e

  11. Carbon and silicate grains in the laboratory as analogues of cosmic dust.

    PubMed

    Mennella, V; Brucato, J R; Colangeli, L

    2001-03-15

    Carbon and silicate grains are the two main components of cosmic dust. There is increasing spectroscopic evidence that their composition varies according to the cosmic environment and the experienced processing. Irradiation from ultraviolet photons and cosmic rays, as well as chemical interactions with the interstellar gas play a crucial role for grain transformation. The study of 'laboratory analogues' represents a powerful tool to better understand the nature and evolution of cosmic materials. In particular, simulations of grain processing are fundamental to outline an evolutionary pathway for interstellar particles. In the present work, we discuss the ultraviolet and infrared spectral changes induced by thermal annealing, ultraviolet irradiation, ion irradiation and hydrogen atom bombardment in carbon and silicate analogue materials. The laboratory results give the opportunity to shed light on the long-standing problems of the attribution of ultraviolet and infrared interstellar spectral features.

  12. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples.

  13. Determination of mineralogy and grain size of the magnetic fraction from outdoor and indoor urban dust from several Bulgarian cities

    NASA Astrophysics Data System (ADS)

    Petrov, Petar; Jordanova, Neli; Jordanova, Diana

    2014-05-01

    Dust is the most important factor determining urban air quality. The identification of magnetic minerals, carriers of magnetic signal of dust samples, is important for a correct interpretation of concentration, domain state and grain-size indicative parameters. The aim of the present study is to characterize magnetically indoor and outdoor dusts from six big cities in Bulgaria and to link them to degree of pollution of the environment. The aim is also to propose the most effective methods for characterization: thermomagnetic analysis of magnetic susceptibility, anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM), hysteresis loops. Dust material was collected monthly during the period May 2009- November 2010. The main magnetic mineral in outdoor and indoor dust, identified by thermomagnetic analysis of magnetic susceptibility, is magnetite (Fe3O4). The dominant role of magnetite in determination of magnetic signal of the studied dusts allows the use of hysteresis parameters as proxies for the effective magnetic grain size of ferrimagnetic grains. The calculated ratios Mrs/Ms and Bcr/Bc vary in the intervals (0.055 - 0.1) and (3.08 - 5.14), respectively. The coercivity of magnetic fraction in indoor dust is lower compared to that of outdoor dust. This dependence probably shows that the main source of dust is the outside pollution with PM10. Higher values typical for outdoor dust in comparison with respective sample from indoor dust show that quantity of the paramagnetic minerals is higher in outdoor dust. Probable source of such particles is dust from erosion of soils in the area.

  14. From Dust Grains to Planetesimals: The Importance of the Streaming Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Youdin, Andrew N.; Li, Rixin

    2016-01-01

    Planetesimals are the precursors to planets, and understanding their formation is an essential step towards developing a complete theory of planet formation. For small solid particles (e.g., dust grains) to coagulate into planetesimals, however, requires that these particles grow beyond centimeter sizes; with traditional coagulation physics, this is very difficult. The streaming instability, which is a clumping process akin to the pile-up of cars in a traffic jam, generates sufficiently high solid densities that the mutual gravity between the clumped particles eventually causes their collapse towards planetesimal mass and size scales. Exploring this transition from dust grains to planetesimals is still in its infancy but is extremely important if we want to understand the basics of planet formation. Here, I present a series of high resolution, first principles numerical simulations of protoplanetary disk gas and dust to study the clumping of particles via the streaming instability and the subsequent collapse towards planetesimals. These simulations have been employed to characterize the planetesimal population as a function of radius in protoplanetary disks. The results of these simulations will be crucial for planet formation models to correctly explain the formation and configuration of solar systems.

  15. Interstellar dust grain composition from high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2016-06-01

    X-ray light is sufficient to excite electrons from n=1 (K-shell) and n=2 (L-shell) energy levels of neutral interstellar metals, causing a sharp increase in the absorption cross-section. Near the ionization energy, the shape of the photoelectric absorption edge depends strongly on whether the atom is isolated or bound in molecules or minerals (dust). With high resolution X-ray spectroscopy, we can directly measure the state of metals and the mineral composition of dust in the interstellar medium. In addition, the scattering contribution to the X-ray extinction cross-section can be used to gauge grain size, shape, and filling factor. In order to fully take advantage of major advances in high resolution X-ray spectroscopy, lab measurements of X-ray absorption fine structure (XAFS) from suspected interstellar minerals are required. Optical constants derived from the absorption measurements can be used with Mie scattering or anomalous diffraction theory in order to model the full extinction cross-sections from the interstellar medium. Much like quasar spectra are used to probe other intergalactic gas, absorption spectroscopy of Galactic X-ray binaries and bright stars will yield key insights to the mineralogy and evolution of dust grains in the Milky Way.

  16. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    NASA Astrophysics Data System (ADS)

    Ragot, B. R.; Kahler, S. W.

    2003-09-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Rsolar. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs, acting on the dust in the 3-5 Rsolar region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Rsolar for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (>~3 μm) dust grains, hence faster depletion rates and lower dust-grain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 μm) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness, the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 10% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (<~3 μm) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital periods. Finally, we consider possible observable consequences of

  17. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    SciTech Connect

    Sabri, T.; Jäger, C.; Gavilan, L.; Lemaire, J. L.; Vidali, G.; Henning, T.

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  18. Exploring the Role of Sub-micron-sized Dust Grains in the Atmospheres of Red L0-L6 Dwarfs

    NASA Astrophysics Data System (ADS)

    Hiranaka, Kay; Cruz, Kelle L.; Douglas, Stephanie T.; Marley, Mark S.; Baldassare, Vivienne F.

    2016-10-01

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markov Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1-100 μm) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.

  19. Dust Particle Alignment in the Solar Magnetic Field: a Possible Cause of the Cometary Circular Polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Koenders, C.; Rosenbush, V.; Kiselev, N.; Ivanova, A.; Afanasiev, V.

    2015-12-01

    Circular polarization (CP) produced by scattering of sunlight on cometary dust has been observed in 11 comets, and showed the values from 0.01% to 0.8%. CP of both signs was observed, although negative (left-handed) CP dominates. Recent observations of several comets using SCORPIO-2 focal reducer at the 6-m BTA telescope of the Special Astrophysical Observatory (Russia) allowed producing maps of CP in the comet continuum filter at 684 nm and red wide-band filter. A gradual increase of the CP with the nucleocentric distance was usually observed. The most plausible reason why the light scattered by cometary dust becomes circularly polarized is alignment of the dust particles in the solar magnetic field. However, in-situ data for comet Halley, indicated that the solar magnetic field could not penetrate deep into the coma, limited by the diamagnetic cavity, and, thus, could not be responsible for the CP observed closer than ~4000 km from the nucleus. Advanced theoretical studies of interaction of the solar magnetic field with cometary ions led to reconsidering the diamagnetic cavity boundary - it is defined by the cometary ionopause, at which a balance is achieved between the magnetic pressure in the magnetic pile up region and the neutral friction force. The nucleocentric distance where this balance is achieved depends on the comet characteristics, increasing with the increase of the gas production rate, and local solar wind conditions, approximatively given by the comet location, specifically, its heliocentric distance. The size of diamagnetic cavity was calculated for the conditions of our CP observations. We found that it could be as small as dozens (comets 73P, 8P, 290P) or hundreds (comets Q4 NEAT, K1 PanSTARRS, Tago-Sato-Kosaka) kilometers. Thus, non-zero CP close to the nucleus can be easily explained by the interaction of the dust particles with the solar magnetic field. This mechanism also explains the observed increase in CP with the distance from the

  20. PRESOLAR GRAINS FROM NOVAE: EVIDENCE FROM NEON AND HELIUM ISOTOPES IN COMET DUST COLLECTIONS

    SciTech Connect

    Pepin, Robert O.; Palma, Russell L.; Gehrz, Robert D.; Starrfield, Sumner

    2011-12-01

    Presolar grains in meteorites and interplanetary dust particles carry non-solar isotopic signatures pointing to origins in supernovae, giant stars, and possibly other stellar sources. There have been suggestions that some of these grains condensed in the ejecta of classical nova outbursts, but the evidence is ambiguous. We report neon and helium compositions in particles captured on stratospheric collectors flown to sample materials from comets 26P/Grigg-Skjellerup and 55P/Tempel-Tuttle that point to condensation of their gas carriers in the ejecta of a neon (ONe) nova. The absence of detectable {sup 3}He in these particles indicates space exposure to solar wind irradiation of a few decades at most, consistent with origins in cometary dust streams. Measured {sup 4}He/{sup 20}Ne, {sup 20}Ne/{sup 22}Ne, {sup 21}Ne/{sup 22}Ne, and {sup 20}Ne/{sup 21}Ne isotope ratios, and a low upper limit on {sup 3}He/{sup 4}He, are in accord with calculations of nucleosynthesis in neon nova outbursts. Of these, the uniquely low {sup 4}He/{sup 20}Ne and high {sup 20}Ne/{sup 22}Ne ratios are the most diagnostic, reflecting the large predicted {sup 20}Ne abundances in the ejecta of such novae. The correspondence of measured Ne and He compositions in cometary matter with theoretical predictions is evidence for the presence of presolar grains from novae in the early solar system.

  1. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  2. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    Aeolian dust in the atmosphere may have a cooling effect when small particles in the high atmosphere block incoming solar energy (e.g., Claquin et al., 2003) but it may also act as a 'greenhouse gas' when larger particles in the lower atmosphere trap energy that was reflected from the Earth's surface (e.g., Otto et al., 2007). Therefore, it is of vital importance to have a good understanding of the particle-size distribution of aeolian dust in space and time. As wind is a very size-selective transport mechanism, the sediments it carries typically have a very-well sorted grain-size distribution, which gradually fines from proximal to distal deposition sites. This fact has been used in numerous paleo-environmental studies to both determine source-to-sink changes in the particle size of aeolian dust (e.g., Weltje and Prins, 2003; Holz et al., 2004; Prins and Vriend, 2007) and to quantify mass-accumulation rates of aeolian dust (e.g., Prins and Weltje 1999; Stuut et al., 2002; Prins et al., 2007; Prins and Vriend, 2007; Stuut et al., 2007; Tjallingii et al., 2008; Prins et al., 2009). Studies on modern wind-blown particles have demonstrated that particle size of dust not only is a function of lateral but also vertical transport distance (e.g., Torres-Padron et al., 2002; Stuut et al., 2005). Nonetheless, there are still many unresolved questions related to the physical properties of wind-blown particles like e.g., the case of "giant" quartz particles found on Hawaii (Betzer et al., 1988) that can only originate from Asia but have a too large size for the distance they travelled through the atmosphere. Here, we present examples of dust particle-size distributions from terrestrial (loess) as well as marine (deep-sea sediments) sedimentary archives and their spatial and temporal changes. With this contribution we hope to provide quantitative data for the modelling community in order to get a better grip on the role of wind-blown particles in the climate system. Cited

  3. Developing ISM Dust Grain Models with Precision Elemental Abundances from IXO

    NASA Technical Reports Server (NTRS)

    Valencic, L. A.; Smith, R. K.; Juet, A.

    2009-01-01

    The exact nature of interstellar dust grains in the Galaxy remains mysterious, despite their ubiquity. Many viable models exist, based on available IR-UV data and assumed elemental abundances. However, the abundances, which are perhaps the most stringent constraint, are not well known: modelers must use proxies in the absence of direct measurements for the diffuse interstellar medium (ISM). Recent revisions of these proxy values have only added to confusion over which is the best representative for the diffuse ISM, and highlighted the need for direct, high signal-to-noise measurements from the ISM itself. The International X-ray Observatory's superior facilities will enable high-precision elemental abundance measurements. We ill show how these results will measure both the overall ISM abundances and challenge dust models, allowing us to construct a more realistic picture of the ISM.

  4. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    NASA Technical Reports Server (NTRS)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  5. FORMATION AND ALIGNMENT OF ELONGATED, FRACTAL-LIKE WATER-ICE GRAINS IN EXTREMELY COLD, WEAKLY IONIZED PLASMA

    SciTech Connect

    Chai, Kil-Byoung; Bellan, Paul M. E-mail: pbellan@caltech.edu

    2015-04-01

    Elongated, fractal-like water-ice grains are observed to form spontaneously when water vapor is injected into a weakly ionized laboratory plasma formed in a background gas cooled to an astrophysically relevant temperature. The water-ice grains form in 1–2 minutes, levitate with regular spacing, and are aligned parallel to the sheath electric field. Water-ice grains formed in plasma where the neutrals and ions have low mass, such as hydrogen and helium, are larger, more elongated, and more fractal-like than water-ice grains formed in plasmas where the neutrals and ions have high mass such as argon and krypton. Typical aspect ratios (length to width ratio) are as great as 5 while typical fractal dimensions are ∼1.7. Water-ice grain lengths in plasmas with low neutral and ion masses can be several hundred microns long. Infrared absorption spectroscopy reveals that the water-ice grains are crystalline and so are similar in constitution to the water-ice grains in protoplanetary disks, Saturn’s rings, and mesospheric clouds. The properties and behavior of these laboratory water-ice grains may provide insights into morphology and alignment behavior of water-ice grains in astrophysical dusty plasmas.

  6. Transmission electron microscope study of carbon soot grains to infer on cosmic dust condensation processes

    NASA Astrophysics Data System (ADS)

    Rotundi, A.; Rietmeijer, F.; Heymann, D.; Colangeli, L.; Mennella, V.

    The laboratory analyses of cosmic dust analogues have a critical role in the understanding of cosmic dust condensation processes. The morphological, structural and chemical characterisation of these analogues are critical for comparisons with astronomical observations data and models. Carbon-rich dust samples are prepared by arc discharge in Ar and H2 atmosphere at pre-selected proportions. To identify their internal textures we used High Resolution Electron Microscopy and chemical analyses was done by HPLC and mass spectrometer. Carbon soot grains, crystallographically amorphous, consist of individual Single-Wall Spheres (SWS - diameters: 0.7 nm to 10nm) forming close-packed arrangements. These spheres are also observed in short and straight, or long and curved, liner arrangement called proto-fringes with a thickness corresponding to the diameters of the SWS. SWS resemble structures in synthetic C60 crystals, including C50, possibly C32, and larger elongated fullerenes. The fringe spacing is consistent with increasing diameters of nested fullerenes. HPLC and mass spectroscopy confirmed that the SWS, 0.7nm diameter, are C60 fullerene. The HRTEM data of SWS with a diameter >0.7nm define a linear correlation that could correspond to an increasing number of carbon atoms in larger SWS. When C60 is a metastable carbon, its fusion into larger SWS might be spontaneous growth process that lead to giant fullerenes. C60 once 'isolated' inside agglomerated soot grains it might survive in condensed circumstellar carbon dust that did not suffer post-condensation thermal annealing.

  7. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  8. Relationship of respiratory health status to grain dust in a Witwatersrand grain mill: comparison of workers' exposure assessments with industrial hygiene survey findings.

    PubMed

    Fonn, S; Groeneveld, H T; deBeer, M; Becklake, M R

    1993-10-01

    Objective measures of exposure furnished by dust monitoring are both costly and time consuming and require a sufficient level of technology. However, they are important in demonstrating exposure-response relationships, in furnishing information necessary to establish environmental control levels, and to assess if interventions, for instance, improving dust control, have been effective. In this paper respiratory symptoms and cross-shift changes in spirometric lung function were related to dust exposure level in a grain mill assessed in two ways, subjectively (by workers themselves on a four point scale) and objectively (by personal dust monitoring). Health indicators that depend on the individual's perception (e.g., symptoms) correlated more closely with the subjectively assessed dust category, while health indicators that were measured objectively (e.g., cross-week FVC and FEV1 change) correlated more closely with the objectively assessed dust category. However, the patterns of relationship of respiratory health indicators to either dust category were similar, and exposure assessed by one method was, to a large extent, a proxy for the other. The most significant predictor of workers' choice of dust exposure category was the measured dust level. These findings indicate that exposure categories based on workers' assessment of dustiness can be a useful tool in etiologic research, in particular in establishing exposure-response relationships.

  9. Dust Grains and the Luminosity of Circumnuclear Water Masers in Active Galaxies

    NASA Technical Reports Server (NTRS)

    Collison, Alan J.; Watson, William D.

    1995-01-01

    In previous calculations for the luminosities of 22 GHz water masers, the pumping is reduced and ultimately quenched with increasing depth into the gas because of trapping of the infrared (approximately equals 30-150 micrometers), spectral line radiation of the water molecule. When the absorption (and reemission) of infrared radiation by dust grains is included, we demonstrate that the pumping is no longer quenched but remains constant with increasing optical depth. A temperature difference between the grains and the gas is required. Such conditions are expected to occur, for example, in the circumnuclear masing environments created by X-rays in active galaxies. Here, the calculated 22 GHz maser luminosities are increased by more than an order of magnitude. Application to the well-studied, circumnuclear masing disk in the galaxy NGC 4258 yields a maser luminosity near that inferred from observations if the observed X-ray flux is assumed to be incident onto only the inner surface of the disk.

  10. Effects of Angular Shapes on Optical properties of Martian Dust and Ice grains

    NASA Astrophysics Data System (ADS)

    Scarnato, B. V.; Colaprete, A.; Iraci, L. T.

    2012-12-01

    Dust, ice clouds and their interaction are now recognized as playing important roles in atmospheric thermal heating, in driving atmospheric dynamics and therefore in affecting martian climate and weather. However, simulation results depend strongly on dust and cloud optical properties, which depend on assumptions made on particle size, shape, number and composition (e.g. ice impurities). In radiative transfer calculations which are used to interpret space or ground-based observations of Mars, various assumptions are made regarding the aerosol optical properties; it is common to approximate aerosol shape to homogeneous spherical particles. The optical properties of spherical particles can, however, differ significantly from those of irregularly shaped particles, even if their composition and/or size distribution is the same. Therefore, assuming spherical instead of irregularly shaped angular particles in radiative transfer calculations can lead to significant errors in climate modeling and in retrieved atmospheric parameters, such as the aerosol type, optical thickness and particle size distributions. For irregularly shaped particles, which are very common in nature, the optical properties can be calculated with numerical methods such as the Discrete Dipole Approximation (DDA) method. We present a sensitivity study of the effect of angular shapes on optical properties of suspended dust aerosol and water ice particles (type 1 and 2) with and without a dust inclusion. We assess a plausible range of variability of the optical properties (e.g., mass extinction, scattering and absorption coefficients, single scattering albedo, phase function and polarization) over an extended spectral range, between 200 nm and 50 microns. Optical properties of dust and water ice grains with different angular shapes are also compared with more commonly used shapes like spheres, spheres with a concentric spherical inclusion (core-shell) and spheroids.

  11. Ion-neutral collisions and dust grain charging in the presence of electromagnetic radiation in the Earth's Ionosphere

    NASA Astrophysics Data System (ADS)

    Kopnin, Sergey; Popel, Sergey; Morzhakova, Anastasia

    2010-05-01

    Ion-neutral collisions in dust particle charging process in the presence of electromagnetic radiation in Earth's "dusty" ionosphere are taken into account. These collisions can result in a charge exchange between a fast ion and a slow neutral. The slow neutrals become slow positively charged ions which interact effectively with positively charged dust grains. As a result a microscopic ion current on the dust grains decreases in comparison with the case when ion-neutral collisions are not taken into account in the dust grain charging process. The microscopic ion current on the positively charged dust grains is derived. A condition on neutral density is obtained for which the influence of ion-neutral collisions on dust particle charging process is important. It is shown that the effect of ion-neutral collisions should be taken into account when considering the charging of nano- and microsize dust grains in Noctilucent Clouds, Polar Mesosphere Summer Echoes, meteoritic dust, active geophysical rocket experiments such as Fluxus 1 and 2. We discuss also the effect of electrons with energies of the order of 1 eV which are produced as a result of photoelectric effect during the charging process, which can result in an increase of the electron temperature in plasmas. The most important effect resulting in cooling of such electrons is that of electron-ion collisions. We found a condition on the neutral density when the electron temperature in Earth's "dusty" ionosphere can become of the order of 1 eV. The importance of this effect for ionospheric plasmas is discussed. This work was supported by the Russian Foundation for Basic Research, project no. 06-05-64826-а. S.I.P. acknowledges financial support of the Dynasty Foundation.

  12. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Eduard, Wijnand; Klemsdal, Sonja Sletner

    2006-12-01

    Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.

  13. The Coronal Magnetic Field, Signatures of Coronal Holes and Silicon Nanometer Dust Grains

    NASA Astrophysics Data System (ADS)

    Habbal, S. R.; Arndt, M. B.; Nayfeh, M.; Arnaud, J.; Woo, R.

    2003-12-01

    The near-infrared part of the solar spectrum is where some of the strongest coronal forbidden lines are formed. Polarized emission in these lines offers the only tool currently known for the inference of the direction of the coronal magnetic field. The first successful observations of the polarized emission from the 1074.7 nm Fe XIII line were made by Eddy, Lee and Emerson during the eclipse of 1966 in a limited region of the corona. The only subsequent polarimetric observations in this line were carried out with the coronagraph at Sac Peak from 1977-1980. We report on the first successful polarimetric measurements of the 1074.7 nm line in a field of view extending out to 3.5 solar radii which were made during the total solar eclipse of 21 June 2001. In addition to confirming earlier results of the predominance of a radial direction of the coronal magnetic field, these measurements yielded the first polarimetric signature of coronal holes, and the signature of nanometer size dust grains in the corona. These observations suggest the existence of a rich coronal spectrum of narrow lines in the near-infared produced by the fluorescence of silicon nanometer dust grains in the inner corona. This work was funded by NSF grant ATM-0003661 and NASA grant NAG5-10873 to the Smithsonian Astrophysical Observatory.

  14. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II--Deleterious effects: Dust-borne endotoxins and allergens--focus on grain dust, other agricultural dusts and wood dust.

    PubMed

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz

    2016-01-01

    Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4)-10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3)-10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained

  15. Dust grains in the coma of 67P/Churyumov-Gerasimenko - link with surface properties and cometary activity

    NASA Astrophysics Data System (ADS)

    Capria, Maria Teresa; Ivanovski, Stavro; Zakharov, Vladimir; Capaccioni, Fabrizio; Filacchione, Gianrico; De Sanctis, Maria Cristina; rotundi, alessandra; della corte, vincenzo; Longobardo, Andrea; Palomba, Ernesto; colangeli, luigi; Bockelee-Morvan, Dominique; Érard, Stéphane; Leyrat, Cedric; VIRTIS, GIADA

    2016-10-01

    The imaging spectrometer VIRTIS and the dust analyzer GIADA, onboard Rosetta, made an extensive observation of the dust particles in the coma of the comet 67P/Churyumov-Gerasimenko. From the analysis of GIADA data, two different kind of particles have been revealed, compact and fluffy with different compositions and dynamical properties. Compact particles are characterized by densities of about 103 kg/m3, while fluffy particles have an almost fractal nature, with densities less than 1 kg/m3.In this work we present the initial results of a model linking the dust flux distribution, as obtained from a theoretical thermal nucleus model, with a model describing the dynamics of aspherical grains in the coma. The results are discussed in the context of the latest observations from VIRTIS and GIADA instruments.The 2D nucleus thermal model, when applied to the real shape of the comet, provides the size distribution and physical properties of the emitted grains at different times and location on the surface. The thermal model can simulate grains of various size distribution, composition and physical properties. This information is used as an input for the dust dynamical model that follows the emitted particles in the coma. The main source of heating is the solar illumination. In the dust dynamical model, the grain trajectory of emitted particles remains in a plane perpendicular to the rotational axis and the direction of illumination is taken to be in the same plane (i.e. does not cause transversal forces). The dust particles are assumed to be isothermal convex bodies and temperature changes only induce modest changes in the aerodynamic force (twice higher temperature changes aerodynamic force less than ~30%). This study reviews the theoretical values at which temperature difference starts to play a role on the dynamics. We discuss to what extent the particle's temperature affects the terminal velocities of the dust grains in the 67P coma in dependence on their mass and

  16. Collision velocity of dust grains in self-gravitating protoplanetary discs

    PubMed Central

    Booth, Richard A.; Clarke, Cathie J.

    2016-01-01

    We have conducted the first comprehensive numerical investigation of the relative velocity distribution of dust particles in self-gravitating protoplanetary discs with a view to assessing the viability of planetesimal formation via direct collapse in such environments. The viability depends crucially on the large sizes that are preferentially collected in pressure maxima produced by transient spiral features (Stokes numbers, St ∼ 1); growth to these size scales requires that collision velocities remain low enough that grain growth is not reversed by fragmentation. We show that, for a single-sized dust population, velocity driving by the disc's gravitational perturbations is only effective for St > 3, while coupling to the gas velocity dominates otherwise. We develop a criterion for understanding this result in terms of the stopping distance being of the order of the disc scaleheight. Nevertheless, the relative velocities induced by differential radial drift in multi-sized dust populations are too high to allow the growth of silicate dust particles beyond St ∼ 10− 2 or 10−1 (10 cm to m sizes at 30 au), such Stokes numbers being insufficient to allow concentration of solids in spiral features. However, for icy solids (which may survive collisions up to several 10 m s−1), growth to St ∼ 1 (10 m size) may be possible beyond 30 au from the star. Such objects would be concentrated in spiral features and could potentially produce larger icy planetesimals/comets by gravitational collapse. These planetesimals would acquire moderate eccentricities and remain unmodified over the remaining lifetime of the disc. PMID:27346980

  17. Collision velocity of dust grains in self-gravitating protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Booth, Richard A.; Clarke, Cathie J.

    2016-05-01

    We have conducted the first comprehensive numerical investigation of the relative velocity distribution of dust particles in self-gravitating protoplanetary discs with a view to assessing the viability of planetesimal formation via direct collapse in such environments. The viability depends crucially on the large sizes that are preferentially collected in pressure maxima produced by transient spiral features (Stokes numbers, St ˜ 1); growth to these size scales requires that collision velocities remain low enough that grain growth is not reversed by fragmentation. We show that, for a single-sized dust population, velocity driving by the disc's gravitational perturbations is only effective for St > 3, while coupling to the gas velocity dominates otherwise. We develop a criterion for understanding this result in terms of the stopping distance being of the order of the disc scaleheight. Nevertheless, the relative velocities induced by differential radial drift in multi-sized dust populations are too high to allow the growth of silicate dust particles beyond St ˜ 10- 2 or 10-1 (10 cm to m sizes at 30 au), such Stokes numbers being insufficient to allow concentration of solids in spiral features. However, for icy solids (which may survive collisions up to several 10 m s-1), growth to St ˜ 1 (10 m size) may be possible beyond 30 au from the star. Such objects would be concentrated in spiral features and could potentially produce larger icy planetesimals/comets by gravitational collapse. These planetesimals would acquire moderate eccentricities and remain unmodified over the remaining lifetime of the disc.

  18. H2CO in the Horsehead PDR: photo-desorption of dust grain ice mantles

    NASA Astrophysics Data System (ADS)

    Guzmán, V.; Pety, J.; Goicoechea, J. R.; Gerin, M.; Roueff, E.

    2011-10-01

    Aims: For the first time we investigate the role of the grain surface chemistry in the Horsehead photo-dissociation region (PDR). Methods: We performed deep observations of several H2CO rotational lines toward the PDR and its associated dense-core in the Horsehead nebula, where the dust is cold (Tdust ≃ 20-30 K). We complemented these observations with a map of the p - H2CO 303 - 202 line at 218.2 GHz (with 12'' angular resolution). We determine the H2CO abundances using a detailed radiative transfer analysis and compare these results with PDR models that include either pure gas-phase chemistry or both gas-phase and grain surface chemistry. Results: The H2CO abundances (≃2-3 × 10-10) with respect to H-nuclei are similar in the PDR and dense-core. In the dense-core the pure gas-phase chemistry model reproduces the observed H2CO abundance. Thus, surface processes do not contribute significantly to the gas-phase H2CO abundance in the core. In contrast, the formation of H2CO on the surface of dust grains and subsequent photo-desorption into the gas-phase are needed in the PDR to explain the observed gas-phase H2CO abundance, because the gas-phase chemistry alone does not produce enough H2CO. The assignments of different formation routes are strengthen by the different measured ortho-to-para ratio of H2CO: the dense-core displays the equilibrium value (~3) while the PDR displays an out-of-equilibrium value (~2). Conclusions: Photo-desorption of H2CO ices is an efficient mechanism to release a significant amount of gas-phase H2CO into the Horsehead PDR.

  19. The dust grain size-stellar luminosity trend in debris discs

    NASA Astrophysics Data System (ADS)

    Pawellek, Nicole; Krivov, Alexander V.

    2015-12-01

    The cross-section of material in debris discs is thought to be dominated by the smallest grains that can still stay in bound orbits despite the repelling action of stellar radiation pressure. Thus the minimum (and typical) grain size smin is expected to be close to the radiation pressure blowout size sblow. Yet a recent analysis of a sample of Herschel-resolved debris discs showed the ratio smin/sblow to systematically decrease with the stellar luminosity from about 10 for solar-type stars to nearly unity in the discs around the most luminous A-type stars. Here, we explore this trend in more detail, checking how significant it is and seeking to find possible explanations. We show that the trend is robust to variation of the composition and porosity of dust particles. For any assumed grain properties and stellar parameters, we suggest a recipe of how to estimate the `true' radius of a spatially unresolved debris disc, based solely on its spectral energy distribution. The results of our collisional simulations are qualitatively consistent with the trend, although additional effects may also be at work. In particular, the lack of grains with small smin/sblow for lower luminosity stars might be caused by the grain surface energy constraint that should limit the size of the smallest collisional fragments. Also, a better agreement between the data and the collisional simulations is achieved when assuming debris discs of more luminous stars to have higher dynamical excitation than those of less-luminous primaries. This would imply that protoplanetary discs of more massive young stars are more efficient in forming big planetesimals or planets that act as stirrers in the debris discs at the subsequent evolutionary stage.

  20. In-Plane Grain Orientation Alignment of Polycrystalline Silicon Films by Normal and Oblique-Angle Ion Implantations

    NASA Astrophysics Data System (ADS)

    Nakajima, Anri; Kuroki, Shin-Ichiro; Fujii, Shuntaro; Ito, Takashi

    2012-04-01

    Random crystallographic orientations of polycrystalline silicon (poly-Si) grains in the films grown on a SiO2 substrate by chemical vapor deposition were laterally aligned by maintaining the 110 restricted pillar texture through double Si+ self-ion implantations. The in-plane X-ray diffraction pattern and rocking curve clearly indicate the lateral alignment. The oblique-angle Si+ self-ion implantation was also found to be useful for increasing the amount of the 110 pillar texture. The electron backscatter diffraction (EBSD) pattern supports the increase in the amount of the 110 pillar texture and the lateral crystal orientation alignment. The transmission electron micrography and EBSD results also suggest that grain size is increased by double Si+ self-ion implantations. Although further systematic optimization may be required, the technique will be useful for improving the electrical characteristics of poly-Si devices for future electronic systems on insulators.

  1. The Evolution of Dust in the Multiphase ISM: Grain Destruction Processes

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark

    1999-01-01

    This proposal covered year one of a long term project in which we acquired the necessary hardware and softwaxe needed to calculate grain destruction processes in the interstellar medium (ISM). The long term goal of this research is to develop a model for the dust evolution in the ISM capable of explaining observations of elemental depletions, the grain size distribution, and the emission characteristics of the ISM from the X-ray through the FIR. We purchased a SUN Ultra 10 workstation and peripheral devices including an Exabyte Tape drive, HP Laser Printer, and Seagate External Hard Disk. The PI installed the hardware and Solaris operating system on the workstation and integrated the hardware into the network. Software was also purchased to enable connections to the workstation from a PC (Hummingbird Exceed). Additional freeware required to carry out the proposed program was installed on the system including compilers (g77, gcc, g++), editors (emacs), a markup language (LaTeX), and display programs (WIP, XV, SAOtng). We have also successfully modified the required plot files to work with our system which display the results of grain processing.

  2. Identification of a Compound Spinel and Silicate Presolar Grain in a Chondritic Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2014-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance.

  3. Arbitrary amplitude solitary waves in plasmas with dust grains of opposite polarity and non-thermal ions

    NASA Astrophysics Data System (ADS)

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Pillay, S. R.; Lakhina, G. S.

    2010-08-01

    The existence of large amplitude solitary waves in a plasma comprised of a cold negative dust fluid, adiabatic positive dust fluid, Boltzmann electrons and non-thermal ions is theoretically investigated. Different regions in parameter space that correspond to different values of the ratio of the charge-to-mass ratios of the positive and negative dust grains have been identified where either negative or positive potential solitary wave structures occur and a region where coexistence of negative and positive potential solitary waves is supported.

  4. A multi-wavelength scattered light analysis of the dust grain population in the GG Tau circumbinary ring

    SciTech Connect

    Duchene, G; McCabe, C; Ghez, A; Macintosh, B

    2004-02-04

    We present the first 3.8 {micro}m image of the dusty ring surrounding the young binary system GG Tau, obtained with the W. M. Keck II 10m telescope's adaptive optics system. THis is the longest wavelength at which the ring has been detected in scattered light so far, allowing a multi-wavelength analysis of the scattering proiperties of the dust grains present in this protoplanetary disk in combination with previous, shorter wavelengths, HST images. We find that the scattering phase function of the dust grains in the disk is only weakly dependent on the wavelength. This is inconsistent with dust models inferred from observations of the interstellar medium or dense molecular clouds. In particular, the strongly forward-throwing scattering phase function observed at 3.8 {micro}m implies a significant increase in the population of large ({approx}> 1 {micro}m) grains, which provides direct evidence for grain growth in the ring. However, the grain size distribution required to match the 3.8 {micro}m image of the ring is incompatible with its published 1 {micro}m polarization map, implying that the dust population is not uniform throughout the ring. We also show that our 3.8 {micro}m image of the ring is incompatible with its published 1 {micro}m polarization map, implying that the dust population is not uniform throughout the ring. We also show that our 3.8 {micro}m scattered light image probes a deeper layer of the ring than previous shorter wavelength images, as demonstrated by a shift in the location of the inner edge of the disk's scattered light distribution between 1 and 3.8 {micro}m. We therefore propose a stratified structure for the ring in which the surface layers, located {approx} 50 AU above the ring midplane, contain dust grains that are very similar to those found in dense molecular clouds, while the region of the ring located {approx} 25 AU from the midplane contains significantly larger grains. This stratified structure is likely the result of vertical

  5. Creation of fully vectorized FORTRAN code for integrating the movement of dust grains in interplanetary environments

    NASA Technical Reports Server (NTRS)

    Colquitt, Walter

    1989-01-01

    The main objective is to improve the performance of a specific FORTRAN computer code from the Planetary Sciences Division of NASA/Johnson Space Center when used on a modern vectorizing supercomputer. The code is used to calculate orbits of dust grains that separate from comets and asteroids. This code accounts for influences of the sun and 8 planets (neglecting Pluto), solar wind, and solar light pressure including Poynting-Robertson drag. Calculations allow one to study the motion of these particles as they are influenced by the Earth or one of the other planets. Some of these particles become trapped just beyond the Earth for long periods of time. These integer period resonances vary from 3 orbits of the Earth and 2 orbits of the particles to as high as 14 to 13.

  6. EXPERIMENTAL EVIDENCE FOR WATER FORMATION VIA OZONE HYDROGENATION ON DUST GRAINS AT 10 K

    SciTech Connect

    Mokrane, H.; Chaabouni, H.; Accolla, M.; Congiu, E.; Dulieu, F.; Chehrouri, M.; Lemaire, J. L.

    2009-11-10

    The formation of water molecules from the reaction between ozone (O{sub 3}) and D-atoms is studied experimentally for the first time. Ozone is deposited on non-porous amorphous solid water ice (H{sub 2}O), and D-atoms are then sent onto the sample held at 10 K. HDO molecules are detected during the desorption of the whole substrate where isotope mixing takes place, indicating that water synthesis has occurred. The efficiency of water formation via hydrogenation of ozone is of the same order of magnitude as that found for reactions involving O-atoms or O{sub 2} molecules and exhibits no apparent activation barrier. These experiments validate the assumption made by models using ozone as one of the precursors of water formation via solid-state chemistry on interstellar dust grains.

  7. Dust Diffusion and Settling in the Presence of Collisions: Trapping (sub)micron Grains in the Midplane

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.

    2016-05-01

    In protoplanetary disks, the distribution and abundance of small (sub)micron grains are important for a range of physical and chemical processes. For example, they dominate the optical depth at short wavelengths and their surfaces are the sites of many important chemical reactions, such as the formation of water. Based on their aerodynamical properties (i.e., their strong dynamical coupling with the surrounding gas) it is often assumed that these small grains are well-mixed with the gas. Our goal is to study the vertical (re)distribution of grains taking into account settling, turbulent diffusion, and collisions with other dust grains. Assuming a fragmentation-limited background dust population, we developed a Monte Carlo approach that follows single monomers as they move through a vertical column of gas and become incorporated in different aggregates as they undergo sticking and fragmenting collisions. We find that (sub)micron grains are not necessarily well-mixed vertically, but can become trapped in a thin layer with a scale height that is significantly smaller than that of the gas. This collisional trapping occurs when the timescale for diffusion is comparable to or longer than the collision timescale in the midplane and its effect is strongest when the most massive particles in the size distribution show significant settling. Based on simulations and analytical considerations, we conclude that for typical dust-to-gas ratios and turbulence levels, the collisional trapping of small grains should be a relatively common phenomenon. The absence of trapping could then indicate a low dust-to-gas ratio, possibly because a large portion of the dust mass has been removed through radial drift or is locked up in planetesimals.

  8. Analytical electron microscopy of fine-grained phases in primitive interplanetary dust particles and carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    MacKinnon, Ian D. R.; Rietmeijer, Frans J. M.; McKay, David S.

    1987-05-01

    In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a variety of AEM techniques. Identification of over 250 individual grains within one chondritic porous (CP) IDP shows that most phases could be formed by low temperature processes and that heating of the IDP during atmospheric entry is minimal and less than 600 C. In a review of the mineralogy of IDPs, it was suggested that the occurrence of other silicates such as enstatite whiskers is consistent with the formation in an early turbulent period of the solar nebula. Experimental confirmation of fundamental chemical and physical processes in a stellar environment, such as vapor phase condensation, nucleation, and growth by annealing, is an important aspect of astrophysical models for the evolution of the Solar System. A detailed comparison of chondritic IDP and carbonaceous chondrite mineralogies shows significant differences between the types of silicate minerals as well as the predominant oxides.

  9. Analytical electron microscopy of fine-grained phases in primitive interplanetary dust particles and carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Mackinnon, Ian D. R.; Rietmeijer, Frans J. M.; Mckay, David S.

    1987-01-01

    In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a variety of AEM techniques. Identification of over 250 individual grains within one chondritic porous (CP) IDP shows that most phases could be formed by low temperature processes and that heating of the IDP during atmospheric entry is minimal and less than 600 C. In a review of the mineralogy of IDPs, it was suggested that the occurrence of other silicates such as enstatite whiskers is consistent with the formation in an early turbulent period of the solar nebula. Experimental confirmation of fundamental chemical and physical processes in a stellar environment, such as vapor phase condensation, nucleation, and growth by annealing, is an important aspect of astrophysical models for the evolution of the Solar System. A detailed comparison of chondritic IDP and carbonaceous chondrite mineralogies shows significant differences between the types of silicate minerals as well as the predominant oxides.

  10. Investigation on FTU dust and on the origin of ferromagnetic and lithiated grains

    NASA Astrophysics Data System (ADS)

    De Angeli, M.; Laguardia, L.; Maddaluno, G.; Perelli Cippo, E.; Ripamonti, D.; Apicella, M. L.; Bressan, C.; Caniello, R.; Conti, C.; Ghezzi, F.; Grosso, G.; Mazzitelli, G.

    2015-11-01

    A comprehensive analysis of composition and morphology of metallic micrometric particles collected in FTU during the 2013 shut-down is presented. The data-set analyzed is the result of years of experimental activity in FTU which is a full metal machine since the beginning of operation and with a liquid lithium limiter (LLL) from 2005. It was found that the metallic population, consisting of flakes, smashed and spheroidally shaped particles from plasma facing components (mainly SS and Mo), exhibits an unexpectedly high, up to 70 wt%, fraction of magnetic grains. The change of crystalline phase from γ to α/δ of the iron component contained in the particles coming from stainless steel is suggested as the mechanism responsible for magnetic dust production. This phase change can be ascribed to the particle temperature quench and/or to the presence of a strong magnetic field during the re-solidification of molten stainless steel droplets. In connection to the dust collected close to the LLL, consisting mainly of lithium carbonate spherical-like particles up to a few mm, the mechanism of Li2CO3 formation and its role as a source of C and O impurities are discussed.

  11. Effects of particle optical properties on grain size measurements of aeolian dust deposits

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Szalai, Zoltán

    2015-04-01

    Particle size data are holding crucial information on the sedimentary environment at the time the aeolian dust deposits were accumulated. Various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed from proper grain size distribution data. Laser diffraction methods provide much more accurate and reliable information on the major granulometric properties of wind-blown sediments compared to the sieve and pipette methods. The Fraunhofer and Mie scattering theories are generally used for laser diffraction grain size measurements. () The two different approaches need different 'background' information on the medium measured. During measurements following the Fraunhofer theory, the basic assumption is that parcticles are relatively large (over 25-30 µm) and opaque. The Mie theory could offer more accurate data on smaller fractions (clay and fine silt), assuming that a proper, a'priori knowledge on refraction and absorption indices exists, which is rarely the case for polymineral samples. This study is aimed at determining the effects of different optical parameters on grain size distributions (e.g. clay-content, median, mode). Multiple samples collected from Hungarian red clay and loess-paleosol records have been analysed using a Malvern Mastersizer 3000 laser diffraction particle sizer (with a Hydro LV unit). Additional grain size measurements have been made on a Fritsch Analysette 22 Microtec and a Horiba Partica La-950 v2 instrument to investigate possible effects of the used laser sources with different wavelengths. XRF and XRD measurements have also been undertaken to gain insight into the geochemical/mineralogical compositions of the samples studied. Major findings include that measurements using the Mie theory provide more accurate data on the grain size distribution of aeolian dust deposits, when we use a proper optical setting. Significant

  12. The Herschel Virgo Cluster Survey. III. A constraint on dust grain lifetime in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Clemens, M. S.; Jones, A. P.; Bressan, A.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bomans, D. J.; Boselli, A.; Corbelli, E.; Cortese, L.; Dariush, A.; Davies, J. I.; De Looze, I.; di Serego Alighieri, S.; Fadda, D.; Fritz, J.; Garcia-Appadoo, D. A.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hughes, T. M.; Hunt, L. K.; Madden, S.; Pierini, D.; Pohlen, M.; Sabatini, S.; Smith, M. W. L.; Verstappen, J.; Vlahakis, C.; Xilouris, E. M.; Zibetti, S.

    2010-07-01

    Passive early-type galaxies (ETGs) provide an ideal laboratory for studying the interplay between dust formation around evolved stars and its subsequent destruction in a hot gas. Using Spitzer-IRS and Herschel data we compare the dust production rate in the envelopes of evolved AGB stars with a constraint on the total dust mass. Early-type galaxies which appear to be truly passively evolving are not detected by Herschel. We thus derive a distance independent upper limit to the dust grain survival time in the hostile environment of ETGs of <46±25 Myr for amorphous silicate grains. This implies that ETGs which are detected at far-infrared wavelengths have acquired a cool dusty medium via interaction. Given likely time-scales for ram-pressure stripping, this also implies that only galaxies with dust in a cool (atomic) medium can release dust into the intra-cluster medium. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  13. Separation of mycotoxin-containing sources in grain dust and determination of their mycotoxin potential.

    PubMed Central

    Palmgren, M S; Lee, L S

    1986-01-01

    Two distinct reservoirs of mycotoxins exist in fungal-infected cereal grains--the fungal spores and the spore-free mycelium-substrate matrix. Many fungal spores are of respirable size and the mycelium-substrate matrix can be pulverized to form particles of respirable size during routine handling of grain. In order to determine the contribution of each source to the level of mycotoxin contamination of dust, we developed techniques to harvest and separate mycelium-substrate matrices from spores of fungi. Conventional quantitative chromatographic analyses of separated materials indicated that aflatoxin from Aspergillus parasiticus, norsolorinic acid from a mutant of A. parasiticus, and secalonic acid D from Penicillium oxalicum were concentrated in the mycelium-substrate matrices and not in the spores. In contrast, spores of Aspergillus niger and Aspergillus fumigatus contained significant concentrations of aurasperone C and fumigaclavine C, respectively; only negligible amounts of the toxins were detected in the mycelium-substrate matrices of these two fungi. PMID:3709472

  14. Stochastic Parameterization for Light Absorption by Internally Mixed BC/dust in Snow Grains for Application to Climate Models

    SciTech Connect

    Liou, K. N.; Takano, Y.; He, Cenlin; Yang, P.; Leung, Lai-Yung R.; Gu, Y.; Lee, W- L.

    2014-06-27

    A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.

  15. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    PubMed Central

    2016-01-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090

  16. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of `polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm `carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  17. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry.

    PubMed

    Jones, A P

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of 'polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm 'carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  18. Smoke in the Pipe Nebula: dust emission and grain growth in the starless core FeSt 1-457

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Lada, Charles J.; Lombardi, Marco; Román-Zúñiga, Carlos; Alves, João

    2015-08-01

    Context. The availability of submillimeter dust emission data in an unprecedented number of bands provides us with new opportunities to investigate the properties of interstellar dust in nearby clouds. Aims: The nearby Pipe Nebula is an ideal laboratory to study starless cores. We here aim to characterize the dust properties of the FeSt 1-457 core, as well as the relation between the dust and the dense gas, using Herschel, Planck, 2MASS, ESO Very Large Telescope, APEX-Laboca, and IRAM 30 m data. Methods: We derive maps of submillimeter dust optical depth and effective dust temperature from Herschel data that were calibrated against Planck. After calibration, we then fit a modified blackbody to the long-wavelength Herschel data, using the Planck-derived dust opacity spectral index β, derived on scales of 30' (or ~1 pc). We use this model to make predictions of the submillimeter flux density at 850 μm, and we compare these in turn with APEX-Laboca observations. Our method takes into account any additive zeropoint offsets between the Herschel/Planck and Laboca datasets. Additionally, we compare the dust emission with near-infrared extinction data, and we study the correlation of high-density-tracing N2H+ emission with the coldest and densest dust in FeSt 1-457. Results: A comparison of the submillimeter dust optical depth and near-infrared extinction data reveals evidence for an increased submillimeter dust opacity at high column densities, interpreted as an indication of grain growth in the inner parts of the core. Additionally, a comparison of the Herschel dust model and the Laboca data reveals that the frequency dependence of the submillimeter opacity, described by the spectral index β, does not change. A single β that is only slightly different from the Planck-derived value is sufficient to describe the data, β = 1.53 ± 0.07. We apply a similar analysis to Barnard 68, a core with significantly lower column densities than FeSt 1-457, and we do not find

  19. Millimeter wave surface resistance of grain-aligned Y1Ba2Cu3O(x) bulk material

    NASA Technical Reports Server (NTRS)

    Wosik, J.; Kranenburg, R. A.; Wolfe, J. C.; Selvamanickam, V.; Salama, K.

    1990-01-01

    Measurements are reported of the millimeter-wave surface resistance of grain-aligned YBa2Cu3O(x) bulk material grown by a liquid-phase process. The measurements were performed by replacing the endplate of a TE(011) cylindrical copper cavity with the superconducting sample. Surface resistance was measured for samples with surfaces oriented perpendicular and parallel to the c-axis of the grains. For the parallel configuration, the surface resistance at 77 K and 80 GHz is given. For a very well-aligned sample with a very low density of Y2BaCuO(y) precipitates, measured in the perpendicular configuration, the transition width (10-90 percent) is about 2 K and the surface resistance is derived at 88 K. The effect of microstructure on surface resistance is discussed.

  20. Millimeter wave surface resistance of grain-aligned Y1Ba2Cu3O(x) bulk material

    NASA Technical Reports Server (NTRS)

    Wosik, J.; Kranenburg, R. A.; Wolfe, J. C.; Selvamanickam, V.; Salama, K.

    1991-01-01

    Measurements of the millimeter wave surface resistance of grain-aligned YBa2Cu3O(x) bulk material grown by a liquid phase process are reported. The measurements were performed by replacing the endplate of a TE011 cylindrical copper cavity with the superconducting sample. Surface resistance was measured for samples with surfaces oriented perpendicular and parallel to the c-axis of the grains. It is shown that, for the parallel configuration, the surface resistance at 77 K and 80 GHz is typically near 100 milliohms. For a very well-aligned sample with a very low density of Y2BaCuO(y) precipitates, measured in the perpendicular configuration, the transition width (10-90 percent) is about 2 K, and the surface resistance is less than 50 milliohms at 88 K. The effect of microstructure on surface resistance is discussed.

  1. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Misawa, Ruka; Bernard, Jean-Philippe

    Measuring precisely the faint polarization of the Far-Infrared and sub-millimetre sky is one of the next observational challenges of modern astronomy and cosmology. In particular, detection of the B-mode polarization from the Cosmic Microwave Background (CMB) may reveal the inflationary periods in the very early universe. Such measurements will require very high sensitivity and very low instrumental systematic effects. As for measurements of the CMB intensity, sensitive measurements of the CMB polarization will be made difficult by the presence of foreground emission from our own Milky Way, which is orders of magnitude stronger than the faint polarized cosmological signal. Such foreground emission will have to be understood very accurately and removed from cosmological measurements. This polarized emission is also interesting in itself, since it brings information relevant to the process of star formation, about the orientation of the magnetic field in our Galaxy through the alignment of dust grains. I will first summarize our current knowledge in this field, on the basis of extinction and emission measurements from the ground and airborne experiments and in the context of the recent measurements with the Planck satellite. I will then describe the concept and science goals of the PILOT balloon-borne experiment project (http://pilot.irap.omp.eu). This project is funded by the French space agency (CNES: “Centre National des Etudes Spatiales”) and currently under final assembly and tests. The experiment is dedicated to measuring precisely the linear polarization of the faint interstellar diffuse dust emission in the Far-Infrared in our Galaxy and nearby galaxies. It is composed of a 0.83 m diameter telescope and a Helium 4 deware accommodating the rest of the optics and 2 focal plane arrays with a total of 2048 individual bolometers cooled to 300 mK, developed for the PACS instruments on board the Hershel satellite. It will be operating in two broad photometric

  2. Benchmarking the calculation of stochastic heating and emissivity of dust grains in the context of radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Misselt, Karl; Bianchi, Simone; Lunttila, Tuomas; Pinte, Christophe; Natale, Giovanni; Juvela, Mika; Fischera, Joerg; Fitzgerald, Michael P.; Gordon, Karl; Baes, Maarten; Steinacker, Jürgen

    2015-08-01

    Context. Thermal emission by stochastically heated dust grains (SHGs) plays an important role in the radiative transfer (RT) problem for a dusty medium. It is therefore essential to verify that RT codes properly calculate the dust emission before studying the effects of spatial distribution and other model parameters on the simulated observables. Aims: We define an appropriate problem for benchmarking dust emissivity calculations in the context of RT simulations, specifically including the emission from SHGs. Our aim is to provide a self-contained guide for implementors of such functionality and to offer insight into the effects of the various approximations and heuristics implemented by the participating codes to accelerate the calculations. Methods: The benchmark problem definition includes the optical and calorimetric material properties and the grain size distributions for a typical astronomical dust mixture with silicate, graphite, and PAH components. It also includes a series of analytically defined radiation fields to which the dust population is to be exposed and instructions for the desired output. We processed this problem using six RT codes participating in this benchmark effort and compared the results to a reference solution computed with the publicly available dust emission code DustEM. Results: The participating codes implement different heuristics to keep the calculation time at an acceptable level. We study the effects of these mechanisms on the calculated solutions and report on the level of (dis)agreement between the participating codes. For all but the most extreme input fields, we find agreement within 10% across the important wavelength range 3 μm ≤ λ ≤ 1000 μm. Conclusions: We conclude that the relevant modules in RT codes can and do produce fairly consistent results for the emissivity spectra of SHGs. This work can serve as a reference for implementors of dust RT codes, and it will pave the way for a more extensive benchmark effort

  3. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Cody, G.; Ferrior, T.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grun, E.; Hoppe, P.; Hudson, B.; Kearsley, A.; Lai, B.

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  4. Dust grains in the coma of 67P/Churyumov-Gerasimenko - link with surface properties and cometary activity

    NASA Astrophysics Data System (ADS)

    Capria, M. T.; Ivanovski, S.; Zakharov, W.; Capaccioni, F.; Filacchione, G.; De Sanctis, M. C.; Rotundi, A.; Della Corte, V.; Longobardo, A.; Palomba, E.; Colangeli, L.; Bockelee-Morvan, D.; Erard, S.; Leyrat, C.

    2016-11-01

    The imaging spectrometer VIRTIS and the dust analyzer GIADA, onboard Rosetta, made an extensive observation of the dust particles in the coma of the comet 67P/Churyumov-Gerasimenko. From the analysis of GIADA data, two different kind of particles have been revealed, compact and fluffy with different compositions and dynamical properties. Compact particles are characterized by densities of about 10E3 kg/m3, while fluffy particles have an almost fractal nature, with densities less than 1 kg/m3. In this work we present the initial results of a model linking the dust flux distribution, as obtained from a theoretical thermal nucleus model, with a model describing the dynamics of aspherical grains in the coma. The results are discussed in the context of the latest observations from VIRTIS and GIADA instruments. The 2D nucleus thermal model, when applied to the real shape of the comet, provides the size distribution and physical properties of the emitted grains at different times and location on the surface. The thermal model can simulate grains of various size distribution, composition and physical properties. This information is used as an input for the dust dynamical model that follows the emitted particles in the coma. The main source of heating is the solar illumination. In the dust dynamical model, the grain trajectory of emitted particles remains in a plane perpendicular to the rotational axis and the direction of illumination is taken to be in the same plane (i.e. does not cause transversal forces). The dust particles are assumed to be isothermal convex bodies and temperature changes only induce modest changes in the aerodynamic force (twice higher temperature changes aerodynamic force less than 30%). This study reviews the theoretical values at which temperature difference starts to play a role on the dynamics. We discuss to what extent the particle's temperature affects the terminal velocities of the dust grains in the 67P coma in dependence on their mass and

  5. Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers†

    PubMed Central

    Lei, Huan; Karniadakis, George Em

    2013-01-01

    Sickle red blood cells (SS-RBCs) exhibit heterogeneous cell morphologies (sickle, holly leaf, granular, etc.) in the deoxygenated state due to the polymerization of the sickle hemoglobin. Experimental evidence points to a close relationship between SS-RBC morphology and intracellular aligned hemoglobin polymers. Here, we develop a coarse-grained (CG) stochastic model to represent the growth of the intracellular aligned hemoglobin polymer domain. The CG model is calibrated based on the mechanical properties (Young’s modulus, bending rigidity) of the sickle hemoglobin fibers reported in experiments. The process of the cell membrane transition is simulated for physiologic aligned hemoglobin polymer configurations and mean corpuscular hemoglobin concentration. Typical SS-RBC morphologies observed in experiments can be obtained from the current model as a result of the intracellular aligned hemoglobin polymer development without introducing any further ad hoc assumptions. It is found that the final shape of SS-RBCs is primarily determined by the angular width of the aligned hemoglobin polymer domain, but it also depends, to a lesser degree, on the polymer growth rate and the cell membrane rigidity. Cell morphologies are quantified by structural shape factors, which agree well with experimental results from medical images. PMID:24307912

  6. THREE-DIMENSIONAL LAGRANGIAN TURBULENT DIFFUSION OF DUST GRAINS IN A PROTOPLANETARY DISK: METHOD AND FIRST APPLICATIONS

    SciTech Connect

    Charnoz, Sebastien; Aleon, Jerome

    2011-08-10

    In order to understand how the chemical and isotopic compositions of dust grains in a gaseous turbulent protoplanetary disk are altered during their journey in the disk, it is important to determine their individual trajectories. We study here the dust-diffusive transport using Lagrangian numerical simulations using the popular 'turbulent diffusion' formalism. However, it is naturally expressed in an Eulerian form, which does not allow the trajectories of individual particles to be studied. We present a simple stochastic and physically justified procedure for modeling turbulent diffusion in a Lagrangian form that overcomes these difficulties. We show that a net diffusive flux F of the dust appears and that it is proportional to the gas density ({rho}) gradient and the dust diffusion coefficient D{sub d}: (F = D{sub d} /{rho} x grad({rho})). It induces an inward transport of dust in the disk's midplane, while favoring outward transport in the disk's upper layers. We present tests and applications comparing dust diffusion in the midplane and upper layers as well as sample trajectories of particles with different sizes. We also discuss potential applications for cosmochemistry and smoothed particle hydrodynamic codes.

  7. A NEW DETERMINATION OF THE BINDING ENERGY OF ATOMIC OXYGEN ON DUST GRAIN SURFACES: EXPERIMENTAL RESULTS AND SIMULATIONS

    SciTech Connect

    He, Jiao; Shi, Jianming; Hopkins, Tyler; Vidali, Gianfranco; Kaufman, Michael J.

    2015-03-10

    The energy to desorb atomic oxygen from an interstellar dust grain surface, E{sub des}, is an important controlling parameter in gas-grain models; its value impacts the temperature range over which oxygen resides on a dust grain. However, no prior measurement has been done of the desorption energy. We report the first direct measurement of E{sub des} for atomic oxygen from dust grain analogs. The values of E{sub des} are 1660 ± 60 and 1850 ± 90 K for porous amorphous water ice and for a bare amorphous silicate film, respectively, or about twice the value previously adopted in simulations of the chemical evolution of a cloud. We use the new values to study oxygen chemistry as a function of depth in a molecular cloud. For n = 10{sup 4} cm{sup −3} and G{sub 0} = 10{sup 2} (G{sub 0} = 1 is the average local interstellar radiation field), the main result of the adoption of the higher oxygen binding energy is that H{sub 2}O can form on grains at lower visual extinction A{sub V}, closer to the cloud surface. A higher binding energy of O results in more formation of OH and H{sub 2}O on grains, which are subsequently desorbed by far-ultraviolet radiation, with consequences for gas-phase chemistry. For higher values of n and G{sub 0}, the higher binding energy can lead to a large increase in the column of H{sub 2}O but a decrease in the column of O{sub 2}.

  8. Ion kinetic effects on the wake potential behind a dust grain in a flowing plasma

    SciTech Connect

    Winske, D.; Daughton, W.; Lemons, D. S.; Murillo, M. S.

    2000-06-01

    The structure of the wake potential downstream of a stationary dust grain in a flowing plasma is studied on ion time scales using particle-in-cell simulation methods. The scaling of the wake is investigated as a function of Mach number and other parameters as well as the dimensionality of the system. The results are compared and discussed in relation to various theoretical expressions for the wake. Consistent with theory, in one dimension the wake wavelength scales as M{lambda}{sub De}(1-M{sup 2}){sup -1/2} for M<1, where M is the Mach number and {lambda}{sub De} is the electron Debye length, while no wake forms for M>1. In two dimensions, a wake is formed for both M<1 and M>1, while the wake wavelength scales as M{lambda}{sub De} in both regimes. The amplitude of the wake peaks at M{approx_equal}1 in both the one- and two-dimensional simulations. (c) 2000 American Institute of Physics.

  9. Nonlinear dust-ion acoustic periodic travelling waves in a magnetized plasma with two temperature superthermal electrons and stationary charged dust grains

    NASA Astrophysics Data System (ADS)

    Abdelwahed, H. G.; El-Shewy, E. K.; El-Depsy, A.; EL-Shamy, E. F.

    2017-02-01

    In this research, the nonlinear propagation of dust-ion acoustic (DIA) periodic travelling waves in a dusty plasma consisting of cold ions, stationary charged dust grains, and two temperature superthermal electrons is theoretically studied. A nonlinear Zakharov-Kuznetsov equation, which describes nonlinear dust-ion acoustic waves, is derived using a reductive perturbation method. Furthermore, the bifurcation theory has been employed to study the nonlinear propagation of DIA periodic travelling wave solutions. In the proposed model, the co-existence of both compressive and rarefactive DIA periodic travelling waves are found. The numerical investigations illustrate that the characteristics of nonlinear DIA periodic travelling waves strongly depend on the temperature ratio, both the concentration and the superthermality of cold electrons, the ion cyclotron frequency, the direction cosines of wave vector k along z axis, and the concentration of dusty grains. The present investigation can help in better understanding of nonlinear DIA periodic travelling waves in astrophysical environments with two temperature superthermal electrons such as Saturn's magnetosphere.

  10. Three-dimensional dust-ion-acoustic rogue waves in a magnetized dusty pair-ion plasma with nonthermal nonextensive electrons and opposite polarity dust grains

    SciTech Connect

    Guo, Shimin Mei, Liquan

    2014-08-15

    Dust-ion-acoustic (DIA) rogue waves are investigated in a three-dimensional magnetized plasma containing nonthermal electrons featuring Tsallis distribution, both positive and negative ions, and immobile dust grains having both positive and negative charges. Via the reductive perturbation method, a (3 + 1)-dimensional nonlinear Schrödinger (NLS) equation is derived to govern the dynamics of the DIA wave packets. The modulation instability of DIA waves described by the (3 + 1)-dimensional NLS equation is investigated. By means of the similarity transformation and symbolic computation, both the first- and second-order rogue wave solutions of the (3 + 1)-dimensional NLS equation are constructed in terms of rational functions. Moreover, the dynamics properties and the effects of plasma parameters on the nonlinear structures of rogue waves are discussed in detail. The results could be useful for understanding the physical mechanism of rogue waves in laboratory experiments where pair-ion plasmas with electrons and dust grains can be found.

  11. Stable motions of charged dust grains subject to solar wind, Poynting-Robertson drag, and the mean interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-10-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semi-major axis on secular time scales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semi-major axis.

  12. NanoSIMS STUDIES OF SMALL PRESOLAR SiC GRAINS: NEW INSIGHTS INTO SUPERNOVA NUCLEOSYNTHESIS, CHEMISTRY, AND DUST FORMATION

    SciTech Connect

    Hoppe, Peter; Leitner, Jan; Groener, Elmar; Marhas, Kuljeet K.; Meyer, Bradley S.; Amari, Sachiko

    2010-08-20

    We have studied more than 2000 presolar silicon carbide (SiC) grains from the Murchison CM2 chondrite in the size range 0.2-0.5 {mu}m for C- and Si-isotopic compositions. In a subset of these grains, we also measured N-, Mg-Al-, S-, and Ca-Ti-isotopic compositions as well as trace element concentrations. The overall picture emerging from the isotope data is quite comparable with that of larger grains, except for the abundances of grains from Type II supernovae (SNeII) and low-metallicity asymptotic giant branch (AGB) stars. Especially, the latter are much more abundant among submicrometer-sized grains than among micrometer-sized grains. This implies that SiC grains from lower-than-solar-metallicity AGB stars are on average smaller than those from solar metallicity AGB stars which provided the majority of presolar SiC grains. We identified five grains with large enrichments in {sup 29}Si (up to 3.5x solar) and {sup 30}Si (up to 3.9x solar in three of these grains). These grains are most likely from SNeII. The isotopically light S ({sup 32}S/{sup 34}S of 2x solar) together with the heavy Si in one of these grains suggests that molecule formation precedes macroscopic mixing and dust formation in SNII ejecta. This adds to the complexity of SN mixing calculations and should be considered in future studies. In total, about 2% of the presolar SiC grains in the size range 0.2-0.5 {mu}m appear to come from SNeII. This is about a factor of 2 higher than for micrometer-sized grains and suggests that SNeII, on average, produce smaller SiC grains than solar metallicity AGB stars. The high {sup 29}Si/{sup 30}Si ratio in one of the SN grains suggests that current SN models underestimate the {sup 29}Si production in the C- and Ne-burning regions by about a factor of 2. It is shown that with this adjustment the solar {sup 29}Si/{sup 28}Si ratio can be well reproduced in Galactic chemical evolution models and that a merger of our Galaxy with a low-metallicity satellite some 1.5 Gyr

  13. Study of the Effects of the Electric Field on Charging Measurements on Individual Micron-size Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.

  14. Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255

    NASA Astrophysics Data System (ADS)

    Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Ménard, François; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide; Currie, Thayne; Akiyama, Eiji; Mayama, Satoshi; Follette, Katherine B.; Nakagawa, Takao

    2017-01-01

    We present H-band (1.6 μm) scattered light observations of the transitional disk RX J1615.3-3255, located in the 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 ± 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 μm continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.

  15. Charged Dust Grain Dynamics Subject to Solar Wind, Poynting-Robertson Drag, and the Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-09-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  16. Optical/near-infrared polarization survey of Sh 2-29: Magnetic fields, dense cloud fragmentations, and anomalous dust grain sizes

    SciTech Connect

    Santos, Fábio P.; Franco, Gabriel A. P.; Reis, Wilson; Roman-Lopes, Alexandre; Román-Zúñiga, Carlos G. E-mail: franco@fisica.ufmg.br E-mail: roman@dfuls.cl

    2014-03-01

    Sh 2-29 is a conspicuous star-forming region marked by the presence of massive embedded stars as well as several notable interstellar structures. In this research, our goals were to determine the role of magnetic fields and to study the size distribution of interstellar dust particles within this turbulent environment. We have used a set of optical and near-infrared polarimetric data obtained at OPD/LNA (Brazil) and CTIO (Chile), correlated with extinction maps, Two Micron All Sky Survey data, and images from the Digitized Sky Survey and Spitzer. The region's most striking feature is a swept out interstellar cavity whose polarimetric maps indicate that magnetic field lines were dragged outward, piling up along its borders. This led to a higher magnetic strength value (≈400 μG) and an abrupt increase in polarization degree, probably due to an enhancement in alignment efficiency. Furthermore, dense cloud fragmentations with peak A{sub V} between 20 and 37 mag were probably triggered by its expansion. The presence of 24 μm point-like sources indicates possible newborn stars inside this dense environment. A statistical analysis of the angular dispersion function revealed areas where field lines are aligned in a well-ordered pattern, seemingly due to compression effects from the H II region expansion. Finally, Serkowski function fits were used to study the ratio of the total-to-selective extinction, revealing a dual population of anomalous grain particle sizes. This trend suggests that both effects of coagulation and fragmentation of interstellar grains are present in the region.

  17. Infrared polarimetry of Mrk 231: scattering off hot dust grains in the central core

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Packham, C.; Jones, T. J.; Siebenmorgen, R.; Roche, P. F.; Levenson, N. A.; Alonso-Herrero, A.; Perlman, E.; Ichikawa, K.; Ramos Almeida, C.; González-Martín, O.; Nikutta, R.; Martinez-Paredez, M.; Shenoy, D.; Gordon, M. S.; Telesco, C. M.

    2017-01-01

    We present high-angular (0.17-0.35 arcsec) resolution imaging polarimetric observations of Mrk 231 in the 3.1 μm filter using MMT-Pol on the 6.5-m MMT, and in the 8.7, 10.3, and 11.6 μm filters using CanariCam on the 10.4-m Gran Telescopio CANARIAS. In combination with already published observations, we compile the 1-12 μm total and polarized nuclear spectral energy distribution (SED). The total flux SED in the central 400 pc is explained as the combination of (1) a hot (731 ± 4 K) dusty structure, directly irradiated by the central engine, which is at 1.6 ± 0.1 pc away and attributed to be in the pc-scale polar region, (2) an optically-thick, smooth and disc-like dusty structure (`torus') with an inclination of 48° ± 23° surrounding the central engine, and (3) an extinguished (AV = 36 ± 5 mag) starburst component. The polarized SED decreases from 0.77 ± 0.14 per cent at 1.2 μm to 0.31 ± 0.15 per cent at 11.6 μm and follows a power-law function, λ˜0.57. The polarization angle remains constant (˜108°) in the 1-12 μm wavelength range. The dominant polarization mechanism is explained as scattering-off hot dust grains in the pc-scale polar regions.

  18. The Large-Grained Dust Coma of 174P/Echeclus

    NASA Technical Reports Server (NTRS)

    Bauer, James M.; Choi, Young-Jun; Weissman, Paul R.; Stansberry, John A.; Fernandez, Yanga R.; Roe, Henry G.; Buratti, Bonnie J.; Sung, Hyun-Il

    2008-01-01

    On 2005 December 30, Y.-J. Choi and P. R. Weissman discovered that the formerly dormant Centaur 2000 EC98 was in strong outburst. Previous observations by P. Rousselot et al. spanning a 3-year period indicated a lack of coma down to the 27 mag arcsec 2 level.We present Spitzer Space Telescope MIPS observations of this newly active Centaur--now known as 174P/Echeclus (2000 EC98)--or 60558 Echeclus--taken in 2006 late February. The images show strong signal at both the 24 and 70 micron bands and reveal an extended coma about 2' in diameter. Analyses yield estimates of the coma signal contribution that are in excess of 90% of the total signal in the 24 micron band. Dust production estimates ranging from 1.7-4 x 10(exp 2) kg/s are on the order of 30 times that seen in other Centaurs. Simultaneous visible-wavelength observations were also obtained with Palomar Observatory's 200-inch telescope, the 1.8-m Vatican Advanced Technology Telescope, the Bohyunsan Optical Astronomy Observatory (BOAO) 1.8-m telescope, and Table Mountain Observatory's 0.6-m telescope, revealing a coma morphology nearly identical to the mid-IR observations. The grain size distribution derived from the data yields a log particle mass power-law with slope parameter (alpha) = -0.87 +/- 0.07, and is consistent with steady cometary-activity, such as that observed during the Stardust spacecraft's encounter at 81P/Wild 2, and not with an impact driven event, such as that caused by the Deep Impact experiment.

  19. Generalized polarization force acting on dust grains in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Bentabet, Karima; Mayout, Saliha; Tribeche, Mouloud

    2017-01-01

    The polarization force acting on dust particles in a dusty plasma is revisited within the theoretical framework of the Tsallis statistical mechanics. The generalized nonextensive polarization force expression is derived. As application, the modifications arising in the propagation of dust-acoustic solitary waves, and dust sheath formation are analyzed. Our results should be of wide relevance to explain and interpret the sheath formation and its structure in nonequilibrium plasmas related process such as surface treatments and ion implantation.

  20. Re-evaluation of the chemistry of dust grains in the coma of Comet Halley

    NASA Astrophysics Data System (ADS)

    Mukhin, L.; Dolnikov, G.; Evlanov, E.; Fomenkova, M.; Prilutsky, O.; Sagdeev, R.

    1991-04-01

    The chemical composition of individual grains in the coma of Comet Halley are evaluated here as a function of their mass based on data from the PUMA 1 and 2 mass spectrometers on the Vega mission. It is found that the compositions of heavy and light grains are very different, with light grains being Mg-rich, whereas the mean Mg(+)/SI(+) ratio in heavy grains is similar to CI chrondritic. The marked difference in composition between light and heavy grains indicates that the origin of the two grain populations might be different.

  1. DUST PRODUCTION FACTORIES IN THE EARLY UNIVERSE: FORMATION OF CARBON GRAINS IN RED-SUPERGIANT WINDS OF VERY MASSIVE POPULATION III STARS

    SciTech Connect

    Nozawa, Takaya; Yoon, Sung-Chul; Maeda, Keiichi; Kozasa, Takashi; Nomoto, Ken'ichi; Langer, Norbert

    2014-06-01

    We investigate the formation of dust in a stellar wind during the red-supergiant (RSG) phase of a very massive Population III star with a zero-age main sequence mass of 500 M {sub ☉}. We show that, in a carbon-rich wind with a constant velocity, carbon grains can form with a lognormal-like size distribution, and that all of the carbon available for dust formation finally condenses into dust for wide ranges of the mass-loss rate ((0.1-3) × 10{sup –3} M {sub ☉} yr{sup –1}) and wind velocity (1-100 km s{sup –1}). We also find that the acceleration of the wind, driven by newly formed dust, suppresses the grain growth but still allows more than half of the gas-phase carbon to finally be locked up in dust grains. These results indicate that, at most, 1.7 M {sub ☉} of carbon grains can form during the RSG phase of 500 M {sub ☉} Population III stars. Such a high dust yield could place very massive primordial stars as important sources of dust at the very early epoch of the universe if the initial mass function of Population III stars was top-heavy. We also briefly discuss a new formation scenario of carbon-rich ultra-metal-poor stars, considering feedback from very massive Population III stars.

  2. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries

    PubMed Central

    Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-01-01

    Thin films of the iron-based superconductor BaFe2(As1−xPx)2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (Jc). The Ba122:P film exhibited higher Jc at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe2As2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors. PMID:27833118

  3. Isotopic and elemental compositions of stardust and protosolar dust grains in primitive meteorites

    NASA Astrophysics Data System (ADS)

    Bose, Maitrayee

    This dissertation presents the results and implications of the isotopic and elemental analyses of presolar silicate grains from the primitive chondrites, Acfer 094, SAH 97096, and ALHA77307. Oxygen-anomalous, C-anomalous, and N-anomalous grains were identified by O, C, and N isotopic imaging, respectively, using the NanoSIMS 50. Subsequently, the elemental compositions of the grains carrying the anomalous isotopic signatures were acquired in the PHI 700 Auger Nanoprobe. Some silicate grains with unique O isotopic compositions were measured for Si and Fe isotopes. The isotopic analyses indicate that a majority of the silicate and oxide grains are 17 O-rich with solar to sub-solar 18 O/ 16 O ratios and come from less than 2.2 M⊙ Red Giant or Asymptotic Giant Branch stars. The second most abundant fraction of grains show large 18 O excesses and come from core collapse supernovae. The next most abundant fraction of grains comes from high metallicity AGB stars of approximately solar mass. A minor fraction of the grains exhibit large excesses in 16 O and formed in core collapse supernova ejecta. Grains with extreme 17 O excesses are the latest addition to the presolar grain inventory. These grains may come from binary star systems where one star goes nova. Numerous presolar SiC and N-anomalous carbonaceous grains were identified in the matrix of ALHA77307. The SiC grains are predominantly mainstream grains and may have condensed in 1-3 M⊙ AGB stars. The carbonaceous grains may have formed by ionmolecule reactions in the protosolar nebula or interstellar medium. A few carbonaceous grains exhibit 13C-rich compositions; grains with such compositions are rare, which implies that either the fractionation effects that produce C anomalies in opposite directions cancel them out or secondary processing destroyed grains with C anomalies. The elemental compositions of the silicate grains are predominantly nonstoichiometric (61%), with some grains exhibiting olivine- or pyroxene

  4. Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming

    1995-01-01

    Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.

  5. Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307 - Origins and evidence for diverse, primitive nebular dust components

    NASA Astrophysics Data System (ADS)

    Brearley, A. J.

    1993-04-01

    SEM, TEM, and electron microprobe analysis were used to investigate in detail the mineralogical and chemical characteristics of dark matrix and fine-grained rims in the unequilibrated CO3 chondrite ALHA77307. Data obtained revealed that there was a remarkable diversity of distinct mineralogical components, which can be identified using their chemical and textural characteristics. The matrix and rim components in ALHA77307 formed by disequilibrium condensation process as fine-grained amorphous dust that is represented by the abundant amorphous component in the matrix. Subsequent thermal processing of this condensate material, in a variety of environments in the nebula, caused partial or complete recrystallization of the fine-grained dust.

  6. Active removal of orbital debris by induced hypervelocity impact of injected dust grains

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C.; Velikovich, A.; Rudakov, L.; Chappie, S.

    2014-02-01

    Collisions of an active satellite with a small (1mm - cm) untrackable orbital debris can be mission ending. It has been recently established that we are at the tipping point for collisional cascade of larger objects to exponential growth of small orbital debris. This will make access to near-Earth space hazardous without first clearing the existing debris from this region. We present a concept for elimination of small debris by deploying micron scale dust to artificially enhance the drag on the debris. The key physics that makes this technique viable is the possibility of large momentum boost realized through hypervelocity dust/debris collision. By deploying high mass density micron scale dust in a narrow altitude band temporarily it is possible to artificially enhance drag on debris spread over a very large volume and force rapid reentry. The injected dust will also reenter the atmosphere leaving no permanent residue in space.

  7. Grain physics and infrared dust emission in active galactic nucleus environments

    SciTech Connect

    Hensley, Brandon S.; Ostriker, Jeremiah P.; Ciotti, Luca

    2014-07-01

    We study the effects of a detailed dust treatment on the properties and evolution of early-type galaxies containing central black holes, as determined by active galactic nucleus (AGN) feedback. We find that during cooling flow episodes, radiation pressure on the dust in and interior to infalling shells of cold gas can greatly impact the amount of gas able to be accreted and therefore the frequency of AGN bursts. However, the overall hydrodynamic evolution of all models, including mass budget, is relatively robust to the assumptions on dust. We find that IR re-emission from hot dust can dominate the bolometric luminosity of the galaxy during the early stages of an AGN burst, reaching values in excess of 10{sup 46} erg s{sup –1}. The AGN-emitted UV is largely absorbed, but the optical depth in the IR does not exceed unity, so the radiation momentum input never exceeds L {sub BH}/c. We constrain the viability of our models by comparing the AGN duty cycle, broadband luminosities, dust mass, black hole mass, and other model predictions to current observations. These constraints force us towards models wherein the dust to metals ratios are ≅ 1% of the Galactic value, and only models with a dynamic dust to gas ratio are able to produce both quiescent galaxies consistent with observations and high obscured fractions during AGN 'on' phases. During AGN outbursts, we predict that a large fraction of the FIR luminosity can be attributed to warm dust emission (≅ 100 K) from dense dusty gas within ≤1 kpc reradiating the AGN UV emission.

  8. Grain Physics and Infrared Dust Emission in Active Galactic Nucleus Environments

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon S.; Ostriker, Jeremiah P.; Ciotti, Luca

    2014-07-01

    We study the effects of a detailed dust treatment on the properties and evolution of early-type galaxies containing central black holes, as determined by active galactic nucleus (AGN) feedback. We find that during cooling flow episodes, radiation pressure on the dust in and interior to infalling shells of cold gas can greatly impact the amount of gas able to be accreted and therefore the frequency of AGN bursts. However, the overall hydrodynamic evolution of all models, including mass budget, is relatively robust to the assumptions on dust. We find that IR re-emission from hot dust can dominate the bolometric luminosity of the galaxy during the early stages of an AGN burst, reaching values in excess of 1046 erg s-1. The AGN-emitted UV is largely absorbed, but the optical depth in the IR does not exceed unity, so the radiation momentum input never exceeds L BH/c. We constrain the viability of our models by comparing the AGN duty cycle, broadband luminosities, dust mass, black hole mass, and other model predictions to current observations. These constraints force us towards models wherein the dust to metals ratios are ~= 1% of the Galactic value, and only models with a dynamic dust to gas ratio are able to produce both quiescent galaxies consistent with observations and high obscured fractions during AGN "on" phases. During AGN outbursts, we predict that a large fraction of the FIR luminosity can be attributed to warm dust emission (sime 100 K) from dense dusty gas within <=1 kpc reradiating the AGN UV emission.

  9. Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films with Vertically Aligned Columnar Grains.

    PubMed

    Nguyen, Minh D; Houwman, Evert P; Dekkers, Matthijn; Rijnders, Guus

    2017-03-08

    Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V(-1) was found for a 4-μm film thickness. From a series of films in the thickness range 0.5-5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V(-1) was deduced in the 3.5-4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness.

  10. Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films with Vertically Aligned Columnar Grains

    PubMed Central

    2017-01-01

    Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V–1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5–5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V–1 was deduced in the 3.5–4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness. PMID:28247756

  11. Nature of very small grains - PAH molecules or silicates?. [Polycyclic Aromatic Hydrocarbon in interstellar dust

    NASA Technical Reports Server (NTRS)

    Desert, F. X.; Leger, A.; Puget, J. L.; Boulanger, F.; Sellgren, K.

    1986-01-01

    The predictions of the model of Puget et al. (1985) for the emission from Very Small Grains (VSGs) including both graphitic and silicate components are compared with published 8-13-micron observations of astronomical sources. The VSGs are found to be mainly graphitic and an upper limit is placed on the relative mass of silicates based on lack of the 9.7-micron silicate emission feature on M 82 and NGC 2023. This dissymetry in the composition of VSGs supports the suggestion that they are formed in grain-grain collisions where the behaviors of graphite and silicate grains are expected to be quite different.

  12. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; Abe, L.; Akiyama, E.; Brandner, W.; Brandt, T.; Carson J.; Currie, T.; Egner, S.; Feldt, M.; Grady, Carol A.; Guyon, O.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Henning, T.; Hodapp, K.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G.; Kuzuhara, M.; Kwon, J.; Matsuo, T.; McElwain, M. W.; Mayama, S.

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  13. Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment

    NASA Astrophysics Data System (ADS)

    Börzsönyi, Tamás; Somfai, Ellák; Szabó, Balázs; Wegner, Sandra; Mier, Pascal; Rose, Georg; Stannarius, Ralf

    2016-09-01

    Granular material flowing through bottlenecks, like the openings of silos, tend to clog and thus inhibit further flow. We study this phenomenon in a three-dimensional hopper for spherical and shape-anisotropic particles by means of x-ray tomography. The x-ray tomograms provide information on the bulk of the granular filling, and allows us to determine the particle positions and orientations inside the silo. In addition, it allows us to calculate local packing densities in different parts of the container. We find that in the flowing zone of the silo particles show a preferred orientation and thereby a higher order. Similarly to simple shear flows, the average orientation of the particles is not parallel to the streamlines but encloses a certain angle with it. In most parts of the hopper, the angular distribution of the particles did not reach the one corresponding to stationary shear flow, thus the average orientation angle in the hopper deviates more from the streamlines than in stationary shear flows. In the flowing parts of the silo, shear induced dilation is observed, which is more pronounced for elongated grains than for nearly spherical particles. The clogged state is characterized by a dome, i.e. the geometry of the layer of grains blocking the outflow. The shape of the dome depends on the particle shape.

  14. Locations of stationary/periodic solutions in mean motion resonances according to the properties of dust grains

    NASA Astrophysics Data System (ADS)

    Pástor, P.

    2016-07-01

    The equations of secular evolution for dust grains in mean motion resonances with a planet are solved for stationary points. Non-gravitational effects caused by stellar radiation (the Poynting-Robertson effect and the stellar wind) are taken into account. The solutions are stationary in the semimajor axis, eccentricity and resonant angle, but allow the pericentre to advance. The semimajor axis of stationary solutions can be slightly shifted from the exact resonant value. The periodicity of the stationary solutions in a reference frame orbiting with the planet is proved analytically. The existence of periodic solutions in mean motion resonances means that analytical theory enables infinitely long capture times for dust particles. The stationary solutions are periodic motions to which the eccentricity asymptotically approaches and around which the libration occurs. Initial conditions corresponding to the stationary solutions are successfully found by numerically integrating the equation of motion. Numerically and analytically determined shifts of the semimajor axis from the exact resonance for the stationary solutions are in excellent agreement. The stationary solutions can be plotted by the locations of pericentres in the reference frame orbiting with the planet. The pericentres are distributed in space according to the properties of the dust particles.

  15. Hot Very Small dust Grains in NGC 1068 seen in jet induced structures thanks to VLT/NACO adaptive optics

    NASA Astrophysics Data System (ADS)

    Rouan, D.; Lacombe, F.; Gendron, E.; Gratadour, D.; Clénet, Y.; Lagrange, A.-M.; Mouillet, D.; Boisson, C.; Rousset, G.; Fusco, T.; Mugnier, L.; Séchaud, M.; Thatte, N.; Genzel, R.; Gigan, P.; Arsenault, R.; Kern, P.

    2004-04-01

    We present K, L and M diffraction-limited images of NGC 1068, obtained with NAOS+CONICA at VLT/YEPUN over a 3.5 arcsec × 3.5 arcsec region around the central engine. Hot dust (T_col = 550-650 K) is found to be distributed in three main structurally different regions: (a) in the true nucleus, seen as a quasi-spherical, however slightly NS elongated, core of extremely hot dust, resolved in K and L with respective diameters of ≈5 pc and 8.5 pc; (b) along the North-South direction, according to a spiral arm like structure and a southern tongue; (c) as a set of parallel elongated nodules (wave-like) on each side, albeit mainly at north, of the jet, at a distance of 50 to 70 pc from the central engine. The IR images reveal several structures also clearly observed on either radio maps, mid-IR or HST UV-visible maps, so that a very precise registration of the respective emissions can be done for the first time from UV to 6 cm. These results do support the current interpretion that source (a) corresponds to emission from dust near sublimation temperature delimiting the walls of the cavity in the central obscuring torus. Structure (b) is thought to be a mixture of hot dust and active star forming regions along a micro spiral structure that could trace the tidal mechanism bringing matter to the central engine. Structure c) which was not known, exhibits too high a temperature for ``classical'' grains; it is most probably the signature of transiently heated very small dust grains (VSG): nano-diamonds, which are resistant and can form in strong UV field or in shocks, are very attractive candidates. The ``waves'' can be condensations triggered by jet induced shocks, as predicted by recent models. First estimates, based on a simple VSG model and on a detailed radiative transfer model, do agree with those interpretations, both qualitatively and quantitatively. Based on observations collected at the ESO/Paranal YEPUN telescope, Proposal 70.B-0307(A).

  16. EVOLUTION OF SNOW LINE IN OPTICALLY THICK PROTOPLANETARY DISKS: EFFECTS OF WATER ICE OPACITY AND DUST GRAIN SIZE

    SciTech Connect

    Oka, Akinori; Nakamoto, Taishi; Ida, Shigeru E-mail: nakamoto@geo.titech.ac.jp

    2011-09-10

    Evolution of a snow line in an optically thick protoplanetary disk is investigated with numerical simulations. The ice-condensing region in the disk is obtained by calculating the temperature and the density with the 1+1D approach. The snow line migrates as the mass accretion rate ( M-dot ) in the disk decreases with time. Calculations are carried out from an early phase with high disk accretion rates ( M-dot {approx}10{sup -7} M{sub sun} yr{sup -1}) to a later phase with low disk accretion rates ( M-dot {approx}10{sup -12} M{sub sun} yr{sup -1}) using the same numerical method. It is found that the snow line moves inward for M-dot {approx}>10{sup -10} M{sub sun} yr{sup -1}, while it gradually moves outward in the later evolution phase with M-dot {approx}<10{sup -10} M{sub sun} yr{sup -1}. In addition to the silicate opacity, the ice opacity is taken into consideration. In the inward migration phase, the additional ice opacity increases the distance of the snow line from the central star by a factor of 1.3 for dust grains {approx}< 10 {mu}m in size and of 1.6 for {approx}> 100 {mu}m. It is inevitable that the snow line comes inside Earth's orbit in the course of the disk evolution if the viscosity parameter {alpha} is in the range 0.001-0.1, the dust-to-gas mass ratio is higher than a tenth of the solar abundance value, and the dust grains are smaller than 1 mm. The formation of water-devoid planetesimals in the terrestrial planet region seems to be difficult throughout the disk evolution, which imposes a new challenge to planet formation theory.

  17. COMET 22P/KOPFF: DUST ENVIRONMENT AND GRAIN EJECTION ANISOTROPY FROM VISIBLE AND INFRARED OBSERVATIONS

    SciTech Connect

    Moreno, Fernando; Pozuelos, Francisco; Aceituno, Francisco; Casanova, Victor; Sota, Alfredo

    2012-06-20

    We present optical observations and Monte Carlo models of the dust coma, tail, and trail structures of the comet 22P/Kopff during the 2002 and 2009 apparitions. Dust loss rates, ejection velocities, and power-law size distribution functions are derived as functions of the heliocentric distance using pre- and post-perihelion imaging observations during both apparitions. The 2009 post-perihelion images can be accurately fitted by an isotropic ejection model. On the other hand, strong dust ejection anisotropies are required to fit the near-coma regions at large heliocentric distances (both inbound at r{sub h} = 2.5 AU and outbound at r{sub h} = 2.6 AU) for the 2002 apparition. These asymmetries are compatible with a scenario where dust ejection is mostly seasonally driven, coming mainly from regions near subsolar latitudes at far heliocentric distances inbound and outbound. At intermediate to near-perihelion heliocentric distances, the outgassing would affect much more extended latitude regions, the emission becoming almost isotropic near perihelion. We derived a maximum dust production rate of 260 kg s{sup -1} at perihelion, and an averaged production rate over one orbit of 40 kg s{sup -1}. An enhanced emission rate, also accompanied by a large ejection velocity, is predicted at r{sub h} > 2.5 pre-perihelion. The model has also been extended to the thermal infrared in order to be applied to available trail observations of this comet taken with IRAS and Infrared Space Observatory spacecrafts. The modeled trail intensities are in good agreement with those observations, which is remarkable taking into account that those data are sensitive to dust ejection patterns corresponding to several orbits before the 2002 and 2009 apparitions.

  18. Condition for the formation of micron-sized dust grains in dense molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Hirashita, Hiroyuki; Li, Zhi-Yun

    2013-07-01

    We investigate the condition for the formation of micron-sized grains in dense cores of molecular clouds. This is motivated by the detection of mid-infrared emission from deep inside a number of dense cores, the so-called `coreshine,' which is thought to come from scattering by micron (μm)-sized grains. Based on numerical calculations of coagulation starting from the typical grain-size distribution in the diffuse interstellar medium, we obtain a conservative lower limit to the time t to form μm-sized grains: t/tff > 3(5/S)(nH/105 cm-3)-1/4 (where tff is the free-fall time at hydrogen number density nH in the core and S the enhancement factor of the grain-grain collision cross-section to account for non-compact aggregates). At the typical core density nH = 105 cm-3, it takes at least a few free-fall times to form the μm-sized grains responsible for coreshine. The implication is that those dense cores observed in coreshine are relatively long-lived entities in molecular clouds, rather than dynamically transient objects that last for one free-fall time or less.

  19. Lost in Jupiter's Shadow: Can Resonant Charge Variations Explain Dust Grain Sizes in the Main Ring?

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel; Hamilton, D. P.

    2012-10-01

    Interplanetary impacts onto the tiny moons Metis and Adrastea replenish Jupiter's main ring with dusty ejecta of all sizes. The equilibrium size distribution present in the rings at a given time is a function of production and loss mechanisms, both of which may be vary with particle size. Loss mechanisms include collisions and dynamical processes. Here we explore some of the latter. Grains tend to pick up negative electric charges due to motion through Jupiter's plasma environment, and positive charges from the photoelectric effect of sunlight. The periodic interruption of sunlight in Jupiter's shadow causes the equilibrium electric charge, and hence the Lorentz force, to resonate with the Kepler orbital frequency. The eccentricity increases for grains moving radially inwards during the shadow transit, and decreases when grains move outward in the shadow, hence the azimuthal location of pericenter is important. For smaller grains, the eccentricity increases monotonically until they collide with Jupiter. For much larger grains, precession due to both the Lorentz force and planetary oblateness causes the eccentricity to oscillate periodically. We explore the shadow instability in the main ring for a variety of uniform plasma density models, comparing numerical data with a semi-analytic approximation. We find that the effect of the shadow dwindles in importance for plasma that is either too sparse or too dense. In sparse plasma, the charging timescale slows, limiting the change in electric potential from sunlight to shadow. In dense plasma, charging currents from the plasma overwhelm the photoelectric effect in sunlight, also resulting in a small change in electric potential. Between these two regimes, the shadow resonance efficiently removes grains up to a particular size threshold in the main ring. This size-dependent loss mechanism may contribute to the observed flattening in the size distribution index for smaller grains.

  20. Exploring the wake of a dust particle by a continuously approaching test grain

    SciTech Connect

    Jung, Hendrik Greiner, Franko; Asnaz, Oguz Han; Piel, Alexander; Carstensen, Jan

    2015-05-15

    The structure of the ion wake behind a dust particle in the plasma sheath of an rf discharge is studied in a two-particle system. The wake formation leads to attractive forces between the negatively charged dust and can cause a reduction of the charge of a particle. By evaluating the dynamic response of the particle system to small external perturbations, these quantities can be measured. Plasma inherent etching processes are used to achieve a continuous mass loss and hence an increasing levitation height of the lower particle, so that the structure of the wake of the upper particle, which is nearly unaffected by etching, can be probed. The results show a significant modification of the wake structure in the plasma sheath to one long potential tail.

  1. ISM Dust Grains and N-band Spectral Variability in the Spatially Resolved Subarcsecond Binary UY Aur

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Greene, Thomas P.; Males, Jared R.; Beck, Tracy L.

    2010-03-01

    The 10 μm silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries (lsim3''; <~ 420 AU) at the distances of the nearest star-forming regions (~140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0farcs88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR, and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk. The observations reported here were partially obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.

  2. The magnetized sheath of a dusty plasma with nanosize dust grains

    SciTech Connect

    Mehdipour, H.; Foroutan, G.

    2010-08-15

    The magnetized sheath of a dusty plasma is investigated via numerical simulations of stationary multifluid equations by taking into account the electric, magnetic, gravitational, ion drag, neutral drag, and thermophoretic forces. Dependence of the sheath properties on the characteristics of the magnetic field and plasma parameters is explored. The sheath dynamics is mainly governed by the electric and ion drag forces and the effect of gravitation is negligible. The sheath demonstrates a nonmonotonic behavior against variations of the magnetic intensity and its angle of incidence. The sheath thickness and the maximum of dust density distribution decrease with increasing the ion to electron density ratio at the sheath edge, but increase with growing electron temperature and the positive temperature gradient of the neutrals. The effects of ion drag are similar to those of the gravitational force as both of them accelerate the dust to the wall. By a suitable configuration of the temperature gradient in the neutral gas, thermophoretic force can be utilized to deposit the building units of nanostructures on a substrate or remove any unwanted contaminant from its neighborhood.

  3. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  4. The Formation of the Primitive Star SDSS J102915+172927: Effect of the Dust Mass and the Grain-size Distribution

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Grassi, T.; Schleicher, D. R. G.; Banerjee, R.

    2016-12-01

    Understanding the formation of the extremely metal-poor star SDSS J102915+172927 is of fundamental importance to improve our knowledge on the transition between the first and second generation of stars in the universe. In this paper, we perform three-dimensional cosmological hydrodynamical simulations of dust-enriched halos during the early stages of the collapse process including a detailed treatment of the dust physics. We employ the astrochemistry package krome coupled with the hydrodynamical code enzo assuming grain-size distributions produced by the explosion of core-collapse supernovae (SNe) of 20 and 35 M ⊙ primordial stars, which are suitable to reproduce the chemical pattern of the SDSS J102915+172927 star. We find that the dust mass yield produced from Population III SNe explosions is the most important factor that drives the thermal evolution and the dynamical properties of the halos. Hence, for the specific distributions relevant in this context, the composition, the dust optical properties, and the size range have only minor effects on the results due to similar cooling functions. We also show that the critical dust mass to enable fragmentation provided by semi-analytical models should be revised, as we obtain values one order of magnitude larger. This determines the transition from disk fragmentation to a more filamentary fragmentation mode, and suggests that likely more than one single SN event or efficient dust growth should be invoked to get such high dust content.

  5. Contribution of Asian dust and volcanic material to the western Philippine Sea over the last 220 kyr as inferred from grain size and Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Jiang, Fuqing; Zhou, Ye; Nan, Qingyun; Zhou, Yu; Zheng, Xufeng; Li, Tiegang; Li, Anchun; Wang, Hongli

    2016-09-01

    Asian dust and volcanogenic materials are two major components in the northwestern Pacific. Quantitatively distinguishing them and estimating their mass accumulation rates (MARs) are very important for understanding regional and global climate change. Here we present the grain-size composition of detrital sediments and the radiogenic strontium (Sr) and neodymium (Nd) isotopic compositions of different grain-size fractions of detrital sediments that were recovered from the western Philippine Sea. These new records show that the different grain-size distributions can be associated with 1) Asian dust from the western and central Chinese deserts and Chinese loess and 2) volcanogenic materials that were derived from the Luzon Islands. The MARs of this Asian dust and volcanic materials are obtained by using Weibull-function fitting. The MARs of Asian dust and volcanic materials are coupled with the glacial-interglacial cycle; these values are found to have been higher and more variable during the glacial period than during the interglacial period. We argue that the strengthening aridity of the Asian continent, which is connected to solar insolation and ice volume variations from orbital eccentricity, constitutes an important mechanism that drives the high MARs of glacial dust in the western Philippine Sea. The internal positive feedback of dust may be another important mechanism. The significant increase in volcanic material during the glacial period was caused by sea level changes, which were driven by the ice volume and solar insolation at high latitudes, and by strengthened precipitation from the El Niño/Southern Oscillation (ENSO), which is driven by orbital eccentricity and precession cycles on the Luzon Islands.

  6. Circumstellar dust

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1986-01-01

    The presence of dust in the general interstellar medium is inferred from the extinction, polarization, and scattering of starlight; the presence of dark nebulae; interstellar depletions; the observed infrared emission around certain stars and various types of interstellar clouds. Interstellar grains are subject to various destruction mechanisms that reduce their size or even completely destroy them. A continuous source of newly formed dust must therefore be present for dust to exist in the various phases of the interstellar medium (ISM). The working group has the following goals: (1) review the evidences for the formation of dust in the various sources; (2) examine the clues to the nature and composition of the dust; (3) review the status of grain formation theories; (4) examine any evidence for the processing of the dust prior to its injection into the interstellar medium; and (5) estimate the relative contribution of the various sources to the interstellar dust population.

  7. A comparative study of the grain-size distribution of surface dust and stormwater runoff quality on typical urban roads and roofs in Beijing, China.

    PubMed

    Shen, Zhenyao; Liu, Jin; Aini, Guzhanuer; Gong, Yongwei

    2016-02-01

    The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 μm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (<38 μm) contributed most on roofs (23.46-41.71 %). Event-mean concentrations (EMCs) and FF30 values for most runoff pollutants tended to be higher on roofs than on roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 μm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 μm) are likely the main source of dissolved pollutants.

  8. Dust-grain scattering of X-rays observed during the lunar occultation of a transient X-ray source near the Galactic center

    SciTech Connect

    Mitsuda, K.; Takeshima, T.; Kii, T.; Kawai, N. Institute of Physical and Chemical Research, Wako )

    1990-04-01

    Extended X-ray emission surrounding point X-ray sources has been detected in the energy band 1-10 keV during lunar occultation observations of the Galactic center region. These extended X-rays are most likely due to X-ray scattering by interstellar dust grains. The spatial size and the intensity of the extended emission around the transient X-ray source GS 1741.2-2859/1741.6-2849 have been studied extensively. The spatial size is consistent with the typical grain size of about 0.06 micron. The intensity is used to obtain the energy dependence of the scattering optical depth to the source, which suggests the existence of iron in the grains. The ratio of the iron column density contained in the grains to the hydrogen column density of the neutral gas is roughly consistent with the cosmic abundance of iron. 30 refs.

  9. Ultrahigh charging of dust grains by the beam−plasma method for creating a compact neutron source

    SciTech Connect

    Akishev, Yu. S. Karal’nik, V. B.; Petryakov, A. V.; Starostin, A. N.; Trushkin, N. I.; Filippov, A. V.

    2016-01-15

    Generation of high-voltage high-current electron beams in a low-pressure (P = 0.1–1 Torr) gas discharge is studied experimentally as a function of the discharge voltage and the sort and pressure of the plasma-forming gas. The density of the plasma formed by a high-current electron beam is measured. Experiments on ultrahigh charging of targets exposed to a pulsed electron beam with an energy of up to 25 keV, an electron current density of higher than 1 A/cm{sup 2}, a pulse duration of up to 1 μs, and a repetition rate of up to 1 kHz are described. A numerical model of ultrahigh charging of dust grains exposed to a high-energy electron beam is developed. The formation of high-energy positive ions in the field of negatively charged plane and spherical targets is calculated. The calculations performed for a pulse-periodic mode demonstrate the possibility of achieving neutron yields of higher than 10{sup 6} s{sup –1} cm{sup –2} in the case of a plane target and about 10{sup 9} s{sup –1} in the case of 10{sup 3} spherical targets, each with a radius of 250 μm.

  10. Spin-related magnetism of interstellar grains

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.; De, B. R.

    1978-01-01

    The magnetic dipole moments and internal magnetic fields due to the spin of electrically charged elongated nonmagnetic interstellar grains in kinetic equilibrium with their surroundings are computed for the grain-size range from 0.01 to 1.0 micron. It is shown that the induced magnetic moments and internal magnetic fields of charged spinning nonmagnetic grains of arbitrary composition and prolate spheroidal shape can be appreciable, possibly even exceeding 0.01 emu/cu cm for 0.01-micron grains. The results indicate that virtually all grains smaller than 0.1 micron in mean diameter, and all elongated grains smaller than about 1 micron in length, are immersed in local magnetic fields due to spin that are much larger than the ambient galactic field. Some implications of this effect are discussed in relation to the polarization of starlight by aligned dust grains and the primordial remanent magnetization found in primitive carbonaceous chondrites.

  11. GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE

    SciTech Connect

    Kataoka, Akimasa; Dullemond, Cornelis P; Muto, Takayuki; Momose, Munetake; Tsukagoshi, Takashi

    2016-03-20

    The millimeter-wave polarization of the protoplanetary disk around HL Tau has been interpreted as the emission from elongated dust grains aligned with the magnetic field in the disk. However, the self-scattering of thermal dust emission may also explain the observed millimeter-wave polarization. In this paper, we report a modeling of the millimeter-wave polarization of the HL Tau disk with the self-polarization. Dust grains are assumed to be spherical and to have a power-law size distribution. We change the maximum grain size with a fixed dust composition in a fixed disk model to find the grain size to reproduce the observed signature. We find that the direction of the polarization vectors and the polarization degree can be explained with the self-scattering. Moreover, the polarization degree can be explained only if the maximum grain size is ∼150 μm. The obtained grain size from the polarization is different from that which has been previously expected from the spectral index of the dust opacity coefficient (a millimeter or larger) if the emission is optically thin. We discuss that porous dust aggregates may solve the inconsistency of the maximum grain size between the two constraints.

  12. FORMATION OF SiC GRAINS IN PULSATION-ENHANCED DUST-DRIVEN WIND AROUND CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Yasuda, Yuki; Kozasa, Takashi

    2012-02-01

    We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich asymptotic giant branch (C-rich AGB) stars to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process: one is the local thermal equilibrium (LTE) case where the vibration temperature of SiC clusters T{sub v} is equal to the gas temperature as usual, and another is the non-LTE case in which T{sub v} is assumed to be the same as the temperature of small SiC grains. The results of the hydrodynamical calculations for a model with stellar parameters of mass M{sub *} = 1.0 M{sub Sun }, luminosity L{sub *} = 10{sup 4} L{sub Sun }, effective temperature T{sub eff} = 2600 K, C/O ratio = 1.4, and pulsation period P = 650 days show the following: in the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains, and the resulting averaged mass ratio of SiC to carbon grains of {approx}10{sup -8} is too small to reproduce the value of 0.01-0.3, which is inferred from the radiative transfer models. On the other hand, in the non-LTE case, the formation region of the SiC grains is more internal and/or almost identical to that of the carbon grains due to the so-called inverse greenhouse effect. The mass ratio of SiC to carbon grains averaged at the outer boundary ranges from 0.098 to 0.23 for the sticking probability {alpha}{sub s} = 0.1-1.0. The size distributions with the peak at {approx}0.2-0.3 {mu}m in radius cover the range of size derived from the analysis of the presolar SiC grains. Thus, the difference between the temperatures of the small cluster and gas plays a crucial role in the formation process of SiC grains around C-rich AGB stars, and this aspect should be explored for the formation process of dust grains in astrophysical environments.

  13. Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport

    NASA Astrophysics Data System (ADS)

    Aléon, Jérôme; Chaussidon, Marc; Marty, Bernard; Schütz, Lothar; Jaenicke, Ruprecht

    2002-10-01

    Oxygen isotope compositions were measured by ion microprobe in individual micrometer-sized quartz grains extracted from one aerosol sample collected on the Cape Verde Islands and from four surface samples (three soils and one sediment) representing potential source regions of aerosols in Western and Central Africa (Morocco, Algeria, Niger, and Chad). A large range of δ 18O values, from +6.2‰ to +39.3‰ is present within the aerosol quartz grains. The different size fractions of the quartz grains from the surface samples overlap nearly entirely this range but show significant differences in their δ 18O distributions for the different size fractions of the grains (i.e., different modes, different proportions of grains with low or high δ 18O, ...). These differences in δ 18O distributions can be related to different geological formations (i.e., mantle-derived magmatic rocks, crustal magmatic rocks, or sedimentary rocks) outcropping in each region, thus giving a fingerprint of the source region. Quartz grains with unusually high δ 18O values between +30‰ and +40‰ were attributed to lacustrine cherts formed in evaporitic environments (Chad basin). The existence of distinct δ 18O distributions for the surface samples, which reflect regional geology but indicate some transport of the grains, enables the characterization of mixing processes during dust emission in the atmosphere. Particles are mixed at a regional scale in the dust reservoir, but injection of fine particles into the high troposphere occurs as a discrete and localized event with no mixing during the subsequent long-range transport by the easterlies. The comparison of the δ 18O distribution of the quartz from the aerosol sample with the equivalent size fractions in surface samples shows that the Niger area is the more probable source region for the aerosol although the Moroccan source cannot be excluded. This method gives a valuable tool to trace the source region of dust into the atmosphere or

  14. Will Organic Synthesis Within Icy Grains or on Dust Surfaces in the Primitive Solar Nebula Completely Erase the Effects of Photochemical Self Shielding?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    There are at least 3 separate photochemical self-shielding models with different degrees of commonality. All of these models rely on the selective absorption of (12))C(16)O dissociative photons as the radiation source penetrates through the gas allowing the production of reactive O-17 and O-18 atoms within a specific volume. Each model also assumes that the undissociated C(16)O is stable and does not participate in the chemistry of nebular dust grains. In what follows we will argue that this last, very important assumption is simply not true despite the very high energy of the CO molecular bond.

  15. Constraint on the Polarization of Electric Dipole Emission from Spinning Dust

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.; Martin, P. G.

    2013-12-01

    Planck results have revealed that the electric dipole emission from polycyclic aromatic hydrocarbons (PAHs) is the most reliable explanation for the anomalous microwave emission that interferes with cosmic microwave background (CMB) radiation experiments. The emerging question is to what extent this emission component contaminates the polarized CMB radiation. We present constraints on polarized dust emission for the model of grain-size distribution and grain alignment that best fits the observed extinction and polarization curves. Two stars with a prominent polarization feature at λ = 2175 Å—HD 197770 and HD 147933-4—are chosen for our study. For HD 197770, we find that the model with aligned silicate grains plus weakly aligned PAHs can successfully reproduce the 2175 Å polarization feature; in contrast, for HD 147933-4, we find that the alignment of only silicate grains can account for that feature. The alignment function of PAHs for the best-fit model to the HD 197770 data is used to constrain polarized spinning dust emission. We find that the degree of polarization of spinning dust emission is about 1.6% at frequency ν ≈ 3 GHz and declines to below 0.9% for ν > 20 GHz. We also predict the degree of polarization of thermal dust emission at 353 GHz to be P em ≈ 11% and 14% for the lines of sight to the HD 197770 and HD 147933-4 stars, respectively.

  16. Dust grain oscillations in two-dimensional hexagonal dusty plasma crystals in the presence of a magnetic field

    SciTech Connect

    Farokhi, B.; Shahmansouri, M.; Shukla, P. K.

    2009-06-15

    The influence of a constant magnetic field on the propagation of dust-lattice waves in a two-dimensional hexagonal strongly coupled dusty plasma crystal is considered. The expression for the wave dispersion relation clearly shows that high- and low-frequency dust lattice vibrations exist as a result of the coupling between the longitudinal and transverse dust lattice modes due to the Lorentz force acting on the charged dust particles. It is found that in an external magnetic field the damping rate of the high-frequency (low-frequency) dust lattice wave is increased (decreased). For special values of the wave number and the direction of the wave propagation, the imaginary part of low-frequency is zero and the imaginary part of high-frequency attains a maximum value. The present investigation indicates that the damping rates depend on direction of the external magnetic field. The polarization of dust lattice wave modes is found for different magnetic field strengths and for different directions.

  17. A Novel Dust Telescope

    NASA Astrophysics Data System (ADS)

    Grün, E.; Srama, R.; Krüger, H.; Kempf, S.; Harris, D.; Conlon, T.; Auer, S.

    2001-11-01

    Dust particles in space, like photons, are born at remote sites in space and time. From knowledge of the dust particles' birthplace and the particles' bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is carried out by means of a dust telescope on a dust observatory in space. A dust telescope is a combination of a dust trajectory sensor together with a chemical composition analyzer for dust particles. A novel dust telescope is described. It consists of a highly sensitive dust trajectory sensor, and a large area chemical dust analyzer. It can provide valuable information about the particles' birthplace which may not be accessible by other techniques. Dust particles' trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through an appropriately configured electrode systems. After the successful identification of a few charged micron-sized dust grains in space by the Cassini Cosmic Dust Analyzer, this dust telescope has a ten fold increased sensitivity of charge detection (10-16 Coulombs) and will be able to obtain trajectories for sub-micron sized dust grains. State-of-the art dust chemical analyzers have sufficient mass resolution to resolve ions with atomic mass numbers above 100. However, since their impact areas are small they can analyze statistically meaningful numbers of grains only in the dust-rich environments of comets or ringed planets. Therefore, this dust telescope includes a large area (0.1 m2) chemical dust analyzer of mass resolution > 100 that will allow us to obtain statistically significant measurements of interplanetary and interstellar dust grains in space.

  18. VERY LARGE TELESCOPE/NACO POLARIMETRIC DIFFERENTIAL IMAGING OF HD100546-DISK STRUCTURE AND DUST GRAIN PROPERTIES BETWEEN 10 AND 140 AU

    SciTech Connect

    Quanz, Sascha P.; Schmid, Hans Martin; Meyer, Michael R.; Geissler, Kerstin; Henning, Thomas; Brandner, Wolfgang; Wolf, Sebastian

    2011-09-01

    We present polarimetric differential imaging (PDI) data of the circumstellar disk around the Herbig Ae/Be star HD100546 obtained with Very Large Telescope/NACO. We resolve the disk in polarized light in the H and K{sub s} filter between {approx}0.''1 and 1.''4 (i.e., {approx}10-140 AU). The innermost disk regions are directly imaged for the first time and the mean apparent disk inclination and position angle are derived. The surface brightness along the disk major axis drops off roughly with S(r){proportional_to}r {sup -3} but has a maximum around 0.''15 suggesting a marginal detection of the main disk inner rim at {approx}15 AU. We find a significant brightness asymmetry along the disk minor axis in both filters with the far side of the disk appearing brighter than the near side. This enhanced backward scattering and a low total polarization degree of the scattered disk flux of 14{sup +19}{sub -8}% suggest that the dust grains on the disk surface are larger than typical interstellar medium grains. Empirical scattering functions reveal the backward scattering peak at the largest scattering angles and a second maximum for the smallest scattering angles. This indicates a second dust grain population preferably forward scattering and smaller in size. It shows that, relatively, in the inner disk regions (40-50 AU) a higher fraction of larger grains is found compared to the outer disk regions (100-110 AU). Finally, our images reveal distinct substructures between 25 and 35 AU physical separation from the star and we discuss the possible origin for the two features in the context of ongoing planet formation.

  19. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  20. Cassiopeia A: dust factory revealed via submillimetre polarimetry

    NASA Astrophysics Data System (ADS)

    Dunne, L.; Maddox, S. J.; Ivison, R. J.; Rudnick, L.; Delaney, T. A.; Matthews, B. C.; Crowe, C. M.; Gomez, H. L.; Eales, S. A.; Dye, S.

    2009-04-01

    If Type II supernovae - the evolutionary end points of short-lived, massive stars - produce a significant quantity of dust (>0.1Msolar) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre (submm) observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type II supernovae. In this paper, we present new data which show that the submm emission from Cas A is polarized at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarized submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarization in this way and so we attribute the excess polarized submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarized and unpolarized dust emission in the north of the remnant where there is no contamination from foreground molecular clouds. The inferred dust polarization fraction is unprecedented (fpol ~ 30 per cent) which, coupled with the brief time-scale available for grain alignment (<300yr), suggests that supernova dust differs from that seen in other Galactic sources (where fpol = 2-7 per cent) or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.

  1. Tectonic and climatic controls on provenance changes of fine-grained dust on the Chinese Loess Plateau since the late Oligocene

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Ma, Long; Sun, Youbin

    2017-03-01

    Provenance variations of Late Cenozoic aeolian deposits on the Chinese Loess Plateau (CLP) were closely associated with regional tectonic activity and climatic change. Previous studies, however, have not reached a consensus regarding the nature and origin of past variations in source. This study presents the results of oxygen isotope (δ18O) analyses of fine-grained quartz (<16 μm) extracted from aeolian deposits on the CLP since the late Oligocene. The quartz δ18O variations exhibit distinct trends and patterns of variation over six time intervals (i.e. 25-20, 20-12, 12-7, 7-2.6, 2.6-1.2, and 1.2-0 Ma). In comparison with quartz δ18O results from East Asian dust sources and previous provenance studies of the same aeolian sequences, we identify three significant composition changes of the dust source system at around 20, 12, and 2.6 Ma. The dust source system was also rather unstable at 25-20, 12-7 and 1.2-0 Ma, while three stable stages occurred at 20-12, 7-2.6, and 2.6-1.2 Ma. The correlation between the provenance changes and paleoclimatic and tectonic evidence suggests that both tectonic and climatic factors were important in driving the observed stepwise provenance changes. However, the changes were mainly constrained by Tibetan Plateau uplift prior to the Quaternary, and by global climate change thereafter.

  2. The influence of dry lakebeds, degraded sandy grasslands and abandoned farmland in the arid inlands of northern China on the grain size distribution of East Asian aeolian dust

    NASA Astrophysics Data System (ADS)

    Yang, Li-Rong; Yue, Le-Ping; Li, Zhi-Pei

    2008-02-01

    Dry lakes, degraded sandy grasslands, abandoned farmland and mobile dunes which are widely distributed throughout the arid areas of northern China have been investigated in this work. Gain-size distribution of the surface sediments of Manas lake in Junggar basin, Juyan lake in the Alxa plateau, Zhuye lake in Minqin basin and most deserts (such as Mu Us desert, Otindag desert, Horqin desert and Hulun Buir desert) in China have been analyzed. The results show clay with particle sized <10 μm on the surface sediments of dry lakebed and sandy grassland developed from dry lakebed, respectively, account for >60% and ˜50% of the total mass. Since the tiny particles on the surface of abandoned farmland are blown away easily and rapidly, the content of clay particles in Minqin basin is <14%. The grain-size distribution of mobile dunes in northern China mainly consists of particles >63 μm and few particles <10 μm. Consequently, although sand/dust storms originate primarily in the western deserts, the gobi areas of the Alxa plateau, the north and east of Hexi Corridor and in central Mongolia, the widely distributed dry lakebeds, sandy grasslands and abandoned farmland adjacent to the deserts also contribute to aeolian dusts. Hence, the material sources for sand dust storm in East Asia include inland deserts, but also dry lakes, sandy grasslands and abandoned farmland, which are widely distributed throughout the arid inlands of northern China.

  3. On the unconstrained expansion of a spherical plasma cloud turning collisionless: case of a cloud generated by a nanometre dust grain impact on an uncharged target in space

    NASA Astrophysics Data System (ADS)

    Pantellini, F.; Landi, S.; Zaslavsky, A.; Meyer-Vernet, N.

    2012-04-01

    Nano and micrometre sized dust particles travelling through the heliosphere at several hundreds of km s-1 have been repeatedly detected by interplanetary spacecraft. When such fast moving dust particles hit a solid target in space, an expanding plasma cloud is formed through the vaporization and ionization of the dust particles itself and part of the target material at and near the impact point. Immediately after the impact the small and dense cloud is dominated by collisions and the expansion can be described by fluid equations. However, once the cloud has reached μm dimensions, the plasma may turn collisionless and a kinetic description is required to describe the subsequent expansion. In this paper we explore the late and possibly collisionless spherically symmetric unconstrained expansion of a single ionized ion-electron plasma using N-body simulations. Given the strong uncertainties concerning the early hydrodynamic expansion, we assume that at the time of the transition to the collisionless regime the cloud density and temperature are spatially uniform. We also neglect the role of the ambient plasma. This is a reasonable assumption as long as the cloud density is substantially higher than the ambient plasma density. In the case of clouds generated by fast interplanetary dust grains hitting a solid target, some 107 electrons and ions are liberated and the in vacuum approximation is acceptable up to meter order cloud dimensions. As such a cloud can be estimated to become collisionless when its radius has reached μm order dimensions, both the collisionless approximation and the in vacuum approximation are expected to hold during a long lasting phase as the cloud grows by a factor 106. With these assumptions, we find that the transition from the collisional to the collisionless regime could occur when the electron Debye length λD within the cloud is much smaller than the cloud radius R0, i.e. Λ ≡ λD/R0 ≪ 1. This implies a quasi-neutral expansion regime

  4. Stardust Interstellar Preliminary Examination X: Impact Speeds and Directions of Interstellar Grains on the Stardust Dust Collector

    NASA Technical Reports Server (NTRS)

    Sterken, Veerle J.; Westphal, Andrew J.; Altobelli, Nicolas; Grun, Eberhard; Hillier, Jon K.; Postberg, Frank; Allen, Carlton; Stroud, Rhonda M.; Sandford, S. A.; Zolensky, Michael E.

    2014-01-01

    On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (less than 10 km per second) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta greater than 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 grams per cubic centimeter, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations.

  5. LACK OF INTERACTION BETWEEN THE DUST GRAINS AND THE ANOMALOUS RADIO JET IN THE NEARBY SPIRAL GALAXY NGC 4258

    SciTech Connect

    Laine, Seppo; Krause, Marita; Tabatabaei, Fatemeh S.; Siopis, Christos E-mail: mkrause@mpifr-bonn.mpg.d E-mail: christos.siopis@ulb.ac.b

    2010-10-15

    We obtained Spitzer/IRAC 3.6-8 {mu}m images of the nearby spiral galaxy NGC 4258 to study possible interactions between dust and the radio jet. In our analysis, we also included high-resolution radio continuum, H{alpha}, CO, and X-ray data. Our data reveal that the 8 {mu}m emission, believed to originate largely from polycyclic aromatic hydrocarbon molecules and hot dust, is an excellent tracer of the normal spiral structure in NGC 4258, and hence it originates from the galactic plane. We investigated the possibility of dust destruction by the radio jet by calculating correlation coefficients between the 8 {mu}m and radio continuum emissions along the jet in two independent ways, namely, (1) from wavelet-transformed maps of the original images at different spatial scales and (2) from one-dimensional intensity cuts perpendicular to the projected path of the radio jet on the sky. No definitive sign of a correlation (or anticorrelation) was detected on relevant spatial scales with either approach, implying that any dust destruction must take place at spatial scales that are not resolved by our observations.

  6. From dust to life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    After initially challenging the dirty-ice theory of interstellar grains, Fred Hoyle and the present author proposed carbon (graphite) grains, mixtures of refractory grains, organic polymers, biochemicals and finally bacterial grains as models of interstellar dust. The present contribution summarizes this trend and reviews the main arguments supporting a modern version of panspermia.

  7. Influence of oxygen deficiency on the superconductive properties of grain-aligned YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Ossandon, J. G.; Thompson, J. R.; Christen, D. K.; Sales, B. C.; Kerchner, H. R.; Thomson, J. O.; Sun, Y. R.; Lay, K. W.; Tkaczyk, J. E.

    1992-06-01

    Magnetically aligned samples of sintered YBa2Cu3O7-δ were used to test the effects of oxygen-deficiency δ (with δ<=0.2) on the superconductive magnetization M, critical current density Jc, irreversibility field Birr, upper critical field Hc2, coherence length ξ, condensation energy Fc, penetration depth λ, and related properties as a function of temperature T and applied field H∥c. In selected cases, studies were also made with H∥ab. The O content was monitored in situ by thermogravimetric analysis. The open porosity and granularity of the material allowed rapid and homogeneous oxygenation. We found no significant enhancement of intragrain Jc with chain-site O defects. With few exceptions, maximum Jc occurred at full oxygenation. This implies that chain-site O defects are not strong or effective pinning centers over most of the field-temperature regime investigated. Except for Tc, which was practically independent of δ within the interval 0<=δ<=0.11 (so called ``90-K Tc plateau''), most properties such as Jc, Fc, Hc2, Birr(T), λ, and ξ were strongly and continuously influenced by the O deficiency. The observed abnormal magnetization with Hc was weak at low T but became more pronounced as T and δ increased. No abnormal magnetization was detected with Hab. As oxygen was removed, Birr(T) and Hc2(T) separated, and both lines shifted to lower T and lower B. Moreover, Birr was strongly correlated with Jc at low temperature. Determination of the thermodynamic critical field Hc yielded condensation energies Fc(δ) that were well correlated with Jc(δ). The results indicate that O defects weaken the energy barrier of the existing pinning sites and have a negative overall effect on the capacity of YBa2Cu3O7-δ to carry loss-free currents.

  8. Investigation of the sheath formation in a dusty plasma containing energetic electrons and nano-size dust grains

    SciTech Connect

    Foroutan, G.; Akhoundi, A.

    2012-10-15

    Numerical simulations of the stationary multi-fluid equations are used to study the structure of a dusty plasma sheath in the presence of a beam of energetic electrons. It is found that even a small number of energetic electrons can strongly modify the sheath parameters, specially the sheath thickness. Depending on the magnitude of the beam flux, two different regimes of sheath thickness can be recognized; At small beam fluxes, the sheath is in the regime of thin sheath and its thickness grows linearly with the beam flux. As the beam flux increases, at a certain beam energy or beam number density, the sheath demonstrates a sharp transition to the regime of thick sheath where the width is almost three times larger. The beam parameters corresponding to the transition between the two regimes depend on the parameters of the background plasma. The beam transition energy increases with the electron temperature and dust number density while decreases with the dust radius. On the other hand, the beam transition number density is a non-monotonic function of the background plasma number density. The localization of dust particles above the substrate is intensified by the increase in the beam number density.

  9. Interstellar dust at our doorstep

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.

    2013-12-01

    Interstellar dust has long been researched by astronomical methods to learn about its size distribution, grain properties and composition. However, interstellar dust grains also move through the solar system. They were detected for the first time in-situ with the Ulysses dust detector in 1993. In addition, in 2006, the Stardust mission returned three interstellar dust grain candidates back to Earth after a collection period of 195 days. In this talk we elaborate on how the current in-situ ISD measurement methods are a valuable addition to the knowledge about interstellar dust inferred from classical astronomy. We also discuss the role of interstellar dust dynamics and simulations herein.

  10. Diverse Anhydrous Silicates in a Fine-Grained Rim in the Weakly Altered CM2 Chondrite Queen Elizabeth Range 97990: Evidence for the Localized Preservation of Pristine Nebular Dust in CM Chondrites.

    NASA Astrophysics Data System (ADS)

    Brearley, A. J.

    2016-08-01

    A fine-grained rim the QUE 97990 CM2 chondrite contains diverse submicron crystalline anhydrous silicates, including olivines, low-Ca and high Ca pyroxenes and represents a more pristine sample of nebular dust than is present in most CM chondrites.

  11. Physical Alteration of Martian Dust Grains, Its Influence on Detection of Clays and Identification of Aqueous Processes on Mars

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Drief, Ahmed; Dyar, Darby

    2003-01-01

    Clays, if present on Mars, have been illusive. Determining whether or not clay minerals and other aqueous alteration species are present on Mars provides key information about the extent and duration of aqueous processes on Mars. The purpose of this study is to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. Physical alteration through grinding was shown to greatly affect the structure and a number of properties of antigorite and kaolinite. This project builds on an initial study and includes a combination of SEM, HRTEM, reflectance and M ssbauer spectroscopies. Grain size was found to decrease, as expected, with grinding. In addition, nanophase carbonate, Si-OH and iron oxide species were formed.

  12. A stochastic model and Monte Carlo algorithm for fluctuation-induced H2 formation on the surface of interstellar dust grains

    NASA Astrophysics Data System (ADS)

    Sabelfeld, K. K.

    2015-09-01

    A stochastic algorithm for simulation of fluctuation-induced kinetics of H2 formation on grain surfaces is suggested as a generalization of the technique developed in our recent studies [1] where this method was developed to describe the annihilation of spatially separate electrons and holes in a disordered semiconductor. The stochastic model is based on the spatially inhomogeneous, nonlinear integro-differential Smoluchowski equations with random source term. In this paper we derive the general system of Smoluchowski type equations for the formation of H2 from two hydrogen atoms on the surface of interstellar dust grains with physisorption and chemisorption sites. We focus in this study on the spatial distribution, and numerically investigate the segregation in the case of a source with a continuous generation in time and randomly distributed in space. The stochastic particle method presented is based on a probabilistic interpretation of the underlying process as a stochastic Markov process of interacting particle system in discrete but randomly progressed time instances. The segregation is analyzed through the correlation analysis of the vector random field of concentrations which appears to be isotropic in space and stationary in time.

  13. On the injection of fine dust from the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Maravilla, D.; Flammer, K. R.; Mendis, D. A.

    1995-01-01

    Using a simple aligned dipole model of the Jovian magnetic field, and exploiting integrals of the gravito-electrodynamic equation of motion of charged dust, we obtain an analytic result which characterizes the nature of the orbits of grains of different (fixed) charge-to-mass ratios launched at different velocities from different radial distances from Jupiter. This enables us to consider various possible sources of the dust-streams emanating from Jupiter which have been observed by the Ulysses spacecraft. We conclude that Jupiter's volcanically active satellite Io is the likely source, in agreement with the earlier calculations and simulations of Horanyi et al. using a detailed three-dimensional model of the Jovian magnetosphere. Our estimates of the size range and the velocity range of these dust grains are also in good agreement with those of the above authors and are within the error bars of the observations.

  14. Radiative transfer with POLARIS. I. Analysis of magnetic fields through synthetic dust continuum polarization measurements

    NASA Astrophysics Data System (ADS)

    Reissl, S.; Wolf, S.; Brauer, R.

    2016-09-01

    Aims: We present POLARIS (POLArized RadIation Simulator), a newly developed three-dimensional Monte-Carlo radiative transfer code. POLARIS was designed to calculate dust temperature, polarization maps, and spectral energy distributions. It is optimized to handle data that results from sophisticated magneto-hydrodynamic simulations. The main purpose of the code is to prepare and analyze multi-wavelength continuum polarization measurements in the context of magnetic field studies in the interstellar medium. An exemplary application is the investigation of the role of magnetic fields in star formation processes. Methods: We combine currently discussed state-of-the-art grain alignment theories with existing dust heating and polarization algorithms. We test the POLARIS code on multiple scales in complex astrophysical systems that are associated with different stages of star formation. POLARIS uses the full spectrum of dust polarization mechanisms to trace the underlying magnetic field morphology. Results: Resulting temperature distributions are consistent with the density and position of radiation sources resulting from magneto-hydrodynamic (MHD) - collapse simulations. The calculated layers of aligned dust grains in the considered cirumstellar disk models are in excellent agreement with theoretical predictions. Finally, we compute unique patterns in synthetic multi-wavelength polarization maps that are dependent on applied dust-model and grain-alignment theory in analytical cloud models.

  15. Magnetic field effects on the motion of circumplanetary dust

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel Simon

    Hypervelocity impacts on satellites or ring particles replenish circumplanetary dusty rings with grains of all sizes. Due to interactions with the plasma environment and sunlight, these grains become electrically charged. We study the motion of charged dust grains launched at the Kepler orbital speed, under the combined effects of gravity and the electromagnetic force. We conduct numerical simulations of dust grain trajectories, covering a broad range of launch distances from the planetary surface to beyond synchronous orbit, and the full range of charge-to-mass ratios from ions to rocks, with both positive and negative electric potentials. Initially, we assume that dust grains have a constant electric potential, and, treating the spinning planetary magnetic field as an aligned and centered dipole, we map regions of radial instability (positive grains only), where dust grains are driven to escape or collide with the planet at high speed, and vertical instability (both positive and negative charges) whereby grains launched near the equatorial plane and are forced up magnetic field lines to high latitudes, where they may collide with the planet. We derive analytical criteria for local stability in the equatorial plane, and solve for the boundaries between all unstable and stable outcomes. Comparing our analytical solutions to our numerical simulations, we develop an extensive model for the radial, vertical and azimuthal motions of dust grains of arbitrary size and launch location. We test these solutions at Jupiter and Saturn, both of whose magnetic fields are reasonably well represented by aligned dipoles, as well as at the Earth, whose magnetic field is close to an anti-aligned dipole. We then evaluate the robustness of our stability boundaries to more general conditions. Firstly, we examine the effects of non-zero launch speeds, of up to 0.5 km s-1, in the frame of the parent body. Although these only weakly affect stability boundaries, we find that the influence

  16. Exobiological implications of dust aggregation in planetary atmospheres: An experiment for the gas-grain simulation facility

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.

    1991-01-01

    The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.

  17. Comet C2012 S1 (ISON): Observations of the Dust Grains From SOFIA and of the Atomic Gas From NSO Dunn and Mcmath-Pierce Solar Telescopes

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Woodward, Charles E.; Harker, David E.; Kelley, Michael S. P.; Sitko, Michael; Reach, William T.; De Pater, Imke; Gehrz, Robert D.; Kolokolova, Ludmilla; Cochran, Anita L.; McKay, Adam J.; Reardon, Kevin; Cauzzi, Gianna; Tozzi, Gian Paolo; Christian, Damian J.; Jess, David B.; Mathioudakis, Mihalis; Lisse, Carey Michael; Morgenthaler, Jeffrey P.; Knight, Matthew Manning

    2013-01-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our SOFIA (+FORCAST) mid- to far-IR images and spectroscopy (approx. 5-35 microns) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h approx. = 1.18 AU). Dust characteristics, identified through the 10 micron silicate emission feature and its strength, as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 microns, and near 16, 19, 23.5, 27.5, and 33 microns are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) to large and/or compact grains (e.g., C/2007 N4 (Lulin) and C/2006 P1 (McNaught)). Measurement of the crystalline peaks in contrast to the broad 10 and 20 micron amorphous silicate features yields the cometary silicate crystalline mass fraction, which is a benchmark for radial transport in our protoplanetary disk. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals. Only SOFIA can look for cometary organics in the 5-8 micron region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20-Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to

  18. The interaction of hydrogen with the {010} surfaces of Mg and Fe olivine as models for interstellar dust grains: a density functional theory study

    PubMed Central

    Downing, C. A.; Ahmady, B.; Catlow, C. R. A.; de Leeuw, N. H.

    2013-01-01

    There is no consensus as yet to account for the significant presence of water on the terrestrial planets, but suggested sources include direct hydrogen adsorption from the parent molecular cloud after the planets’ formation, and delivery of hydrous material via comets or asteroids external to the zone of the terrestrial planets. Alternatively, a more recent idea is that water may have directly adsorbed onto the interstellar dust grains involved in planetary formation. In this work, we use electronic structure calculations based on the density functional theory to investigate and compare the bulk and {010} surface structures of the magnesium and iron end-members of the silicate mineral olivine, namely forsterite and fayalite, respectively. We also report our results on the adsorption of atomic hydrogen at the mineral surfaces, where our calculations show that there is no activation barrier to the adsorption of atomic hydrogen at these surfaces. Furthermore, different surface sites activate the atom to form either adsorbed hydride or proton species in the form of hydroxy groups on the same surface, which indicates that these mineral surfaces may have acted as catalytic sites in the immobilization and reaction of hydrogen atoms to form dihydrogen gas or water molecules. PMID:23734054

  19. Interstellar dust and related topics; Proceedings of the Symposium, State University of New York, Albany, N.Y., May 29-June 2, 1972

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M. (Editor); Van De Hulst, H. C.

    1973-01-01

    Theoretical studies and observations of interstellar dust are described in papers dealing with the passive properties of dust grains, their physical and chemical activities in the interstellar medium, and their interactions in association with stars. The papers are grouped according to the principal topics of (1) extinction and polarization, (2) diffuse interstellar features, (3) dust around and in close association with stars, (4) reflection nebulae and other aspects of dust scattering properties, (5) alignment mechanisms, (6) distribution of molecules and processes of molecule formation, (7) radiation effects on dust, (8) physical and chemical interactions of dust with the ambient medium, and (9) gas and dust in H II regions. Individual items are announced in this issue.

  20. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  1. Adaptive Optics Imaging of the Circumbinary Disk around the T Tauri Binary UY Aurigae: Estimates of the Binary Mass and Circumbinary Dust Grain Size Distribution

    NASA Astrophysics Data System (ADS)

    Close, L. M.; Dutrey, A.; Roddier, F.; Guilloteau, S.; Roddier, C.; Northcott, M.; Ménard, F.; Duvert, G.; Graves, J. E.; Potter, D.

    1998-05-01

    We have obtained high-resolution (FWHM = 0.15") deep images of the UY Aur binary at J, H, and K' with the University of Hawaii adaptive optics instrument. We clearly detect an R ~ 500 AU circumbinary disk discovered with millimeter interferometry, making UY Aur the second young binary with a confirmed circumbinary disk. It appears that the disk is inclined ~42° from face on. We find that the near side of the disk is brighter than the far side by factors of 2.6, 2.7, and 6.5 times at K', H, and J, respectively. The original GG Tau circumbinary disk has been reexamined and is found to have similar flux ratios of 1.5, 2.6, and 3.6 at K', H, and J, respectively. A realistic power-law distribution (p = 4.7) of spherical dust aggregates (composed of silicates, amorphous carbon, and graphite) that reproduces the observed ISM extinction curve also predicts these observed flux ratios from Mie scattering theory. We find the observed preference of forward-scattering over back-scattering is well fitted (global χ2 minimization) by Mie scattering off particles in the range amin = 0.03 μm to amax = 0.5-0.6 μm. The existence of a significant population of grain radii larger than 0.6 μm is not supported by the scattering observations. Based on the observed disk inclination we derive an orbit for UY Aur where the mass for the binary is 1.6+0.47-0.67 M⊙. Based on the observed K7 and M0 spectral types for UY Aur A and B, accretion disk models for the inner disks around the central stars were constructed. The models suggest that small (lower limit R ~ 5-10 AU) inner disks exist around B and A. It appears that B is accreting ~5 times faster than A, and that both inner disks may be exhausted in ~102-103 yr without replenishment from the outer circumbinary disk. Our images suggest that these inner disks may indeed be resupplied with material through thin streamers of material that penetrate inside the circumbinary disk. Currently it appears that such a streamer may be a close to UY

  2. DUST FORMATION IN MACRONOVAE

    SciTech Connect

    Takami, Hajime; Ioka, Kunihito; Nozawa, Takaya E-mail: kunihito.ioka@kek.jp

    2014-07-01

    We examine dust formation in macronovae (as known as kilonovae), which are the bright ejecta of neutron star binary mergers and one of the leading sites of r-process nucleosynthesis. In light of information about the first macronova candidate associated with GRB 130603B, we find that dust grains of r-process elements have difficulty forming because of the low number density of the r-process atoms, while carbon or elements lighter than iron can condense into dust if they are abundant. Dust grains absorb emission from ejecta with an opacity even greater than that of the r-process elements, and re-emit photons at infrared wavelengths. Such dust emission can potentially account for macronovae without r-process nucleosynthesis as an alternative model. This dust scenario predicts a spectrum with fewer features than the r-process model and day-scale optical-to-ultraviolet emission.

  3. Interstellar Dust: Physical Processes

    NASA Technical Reports Server (NTRS)

    Jones, A. P.; Tielens, A. G. G. M.

    1993-01-01

    Dust is formed in stellar environments, and destroyed by sputtering, shattering and vaporization in shock waves due to cloud-cloud collisions and supernova blast waves. Dust is also destroyed during star formation. We review the dust formation and destruction balance. The calculated destruction time-scale is less than or equal to one billion years and the star dust injection time-scale is approx. 2.5 billion years. Hence, the fractions of elemental carbon and silicon locked up in stardust are less than 0.3 and less than 0.15, respectively. An efficient ISM dust formation route is therefore implied. In particular, in dense clouds dust grows; through the processes of coagulation and the accretion of gas phase molecules e.g. H20, CO, CH4. These icy materials may then be photoprocessed to refractory materials in more diffuse regions. The resulting carbonaceous grain mantle may actually be the glue that holds the coagulated grains together.

  4. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  5. Dust in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Polikarpova, O. L.; Shchekinov, Yu. A.

    2017-02-01

    The conditions for the destruction of dust in hot gas in galaxy clusters are investigated. It is argued that extinction measurements can be subject to selection effects, hindering their use in obtaining trustworthy estimates of dust masses in clusters. It is shown, in particular, that the ratio of the dust mass to the extinction M d / S d increases as dust grains are disrupted, due to the rapid destruction of small grains. Over long times, this ratio can asymptotically reach values a factor of three higher than the mean value in the interstellar medium in the Galaxy. This lowers dust-mass estimates based on measurements of extinction in galaxy clusters. The characteristic lifetime of dust in hot cluster gas is determined by its possible thermal isolation by the denser medium of gas fragments within which the dust is ejected from galaxies, and can reach 100-300 million years, depending on the kinematics and morphology of the fragments. As a result, the mass fraction of dust in hot cluster gas can reach 1-3% of the Galactic value. Over its lifetime, dust can also be manifest through its far-infrared emission. The emission characteristics of the dust change as it is disrupted, and the ratio of the fluxes at 350 and 850 μm can increase appreciably. This can potentially serve as an indicator of the state of the dust and ambient gas.

  6. Combustibility determination for cotton gin dust and almond huller dust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar (OSHA, 2009), can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, OSHA initiated action to develop a mandatory standard to comprehen...

  7. Stability of Charged Grains in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, D.; Hamilton, D. P.

    2012-12-01

    Hypervelocity impacts of interplanetary micrometeoroids with orbiting ring particles generate dusty debris of all sizes. These ejecta particles become electrically charged by interactions with orbiting plasma and solar photons. Accordingly, they experience both gravity and Lorentz forces, whose combined effects cause interesting and complex dynamics. For simplicity, we initially model the magnetic field of Saturn as a centered and aligned dipole and investigate the stability of motion for grains launched from circularly-orbiting parent bodies. In this approximation, the magnetic equator and the ring-plane coincide. We begin with numerical models, determining the stability of dust grain trajectories in both the radial and vertical directions as a function of launch distance from the planet, and over all charge-to-mass ratios from ions to rocks. We find that positively-charged sub-micron dust grains over a limited range in size are radially unstable, colliding with the planet if launched from within synchronous orbit and escaping entirely if launched from outside this distance. Escaping grains have been observed as high-velocity dust streams at Saturn and at Jupiter. In addition, positively and negatively-charged smaller grains are vertically unstable and spiral up magnetic field lines to sustain non-linear vertical oscillations or to collide with the planet at high latitude. We then undertake local and global stability analyses and derive stability criteria that match our numerical data extremely well. Our work builds upon studies led by Burns, Hamilton, Horanyi, Howard, Mendis, Mitchell, Northrop, Schaffer, and others. We confirm that for charged dust grains launched at the Kepler speed, planetary gravity cannot be ignored, even in the limit of electromagnetically-dominated grains. Some stability boundaries can be obtained analytically while others require more complicated semianalytic methods. Our solutions are general and can be applied wherever an aligned

  8. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  9. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  10. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    SciTech Connect

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-10-20

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.

  11. Interstellar Dust - A Review

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2012-01-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic materials. Although dust with all its components plays an important role in the evolution of interstellar physics and chemistry and in the formation of organic materials, little is known on the formation and destruction processes of carbonaceous dust. Laboratory experiments that are performed under conditions that simulate interstellar and circumstellar environments to provide information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. A review of the properties of dust and of the laboratory experiments that are conducted to study the formation processes of dust grains from molecular precursors will be given.

  12. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  13. Dust in protoplanetary disks: observations

    NASA Astrophysics Data System (ADS)

    Waters, L. B. F. M.

    2015-09-01

    Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies) that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV) wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness), the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution), a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014). 2nd Lecture of the Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  14. A Dust Grain Photoemission Experiment

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.

    2000-01-01

    A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.

  15. Infrared emission from tidal disruption events - probing the pc-scale dust content around galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Evans, Neal J.

    2016-05-01

    Recent UV-optical surveys have been successful in finding tidal disruption events (TDEs), in which a star is tidally disrupted by a supermassive black hole (BH). These TDEs release a huge amount of radiation energy Erad ˜ 1051-1052 erg into the circum-nuclear medium. If the medium is dusty, most of the radiation energy will be absorbed by dust grains within ˜1 pc from the BH and re-radiated in the infrared. We calculate the dust emission light curve from a 1D radiative transfer model, taking into account the time-dependent heating, cooling and sublimation of dust grains. We show that the dust emission peaks at 3-10 μm and has typical luminosities between 1042 and 1043 erg s-1 (with sky covering factor of dusty clouds ranging from 0.1 to 1). This is detectable by current generation of telescopes. In the near future, James Webb Space Telescope will be able to perform photometric and spectroscopic measurements, in which silicate or polycyclic aromatic hydrocarbon features may be found. Dust grains are non-spherical and may be aligned with the magnetic field, so the dust emission may be significantly polarized. Observations at rest-frame wavelength ≥ 2 μm have only been reported from two TDE candidates, SDSS J0952+2143 and SwiftJ1644+57. Although consistent with the dust emission from TDEs, the mid-infrared fluxes of the two events may be from other sources. Long-term monitoring is needed to draw a firm conclusion. We also point out two nearby TDE candidates (ASASSN-14ae and -14li) where the dust emission may be currently detectable. Detection of dust infrared emission from TDEs would provide information regarding the dust content and its distribution in the central pc of non-active galactic nuclei, which is hard to probe otherwise.

  16. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  17. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  18. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  19. Supernova Dust Factories

    NASA Astrophysics Data System (ADS)

    Gomez, Haley; Consortium, MESS; LCOGT

    2013-01-01

    The origin of interstellar dust in galaxies is poorly understood, particularly the relative contribution from supernovae. We present infrared and submillimeter photometry and spectroscopy from the Herschel Space Observatory of the Galactic remnants Tycho, Kepler and the Crab Nebula, taken as part of the Mass Loss from Evolved StarS program (MESS). Although we detect small amounts of dust surrounding Tycho and Kepler (the remnants of Type Ia supernovae), we show this is due to swept-up interstellar and circumstellar material respectively. The lack of dust grains in the ejecta suggests that Type Ia remnants do not produce substantial quantities of iron-rich dust grains and has important consequences for the ‘missing’ iron mass observed in ejecta. After carefully subtracting the synchrotron and line emission from the Crab, the remaining far-infrared continuum originates from 0.1-0.2 solar masses of dust. These observations suggest that the Crab Nebula has condensed most of the relevant refractory elements into dust and that these grains appear well set to survive their journey into the interstellar medium. In summary, our Herschel observations show that significantly less dust forms in the ejecta of Type Ia supernovae than in the remnants of core-collapse explosions, placing stringent constraints on the environments in which dust and molecules can form.

  20. The Lunar Dust Environment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  1. Stability of Charged Grains in Planetary Rings

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel; Hamilton, D. P.

    2011-04-01

    Hypervelocity impacts of interplanetary micrometeoroids with orbiting ring particles generate dusty debris of all sizes. These ejecta particles become electrically charged by interactions with orbiting plasma and solar photons. Accordingly, they experience both gravity and Lorentz forces, whose combined effects cause interesting and complex dynamics. For simplicity, we model the magnetic fields of Jupiter and Saturn by centered and aligned dipoles and investigate the stability of motion for grains launched from circularly-orbiting parent bodies. We begin by determining the stability in both the radial and vertical directions as a function of charge-to-mass ratio and distance from the planet numerically. We find that positively-charged dust grains in the micron-size range are radially unstable, colliding with the planet if launched from within synchronous orbit and escaping entirely if launched outside this distance. Escaping grains have been observed as high-velocity dust streams from Jupiter and Saturn. In addition, positively and negatively-charged smaller grains are vertically unstable and spiral up magnetic field lines to sustain large latitudinal oscillations or be lost to the planet's atmosphere. We then undertake local and global stability analyses and derive stability criteria that match our numerical data extremely well. Our analysis builds upon work led by Burns, Hamilton, Horanyi, Howard, Mitchell, Northrop, Schaffer, and others. Some stability boundaries can be obtained analytically while others require more complicated semianalytic methods. Four of our five stability boundaries do not appear in the literature and the fifth matches the findings of Hamilton and Burns (1993). Finally, we expand our numerical runs to include the effects of tilted and offset magnetic field components. We find that regions of vertical instability expand significantly for the more complicated fields, and a large new region of radial instability appears outside synchronous

  2. Derivation of the VNIR (0.4-4.0 µm) Optical Constants of Nontronite and an Application to Mars: Modeling Single Scattering Albedo of Candidate Martian Dust Grains

    NASA Astrophysics Data System (ADS)

    Roush, T. L.; Brown, A. J.

    2008-03-01

    We derive optical constants of nontronite using two scattering theories. Mie scattering models compare palagonite and nontronite as putative martian atmospheric dust and show the importance of knowing these optical contants for quantitative interpretation of CRISM spectra.

  3. Dust devils on Mars

    NASA Technical Reports Server (NTRS)

    Thomas, P. G.; Gierasch, P.

    1985-01-01

    Large columns of dust have been discovered rising above plains on Mars. The storms are probably analogous to terrestrial dust devils, but their size indicates that they are more similar to tornadoes in intensity. They occur at locations where the soil has been strongly warmed by the Sun, and there the surface is smooth and fine grained. These are the same conditions that favor dust devils on Earth. Warm gas from the lowest atmospheric layer converges and rises in a thin column, with intense swirl developing at the edge of the column. In one area a mosaic of Viking images shows 97 vortices in a three day period. This represents a density of vortices of about one in each 900 square kilometers. Thus, these dust devils may be important in moving dust or starting over dust storms.

  4. A New Parameter Regime for Dust in Plasma: the Case of Dense and Supersonic Plasma Flows

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui; Wurden, Glen A.

    2008-09-07

    The co-existence between charged micron-size particulates of matter and plasma electrons and ions can lead to interesting physics phenomena. Some of the most spectacular observations in laboratory low ionized gases include the formation of aligned dust structures, the propagation of dust waves or self-organization leading to dust voids. Here, the dust dynamics is established by the forces of gravity, of electrostatic interaction with electric fields within the plasma, of friction with the neutral gas, and by the Coulomb repulsion between grains. Measurements of dust trajectories have been carried out in situ when the plasma density is about 6-7 orders of magnitude higher than in typical laboratory dusty plasmas, i.e. {approx}10{sup 22} m{sup -3}, and the ion temperature is a few eV. The plasma flows at speeds of the order of 20-60 km/s. Two observed features characterize dust in this new plasma regime: the plasma drag force dominates over all other forces acting on the grains and the microparticles are heated to temperatures sufficiently high, to become self-illuminated. Simultaneous observation at different moments in time of up to a few hundred flying dust grains has been possible due to the timing capabilities of a high-speed camera equipped with a telephoto lens. Dust speed of a few km/s and accelerations of {approx}10{sup 5}-10{sup 6} m/s{sup 2} have been inferred using the time-of-flight technique. Among the applications of hypervelocity dust are local diagnostics performed on hot plasmas, interstellar propulsion or simulation of meteorite impacts.

  5. Recent results of the Cosmic Dust Analyzer onboard Cassini

    NASA Astrophysics Data System (ADS)

    Srama, Ralf; Gruen, Eberhard; Kempf, Sascha; Moragas-Klostermeyer, Georg; Beckmann, Uwe; Postberg, Frank; Hsu, Hsiang-Wen; Burton, Marcia; Spahn, Frank; Economou, Thanasis

    The Cosmic Dust Analyzer (CDA) onboard the Cassini mission measures the properties of micron sized dust particles in the planetary system. Since 2004 CDA performs successfully measurements in the Saturnian system and made several exciting discoveries and measurements: Dust streams from the inner and outer ring system, dust grain potentials, dust grain composition of ring particles, dust size and density distributions in the outer ring system, the G ring detection, the Enceladus dust plumes and significant dust fluxes outside the known E ring. This paper provides an overview about the recent achievement of the CDA instrument and presents the results of the dust composition measurements of the Enceladus flyby on March 12, 2008.

  6. Preparation, analysis, and release of simulated interplanetary grains into low earth orbit

    SciTech Connect

    Stephens, J.R.; Strong, I.B.; Kunkle, T.D.

    1985-01-01

    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials and is a major subject of this workshop. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere, observations have been the only method of deducing the properties of extraterrestrial particles. Terrestrial laboratory experiments typically seek not to reproduce astrophysical conditions but to illuminate fundamental dust processes and properties which must be extrapolated to interesting astrophysical conditions. In this report, we discuss the formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles. We also discuss efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit, thus extending the conditions under which dust experiments may be performed. The objectives of this study are threefold: (1) Elucidate the optical properties, including scattering and absorption, of simulated interstellar grains including SiC, silicates, and carbon grains produced in the laboratory. (2) Develop the capabilities to release grains and volatile materials into the near-Earth environment and study their dynamics and optical properties. (3) Study the interaction of released materials with the near-Earth environment to elucidate grain behavior in astrophysical environments. Interaction of grains with their environment may, for example, lead to grain alignment or coagulation, which results in observable phenomena such as polarization of lighter or a change of the scattering properties of the grains.

  7. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  8. PILOT optical alignment

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  9. Tracing gas and magnetic field with dust : lessons from Planck & Herschel

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent

    2015-08-01

    Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.

  10. Formation and dissociation of dust molecules in dusty plasma

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng

    2016-09-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.

  11. Galaxy simulation with dust formation and destruction

    NASA Astrophysics Data System (ADS)

    Aoyama, Shohei; Hou, Kuan-Chou; Shimizu, Ikkoh; Hirashita, Hiroyuki; Todoroki, Keita; Choi, Jun-Hwan; Nagamine, Kentaro

    2017-04-01

    We perform smoothed particle hydrodynamics (SPH) simulations of an isolated galaxy with a new treatment for dust formation and destruction. To this aim, we treat dust and metal production self-consistently with star formation and supernova (SN) feedback. For dust, we consider a simplified model of grain size distribution by representing the entire range of grain sizes with large and small grains. We include dust production in stellar ejecta, dust destruction by SN shocks, grain growth by accretion and coagulation and grain disruption by shattering. We find that the assumption of fixed dust-to-metal mass ratio becomes no longer valid when the galaxy is older than 0.2 Gyr, at which point the grain growth by accretion starts to contribute to the non-linear rise of dust-to-gas ratio. As expected in our previous one-zone model, shattering triggers grain growth by accretion since it increases the total surface area of grains. Coagulation becomes significant when the galaxy age is greater than ∼ 1 Gyr; at this epoch, the abundance of small grains becomes high enough to raise the coagulation rate of small grains. We further compare the radial profiles of dust-to-gas ratio (D) and dust-to-metal ratio (D/Z, i.e. depletion) at various ages with observational data. We find that our simulations broadly reproduce the radial gradients of dust-to-gas ratio and depletion. In the early epoch (≲ 0.3 Gyr), the radial gradient of D follows the metallicity gradient with D/Z determined by the dust condensation efficiency in stellar ejecta, while the D gradient is steeper than the Z gradient at the later epochs because of grain growth by accretion. The framework developed in this paper is applicable to any SPH-based galaxy evolution simulations including cosmological ones.

  12. Origins of GEMS Grains

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  13. LADEE Search for a Dust Exosphere: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Stubbs, T. J.; Elphic, R.

    2014-01-01

    The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.

  14. Grain charging in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ilgner, M.

    2012-02-01

    Context. Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as magnetohydrodynamic (MHD) turbulence and grain growth, which are coupled in a two-way process. Aims: We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension Df = 2. Methods: Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. Results: The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the charging state of grains. The greater the difference between the thermal velocities of the metal and the dominant molecular ion, the greater the change in the mean grain charge. Agglomerates have more negative excess charge on average than compact spherical particles of the same mass. The rise in the mean grain charge is proportional to N1/6 in the ion-dust limit. We find that grain charging in a non-stationary disc environment is expected to lead to similar results. Conclusions: The results indicate that the dust growth and settling in regions where the dust growth is limited by the so-called "electro-static barrier" do not prevent the dust material from remaining the dominant charge carrier.

  15. The Galileo Dust Detector

    NASA Technical Reports Server (NTRS)

    Gruen, Eberhard; Fechtig, Hugo; Hanner, Martha S.; Kissel, Jochen; Lindblad, Bertil-Anders; Linkert, Dietmar; Maas, Dieter; Morfill, Gregor E.; Zook, Herbert A.

    1992-01-01

    The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10 exp -19 and 10 exp -9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the sun, to Jupiter and to its satellites, and to study its interaction with the Galilean satellites and the Jovian magnetosphere. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 1 000 000 times higher than that of previous in situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits/s in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.

  16. Dust Cloud near the Sun

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Krivov, Alexander; Kimura, Hiroshi

    2000-08-01

    General structure and composition of the near-solar dust cloud are investigated. Based on estimates for sources and transport of dust to the near-solar region, we derive a representative set of trajectories of dust grains by numerical integrations and obtain the spatial distribution of different dust populations within 10 solar radii ( R⊙) from the Sun. For the radial structure, we find the dust number density to be enhanced by a factor of 1 to 4 in a typical heliocentric distance zone with a width of 0.2 R⊙ in the sublimation region—the formation of a dust ring—depending on the materials and porosities considered. The excess density in the ring increases with increasing initial size for porous grains and decreases for compact ones. Non-zero eccentricities of the dust orbits decrease the enhancement. Moderate enhancements that we predict are consistent with eclipse observations, most of which have not shown any peak features in the F-corona brightness at several solar radii. We describe typical features of β-meteoroids formed by the sublimation of particles near the Sun and estimate the total mass loss due to this mechanism to range between 1 and 10 kg s -1. For the vertical structure of the dust cloud we show that grains larger than ˜10 μm in size keep in a disk with a typical thickness of tens degrees; grains with radii of several μm fill in a broader disk-like volume which is tilted off the ecliptic plane by a variable angle depending on the solar activity cycle; submicrometer-sized grains form a nearly spherical halo around the Sun with a radius of more than 10 R⊙. From our present knowledge we cannot exclude the existence of an additional spheroidal component of larger grains near the Sun, which depends on how effective long-period comets are as sources of dust. Estimates of absolute number densities and local fluxes of dust show that simple extrapolation of the interplanetary dust cloud into the solar vicinity does not describe the dust cloud

  17. The Cosmic DUNE dust astronomy mission

    NASA Astrophysics Data System (ADS)

    Grun, E.; Srama, R.; Cosmic Dune Team

    A dust astronomy mission aims at the simultaneous measurement of the origin and the chemical composition of individual dust grains in space. Interstellar dust traversing the solar system constitutes the galactic solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with Cosmic DUNE (Cosmic Dust Near Earth) will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Cosmic DUNE will prepare the way for effective collection in near-Earth space of interstellar and interplanetary dust for subsequent return to Earth and analysis in laboratories. Cosmic DUNE establishes the next logical step beyond NASA's Stardust mission, with four major advancements in cosmic dust research: (1) Analysis of the elemental and isotopic composition of individual cosmic dust grains, (2) determination of the size distribution of interstellar dust, (3) characterization of the interstellar dust flow through the planetary system, and (4) analysis of interplanetary dust of cometary and asteroidal origin. This mission goal will be reached with novel dust instrumentation. A dust telescope trajectory sensor has been developed which is capable of obtaining precision trajectories of sub-micron sized particles in space. A new high mass resolution dust analyzer of 0.1m2 impact area can cope with the low fluxes expected in interplanetary space. Cosmic DUNE will be proposed to ESA in response to its upcoming call for mission ideas.

  18. Dust particles interaction with plasma jet

    SciTech Connect

    Ticos, C. M.; Jepu, I.; Lungu, C. P.; Chiru, P.; Zaroschi, V.

    2009-11-10

    The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.

  19. Dust Telescopes and Active Dust Collectors: Linking Dust to Their Sources

    NASA Astrophysics Data System (ADS)

    Drake, K. J.; Sternovsky, Z.; Gruen, E.; Srama, R.; Auer, S.; Horanyi, M.; Kempf, S.; Krueger, H.; Postberg, F.

    2010-12-01

    Cosmic dust particles from remote sites and times are treasures of information. By determining the dust particles' source and their elemental properties, we can learn about the environments, where they were formed and processed. Born as stardust in the cool atmospheres of giant stars or in novae and supernovae explosions, the particles are subsequently modified in the interstellar medium. Interplanetary dust that originates from comets and asteroids represents even more processed material at different stages of Solar System evolution. Interstellar and interplanetary dust particles from various sources can be detected and analyzed in the near-Earth space environment. The newly developed instruments Dust Telescope and Active Dust Collector are able to determine the origin of dust particles and provide their elemental composition. A Dust Telescope is a combination of a Dust Trajectory Sensor (DTS) [1] together with an analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals when a charged grain flies through a position sensitive electrode system. A modern DTS can measure dust particles as small as 0.2 µm in radius and dust speeds up to 100 km/s. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number up to >100 [2]. The advanced Dust Telescope is capable of identifying interstellar and interplanetary grains, and measuring their mass, velocity vector, charge, elemental and isotopic compositions. An Active Dust Collector combines a DTS with an aerogel or other dust collector materials, e.g. like the ones used on the Stardust mission. The combination of a DTS with a dust collector provides not only individual trajectories of the collected particles but also their impact time and position on the collector which proves essential to

  20. Presolar Grains

    NASA Astrophysics Data System (ADS)

    Zinner, E. K.

    2003-12-01

    theory (e.g., Timmes et al., 1995).In contrast, the study of stellar grains permits information to be obtained about individual stars, complementing astronomical observations of elemental and isotopic abundances in stars (e.g., Lambert, 1991), by extending measurements to elements that cannot be measured astronomically. In addition to nucleosynthesis and stellar evolution, presolar grains provide information about galactic chemical evolution, physical properties in stellar atmospheres, mixing of SN ejecta and conditions in the parent bodies of the meteorites in which the grains are found.This new field of astronomy has grown to an extent that not all aspects of presolar grains can be treated in detail in this chapter. The interested reader is therefore referred to some recent reviews (Anders and Zinner, 1993; Ott, 1993; Zinner, 1998a, b; Hoppe and Zinner, 2000; Nittler, 2003) and to the compilation of papers found in Bernatowicz and Zinner (1997). The latter not only contains several detailed review papers on presolar dust grains but also a series of chapters on stellar nucleosynthesis. Further information on nucleosynthesis can be obtained from the textbooks by Clayton (1983b) and Arnett (1996), and from reviews by Köppeler et al. (1989), Meyer (1994), and Wallerstein et al. (1997).

  1. Dust Emission from the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Schnee, S.; Li, J.; Goodman, A. A.; Sargent, A. I.

    2008-09-01

    Using far-infrared emission maps taken by IRAS and Spitzer and a near-infrared extinction map derived from 2MASS data, we have made dust temperature and column density maps of the Perseus molecular cloud. We show that the emission from transiently heated very small grains (VSGs) and the big grain dust emissivity vary as a function of extinction and dust temperature, with higher dust emissivities for colder grains. This variable emissivity cannot be explained by temperature gradients along the line of sight or by noise in the emission maps, but it is consistent with grain growth in the higher density and lower temperature regions. By accounting for the variations in the dust emissivity and VSG emission, we are able to map the temperature and column density of a nearby molecular cloud with better accuracy than has previously been possible.

  2. Lunar dust charging by photoelectric emissions

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-05-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with

  3. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with

  4. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  5. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  6. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis

    NASA Astrophysics Data System (ADS)

    Li, Yun; Song, Yougui; Lai, Zhongping; Han, Li; An, Zhisheng

    2016-09-01

    Due to lack of reliable proxies from the Westerlies-dominant region, the strength change of Northern Hemisphere Westerlies remains poorly understood. The aim of this study is to provide a reliable paleoclimatic proxy about the Northern Hemisphere Westerlies change. Here we report a 30.7 m thick loess section from the Ili basin directly controlled by the Westerlies. Based on optically stimulated luminescence (OSL) and high resolution grain-size records, we reconstruct the change history of the Westerlies strength during the last glacial period (mainly Marine Isotope Stages 2, MIS2), being similar with the Westerlies index recorded in the Qinghai Lake sediments. Within error limits, all ages are in stratigraphic order. We further compare the climatic records among the Ili loess, Qinghai Lake and the NGRIP, their similarity shows a good climatic coupling relationship among the Central Asia, East Asia and the North Atlantic, and the Westerlies plays a critical influence in transporting the North Atlantic signal to Central and East Asia.

  7. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis.

    PubMed

    Li, Yun; Song, Yougui; Lai, Zhongping; Han, Li; An, Zhisheng

    2016-09-02

    Due to lack of reliable proxies from the Westerlies-dominant region, the strength change of Northern Hemisphere Westerlies remains poorly understood. The aim of this study is to provide a reliable paleoclimatic proxy about the Northern Hemisphere Westerlies change. Here we report a 30.7 m thick loess section from the Ili basin directly controlled by the Westerlies. Based on optically stimulated luminescence (OSL) and high resolution grain-size records, we reconstruct the change history of the Westerlies strength during the last glacial period (mainly Marine Isotope Stages 2, MIS2), being similar with the Westerlies index recorded in the Qinghai Lake sediments. Within error limits, all ages are in stratigraphic order. We further compare the climatic records among the Ili loess, Qinghai Lake and the NGRIP, their similarity shows a good climatic coupling relationship among the Central Asia, East Asia and the North Atlantic, and the Westerlies plays a critical influence in transporting the North Atlantic signal to Central and East Asia.

  8. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis

    PubMed Central

    Li, Yun; Song, Yougui; Lai, Zhongping; Han, Li; An, Zhisheng

    2016-01-01

    Due to lack of reliable proxies from the Westerlies-dominant region, the strength change of Northern Hemisphere Westerlies remains poorly understood. The aim of this study is to provide a reliable paleoclimatic proxy about the Northern Hemisphere Westerlies change. Here we report a 30.7 m thick loess section from the Ili basin directly controlled by the Westerlies. Based on optically stimulated luminescence (OSL) and high resolution grain-size records, we reconstruct the change history of the Westerlies strength during the last glacial period (mainly Marine Isotope Stages 2, MIS2), being similar with the Westerlies index recorded in the Qinghai Lake sediments. Within error limits, all ages are in stratigraphic order. We further compare the climatic records among the Ili loess, Qinghai Lake and the NGRIP, their similarity shows a good climatic coupling relationship among the Central Asia, East Asia and the North Atlantic, and the Westerlies plays a critical influence in transporting the North Atlantic signal to Central and East Asia. PMID:27586593

  9. EVOLUTION OF SIZE DISTRIBUTION OF ICY GRAINS BY SUBLIMATION AND CONDENSATION

    SciTech Connect

    Kuroiwa, Takuto; Sirono, Sin-iti

    2011-09-20

    In the outer part of a protoplanetary disk, dust grains consist of silicate core covered by an ice mantle. A temporal heating event in the disk results in sublimation of the ice mantle. After the end of the heating event, as the temperature decreases, H{sub 2}O molecules recondense on the surface of the dust grain. Ultimately, the dust grain is covered by an ice mantle. Because the equilibrium vapor pressure on the grain surface decreases with the grain size, a large grain grows faster than a small grain. As a result, the size of an icy dust grain changes as a result of the heating event. The change in size also affects the mechanical properties of the dust aggregates formed by the icy grains. In this paper, we investigated the evolution of the size distribution of icy dust grains during sublimation and condensation. We found that the size evolution of icy grains can be divided into two stages. In the first stage, the icy grains grow through condensation of H{sub 2}O molecules. In the second stage, the size of grains changes further as H{sub 2}O molecules are transferred between icy grains while the surrounding gas condenses. The size distribution of the icy dust grains becomes bimodal, with a small number of relatively large grains and many small grains without an icy mantle. Possible effects of the size change on the evolution of icy dust aggregates are discussed.

  10. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  11. Effect of dust particle polarization on scattering processes in complex plasmas

    SciTech Connect

    Kodanova, S. K.; Ramazanov, T. S.; Bastykova, N. Kh.; Moldabekov, Zh. A.

    2015-06-15

    Screened interaction potentials in dusty plasmas taking into account the polarization of dust particles have been obtained. On the basis of screened potentials scattering processes for ion-dust particle and dust particle-dust particle pairs have been studied. In particular, the scattering cross section is considered. The scattering processes for which the dust grain polarization is unimportant have been found. The effect of zero angle dust particle-dust particle scattering is predicted.

  12. Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Kavitha, L.; Lavanya, C.; Senthil Kumar, V.; Gopi, D.; Pasqua, A.

    2016-04-01

    We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales much shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.

  13. Charging of interplanetary grains

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Johnson, R. E.; Newcomb, John L.

    1995-01-01

    The objective of this program is to quantify, by laboratory experiments, the charging of ices and other insulators subject to irradiation with electrons, ions and ultraviolet photons and to model special conditions based on the data. The system and conditions to be studied are those relevant for charging of dust in magnetospheric plasmas. The measurements are supplemented by computer simulations of charging or grains under a variety of conditions. Our work for this period involved experiments on water ice, improved models of charging of ice grains for Saturn's E-ring, and the construction of apparatus for electron impact studies and measurements of electron energy distributions.

  14. Dust levitation about Itokawa's equator

    NASA Astrophysics Data System (ADS)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    Introduction: Electrostatic dust motion has been hypothesized to occur on the asteroids, due to the observations of the Eros dust ponds [1] and the potential presence of such a phenomenon on the Moon [2]. There are two phases of electrostatic dust motion: lofting and the subsequent trajectories. The feasibility of electrostatic dust lofting can be assessed by comparing the strength of the electrostatic force to the gravity and cohesion which hold the grain on to the surface [3--5]. The motion of the dust grains after they detach from the surface can be described as either ballistic, escaping, or levitating. We are interested in dust levitation because it could potentially redistribute grains on the surface of an asteroid (for instance, producing the Eros dust ponds) and it could also be hazardous to spacecraft. Specifically, levitating dust could obscure the observations of surface-based spacecraft or possibly trigger obstacle avoidance routines during landing. Dust Levitation: Dust levitation is defined as the altitude oscillation of grains prior to their redeposition on the surface of an asteroid. Levitation occurs about equilibria where the electrostatic and gravity forces on the grain are equal and opposite. An equilibrium state is defined as a position and charge for a specific grain size. We have previously identified equilibria using a 1D plasma model and a simple gravity model for Itokawa [6]. In this simple model, the largest grain that was capable of stable levitation above Itokawa was 3 microns (in radius) [6]. Additionally, we have shown that levitating dust grains follow the variation in the equilibria for a rotating asteroid (i.e., the grain continues to oscillate about an equilibrium state that approaches the surface) [7]. Due to the nonspherical shape of Itokawa, both the gravity and plasma environments are much more complicated than the 1D approximations made in our previous work. Thus, in order to accurately assess the feasibility of dust

  15. Circumstellar dust in symbiotic novae

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2015-08-01

    Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 µm) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 17·10-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use

  16. Oblique dust density waves

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  17. ISM Diagnostics: Dust

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi

    2013-03-01

    Infrared (IR) observations provide significant information on the lifecycle of dust grains in the interstellar medium (ISM), which is crucial for the understanding of the evolution of matter in the universe. The IR spectral energy distribution (SED) of the dust emission tells us the relative abundance of sub-micron grains, very small grains, and carriers of the unidentified infrared (UIR) emission bands, since they emit the far-IR, the mid-IR, and the UIR bands from the near- to mid-IR, respectively. On the other hand, the UIR emission bands themselves offer a useful means to probe the physical conditions from which the band emission arises because each band is assigned to a specific C-H or C-C vibration mode and because its relative intensity should reflect the properties of the band carriers and the physical conditions of the environment. Here the two diagnostic methods using IR observations are briefly described together with examples of the observational results. Implications for the dust lifecycle are also discussed.

  18. Dust Astronomy: New venues in interplanetary and interstellar dust research

    NASA Astrophysics Data System (ADS)

    Grün, E.; Hahn, J.; Hamilton, D.; Harris, W.; Horanyi, Mihaly; Huestis, D. L.; Krivov, Alexander; Levasseur-Regourd, A. C.; Liou, J. C.; Lisse, C.; Kuchner, M.; Meisel, D.; Reach, W. T.; Snow, T. P.; Stansberry, J.; Sykes, M.; Yano, H.; Zolensky, M.

    2001-11-01

    Dust particles, like photons, are born at remote sites in space and time. From knowledge of the dust particles' birthplace, and the particles' bulk properties, we can learn about the remote environment out of which the particles were formed and how those particles have evolved physically and dynamically. Remote sensing and in-situ methods, combined with sample analysis and theory, allow us to make a global assessment of dust origin and production in our solar system and its context within the local interstellar environment. Born in the expanding atmospheres of high-luminosity stars or in supernova remnants, interstellar grains provide the seeds that grow in cool interstellar clouds by accretion of atoms and molecules and by agglomeration. Ultimately, interstellar grains can be incorporated in newly forming stars, or they can become part of planetary systems. Reborn from comets, asteroids, Kuiper belt objects and satellites, inter- and circumplanetary dust particles populate our own planetary system. Key issues addressed by space measurements are: - Determination of the total inventory of dust (size, composition, shape, spatial distribution, and temporal variations) in the Solar System. - Characterization and analysis of interstellar dust inside and outside the heliosphere. - Exploration of the dusty environments in the F-corona, near comets, in the asteroid belt and in the Kuiper belt. - Determination of sources, dynamics, and sinks of dust in planetary environs (from Mercury to Pluto). These issues will be supported by ground-based observations, theoretical modeling studies and laboratory measurements.

  19. Dust formation in Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    McKinnon, Ryan; Torrey, Paul; Vogelsberger, Mark

    2016-04-01

    We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals on to existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at z = 0, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at z = 0 originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for z ≳ 5. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.

  20. Dust processing and its feedback on interstellar shocks

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent; Jones, Anthony; Pineau Des Forets, Guillaume

    Shocks in the interstellar medium (ISM) have a fundamental impact on the dust that they encounter. Supernova-generated shocks in the warm intercloud medium are the principal lifetimedetermining agents for dust evolution in the ISM. However, the presence of dust can also have a major influence on the structure of the shocks themselves. In this review we focus on the important role of dust in shocks and present the results of numerical models that simulate dust destruction and processing, and the effect of the dust on, shocks in molecular clouds and in the warm intercloud medium. A proper treatment of grain charging, gyration and coupling to the magnetic field determines the details of the dust dynamics and therefore the nature of the gas-grain and grain-grain interactions. The resultant processing of dust by shocks in the ISM can lead to changes in the dust-to-gas mass ratio through sputtering and vaporisation, and also to an evolution of the dust size distribution through the competition between coagulation and shattering in graingrain collisions. The presence of dust, and its processing, can also alter the shock structure and the gas composition. In high velocity shocks propagating through the warm intercloud medium, dust is the main coolant in the regions where hydrogen is ionized, until it is fully destroyed by sputtering. The reformation of H2 in the cooling gas depends on the level of dust destruction and shattering in the shock. In shocked molecular clouds, the destruction of silicate grains produces shock tracers like SiO. Dust grains and their fragments produced by shattering in the shock also affect the coupling between the magnetic field and the neutral gas in multi-fluid shocks. We emphasize the necessity of a detailed modelling of grain charging and dynamics through the shock in order to determine the impact of shocks on the dust size distribution, and its feedback on the shock structure and the evolution of the shocked gas.

  1. Estimation of high altitude Martian dust parameters

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  2. Grain Growth in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Perez Munoz, Laura Maria

    The majority of young, low-mass stars are surrounded by optically thick accretion disks. These circumstellar disks provide large reservoirs of gas and dust that will eventually be transformed into planetary systems. Theory and observations suggest that the earliest stage toward planet formation in a protoplanetary disk is the growth of particles, from sub-micron-sized grains to centimeter- sized pebbles. Theory indicates that small interstellar grains are well coupled into the gas and are incorporated to the disk during the proto-stellar collapse. These dust particles settle toward the disk mid-plane and simultaneously grow through collisional coagulation in a very short timescale. Observationally, grain growth can be inferred by measuring the spectral energy distribution at long wavelengths, which traces the continuum dust emission spectrum and hence the dust opacity. Several observational studies have indicated that the dust component in protoplanetary disks has evolved as compared to interstellar medium dust particles, suggesting at least 4 orders of magnitude in particle-size growth. However, the limited angular resolution and poor sensitivity of previous observations has not allowed for further exploration of this astrophysical process. As part of my thesis, I embarked in an observational program to search for evidence of radial variations in the dust properties across a protoplanetary disk, which may be indicative of grain growth. By making use of high angular resolution observations obtained with CARMA, VLA, and SMA, I searched for radial variations in the dust opacity inside protoplanetary disks. These observations span more than an order of magnitude in wavelength (from sub-millimeter to centimeter wavelengths) and attain spatial resolutions down to 20 AU. I characterized the radial distribution of the circumstellar material and constrained radial variations of the dust opacity spectral index, which may originate from particle growth in these circumstellar

  3. Dust in the Wind: Modern and Ancient Dust Compositions

    NASA Astrophysics Data System (ADS)

    Hummer, P. J.; Pierce, J. L.; Benner, S. G.

    2013-12-01

    The addition of wind-blown sediments to soils can alter soil grain-size distributions, chemistry, and hydrologic properties, which can substantially affect geomorphic and hydrologic processes. In the Snake River Plain of Idaho, dust deposition has a profound influence on soil development, soil fertility and other soil characteristics. A rigorous study of the movement and chemistry of dust in the Boise area has not been completed. This study will establish a sampling method for dust collection, define the elemental signature of Boise dust and analyze Quaternary loess deposits to determine if the composition of dust in the Boise area has changed. We constructed passive marble samplers to collect wind-blown sediments within the Dry Creek Experimental Watershed (DCEW) located in the Boise Front foothills about 16 km northeast of Boise, Idaho. Mass flux amounts and the mineralogical composition of dust samples will provide information about the influence of wind-blown sediments on the soils of Dry Creek Experimental Watershed. ICP-MS analysis of samples will define an elemental signature for Boise dust. Comparison of modern dust with ancient loess will improve the understanding of the role of climate change in dust transport. We analyzed hourly wind speed data collected over the past 10 years from three weather stations to investigate trends in the timing of peak wind events. Average annual wind speeds range from 1.29 to 4.91 mph with a total average of 2.82 mph. Analysis of wind speeds indicate that while the majority of the highest wind events occur in the winter, wind events that occur during the summer months may be responsible for transporting dust. Recent large dust storms may have originated from extensive burned rangelands, and/or large plowed agricultural land. Future work will investigate the percentages of organic vs. inorganic material in loess, in order to narrow down possible sources of dust in the Snake River Plain.

  4. Dust in Supernovae: Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Kozasa, T.; Nozawa, T.; Tominaga, N.; Umeda, H.; Maeda, K.; Nomoto, K.

    2009-12-01

    Core-collapsed supernovae (CCSNe) have been considered to be one of sources of dust in the universe. What kind and how much mass of dust are formed in the ejecta and are injected into the interstellar medium (ISM) depend on the type of CCSNe, through the difference in the thickness (mass) of outer envelope. In this review, after summarizing the existing results of observations on dust formation in CCSNe, we investigate formation of dust in the ejecta and its evolution in the supernova remnants (SNRs) of Type II-P and Type IIb SNe. Then, the time evolution of thermal emission from dust in the SNR of Type IIb SN is demonstrated and compared with the observation of Cas A. We find that the total dust mass formed in the ejecta does not so much depend on the type; ˜0.3-0.7 Msun in Type II-P SNe and ˜0.13 Msun in Type IIb SN. However the size of dust sensitively depends on the type, being affected by the difference in the gas density in the ejecta: the dust mass is dominated by grains with radii larger than 0.03 μm in Type II-P, and less than 0.006 μm in Type IIb, which decides the fate of dust in the SNR. The surviving dust mass is ˜0.04-0.2 Msun in the SNRs of Type II-P SNe for the ambient hydrogen density of nH=10.0-1.0 cm-3 while almost all dust grains are destroyed in the SNR of Type IIb. The spectral energy distribution (SED) of thermal emission from dust in SNR well reflects the evolution of dust grains in SNR through erosion by sputtering and stochastic heating. The observed SED of Cas A SNR is reasonably reproduced by the model of dust formation and evolution for Type IIb SN.

  5. Dust observations at orbital altitudes surrounding Mars.

    PubMed

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-06

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

  6. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    NASA Astrophysics Data System (ADS)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  7. On the solar dust ring(s)

    NASA Astrophysics Data System (ADS)

    Mukai, T.

    Based on a mechanism to form the solar dust ring, it is proved that the observed peak in infrared F-corona cannot be explained by silicate type grains alone. Preliminary analysis on the recent infrared data of the F-corona by Maihara et al. (1984) has suggested that the ring particles have different physical properties compared with the dust grains, which produce the background F-corona.

  8. Extralunar dust in apollo cores?

    PubMed

    Barber, D J; Hutcheon, I; Price, P B

    1971-01-29

    Densities of nuclear tracks exceed 10(11) per square centimeter in several percent of the micrometer-size silicate grains from all depths in the 12-and 60-centimeter lunar cores. Either these grains were irradiated in space as extralunar dust or the ratio of iron to hydrogen in low-energy (about 1 million electron volts per nucleon) solar particles is orders of magnitude higher than in the photosphere.

  9. Dust in the IGM: pro and contra

    NASA Astrophysics Data System (ADS)

    Shchekinov, Y. A.; Nath, B.

    2011-09-01

    Observations of dust grains in the intergalactic medium (IGM) allow us to study an important aspect in the evolution of galaxies. Although its existence had been previously speculated upon, direct evidence of the presence of dust in the intergalactic space has only been available recently. We discuss various issues regarding the presence of dust in the IGM—its sources, transport mechanisms from galaxies into the IGM, its effect on reddening and on cosmological studies.

  10. Discovery of a Perseus-like cloud in the early Universe. H I-to-H2 transition, carbon monoxide and small dust grains at zabs≈ 2.53 towards the quasar J0000+0048

    NASA Astrophysics Data System (ADS)

    Noterdaeme, P.; Krogager, J.-K.; Balashev, S.; Ge, J.; Gupta, N.; Krühler, T.; Ledoux, C.; Murphy, M. T.; Pâris, I.; Petitjean, P.; Rahmani, H.; Srianand, R.; Ubachs, W.

    2017-01-01

    We present the discovery of a molecular cloud at zabs ≈ 2.5255 along the line of sight to the quasar SDSS J 000015.17+004833.3. We use a high-resolution spectrum obtained with the Ultraviolet and Visual Echelle Spectrograph together with a deep multi-wavelength medium-resolution spectrum obtained with X-shooter (both on the Very Large Telescope) to perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-α system (DLA) with log N(H i) (cm-2) = 20.8 ± 0.1. The DLA has super-solar metallicity (Z 2.5 Z⊙, albeit to within a factor of two to three) with a depletion pattern typical of cold gas and an overall molecular fraction f = 2N(H2)/(2N(H2) + N(H i)) 50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b 0.7km s-1), cold component in which carbon monoxide molecules are also found, with log N(CO)≈ 15. With the help of the spectral synthesis code Cloudy, we study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the H i-to-H2 transition in a 4-5 pc-size cloud with volumic density nH 80 cm-3 and temperature of only 50 K. Our model suggests that the presence of small dust grains (down to about 0.001 μm) and high cosmic ray ionisation rate (ζH a few times 10-15 s-1) are needed to explain the observed atomic and molecular abundances. The presence of small grains is also in agreement with the observed steep extinction curve that also features a 2175 Å bump. Interestingly, the chemical and physical properties of this cloud are very similar to what is seen in diffuse molecular regions of the nearby Perseus complex, despite the former being observed when the Universe was only 2.5 Gyr old. The high excitation temperature of CO

  11. Dust tail striae: Lessons from recent comets

    NASA Astrophysics Data System (ADS)

    Jones, G.; Battams, K.

    2014-07-01

    Striae are features rarely observed in cometary dust tails. These are near-linear structures that, unlike synchronic bands, are not aligned with the nucleus position, and have only been clearly observed in a few high-production-rate comets, including C/1957 P1 (Mrkos), C/1962 C1 (Seki-Lines), C/1975 V1 (West), and C/1996 O1 (Hale-Bopp). The formation of striae is difficult to explain, but several scenarios for their creation have been proposed [1]. These include that of Sekanina & Farrell [2], who proposed that striae are the result of a two-step fragmentation process, where parent particles are released from the nucleus which, after a delay, all fragment over a very short period of time. The fragmentation products then separate according to their β parameter, i.e., the degree to which the particles are influenced by radiation pressure force compared to gravitational force, to form the linear structures we observe as striae. Although there are issues with identifying a process through which many particles will collectively delay their break-up and then fragment within a short period, this scenario does fit many observations well [3]. Other proposed scenarios are more complex, including the formation of striae through a continuous cascade of fragmentation to ever smaller particle sizes [4]. As these formation scenarios result in different distributions of dust-particle sizes within individual striae, the processes occurring may therefore be identifiable if these distributions can be inferred. If the fragmentation processes taking place can be identified, then, in turn, more could be learnt about the structure of the original dust grains that go on to form these sometimes beautiful tail structures. Here, we present the analysis of striae in several comets observed from space by the SOHO LASCO coronagraph [5] and SECCHI heliospheric imagers aboard the twin STEREO spacecraft [6]. The comets studied are C/2002 V1 (NEAT) in January 2002, C/2006 P1 (McNaught) during its

  12. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  13. Searching for inflationary B modes: can dust emission properties be extrapolated from 350 GHz to 150 GHz?

    NASA Astrophysics Data System (ADS)

    Tassis, Konstantinos; Pavlidou, Vasiliki

    2015-07-01

    Recent Planck results have shown that radiation from the cosmic microwave background passes through foregrounds in which aligned dust grains produce polarized dust emission, even in regions of the sky with the lowest level of dust emission. One of the most commonly used ways to remove the dust foreground is to extrapolate the polarized dust emission signal from frequencies where it dominates (e.g. ˜350 GHz) to frequencies commonly targeted by cosmic microwave background experiments (e.g. ˜150 GHz). In this Letter, we describe an interstellar medium effect that can lead to decorrelation of the dust emission polarization pattern between different frequencies due to multiple contributions along the line of sight. Using a simple 2-cloud model we show that there are two conditions under which this decorrelation can be large: (a) the ratio of polarized intensities between the two clouds changes between the two frequencies; (b) the magnetic fields between the two clouds contributing along a line of sight are significantly misaligned. In such cases, the 350 GHz polarized sky map is not predictive of that at 150 GHz. We propose a possible correction for this effect, using information from optopolarimetric surveys of dichroicly absorbed starlight.

  14. Planetary Magnetosphere Probed by Charged Dust Particles

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; Horanyi, M.; Gruen, E.; Srama, R.; Auer, S.; Kempf, S.; Krueger, H.

    2010-12-01

    In-situ and remote sensing observations combined with theoretical and numerical modeling greatly advanced our understanding planetary magnetospheres. Dust is an integral component of the Saturnian and Jovian magnetospheres where it can act as a source/sink of plasma particles (dust particles are an effective source for plasma species like O2, OH, etc. through sputtering of ice particles, for example); its distribution is shaped by electrodynamic forces coupled radiation pressure, plasma, and neutral drag, for example. The complex interaction can lead to unusual dust dynamics, including the transport, capture, and ejection of dust grains. The study of the temporal and spatial evolution of fine dust within or outside the magnetosphere thus provides a unique way to combine data from a large number of observations: plasma, plasma wave, dust, and magnetic field measurements. The dust detectors on board the Galileo and Cassini spacecrafts lead to major discoveries, including the jovian dust stream originating from Io or the in-situ sampling and analysis of the plumes of Enceladus. Recent advancement in dust detector technology enables accurate measurement of the dust trajectory and elemental composition that can greatly enhance the understanding of dust magnetorspheric interaction and indentify the source of the dust with high precision. The capabilities of a modern dust detector thus can provide support for the upcoming Europa Jupiter System Mission.

  15. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  16. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  17. Comet C/2012 S1 (ISON): Observations of the Dust Grains from SOFIA and of the Atomic Gas from NSO Dunn and McMath-Pierce Solar Telescopes (Invited)

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Sitko, M.; Reach, W. T.; De Pater, I.; Gehrz, R. D.; Kolokolova, L.; Cochran, A. L.; McKay, A. J.; Reardon, K.; Cauzzi, G.; Tozzi, G.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.; Lisse, C. M.; Morgenthaler, J. P.; Knight, M. M.

    2013-12-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures

  18. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  19. On the dynamics of dust during protostellar collapse

    NASA Astrophysics Data System (ADS)

    Bate, Matthew R.; Lorén-Aguilar, Pablo

    2017-02-01

    The dynamics of dust and gas can be quite different from each other when the dust is poorly coupled to the gas. In protoplanetary discs, it is well known that this decoupling of the dust and gas can lead to diverse spatial structures and dust-to-gas ratios. In this paper, we study the dynamics of dust and gas during the earlier phase of protostellar collapse, before a protoplanetary disc is formed. We find that for dust grains with sizes ≲ 10 μm, the dust is well coupled during the collapse of a rotating, pre-stellar core and there is little variation of the dust-to-gas ratio during the collapse. However, if larger grains are present, they may have trajectories that are very different from the gas during the collapse, leading to mid-plane settling and/or oscillations of the dust grains through the mid-plane. This may produce variations in the dust-to-gas ratio and very different distributions of large and small dust grains at the very earliest stages of star formation, if large grains are present in pre-stellar cores.

  20. Photophoretic Levitation and Trapping of Dust in the Inner Regions of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; McClure, Melissa K.

    2017-01-01

    In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk. In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.

  1. Grain-grain interaction in stationary dusty plasma

    SciTech Connect

    Lampe, Martin; Joyce, Glenn

    2015-02-15

    We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is larger than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.

  2. Flying Through Dust From Asteroids

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  3. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  4. Development of AN Advanced Dust Telescope

    NASA Astrophysics Data System (ADS)

    Srama, R.; Srowig, A.; Rachev, M.; Grün, E.; Auer, S.; Conlon, T.; Glasmachers, A.; Harris, D.; Helfert, S.; Kempf, S.; Linnemann, H.; Moragas-Klostermeyer, G.; Tschernjawski, V.

    2004-12-01

    There are different types of dust particles in interplanetary space, such as dust from comets and asteroids, and interstellar grains traversing the solar system. Based on experience with current space dust instruments, a novel dust telescope is being developed. A dust telescope is a combination of a dust trajectory sensor for the identification and an analyzer for the elemental composition of the dust. Dust particles’ trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through a position-sensitive electrode system. The objective of the trajectory sensor is to measure dust charges in the range 10-16 10-13 C and dust speeds in the range 6 100 km/s. First tests with a laboratory setup have been performed. The chemical analyzer will have an impact area of 0.1 m2. It consists of a target with an acceleration grid and a single-stage reflectron for energy focusing, and a central ion detector. Results from SIMION simulations show that a mass resolution of M/Δ M>150 can be obtained.

  5. Migration of tungsten dust in tokamaks: role of dust-wall collisions

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.

    2013-12-01

    The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.

  6. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    NASA Astrophysics Data System (ADS)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  7. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  8. An improved model for interplanetary dust fluxes in the outer Solar System

    NASA Astrophysics Data System (ADS)

    Poppe, Andrew R.

    2016-01-01

    We present an improved model for interplanetary dust grain fluxes in the outer Solar System constrained by in situ dust density observations. A dynamical dust grain tracing code is used to establish relative dust grain densities and three-dimensional velocity distributions in the outer Solar System for four main sources of dust grains: Jupiter-family comets, Halley-type comets, Oort-Cloud comets, and Edgeworth-Kuiper Belt objects. Model densities are constrained by in situ dust measurements by the New Horizons Student Dust Counter, the Pioneer 10 meteoroid detector, and the Galileo Dust Detection System (DDS). The model predicts that Jupiter-family comet grains dominate the interplanetary dust grain mass flux inside approximately 10 AU, Oort-Cloud cometary grains may dominate between 10 and 25 AU, and Edgeworth-Kuiper Belt grains are dominant outside 25 AU. The model also predicts that while the total interplanetary mass flux at Jupiter roughly matches that inferred by the analysis of the Galileo DDS measurements, mass fluxes to Saturn, Uranus, and Neptune are at least one order-of-magnitude lower than that predicted by extrapolations of dust grain flux models from 1 AU. Finally, we compare the model predictions of interplanetary dust oxygen influx to the giant planet atmospheres with various observational and photochemical constraints and generally find good agreement, with the exception of Jupiter, which suggests the possibility of additional chemical pathways for exogenous oxygen in Jupiter's atmosphere.

  9. Andromeda's dust

    SciTech Connect

    Draine, B. T.; Aniano, G.; Krause, Oliver; Groves, Brent; Sandstrom, Karin; Klaas, Ulrich; Linz, Hendrik; Rix, Hans-Walter; Schinnerer, Eva; Schmiedeke, Anika; Walter, Fabian; Braun, Robert; Leroy, Adam E-mail: ganiano@ias.u-psud.fr

    2014-01-10

    Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M {sub d} = 5.4 × 10{sup 7} M {sub ☉}, the global dust/H mass ratio is M {sub d}/M {sub H} = 0.0081, and the global PAH abundance is (q {sub PAH}) = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M {sub d}/M {sub H} ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar medium metallicity to vary by a factor ∼10, from Z/Z {sub ☉} ≈ 3 at R = 0 to ∼0.3 at R = 25 kpc. The dust heating rate parameter (U) peaks at the center, with (U) ≈ 35, declining to (U) ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q {sub PAH} ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q {sub PAH} for the dust in the central kiloparsec is similar to the overall value of q {sub PAH} in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500 μm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600 μm) than in the model.

  10. Dust production in supernovae and AGB stars

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2015-08-01

    In the last decade, the role of supernovae on dust has changed; it has been long proposed that supernovae are dust destroyers, but now recent observations show that core-collapse supernovae can become dust factories. Theoretical models of dust evolution in galaxies have predicted that core-collapse supernovae can be an important source of dust in galaxies, if these supernovae can form a significant mass of dust (0.1-1 solar masses). The Herschel Space Observatory and ALMA detected dust in the ejecta of Supernova 1987A. They revealed an estimated 0.5 solar masses of dust. Herschel also found nearly 0.1 solar masses of dust in historical supernovae remnants, namely Cassiopeia A and the Crab Nebula. If dust grains can survive future interaction with the supernova winds and ambient interstellar medium, core-collapse supernovae can be an important source of dust in the interstellar media of galaxies. We further discuss the total dust mass injected by AGB stars and SNe into the interstellar medium of the Magellanic Clouds.

  11. Non-monotonic spatial distribution of the interstellar dust in astrospheres: finite gyroradius effect

    NASA Astrophysics Data System (ADS)

    Katushkina, O. A.; Alexashov, D. B.; Izmodenov, V. V.; Gvaramadze, V. V.

    2017-02-01

    High-resolution mid-infrared observations of astrospheres show that many of them have filamentary (cirrus-like) structure. Using numerical models of dust dynamics in astrospheres, we suggest that their filamentary structure might be related to specific spatial distribution of the interstellar dust around the stars, caused by a gyrorotation of charged dust grains in the interstellar magnetic field. Our numerical model describes the dust dynamics in astrospheres under an influence of the Lorentz force and assumption of a constant dust charge. Calculations are performed for the dust grains with different sizes separately. It is shown that non-monotonic spatial dust distribution (viewed as filaments) appears for dust grains with the period of gyromotion comparable with the characteristic time-scale of the dust motion in the astrosphere. Numerical modelling demonstrates that the number of filaments depends on charge-to-mass ratio of dust.

  12. Dust Devil Tracks

    NASA Astrophysics Data System (ADS)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand

  13. Let There Be Dust

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.

    2011-09-01

    Most of the ordinary matter in the universe is hydrogen and helium. In galaxies such as ours, heavier elements make up only about 1% of the mass, and about half of this is tied up in small particles, termed dust grains, that range in size from a nanometer to a fraction of a micrometer. Interstellar dust contains an appreciable fraction of the carbon and most of the refractory elements, such as magnesium, silicon, and iron. Because these particles are comparable in size to the wavelength of light, they are very effective at absorbing it. As a result, the Milky Way is much fainter in the night sky than it would otherwise be. This absorbed light is reradiated, but because the dust in the interstellar medium is so cold - about 20° above absolute zero - it is radiated at very long wavelengths, at around 200 μm. Such radiation can be observed only from space, and the European Space Agency's Herschel Space Observatory was designed to do just that. On page 1258 of this issue, Matsuura et al. (1) present Herschel observations showing that substantial amounts of dust are created in the aftermath of a supernova, the titanic explosion that terminates the life of a massive star.

  14. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  15. Dust-Coulomb waves in dense dusty plasmas

    NASA Astrophysics Data System (ADS)

    Rao, N. N.

    1999-12-01

    Dusty plasmas can be considered as tenuous, dilute or dense when the dust fugacity parameter f≡4πnd0λD2R˜NDR/λD satisfies f≪1, ˜1, or ≫1, where nd0, λD and R denote, respectively, the dust number density, the plasma Debye length and the dust grain size (radius), and ND=nd0λD3 is the dust plasma parameter. Dense dusty plasmas are shown to support a new kind of ultra low-frequency electrostatic dust mode which may be called the "Dust-Coulomb Wave" (DCW). In contrast to the dust-acoustic wave (DAW) and the dust-lattice wave (DLW) which exist even for constant grain charge, DCWs are accompanied by dust charge as well as number density perturbations which are proportional to each other. For frequencies much smaller than the grain charging frequency, DCWs propagate as normal modes with the phase speed CDC≡qd0/√mdR , where qd0 (md) is the charge (mass) of the dust grains. In the long wavelength limit, the DCW phase speed is much smaller than that of DAW (CDA), and scales as ˜CDA/√f . Thus, for a given wave number, the frequency regime for the existence of DCW is much lower than the DAW regime. A comparison between the three types of dust-modes (DCWs, DAWs, and DLWs) has been carried out.

  16. A new method to generate dust with astrophysical properties

    SciTech Connect

    Hansen, J F; van Breugel, W; Bringa, E M; Graham, G A; Remington, B A; Taylor, E A; Tielens, A G

    2010-04-21

    In interstellar and interplanetary space, the size distribution and composition of dust grains play an important role. For example, dust grains determine optical and ultraviolet extinction levels in astronomical observations, dominate the cooling rate of our Galaxy, and sets the thermal balance and radiative cooling rates in molecular clouds, which are the birth place of stars. Dust grains are also a source of damage and failure to space hardware and thus present a hazard to space flight. To model the size distribution and composition of dust grains, and their effect in the above scenarios, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new experiment which employs a laser to subject dust grains to pressure spikes similar to those of colliding astrophysical dust, and which accelerates the grains to astrophysical velocities. The new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields.

  17. Molecules and dust in Cassiopeia A. II. Dust sputtering and diagnosis of supernova dust survival in remnants

    NASA Astrophysics Data System (ADS)

    Biscaro, Chiara; Cherchneff, Isabelle

    2016-05-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains that formed in the Type II-b supernova ejecta by modelling the sputtering of grains. The dust is located in dense ejecta clumps that are crossed by the reverse shock. We also investigate further sputtering in the inter-clump medium gas once the clumps have been disrupted by the reverse shock. The dust evolution in the dense ejecta clumps of Type II-P supernovae and their remnants is also explored. We study oxygen-rich clumps that describe the oxygen core of the ejecta, and carbon-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the various dust components that form in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive grain-size distributions and masses for the dust as a function of time. Both non-thermal sputtering within clumps and thermal sputtering in the inter-clump medium gas are studied. We find that non-thermal sputtering in the clumps is important for all supernova types and accounts for reducing the grain population by ~ 40% to 80% in mass, depending on the clump gas over-density, the grain type and size, and the shock velocity in the clump. A Type II-b SN forms small grains that are sputtered within the clumps and in the inter-clump medium. For Cas A, silicate grains do not survive thermal sputtering in the inter-clump medium, while alumina, silicon carbide, and carbon dust may survive in the remnant. Our derived masses of currently processed silicate, alumina and carbon grains agree well with the values derived from the observations of warm dust, and seem to indicate that the dust is currently being processed within clumps by non-thermal sputtering. Out of the ~ 0.03M⊙ of dust formed in the ejecta, between 30% and 60% of this mass is present today in Cas A, and only 6% to 11% of the initial mass will survive the remnant phase. Grains formed in Type II-P supernovae are

  18. Dust ion-acoustic solitary and shock waves due to dust charge fluctuation with vortexlike electrons

    SciTech Connect

    Duha, S. S.; Anowar, M. G. M.; Mamun, A. A.

    2010-10-15

    A rigorous theoretical investigation has been made of the dust ion-acoustic (DIA) solitary and shock waves in an unmagnetized dusty plasma (containing vortexlike electrons, mobile ions, and charge fluctuating static dust) by reductive perturbation method. The effects of dust grain charge fluctuation and vortexlike (trapped) electron are found to modify the properties of the DIA solitary and shock waves significantly. The implications of these results for some space and astrophysical dusty plasma systems, especially planetary ring systems, are briefly mentioned.

  19. Dust in the Quasar Wind (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy.

    Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from?

    Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young.

    Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds.

    Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  20. Ulysses dust measurements near Jupiter.

    PubMed

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  1. Ulysses dust measurements near Jupiter

    NASA Technical Reports Server (NTRS)

    Gruen, Eberhard; Zook, Herbert A.; Baguhl, Michael; Fechtig, Hugo; Hanner, Martha S.; Kissel, Jochen; Lindblad, Bertil A.; Linkert, Dietmar; Linkert, Gudrun; Mann, Ingrid B.

    1992-01-01

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of greater than 5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  2. The Cosmic Odyssey of Dust

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2008-01-01

    We will present models for the evolution of dust in high redshift galaxies and in galaxies in the local universe. Galaxies at very high redshift, when the universe was less than one billion years old, contain massive quantities of dust that could only have fornedin the explosion of core-collapse supernovae. These same objects are also the main source of grain destruction during the later, remnant phase of their evolution. These galaxies offer therefore a unique opportunity for examining the effect of massive stars on the formation and destruction of interstellar dust, and the lecture will present a model for the evolution of dust in these very young galaxies. Spectral and photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features, attributed to PAH molecules, and their metal abundance, leading to a deficiency of these features in low-metallicity galaxies. We show the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of carbon dust into the ISM by AGB stars in the final post-AGB phase of their evolution. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.

  3. Carbon in comet dust

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1990-01-01

    The association of Halley particle results with data from existing meteoritic materials that can be analyzed in the laboratory is discussed. Comet samples must exist in present collections of meteoritic materials and the Halley results provide clues for identifying them. Although it is not presently possible to positively identify cometary meteorites or cometary interplanetary dust (IDP) samples, it is possible to determine which materials are similar to Halley dust and which ones are distinctly unlike Halley. The properties of these existing Halley-compatible samples provide insight into the possible properties of cometary material. Positive identification of meteoritic comet samples or direct samples returned from a comet nucleus would of course revolutionize our ability to study carbonaceous matter in comets. Modern analytical techniques are very powerful and it is possible to perform elemental, chemical, mineralogical and even limited isotopic analysis on micron-size particles. There is an important synergism between the laboratory studies of collected samples and astronomical data from comets and interstellar grains. To fully interpret results there must be convincing methods for associating a particular class or classes of meteoritic material with comets. Ultimately this will be done by direct comet sample return such as the Rosetta mission under development by ESA. At the present time the only links that can be made involve comparison with sample properties and measurable properties of comets. Unfortunately there is at present no known unique property of cometary dust that allows its absolute identification in the laboratory. The results from Halley encounters and observation do provide much new information on cometary grains. The Halley grain compositions, density, size distribution and scattering properties all provide a basis for future investigations. Other Halley properties such as the presence of polyoxymethylene and the 3.4um emission feature could

  4. Dust trap formation in a non-self-sustained discharge with external gas ionization

    SciTech Connect

    Filippov, A. V. Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  5. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  6. Imaging Charged Dust in Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Goree, John

    2010-05-01

    Laboratory experiments with dust grains are described in this talk, which will include numerous images and videos from the experiments. In all the experiments, grains are immersed in plasma, and they are electrically charged. In the first experiment, grains are synthesized under conditions that simulate the outflow of carbon stars. These grains are grown in the gas phase with a carbon vapor. They grow by homogeneous nucleation, accretion, and coagulation. After growth, they are collected and imaged by scanning electron microscopy. These images reveal the grain morphology. In the second experiment, the structure and dynamics of the liquid or solid-phase centers of a star is simulated in the laboratory using charged grains (precision micron-size spheres) as proxies for protons. These grains are imaged by video microscopy, revealing how they self-organize, arranging themselves spatially in a crystalline-like lattice due to mutual Coulomb repulsion. Video microscopy allows tracking the motion of the microspheres and calculating their velocities. This measurement allows the experimenter to detect waves corresponding to random thermal motion, and from the properties of these waves one can measure the grain's charge. In the third experiment, sound waves in a cloud of charged dust are observed using high-speed video cameras. The compression and rarefaction of the dust-grain number density are easily observed in the video. Work supported by NSF and NASA.

  7. Studying the spatial distribution of interstellar dust

    NASA Technical Reports Server (NTRS)

    Walker, Helen J.; Werner, Michael W.; Allen, C.; Henry, R. C.; Kimble, R.; Wofford, J.; Murthy, Jayant

    1989-01-01

    The spacial distribution of interstellar dust reflects both interstellar dynamics and the processes which form and destroy dust in the interstellar medium (ISM). The IRAS survey, because of its high sensitivity to thermal emission from dust in the IR, provides new approaches to determining the spatial distribution of dust. The initial results are reported of an attempt to use the IRAS data to probe the spatial distribution of dust - by searching for thermal emission from dust in the vicinity of bright stars. These results show that this technique (which relies on finding IR emission associated with randomly selected stars) can ultimately be used to study the distribution of dust in the ISM. The density of the cloud producing the IR emission may be derived by assuming that the dust is at its projected distance from the star and that the heating is due to the star's (known) radiation field. The heating radiation is folded into a grain model, and the number of emitting grains adjusted to reproduce the observed energy distribution. It is noted that this technique is capable in principle of detecting dust densities much lower than those typical of the cirrus clouds.

  8. Exozodiacal dust

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc Jason

    Besides the sun, the most luminous feature of the solar system is a cloud of "zodiacal" dust released by asteroids and comets that pervades the region interior to the asteroid belt. Similar clouds of dust around other stars---exozodiacal clouds---may be the best tracers of the habitable zones of extra-solar planetary systems. This thesis discusses three searches for exozodiacal dust: (1) We observed six nearby main-sequence stars with the Keck telescope at 11.6 microns, correcting for atmosphere-induced wavefront aberrations and deconvolving the point spread function via classical speckle analysis. We compare our data to a simple model of the zodiacal dust in our own system based on COBE DIRBE observations and place upper limits on the density of exozodiacal dust in these systems. (2) We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the Hubble Space Telescope to look for scattered light from exozodiacal dust and faint companions within 10 AU from these stars. (3) The planned nulling capability of the Keck Interferometer should allow it to probe the region <200 milliarcsecond from a bright star and to suppress on-axis starlight by factors of 10 -3 to reveal faint circumstellar material. We model the response of the Keck Interferometer to hypothetical exozodiacal clouds to derive detection limits that account for the effects of stellar leakage, photon noise, noise from null depth fluctuations, and the fact that the cloud's shape is not known a priori. We also discuss the interaction of dust with planets. We used the COBE DIRBE Sky and Zodi Atlas and the IRAS Sky Survey Atlas to search for dynamical signatures of three different planets in the solar system dust complex: (1) We searched the COBE DIRBE Sky and Zodi Atlas for a wake of dust trailing Mars. We compare the DIRBE images to a model Mars wake based on the empirical model of the Earth's wake as seen by the DIRBE. (2) We searched the COBE DIRRE Sky and Zodi Atlas for Tiojan dust near

  9. Polarimetric imaging of the polar ring galaxy NGC 660 - evidence for dust outside the stellar disk

    NASA Astrophysics Data System (ADS)

    Alton, P. B.; Stockdale, D. P.; Scarrott, S. M.; Wolstencroft, R. D.

    2000-05-01

    Optical imaging polarimetry has been carried out for the polar ring, starburst galaxy NGC 660. This galaxy has a highly inclined, severely tidally-disturbed disk which is surrounded by a gas-rich, polar ring. We detect scattered light from a large part of the halo and this is attributable to dust grains residing up to =~ 2.5 kpc from the stellar disk. There is evidence from emission-line imaging carried out in the past, that NGC 660 is host to an energetic outflow of hot gas along the minor axis (a `superwind'). Our results indicate that dust grains are entrained in this same outflow. Polarization due to scattering, however, is also present at positions away from the minor axis suggesting that grains may also be displaced from the stellar disk by tidal forces exerted during galactic collisions. Where the polar ring occludes the stellar disk we observe polarization due to magnetically aligned, dichroic grains. By comparing the recorded polarization with the associated optical extinction we infer that the magnetic field in the ring has a lower (but still comparable) strength to the magnetic field in the Milky Way. We also derive a dust-to-gas ratio for the ring and this is about a factor of 2-3 lower than in the solar neighbourhood (but close to the value measured in some nearby spirals). If the ring comprises the remnants of the `interloper' which collided with NGC 660, we expect that the ruptured galaxy was a massive, metal-rich spiral.

  10. Collisional dust fragmentation near nuclear surface within cometary jets

    NASA Astrophysics Data System (ADS)

    Steckloff, J.; Melosh, J.

    2014-07-01

    Previous studies of dust and grain fragmentation within cometary comae have focused on dust fragmentation schemes far from the nucleus [1-4]. In this work, we explore how to quantitatively constrain dust fragmentation mechanisms near the nuclear surface, and show that dust fragmentation within dust jets of Comet 9P/Tempel 1 is dominated by collisions. The dust jets on Tempel 1 that originate from a long scarp [5] obey power-law radiance profiles [6], which is the function describing the radiance (a proxy for dust) along the centerline of a dust jet as a function of height above the surface. The exponent of these power-law radiance profiles within the first kilometer of the surface is greater than -1, indicative of dust fragmentation. We constructed a one-dimensional numerical model of a cometary dust jet, which incorporates two end-member dust fragmentation schemes: binary fission and grain shedding [1]. In binary fission, an initial dust grain continually splits into two equal size pieces after a specified period of time (τ_{s}), whereas, in grain shedding, an initial dust grain continually loses a thin layer (Δ R) of fundamentally small grains from its surface. We model dust as spherical grains that conserve volume during fragmentation, with an initially uniform diameter of up to 5 cm. We model these two schemes without assuming a driving mechanism. Rather, we constrain their fundamental splitting parameters to generate power-law radiance profiles. We formulate the binary fission splitting time (τ_{s (R)}) and the grain shedding thickness of the shed layer (Δ R_{(R)}) as functions of the size of the dust grain (R). This generates power-law radiance profiles when the split time has the functional dependence τ_{s (R)} ∝ R^{-2} or when the depth of the shed layer has the functional dependence on the powers of the radius of the grain of Δ R_{(R)} ∝ R^{2} and higher. We then incorporate a power-law size-frequency distribution of initial grain sizes into our

  11. Lunar Dust and Dusty Plasma Physics

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.

  12. Comet Dust After Deep Impact

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  13. Bi-Dust Solitary Waves

    NASA Astrophysics Data System (ADS)

    Puerta, Julio; Martin, Pablo

    2010-11-01

    Propagations of non-linear solitary waves in bi-dust plasma system is analyzed. In the present treatment one of the dust particles is assumed to be much smaller than other one, in such a way that there are enough time for these particles to reach quasi thermal equilibrium. Maxwell-Boltzmann factors are therefore applied for the density distribution of electrons, ions and light dust grains. The treatment of the problem can now be made by the method of the pseudo-potential taking in to account temperature effects in function of the density of the first grains. A density threshold can be found. In the limit where the light grain density tends to zero recovering the effects found by other authors are founded, where one kind of grains is only present [1,2]. Several numerical calculations for different values of the characteristic parameters will be shown. [4pt] [1] Rao N. N., Shukla P. K. and Tu M. Y. (1990), Planet Space Science 38, 543 [0pt] [2] Mendoza-Briceño C. A., Russel S. M. and Mamun A. A., (2000) Planet Space Science 48, 599

  14. Effects of nonlinear plasma wake field on the dust-lattice wave in complex plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    The influence of a nonlinear ion wake field on the dust-lattice wave is investigated in complex dusty plasmas. The dispersion relation for the dust-lattice wave is derived from the equation of motion including the contribution due to the nearest-neighbour dust grain interaction. The results show that the nonlinear wake-field effect increases the wave frequency, especially at the maximum peak positions. It is found that the oscillatory behaviour of the dust-lattice wave enhances with an increase of the spacing of the dust grains. It is also found that the amplitude of the dust-lattice wave significantly decreases with an increase of the inter-dust grain distance. In addition, it is found that the amplitude of the dust-lattice wave increases with increasing Debye length. The variation of the dust-lattice wave due to the Mach number and plasma parameters is also discussed.

  15. COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD

    SciTech Connect

    Kuchner, Marc J.; Stark, Christopher C. E-mail: starkc@umd.ed

    2010-10-15

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of {approx}10{sup -4} primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10{sup -6} and 10{sup -7}), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of {tau} {approx} v/c, where v is the local Keplerian speed.

  16. Collisional Grooming Models of the Kuiper Belt Dust Cloud

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Stark, Christopher C.

    2010-01-01

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of approximately 10 (exp -4) primarily show an azimuthally- symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 (exp -6) and 10 (exp-7)), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ("transport dominated") to being dominated by the birth ring ("collision dominated") when the optical depth reaches a critical value of r approximately v/c, where v is the local Keplerian speed.

  17. Laboratory observations of self-excited dust acoustic shock waves

    NASA Astrophysics Data System (ADS)

    Merlino, Robert L.; Heinrich, Jonathon R.; Kim, Su-Hyun

    2009-11-01

    Dust acoustic waves have been discussed in connection with dust density structures in Saturn's rings and the Earth's mesosphere, and as a possible mechanism for triggering condensation of small grains in dust molecular clouds. Dust acoustic waves are a ubiquitous occurrence in laboratory dusty plasmas formed in glow discharges. We report observations of repeated, self-excited dust acoustic shock waves in a dc glow discharge dusty plasma using high-speed video imaging. Two major observations will be presented: (1) The self-steepening of a nonlinear dust acoustic wave into a saw-tooth wave with sharp gradient in dust density, very similar to those found in numerical solutions [1] of the fully nonlinear fluid equations for nondispersive dust acoustic waves, and (2) the collision and confluence of two dust acoustic shock waves. [4pt] [1] B. Eliasson and P. K. Shukla, Phys. Rev. E 69, 067401 (2004).

  18. Dust Sources of Saturn's E Ring

    NASA Astrophysics Data System (ADS)

    Spahn, F.; Schmidt, J.; Albers, N.; Kempf, S.; Krivov, A. V.; Sremcevic, M.

    The recent detection of a dust plume at Enceladus' south pole sheds new light on the origin of the E ring of Saturn. The particles probably condense from gas vents escaping from a system of cracks covering the south pole that appears unusually hot in the Cassini infrared experiments. The main fraction of the E ring dust is created in these gas vents. Still, significant amounts of dust should originate from grains ejected by hypervelocity impacts of E ring particles (ERPs), or alternatively, of interplanetary dust grains (IDPs) on the Saturnian moons embedded in the E ring. We estimate the contributions of impactor -ejecta created dust at these various satellites in the ring, relative to the production rate of grains in the plume at Enceladus. Furthermore, we compare the amount of dust created by both projectile families - ERPs and IDPs - and predict that one can clearly discriminate between the ejecta raised by either projectile families in the data of the Cassini dust detector (CDA) collected at close flybys with the moons embedded in the E ring.

  19. A Dynamic Fountain Model for Lunar Dust

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Vondrak, R. R.; Farrell, W. M.

    2005-01-01

    During the Apollo era of exploration it was discovered that sunlight was scattered at the terminators giving rise to horizon glow and streamers above the lunar surface. This was observed from the dark side of the Moon during sunset and sunrise by both surface landers and astronauts in orbit. These observations were quite unexpected, as the Moon was thought to be a pristine environment with a negligible atmosphere or exosphere. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. It has since been demonstrated that this dust population could have serious implications for astronomical observations from the lunar surface. The lunar surface is electrostatically charged by the Moon s large-scale interaction with the local plasma environment and the photoemission of electrons due to solar ultra-violet (UV) light and X-rays. The like-charged surface and dust grains then act to repel each other, such that under certain conditions the dust grains are lifted above the surface. We present a dynamic fountain model which can explain how sub-micron dust is able to reach altitudes of up to approximately 100 km above the lunar surface. Previous static dust levitation models are most applicable to the heavier micron-sized grains in close proximity proximity to the surface, but they cannot explain the presence of extremely light grains at high altitudes. If we relax the static constraint applied to previous models, and instead assume that the grains are in constant motion (under the action of dynamic forces), a new picture emerges for the behavior of sub-micron lunar dust.

  20. Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.

    2008-01-01

    The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar robotic and human missions.