Science.gov

Sample records for aligned dust grains

  1. Interstellar Dust Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Lazarian, A.; Vaillancourt, John E.

    2015-08-01

    Interstellar polarization at optical-to-infrared wavelengths is known to arise from asymmetric dust grains aligned with the magnetic field. This effect provides a potentially powerful probe of magnetic field structure and strength if the details of the grain alignment can be reliably understood. Theory and observations have recently converged on a quantitative, predictive description of interstellar grain alignment based on radiative processes. The development of a general, analytical model for this radiative alignment torque (RAT) theory has allowed specific, testable predictions for realistic interstellar conditions. We outline the theoretical and observational arguments in favor of RAT alignment, as well as reasons the "classical" paramagnetic alignment mechanism is unlikely to work, except possibly for the very smallest grains. With further detailed characterization of the RAT mechanism, grain alignment and polarimetry promise to not only better constrain the interstellar magnetic field but also provide new information on the dust characteristics.

  2. Interstellar Silicate Dust: Modeling and Grain Alignment

    NASA Astrophysics Data System (ADS)

    Das, Indrajit

    We examine some aspects of the alignment of silicate dust grains with respect to the interstellar magnetic field. First, we consider possible observational constraints on the magnetic properties of the grains. Second, we investigate the role of collisions with gas atoms and the production of H2 molecules on the grain surface in the alignment process when the grain is drifting in the gaseous medium. Paramagnetism associated with Fe content in the dust is thought to play a critical role in alignment. Min et al (2007) claimed that the Fe content of the silicate dust can be constrained by the shape of the 10 μm extinction feature. They found low Fe abundances, potentially posing problems for grain alignment theories. We revisit this analysis modeling the grains with irregularly shaped Gaussian Random Sphere (GRS). We give a comprehensive review of all the relevant constraints researchers apply and discuss their effects on the inferred mineralogy. Also, we extend this analysis to examine whether constraints can be placed on the presence of Fe-rich inclusions which could yield "super-paramagnetism". This possibility has long been speculated, but so far observational constraints are lacking. Every time a gas atom collides with a grain, the grain's angular momentum is slightly modified. Likewise when an H2 molecule forms on the surface and is ejected. Here also we model the grain with GRS shape and considered various scenarios about how the colliding gas particles depart the grain. We develop theoretical and computational tools to estimate the torques associated with these aforementioned events for a range of grain drift speeds---from low subsonic to high supersonic speeds. Code results were verified with spherical grain for which analytical results were available. Finally, the above torque results were used to study the grain rotational dynamics. Solving dynamical equations we examine how these torques influence the grain alignment process. Our analysis suggests that

  3. Evidence for H2 Formation Driven Dust Grain Alignment in IC 63

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Piirola, V.; De Buizer, J.; Clemens, D. P.; Uomoto, A.; Charcos-Llorens, M.; Geballe, T. R.; Lazarian, A.; Hoang, T.; Vornanen, T.

    2013-10-01

    In the interstellar medium (ISM), molecular hydrogen is expected to form almost exclusively on the surfaces of dust grains. Due to that molecule's large formation energy (-4.5 eV), several dynamical effects are likely associated with the process, including the alignment of asymmetric dust grains with the ambient magnetic field. Such aligned dust grains are, in turn, believed to cause the broadband optical/infrared polarization observed in the ISM. Here, we present the first observational evidence for grain alignment driven by H2 formation, by showing that the polarization of the light from stars behind the reflection nebula IC 63 appears to correlate with the intensity of H2 fluorescence. While our results strongly suggest a role for "Purcell rockets" in grain alignment, additional observations are needed to conclusively confirm their role. By showing a direct connection between H2 formation and a probe of the dust characteristics, these results also provide one of the first direct confirmations of the grain-surface formation of H2. We compare our observations to ab initio modeling based on Radiative Torque Alignment (RAT) theory.

  4. EVIDENCE FOR H{sub 2} FORMATION DRIVEN DUST GRAIN ALIGNMENT IN IC 63

    SciTech Connect

    Andersson, B-G; De Buizer, J.; Charcos-Llorens, M.; Piirola, V.; Clemens, D. P.; Uomoto, A.; Geballe, T. R.; Lazarian, A.; Hoang, T.; Vornanen, T.

    2013-10-01

    In the interstellar medium (ISM), molecular hydrogen is expected to form almost exclusively on the surfaces of dust grains. Due to that molecule's large formation energy (–4.5 eV), several dynamical effects are likely associated with the process, including the alignment of asymmetric dust grains with the ambient magnetic field. Such aligned dust grains are, in turn, believed to cause the broadband optical/infrared polarization observed in the ISM. Here, we present the first observational evidence for grain alignment driven by H{sub 2} formation, by showing that the polarization of the light from stars behind the reflection nebula IC 63 appears to correlate with the intensity of H{sub 2} fluorescence. While our results strongly suggest a role for 'Purcell rockets' in grain alignment, additional observations are needed to conclusively confirm their role. By showing a direct connection between H{sub 2} formation and a probe of the dust characteristics, these results also provide one of the first direct confirmations of the grain-surface formation of H{sub 2}. We compare our observations to ab initio modeling based on Radiative Torque Alignment (RAT) theory.

  5. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 Angstroms, and the grain rotation rates are obtained by analyzing the low frequency (approximately 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  6. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.

  7. Radiative Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B. G.

    2015-12-01

    Polarization due to aligned dust grains was discovered in the interstellar medium more than 60 years ago. A quantitative, observationally well tested theory of the phenomenon has finally emerged in the last decade, promising not only an improved understanding of interstellar magnetic fields, but new tools for studying the dust environments and grain characteristics. This Radiative Alignment Torque (RAT) theory also has many potential applications in solar system physics, including for comet dust characteristics. I will review the main aspects of the theory and the observational tests performed to date, as well as some of the new possibilities for using polarization as a tool to study dust and its environment, with RAT alignment.

  8. Dust grain alignment in IC 63 - H2 formation enhancement and collisional disalignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Vaillancourt, John E.; Acosta-Pulido, Jose; Fernandez, Manuel

    2016-01-01

    Interstellar dust grain alignment gives rise to polarization from UV to mm wavelengths, allowing the study of the geometry and strength of the magnetic field. Over the last couple of decades observations and theory have led to the establishment of the Radiative Alignment Torque (RAT) mechanism as the leading candidate to explain the effect. With a quantitatively well constrained theory, polarization can be used not only to study the interstellar magnetic field, but also the dust and other environmental parameters. Photo-dissociation Regions (PDRs), with their intense, anisotropic radiation fields, consequent rapid H2 formation, and high spatial density-contrast provide a rich environment for such studies. Here we discuss an expanded optical, NIR and mm-wave study (cf. Andersson et al. 2013) of the IC 63 reflection nebula, showing strong H2 formation-enhanced alignment and the first direct, empirical, evidence for disalignment due to gas-grain collisions.

  9. Quantum Suppression of Alignment in Ultrasmall Grains: Microwave Emission from Spinning Dust will be Negligibly Polarized

    NASA Astrophysics Data System (ADS)

    Draine, B. T.; Hensley, Brandon S.

    2016-11-01

    The quantization of energy levels in small, cold, free-flying nanoparticles suppresses dissipative processes that convert grain rotational kinetic energy into heat. For interstellar grains small enough to have ∼GHz rotation rates, the suppression of dissipation can be extreme. As a result, alignment of such grains is suppressed. This applies both to alignment of the grain body with its angular momentum {\\boldsymbol{J}}, and to alignment of {\\boldsymbol{J}} with the local magnetic field {\\boldsymbol{B}} 0. If the anomalous microwave emission is rotational emission from spinning grains, then it will be negligibly polarized at GHz frequencies, with P ≲ 10‑6 at ν > 10 GHz.

  10. Dust alignment in astrophysical environments

    NASA Astrophysics Data System (ADS)

    Lazarian, Alex; Thiem Hoang, Chi

    Dust is known to be aligned in interstellar medium and the arising polarization is extensively used to trace magnetic fields. What process aligns dust grains was one of the most long-standing problems of astrophysics in spite of the persistent efforts to solve it. For years the Davis-Greenstein paramagnetic alignment was the primary candidate for explaining grain alignment. However, the situation is different now and the most promising mechanism is associated with radiative torques (RATs) acting on irregular grains. I shall present the analytical theory of RAT alignment, discuss the observational tests that support this theory. I shall also discuss in what situations we expect to see the dominance of paramagnetic alignment.

  11. Grain Alignment in Starless Cores

    NASA Astrophysics Data System (ADS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to {{A}V}˜ 48. We find that {{P}K}/{{τ }K} continues to decline with increasing AV with a power law slope of roughly -0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by {{A}V}≳ 20 the slope for P versus τ becomes ˜-1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than {{A}V}˜ 20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  12. Composite circumstellar dust grains

    NASA Astrophysics Data System (ADS)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  13. Dust grain charging in a wake of other grains

    SciTech Connect

    Miloch, W. J.; Block, D.

    2012-12-15

    The charging of dust grain in the wake of another grains in sonic and supersonic collisionless plasma flows is studied by numerical simulations. We consider two grains aligned with the flow, as well as dust chains and multiple grain arrangements. It is found that the dust charge depends significantly on the flow speed, distance between the grains, and the grain arrangement. For two and three grains aligned, the charges on downstream grains depend linearly on the flow velocity and intergrain distance. The simulations are carried out with DiP3D, a three dimensional particle-in-cell code with both electrons and ions represented as numerical particles [W. J. Miloch et al., Phys. Plasmas 17, 103703 (2010)].

  14. Grain alignment in starless cores

    SciTech Connect

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  15. Observational Evidence for Radiative Interstellar Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.; Potter, S. B.; Andersson, B.; Potter, S.

    2011-11-01

    The alignment mechanisms of interstellar dust grains is a long standing astrophysical problem. Interstellar polarization was first discovered in 1949 and soon thereafter attributed to dichroic extinction caused by asymmetric dust grains aligned with the magnetic field. For a long time the alignment mechanism was thought to involve paramagnetic relaxation in rapidly spinning dust grains. Modern theory indicates that the classical alignment mechanisms are likely not efficient, but rather favor alignment through direct radiative torques. We have used multi-band polarimetry towards stars probing six nearby clouds to show that the wavelength of maximum polarization is linearly correlated with the visual extinction (Andersson & Potter 2007; AP07; where further details can be found). We find a universal relation with a common positive slope between the clouds and a DC offset correlated with the average of the total-to-selective extinction < RV > . These results provide strong observational support for radiatively driven grain alignment. Recent observations of an additional set of ≍60 sightlines in the Taurus cloud confirm and strengthen these results.

  16. Fractal dust grains in plasma

    SciTech Connect

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  17. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  18. Grain alignment by radiative torques in special conditions and implications

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.

    2014-02-01

    Grain alignment by radiative torques (RATs) has been extensively studied for various environment conditions, including interstellar medium, dense molecular clouds and accretion discs, thanks to significant progress in observational, theoretical and numerical studies. In this paper, we explore the alignment by RATs and provide quantitative predictions of dust polarization for a set of astrophysical environments that can be tested observationally. We first consider the alignment of grains in the local interstellar medium and compare predictions for linear polarization by aligned grains with recent observational data for nearby stars. We then revisit the problem of grain alignment in accretions discs by taking into account the dependence of RAT alignment efficiency on the anisotropic direction of radiation fields relative to magnetic fields. Moreover, we study the grain alignment in interplanetary medium, including diffuse Zodiacal cloud and cometary comae, and calculate the degree of circular polarization (CP) of scattered light arising from single scattering by aligned grains. We also discuss a new type of grain alignment, namely the alignment with respect to the ambient electric field instead of the alignment with the magnetic field. We show that this type of alignment can allow us to reproduce the systematic features of CP observed across a cometary coma. Our findings suggest that polarized Zodiacal dust emission may be an important polarized foreground component, which should be treated carefully in cosmic microwave background experiments.

  19. Grain dust and the lungs.

    PubMed Central

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  20. Grain alignment: Role of radiative torques and paramagnetic relaxation

    NASA Astrophysics Data System (ADS)

    Lazarian, Alexander; Andersson, B.-G.; Hoang, Thiem

    2015-05-01

    Polarization arising from aligned dust grains presents a unique opportunity to study magnetic fields in the diffuse interstellar medium and molecular clouds. Polarization from circumstellar regions, accretion disks and comet atmospheres can also be related to aligned dust.To reliably trace magnetic fields quantitative theory of grain alignment is required. Formulating the theory that would correspond to observations was one of the longstanding problems in astrophysics. Lately this problem has been successfully addressed, and in this review we summarize some of the most important theoretical advances in the theory of grain alignment by radiative torques (RATs) that act on realistic irregular dust grains. We discuss an analytical model of RATs and the ways to make RAT alignment more efficient, e.g. through paramagnetic relaxation when grains have inclusions with strong magnetic response. For very small grains for which RAT alignment is inefficient, we also discuss paramagnetic relaxation and a process termed resonance relaxation. We provide an extensive analysis of the observational tests of grain alignment theory.

  1. Grain alignment by ferromagnetic impurities

    NASA Technical Reports Server (NTRS)

    Mathis, J. S.

    1986-01-01

    The observed wavelength dependence of linear polarization, and its variation from region to region can be explained by the following assumptions. Interstellar grains resemble interplanetary grains, in that they are composed of collections of small particles coagulated together into elongated masses. A fraction of the small particles are ferromagnetic. Presumably these are either metallic Fe or magnetite, Fe3O4. If and only if a large grain contains one or more magnetic particles is the grain aligned in the galactic magnetic field. The magnetic particles stick only to silicate grains because of chemical similarities, or (equivalently) any pure carbon grains in the diffuse interstellar medium (ISM) are too spherical to produce polarization. Grains in dense regions, such as the outer parts of molecular clouds, are larger than those in the diffuse ISM because of coagulation of the grains rather than accretion of icy mantles. These regions are known to have larger than normal values of lambda (max), the wavelength of the maximum of linear polarization. The above assumptions are sufficient to allow the calculation of the wavelength dependence of the polarization.

  2. Understanding of Dynamics and Alignment of Astrophysical Dust

    NASA Astrophysics Data System (ADS)

    Lazarian, Alex

    2009-01-01

    For a long time the dynamics of dust particles was approximated by that of absolutely rigid spheroids with no internal structure; the driving was accounted by gas bombarding the surface of the spheroids. The real dust dynamics is very different. First of all, irregular grains have non-zero helicity, which results in strong torques that emerge when grains interact with radiation and/or gaseous flows. This results in grain alignment, which is far more efficient than the competing processes described in textbooks. Second, the processes of alignment can be different for grains which inertia is approximated by spheroids and ellipsoids of inertia. Third, interactions of grains with ions are frequently more important than with the neutral atoms. Our research shows that, in spite of all these complexities, grain dynamics and grain alignment can be understood with sufficiently simple models. In particular, I shall present an analytical model that describes well the alignment of helical grains, present the calculations of the rate of rotation and degree of alignment for grains in different astrophysical environments. In particular, I shall discuss the dynamics of very large grains, which are present in accretion disks and the dynamics of very small grains or PAHs, which are responsible for the anomalous foreground emission.

  3. Alignment of Dust by Radiative Torque: Recent Developments

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Hoang, T.

    2011-11-01

    Alignment of dust by radiative torques (RATs) has proven to be the most promising mechanism to explain alignment in various astrophysical environments, from comet atmospheres to circumstellar accretion disks, molecular clouds, and diffuse interstellar gas. Recent years have been marked by intensive attempts to provide proper theoretical treatment of the alignment process. We discuss some of the major advances, which include, first of all, formulating of the analytical model of RATs. This model was shown to reproduce well the torques acting on actual irregular dust grains and allowed studies of the parameter space for which the alignment happens with long axes perpendicular and parallel to the magnetic field. Such a study resulted in an important conclusion that, without any paramagnetic relaxation, the RAT alignment always happens for interstellar grains with long axes perpendicular to the magnetic field. Incidentally, this conclusion is not true for the alignment of large (i.e. a > 10-4 cm) grains that are present, e.g. in accretion disks, as these grains can demonstrate both the alignment with long axes parallel and perpendicular to the magnetic field, although the alignment with long grain axes perpendicular to the magnetic field is preferential in many cases, which can also be identified with the analytical model. Additional recent advances include the description of effects of gaseous bombardment and pinwheel torques on grains aligned by RATs. Very counterintuitively, the gaseous bombardment was shown in some cases to increase the degree of alignment by knocking out grains from the positions of imperfect alignment when the grains rotate slowly to more stable positions of perfect alignment where grains rotate fast. In terms of pinwheel torques, important revisions have been made in the Lazarian & Draine model of grain flipping and thermal trapping. Those, however, do not change the major conclusion that very small grains (i.e. a < 3× 10-6 cm) should be

  4. Experimental Study of Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  5. Exploring Grain Alignment Mechanisms in Giant Molecular Clouds using GPIPS

    NASA Astrophysics Data System (ADS)

    Jameson, Katherine; Clemens, D.; Pinnick, A.; Pavel, M.; Moreau, J.; Taylor, B.

    2009-01-01

    The linear polarization of starlight along a line of sight arises from the alignment of anisotropic dust grains with the local magnetic field direction. The exact process which aligns the dust grains with the local magnetic field is still unknown. However, an understanding of the alignment mechanism is necessary to be able to interpret polarization maps as tracers of the galactic magnetic field. Recent arguments suggest that radiative aligned torques (RATs) dominate alignment in giant molecular clouds (GMCs), including the infrared dark cloud cores (IRDCs) within them. To test RAT theory, a nearby GMC at l = 53, b = 0 was chosen to be observed this past June as part of the Galactic Plane Infrared Polarization Survey (GPIPS). The cloud covers a 1 x 2 degree region of the galactic plane ( 200 GPIPS field-of-views), and displays regions of varying extinction, morphology, and radiation environments as seen using the GLIMPSE, MIPS, and GRS 13CO data. With an average sampling of 100 stars per GPIPS field-of-view (10’ x 10'), we expect 20,000 stars will show detectable polarizations -a factor of 600 greater than in previous polarimetric studies. A plot of degree of NIR polarization P(%) vs. I/Imax, found using GRS 13CO data, is ideal for comparison to the models of Cho & Lazarian (2005). Approximate Av values are found using the 2MASS color excesses, EH-K. This aids in the generation of a plot of P(%)/Av vs. Av in dark clouds, to compare to the results of Arce et al. (1998) to test the notion that grains are aligned only for a few skin-depths. This work is partially supported by NSF grant AST-0607500.

  6. Models of Polarized Emission from Interstellar Dust Grains

    NASA Astrophysics Data System (ADS)

    Draine, Bruce

    2015-04-01

    Nonspherical aligned dust grains produce strong linearly-polarized thermal emission at submm and microwave frequencies, with polarized fractions exceeding 20% in some parts of the high-latitude sky. Observations of emission, absorption, and scattering by dust, together with our knowledge of the abundances of elements out of which dust grains can be formed, impose many constraints on dust modelers. The dust is in large part composed of amorphous silicates, but with a substantial component of carbonaceous materials, including nanoparticles of polycyclic aromatic hydrocarbons. The smallest particles radiate thermally in the mid-IR following single-photon heating, and also produce rotational emission at microwave frequencies. This rotational emission may account for the so-called Anomalous Microwave Emission. Iron contributes about 25% of the total mass of interstellar dust, but what form the Fe is in is largely unknown; much of the Fe could be in ferromagnetic or ferrimagnetic materials that could emit magnetic dipole radiation at microwave frequencies. I will review the observational constraints on dust models, the current state of our physical models, and prospects for further progress.

  7. Dust Spectroscopy and the Nature of Grains

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.

  8. Dust grains from the heart of supernovae

    NASA Astrophysics Data System (ADS)

    Bocchio, Marco; Marassi, Stefania; Schneider, Raffaella; Bianchi, Simone; Limongi, Marco; Chieffi, A.

    2016-06-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. We have developed a new code (GRASH_Rev) which follows the newly-formed dust evolution throughout the supernova explosion until the merging of the forward shock with the circumstellar ISM. We have considered four well studied SNe in the Milky Way and Large Magellanic Cloud: SN1987A, CasA, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations and estimate that between 1 and 8% of the observed mass will survive, leading to a SN dust production rate of (3.9± 3.7)×10^(‑4) MM_{⊙})/yr in the Milky Way. This value is one order of magnitude larger than the dust production rate by AGB stars but insufficient to counterbalance the dust destruction by SNe, therefore requiring dust accretion in the gas phase.

  9. Dust grains from the heart of supernovae

    NASA Astrophysics Data System (ADS)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the

  10. Exposure to grain dust in Great Britain.

    PubMed

    Spankie, Sally; Cherrie, John W

    2012-01-01

    Airborne grain dust is a complex mixture of fragments of organic material from grain, plus mineral matter from soil, and possible insect, fungal, or bacterial contamination or their toxic products, such as endotoxin. In the 1990s, grain workers in Britain were frequently exposed to inhalable dust >10 mg.m(-3) (8 h), with particularly high exposures being found at terminals where grain was imported or exported and in drying operations (personal exposure typically approximately 20 mg.m(-3)). Since then, the industry has made substantial progress in improving the control of airborne dust through better-designed processes, increased automation, and an improved focus on product quality. We have used information from the published scientific literature and a small survey of industry representatives to estimate current exposure levels. These data suggest that current long-term exposure to inhalable dust for most workers is on average less than approximately 3 mg.m(-3), with perhaps 15-20% of individual personal exposures being >10 mg.m(-3). There are no published data from Britain on short-term exposure during cleaning and other tasks. We have estimated average levels for a range of tasks and judge that the highest levels, for example during some cleaning activities and certain process tasks such as loading and packing, are probably approximately10 mg.m(-3). Endotoxin levels were judged likely to be <10⁴ EU m(-3) throughout the industry provided inhalable dust levels are <10 mg.m(-3). There are no published exposure data on mycotoxin, respirable crystalline silica, and mite contamination but these are not considered to present widespread problems in the British industry. Further research should be carried out to confirm these findings.

  11. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    SciTech Connect

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-04-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.

  12. Experimental investigations of the optical and physical properties of interstellar and lunar dust grains

    NASA Astrophysics Data System (ADS)

    Tankosic, Dragana

    2010-10-01

    Dust grains constitute a major component of matter in the universe. About half of all elements in the interstellar medium (ISM) heavier than helium are in the form of dust. Dust particles are formed in astrophysical environments by processes such as stellar outflows and supernovae. Ejected into the ISM, they lead to the formation of diffuse and dense molecular clouds of gas and dust. The gas and dust in the interstellar clouds undergo a variety of complex physical and chemical evolutionary processes leading to the formation of stars and planetary systems, forming a cosmic dust cycle. Micron/submicron size cosmic dust grains have a significant role in physical and dynamical processes in the galaxy, the ISM, and the interplanetary and planetary environments. Therefore, the knowledge of the physical, optical, and charging properties of the cosmic dust provides valuable information about many issues related to the role of dust in astrophysical environments. An experimental facility based on an electrodynamic balance (EDB) has been developed at NASA- Marshall Space Flight Center (MSFC) for investigation of several different properties and processes of individual, levitated micron/submicron size dust grains in simulated space environments. This dissertation focuses on experimental investigations in the following areas: (1) Radiation pressure on individual micron-sized dust grains; (2) Rotation and alignment of micron-sized dust grains simulating rotation of dust grains in astrophysical environment; (3) Charging of analogs of individual cosmic dust grains and lunar dust grains by UV radiation; (4) Charging of Apollo 11 & 17 lunar dust grains by electron impact simulating the charging of lunar dust by the solar wind plasma. The experimental results obtained on individual micron/submicron-size dust grains in the EDB facility at NASA/MSFC in each of the above four areas were unique and first to be reported. Experimental studies of the physical and optical properties of

  13. Alignment of atmospheric mineral dust due to electric field

    NASA Astrophysics Data System (ADS)

    Ulanowski, Z.; Bailey, J.; Lucas, P. W.; Hough, J. H.; Hirst, E.

    2007-12-01

    Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction indicating the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here. It is also possible that the alignment and the electric field modify dust transport.

  14. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  15. Ion implantation effects in 'cosmic' dust grains

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Meunier, R.; Jouffrey, B.; Jouret, C.

    1974-01-01

    Cosmic dust grains, whatever their origin may be, have probably suffered a complex sequence of events including exposure to high doses of low-energy nuclear particles and cycles of turbulent motions. High-voltage electron microscope observations of micron-sized grains either naturally exposed to space environmental parameters on the lunar surface or artificially subjected to space simulated conditions strongly suggest that such events could drastically modify the mineralogical composition of the grains and considerably ease their aggregation during collisions at low speeds. Furthermore, combined mass spectrometer and ionic analyzer studies show that small carbon compounds can be both synthesized during the implantation of a mixture of low-energy D, C, N ions in various solids and released in space by ion sputtering.

  16. Role of positively charged dust grains on dust acoustic wave propagation in presence of nonthermal ions

    SciTech Connect

    Sarkar, Susmita; Maity, Saumyen

    2013-08-15

    An expression for ion current flowing to the dust grains is proposed, when dust charge is positive and the ions are nonthermal. Secondary electron emission has been considered as the source of positive charging of the dust grains. Investigation shows that presence of positively charged dust grains along with thermal electrons and nonthermal ions generate purely growing dust acoustic waves for both the cases of ion nonthermal parameter greater than one and less than one. In the later case, the growth is conditional.

  17. OBSERVATIONS OF ENHANCED RADIATIVE GRAIN ALIGNMENT NEAR HD 97300

    SciTech Connect

    Andersson, B-G; Potter, S. B. E-mail: sbp@saao.ac.z

    2010-09-10

    We have obtained optical multi-band polarimetry toward sightlines through the Chamaeleon I cloud, particularly in the vicinity of the young B9/A0 star HD 97300. We show, in agreement with earlier studies, that the radiation field impinging on the cloud in the projected vicinity of the star is dominated by the flux from the star, as evidenced by a local enhancement in the grain heating. By comparing the differential grain heating with the differential change in the location of the peak of the polarization curve, we show that the grain alignment is enhanced by the increase in the radiation field. We also find a weak, but measurable, variation in the grain alignment with the relative angle between the radiation field anisotropy and the magnetic field direction. Such an anisotropy in the grain alignment is consistent with a unique prediction of modern radiative alignment torque theory and provides direct support for radiatively driven grain alignment.

  18. On the theory of dynamics of dust grain in plasma

    SciTech Connect

    Stepanenko, A. A.; Krasheninnikov, S. I.

    2013-03-15

    The dynamics of rotationally symmetric dust grains in plasma embedded in a magnetic field are of concern. The general expressions for forces and torques acting on dust are found. It is shown that dust spinning is determined by torques related to both the Lorentz force (dominant for relatively small grains) and the gyro-motion of plasma particles impinging the grain (which prevails for large grains). The stability of grain spinning is analyzed and it is shown that, for some cases (e.g., oblate spheroid), there is no stable dynamic equilibrium of grain spinning.

  19. Alignment of atmospheric mineral dust due to electric field

    NASA Astrophysics Data System (ADS)

    Ulanowski, Z.; Bailey, J.; Lucas, P. W.; Hough, J. H.; Hirst, E.

    2007-09-01

    Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction consistent with the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling also indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here.

  20. Using Spinning Dust Emission To Constrain The Evolution Of Dust Grains In Cold Clumps

    NASA Astrophysics Data System (ADS)

    Tibbs, C.; Paladini, R.; Cleary, K.; Grainge, K.; Muchovej, S.; Pearson, T.; Perrott, Y.; Rumsey, C.; Scaife, A.; Stevenson, M.; Villadsen, J.

    Within many molecular clouds in our Galaxy there are cold, dense regions known as cold clumps in which stars form. These dense environments provide a great location in which to study dust grain evolution. Given the low temperatures (˜10-15 K) and high densities (˜105 cm-3 ), these environments are dark at mid-infrared (IR) wavelengths and emit strongly at wavelengths ≥160 µm. The lack of mid-IR emission can be attributed to one of two reasons: i) a deficit of the small dust grains that emit stochastically at mid-IR wavelengths; or ii) small dust grains are present, but due to the high densities, the stellar photons cannot penetrate deep enough into the clumps to excite them. Using mid-IR observations alone it is impossible to distinguish between these two scenarios. However, by using spinning dust emission at cm wavelengths it is possible to break this degeneracy, because if small dust grains are present in these clumps, then even though stellar photons cannot excite them to emit at mid-IR wavelengths, these dust grains will be spunup by collisions and hence emit spinning dust radiation. If spinning dust were detected in these clumps it would prove that there are small dust grains present and that the lack of mid-IR emission is due to a lack of stellar photons. Conversely, a lack of spinning dust emission would indicate a deficit of small dust grains in these clumps. Since small dust grains require harsh radiation fields to be destroyed, a lack of small dust grains is likely a result of dust grain coagulation. With this in mind, we present preliminary results illustrating our method of using spinning dust observations to determine the evolution of small dust grains in these environments.

  1. Formation of water on warm dust grains

    NASA Astrophysics Data System (ADS)

    Vidali, Gianfranco; He, Jiao; Shi, Jianming; Hopkins, Tyler; Kaufman, Michael

    2015-08-01

    The early stage of water formation on dust grains in the ISM depends on sticking and retention of atoms and molecules on surfaces of grains. We investigated the interaction of oxygen with amorphous silicates. We find that atomic oxygen is retained on an amorphous silicate surface with a much higher binding energy (1850K ± 90K) than previously estimated (800K). We then used such value in the simulation of the chemical evolution of an interstellar environment - a molecular cloud edge in star-forming regions in Orion exposed to FUV illumination, and found that OH and H2O formation on grains is considerably enhanced while O2 formation is suppressed because of the higher O binding energy. These effects are especially important in dense gas exposed to high FUV fields because of the wider temperature range in which oxygen can reside. Because of the higher binding energy, photodesorption controls the gas phase chemistry. Consequences of this discovery for observations will be discussed.This work is supported by the NSF Astronomy and Astrophysics Division (Grant No.1311958 to GV) and by NASA support for US research with the Herschel Space Observatory (RSA No. 1427170 to MJK).

  2. Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains

    NASA Technical Reports Server (NTRS)

    Yorke, H.; Suttner, G.; Lin, D.

    1999-01-01

    Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and due to corresponding changes in the medium's opacity significantly influence the evolution during early phase of star formation.

  3. Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains

    NASA Technical Reports Server (NTRS)

    Yorke, H.; Lin, D.; Suttner, G.

    1999-01-01

    Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and -- due to corresponding changes in the medium's opacity significantly -- influence the evolution during early phases of star formation.

  4. Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields

    SciTech Connect

    Hoang, Thiem; Martin, P. G.; Lazarian, A.

    2014-07-20

    We present a novel method to measure the strength of interstellar magnetic fields using ultraviolet (UV) polarization of starlight that is in part produced by weakly aligned, small dust grains. We begin with calculating the degrees of the paramagnetic alignment of small (size a ∼ 0.01 μm) and very small (a ∼ 0.001 μm) grains in the interstellar magnetic field due to the Davis-Greenstein relaxation and resonance relaxation. To calculate the degrees of paramagnetic alignment, we use Langevin equations and take into account various interaction processes essential for the rotational dynamics of small grains. We find that the alignment of small grains is necessary to reproduce the observed polarization in the UV, although the polarization arising from these small grains is negligible at the optical and infrared (IR) wavelengths. Based on fitting theoretical models to observed extinction and polarization curves, we find that the best-fit model for the case with the peak wavelength of polarization λ{sub max} < 0.55 μm requires a higher degree of alignment of small grains than for the typical case with λ{sub max} = 0.55 μm. We interpret the correlation between the systematic increase of the UV polarization relative to maximum polarization (i.e., of p(6 μm{sup –1})/p{sub max}) with λ{sub max}{sup −1} for cases of low λ{sub max} by appealing to the higher degree of alignment of small grains. We utilize the correlation of the paramagnetic alignment of small grains with the magnetic field strength B to suggest a new way to measure B using the observable parameters λ{sub max} and p(6 μm{sup –1})/p{sub max}.

  5. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  6. Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities.

    PubMed

    Boissy, Robert J; Romberger, Debra J; Roughead, William A; Weissenburger-Moser, Lisa; Poole, Jill A; LeVan, Tricia D

    2014-01-01

    Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses

  7. Experimental Investigations of the Physical and Optical Properties of Individual Micron/Submicron-Size Dust Grains in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; LeClair, A.

    2014-01-01

    Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.

  8. Large scale grain dust explosions-research in Poland

    NASA Astrophysics Data System (ADS)

    Lebecki, K.; Cybulski, K.; Śliz, J.; Dyduch, Z.; Wolański, P.

    1995-06-01

    For the last five years grain dust explosion research was carried out in surface and underground facilities of Experimental Mine “Barbara” Research was focused on problems of evaluation critical dust parameters influencing explosion course, explosion development and suppression by both passive and active means. The main conclusions are as follows: nominal dust concentration needed to obtain flame propagation must be higher than 50 g/m3, for nominal concentrations higher than 100 g/m3 flame acceleration is observed and detonation is possible; strong grain dust explosions can be effectively suppressed with passive water barriers whereas for weak ones active barries must be used.

  9. Complex role of secondary electron emissions in dust grain charging in space environments: measurements on Apollo 11 & 17 dust grains

    NASA Astrophysics Data System (ADS)

    Abbas, Mian; Tankosic, Dragana; Spann, James; Leclair, Andre C.

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, by electron/ion collisions, and sec-ondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstel-lar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynam-ical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10-400 eV energy range. The charging rates of positively and negatively charged particles of 0.2 to 13 µm diam-eters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong parti-cle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  10. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  11. Impact of surface properties on the dust grain charging

    NASA Astrophysics Data System (ADS)

    Pavlů, J.; Richterová, I.; Šafránková, J.; Němeček, Z.

    2006-01-01

    Dust grains are common in the space environment and being immersed in plasma, they become charged. It is well known that a motion of grains in space is driven mainly by electrodynamic forces and thus the grain charge is important for processes like the coagulation or dust cloud formations. Among other charging currents, emission processes are very important for setting the dust charge. It is believed that emission processes are connected exclusively with surface properties of dust grains but it is not evident for the surfaces covered by a very thin layer of different material (e.g., oxidized metal). For this reason, we investigate surface effects experimentally. Our experiment is based on an 3D electrodynamic trap. We caught a single dust grain for several days inside the vacuum vessel and exposed it to the electron/ion beam and studied charging/discharging processes. We have chosen spherically shaped melamine formaldehyde resin grains of a diameter 2.35 μm either with a clean surface or covered with a thin nickel film. An advantage of these samples is that the properties of bulk and surface materials are completely different. The effect of a surface modification was studied for ion and electron field emissions. We determined field intensities needed for significant emission currents as well as effective work functions for charged dust grains of particular material.

  12. Observational support for dust grain emission by electrostatic forces

    NASA Astrophysics Data System (ADS)

    Silen, Johan; Hilchenbach, Martin; Hornung, Klaus; Merouane, Sihane; Schulz, Rita

    2015-04-01

    Dust collected close to the comet 67P by the COSIMA instrument, indicates that fluffy grains up to sizes of several 100 um are lifted off the comet surface and transported to the instrument substrate several tens of kilometers away. The temperature of the surface and the detected gas densities are too low to properly explain lifting grains from the cometary surface. We investigate grain dynamics using electrostatic forces. Comet surface lighting conditions create small scale multi pole electric fields by photons. These fields create forces on both charged and neutral dust grains and may serve as "active regions". The forces acting on the grain, scale as D3 with grain size and therefore large grains are proportionally simpler to elevate, provided the mass is not increasing at the same rate. The fluffy structure of the grains seem to fulfill this requirement. The limiting factor of this mechanism is set by the tensile strength of the grains. If the electrostatic force created exceeds the tensile strength, the grain will disintegrate through Coulomb explosion. The mechanism would favor lifting large fluffy grains off the surface because they have a capability of most easily creating mobile charges which interact in a favorable manner with the multi pole fields. Because of the conglomerate nature of the grains, a splitting of a grain may trigger a Coulomb explosion setting free the bulk dust distribution of small grains detected. The measured elongated impacts also suggest that disintegration is taking place close to the spacecraft. This would also be supported by the proposed model as the space craft charging represents a small scale field anomaly where grain splitting could become enhanced. The observed grains seem to fulfill all requirements of this tentative model.

  13. Ochratoxin A in grain dust--estimated exposure and relations to agricultural practices in grain production.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Elen, Oleif; Eduard, Wijnand

    2004-01-01

    Ochratoxin A (OTA) is a nephrotoxin frequently contaminating grains. OTA inhalation during grain handling may therefore represent a health risk to farmers, and was the subject of this study. Airborne and settled grain dust was collected during grain work on 84 Norwegian farms. Climate and agricultural practices on each farm were registered. Penicillium spp., Aspergillus spp. and OTA in settled dust were measured. Settled dust contained median 4 microg OTA/kg dust (range 2-128), correlating with Penicillium spp. (median 40 cfu/mg; range 0-32000, rs =0.33; p < 0.01). Similar levels were found across grain species, districts and agricultural practices. Penicillium levels, but not OTA levels, were higher in storage than in threshing dust (p=0.003), and increased with storage time (rs =0.51, p < 0.001). Farmers were exposed to median 1 mg/m3 (range 0.2-15) dust during threshing and median 7 mg/m3 (range 1-110) dust during storage work, equalling median 3.7 pg/m3 (range 0.6-200) and median 40 pg/m3 (range 2-14000) OTA, respectively (p < 0.001). Agricultural practices could not predict OTA, Penicillium or Aspergillus contamination. Compared to oral intake of OTA, the inhalant exposure during grain work was low, although varying by more than 1,000-fold. However, the farmers may occasionally be highly exposed, particularly during handling of stored grain.

  14. Investigation of light scattering on a single dust grain

    NASA Astrophysics Data System (ADS)

    Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana; Barton, Petr

    2016-07-01

    Complex phenomenon of light scattering by dust grains plays an important role in all dust--light interactions, especially in space, e.g., light passing through dense dusty clouds in the space as well as in the upper atmosphere, dust charging by photoemission, etc. When the wavelength of the incident light is about the size of the grain, the Mie theory is often used to characterize the scattering process. Unfortunately, we have only very limited knowledge of necessary material constants for most of the space-related materials and also the solution of Mie equations for general grain shapes is difficult or unknown. We develop an apparatus for observations of light scattering on small (micrometer-sized) arbitrary shaped dust grains. We directly measure the scattering by levitating grains in the field created by the standing-wave ultrasonic trap, where we can study single grains or small grain clusters. The experiment is performed at atmospheric air --- unlike other experiments, where grains were measured in water or other liquids. Therefore, the background effects are significantly reduced. Currently, the trap is under development and first tests are carried out. Besides initial results, we focus on theoretical computations of the ultrasonic field of the selected trap.

  15. Impact of surface properties on the dust grain charging

    NASA Astrophysics Data System (ADS)

    Pavlu, J.; Richterova, I.; Safrankova, J.; Nemecek, Z.

    Dust grains are common in the space environment and being embosomed with plasma they become charged. It is well known that a motion of grains in the space is driven mainly by electrodynamic forces and thus the grain charge is of a significant importance for processes like the coagulation or dust cloud formations. Among others, emission processes are very important for setting of the dust charge. It is believed that emission processes are connected exclusively with surface properties of dust grains but it is not evident for the surfaces covered by a very thin layer of different material (e.g., oxidized metal). For this reason, we investigate surface effects experimentally. Our experiment is based on an electrodynamic trap. We can catch a single dust grain for several days inside the vacuum vessel and exposed it by the electron/ion beam and study charging/discharging processes. We have chosen spherically shaped melamine formaldehyde resin grains of a diameter 2.5 μm either with a clean surface or covered with a thin film from different metals. An advantage of these samples is that the properties of bulk and surface materials are completely different. The effect of surface modification was studied for several types of emissions, including secondary electron emission and field emissions.

  16. Peculiarities of the Field Electron Emission from Dust Grains

    SciTech Connect

    Richterova, I.; Beranek, M.; Pavlu, J.; Nemecek, Z.; Safrankova, J.

    2008-09-07

    The goal of the paper is investigation of the electron field emission that limits the attainable grain charge and can prevent electrostatic fragmentation of loosely bounded aggregates of dust grains. We have found that the effective work function of the spherical amorphous carbon grains does not depend on the relative beam energy. Preliminary results on an influence of the ion treatment/cleaning using the simultaneous electron and ion bombardments are discussed.

  17. DUST GRAIN EVOLUTION IN SPATIALLY RESOLVED T TAURI BINARIES

    SciTech Connect

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Males, Jared R.; Greene, Thomas P.

    2011-10-10

    Core-accretion planet formation begins in protoplanetary disks with the growth of small, interstellar medium dust grains into larger particles. The progress of grain growth, which can be quantified using 10 {mu}m silicate spectroscopy, has broad implications for the final products of planet formation. Previous studies have attempted to correlate stellar and disk properties with the 10 {mu}m silicate feature in an effort to determine which stars are efficient at grain growth. Thus far there does not appear to be a dominant correlated parameter. In this paper, we use spatially resolved adaptive optics spectroscopy of nine T Tauri binaries as tight as 0.''25 to determine if basic properties shared between binary stars, such as age, composition, and formation history, have an effect on dust grain evolution. We find with 90%-95% confidence that the silicate feature equivalent widths of binaries are more similar than those of randomly paired single stars, implying that shared properties do play an important role in dust grain evolution. At lower statistical significance, we find with 82% confidence that the secondary has a more prominent silicate emission feature (i.e., smaller grains) than the primary. If confirmed by larger surveys, this would imply that spectral type and/or binarity are important factors in dust grain evolution.

  18. Infrared studies of dust grains in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Tielens, Alexander G. G. M.; Werner, Michael W.

    1989-01-01

    IR reflection nebulae, regions of dust which are illuminated by nearby embedded sources, were observed in several regions of ongoing star formation. Near IR observation and theoretical modelling of the scattered light form IR reflection nebulae can provide information about the dust grain properties in star forming regions. IR reflection nebulae were modelled as plane parallel slabs assuming isotropically scattering grains. For the grain scattering properties, graphite and silicate grains were used with a power law grain size distribution. Among the free parameters of the model are the stellar luminosity and effective temperature, the optical depth of the nebula, and the extinction by foreground material. The typical results from this model are presented and discussed.

  19. GRAIN SORTING IN COMETARY DUST FROM THE OUTER SOLAR NEBULA

    SciTech Connect

    Wozniakiewicz, P. J.; Bradley, J. P.; Ishii, H. A.; Brownlee, D. E.; Kearsley, A. T.; Burchell, M. J.; Price, M. C.

    2012-12-01

    Most young stars are surrounded by a disk of gas and dust. Close to the hot stars, amorphous dust grains from the parent molecular cloud are reprocessed into crystals that are then distributed throughout the accretion disk. In some disks, there is a reduction in crystalline grain size with heliocentric distance from the star. We investigated crystalline grain size distributions in chondritic porous (CP) interplanetary dust particles (IDPs) believed to be from small, icy bodies that accreted in outer regions of the solar nebula. The grains are Mg-rich silicates and Fe-rich sulfides, the two most abundant minerals in CP IDPs. We find that they are predominantly <0.25 {mu}m in radius with a mean grain size that varies from one CP IDP to another. We report a size-density relationship between the silicates and sulfides. A similar size-density relationship between much larger silicate and sulfide grains in meteorites from the asteroid belt is ascribed to aerodynamic sorting. Since the silicate and sulfide grains in CP IDPs are theoretically too small for aerodynamic sorting, their size-density relationship may be due to another process capable of sorting small grains.

  20. A FAR-INFRARED OBSERVATIONAL TEST OF THE DIRECTIONAL DEPENDENCE IN RADIATIVE GRAIN ALIGNMENT

    SciTech Connect

    Vaillancourt, John E.; Andersson, B.-G. E-mail: bg@sofia.usra.edu

    2015-10-10

    The alignment of interstellar dust grains with magnetic fields provides a key method for measuring the strength and morphology of the fields. In turn, this provides a means to study the role of magnetic fields from diffuse gas to dense star-forming regions. The physical mechanism for aligning the grains has been a long-term subject of study and debate. The theory of radiative torques, in which an anisotropic radiation field imparts sufficient torques to align the grains while simultaneously spinning them to high rotational velocities, has passed a number of observational tests. Here we use archival polarization data in dense regions of the Orion molecular cloud (OMC-1) at 100, 350, and 850 μm to test the prediction that the alignment efficiency is dependent upon the relative orientations of the magnetic field and radiation anisotropy. We find that the expected polarization signal, with a 180-degree period, exists at all wavelengths out to radii of 1.5 arcmin centered on the Becklin–Neugebauer Kleinmann-Low (BNKL) object in OMC-1. The probabilities that these signals would occur due to random noise are low (≲1%), and are lowest toward BNKL compared to the rest of the cloud. Additionally, the relative magnetic field to radiation anisotropy directions accord with theoretical predictions in that they agree to better than 15° at 100 μm and 4° at 350 μm.

  1. TRAJECTORIES AND DISTRIBUTION OF INTERSTELLAR DUST GRAINS IN THE HELIOSPHERE

    SciTech Connect

    Slavin, Jonathan D.; Frisch, Priscilla C.; Mueller, Hans-Reinhard; Heerikhuisen, Jacob; Pogorelov, Nikolai V.; Reach, William T.; Zank, Gary

    2012-11-20

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a {sub gr} {approx}< 0.01 {mu}m are completely excluded from the inner heliosphere. Large grains, a {sub gr} {approx}> 1.0 {mu}m, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses.

  2. Magnetorotational instability in plasmas with mobile dust grains

    SciTech Connect

    Ren Haijun; Cao Jintao; Li Ding; Chu, Paul K.

    2013-03-15

    The magnetorotational instability of dusty plasmas is investigated using the multi-fluid model and the general dispersion relation is derived based on local approximation. The dust grains are found to play an important role in the dispersion relation in the low-frequency mode and exhibit destabilizing effects on the plasma. Both the instability criterion and growth rate are affected significantly by the dust and when the dust is heavy enough to be unperturbed, the reduced dispersion relations are obtained. The instability criteria show that the dust grains have stabilizing effects on the instability when the rotation frequency decreases outwards and conversely lead to destabilizing effects when the rotation frequency increases outwards. The results are relevant to accession and protoplanetary disks.

  3. Studies of dust grain properties in infrared reflection nebulae.

    PubMed

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light. PMID:11538693

  4. Studies of dust grain properties in infrared reflection nebulae.

    PubMed

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  5. Tracing Dust Grains from Supernovae to The Solar Nebulae

    NASA Astrophysics Data System (ADS)

    Luebbers, Ian; Goodson, Matthew; Heitsch, Fabian

    2016-01-01

    Short-lived radioisotopes (SLRs) were present in the early solar system, providing evidence that the solar system was impacted by a supernova prior to or during its formation. However, hydrodynamical models of the injection of SLRs fail to achieve sufficient mixing, presenting a challenge to this hypothesis. We propose the injection of SLRs via dust grains in an attempt to overcome the mixing barrier. To test this hypothesis we simulate injection into a presolar gas cloud under various assumptions. Our results suggest that SLR transport in dust grains is a viable mechanism for generating observed SLR abundances.

  6. Study of the process of dust grain discharging in the afterglow of an RF discharge

    SciTech Connect

    Filatova, I. I.; Trukhachev, F. M.; Chubrik, N. I.

    2011-12-15

    The process of decay of dust structures formed of polydisperse grains injected into an RF discharge is investigated. The dust grain velocities after switching-off of the discharge are measured. The number density, dimensions, and residual charges of dust grains are estimated from the balance of forces acting on the grains after discharge is switched off.

  7. Astrophysical dust grains in stars, the interstellar medium, and the solar system

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1991-01-01

    Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.

  8. Nonlinear screening of dust grains and structurization of dusty plasma

    SciTech Connect

    Tsytovich, V. N. Gusein-zade, N. G.

    2013-07-15

    A review of theoretical ideas on the physics of structurization instability of a homogeneous dusty plasma, i.e., the formation of zones with elevated and depressed density of dust grains and their arrangement into different structures observed in laboratory plasma under microgravity conditions, is presented. Theoretical models of compact dust structures that can form in the nonlinear stage of structurization instability, as well as models of a system of voids (both surrounding a compact structure and formed in the center of the structure), are discussed. Two types of structures with very different dimensions are possible, namely, those smaller or larger than the characteristic mean free path of ions in the plasma flow. Both of them are characterized by relatively regular distributions of dust grains; however, the first ones usually require external confinement, while the structures of the second type can be self-sustained (which is of particular interest). In this review, they are called dust clusters and self-organized dust structures, respectively. Both types of the structures are characterized by new physical processes that take place only in the presence of the dust component. The role of nonlinearities in the screening of highly charged dust grains that are often observed in modern laboratory experiments turns out to be great, but these nonlinearities have not received adequate study as of yet. Although structurization takes place upon both linear and nonlinear screening, it can be substantially different under laboratory and astrophysical conditions. Studies on the nonlinear screening of large charges in plasma began several decades ago; however, up to now, this effect was usually disregarded when interpreting the processes occurring in laboratory dusty plasma. One of the aims of the present review was to demonstrate the possibility of describing the nonlinear screening of individual grains and take it into account with the help of the basic equations for the

  9. Modeling the secondary emission yield of salty ice dust grains

    NASA Astrophysics Data System (ADS)

    Richterová, I.; Němeček, Z.; Pavlů, J.; Beránek, M.; Šafránková, J.

    2011-03-01

    Secondary emission is one of important processes leading to dust grain charging in many plasma environments. The secondary yield varies with the grain material, shape, and size. Several experiments confirmed that the yield of small grains differs from that of planar samples. Among other materials, ices of different compositions can be frequently found in the interplanetary space and/or planetary magnetospheres. However, the admixtures can significantly influence the inner structure of such materials and thus may change their yield. We present numerical simulations that provide a realistic description of the secondary emission process from water ice grains. The simulations reveal that the secondary emission yield increases as the grain dimension decreases to tens of nanometers. The yield of backscattered primary electrons approaches unity and the grain can be charged to high positive potentials under these conditions. We found that any reasonable admixture of NaCl does not alter secondary electron emission properties significantly.

  10. Stochastic histories of dust grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Liffman, Kurt; Clayton, D. D.

    1989-01-01

    The purpose is to study an evolving system of refractory dust grains within the Interstellar Medium (ISM). This is done via a combination of Monte Carlo processes and a system of partial differential equations, where refractory dust grains formed within supernova remnants and ejecta from high mass loss stars are subjected to the processes of sputtering and collisional fragmentation in the diffuse media and accretion within the cold molecular clouds. In order to record chemical detail, the authors take each new particle to consist of a superrefractory core plus a more massive refractory mantle. The particles are allowed to transfer to and fro between the different phases of the interstellar medium (ISM) - on a time scale of 10(exp 8) years - until either the particles are destroyed or the program finishes at a Galaxy time of 6x10(exp 9) years. The resulting chemical and size spectrum(s) are then applied to various astrophysical problems with the following results. For an ISM which has no collisional fragmentation of the dust grains, roughly 10 percent by mass of the most refractory material survives the rigors of the ISM intact, which leaves open the possibility that fossilized isotopically anomalous material may have been present within the primordial solar nebula. Stuctured or layered refractory dust grains within the model cannot explain the observed interstellar depletions of refractory material. Fragmentation due to grain-grain collisions in the diffuse phase plus the accretion of material in the molecular cloud phase can under certain circumstances cause a bimodal distribution in grain size.

  11. COMPARTMENTALIZATION OF THE INFLAMMATORY RESPONSE TO INHALED GRAIN DUST

    EPA Science Inventory


    Interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha, and the secreted form of the IL-1 receptor antagonist (sIL-1RA) are involved in the inflammatory response to inhaled grain dust. Previously, we found considerable production of these cytokines in the lower...

  12. Dust Particles Alignments and Transitions in a Plasma Sheath

    SciTech Connect

    Stokes, J. D. E.; Samarian, A. A.; Vladimirov, S. V.

    2008-09-07

    The alignments and transitions of two dust particles in a plasma sheath have been investigated. It is shown that the Hamiltonian description of a non-Hamiltonian system can be used to predict qualitative features of possible equilibria in a variety of confinement potentials and can provide useful plasma diagnostics. The results compare favorably with simulation and are used to create new experimental hypotheses. In particular, the symmetry breaking transition of the particles as they leave the horizontal plane admits a Hamiltonian description which is used to elucidate the wake parameter.

  13. Magnetorotational instability in protoplanetary discs: the effect of dust grains

    NASA Astrophysics Data System (ADS)

    Salmeron, Raquel; Wardle, Mark

    2008-08-01

    We investigate the linear growth and vertical structure of the magnetorotational instability (MRI) in weakly ionized, stratified protoplanetary discs. The magnetic field is initially vertical and dust grains are assumed to be well mixed with the gas over the entire vertical dimension of the disc. For simplicity, all the grains are assumed to have the same radius (a = 0.1,1 or 3μm) and constitute a constant fraction (1 per cent) of the total mass of the gas. Solutions are obtained at representative radial locations (R = 5 and 10 au) from the central protostar for a minimum-mass solar nebula model and different choices of the initial magnetic field strength, configuration of the diffusivity tensor and grain sizes. We find that when no grain are present, or they are >~1μm in radius, the mid-plane of the disc remains magnetically coupled for field strengths up to a few gauss at both radii. In contrast, when a population of small grains (a = 0.1μm) is mixed with the gas, the section of the disc within two tidal scaleheights from the mid-plane is magnetically inactive and only magnetic fields weaker than ~50 mG can effectively couple to the fluid. At 5 au, Ohmic diffusion dominates for z/H <~ 1 when the field is relatively weak (B <~ a few milligauss), irrespective of the properties of the grain population. Conversely, at 10 au this diffusion term is unimportant in all the scenarios studied here. High above the mid-plane (z/H >~ 5), ambipolar diffusion is severe and prevents the field from coupling to the gas for all B. Hall diffusion is dominant for a wide range of field strengths at both radii when dust grains are present. The growth rate, wavenumber and range of magnetic field strengths for which MRI-unstable modes exist are all drastically diminished when dust grains are present, particularly when they are small (a ~ 0.1μm). In fact, MRI perturbations grow at 5 au (10 au) for B <~ 160 mG (130 mG) when 3μm grains are mixed with the gas. This upper limit on the

  14. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  15. Changes of Dust Grain Properties Under Particle Bombardment

    NASA Astrophysics Data System (ADS)

    Pavlů, J.; Richterová, I.; Fujita, D.; Šafránková, J.; Němeček, Z.

    2008-09-01

    The dust in space environments is exposed to particle bombardment. Under an impact of ions, electrons, and photons, the charge of a particular grain changes and, in some cases, the grain structure can be modified. The present study deals with spherical melamine formaldehyde resin grains that are frequently used in many dusty plasmas and microgravity experiments and it concentrates on the influence of the electron beam impact on a grain size. We have performed series of experiments based on the SEM technique. Our investigation has shown that the electron impact can cause a significant increase of the grain size. We discuss changes of material properties and consequences for its applications in laboratory and space experiments.

  16. Changes of Dust Grain Properties Under Particle Bombardment

    SciTech Connect

    Pavlu, J.; Richterova, I.; Safrankova, J.; Nemecek, Z.; Fujita, D.

    2008-09-07

    The dust in space environments is exposed to particle bombardment. Under an impact of ions, electrons, and photons, the charge of a particular grain changes and, in some cases, the grain structure can be modified. The present study deals with spherical melamine formaldehyde resin grains that are frequently used in many dusty plasmas and microgravity experiments and it concentrates on the influence of the electron beam impact on a grain size. We have performed series of experiments based on the SEM technique. Our investigation has shown that the electron impact can cause a significant increase of the grain size. We discuss changes of material properties and consequences for its applications in laboratory and space experiments.

  17. Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Flynn, George J.; Wirick, Sue; Keller, Lindsay P.

    2013-10-01

    The chondritic porous interplanetary dust particles (CP IDPs), fragments of asteroids and comets collected by NASA high-altitude research aircraft from the Earth's stratosphere, are recognized as the least altered samples of the original dust of the Solar Nebula available for laboratory examination. We performed high-resolution, ~25 nm/pixel, x-ray imaging and spectroscopy on ultramicrotome sections of CP IDPs, which are aggregates of >104 grains, and identified and characterized ~100 nm thick coatings of organic matter on the surfaces of the individual grains. We estimated the minimum tensile strength of this organic glue to be ~150 to 325 N/m2, comparable to the strength of the weakest cometary meteors, based on the observation that the individual grains of ~5 μm diameter aggregate CP IDPs are not ejected from the particle by electrostatic repulsion due to charging of these IDPs to 10 to 15 volts at 1 A.U. in space. Since organic coatings can increase the sticking coefficient over that of bare mineral grains, these organic grain coatings are likely to have been a significant aid in grain sticking in the Solar Nebula, allowing the first dust particles to aggregate over a much wider range of collision speeds than for bare mineral grains.

  18. Large dust grains in the wind of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Scicluna, P.; Siebenmorgen, R.; Wesson, R.; Blommaert, J. A. D. L.; Kasper, M.; Voshchinnikov, N. V.; Wolf, S.

    2015-12-01

    Massive stars live short lives, losing large amounts of mass through their stellar wind. Their mass is a key factor determining how and when they explode as supernovae, enriching the interstellar medium with heavy elements and dust. During the red supergiant phase, mass-loss rates increase prodigiously, but the driving mechanism has proven elusive. Here we present high-contrast optical polarimetric-imaging observations of the extreme red supergiant VY Canis Majoris and its clumpy, dusty, mass-loss envelope, using the new extreme-adaptive-optics instrument SPHERE at the VLT. These observations allow us to make the first direct and unambiguous detection of submicron dust grains in the ejecta; we derive an average grain radius ~0.5 μm, 50 times larger than in the diffuse ISM, large enough to receive significant radiation pressure by photon scattering. We find evidence for varying grain sizes throughout the ejecta, highlighting the dynamical nature of the envelope. Grains with 0.5 μm sizes are likely to reach a safe distance from the eventual explosion of VY Canis Majoris; hence it may inject upwards of 10-2 M⊙ of dust into the ISM. Based on observations made with European Southern Observatory (ESO) telescopes at the La Silla Paranal Observatory under program 60.A-9368(A).Appendix A is available in electronic form at http://www.aanda.org

  19. PROPERTIES OF DUST GRAINS PROBED WITH EXTINCTION CURVES

    SciTech Connect

    Nozawa, Takaya; Fukugita, Masataka

    2013-06-10

    Modern data of the extinction curve from the ultraviolet to the near-infrared are revisited to study properties of dust grains in the Milky Way (MW) and the Small Magellanic Cloud (SMC). We confirm that the graphite-silicate mixture of grains yields the observed extinction curve with the simple power-law distribution of the grain size but with a cutoff at some maximal size: the parameters are tightly constrained to be q = 3.5 {+-} 0.2 for the size distribution a {sup -q} and the maximum radius a{sub max} = 0.24 {+-} 0.05 {mu}m, for both MW and SMC. The abundance of grains, and hence the elemental abundance, is constrained from the reddening versus hydrogen column density, E(B - V)/N{sub H}. If we take the solar elemental abundance as the standard for the MW, >56% of carbon should be in graphite dust, while it is <40% in the SMC using its available abundance estimate. This disparity and the relative abundance of C to Si explain the difference of the two curves. We find that 50%-60% of carbon may not necessarily be in graphite but in the amorphous or glassy phase. Iron may also be in the metallic phase or up to {approx}80% in magnetite rather than in silicates, so that the Mg/Fe ratio in astronomical olivine is arbitrary. With these substitutions, the parameters of the grain size remain unchanged. The mass density of dust grains relative to hydrogen is {rho}{sub dust}/{rho}{sub H}= 1 / (120{sup +10}{sub -16}) for the MW and 1 / (760{sup +70}{sub -90}) for the SMC under the elemental abundance constraints. We underline the importance of the wavelength dependence of the extinction curve in the near-infrared in constructing the dust model: if A{sub {lambda}}{proportional_to}{lambda}{sup -{gamma}} with {gamma} {approx_equal} 1.6, the power-law grain-size model fails, whereas it works if {gamma} {approx_equal} 1.8-2.0.

  20. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  1. A Wealth of Dust Grains in Quasar Winds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This plot of data captured by NASA's Spitzer Space Telescope reveals dust entrained in the winds rushing away from a quasar, or growing black hole. The quasar, called PG2112+059, is located deep inside a galaxy 8 billion light-years away. Astronomers believe the dust might have been forged in the winds, which would help explain where dust in the very early universe came from.

    The data were captured by Spitzer's infrared spectrograph, an instrument that splits apart light from the quasar into a spectrum that reveals telltale signs of different minerals. Each type of mineral, or dust grain, has a unique signature, as can be seen in the graph, or spectrum, above.

    The strongest features are from the mineral amorphous olivine, or glass (purple); the mineral forsterite found in sand (blue); and the mineral corundum found in rubies (light blue). The detection of forsterite and corundum is highly unusual in galaxies without quasars. Therefore, their presence is a key clue that these grains might have been created in the quasar winds and not by dying stars as they are in our Milky Way galaxy. Forsterite is destroyed quickly in normal galaxies by radiation, so it must be continually produced to be detected by Spitzer.

    Corundum is hard, and provides a seed that softer, more common minerals usually cover up. As a result, corundum is usually not seen in spectra of galaxies. Since Spitzer did detect the mineral, it is probably forming in a clumpy environment, which is expected in quasar winds. All together, the signatures of the unusual minerals in this spectrum point towards dust grains forming in the winds blowing away from quasars.

  2. Using cm observations to constrain the abundance of very small dust grains in Galactic cold cores

    NASA Astrophysics Data System (ADS)

    Tibbs, C. T.; Paladini, R.; Cleary, K.; Muchovej, S. J. C.; Scaife, A. M. M.; Stevenson, M. A.; Laureijs, R. J.; Ysard, N.; Grainge, K. J. B.; Perrott, Y. C.; Rumsey, C.; Villadsen, J.

    2016-03-01

    In this analysis, we illustrate how the relatively new emission mechanism, known as spinning dust, can be used to characterize dust grains in the interstellar medium. We demonstrate this by using spinning dust emission observations to constrain the abundance of very small dust grains (a ≲ 10 nm) in a sample of Galactic cold cores. Using the physical properties of the cores in our sample as inputs to a spinning dust model, we predict the expected level of emission at a wavelength of 1 cm for four different very small dust grain abundances, which we constrain by comparing to 1 cm CARMA observations. For all of our cores, we find a depletion of very small grains, which we suggest is due to the process of grain growth. This work represents the first time that spinning dust emission has been used to constrain the physical properties of interstellar dust grains.

  3. Grain growth and dust trapping in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola

    2015-08-01

    Circumstellar disks around young stars are known to be the birthplace of planets. Planet formation starts with the coagulation of micron-sized particles to larger dust aggregates. This process, which covers more than forty orders of magnitude in mass, has different physical challenges. One of the oldest mysteries is how planetesimals are formed, in spite of fragmentation collisions and rapid inward drift. Radial drift theory is in disagreement with the observations of millimetre grains in the cold regions of protoplanetary disks. Nevertheless, a disk model that includes dust coagulation, fragmentation, and the presence of long-lived pressure bumps, which moderate the rapid inward migration of particles, leads to a better agreement between observations and theory. Disks with a dust depleted inner cavity, known as transition disks, are excellent candidates to investigate the dust evolution under the existence of a pressure bump. Millimetre observations of transition disks reveal crescent- and ring-shaped emissions that lend credence to the notion than planetesimals may form in localised hotspots or pressure traps. Recent ALMA observations have showed astonishing dust structures in transition disks, which together with data of CO and its isotopologues, have been giving major support for particle trapping induced by embedded planets, which can solve the old paradigm of radial drift.

  4. Studies of dust grain properties in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Tielens, A. G. G. M.; Werner, M. W.

    1990-01-01

    A model has been developed for reflection nebulae around luminous IR sources embedded in dense dust clouds. The shape of the IR spectrum is shown to be the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of the model results with IR observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse ISM, or consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains. By adding water-ice mantles to the silicate and graphite cores, the 3.08 micron ice-band feature observed in the spectra of several IR reflection nebulae has been modeled. It is shown that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains.

  5. First-principles simulations of electrostatic interactions between dust grains

    SciTech Connect

    Itou, H. Amano, T.; Hoshino, M.

    2014-12-15

    We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. [Phys. Lett. A 239, 181–186 (1998)]. Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams [Phys. Lett. A 278, 152–158 (2000)], indicating the absence of the ODS attractive force.

  6. Effects of turbulent dust grain motion to interstellar chemistry

    NASA Astrophysics Data System (ADS)

    Ge, J. X.; He, J. H.; Yan, H. R.

    2016-02-01

    Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon interstellar chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modelling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarized as follows: (1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; (2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about 10; (3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviours too. These effects usually begin to emerge from a typical DC model age of about 105 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations on to positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.

  7. Seeing the Universe in a Grain of Dust

    SciTech Connect

    Hazi, A

    2005-09-20

    Imagine traveling halfway to Jupiter--3.2 billion kilometers--for a small handful of comet dust. That's the mission for the National Aeronautics and Space Administration's (NASA's) Stardust spacecraft launched on February 7, 1999. This past January, Stardust flew by Comet Wild 2's nucleus and through a halo of gases and dust at the comet's head, collecting cometary dust particles released from the surface just hours before. In 2006, the spacecraft will deliver the less than 1 milligram of particles to Earth. A Lawrence Livermore team is perfecting ways to extract and analyze the tiny particles using its new focused-ion-beam instrument and SuperSTEM, a scanning transmission electron microscope. Stardust is the first NASA space mission dedicated solely to collecting comet dust and will be the first to return material from a comet to Earth. Comets are the oldest and most primitive bodies in the solar system. They are formed from frozen gas, water, and interstellar dust and may have brought water to Earth, making life possible. Wild 2--pronounced ''Vilt 2'' after the name of its Swiss discoverer--was formed with the Sun and the rest of the solar system 4.5 billion years ago. For billions of years, it has circled the Sun in the Kuiper Belt, a region beyond the orbit of Neptune. Scientists think comets from this region have escaped the warming, vaporization, and collisions that have altered matter in the inner solar system. Unlike Halley's Comet, which has been altered as a result of orbiting the Sun for a long time, Wild 2's pristine composition is expected to offer a rich source of information about the solar system's potential building blocks. As the 5-meter-long Stardust spacecraft traveled through Wild 2's dust and gas cloud, to within about 100 kilometers of the comet's nucleus, particles were captured in the spacecraft's collector grid. The 1,000-square-centimeter grid is filled with the silica-based material aerogel, whose lightness minimizes damage to the grains

  8. Potential around a dust grain in collisional plasma

    SciTech Connect

    Moulick, R. Goswami, K. S.

    2015-04-15

    The ion neutral collision can lead to interesting phenomena in dust charging, totally different from the expectations based on the traditional orbit motion limited theory. The potential around a dust grain is investigated for the collisional plasma considering the presence of ion neutral collisions. Fluid equations are solved for the one dimensional radial coordinate. It is observed that with the gradual increase in ion neutral collision, the potential structure around the dust grain changes its shape and is different from the usual Debye-Hückel potential. The shift however starts from a certain value of ion neutral collision and the electron-ion density varies accordingly. The potential variation is interesting and reconfirms the fact that there exists a region of attraction for negative charges. The collision modeling is done for the full range of plasma, i.e., considering the bulk and the sheath jointly. The potential variation with collision is also shown explicitly and the variation is found to cope up with the earlier observations.

  9. Exact results for hydrogen recombination on dust grain surfaces.

    PubMed

    Biham, Ofer; Lipshtat, Azi

    2002-11-01

    The recombination of hydrogen in the interstellar medium, taking place on surfaces of microscopic dust grains, is an essential process in the evolution of chemical complexity in interstellar clouds. Molecular hydrogen plays an important role in absorbing the heat that emerges during gravitational collapse, thus enabling the formation of structure in the universe. The H2 formation process has been studied theoretically, and in recent years also by laboratory experiments. The experimental results were analyzed using a rate equation model. The parameters of the surface that are relevant to H2 formation were obtained and used in order to calculate the recombination rate under interstellar conditions. However, it turned out that, due to the microscopic size of the dust grains and the low density of H atoms, the rate equations may not always apply. A master equation approach that provides a good description of the H2 formation process was proposed. It takes into account both the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. In this paper we present a comprehensive analysis of the H2 formation process, under steady state conditions, using an exact solution of the master equation. This solution provides an exact result for the hydrogen recombination rate and its dependence on the flux, the surface temperature, and the grain size. The results are compared with those obtained from the rate equations. The relevant length scales in the problem are identified and the parameter space is divided into two domains. One domain, characterized by first order kinetics, exhibits high efficiency of H2 formation. In the other domain, characterized by second order kinetics, the efficiency of H2 formation is low. In each of these domains we identify the range of parameters in which, due to the small size of the grains, the rate equations do not account correctly for the recombination rate and the master equation is needed. PMID:12513552

  10. Exact results for hydrogen recombination on dust grain surfaces.

    PubMed

    Biham, Ofer; Lipshtat, Azi

    2002-11-01

    The recombination of hydrogen in the interstellar medium, taking place on surfaces of microscopic dust grains, is an essential process in the evolution of chemical complexity in interstellar clouds. Molecular hydrogen plays an important role in absorbing the heat that emerges during gravitational collapse, thus enabling the formation of structure in the universe. The H2 formation process has been studied theoretically, and in recent years also by laboratory experiments. The experimental results were analyzed using a rate equation model. The parameters of the surface that are relevant to H2 formation were obtained and used in order to calculate the recombination rate under interstellar conditions. However, it turned out that, due to the microscopic size of the dust grains and the low density of H atoms, the rate equations may not always apply. A master equation approach that provides a good description of the H2 formation process was proposed. It takes into account both the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. In this paper we present a comprehensive analysis of the H2 formation process, under steady state conditions, using an exact solution of the master equation. This solution provides an exact result for the hydrogen recombination rate and its dependence on the flux, the surface temperature, and the grain size. The results are compared with those obtained from the rate equations. The relevant length scales in the problem are identified and the parameter space is divided into two domains. One domain, characterized by first order kinetics, exhibits high efficiency of H2 formation. In the other domain, characterized by second order kinetics, the efficiency of H2 formation is low. In each of these domains we identify the range of parameters in which, due to the small size of the grains, the rate equations do not account correctly for the recombination rate and the master equation is needed.

  11. Dust grain coagulation modelling : From discrete to continuous

    NASA Astrophysics Data System (ADS)

    Paruta, P.; Hendrix, T.; Keppens, R.

    2016-07-01

    In molecular clouds, stars are formed from a mixture of gas, plasma and dust particles. The dynamics of this formation is still actively investigated and a study of dust coagulation can help to shed light on this process. Starting from a pre-existing discrete coagulation model, this work aims to mathematically explore its properties and its suitability for numerical validation. The crucial step is in our reinterpretation from its original discrete to a well-defined continuous form, which results in the well-known Smoluchowski coagulation equation. This opens up the possibility of exploiting previous results in order to prove the existence and uniqueness of a mass conserving solution for the evolution of dust grain size distribution. Ultimately, to allow for a more flexible numerical implementation, the problem is rewritten as a non-linear hyperbolic integro-differential equation and solved using a finite volume discretisation. It is demonstrated that there is an exact numerical agreement with the initial discrete model, with improved accuracy. This is of interest for further work on dynamically coupled gas with dust simulations.

  12. From Nuclei to Dust Grains: How the AGB Machinery Works

    NASA Astrophysics Data System (ADS)

    Gobrecht, D.; Cristallo, S.; Piersanti, L.

    2015-12-01

    With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.

  13. Angle-dependent radiative grain alignment. Confirmation of a magnetic field - radiation anisotropy angle dependence on the efficiency of interstellar grain alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Pintado, O.; Potter, S. B.; Straižys, V.; Charcos-Llorens, M.

    2011-10-01

    Context. Interstellar grain alignment studies are currently experiencing a renaissance due to the development of a new quantitative theory based on radiative alignment torques (RAT). One of the distinguishing predictions of this theory is a dependence of the grain alignment efficiency on the relative angle (Ψ) between the magnetic field and the anisotropy direction of the radiation field. In an earlier study we found observational evidence for such an effect from observations of the polarization around the star HD 97300 in the Chamaeleon I cloud. However, due to the large uncertainties in the measured visual extinctions, the result was uncertain. Aims: By acquiring explicit spectral classification of the polarization targets, we have sought to perform a more precise reanalysis of the existing polarimetry data. Methods: We have obtained new spectral types for the stars in our for our polarization sample, which we combine with photometric data from the literature to derive accurate visual extinctions for our sample of background field stars. This allows a high accuracy test of the grain alignment efficiency as a function of Ψ. Results: We confirm and improve the measured accuracy of the variability of the grain alignment efficiency with Ψ, seen in the earlier study. We note that the grain temperature (heating) also shows a dependence on Ψ which we interpret as a natural effect of the projection of the grain surface to the illuminating radiation source. This dependence also allows us to derive an estimate of the fraction of aligned grains in the cloud.

  14. An improved model for interplanetary dust grain fluxes to the outer planets

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.

    2015-12-01

    We present an improved model for interplanetary dust grain fluxes in the outer solar system constrained by in-situ dust density observations. A dynamical dust grain tracing code is used to establish relative dust grain densities and three-dimensional velocity distributions in the outer solar system for four main sources of dust grains: Jupiter-family comets, Halley-type comets, Oort-Cloud comets, and Edgeworth-Kuiper Belt objects. Model densities are constrained by in-situ dust measurements by the New Horizons Student Dust Counter, the Pioneer 10 meteoroid detector, and the Galileo Dust Detection System (DDS). The model predicts that Jupiter-family comet grains dominate the interplanetary dust grain mass flux inside approximately 10 AU, Oort-Cloud cometary grains may dominate between 10 and 25 AU, and Edgeworth-Kuiper Belt grains are dominant outside 25 AU. The model also predicts that while the total interplanetary mass flux at Jupiter roughly matches that inferred by the analysis of the Galileo DDS measurements, mass fluxes to Saturn, Uranus, and Neptune are at least one order-of-magnitude lower than that predicted by extrapolations of dust grain flux models from 1 AU. We present modeled mass fluxes to various moons, atmospheres, and ring systems of the outer planets.

  15. Catalysis by Dust Grains in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Kress, Monika E.; Tielens, Alexander G. G. M.

    1996-01-01

    In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, we have applied our time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10(exp -5) to 1 bar and temperatures from 450 to 650 K. Under these physical conditions, the reaction 3H2 + CO yields CH4 + H2O is readily catalyzed by an iron or nickel surface, whereas the same reaction is kinetically inhibited in the gas phase. Our model results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.

  16. Polarimetric Models of Circumstellar Discs Including Aggregate Dust Grains

    NASA Astrophysics Data System (ADS)

    Mohan, Mahesh

    The work conducted in this thesis examines the nature of circumstellar discs by investigating irradiance and polarization of scattered light. Two circumstellar discs are investigated. Firstly, H-band high contrast imaging data on the transitional disc of the Herbig Ae/Be star HD169142 are presented. The images were obtained through the polarimetric differential imaging (PDI) technique on the Very Large Telescope (VLT) using the adaptive optics system NACO. Our observations use longer exposure times, allowing us to examine the edges of the disc. Analysis of the observations shows distinct signs of polarization due to circumstellar material, but due to excessive saturation and adaptive optics errors further information on the disc could not be inferred. The HD169142 disc is then modelled using the 3D radiative transfer code Hyperion. Initial models were constructed using a two disc structure, however recent PDI has shown the existence of an annular gap. In addition to this the annular gap is found not to be devoid of dust. This then led to the construction of a four-component disc structure. Estimates of the mass of dust in the gap (2.10E-6 Msun) are made as well as for the planet (1.53E-5 Msun (0.016 Mjupiter)) suspected to be responsible for causing the gap. The predicted polarization was also estimated for the disc, peaking at ~14 percent. The use of realistic dust grains (ballistic aggregate particles) in Monte Carlo code is also examined. The fortran code DDSCAT is used to calculate the scattering properties for aggregates which are used to replace the spherical grain models used by the radiative transfer code Hyperion. Currently, Hyperion uses four independent elements to define the scattering matrix, therefore the use of rotational averaging and a 50/50 percent population of grains and their enantiomers were explored to reduce the number of contributing scattering elements from DDSCAT. A python script was created to extract the scattering data from the DDSCAT

  17. Alignment of interstellar grains by mechanical torques: suprathermally rotating Gaussian random spheres

    NASA Astrophysics Data System (ADS)

    Das, Indrajit; Weingartner, Joseph C.

    2016-04-01

    Collisions of gas particles with a drifting grain give rise to a mechanical torque on the grain. Recent work by Lazarian & Hoang showed that mechanical torques might play a significant role in aligning helical grains along the interstellar magnetic field direction, even in the case of subsonic drift. We compute the mechanical torques on 13 different irregular grains and examine their resulting rotational dynamics, assuming steady rotation about the principal axis of greatest moment of inertia. We find that the alignment efficiency in the subsonic drift regime depends sensitively on the grain shape, with more efficient alignment for shapes with a substantial mechanical torque even in the case of no drift. The alignment is typically more efficient for supersonic drift. A more rigorous analysis of the dynamics is required to definitively appraise the role of mechanical torques in grain alignment.

  18. THE DYNAMICS OF DUST GRAINS IN THE OUTER SOLAR SYSTEM

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R. E-mail: rrr@astro.princeton.ed

    2010-11-10

    We study the dynamics of large dust grains {approx}>1 {mu}m with orbits outside of the heliosphere (beyond 250 AU). Motion of the solar system through the interstellar medium (ISM) at a velocity of 26 km s{sup -1} subjects these particles to gas and Coulomb drag (grains are expected to be photoelectrically charged) as well as the Lorentz force and the electric force caused by the induction electric field. We show that to zeroth order the combined effect of these forces can be well described in the framework of the classical Stark problem: particle motion in a Keplerian potential subject to an additional constant force. Based on this analogy, we elucidate the circumstances in which the motion becomes unbound, and show that under local ISM conditions dust grains smaller than {approx}100 {mu}m originating in the Oort Cloud (e.g., in collisions of comets) beyond 10{sup 4} AU are ejected from the solar system under the action of the electric force. Orbital motion of larger, bound grains is described analytically using the orbit-averaged Hamiltonian approach and consists of orbital plane precession at a fixed semimajor axis, accompanied by the periodic variations of the inclination and eccentricity (the latter may approach unity in some cases). A more detailed analysis of the combined effect of gas and Coulomb drag shows it is possible to reduce particle semimajor axes, but that the degree of orbital decay is limited (a factor of several at best) by passages through atomic and molecular clouds, which easily eject small particles.

  19. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  20. Computation of Ion Drag Force and Charge on a Static Spherical Dust Grain in RF Plasma

    SciTech Connect

    Ikkurthi, V. R.; Melzer, A.; Matyash, K.; Schneider, R.

    2008-09-07

    The ion drag force and charge on a spherical dust grain located in RF discharge plasma is computed using a 3-dimensional Particle-Particle Particle-Mesh (P3M) code. Our plasma model includes finite-size effects for dust grains and allows to self-consistently resolve the dust grain charging due to absorption of plasma electrons and ions. Ion drag and dust charge have been computed for various sizes of dust particles placed at various locations in the discharge. The results for ion drag have been compared with previous collisionless models and affect of collisions on drag has been discussed in detail.

  1. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  2. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  3. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that

  4. Ablation of high-Z material dust grains in edge plasmas of magnetic fusion devices

    SciTech Connect

    Marenkov, E. D.; Krasheninnikov, S. I.

    2014-12-15

    The model, including shielding effects of high-Z dust grain ablation in tokamak edge plasma, is presented. In a contrast to shielding models developed for pellets ablation in a hot plasma core, this model deals with the dust grain ablation in relatively cold edge plasma. Using some simplifications, a closed set of equations determining the grain ablation rate Γ is derived and analyzed both analytically and numerically. The scaling law for Γ versus grain radius and ambient plasma parameters is obtained and confirmed by the results of numerical solutions. The results obtained are compared with both dust grain models containing no shielding effects and the pellet ablation models.

  5. Ablation of high-Z material dust grains in edge plasmas of magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Marenkov, E. D.; Krasheninnikov, S. I.

    2014-12-01

    The model, including shielding effects of high-Z dust grain ablation in tokamak edge plasma, is presented. In a contrast to shielding models developed for pellets ablation in a hot plasma core, this model deals with the dust grain ablation in relatively cold edge plasma. Using some simplifications, a closed set of equations determining the grain ablation rate Γ is derived and analyzed both analytically and numerically. The scaling law for Γ versus grain radius and ambient plasma parameters is obtained and confirmed by the results of numerical solutions. The results obtained are compared with both dust grain models containing no shielding effects and the pellet ablation models.

  6. Measurement of photoemission and secondary emission from laboratory dust grains

    NASA Technical Reports Server (NTRS)

    Hazelton, Robert C.; Yadlowsky, Edward J.; Settersten, Thomas B.; Spanjers, Gregory G.; Moschella, John J.

    1995-01-01

    The overall goal of this project is experimentally determine the emission properties of dust grains in order to provide theorists and modelers with an accurate data base to use in codes that predict the charging of grains in various plasma environments encountered in the magnetospheres of the planets. In general these modelers use values which have been measured on planar, bulk samples of the materials in question. The large enhancements expected due to the small size of grains can have a dramatic impact upon the predictions and the ultimate utility of these predictions. The first experimental measurement of energy resolved profiles of the secondary electron emission coefficient, 6, of sub-micron diameter particles has been accomplished. Bismuth particles in the size range of .022 to .165 micrometers were generated in a moderate pressure vacuum oven (average size is a function of oven temperature and pressure) and introduced into a high vacuum chamber where they interacted with a high energy electron beam (0.4 to 20 keV). Large enhancements in emission were observed with a peak value, delta(sub max) = 4. 5 measured for the ensemble of particles with a mean size of .022 micrometers. This is in contrast to the published value, delta(sub max) = 1.2, for bulk bismuth. The observed profiles are in general agreement with recent theoretical predictions made by Chow et al. at UCSD.

  7. Cycloid motions of grains in a dust plasma

    NASA Astrophysics Data System (ADS)

    Yong-Liang, Zhang; Fan, Feng; Fu-Cheng, Liu; Li-Fang, Dong; Ya-Feng, He

    2016-02-01

    Hypocycloid and epicycloid motions of irregular grains (pine pollen) are observed for the first time in a dust plasma in a two-dimensional (2D) horizontal plane. These cycloid motions can be regarded as a combination of a primary circle and a secondary circle. An inverse Magnus force originating from the spin of the irregular grain gives rise to the primary circle. Radial confinement resulting from the electrostatic force and the ion drag force, together with inverse Magnus force, plays an important role in the formation of the secondary circle. In addition, the cyclotron radius is seen to change periodically during the cycloid motion. Force analysis and comparison experiments have shown that the cycloid motions are distinctive features of an irregular grain immersed in a plasma. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, and the Midwest Universities Comprehensive Strength Promotion Project.

  8. SECONDARY EMISSION FROM NON-SPHERICAL DUST GRAINS WITH ROUGH SURFACES: APPLICATION TO LUNAR DUST

    SciTech Connect

    Richterova, I.; Nemecek, Z.; Beranek, M.; Safrankova, J.; Pavlu, J.

    2012-12-20

    Electrons impinging on a target can release secondary electrons and/or they can be scattered out of the target. It is well established that the number of escaping electrons per primary electron depends on the target composition and dimensions, the energy, and incidence angle of the primary electrons, but there are suggestions that the target's shape and surface roughness also influence the secondary emission. We present a further modification of the model of secondary electron emission from dust grains which is applied to non-spherical grains and grains with defined surface roughness. It is shown that the non-spherical grains give rise to a larger secondary electron yield, whereas the surface roughness leads to a decrease in the yield. Moreover, these effects can be distinguished: the shape effect is prominent for high primary energies, whereas the surface roughness predominantly affects the yield at the low-energy range. The calculations use the Lunar Highlands Type NU-LHT-2M simulant as a grain material and the results are compared with previously published laboratory and in situ measurements.

  9. Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.

    2008-01-01

    It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.

  10. Effect of Dust Grains on Solitary Kinetic Alfven Wave

    SciTech Connect

    Li Yangfang; Wu, D. J.; Morfill, G. E.

    2008-09-07

    Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.

  11. Size Distribution and Rate of Dust Generated During Grain Elevator Handling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...

  12. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies

  13. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    NASA Astrophysics Data System (ADS)

    Tankosic, Dragana; Abbas, M. M.

    2013-06-01

    The dust charging by electron impact is an important dust charging process in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. However, these models are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. Our laboratory measurements on individual, positively charged, micron-size dust grains levitated carried out in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2 micron silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82 micron) generally discharge to lower equilibrium potentials at both electron energies

  14. Photometry of dust grains of comet 67P and connection with nucleus regions

    NASA Astrophysics Data System (ADS)

    Cremonese, G.; Simioni, E.; Ragazzoni, R.; Bertini, I.; La Forgia, F.; Pajola, M.; Oklay, N.; Fornasier, S.; Lazzarin, M.; Lucchetti, A.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Agarwal, J.; Barucci, M. A.; Bertaux, J.-L.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Fulle, M.; Groussin, O.; Güttler, C.; Gutierrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J.-R.; Kueppers, M.; Kürt, E.; Lara, L. M.; Magrin, S.; Lopez Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Preusker, F.; Scholten, F.; Thomas, N.; Tubiana, C.; Vincent, J.-B.

    2016-04-01

    Aims: Multiple pairs of high-resolution images of the dust coma of comet 67P/Churyumov-Gerasimenko have been collected by OSIRIS onboard Rosetta allowing extraction and analysis of dust grain tracks. Methods: We developed a quasi automatic method to recognize and to extract dust tracks in the Osiris images providing size, FWHM and photometric data. The dust tracks characterized by a low signal-to-noise ratio were checked manually. We performed the photometric analysis of 70 dust grain tracks observed on two different Narrow Angle Camera images in the two filters F24 and F28, centered at λ = 480.7 nm and at λ = 743.7 nm, respectively, deriving the color and the reddening of each one. We then extracted several images of the nucleus observed with the same filters and with the same phase angle to be compared with the dust grain reddening. Results: Most of the dust grain reddening is very similar to the nucleus values, confirming they come from the surface or subsurface layer. The histogram of the dust grain reddening has a secondary peak at negative values and shows some grains with values higher than the nucleus, suggesting a different composition from the surface grains. One hypothesis comes from the negative values point at the presence of hydrated minerals in the comet.

  15. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  16. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Kaur, Daljeet; Gahlot, Ajay; Sharma, Jyotsna

    2014-10-15

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  17. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: DEPENDENCE OF THE SURFACE POTENTIAL ON THE GRAIN SIZE

    SciTech Connect

    Nemecek, Z.; Pavlu, J.; Safrankova, J.; Beranek, M.; Richterova, I.; Vaverka, J.; Mann, I.

    2011-09-01

    The secondary electron emission is believed to play an important role for the dust charging at and close to the lunar surface. However, our knowledge of emission properties of the dust results from model calculations and rather rare laboratory investigations. The present paper reports laboratory measurements of the surface potential on Lunar Highlands Type regolith simulants with sizes between 0.3 and 3 {mu}m in an electron beam with energy below 700 eV. This investigation is focused on a low-energy part, i.e., {<=}100 eV. We found that the equilibrium surface potential of this simulant does not depend on the grain size in our ranges of grain dimensions and the beam energies, however, it is a function of the primary electron beam energy. The measurements are confirmed by the results of the simulation model of the secondary emission from the spherical samples. Finally, we compare our results with those obtained in laboratory experiments as well as those inferred from in situ observations.

  18. Plasma regions, charged dust and field-aligned currents near Enceladus

    NASA Astrophysics Data System (ADS)

    Engelhardt, I. A. D.; Wahlund, J.-E.; Andrews, D. J.; Eriksson, A. I.; Ye, S.; Kurth, W. S.; Gurnett, D. A.; Morooka, M. W.; Farrell, W. M.; Dougherty, M. K.

    2015-11-01

    We use data from several instruments on board Cassini to determine the characteristics of the plasma and dust regions around Saturn's moon Enceladus. For this we utilize the Langmuir probe and the electric antenna connected to the wideband receiver of the radio and plasma wave science (RPWS) instrument package as well as the magnetometer (MAG). We show that there are several distinct plasma and dust regions around Enceladus. Specifically they are the plume filled with neutral gas, plasma, and charged dust, with a distinct edge boundary region. Here we present observations of a new distinct plasma region, being a dust trail on the downstream side. This is seen both as a difference in ion and electron densities, indicating the presence of charged dust, and directly from the signals created on RPWS antennas by the dust impacts on the spacecraft. Furthermore, we show a very good scaling of these two independent dust density measurement methods over four orders of magnitude in dust density, thereby for the first time cross-validating them. To establish equilibrium with the surrounding plasma the dust becomes negatively charged by attracting free electrons. The dust distribution follows a simple power law and the smallest dust particles in the dust trail region are found to be 10 nm in size as well as in the edge region around the plume. Inside the plume the presence of even smaller particles of about 1 nm is inferred. From the magnetic field measurements we infer strong field-aligned currents at the geometrical edge of Enceladus.

  19. On the dynamics of propeller-like dust grain in plasma

    SciTech Connect

    Krasheninnikov, S. I.

    2013-11-15

    The equations of motion of a dust grain with non-spherical shape in plasma are generalized by incorporating the effects associated with propeller-like features of the grain's shape. For the grain shape close to rotationally symmetric, the stability of “stationary” (in terms of variables used in the grain dynamic equations) solutions are considered. It is found that propeller-like features of the grain's shape can crucially alter stability of such “stationary” states.

  20. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  1. Electrostatic charging of acoustically suspended dust grains by ultraviolet radiation and by plasma

    SciTech Connect

    Dyer, T.W.

    1992-01-01

    An experimental apparatus was developed for the study of dust grain charging by photoemission and by immersion in plasma. The technique used to do this involved acoustically suspending the dust grains against gravity while they are exposed to the charging influences. The apparatus consisted of a terminated acoustic plane-wave tube coupled to an assembly of microwave equipment for use in the plasma charging studies. The origin of the acoustic force used to levitate the dust grains is a nonlinear dependence of fluid drag on an object with the flow velocity past the object. The effectiveness of the resulting force for the levitation of dust grains against gravity was inversely proportional to both grain radius and grain density. Grains of various materials including metals and silica with diameters ranging from 5 to 90[mu]m were readily levitated in krypton gas at 100 torr. These dust grain parameters and background gas conditions were standard for all of the grain charging. The interaction between a high intensity traveling acoustic wave with a highly collisional microwave producted plasma was investigated. The dominant effect of the acoustic wave on the plasma occurred in the plasma production rate. The resulting audio frequency plasma density fluctuations then propagated away from the production region in both directions as the plasma diffused out from this region against the background gas. In the dust grain charging studies, the steady state charge acquired by the grains was set by a condition on the electrostatic potential of the grains. This was true in both the photoemission charging experiments and the plasma charging studies. All of the grain charge measurements were made by observing the electrophoresis of the grains through the background gas in an externally applied electric field. The mobility of spherical grains varies proportionally with the ratio q/r. The mobility was independent of radius observed in the experiments.

  2. Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust -- interstellar grains?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.

    1994-01-01

    Ultrafine-grained matrix is a unique and fundamental building block of chondritic porous (CP) interplanetary dust particles. Most IDPs so far determined to be of cometary origin belong to the CP class. The matrix in CP IDPs is not homogeneous but rather a loose mixture of discrete single crystals (e.g., olivine, pyroxene, Fe sulfides) and polyphase grains. The petrographic diversity observed among the polyphase grains suggest that they were formed under variable physiochemical conditions. One particular class of polyphase grains are a dominant component in cometary IDPs. Although their occurrence is well documented, the terminology used to describe them is confused. They have been called many names. Here they are simply called GEMS (Glass with Embedded Metal and Sulfides). The bulk compositions of GEMS are within a factor of 3 chondritic (solar) for all major elements except C. Quantitative thin-film X-ray (EDS) analyses have shown that GEMS are systematically depleted in Mg and Si, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Electron energy-loss spectroscopy (EELS) suggests that the excess O is present as hydroxyl (-OH) groups. These same chemical 'anomalies' were observed in solar-wind-irradiated amorphous rims on the surfaces of IDPs, suggesting that the compositions of GEMS reflect prior exposure to ionizing radiation. In order to test this hypothesis, a sample of Allende (CV3) matrix was exposed to proton flux. Radiation-damaged amorphous rims on olivine and pyroxene crystals in the Allende sample were found to be depleted in Mg and Ca, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Thus, the compositions of GEMS are indeed consistent with exposure to ionizing radiation. This study suggests that chemical as well as isotopic anomalies may be used to identify presolar interstellar grains in primitive meteoritic materials.

  3. ACCELERATION OF VERY SMALL DUST GRAINS DUE TO RANDOM CHARGE FLUCTUATIONS

    SciTech Connect

    Hoang, Thiem; Lazarian, A.

    2012-12-20

    We study the acceleration of very small dust grains including polycyclic aromatic hydrocarbons arising from electrostatic interactions of dust grains that have charge fluctuating randomly in time. Random charge fluctuations of very small grains due to discrete charging events (i.e., sticking collisions with electrons and ions in plasma, and emission of photoelectrons by UV photons) are simulated using the Monte Carlo (MC) method. The motion of dust grains in randomly fluctuating electric fields induced by surrounding charged grains is studied using MC simulations. We identify the acceleration induced by random charge fluctuations as a dominant acceleration mechanism for very small grains in the diffuse interstellar medium (ISM). We find that this acceleration mechanism is efficient for environments with a low degree of ionization (i.e., large Debye length), where charge fluctuations are slow but have a large amplitude. The implications of the present acceleration mechanism for grain coagulation and shattering in the diffuse ISM and dark clouds are also discussed.

  4. Numerical Simulations of Supernova Dust Destruction. I. Cloud-crushing and Post-processed Grain Sputtering

    NASA Astrophysics Data System (ADS)

    Silvia, Devin W.; Smith, Britton D.; Shull, J. Michael

    2010-06-01

    We investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova (SN) remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the overdensity of the ejecta clumps and the speed of the reverse shocks. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the timescale of the simulations. In general, our results indicate that grains with radii less than 0.1 μm are sputtered to much smaller radii and often destroyed completely, while larger grains survive their interaction with the reverse shock. We also find that, for high ejecta densities, the percentage of dust that survives is strongly dependent on the relative velocity between the clump and the reverse shock, causing up to 50% more destruction for the highest velocity shocks. The fraction of dust destroyed varies widely across grain species, ranging from total destruction of Al2O3 grains to minimal destruction of Fe grains (only 20% destruction in the most extreme cases). C and SiO2 grains show moderate to strong sputtering as well, with 38% and 80% mass loss. The survival rate of grains formed by early SNe is crucial in determining whether or not they can act as the "dust factories" needed to explain high-redshift dust.

  5. NUMERICAL SIMULATIONS OF SUPERNOVA DUST DESTRUCTION. I. CLOUD-CRUSHING AND POST-PROCESSED GRAIN SPUTTERING

    SciTech Connect

    Silvia, Devin W.; Smith, Britton D.; Michael Shull, J. E-mail: britton.smith@colorado.ed

    2010-06-01

    We investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova (SN) remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the overdensity of the ejecta clumps and the speed of the reverse shocks. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the timescale of the simulations. In general, our results indicate that grains with radii less than 0.1 {mu}m are sputtered to much smaller radii and often destroyed completely, while larger grains survive their interaction with the reverse shock. We also find that, for high ejecta densities, the percentage of dust that survives is strongly dependent on the relative velocity between the clump and the reverse shock, causing up to 50% more destruction for the highest velocity shocks. The fraction of dust destroyed varies widely across grain species, ranging from total destruction of Al{sub 2}O{sub 3} grains to minimal destruction of Fe grains (only 20% destruction in the most extreme cases). C and SiO{sub 2} grains show moderate to strong sputtering as well, with 38% and 80% mass loss. The survival rate of grains formed by early SNe is crucial in determining whether or not they can act as the 'dust factories' needed to explain high-redshift dust.

  6. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  7. Lunar Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; LeClair, A. C.; Spann, J. F.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  8. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  9. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    SciTech Connect

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  10. Processes accompanying the charging of dust grains in the ionospheric plasma

    SciTech Connect

    Kopnin, S. I.; Morzhakova, A. A.; Popel, S. I.; Shukla, P. K.

    2011-08-15

    The influence of the neutral component of the dusty ionospheric plasma on the process of dust grain charging is analyzed. Microscopic ion fluxes onto a dust grain are calculated with allowance for the interaction with the neutral components of the ionospheric plasma for both negatively and positively charged dust grains. For the latter case, which takes place in the presence of intense UV or X-ray solar radiation, the electron heating caused by the photoelectric effect is also investigated. It is found that the efficiency of electron heating depends on the density of neutral particles. The altitudes at which these effects appreciably influence the charging of different types of nano- and microscale dust grains are determined. It is shown that these effects should be taken into account in describing noctilucent clouds, polar mesosphere summer echoes, and physical phenomena involving grains of meteoric origin.

  11. Rapid formation of large dust grains in the luminous supernova 2010jl.

    PubMed

    Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C

    2014-07-17

    The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

  12. Rapid formation of large dust grains in the luminous supernova 2010jl.

    PubMed

    Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C

    2014-07-17

    The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media. PMID:25030169

  13. A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP

    SciTech Connect

    Casassus, Simon; Marino, Sebastian; Pérez, Sebastian; Christiaens, Valentin; Plas, Gerrit van der; Wright, Chris M.; Maddison, Sarah T.; Wootten, Al; Roman, Pablo; Moral, Victor; Pinilla, Paola; Wyatt, Mark; Ménard, Francois

    2015-10-20

    A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at submillimeter wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply confined and should follow a distribution that is markedly different from the gas. However, gas tracers such as {sup 12}CO and the infrared emission from small grains are both very optically thick where the submillimeter continuum originates, so previous observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core accretion. Here we report multifrequency observations of HD 142527, from 34 to 700 GHz, that reveal a compact concentration of grains approaching centimeter sizes, with a few Earth masses, embedded in a large-scale crescent of smaller, submillimeter-sized particles. The emission peaks at wavelengths shorter than ∼1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is efficient enough for grains observable at centimeter wavelengths to lead to compact concentrations.

  14. Coagulation of dust grains in the plasma of an RF discharge in argon

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal', A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2009-03-15

    Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.

  15. PROPERTIES OF NEWLY FORMED DUST GRAINS IN THE LUMINOUS TYPE IIn SUPERNOVA 2010jl

    SciTech Connect

    Maeda, K.; Nozawa, T.; Folatelli, G.; Moriya, T. J.; Nomoto, K.; Bersten, M.; Quimby, R.; Sahu, D. K.; Anupama, G. C.; Minowa, Y.; Pyo, T.-S.; Motohara, K.; Kitagawa, Y.; Ueno, I.; Kawabata, K. S.; Yamanaka, M.; Kozasa, T.; Iye, M.

    2013-10-10

    Supernovae (SNe) have been proposed to be the main production sites of dust grains in the universe. However, our knowledge of their importance to dust production is limited by observationally poor constraints on the nature and amount of dust particles produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova 2010jl around one and a half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ∼1350-1450 K at this epoch. The mass of the dust grains is derived to be ∼(7.5-8.5) × 10{sup –4} M{sub ☉}. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate of the typical size of the newly formed dust grains (∼< 0.1 μm, and most likely ∼< 0.01 μm). We believe the dust grains were formed in a dense cooling shell as a result of a strong SN-circumstellar media (CSM) interaction. The dust grains occupy ∼10% of the emitting volume, suggesting an inhomogeneous, clumpy structure. The average CSM density must be ∼> 3 × 10{sup 7} cm{sup –3}, corresponding to a mass loss rate of ∼> 0.02 M{sub ☉} yr{sup –1} (for a mass loss wind velocity of ∼100 km s{sup –1}). This strongly supports a scenario in which SN 2010jl and probably other luminous SNe IIn are powered by strong interactions within very dense CSM, perhaps created by Luminous-Blue-Variable-like eruptions within the last century before the explosion.

  16. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    NASA Astrophysics Data System (ADS)

    Tankosic, D.; Abbas, M. M.

    2012-11-01

    Dust grains immersed in ambient plasmas and radiation, are charged and coupled to the plasma through electric and magnetic fields. Dust grains in various astrophysical/planetary environments are generally charged by: (a) photoelectric emissions with incident radiation at photon energies higher than the work function of the material and (b) sticking of low energy electrons and ions of the surrounding plasma or by secondary electron emissions induced by incident electrons/ions at sufficiently high energies. Consequenly, the particle charge is an important parameter that influences physical and dynamical processes in the interplanetary and interstellar medium, planetary rings, interstellar dust clouds, comets and the outer atmospheres of planets. The charging properties of individual micron-size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Currently, very limited experimental data are available for charging of individual micron-size dust grains. In this paper we give a review of the results of the measurements on charging of analogs of the interstellar as well as Apollo 11 and 17 lunar dust grains carried out on the Electrodynamic Balance Facility at the NASA-MSFC.

  17. Capture of Cometary Dust Grains in Impacts at 6.1 km s-1

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Foster, N.; Kearsley, A.; Wozniakiewicz, P.

    2009-12-01

    The NASA Stardust mission to comet 81P/Wild 2 collected grains of cometary dust freshly ejected from the comet during a fly-by at a speed of 6.1 km s-1. These were captured on aluminum foils and in blocks of silica aerogel. The dust underwent a severe shock during capture. The nature of the shock process depends on the properties of the dust and the collecting media. On the aluminium, the shock process and impact damage is typical of that between high-density (or hard materials) at high velocity, resulting in craters lined with impactor residues. The peak shock pressures are estimated at 60-80 GPa. Two main crater types are seen, simple bowl shaped and multiple pit craters: these reflect the degree of consolidation of the original dust grain. Capture in the low density aerogel was via a more gradual slowing of the dust grains accompanied by a variety of effects on the grains (complete break up of weak grains vs. ablation of well consolidated grains). The relation between the structure of the dust grains and the resulting impact features in both collector materials is discussed.

  18. On vapor shielding of dust grains of iron, molybdenum, and tungsten in fusion plasmas

    SciTech Connect

    Brown, B. T.; Smirnov, R. D. Krasheninnikov, S. I.

    2014-02-15

    The shielding effects of ablation cloud around a small dust grain composed of iron, molybdenum, or tungsten in fusion plasmas are considered. These include collisional dissipation of momentum flux of impinging plasma ions, heat transfer by secondary plasma created due to electron impact ionization of the ablated atoms, and radiative plasma power losses in the ablation cloud. The maximum radius, which limits applicability of existing dust-plasma interaction models neglecting the cloud shielding effects, for dust grains of the considered high-Z metals is calculated as function of plasma parameters. The thermal bifurcation triggered by thermionic electron emission from dust grains, observed for some of the considered materials, is analyzed. The results are compared with previous calculations for dust composed of low-Z fusion related materials, i.e., lithium, beryllium, and carbon.

  19. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Morfill, G.; Gruen, E.

    1993-01-01

    The Ulysses mission detected quasi-periodic streams of high-velocity submicron-sized dust particles during its encounter with Jupiter. It is shown here how the dust events could result from the acceleration and subsequent ejection of small grains by Jupiter's magnetosphere. Dust grains entering the plasma environment of the magnetosphere become charged, with the result that their motion is then determined by both electromagnetic and gravitational forces. This process is modeled, and it is found that only those particles in a certain size range gain sufficient energy to escape the Jovian system. Moreover, if Io is assumed to be the source of the dust grains, its location in geographic and geomagnetic coordinates determines the exit direction of the escaping particles, providing a possible explanation for the observed periodicities. The calculated mass and velocity range of the escaping dust gains are consistent with the Ulysses findings.

  20. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    NASA Astrophysics Data System (ADS)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  1. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    SciTech Connect

    Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.

    2015-11-15

    In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  2. Coarse-grained dynamics of alignment in animal group models

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Levin, Simon; Kevrekidis, Yannis

    2006-03-01

    Coordinated motion in animal groups, such as bird flocks and fish schools, and their models gives rise to remarkable coherent structures. Using equation-free computational tools we explore the coarse-grained dynamics of a model for the orientational movement decision in animal groups, consisting of a small number of informed "leaders" and a large number of uninformed, nonidentical ``followers.'' The direction in which each group member is headed is characterized by a phase angle of a limit-cycle oscillator, whose dynamics are nonlinearly coupled with those of all the other group members. We identify a small number of proper coarse-grained variables (using uncertainty quantification methods) that describe the collective dynamics, and perform coarse projective integration and equation-free bifurcation analysis of the coarse-grained model behavior in these variables.

  3. Grain-size signature of Saharan dust over the Atlantic Ocean at 12°N

    NASA Astrophysics Data System (ADS)

    van der Does, Michelle; Korte, Laura; Munday, Chris; Brummer, Geert-Jan; Stuut, Jan-Berend

    2015-04-01

    Every year, an estimated 200 million tons of Saharan dust are deposited in the Atlantic Ocean. On its way from source to sink, the dust can be influenced by many climatic processes, but it also affects climate itself in various ways that are far from understood. In order to constrain the relations between atmospheric dust and climate, we deployed ten submarine sediment traps along a transect in the Atlantic Ocean at 12˚N, at 1200m and 3500m water depth. These have been sampling Saharan dust settling in the ocean since October 2012. Samples of seven of these sediment traps have been successfully recovered during RV Pelagia cruise 64PE378 in November 2013. The transect also includes three floating dust collectors and two on-land dust collectors, and all the instruments lie directly underneath the largest dust plume originating from the African continent. This study focuses on the size of the dust particles, which can have an effect on the positive or negative radiation balance in the atmosphere. Small particles in the high atmosphere can reflect incoming radiation and therefore have a cooling effect on climate. Large particles in the lower atmosphere have the opposite effect by absorbing reflected radiation from the Earth's surface. Mineral dust also affects carbon export to the deep ocean by providing mineral ballast for organic particles, and the size of the dust particles directly relates to the downward transport velocity. Here I will present the measured grain-size distributions of samples from seven sediment traps recovered from the 12°N-latitude transect. The data show seasonal variations, with finer grained dust particles during winter and spring, and coarser grained particles during summer and fall. Samples from multiple years should give more details about the dust's seasonality. Also a fining trend of the grain sizes of the dust particles from source (Africa) to sink (Caribbean) is observed, which is also expected due to intuitive relationships between

  4. Effect Of Grain Size-Distribution And Nonthermal Ion Distribution On Dust Acoustic Solitons

    SciTech Connect

    Annou, K.; Annou, R.

    2005-10-31

    The investigation of the formation of non-linear coherent structures in dusty plasmas taking into account the dust size and non-thermal ion distributions is conducted. Conditions of the existence of solitons in terms of the Mach number, concentration of non-thermal ions, dust charge and the permeability of the grains are evaluated.

  5. Chemical enrichment of the pre-solar cloud by supernova dust grains

    NASA Astrophysics Data System (ADS)

    Goodson, Matthew D.; Luebbers, Ian; Heitsch, Fabian; Frazer, Christopher C.

    2016-11-01

    The presence of short-lived radioisotopes (SLRs) in Solar system meteorites has been interpreted as evidence that the Solar system was exposed to a supernova shortly before or during its formation. Yet results from hydrodynamical models of SLR injection into the proto-solar cloud or disc suggest that gas-phase mixing may not be efficient enough to reproduce the observed abundances. As an alternative, we explore the injection of SLRs via dust grains as a way to overcome the mixing barrier. We numerically model the interaction of a supernova remnant containing SLR-rich dust grains with a nearby molecular cloud. The dust grains are subject to drag forces and both thermal and non-thermal sputtering. We confirm that the expanding gas shell stalls upon impact with the dense cloud and that gas-phase SLR injection occurs slowly due to hydrodynamical instabilities at the cloud surface. In contrast, dust grains of sufficient size ( ≳ 1 μm) decouple from the gas and penetrate into the cloud within 0.1 Myr. Once inside the cloud, the dust grains are destroyed by sputtering, releasing SLRs and rapidly enriching the dense (potentially star-forming) regions. Our results suggest that SLR transport on dust grains is a viable mechanism to explain SLR enrichment.

  6. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect

    El-Shewy, E. K.; Abdelwahed, H. G.; Elmessary, M. A.

    2011-11-15

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  7. Ochratoxin A and citrinin loads in stored wheat grains: impact of grain dust and possible prediction using ergosterol measurement.

    PubMed

    Tangni, E K; Pussemier, L

    2006-02-01

    Crop storage should be carried out under hygienic conditions to ensure safe products, but sometimes grain dust which has settled from previous storage may be left over and incorporated to the following stored grains. This paper describes the results obtained using a lab model developed in order to assess the impact of grain dust incorporation for its direct contribution as a contaminant but also as an inoculum in stored wheat. Settled grain dust (4 samples) released from Belgian grain storages were collected and analysed by HPLC for ergosterol, ochratoxin A (OTA) and citrinin (CIT) content. For OTA and for ergosterol, there was a high degree of variability in concentrations found in the dust samples (from 17.3-318 ng g(-1) and from 39-823 microg g(-1), respectively) whilst for CIT, the range was less significant (from 137-344 ng g(-1)). Incorporation of grain dust into wheat storage contributed to an increase in the concentrations of mycotoxins in the stored grain. Dust acts as a contaminant and as an inoculum. According to these two ways, patterns of mycotoxin generation vary with the nature of the mycotoxin, the mycotoxigenic potential of dust and the water activity of the wheat. OTA and CIT showed a very versatile image when considering the amounts of toxins produced under the selected experimental conditions. The development of a robust tool to forecast the mycotoxigenicity of dust was based on the determination of ergosterol content as a general marker of fungal biomass. Present results suggest that this predictive tool would only be valid for predicting the contamination level of CIT and OTA at reasonable moisture content (14-20%). The potential risk of having highly contaminated batches from stock to stock may thus occur and this paper discusses possible pathways leading to OTA and CIT contamination either under wet or dry storage conditions. We therefore, recommend taking precautionary measures not only by controlling and maintaining moisture at a

  8. Wind tunnel calibration of the USGS dust deposition sampler: Sampling efficiency and grain size correction

    NASA Astrophysics Data System (ADS)

    Goossens, Dirk

    2010-11-01

    Wind tunnel experiments were conducted with the USGS (United States Geological Survey) dust deposition sampler to test its efficiency for dust deposition and its capacity to collect representative samples for grain size analysis. Efficiency for dust deposition was ascertained relative to a water surface, which was considered the best alternative for simulating a perfectly absorbent surface. Capacity to collect representative samples for grain size analysis was ascertained by comparing the grain size distribution of the collected dust to that of the original dust. Three versions were tested: an empty sampler, a sampler filled with glass marbles, and a sampler filled with water. Efficiencies and capacity to collect representative samples were ascertained for five wind velocities (range: 1-5 m s -1) and seven grain size classes (range: 10-80 μm). All samplers showed a rapid drop in collection efficiency with increasing wind speed. Efficiencies are low, in the order of 10% or less for most common wind speeds over the continents. Efficiency also drops as the particles become coarser. Adding glass marbles to the sampler increases its efficiency, protects the settled dust from resuspension, and minimizes outsplash during rainfall. The sediment collected by the sampler is finer than the original dust. The bias in the grain size is more expressed in fine particle fractions than in coarse particle fractions. The performance of the USGS sampler is rather low when compared to other dust deposition samplers, but a procedure is provided that allows calculation of the original grain size distribution and dust deposition quantities.

  9. Alignment of dust particles by ion drag forces in subsonic flows

    SciTech Connect

    Piel, Alexander

    2011-07-15

    The role of ion drag forces for the alignment of dust particles is studied for subsonic flows. While alignment by wake-field attraction is a well known mechanism for supersonic flows, it is argued here that ion-scattering forces become more important in subsonic ion flows. A model of non-overlapping collisions is introduced and numerical results are discussed. For typical conditions of dusty plasma experiments, alignment by drag forces is found strong enough to overcome the destabilizing force from Coulomb repulsion between dust particles. It turns out that the major contribution to the horizontal restoring force originates from the transverse momentum transfer, which is usually neglected in ion drag force calculations because of an assumed rotational symmetry of the flow.

  10. Light scattering on a single dust grain in the ultrasonic trap

    NASA Astrophysics Data System (ADS)

    Barton, Petr; Pavlu, Jiri

    2016-04-01

    Light scattering by dust grains is a complex phenomenon playing an important role in all dust-light interactions. This includes light passing through dense dusty clouds in space as well as in the upper atmosphere, dust charging by photoemission, etc. When the size of the grain is close to the wavelength of the incident light, the Mie theory is often used to characterize the scattering process. However, our knowledge of necessary material constants for most of the space-related materials is limited. Moreover, solutions of Mie equations for general grain shapes is difficult and often not known. Objective of our work is development of an apparatus for observations of light scattering on small (micrometer-sized) arbitrary shaped dust grains. We measure scattering directly by levitating grains in the field created by the standing-wave ultrasonic trap. Such setup allows us to study single grains or small grain clusters. The experiment is performed at atmosphere - unlike other experiments, where grains were measured in water or other liquids, thus, the background effects are significantly reduced. Currently, the trap is under development and first tests are carried out. In this paper, we also focus on theoretical computation of the ultrasonic field of the selected trap.

  11. Application of amplitude changes of monochromatic scattered light to investigation of dust grain composition

    NASA Astrophysics Data System (ADS)

    Kirkiewicz, Jozef; Chrzanowski, Janusz

    1999-07-01

    The light beam crossing the dust area meets with the loss of energy. We know by experience that the scattering indikatrix depends on the size of the dust particles. The measurement of the light energy scattered into given solid angle enables to identify and specification of the grain composition of the dust particles. Basis on the research a special head has been made to step change of the location of the photodetectors and in result to measure a specific or even desirable dust fraction for the sake of technology. In this paper the graphs of the grain dust distribution are presented with regard to the materials which are transported most frequently by Polish merchant marine.

  12. The search for electrostatically lofted grains above the Moon with the Lunar Dust Experiment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey R.; Horányi, Mihály

    2015-07-01

    The Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment Explorer mission was designed to make in situ dust measurements while orbiting the Moon. Particles with radii a >˜ 0.3μm were detected as single impacts. LDEX was also capable of measuring the collective signal generated from dust impacts with sizes below its single-particle detection threshold. A putative population of electrostatically lofted grains above the lunar terminator with radii of approximately 0.1 μm has been suggested to exist since the Apollo era. LDEX performed the first search with an in situ dust detector for such a population. Here we present the results of the LDEX observations taken over the lunar terminator and report that within LDEX's detection limits, we found no evidence of electrostatically lofted grains in the altitude range of 3-250 km above the lunar terminator.

  13. Cometary and interstellar dust grains - Analysis by ion microprobe mass spectrometry and other techniques

    NASA Astrophysics Data System (ADS)

    Zinner, E.

    1991-04-01

    A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.

  14. GIADA On-Board Rosetta: Early Dust Grain Detections and Dust Coma Characterization of Comet 67P/C-G

    NASA Astrophysics Data System (ADS)

    Rotundi, A.; Della Corte, V.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Sordini, R.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Fulle, M.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Grün, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zakharov, V.; Zarnecki, J.

    2014-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) flying on-board Rosetta is devoted to study the cometary dust environment of 67P/Churiumov-Gerasimenko. GIADA is composed of 3 sub-systems: the GDS (Grain Detection System), based on grain detection through light scattering; an IS (Impact Sensor), giving momentum measurement detecting the impact on a sensed plate connected with 5 piezoelectric sensors; the MBS (MicroBalances System), constituted of 5 Quartz Crystal Microbalances (QCMs), giving cumulative deposited dust mass by measuring the variations of the sensors' frequency. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the velocity distribution of dust grains emitted from the cometary nucleus.No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such large heliocentric distances are available up to date. We present here the first results obtained from the beginning of the Rosetta scientific phase. We will report dust grains early detection at about 800 km from the nucleus in August 2014 and the following measurements that allowed us characterizing the 67P/C-G dust environment at distances less than 100 km from the nucleus and single grains dynamical properties. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project

  15. Disc polarization from both emission and scattering of magnetically aligned grains: the case of NGC 1333 IRAS 4A1

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Li, Zhi-Yun; Looney, Leslie W.; Cox, Erin G.; Tobin, John; Stephens, Ian W.; Segura-Cox, Dominque M.; Harris, Robert J.

    2016-08-01

    Dust polarization in millimetre (and centimetre) has been mapped in discs around an increasing number of young stellar objects. It is usually thought to come from emission by magnetically aligned (non-spherical) grains, but can also be produced by dust scattering. We present a semi-analytic theory of disc polarization that includes both the direction emission and scattering, with an emphasis on their relative importance and how they are affected by the disc inclination. For face-on discs, both emission and scattering tend to produce polarization in the radial direction, making them difficult to distinguish, although the scattering-induced polarization can switch to the azimuthal direction if the incident radiation is beamed strongly enough in the radial direction in the disc plane. Disc inclination affects the polarizations from emission and scattering differently, especially on the major axis where, in the edge-on limit, the former vanishes while the latter reaches a polarization fraction as large as 1/3. The polarizations from the two competing mechanisms tend to cancel each other on the major axis, producing two low polarization `holes' (one on each side of the centre) under certain conditions. We find tantalizing evidence for at least one such `hole' in NGC 1333 IRAS 4A1, whose polarization observed at 8 mm on the 100 au scale is indicative of a pattern dominated by scattering close to the centre and by direction emission in the outer region. If true, it would imply not only that a magnetic field exists on the disc scale, but that it is strong enough to align large, possibly mm-sized, grains.

  16. Modelling grain alignment by radiative torques and hydrogen formation torques in reflection nebula

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.; Andersson, B.-G.

    2015-04-01

    Reflection nebulae - dense cores - illuminated by surrounding stars offer a unique opportunity to directly test our quantitative model of grain alignment based on radiative torques (RATs) and to explore new effects arising from additional torques. In this paper, we first perform detailed modelling of grain alignment by RATs for the IC 63 reflection nebula illuminated both by a nearby γ Cas star and the diffuse interstellar radiation field. We calculate linear polarization pλ of background stars by radiatively aligned grains and explore the variation of fractional polarization (pλ/AV) with visual extinction AV across the cloud. Our results show that the variation of pV/AV versus AV from the dayside of IC 63 to its centre can be represented by a power law (p_V/A_V∝ A_V^{η }) with different slopes depending on AV. We find a shallow slope η ˜ -0.1 for AV < 3 and a very steep slope η ˜ -2 for AV > 4. We then consider the effects of additional torques due to H2 formation and model grain alignment by joint action of RATs and H2 torques. We find that pV/AV tends to increase with an increasing magnitude of H2 torques. In particular, the theoretical predictions obtained for pV/AV and peak wavelength λmax in this case show an improved agreement with the observational data. Our results reinforce the predictive power of the RAT alignment mechanism in a broad range of environmental conditions and show the effect of pinwheel torques in environments with efficient H2 formation. Physical parameters involved in H2 formation may be constrained using detailed modelling of grain alignment combined with observational data. In addition, we discuss implications of our modelling for interpreting latest observational data by Planck and other ground-based instruments.

  17. Lunar Surface and Dust Grain Potentials during the Earth’s Magnetosphere Crossing

    NASA Astrophysics Data System (ADS)

    Vaverka, J.; Richterová, I.; Pavlu˚, J.; Šafránková, J.; Němeček, Z.

    2016-07-01

    Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itself and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.

  18. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  19. Application of dust grains and Langmuir probe for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Ussenov, Y. A.; Ramazanov, T. S.; Dzhumagulova, K. N.; Dosbolayev, M. K.

    2014-01-01

    This paper presents the results of the analysis of the experimentally measured width of the dust-free region around a single electric probe in a dusty plasma of glow discharge. The experimental results were compared with the data of a theoretical study on the basis of the balance equation of the dust particles thermal energy and their electrostatic interaction energy with the probe. An alternative method for the determination of the buffer plasma parameters was developed by measuring the dust-free region area around the probe. Using this method the temperature and the concentration of electrons in an argon glow discharge plasma in the pressure range from P= 0.6 to P= 0.8\\ \\text{torr} were determined.

  20. The role of endotoxin in grain dust-induced lung disease.

    PubMed

    Schwartz, D A; Thorne, P S; Yagla, S J; Burmeister, L F; Olenchock, S A; Watt, J L; Quinn, T J

    1995-08-01

    To identify the role of endotoxin in grain dust-induced lung disease, we conducted a population-based, cross-sectional investigation among grain handlers and postal workers. The study subjects were selected by randomly sampling all grain facilities and post offices within 100 miles of Iowa City. Our study population consisted of 410 grain workers and 201 postal workers. Grain workers were found to be exposed to higher concentrations of airborne dust (p = 0.0001) and endotoxin (p = 0.0001) when compared with postal workers. Grain workers had a significantly higher prevalence of work-related (cough, phlegm, wheezing, chest tightness, and dyspnea) and chronic (usual cough or phlegm production) respiratory symptoms than postal workers. Moreover, after controlling for age, gender, and cigarette smoking status, work-related respiratory symptoms were strongly associated with the concentration of endotoxin in the bioaerosol in the work setting. The concentration of total dust in the bioaerosol was marginally related to these respiratory problems. After controlling for age, gender, and cigarette smoking status, grain workers were found to have reduced spirometric measures of airflow (FEV1, FEV1/FVC, and FEF25-75) and enhanced airway reactivity to inhaled histamine when compared with postal workers. Although the total dust concentration in the work environment appeared to have little effect on these measures of airflow obstruction, higher concentrations of endotoxin in the bioaerosol were associated with diminished measures of airflow and enhanced bronchial reactivity. Our results indicate that the concentration of endotoxin in the bioaerosol may be particularly important in the development of grain dust-induced lung disease. PMID:7633714

  1. Magnetically Aligned HI and Dust: New insights into the physical properties of the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Clark, Susan E.; Peek, Joshua E. G.; Hill, J. Colin; Putman, Mary; Schudel, Lowell E.

    2015-08-01

    Sensitive, high resolution observations of Galactic HI reveal an intricate network of slender linear features, much as sensitive surveys of dust in Galactic molecular clouds reveal ubiquitous filamentary structure. Across the high Galactic latitude sky, diffuse HI structures are aligned with the interstellar magnetic field, as revealed by background starlight polarization (Clark, Peek, Putman 2014). We present the discovery that the orientation of HI structures traces the Planck 353 GHz polarization angle measurements with extraordinary accuracy. We explore the physical properties of the HI structures, and the physical mechanisms responsible for their alignment, by examining the HI structures across a range of densities and environments. We discuss the insights that may be gained from a deeper understanding of the interplay between gas, dust, and magnetic fields in the ISM.

  2. Soliton Reflection in a Magnetized Cold Plasma having Dust Grains and Trapped Electrons

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Singh, Omveer; Dahiya, Raj P.

    2012-10-01

    A solitary wave is said to be a soliton if it retains its shape after collision with another solitary wave. The solitons get reflected from a boundary or the density gradient present in the plasma. In the present work, the reflection of a soliton is studied in a magnetized cold plasma having dust grains and trapped electrons. Considering the density inhomogeneity in the plasma, we derive relevant modified Korteweg-deVries (mKdV) equations for the right and left going solitary waves and then after coupling these equations at the point of reflection we solve the coupled equation for obtaining the expression for the reflection coefficient based on which the soliton reflection is examined under the effect of magnetic field, dust grain density, and the temperature of trapped electrons. Specifically the role of trapped electrons and dust grains is uncovered for the excitation of solitary waves and their reflection.

  3. Dust ion acoustic solitary waves in a collisional dusty plasma with dust grains having Gaussian distribution

    SciTech Connect

    Maitra, Sarit; Banerjee, Gadadhar

    2014-11-15

    The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented.

  4. The JCMT Gould Belt Survey: Evidence for Dust Grain Evolution in Perseus Star-forming Clumps

    NASA Astrophysics Data System (ADS)

    Chen, Michael Chun-Yuan; Di Francesco, J.; Johnstone, D.; Sadavoy, S.; Hatchell, J.; Mottram, J. C.; Kirk, H.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Pezzuto, S.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Schneider-Bontemps, N.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-07-01

    The dust emissivity spectral index, β, is a critical parameter for deriving the mass and temperature of star-forming structures and, consequently, their gravitational stability. The β value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present β, dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting spectral energy distributions to combined Herschel and JCMT observations in the 160, 250, 350, 500, and 850 μm bands. Most of the derived β and dust temperature values fall within the ranges of 1.0-2.7 and 8-20 K, respectively. In Perseus, we find the β distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant localized β variations within individual clumps and find low-β regions correlate with local temperature peaks, hinting at the possible origins of low-β grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.

  5. Studying Interstellar Dust Grain Composition with X-ray Spectroscopic Imaging

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Garcia, Javier; Smith, Randall; Wilms, Joern; Schulz, Norbert; Nowak, Mike; Baganoff, Frederick

    2015-10-01

    Interstellar dust in the foreground of bright point sources will scatter X-rays over arcminute scales, producing a diffuse halo image. The scattering halo intensity is strongly sensitive to the dust grain size distribution, spatial distribution, and composition of dust on the sight line. Currently, Chandra's spatial resolution makes it the best detector available for studying X-ray scattering halos from the diffuse ISM. A Chandra successor with similar resolution but larger effective area will lend a greater opportunity to study scattering echoes from low column densities of the diffuse interstellar or intergalactic medium. More importantly, the combination of high resolution spectroscopy with imaging is uniquely suited to studying the composition of dust grains. At soft energies in particular, the spectrum of scattered light is likely to have significant features at the 0.3 keV C-K and 0.5 O-K photoelectric absorption edges. This direct probe of ISM dust grain elements will be important for i understanding the relative abundances of graphitic grains or PAHs versus silicates, and ii measuring the depletion of gas phase elements into solid form.

  6. The collision effect between dust grains and ions to the dust ion acoustic waves in a dusty plasma

    SciTech Connect

    Yang Xue; Wang Canglong; Liu Congbo; Zhang Jianrong; Shi Yuren; Duan Wenshan; Yang Lei

    2012-10-15

    Damping solitary wave in dusty plasma is studied by considering the collision effect between dust grains and ions. It can be described by a KdV type equation in which a damping term of {phi}{sup 2} exist. It is found that both the amplitude and propagation velocity of the solitary wave decrease with time exponentially. Our results are compared with another KdV type equation with the damping term of {phi}. It is noted that the damping rate of the KdV type equation with the damping term of {phi}{sup 2} is larger than that with the term of {phi}. It is found that the damping rate is proportional to the collision frequency between dust grains and ions.

  7. Effect of particles attachment to multi-sized dust grains present in electrostatic sheaths of discharge plasmas

    SciTech Connect

    Zaham, B.; Tahraoui, A. Chekour, S.; Benlemdjaldi, D.

    2014-12-15

    The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grains trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.

  8. The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli

    2013-01-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  9. THE IMPORTANCE OF PHYSICAL MODELS FOR DERIVING DUST MASSES AND GRAIN SIZE DISTRIBUTIONS IN SUPERNOVA EJECTA. I. RADIATIVELY HEATED DUST IN THE CRAB NEBULA

    SciTech Connect

    Temim, Tea; Dwek, Eli

    2013-09-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 M{sub Sun }, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 {mu}m. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  10. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; Gerakines, P. A.

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  11. The Relationship Between the Sloshing and Breathing Frequencies in a 1D Vertically Aligned Dust Particle Chain

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Qiao, Ke; Sabo, Hannah; Matthews, Lorin; Hyde, Truell

    2013-10-01

    When confined in a glass box placed on the lower powered electrode of a GEC rf reference cell, dust particles immersed in plasma can form vertically aligned 1D chains. Both the formation and subsequent structural changes within this vertically aligned dust chain are controlled by the rf power, since the rf power effects the ionization rate in the cell, the screening parameter and the charge on the dust particles. In this study, oscillations of a 1D vertically aligned dust particle chain are employed to investigate the dust charge and screening length through measurement of the resonance frequency. It will be shown that the relationship between the sloshing and breathing frequencies indicates that the ion streaming effect plays an important role in vertical oscillations and must be included in any structural analysis of the system.

  12. The Effect of Grain Size on Radon Exhalation Rate in Natural-dust and Stone-dust Samples

    NASA Astrophysics Data System (ADS)

    Kumari, Raj; Kant, Krishan; Garg, Maneesha

    Radiation dose to human population due to inhalation of radon and its progeny contributes more than 50% of the total dose from the natural sources which is the second leading cause of lung cancer after smoking. In the present work the dependence of radon exhalation rate on the physical sample parameters of stone dust and natural dust were studied. The samples under study were first crushed, grinded, dried and then passed through sieves with different pore sizes to get samples of various grain sizes (μm). The average value of radon mass exhalation rate is 5.95±2.7 mBqkg-1hr-1 and average value of radon surface exhalation rate is 286±36 mBqm-2 hr-1 for stone dust, and the average value of radon mass exhalation rate is 9.02±5.37 mBqkg-1hr-1 and average value of radon surface exhalation rate is 360±67 mBqm-2 hr-1 for natural dust. The exhalation rate was found to increase with the increase in grain size of the sample. The obtained values of radon exhalation rate for all the samples are found to be under the radon exhalation rate limit reported worldwide.

  13. Interstellar circular polarization and the dielectric nature of dust grains

    NASA Technical Reports Server (NTRS)

    Chlewicki, Grzegorz; Greenberg, J. Mayo

    1989-01-01

    The implications of the observed relationship between the wavelength dependence of interstellar circular and linear polarization were reexamined. Mie theory calculations for grains with various optical constants demonstrate that any population of grains which matches the observed wavelength dependence of linear polarization also yields the correct cross-over wavelength of circular polarization. The coincidence of the peak wavelength of linear polarization and the cross-over of circular polarization is therefore independent of the optical constants of the grains and cannot be used as a critical constraint on grain properties. The observed relationship instead reflects a more fundamental connection between linear and circular polarization which was derived from the Kramers-Kronig relations by Shapiro (1975). Numerical results fully support Shapiro's conclusions and demonstrate that the apparent upper limit on the visual absorptivity of polarizing grains deduced from earlier Mie theory calculations (Martin, 1972) was spurious and resulted from a violation of the Kramers-Kronig relations in the assumed optical constants of the particles. The Kramers-Kronig interpretation of circular polarization can be used to place constraints on linear polarization outside the wavelength range in which it was observed. This approach was used to show that the peak observed in the visual is likely to be the only significant feature in the linear polarization curve, which therefore appears to be well approximated at all wavelengths by the Serkowski formula. A synthesis of available laboratory data was used to analyze the properties of dielectric core-mantel grains as the source of visual extinction and polarization.

  14. Effects of superthermal electrons and negatively (positively) charged dust grains on dust-ion acoustic wave modulation

    NASA Astrophysics Data System (ADS)

    Ainejad, H.; Mahdavi, M.; Shahmansouri, M.

    2014-05-01

    The modulational instability of dust-ion acoustic (DIA) waves is studied in an unmagnetized dusty plasma comprising arbitrarily charged dust particles, adiabatic fluid ions, and electrons satisfying a kappa ( κ) distribution. By using the multiple space and time scales perturbation, a nonlinear Schrödinger (NLS) equation is derived, and then the existence along with the stability of wave packets are discussed in the parameter space of two oppositely charged dust and ion temperature over a range of values of electron superthermality. It is found that the transition from stable dark solitons to unstable bright ones shifts to the smaller wavelength regions in a way that depends on the increase of superthermality index κ. In this case, a narrower range (in spatial extension) of the envelope solitons is observed. It is also found that the instability growth rate reduces, due to the electron superthemality. Furthermore, positive dust concentration enhances the instability region, whereas more populations of negative dust grains may control or suppress one.

  15. GIADA - Grain Impact Analyzer and Dust Accumulator - Onboard Rosetta spacecraft: Extended calibrations

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Sordini, R.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Rotundi, A.; Rietmeijer, F. J. M.; Fulle, M.; Mazzotta-Epifani, E.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Morales, R.; Cosi, M.

    2016-09-01

    Despite a long tradition of dust instruments flown on-board space mission, the largest number of these can be considered unique as they used different detection techniques. GIADA (Grain Impact Analyzer and Dust Accumulator), is one of the dust instruments on-board the Rosetta spacecraft and is devoted to measure the dust dynamical parameters in the coma of comet 67P/Churyumov-Gerasimenko. It couples two different techniques to measure the mass and speed of individual dust particles. We report here the results of an extended calibration activity carried-out, during the hibernation phase of the Rosetta mission, on the GIADA Proto Flight Model (PFM) operative in a clean room in our laboratory. The main aims of an additional calibration campaign are: to verify the algorithms and procedures for data calibration developed before Rosetta launch; to improve the comprehension of GIADA response after the increased knowledge on cometary dust, e.g. the composition of dust particles after Stardust mission. These calibration improvements implied a final step, which consisted in defining transfer functions to correlate the new calibration curves obtained for the GIADA PFM to those to be used for GIADA onboard the Rosetta spacecraft. The extended calibration activity allowed us to analyze GIADA data acquired in the 67P/C-G coma permitting to infer additional information on cometary dust particles, e.g. density and tensile strength.

  16. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland.

    PubMed

    Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Dutkiewicz, Jacek

    2007-01-01

    During combine harvesting of 5 various cereal crops (rye, barley, oats, buckwheat, corn) 24 samples of grain and 24 samples of settled grain dust were collected on farms located in the Lublin province of eastern Poland. The samples were examined for the concentration of total microfungi, Fusarium species, deoxynivalenol (DON), nivalenol (NIV), and ochratoxin A (OTA). Microfungi able to grow on malt agar were present in 79.2% of grain samples and in 91.7% of grain dust samples in the concentrations of 1.0-801.3x10(3) cfu/g and 1.5-12440.0x10(3) cfu/g, respectively. The concentration of microfungi in grain dust samples was significantly greater than in grain samples (p<0.01). Fusarium strains were isolated from 54.2% of grain samples and from 58.3% of grain dust samples in the concentrations of 0.1-375.0x10(3) cfu/g and 4.0-7,700.0x10(3) cfu/g, respectively. They were found in all samples of grain and grain dust from rye, barley and corn, but only in 0-16.7% of samples of grain and grain dust from oats and buckwheat. DON was found in 79.2% of grain samples and in 100% of grain dust samples in the concentrations of 0.001-0.18 microg/g and 0.006-0.283 microg/g, respectively. NIV was detected in 62.5% of grain samples and in 94.4% of grain dust samples in the concentrations of 0.004-0.502 microg/g and 0.005-0.339 microg/g, respectively. OTA was detected in 58.3% of grain samples and in 91.7% of grain dust samples in the concentrations of 0.00039- 0.00195 microg/g and 0.00036-0.00285 microg/g, respectively. The concentrations of DON, total fusariotoxins (DON+NIV) and OTA were significantly greater in grain dust samples than in grain samples (p<0.05, p<0.05, and p<0.001, respectively). The concentration of Fusarium poae in the samples of rye grain and dust was significantly correlated with the concentrations of DON (p<0.05), NIV (p<0.01), and total fusariotoxins (p<0.05). Similarly, the concentration of Fusarium culmorum in the samples of barley grain and dust was

  17. FT IR microspectroscopy of extraterrestrial dust grains: Comparison of measurement techniques

    NASA Astrophysics Data System (ADS)

    Morlok, A.; Köhler, M.; Bowey, J. E.; Grady, Monica M.

    2006-05-01

    Identification of astronomical dust composition rests on comparison of Infrared (IR) spectra with standard laboratory spectra; frequently, however, a single mineralogical composition is assumed for spectral matching. Advances in laboratory instrumentation have enabled very precise IR spectra to be measured on single grains and zones within grains; with a more complete set of spectral data for planetary dust, better compositional matches will be achieved for astronomical dust. We have compared several FT-IR spectroscopy techniques (open path transmission spectroscopy and diffuse reflectance spectroscopy of powders; microspectroscopy of single grains and powders and ATR spectroscopy of thin sections) to determine their utility for the direct measurement of the mid-IR spectra of small amounts of extraterrestrial grains. We have focussed our investigation on the spectra of the olivine series of silicates, (Mg,Fe) 2SiO 4, a species frequently identified as one of the major constituents of interstellar dust. The positions of three characteristic SiO 4 stretching bands at ˜10.4, 11.3 and 12 μm were measured for comparison of the techniques. All methods gave satisfactory results, although care must be taken to guard against artefacts from sample thickness and orientation effects. Single grains hand-picked from meteorites can be analysed, but results are inaccurate if the grain size is too large (>1-10 μm). Spectra for single grains also show variations that arise from sample orientation effects. Once the analytical artefacts are taken into account, we found that measurement of powder with a diamond compression cell is best suited for the analysis of small amounts of materials.

  18. H2O grain size and the amount of dust in Mars' residual North polar cap

    USGS Publications Warehouse

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  19. Can Rosetta IES Measure Charged Dust Grains at Comet 67P/C-G?

    NASA Astrophysics Data System (ADS)

    Clark, G. B.; Pollock, C. J.; Goldstein, R.; Samara, M.; Broiles, T. W.; Mandt, K.; Burch, J. L.; Sternovsky, Z.

    2014-12-01

    Comet 67P/C-G provides us with a natural laboratory to study the many open questions pertaining to dust-plasma interactions. The Rosetta spacecraft will follow Comet 67P/C-G along its trajectory through the inner solar system, giving us an unprecedented view of this dusty plasma environment. On board Rosetta is an Ion and Electron Sensor (IES) intended to measure plasma ions and electrons between ~4 eV/q and 22 keV/q. However, it is also speculated whether IES can measure charged dust grains with the correct energy-per-charge (E/q). Preliminary results [Skego et al., 2014] show that some dust grains originating from the comet and then becoming charged, likely possess the correct E/q for IES detection. However, until now, the question of microchannel plate (MCP) detection system effectiveness/efficiency in detecting these grains has been neglected. Lacking experimental results, we use current MCP models to explore the detection efficiencies of Rosetta IES to charged dust grains. We present our results, estimate fluxes, and provide a strong case for future experimental work in this field.

  20. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on

  1. Tracking eolian dust with helium and thorium: Impacts of grain size and provenance

    NASA Astrophysics Data System (ADS)

    McGee, David; Winckler, Gisela; Borunda, Alejandra; Serno, Sascha; Anderson, Robert F.; Recasens, Cristina; Bory, Aloys; Gaiero, Diego; Jaccard, Samuel L.; Kaplan, Michael; McManus, Jerry F.; Revel, Marie; Sun, Youbin

    2016-02-01

    Reconstructions of the deposition rate of windblown mineral dust in ocean sediments offer an important means of tracking past climate changes and of assessing the radiative and biogeochemical impacts of dust in past climates. Dust flux estimates in ocean sediments have commonly been based on the operationally defined lithogenic fraction of sediment samples. More recently, dust fluxes have been estimated from measurements of helium and thorium, as rare isotopes of these elements (He-3 and Th-230) allow estimates of sediment flux, and the dominant isotopes (He-4 and Th-232) are uniquely associated with the lithogenic fraction of marine sediments. In order to improve the fidelity of dust flux reconstructions based on He and Th, we present a survey of He and Th concentrations in sediments from dust source areas in East Asia, Australia and South America. Our data show systematic relationships between He and Th concentrations and grain size, with He concentrations decreasing and Th concentrations increasing with decreasing grain size. We find consistent He and Th concentrations in the fine fraction (<5 μm) of samples from East Asia, Australia and Central South America (Puna-Central West Argentina), with Th concentrations averaging 14 μg/g and He concentrations averaging 2 μcc STP/g. We recommend use of these values for estimating dust fluxes in sediments where dust is dominantly fine-grained, and suggest that previous studies may have systematically overestimated Th-based dust fluxes by 30%. Source areas in Patagonia appear to have lower He and Th contents than other regions, as fine fraction concentrations average 0.8 μcc STP/g and 9 μg/g for 4He and 232Th, respectively. The impact of grain size on lithogenic He and Th concentrations should be taken into account in sediments proximal to dust sources where dust grain size may vary considerably. Our data also have important implications for the hosts of He in long-traveled dust and for the 3He/4He ratio used for

  2. The influence of dust grain morphology on H2 formation and desorption in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Hornekaer, Liv; Baurichter, A.; Petrunin, V. V.; Luntz, A. C.

    2005-01-01

    The formation of molecular hydrogen in interstellar dust and molecular clouds is a key step towards formation of new stars and the development of molecular complexity. Since there is no known effective gas phase route for H2 formation in these regions it is the generally accepted view that H2 is formed on the surface of interstellar dust grains. During recent years laboratory experiments have lent further credence to this view by confirming that H2 can indeed be formed efficiently on various dust grain analog surfaces under interstellar conditions (Katz et al. 1999; Manico et al. 2001; Roser et al. 2002; Hornekaer et al. 2003). These experiments have aimed at identifying the formation mechanism and determining its efficiency, as well as determining how the 4.5 eV which is liberated in the formation process is distributed between grain surface heating and translational and ro-vibrational degrees of freedom of the formed molecule. In the present paper we will briefly review a series of experiments performed by the authors and reported on in Hornekaer et al. (2003) aimed at determining the influence of grain surface morphology on molecular hydrogen formation in the interstellar medium. Furthermore, we will examine the implications of surface morphology on the residence time of molecular hydrogen on grain surfaces.

  3. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    PubMed Central

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  4. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    PubMed

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-04-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  5. Comparison of dust related respiratory effects in Dutch and Canadian grain handling industries: a pooled analysis.

    PubMed Central

    Peelen, S J; Heederik, D; Dimich-Ward, H D; Chan-Yeung, M; Kennedy, S M

    1996-01-01

    OBJECTIVES: Four previously conducted epidemiological studies in more than 1200 grain workers were used to compare exposure-response relations between exposure to grain dust and respiratory health. METHODS: The studies included Dutch workers from an animal feed mill and a transfer grain elevator and Canadian workers from a terminal grain elevator and the docks. Relations between forced expiratory volume in one second (FEV1) and exposure were analysed with multiple regression analysis corrected for smoking, age, and height. Exposure variables examined included cumulative and current dust exposure and the numbers of years a subject was employed in the industry. Sampling efficiencies of the Dutch and Canadian measurement techniques were compared in a pilot study. Results of this study were used to correct slopes of exposure-response relations for differences in dust fractions sampled by Dutch and Canadian personal dust samplers. RESULTS: Negative exposure-response relations were shown for regressions of FEV1 on cumulative and current exposure and years employed. Slopes of the exposure-response relations differed by a factor of three to five between industries, apart from results for cumulative exposure. Here the variation in slopes differed by a factor of 100, from -1 to -0.009 ml/mg.y/m3. The variation in slopes between industries reduced to between twofold to fivefold when the Dutch transfer elevator workers were not considered. There was evidence that the small exposure-response slope found for this group is caused by misclassification of exposure and a strong healthy worker effect. Alternative, but less likely explanations for the variation in slopes were differences in exposure concentrations, composition of grain dust, exposure characteristics, and measurement techniques. CONCLUSION: In conclusion, this study showed moderately similar negative exposure-response relations for four different populations from different countries, despite differences in methods of

  6. The ubiquity of micrometer-sized dust grains in the dense interstellar medium.

    PubMed

    Pagani, Laurent; Steinacker, Jürgen; Bacmann, Aurore; Stutz, Amelia; Henning, Thomas

    2010-09-24

    Cold molecular clouds are the birthplaces of stars and planets, where dense cores of gas collapse to form protostars. The dust mixed in these clouds is thought to be made of grains of an average size of 0.1 micrometer. We report the widespread detection of the coreshine effect as a direct sign of the existence of grown, micrometer-sized dust grains. This effect is seen in half of the cores we have analyzed in our survey, spanning all Galactic longitudes, and is dominated by changes in the internal properties and local environment of the cores, implying that the coreshine effect can be used to constrain fundamental core properties such as the three-dimensional density structure and ages and also the grain characteristics themselves.

  7. Protostellar disc formation enabled by removal of small dust grains

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien; Nakamura, Fumitaka

    2016-08-01

    It has been shown that a realistic level of magnetization of dense molecular cloud cores can suppress the formation of a rotationally supported disc (RSD) through catastrophic magnetic braking in the axisymmetric ideal MHD limit. In this study, we present conditions for the formation of RSDs through non-ideal MHD effects computed self-consistently from an equilibrium chemical network. We find that removing from the standard MRN distribution the large population of very small grains (VSGs) of ˜ 10 Å to few 100 Å that dominate the coupling of the bulk neutral matter to the magnetic field increases the ambipolar diffusivity by ˜ 1-2 orders of magnitude at densities below 1010/cm-3. The enhanced ambipolar diffusion (AD) in the envelope reduces the amount of magnetic flux dragged by the collapse into the circumstellar disc-forming region. Therefore, magnetic braking is weakened and more angular momentum can be retained. With continuous high angular momentum inflow, RSDs of tens of au are able to form, survive, and even grow in size, depending on other parameters including cosmic ray ionization rate, magnetic field strength, and rotation speed. Some discs become self-gravitating and evolve into rings in our 2D (axisymmetric) simulations, which have the potential to fragment into (close) multiple systems in 3D. We conclude that disc formation in magnetized cores is highly sensitive to chemistry, especially to grain sizes. A moderate grain coagulation/growth to remove the large population of VSGs, either in the prestellar phase or during free-fall collapse, can greatly promote AD and help formation of tens of au RSDs.

  8. Fractal dust grains around R Coronae Borealis stars

    NASA Technical Reports Server (NTRS)

    Wright, Edward L.

    1989-01-01

    Discrete dipole approximation calculations of the optical properties of random fractal aggregates of graphite spheroids show a UV absorption feature that is too wide and centered at too long a wavelength to fit the observed interstellar 2200-A feature, but which is a good match to the 2400-A feature seen in the hydrogen-deficient R CrB stars reported by Hecht et al. (1984). Graphite fractal grains also match the UV bump and large long-wavelenvth extinction seen in laboratory studies of carbon smoke published by Bussoletti et al. (1987), which are usually attributed to amorphous carbon.

  9. Temperature Spectra of Interstellar Dust Grains Heated by Cosmic Rays. I. Translucent Clouds

    NASA Astrophysics Data System (ADS)

    Kalvāns, Juris

    2016-06-01

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas-grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f T , s-1, determines how often a certain temperature T CR, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f T and T CR spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μm and such grains covered with ice mantles of thickness 0.1a and 0.3a. Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A V = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T CR spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T CR values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20-30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.

  10. A CONCENTRATION OF CENTIMETER-SIZED GRAINS IN THE OPHIUCHUS IRS 48 DUST TRAP

    SciTech Connect

    Marel, N. van der; Pinilla, P.; Tobin, J.; Kempen, T. van; Andrews, S.; Ricci, L.; Birnstiel, T.

    2015-09-01

    Azimuthally asymmetric dust distributions observed with the Atacama Large Millimeter/submillimeter Array (ALMA) in transition disks have been interpreted as dust traps. We present Very Large Array Ka band (34 GHz or 0.9 cm) and ALMA Cycle 2 Band 9 (680 GHz or 0.45 mm) observations at a 0.″2 resolution of the Oph IRS 48 disk, which suggest that larger particles could be more azimuthally concentrated than smaller dust grains, assuming an axisymmetric temperature field or optically thin 680 GHz emission. Fitting an intensity model to both data demonstrates that the azimuthal extent of the millimeter emission is 2.3 ± 0.9 times as wide as the centimeter emission, marginally consistent with the particle trapping mechanism under the above assumptions. The 34 GHz continuum image also reveals evidence for ionized gas emission from the star. Both the morphology and the spectral index variations are consistent with an increase of large particles in the center of the trap, but uncertainties remain due to the continuum optical depth at 680 GHz. Particle trapping has been proposed in planet formation models to allow dust particles to grow beyond millimeter sizes in the outer regions of protoplanetary disks. The new observations in the Oph IRS 48 disk provide support for the dust trapping mechanism for centimeter-sized grains, although additional data are required for definitive confirmation.

  11. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  12. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    SciTech Connect

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J. E-mail: ncalvet@umich.edu E-mail: lingleby@umich.edu E-mail: cespaillat@cfa.harvard.edu E-mail: dmw@pas.rochester.edu

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  13. Grain-scale alignment of melt in sheared partially molten rocks: implications for viscous anisotropy

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Quintanilla-Terminel, Alejandra; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Presence of melt significantly influences rheological properties of partially molten rocks by providing fast diffusional pathways. Under stress, melt aligns at the grain scale and this alignment induces viscous anisotropy in the deforming aggregate. One of the consequences of viscous anisotropy is melt segregation into melt-rich sheets oriented at low angle to the shear plane on much larger scales than the grain scale. The magnitude and orientation of viscous anisotropy with respect to the applied stress are important parameters for constitutive models (Takei and Holtzman 2009) that must be constrained by experimental studies. In this contribution, we analyze the shape preferred orientation (SPO) of individual grain-scale melt pockets in deformed partially molten mantle rocks. The starting materials were obtained by isostatically hot-pressing olivine + basalt and olivine + chromite + basalt powders. These partially molten rocks were deformed in general shear or torsion at a confining pressure, Pc = 300 MPa, temperature, T = 1200° - 1250° C, and strain rates of 10-3 - 10-5 s-1to finite shear strains, γ, of 0.5 - 5. After the experiment, high resolution backscattered electron images were obtained using a SEM equipped with a field emission gun. Individual melt pockets were segmented and their SPO analyzed using the paror and surfor methods and Fourier transforms (Heilbronner and Barret 2014). Melt segregation into melt-rich sheets inclined at 15° -20° antithetic with respect to the shear plane occurs in three-phase system (olivine + chromite + basalt) and in two-phase systems (olivine + basalt) twisted to high strain. The SPO of individual melt pockets within the melt-rich bands is moderately strong (b/a ≈ 0.8) and is always steeper (20° -40°) than the average melt-rich band orientation. In the two-phase system (olivine + basalt) sheared to lower strains, no distinct melt-rich sheets are observed. Individual grain-scale melt pockets are oriented at 45° -55

  14. DELIVERY OF DUST GRAINS FROM COMET C/2013 A1 (SIDING SPRING) TO MARS

    SciTech Connect

    Tricarico, Pasquale; Samarasinha, Nalin H.; Sykes, Mark V.; Li, Jian-Yang; Farnham, Tony L.; Kelley, Michael S. P.; Farnocchia, Davide; Stevenson, Rachel; Bauer, James M.; Lock, Robert E.

    2014-06-01

    Comet C/2013 A1 (Siding Spring) will have a close encounter with Mars on 2014 October 19. We model the dynamical evolution of dust grains from the time of their ejection from the comet nucleus to the close encounter with Mars, and determine the flux at Mars. Constraints on the ejection velocity from Hubble Space Telescope observations indicate that the bulk of the grains will likely miss Mars, although it is possible that a few percent of the grains with higher velocities will reach Mars, peaking approximately 90-100 minutes after the close approach of the nucleus, and consisting mostly of millimeter-radius grains ejected from the comet nucleus at a heliocentric distance of approximately 9 AU or larger. At higher velocities, younger grains from submillimeter to several millimeters can also reach Mars, although an even smaller fraction of grains is expected have these velocities, with negligible effect on the peak timing. Using NEOWISE observations of the comet, we can estimate that the maximum fluence will be of the order of 10{sup –7} grains m{sup –2}. We include a detailed analysis of how the expected fluence depends on the grain density, ejection velocity, and size-frequency distribution, to account for current model uncertainties and in preparation of possible refined model values in the near future.

  15. A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Price, Daniel J.; Laibe, Guillaume

    2015-07-01

    We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This `diffusion approximation for dust' is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using smoothed particle hydrodynamics that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.

  16. Computation of charge and ion drag force on multiple static spherical dust grains immersed in rf discharges

    SciTech Connect

    Ikkurthi, V. R.; Matyash, K.; Schneider, R.; Melzer, A.

    2010-10-15

    Charging of multiple spherical dust grains located in presheath and sheath regions of an rf discharge has been studied using a three-dimensional particle-particle-particle-mesh (P{sup 3}M) code. First, dust charge, potential, and ion drag force on two dust particles for various interparticle separations are computed. It is found that for dust separations larger than the shielding length the dust parameters for the two dust particles match with the single particle values. As the dust separation is equal to or less than the shielding length, the transverse component of ion force increases which is due to dynamic shielding effect caused by neighboring dust particle. However, dust charge, potential, and ion drag are found not to be affected considerably. Further, dust charge and potential on an arrangement of nine dust particles are computed. The dust charge and potential do not differ much from the single particle values for the presheath. However the dust charges of multiple dust particles in the sheath are much less negative compared to the single dust case which is shown to be due to ion focusing.

  17. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the

  18. Toxigenic Fusarium spp. as determinants of trichothecene mycotoxins in settled grain dust.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Klemsdal, Sonja Sletner; Elen, Oleif; Clasen, Per-Erik; Eduard, Wijnand

    2006-12-01

    Trichothecenes are immunosuppressive mycotoxins produced mainly by Fusarium spp. and often are detected as natural contaminants of grain and other agricultural products. Exposure to trichothecenes through inhalation during grain work may represent possible health risks for grain farmers. We aimed, therefore, to investigate the level of Fusarium spp. and trichothecenes in settled grain dust collected during work on 92 Norwegian farms. Mycotoxins were determined by gas chromatography-mass spectrometry, whereas the Fusarium spp. were identified and quantified both by species-specific semiquantitative polymerase chain reaction (PCR) and by cultivation. All potential trichothecene-producing molds in the grain dust were quantified using a PCR assay specific for tri5, the gene coding for trichodiene synthase that catalyzes the first step in the trichothecene biosynthesis. We performed correlation analysis between mold-DNA and mycotoxins to assess whether the PCR-detected DNA could be used as indicators of the mycotoxins. The methodological problem of detecting small amounts of airborne mycotoxins during grain work may then be avoided. Whereas the trichothecene-producing Fusarium species in grain dust could not be identified or quantified to a sufficient extent by cultivation, all investigated Fusarium spp. could be specifically detected by PCR and quantified from the DNA agarose gel band intensities. Furthermore, we observed a strong correlation between the trichothecenes HT-2 toxin (HT-2) or T-2 toxin (T-2) and DNA specific for tri5 (r = 0.68 for HT-2 and r = 0.50 for T-2; p < 0.001), F. langsethiae (r = 0.77 for HT-2 and r = 0.59 for T-2; p < 0.001), or F. poae (r = 0.41 for HT-2 and r = 0.35 for T-2; p < 0.001). However, only a moderate correlation was observed between the trichothecene deoxynivalenol (DON) and the combination of its producers, F. culmorum and F. graminearum (r = 0.24, p = 0.02), and no significant correlation was observed between DON and tri5. PCR

  19. Optical and physical properties and dynamics of dust grains released by Comet Halley

    NASA Astrophysics Data System (ADS)

    Schwehm, G. H.; Kneissel, B.

    1981-11-01

    The existence of an ice halo in the tail of Halley's comet during the Giotto flyby is studied. The optical properties of coated and irregular shaped particles are reviewed in order to derive a zero order approximation of a scattering function for cometary dust particles. The ratio of the radiation pressure exerted on grains to solar gravitational attraction is discussed for low density and ice coated particles. Based on these values and the derived temperature distribution of the dust particles, results on the dynamics of evaporating ice grains in the coma of comet Halley for the encounter geometry are presented. The maximum extent of an ice halo consisting of pure ice is 1 million km.

  20. Grain-size dependence of the magnetic properties of street dusts from Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Dytłow, Sylwia; Winkler, Aldo; Sagnotti, Leonardo

    2015-04-01

    In recent years, in connection with a substantial development of transportation in urban areas, vehicular traffic increased its importance as source of pollution and consequent cause of health problems in urban environments. In fact, it is well established that the concentration and size of pollution related particulate matter (PM) are important factors affecting human health. The aim of this study is to identify the variations of the magnetic properties and of the chemical composition of different granulometric fractions from street dusts collected at four locations in Warsaw: the city center, a suburb, a tramline and a big crossroad. Dust samples were mechanically sieved and classified using the laboratory shaker with a standard sieve set (0.5 mm, 0.25 mm, 0.1 mm and 0.071 mm). Data show a distribution of magnetic susceptibility (χ) in the wide range of 80-370 × 10-8 m3kg-1. Comparison of magnetic parameters shows that the street dust contains the pollution characteristics for air and soil. The samples were characterized by uniform magnetic mineralogy, typical for fine-grained magnetite, in a grain size range between pseudo-single-domain and fine multi-domain, with a small contribution from ultrafine superparamagnetic particles (~2-3.5 %). The street dust contains, as usual for the urban areas, spherical magnetic particles produced by fossil fuel combustion processes and mixture of irregular angular iron-oxides grains containing other elements. The magnetic susceptibility and hysteresis properties of the dusts have been analyzed in detail; the temperature variation of the saturation of remanent magnetization and of the magnetic susceptibility revealed that the main magnetic mineral, for all the fractions, is almost stoichiometric magnetite, with the finest fractions (d=0.1 mm, 0.071 mm and d

  1. Computation of ion drag force on a static spherical dust grain immersed in rf discharges

    SciTech Connect

    Ikkurthi, V. R.; Melzer, A.; Matyash, K.; Schneider, R.

    2009-04-15

    The ion drag force on static spherical dust grains located in an argon rf discharge under typical laboratory experiment conditions has been computed using a three-dimensional particle-particle-particle-mesh code. Elastic and inelastic collisions have been included in the current model to obtain realistic rf discharge plasma conditions. The ion drag has been computed for various sizes of dust placed at different locations in the rf discharge under different gas pressures. The orbital drag force is typically found larger than the collection drag force. Ion-neutral collisions increase flux to the dust and hence the total drag force for collisional case is found larger than the collisionless case. Within the pressure range investigated, the drag forces do not vary much with pressure. The size dependence of the drag force is nonlinear and agrees well with the forces computed from the analytical models.

  2. A grain of sand or a handful of dust?

    NASA Astrophysics Data System (ADS)

    Wagner, Fabian

    2013-03-01

    The recent paper by Girod et al (2013) analyses the implications of stringent global GHG mitigation targets for the intensities of, inter alia , broad consumption categories like food, shelter and transport. This type of scenario modeling analysis and inverse reasoning helps us to better understand the potential or required contribution of changes in consumption patterns to mitigation. This is welcome because while there is a growing literature on the behavioral and consumption dimensions of mitigation, there is still no widely accepted framework for studying systematically the interactions between supply and demand, behavior and technology, production and consumption. So we are left with the question: what do we need to do exactly to stabilize GHG concentrations? Intuitively, we take our cue from Aristotelian logic: if A implies B, then in order to avoid B we had better prevent A. At this level it is clear that we need either to decarbonize our energy systems to start with, or to suck out CO2 from the atmosphere. When multiple causes are at work, however, our neat Aristotelian picture is no longer appropriate (Cartwright 2003). Leaving capturing and storage aside, we need to decarbonize our systems, but we also need to reduce the energy intensity, change our personal habits, eat less meat, use more public transportation, etc. What is the right balance between these factors? Can we do just one thing, say, eat less meat, but not another, and still achieve some pretty ambitious mitigation goals? In other words, what are necessary and what are sufficient sets of measures to reach these goals? Let us first look at the question of necessary measures. This gets tricky when applied to individual consumers: it is somewhat akin to the notorious question whether a heap of sand is still a heap when you take away one grain (Sainsbury 2011). If you are inclined to say yes, think once more. What happens when you take away another one, and another one, and another one, and so

  3. A grain of sand or a handful of dust?

    NASA Astrophysics Data System (ADS)

    Wagner, Fabian

    2013-03-01

    The recent paper by Girod et al (2013) analyses the implications of stringent global GHG mitigation targets for the intensities of, inter alia , broad consumption categories like food, shelter and transport. This type of scenario modeling analysis and inverse reasoning helps us to better understand the potential or required contribution of changes in consumption patterns to mitigation. This is welcome because while there is a growing literature on the behavioral and consumption dimensions of mitigation, there is still no widely accepted framework for studying systematically the interactions between supply and demand, behavior and technology, production and consumption. So we are left with the question: what do we need to do exactly to stabilize GHG concentrations? Intuitively, we take our cue from Aristotelian logic: if A implies B, then in order to avoid B we had better prevent A. At this level it is clear that we need either to decarbonize our energy systems to start with, or to suck out CO2 from the atmosphere. When multiple causes are at work, however, our neat Aristotelian picture is no longer appropriate (Cartwright 2003). Leaving capturing and storage aside, we need to decarbonize our systems, but we also need to reduce the energy intensity, change our personal habits, eat less meat, use more public transportation, etc. What is the right balance between these factors? Can we do just one thing, say, eat less meat, but not another, and still achieve some pretty ambitious mitigation goals? In other words, what are necessary and what are sufficient sets of measures to reach these goals? Let us first look at the question of necessary measures. This gets tricky when applied to individual consumers: it is somewhat akin to the notorious question whether a heap of sand is still a heap when you take away one grain (Sainsbury 2011). If you are inclined to say yes, think once more. What happens when you take away another one, and another one, and another one, and so

  4. Critical currents of aligned grains of Tl-Ba-Ca-Cu-O compounds

    NASA Technical Reports Server (NTRS)

    Fang, M. M.; Finnemore, D. K.; Farrell, D. E.; Bansal, N. R.

    1989-01-01

    A study of irreversibility in the magnetization curves of Tl2Ba2Ca2Cu3O10 and Tl2Ba2Ca1Cu2O8 was undertaken to determine the intragranular critical currents and the effects of flux-creep in grain-aligned samples of these materials. For fields of greater than 0.3 T, and H parallel to c axis, the critical supercurrent falls approximately exponentially with both magnetic field and temperature. Flux-creep is found to be linear in the logarithm of time at low fields over a wide temperature range.

  5. Secondary emission from dust grains with a surface layer: comparison between experimental and model results

    NASA Astrophysics Data System (ADS)

    Richterová, I.; Pavlů, J.; Němeček, Z.; Šafránková, J.; Žilavý, P.

    2006-01-01

    The motion, coalescence, and other processes in dust clouds are determined by the dust charge. Since dust grains in the space are bombarded by energetic electrons, the secondary emission is an important process contributing to their charge. It is generally expected that the secondary emission yield is related to surface properties of the bombarded body. However, it is well known that secondary emission from small bodies is determined not only by their composition but an effect of dimension can be very important when the penetration depth of primary electrons is comparable with the grain size. It implies that the secondary emission yield can be influenced by the substrate material if the surface layer is thin enough. We have developed a simple Monte Carlo model of secondary emission that was successfully applied on the dust stimulants from glass and melamine formaldehyde (MF) resin and matched very well experimental results. In order to check the influence of surface layers, we have modified the model for spheres covered by a layer with different material properties. The results of model simulations are compared with measurements on MF spheres covered by a nickel layer.

  6. Dust and gas mixtures with multiple grain species - a one-fluid approach

    NASA Astrophysics Data System (ADS)

    Laibe, Guillaume; Price, Daniel J.

    2014-10-01

    We derive the single-fluid evolution equations describing a mixture made of a gas phase and an arbitrary number of dust phases, generalizing the approach developed by Laibe & Price. A generalization for continuous dust distributions as well as analytic approximations for strong drag regimes is also provided. This formalism lays the foundation for numerical simulations of dust populations in a wide range of astrophysical systems while avoiding limitations associated with a multiple-fluid treatment. The usefulness of the formalism is illustrated on a series of analytical problems, namely the DUSTYBOX, DUSTYSHOCK and DUSTYWAVE problems as well as the radial drift of grains and the streaming instability in protoplanetary discs. We find physical effects specific to the presence of several dust phases and multiple drag time-scales, including non-monotonic evolution of the differential velocity between phases and increased efficiency of the linear growth of the streaming instability. Interestingly, it is found that under certain conditions, large grains can migrate outwards in protoplanetary discs. This may explain the presence of small pebbles at several hundreds of astronomical units from their central star.

  7. Interaction of the lunar surface and dust grains with the solar wind and Earth magnetosphere

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2015-04-01

    Interaction of the lunar surface with the solar wind and Earth's magnetosphere leads to it charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. The parameters of a plasma environment strongly influence the charging processes because the energy of electrons and ions is significantly higher in the magnetosphere than in the solar wind, while the particle density is lower in the magnetosphere. Dominant charging currents depend on a lunar position relative to the Earth as well as on the Solar Zenith Angle which influences mainly the current of photoelectrons. The lunar surface potential varies from slightly positive to large negative values with respect to the surrounding plasma. A presence of dust levitating above the surface has been observed by several spacecraft and by astronauts during Apollo missions in the terminator area. We present model calculations of a temporal evolution of the lunar surface potential as well as potentials of dust grains above the surface using by the ARTEMIS data through one crossing of the Earth magnetosphere tail. We show that the lunar surface and levitating dust can be charged to different potentials under the same plasma conditions and we discuss a possibility of the dust grain levitation above the charged surface.

  8. Ion drag force on a dust grain in a weakly ionized collisional plasma

    SciTech Connect

    Semenov, I. L.; Krivtsun, I. V.; Zagorodny, A. G.

    2013-01-15

    The problem of calculating the ion drag force acting on a dust grain immersed in a weakly ionized collisional plasma is studied using an approach based on the direct numerical solution of the Vlasov-Bhatnagar-Gross-Krook kinetic equations. A uniform subthermal flow of argon plasma past a spherical dust grain is considered. The numerical computations are performed for a wide range of plasma pressures. On the basis of the obtained results, the effect of ion-neutral collisions on the ion drag force is analyzed in a wide range of ion collisionality. In the collisionless limit, our results are shown to be in good agreement with the results obtained by the binary collision approach. As the ion collisionality increases, the ion drag force is found to decrease sharply and even become negative, i.e., directed oppositely to the plasma flow. A qualitative explanation of this effect is presented and a comparison of our results with those obtained using the drift diffusion approach is discussed. The velocity dependence of the ion drag force in the highly collisional regime is examined. The relationship between the ion and the neutral drag forces in the highly collisional limit is analyzed and the possibility of a superfluid-like behavior of dust grains is discussed.

  9. Spacecraft and dust grain charging at comet 67P: observations and modeling

    NASA Astrophysics Data System (ADS)

    Eriksson, Anders; Johansson, Fredrik; Odelstad, Elias; Edberg, Niklas; Vigren, Erik; Engelhardt, Ilka; Wahlund, Jan-Erik; Nilsson, Hans; Stenberg, Gabriella; Mandt, Kathy; Broiles, Tom; Goldstein, Ray; Burch, Jim; Carr, Chris; Cupido, Emanuele

    2015-04-01

    The electrostatic potential of a dust grain and a spacecraft is set by the same balance between electric currents flowing between the object and surrounding space. We present data from the Rosetta Plasma Consortium (RPC) to show that starting at its arrival in the close vicinity of comet 67P/Churyumov-Gerasimenko in September, the Rosetta spacecraft mostly is at a negative potential with respect to surrounding space, with typical magnitude of a few tens of volts. Using simple theory and simulations with the SPIS code package, this rather highly negative spacecraft potential is interpreted as due to high electron temperature in the freshly ionized plasma, as the density of the gas emitted by the comet is too low to cause significant collisional cooling of photoelectrons in the early stages of comet activity. To first approximation, dust grains will charge about equally as the spacecraft. Hence dust can also be expected to reach negative potentials up to tens of volts, with implications for grain detection and evolution.

  10. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emission

    NASA Astrophysics Data System (ADS)

    Tankosic, D.; Abbas, M. M.

    2012-03-01

    We present some examples of the complex nature of secondary electron emissions from lunar dust grains levitated in an electrodynamic balance, and show that the measurements are unaffected by the variation of the AC field employed in the experiments.

  11. Constraining dust properties in circumstellar envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of carbon dust

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-10-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.

  12. Excitation of Kelvin Helmholtz instability by an ion beam in a plasma with negatively charged dust grains

    SciTech Connect

    Rani, Kavita; Sharma, Suresh C.

    2015-02-15

    An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.

  13. Coarse-grained cosmological perturbation theory: Stirring up the dust model

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Kopp, Michael

    2015-04-01

    We study the effect of coarse graining the dynamics of a pressureless self-gravitating fluid (coarse-grained dust) in the context of cosmological perturbation theory, in both the Eulerian and Lagrangian frameworks. We obtain recursion relations for the Eulerian perturbation kernels of the coarse-grained dust model by relating them to those of the standard pressureless fluid model. The effect of the coarse graining is illustrated by means of power and cross spectra for the density and velocity, which are computed up to one-loop order. In particular, the large-scale vorticity power spectrum that arises naturally from a mass-weighted velocity is derived from first principles. We find qualitatively good agreement for the magnitude, shape, and spectral index of the vorticity power spectrum with recent measurements from N -body simulations and results from the effective field theory of large-scale structure. To lay the ground for applications in the context of Lagrangian perturbation theory, we finally describe how the kernels obtained in Eulerian space can be mapped to Lagrangian ones.

  14. Size distribution of dust grains: A problem of self-similarity

    NASA Technical Reports Server (NTRS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e

  15. Study of the dusty environment of comet 67P/Churyumov-Gerasimenko with allowance of dust grains aspherisity

    NASA Astrophysics Data System (ADS)

    Ivanovski, Stavro L.; Zakharov, Vladimir V.; Della Corte, Vincenzo; rotundi, alessandra; Crifo, Jean-Francois; Fulle, Marco

    2016-10-01

    The Grain Impact Analyser and Dust Accumulator (GIADA) instrument onboard the Rosetta spacecraft has been measuring speed, mass and, with the support of calibrations curves, their geometrical cross section, of individual dust particles in the coma of comet 67P/Churyumov-Gerasimenko since 1st August 2014.In this work we consider the observational period November – December 2015 during which GIADA registered a high dust particles detection rate. We performed numerical simulations of dust grains dynamics measured by GIADA during this period. As a shape model of dust grains we used not only spheres, but also, as a first departure from the sphere, ellipsoids of revolution, prolate and oblate with various aspect ratios. The size range under consideration is from 50 to 500 microns, in diameter, which corresponds to the particle size range measured by GIADA in the period of interest.We discuss the influence of the grain's shape model on the dust spatial distribution and dynamics of individual grains. The results allow to constrain the density range of the collected particles based on the comparison between their computed terminal velocities and the GIADA measured dust speeds.

  16. Carbon and silicate grains in the laboratory as analogues of cosmic dust.

    PubMed

    Mennella, V; Brucato, J R; Colangeli, L

    2001-03-15

    Carbon and silicate grains are the two main components of cosmic dust. There is increasing spectroscopic evidence that their composition varies according to the cosmic environment and the experienced processing. Irradiation from ultraviolet photons and cosmic rays, as well as chemical interactions with the interstellar gas play a crucial role for grain transformation. The study of 'laboratory analogues' represents a powerful tool to better understand the nature and evolution of cosmic materials. In particular, simulations of grain processing are fundamental to outline an evolutionary pathway for interstellar particles. In the present work, we discuss the ultraviolet and infrared spectral changes induced by thermal annealing, ultraviolet irradiation, ion irradiation and hydrogen atom bombardment in carbon and silicate analogue materials. The laboratory results give the opportunity to shed light on the long-standing problems of the attribution of ultraviolet and infrared interstellar spectral features.

  17. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples. PMID:26595510

  18. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples.

  19. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    SciTech Connect

    Sabri, T.; Jäger, C.; Gavilan, L.; Lemaire, J. L.; Vidali, G.; Henning, T.

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  20. From Dust Grains to Planetesimals: The Importance of the Streaming Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Youdin, Andrew N.; Li, Rixin

    2016-01-01

    Planetesimals are the precursors to planets, and understanding their formation is an essential step towards developing a complete theory of planet formation. For small solid particles (e.g., dust grains) to coagulate into planetesimals, however, requires that these particles grow beyond centimeter sizes; with traditional coagulation physics, this is very difficult. The streaming instability, which is a clumping process akin to the pile-up of cars in a traffic jam, generates sufficiently high solid densities that the mutual gravity between the clumped particles eventually causes their collapse towards planetesimal mass and size scales. Exploring this transition from dust grains to planetesimals is still in its infancy but is extremely important if we want to understand the basics of planet formation. Here, I present a series of high resolution, first principles numerical simulations of protoplanetary disk gas and dust to study the clumping of particles via the streaming instability and the subsequent collapse towards planetesimals. These simulations have been employed to characterize the planetesimal population as a function of radius in protoplanetary disks. The results of these simulations will be crucial for planet formation models to correctly explain the formation and configuration of solar systems.

  1. Interstellar dust grain composition from high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2016-06-01

    X-ray light is sufficient to excite electrons from n=1 (K-shell) and n=2 (L-shell) energy levels of neutral interstellar metals, causing a sharp increase in the absorption cross-section. Near the ionization energy, the shape of the photoelectric absorption edge depends strongly on whether the atom is isolated or bound in molecules or minerals (dust). With high resolution X-ray spectroscopy, we can directly measure the state of metals and the mineral composition of dust in the interstellar medium. In addition, the scattering contribution to the X-ray extinction cross-section can be used to gauge grain size, shape, and filling factor. In order to fully take advantage of major advances in high resolution X-ray spectroscopy, lab measurements of X-ray absorption fine structure (XAFS) from suspected interstellar minerals are required. Optical constants derived from the absorption measurements can be used with Mie scattering or anomalous diffraction theory in order to model the full extinction cross-sections from the interstellar medium. Much like quasar spectra are used to probe other intergalactic gas, absorption spectroscopy of Galactic X-ray binaries and bright stars will yield key insights to the mineralogy and evolution of dust grains in the Milky Way.

  2. Nonlinear dust acoustic waves in inhomogeneous four-component dusty plasma with opposite charge polarity dust grains

    SciTech Connect

    El-Taibany, W. F.

    2013-09-15

    The reductive perturbation technique is employed to investigate the propagation properties of nonlinear dust acoustic (DA) waves in a four-component inhomogeneous dusty plasma (4CIDP). The 4CIDP consists of both positive- and negative-charge dust grains, characterized by different mass, temperature, and density, in addition to a background of Maxwellian electrons and ions. The inhomogeneity caused by nonuniform equilibrium values of particle densities, fluid velocities, and electrostatic potential leads to a significant modification to the nature of nonlinear DA solitary waves. It is found that this model reveals two DA wave velocities, one slow, λ{sub s}, and the other is fast, λ{sub f}. The nonlinear wave evolution is governed by a modified Kortweg-de Vries equation, whose coefficients are space dependent. Both the two soliton types; compressive and rarefactive are allowed corresponding to λ{sub s}. However, only compressive soliton is created corresponding to λ{sub f}. The numerical investigations illustrate the dependence of the soliton amplitude, width, and velocity on the plasma inhomogeneities in each case. The relevance of these theoretical results with 4CIDPs observed in a multi-component plasma configurations in the polar mesosphere is discussed.

  3. PRESOLAR GRAINS FROM NOVAE: EVIDENCE FROM NEON AND HELIUM ISOTOPES IN COMET DUST COLLECTIONS

    SciTech Connect

    Pepin, Robert O.; Palma, Russell L.; Gehrz, Robert D.; Starrfield, Sumner

    2011-12-01

    Presolar grains in meteorites and interplanetary dust particles carry non-solar isotopic signatures pointing to origins in supernovae, giant stars, and possibly other stellar sources. There have been suggestions that some of these grains condensed in the ejecta of classical nova outbursts, but the evidence is ambiguous. We report neon and helium compositions in particles captured on stratospheric collectors flown to sample materials from comets 26P/Grigg-Skjellerup and 55P/Tempel-Tuttle that point to condensation of their gas carriers in the ejecta of a neon (ONe) nova. The absence of detectable {sup 3}He in these particles indicates space exposure to solar wind irradiation of a few decades at most, consistent with origins in cometary dust streams. Measured {sup 4}He/{sup 20}Ne, {sup 20}Ne/{sup 22}Ne, {sup 21}Ne/{sup 22}Ne, and {sup 20}Ne/{sup 21}Ne isotope ratios, and a low upper limit on {sup 3}He/{sup 4}He, are in accord with calculations of nucleosynthesis in neon nova outbursts. Of these, the uniquely low {sup 4}He/{sup 20}Ne and high {sup 20}Ne/{sup 22}Ne ratios are the most diagnostic, reflecting the large predicted {sup 20}Ne abundances in the ejecta of such novae. The correspondence of measured Ne and He compositions in cometary matter with theoretical predictions is evidence for the presence of presolar grains from novae in the early solar system.

  4. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    Aeolian dust in the atmosphere may have a cooling effect when small particles in the high atmosphere block incoming solar energy (e.g., Claquin et al., 2003) but it may also act as a 'greenhouse gas' when larger particles in the lower atmosphere trap energy that was reflected from the Earth's surface (e.g., Otto et al., 2007). Therefore, it is of vital importance to have a good understanding of the particle-size distribution of aeolian dust in space and time. As wind is a very size-selective transport mechanism, the sediments it carries typically have a very-well sorted grain-size distribution, which gradually fines from proximal to distal deposition sites. This fact has been used in numerous paleo-environmental studies to both determine source-to-sink changes in the particle size of aeolian dust (e.g., Weltje and Prins, 2003; Holz et al., 2004; Prins and Vriend, 2007) and to quantify mass-accumulation rates of aeolian dust (e.g., Prins and Weltje 1999; Stuut et al., 2002; Prins et al., 2007; Prins and Vriend, 2007; Stuut et al., 2007; Tjallingii et al., 2008; Prins et al., 2009). Studies on modern wind-blown particles have demonstrated that particle size of dust not only is a function of lateral but also vertical transport distance (e.g., Torres-Padron et al., 2002; Stuut et al., 2005). Nonetheless, there are still many unresolved questions related to the physical properties of wind-blown particles like e.g., the case of "giant" quartz particles found on Hawaii (Betzer et al., 1988) that can only originate from Asia but have a too large size for the distance they travelled through the atmosphere. Here, we present examples of dust particle-size distributions from terrestrial (loess) as well as marine (deep-sea sediments) sedimentary archives and their spatial and temporal changes. With this contribution we hope to provide quantitative data for the modelling community in order to get a better grip on the role of wind-blown particles in the climate system. Cited

  5. Effect of electron emission on the charge and shielding of a dust grain in a plasma: A continuum theory

    SciTech Connect

    D'yachkov, L. G. Khrapak, A. G.; Khrapak, S. A.

    2008-01-15

    The continuum approximation is used to analyze the effect of electron emission from the surface of a spherical dust grain immersed in a plasma on the grain charge by assuming negligible ionization and recombination in the disturbed plasma region around the grain. A parameter is introduced that quantifies the emission intensity regardless of the emission mechanism (secondary, photoelectric, or thermionic emission). An analytical expression for the grain charge Z{sub d} is derived, and a criterion for change in the charge sign is obtained. The case of thermionic emission is examined in some detail. It is shown that the long-distance asymptotic behavior of the grain potential follows the Coulomb law with a negative effective charge Z{sub eff}, regardless of the sign of Z{sub d}. Thus, the potential changes sign and has a minimum if Z{sub d} > 0, which implies that attraction is possible between positively charged dust grains.

  6. Supernova dust formation and the grain growth in the early universe: the critical metallicity for low-mass star formation

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Marassi, Stefania; Nozawa, Takaya; Yoshida, Naoki; Schneider, Raffaella; Omukai, Kazuyuki; Limongi, Marco; Chieffi, Alessandro

    2015-01-01

    We investigate the condition for the formation of low-mass second-generation stars in the early Universe. It has been proposed that gas cooling by dust thermal emission can trigger fragmentation of a low-metallicity star-forming gas cloud. In order to determine the critical condition in which dust cooling induces the formation of low-mass stars, we follow the thermal evolution of a collapsing cloud by a one-zone semi-analytic collapse model. Earlier studies assume the dust amount in the local Universe, where all refractory elements are depleted on to grains, and/or assume the constant dust amount during gas collapse. In this paper, we employ the models of dust formation and destruction in early supernovae to derive the realistic dust compositions and size distributions for multiple species as the initial conditions of our collapse calculations. We also follow accretion of heavy elements in the gas phase on to dust grains, i.e. grain growth, during gas contraction. We find that grain growth well alters the fragmentation property of the clouds. The critical conditions can be written by the gas metallicity Zcr and the initial depletion efficiency fdep,0 of gas-phase metal on to grains, or dust-to-metal mass ratio, as (Zcr/10-5.5 Z⊙) = (fdep,0/0.18)-0.44 with small scatters in the range of Zcr = [0.06-3.2] × 10-5 Z⊙. We also show that the initial dust composition and size distribution are important to determine Zcr.

  7. Dust Particle Alignment in the Solar Magnetic Field: a Possible Cause of the Cometary Circular Polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Koenders, C.; Rosenbush, V.; Kiselev, N.; Ivanova, A.; Afanasiev, V.

    2015-12-01

    Circular polarization (CP) produced by scattering of sunlight on cometary dust has been observed in 11 comets, and showed the values from 0.01% to 0.8%. CP of both signs was observed, although negative (left-handed) CP dominates. Recent observations of several comets using SCORPIO-2 focal reducer at the 6-m BTA telescope of the Special Astrophysical Observatory (Russia) allowed producing maps of CP in the comet continuum filter at 684 nm and red wide-band filter. A gradual increase of the CP with the nucleocentric distance was usually observed. The most plausible reason why the light scattered by cometary dust becomes circularly polarized is alignment of the dust particles in the solar magnetic field. However, in-situ data for comet Halley, indicated that the solar magnetic field could not penetrate deep into the coma, limited by the diamagnetic cavity, and, thus, could not be responsible for the CP observed closer than ~4000 km from the nucleus. Advanced theoretical studies of interaction of the solar magnetic field with cometary ions led to reconsidering the diamagnetic cavity boundary - it is defined by the cometary ionopause, at which a balance is achieved between the magnetic pressure in the magnetic pile up region and the neutral friction force. The nucleocentric distance where this balance is achieved depends on the comet characteristics, increasing with the increase of the gas production rate, and local solar wind conditions, approximatively given by the comet location, specifically, its heliocentric distance. The size of diamagnetic cavity was calculated for the conditions of our CP observations. We found that it could be as small as dozens (comets 73P, 8P, 290P) or hundreds (comets Q4 NEAT, K1 PanSTARRS, Tago-Sato-Kosaka) kilometers. Thus, non-zero CP close to the nucleus can be easily explained by the interaction of the dust particles with the solar magnetic field. This mechanism also explains the observed increase in CP with the distance from the

  8. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    NASA Technical Reports Server (NTRS)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  9. FORMATION AND ALIGNMENT OF ELONGATED, FRACTAL-LIKE WATER-ICE GRAINS IN EXTREMELY COLD, WEAKLY IONIZED PLASMA

    SciTech Connect

    Chai, Kil-Byoung; Bellan, Paul M. E-mail: pbellan@caltech.edu

    2015-04-01

    Elongated, fractal-like water-ice grains are observed to form spontaneously when water vapor is injected into a weakly ionized laboratory plasma formed in a background gas cooled to an astrophysically relevant temperature. The water-ice grains form in 1–2 minutes, levitate with regular spacing, and are aligned parallel to the sheath electric field. Water-ice grains formed in plasma where the neutrals and ions have low mass, such as hydrogen and helium, are larger, more elongated, and more fractal-like than water-ice grains formed in plasmas where the neutrals and ions have high mass such as argon and krypton. Typical aspect ratios (length to width ratio) are as great as 5 while typical fractal dimensions are ∼1.7. Water-ice grain lengths in plasmas with low neutral and ion masses can be several hundred microns long. Infrared absorption spectroscopy reveals that the water-ice grains are crystalline and so are similar in constitution to the water-ice grains in protoplanetary disks, Saturn’s rings, and mesospheric clouds. The properties and behavior of these laboratory water-ice grains may provide insights into morphology and alignment behavior of water-ice grains in astrophysical dusty plasmas.

  10. Relationship of respiratory health status to grain dust in a Witwatersrand grain mill: comparison of workers' exposure assessments with industrial hygiene survey findings.

    PubMed

    Fonn, S; Groeneveld, H T; deBeer, M; Becklake, M R

    1993-10-01

    Objective measures of exposure furnished by dust monitoring are both costly and time consuming and require a sufficient level of technology. However, they are important in demonstrating exposure-response relationships, in furnishing information necessary to establish environmental control levels, and to assess if interventions, for instance, improving dust control, have been effective. In this paper respiratory symptoms and cross-shift changes in spirometric lung function were related to dust exposure level in a grain mill assessed in two ways, subjectively (by workers themselves on a four point scale) and objectively (by personal dust monitoring). Health indicators that depend on the individual's perception (e.g., symptoms) correlated more closely with the subjectively assessed dust category, while health indicators that were measured objectively (e.g., cross-week FVC and FEV1 change) correlated more closely with the objectively assessed dust category. However, the patterns of relationship of respiratory health indicators to either dust category were similar, and exposure assessed by one method was, to a large extent, a proxy for the other. The most significant predictor of workers' choice of dust exposure category was the measured dust level. These findings indicate that exposure categories based on workers' assessment of dustiness can be a useful tool in etiologic research, in particular in establishing exposure-response relationships.

  11. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  12. Process for gasifying fine grained and dust-like solid fuels

    SciTech Connect

    Dutz, K.; Goeke, E.; Preusser, G.

    1980-06-10

    Fine grained fuel such as coal dust is gasified at an elevated pressure by passing the fuel from a supply tank which is at atmospheric pressure by pump means into a pressurized lock basin and therefrom into the gasifier, the fuel during such movement retaining its loose consistency. This can be accomplished for instance by a solid piston pump which is only partially filled with the fuel. Thus, agglomerations are avoided and the fuel is directly conveyed into the gasifier in flowable and fluidizable form without the necessity of being reconverted into a finely divided form.

  13. Dust Grains and the Luminosity of Circumnuclear Water Masers in Active Galaxies

    NASA Technical Reports Server (NTRS)

    Collison, Alan J.; Watson, William D.

    1995-01-01

    In previous calculations for the luminosities of 22 GHz water masers, the pumping is reduced and ultimately quenched with increasing depth into the gas because of trapping of the infrared (approximately equals 30-150 micrometers), spectral line radiation of the water molecule. When the absorption (and reemission) of infrared radiation by dust grains is included, we demonstrate that the pumping is no longer quenched but remains constant with increasing optical depth. A temperature difference between the grains and the gas is required. Such conditions are expected to occur, for example, in the circumnuclear masing environments created by X-rays in active galaxies. Here, the calculated 22 GHz maser luminosities are increased by more than an order of magnitude. Application to the well-studied, circumnuclear masing disk in the galaxy NGC 4258 yields a maser luminosity near that inferred from observations if the observed X-ray flux is assumed to be incident onto only the inner surface of the disk.

  14. Effects of Angular Shapes on Optical properties of Martian Dust and Ice grains

    NASA Astrophysics Data System (ADS)

    Scarnato, B. V.; Colaprete, A.; Iraci, L. T.

    2012-12-01

    Dust, ice clouds and their interaction are now recognized as playing important roles in atmospheric thermal heating, in driving atmospheric dynamics and therefore in affecting martian climate and weather. However, simulation results depend strongly on dust and cloud optical properties, which depend on assumptions made on particle size, shape, number and composition (e.g. ice impurities). In radiative transfer calculations which are used to interpret space or ground-based observations of Mars, various assumptions are made regarding the aerosol optical properties; it is common to approximate aerosol shape to homogeneous spherical particles. The optical properties of spherical particles can, however, differ significantly from those of irregularly shaped particles, even if their composition and/or size distribution is the same. Therefore, assuming spherical instead of irregularly shaped angular particles in radiative transfer calculations can lead to significant errors in climate modeling and in retrieved atmospheric parameters, such as the aerosol type, optical thickness and particle size distributions. For irregularly shaped particles, which are very common in nature, the optical properties can be calculated with numerical methods such as the Discrete Dipole Approximation (DDA) method. We present a sensitivity study of the effect of angular shapes on optical properties of suspended dust aerosol and water ice particles (type 1 and 2) with and without a dust inclusion. We assess a plausible range of variability of the optical properties (e.g., mass extinction, scattering and absorption coefficients, single scattering albedo, phase function and polarization) over an extended spectral range, between 200 nm and 50 microns. Optical properties of dust and water ice grains with different angular shapes are also compared with more commonly used shapes like spheres, spheres with a concentric spherical inclusion (core-shell) and spheroids.

  15. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Eduard, Wijnand; Klemsdal, Sonja Sletner

    2006-12-01

    Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes. PMID:17133280

  16. Compressive solitons in a moving e-p plasma under the effect of dust grains and an external magnetic field

    NASA Astrophysics Data System (ADS)

    Malik, Rakhee; Malik, Hitendra K.

    2013-12-01

    A theoretical investigation concerning the propagation of compressive solitons in a plasma comprising electrons, positrons, and dust grains is presented by considering the dust grains of either positive charge or negative charge. Using reductive perturbation technique, a relevant Korteweg-deVries (KdV) equation is derived and then solved to obtain the expressions of amplitude and width of the solitons. The magnetic field is found to alter the dispersive property of the plasma, and hence, only the width of the solitons is reduced in the presence of higher magnetic field. Soliton amplitude is found to decrease/increase and the width to increase/decrease for the higher densities of negatively/positively charged dust grains. Moreover, the amplitude of such a soliton remains larger in the case of positively charged dust grains in comparison with the negatively charged dust grains. The effect of electron/positron drift velocities of the charged species is not pronounced on the properties of the compressive solitons. Under the limiting cases, our calculations reduce to the calculations by other investigators. This substantiates the generality of the present analysis.

  17. Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets

    NASA Astrophysics Data System (ADS)

    Budaj, J.; Kocifaj, M.; Salmeron, R.; Hubeny, I.

    2015-11-01

    There has been growing observational evidence for the presence of condensates in the atmospheres and/or comet-like tails of extrasolar planets. As a result, systematic and homogeneous tables of dust properties are useful in order to facilitate further observational and theoretical studies. In this paper we present calculations and analysis of non-isotropic phase functions, asymmetry parameter (mean cosine of the scattering angle), absorption and scattering opacities, single scattering albedos, equilibrium temperatures, and radiative accelerations of dust grains relevant for extrasolar planets. Our assumptions include spherical grain shape, Deirmendjian particle size distribution, and Mie theory. We consider several species: corundum/alumina, perovskite, olivines with 0 and 50 per cent iron content, pyroxenes with 0, 20, and 60 per cent iron content, pure iron, carbon at two different temperatures, water ice, liquid water, and ammonia. The presented tables cover the wavelength range of 0.2-500 μm and modal particle radii from 0.01 to 100 μm. Equilibrium temperatures and radiative accelerations assume irradiation by a non-blackbody source of light with temperatures from 7000 to 700 K seen at solid angles from 2π to 10-6 sr. The tables are provided to the community together with a simple code which allows for an optional, finite, angular dimension of the source of light (star) in the phase function.

  18. Collision velocity of dust grains in self-gravitating protoplanetary discs

    PubMed Central

    Booth, Richard A.; Clarke, Cathie J.

    2016-01-01

    We have conducted the first comprehensive numerical investigation of the relative velocity distribution of dust particles in self-gravitating protoplanetary discs with a view to assessing the viability of planetesimal formation via direct collapse in such environments. The viability depends crucially on the large sizes that are preferentially collected in pressure maxima produced by transient spiral features (Stokes numbers, St ∼ 1); growth to these size scales requires that collision velocities remain low enough that grain growth is not reversed by fragmentation. We show that, for a single-sized dust population, velocity driving by the disc's gravitational perturbations is only effective for St > 3, while coupling to the gas velocity dominates otherwise. We develop a criterion for understanding this result in terms of the stopping distance being of the order of the disc scaleheight. Nevertheless, the relative velocities induced by differential radial drift in multi-sized dust populations are too high to allow the growth of silicate dust particles beyond St ∼ 10− 2 or 10−1 (10 cm to m sizes at 30 au), such Stokes numbers being insufficient to allow concentration of solids in spiral features. However, for icy solids (which may survive collisions up to several 10 m s−1), growth to St ∼ 1 (10 m size) may be possible beyond 30 au from the star. Such objects would be concentrated in spiral features and could potentially produce larger icy planetesimals/comets by gravitational collapse. These planetesimals would acquire moderate eccentricities and remain unmodified over the remaining lifetime of the disc. PMID:27346980

  19. Dust grains in the coma of 67P/Churyumov-Gerasimenko – link with surface properties and cometary activity

    NASA Astrophysics Data System (ADS)

    Capria, Maria Teresa; Ivanovski, Stavro; Zakharov, Vladimir; Capaccioni, Fabrizio; Filacchione, Gianrico; De Sanctis, Maria Cristina; rotundi, alessandra; della corte, vincenzo; Longobardo, Andrea; Palomba, Ernesto; colangeli, luigi; Bockelee-Morvan, Dominique; Érard, Stéphane; Leyrat, Cedric; VIRTIS, GIADA

    2016-10-01

    The imaging spectrometer VIRTIS and the dust analyzer GIADA, onboard Rosetta, made an extensive observation of the dust particles in the coma of the comet 67P/Churyumov-Gerasimenko. From the analysis of GIADA data, two different kind of particles have been revealed, compact and fluffy with different compositions and dynamical properties. Compact particles are characterized by densities of about 103 kg/m3, while fluffy particles have an almost fractal nature, with densities less than 1 kg/m3.In this work we present the initial results of a model linking the dust flux distribution, as obtained from a theoretical thermal nucleus model, with a model describing the dynamics of aspherical grains in the coma. The results are discussed in the context of the latest observations from VIRTIS and GIADA instruments.The 2D nucleus thermal model, when applied to the real shape of the comet, provides the size distribution and physical properties of the emitted grains at different times and location on the surface. The thermal model can simulate grains of various size distribution, composition and physical properties. This information is used as an input for the dust dynamical model that follows the emitted particles in the coma. The main source of heating is the solar illumination. In the dust dynamical model, the grain trajectory of emitted particles remains in a plane perpendicular to the rotational axis and the direction of illumination is taken to be in the same plane (i.e. does not cause transversal forces). The dust particles are assumed to be isothermal convex bodies and temperature changes only induce modest changes in the aerodynamic force (twice higher temperature changes aerodynamic force less than ~30%). This study reviews the theoretical values at which temperature difference starts to play a role on the dynamics. We discuss to what extent the particle's temperature affects the terminal velocities of the dust grains in the 67P coma in dependence on their mass and

  20. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II--Deleterious effects: Dust-borne endotoxins and allergens--focus on grain dust, other agricultural dusts and wood dust.

    PubMed

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz

    2016-01-01

    Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4)-10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3)-10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained

  1. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II--Deleterious effects: Dust-borne endotoxins and allergens--focus on grain dust, other agricultural dusts and wood dust.

    PubMed

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz

    2016-01-01

    Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4)-10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3)-10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained

  2. The Evolution of Dust in the Multiphase ISM: Grain Destruction Processes

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark

    1999-01-01

    This proposal covered year one of a long term project in which we acquired the necessary hardware and softwaxe needed to calculate grain destruction processes in the interstellar medium (ISM). The long term goal of this research is to develop a model for the dust evolution in the ISM capable of explaining observations of elemental depletions, the grain size distribution, and the emission characteristics of the ISM from the X-ray through the FIR. We purchased a SUN Ultra 10 workstation and peripheral devices including an Exabyte Tape drive, HP Laser Printer, and Seagate External Hard Disk. The PI installed the hardware and Solaris operating system on the workstation and integrated the hardware into the network. Software was also purchased to enable connections to the workstation from a PC (Hummingbird Exceed). Additional freeware required to carry out the proposed program was installed on the system including compilers (g77, gcc, g++), editors (emacs), a markup language (LaTeX), and display programs (WIP, XV, SAOtng). We have also successfully modified the required plot files to work with our system which display the results of grain processing.

  3. The Spatial Distribution of Large and Small Dust Grains in Transitional Disks

    NASA Astrophysics Data System (ADS)

    Gutierrez, Elizabeth; Perez, Laura M.

    2016-01-01

    The transitional disk stage occurs when a circumstellar disk of gas and dust goes from being optically thick to optically thin within a few Myr, leading to the existence of a prominent cavity between the forming star and the surrounding disk of material. Understanding the processes that open gaps and cavities in transitional disks, such as grain growth, photo-evaporation, or dynamical clearing, can improve our understanding of the planet formation process. With the recent commission of the Atacama Large Millimeter/Submillimeter Array (ALMA) and the upgraded Very Large Array (VLA), the sensitivity and angular resolution essential for observing transitional disks is now available to examine the structure of transitional disks and relate them to theoretical predictions. The research we present encompasses high frequency observations from ALMA Cycle 0 to observe 0.5 mm grains at 690 GHz, and VLA data using Q band frequencies (40.06GHz-47.6GHz) to observe 7 mm grains. We observed four transitional disk targets: SR 21, LkCa 15, RXJ1615.3-3255, and SAO 206462. We present multi-configuration continuum images of each object which were used to find their respective brightness temperature profiles and azimuthal averages to identify any asymmetries within the spatial distribution of the transitional disks and compare our results with existing theoretical models.

  4. Identification of a Compound Spinel and Silicate Presolar Grain in a Chondritic Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2014-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance.

  5. Modified Korteweg-de Vries soliton reflection in a magnetized plasma with dust grains and trapped electrons

    SciTech Connect

    Kumar, Ravinder; Malik, Hitendra K.

    2013-03-15

    This article aims at studying the reflection of solitons in an inhomogeneous magnetized warm plasma having dust grains with positive or negative charge and trapped electrons (low temperature nonisothermal electrons). In order to study the soliton reflection, a coupled modified Korteweg-de Vries equation is derived and solved along with the use of incident soliton solution. The expressions for the reflected soliton amplitude, width, and reflection coefficient are obtained, and examined under different parameter regimes. The combined effect of the dust grain density with their charge polarity and trapping of the electrons is largely studied on the soliton reflection characteristics under the influence of magnetic field.

  6. Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.

    2014-06-01

    A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.

  7. EXPERIMENTAL EVIDENCE FOR WATER FORMATION VIA OZONE HYDROGENATION ON DUST GRAINS AT 10 K

    SciTech Connect

    Mokrane, H.; Chaabouni, H.; Accolla, M.; Congiu, E.; Dulieu, F.; Chehrouri, M.; Lemaire, J. L.

    2009-11-10

    The formation of water molecules from the reaction between ozone (O{sub 3}) and D-atoms is studied experimentally for the first time. Ozone is deposited on non-porous amorphous solid water ice (H{sub 2}O), and D-atoms are then sent onto the sample held at 10 K. HDO molecules are detected during the desorption of the whole substrate where isotope mixing takes place, indicating that water synthesis has occurred. The efficiency of water formation via hydrogenation of ozone is of the same order of magnitude as that found for reactions involving O-atoms or O{sub 2} molecules and exhibits no apparent activation barrier. These experiments validate the assumption made by models using ozone as one of the precursors of water formation via solid-state chemistry on interstellar dust grains.

  8. Creation of fully vectorized FORTRAN code for integrating the movement of dust grains in interplanetary environments

    NASA Technical Reports Server (NTRS)

    Colquitt, Walter

    1989-01-01

    The main objective is to improve the performance of a specific FORTRAN computer code from the Planetary Sciences Division of NASA/Johnson Space Center when used on a modern vectorizing supercomputer. The code is used to calculate orbits of dust grains that separate from comets and asteroids. This code accounts for influences of the sun and 8 planets (neglecting Pluto), solar wind, and solar light pressure including Poynting-Robertson drag. Calculations allow one to study the motion of these particles as they are influenced by the Earth or one of the other planets. Some of these particles become trapped just beyond the Earth for long periods of time. These integer period resonances vary from 3 orbits of the Earth and 2 orbits of the particles to as high as 14 to 13.

  9. A multi-wavelength scattered light analysis of the dust grain population in the GG Tau circumbinary ring

    SciTech Connect

    Duchene, G; McCabe, C; Ghez, A; Macintosh, B

    2004-02-04

    We present the first 3.8 {micro}m image of the dusty ring surrounding the young binary system GG Tau, obtained with the W. M. Keck II 10m telescope's adaptive optics system. THis is the longest wavelength at which the ring has been detected in scattered light so far, allowing a multi-wavelength analysis of the scattering proiperties of the dust grains present in this protoplanetary disk in combination with previous, shorter wavelengths, HST images. We find that the scattering phase function of the dust grains in the disk is only weakly dependent on the wavelength. This is inconsistent with dust models inferred from observations of the interstellar medium or dense molecular clouds. In particular, the strongly forward-throwing scattering phase function observed at 3.8 {micro}m implies a significant increase in the population of large ({approx}> 1 {micro}m) grains, which provides direct evidence for grain growth in the ring. However, the grain size distribution required to match the 3.8 {micro}m image of the ring is incompatible with its published 1 {micro}m polarization map, implying that the dust population is not uniform throughout the ring. We also show that our 3.8 {micro}m image of the ring is incompatible with its published 1 {micro}m polarization map, implying that the dust population is not uniform throughout the ring. We also show that our 3.8 {micro}m scattered light image probes a deeper layer of the ring than previous shorter wavelength images, as demonstrated by a shift in the location of the inner edge of the disk's scattered light distribution between 1 and 3.8 {micro}m. We therefore propose a stratified structure for the ring in which the surface layers, located {approx} 50 AU above the ring midplane, contain dust grains that are very similar to those found in dense molecular clouds, while the region of the ring located {approx} 25 AU from the midplane contains significantly larger grains. This stratified structure is likely the result of vertical

  10. Distinguishing the Asian dust sources based on cathodoluminescence analysis of single quartz grain

    NASA Astrophysics Data System (ADS)

    Nagashima, K.; Nishido, H.; Kayama, M.; Tada, R.; Isozaki, Y.; Sun, Y.; Igarashi, Y.

    2009-12-01

    Numerous tracers, such as mineralogical component, strontium (87Sr/86Sr) and neodymium (eNd(0)) isotopes (Liu et al., 1994; Biscaye et al.,1997; Bory et al., 2002, 2003; Kanayama et al., 2002, 2005), rare earth element composition (e.g., Svensson et al., 2000), oxygen isotope (Mizota et al., 1992; Hou et al., 2003) and ESR intensity of quartz (Ono et al., 1998; Sun et al., 2007), have been investigated to discriminate source areas of Asian dust. However, these analyses need large volume of samples (mostly more than 10 mg) and the applications to the dust samples are limited. Then, here we developed a provenance-tracing method by using a cathodoluminescence (CL) spectral of “single” quartz grain for applying it to small volume of aeolian dust samples, such as aeolian dust in the ice cores and marine sediments with the location of long distance from the Asian deserts. CL is the emission from a material which is excited by electron beam. Since CL spectroscopy and microscopy provide information on the existence and distribution of defects and trace elements in minerals, CL analyses have potential to characterize dust-source areas. CL spectra of quartz have been demonstrated to show different patterns between the quartz from hydrothermal, plutonic, volcanic and metamorphic origins (e.g., Zinkernagel, 1978; Götze et al., 2001), suggesting the spectra reflect the condition of the quartz formation and the local environment. Then, here we conducted CL spectral analysis of silt size quartz in the surface samples from the major Asian deserts, such as the Taklimakan Desert and Gobi Desert in southern Mongolia (hereafter Mongolian Gobi). CL spectra were measured in the areas of approximately 4 micron square for each quartz grain by a Scanning Electron Microscope-Cathodoluminescence (SEM-CL) at the Okayama University of Science, a SEM (Jeol: JSM-5410) attached with a grating monochromator (Oxford Instruments: Mono CL2), where EDS system can be used in combination with SEM

  11. Dust Diffusion and Settling in the Presence of Collisions: Trapping (sub)micron Grains in the Midplane

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.

    2016-05-01

    In protoplanetary disks, the distribution and abundance of small (sub)micron grains are important for a range of physical and chemical processes. For example, they dominate the optical depth at short wavelengths and their surfaces are the sites of many important chemical reactions, such as the formation of water. Based on their aerodynamical properties (i.e., their strong dynamical coupling with the surrounding gas) it is often assumed that these small grains are well-mixed with the gas. Our goal is to study the vertical (re)distribution of grains taking into account settling, turbulent diffusion, and collisions with other dust grains. Assuming a fragmentation-limited background dust population, we developed a Monte Carlo approach that follows single monomers as they move through a vertical column of gas and become incorporated in different aggregates as they undergo sticking and fragmenting collisions. We find that (sub)micron grains are not necessarily well-mixed vertically, but can become trapped in a thin layer with a scale height that is significantly smaller than that of the gas. This collisional trapping occurs when the timescale for diffusion is comparable to or longer than the collision timescale in the midplane and its effect is strongest when the most massive particles in the size distribution show significant settling. Based on simulations and analytical considerations, we conclude that for typical dust-to-gas ratios and turbulence levels, the collisional trapping of small grains should be a relatively common phenomenon. The absence of trapping could then indicate a low dust-to-gas ratio, possibly because a large portion of the dust mass has been removed through radial drift or is locked up in planetesimals.

  12. The Impact of Grain Alignment of the Electron Transporting Layer on the Performance of Inverted Bulk Heterojunction Solar Cells.

    PubMed

    Murali, Banavoth; Labban, Abdulrahman El; Eid, Jessica; Alarousu, Erkki; Shi, Dong; Zhang, Qiang; Zhang, Xixiang; Bakr, Osman M; Mohammed, Omar F

    2015-10-21

    This report presents a new strategy for improving solar cell power conversion efficiencies (PCEs) through grain alignment and morphology control of the ZnO electron transport layer (ETL) prepared by radio frequency (RF) magnetron sputtering. The systematic control over the ETL's grain alignment and thickness is shown, by varying the deposition pressure and operating substrate temperature during the deposition. Notably, a high PCE of 6.9%, short circuit current density (J(sc)) of 12.8 mA cm(-2), open circuit voltage (V(oc)) of 910 mV, and fill factor of 59% are demonstrated using the poly(benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione):[6,6]-phenyl-C(71) -butyric acid methyl ester polymer blend with ETLs prepared at room temperature exhibiting oriented and aligned rod-like ZnO grains. Increasing the deposition temperature during the ZnO sputtering induces morphological cleavage of the rod-like ZnO grains and therefore reduced conductivity from 7.2 × 10(-13) to ≈1.7 × 10(-14) S m(-1) and PCE from 6.9% to 4.28%. An investigation of the charge carrier dynamics by femtosecond (fs) transient absorption spectroscopy with broadband capability reveals clear evidence of faster carrier recombination for a ZnO layer deposited at higher temperature, which is consistent with the conductivity and device performance.

  13. Effects of particle optical properties on grain size measurements of aeolian dust deposits

    NASA Astrophysics Data System (ADS)

    Varga, György; Újvári, Gábor; Kovács, János; Szalai, Zoltán

    2015-04-01

    Particle size data are holding crucial information on the sedimentary environment at the time the aeolian dust deposits were accumulated. Various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed from proper grain size distribution data. Laser diffraction methods provide much more accurate and reliable information on the major granulometric properties of wind-blown sediments compared to the sieve and pipette methods. The Fraunhofer and Mie scattering theories are generally used for laser diffraction grain size measurements. () The two different approaches need different 'background' information on the medium measured. During measurements following the Fraunhofer theory, the basic assumption is that parcticles are relatively large (over 25-30 µm) and opaque. The Mie theory could offer more accurate data on smaller fractions (clay and fine silt), assuming that a proper, a'priori knowledge on refraction and absorption indices exists, which is rarely the case for polymineral samples. This study is aimed at determining the effects of different optical parameters on grain size distributions (e.g. clay-content, median, mode). Multiple samples collected from Hungarian red clay and loess-paleosol records have been analysed using a Malvern Mastersizer 3000 laser diffraction particle sizer (with a Hydro LV unit). Additional grain size measurements have been made on a Fritsch Analysette 22 Microtec and a Horiba Partica La-950 v2 instrument to investigate possible effects of the used laser sources with different wavelengths. XRF and XRD measurements have also been undertaken to gain insight into the geochemical/mineralogical compositions of the samples studied. Major findings include that measurements using the Mie theory provide more accurate data on the grain size distribution of aeolian dust deposits, when we use a proper optical setting. Significant

  14. Separation of mycotoxin-containing sources in grain dust and determination of their mycotoxin potential.

    PubMed Central

    Palmgren, M S; Lee, L S

    1986-01-01

    Two distinct reservoirs of mycotoxins exist in fungal-infected cereal grains--the fungal spores and the spore-free mycelium-substrate matrix. Many fungal spores are of respirable size and the mycelium-substrate matrix can be pulverized to form particles of respirable size during routine handling of grain. In order to determine the contribution of each source to the level of mycotoxin contamination of dust, we developed techniques to harvest and separate mycelium-substrate matrices from spores of fungi. Conventional quantitative chromatographic analyses of separated materials indicated that aflatoxin from Aspergillus parasiticus, norsolorinic acid from a mutant of A. parasiticus, and secalonic acid D from Penicillium oxalicum were concentrated in the mycelium-substrate matrices and not in the spores. In contrast, spores of Aspergillus niger and Aspergillus fumigatus contained significant concentrations of aurasperone C and fumigaclavine C, respectively; only negligible amounts of the toxins were detected in the mycelium-substrate matrices of these two fungi. PMID:3709472

  15. Separation of mycotoxin-containing sources in grain dust and determination of their mycotoxin potential.

    PubMed

    Palmgren, M S; Lee, L S

    1986-04-01

    Two distinct reservoirs of mycotoxins exist in fungal-infected cereal grains--the fungal spores and the spore-free mycelium-substrate matrix. Many fungal spores are of respirable size and the mycelium-substrate matrix can be pulverized to form particles of respirable size during routine handling of grain. In order to determine the contribution of each source to the level of mycotoxin contamination of dust, we developed techniques to harvest and separate mycelium-substrate matrices from spores of fungi. Conventional quantitative chromatographic analyses of separated materials indicated that aflatoxin from Aspergillus parasiticus, norsolorinic acid from a mutant of A. parasiticus, and secalonic acid D from Penicillium oxalicum were concentrated in the mycelium-substrate matrices and not in the spores. In contrast, spores of Aspergillus niger and Aspergillus fumigatus contained significant concentrations of aurasperone C and fumigaclavine C, respectively; only negligible amounts of the toxins were detected in the mycelium-substrate matrices of these two fungi. PMID:3709472

  16. Charging of Interstellar Dust Grains in the Out-of-Equilibrium Plasma of the Inner and Outer Heliosheath Regions

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Dayeh, M. A.; Desai, M. I.; Funsten, H. O.; Heerikhuisen, J.; Janzen, P. H.; McComas, D. J.; Livadiotis, G.; Ogasawara, K.; Pogorelov, N. V.; Reisenfeld, D. B.; Schwadron, N.; Slavin, J. D.; Zank, G. P.

    2014-12-01

    Many of the energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) are created in the inner and outer heliosheath regions, where the plasma is in a non-equilibrium state with properties that can be extracted from the IBEX ENA data. The energy distribution of the plasma is a composite of a thermal core, and a high energy non-thermal tail that can be described by a power-law with the index kappa. Interstellar dust grains with sizes 0.03-2.0 microns are contained in the flow of interstellar material through the heliosphere. These grains have reached the inner heliosphere only after traversing the magnetized plasmas of the inner and outer heliosheath regions, where impacts with ions and electrons control the grain charge and therefore the grain gyroradius and trajectory. Many studies of grain charging in the heliosheath regions exist, including 3D models that predict spatial distributions of grains of different masses from the grain charge, and models that set limits on the magnetic field strength in heliosheath regions based on observed grain mass. These studies were performed before IBEX measured the energy distribution of the heliosheath plasmas. In the heliosheath, grains are charged by the emission of secondary electrons after collisions with plasma particles, including electrons and ions, in addition to the photoejectron of electrons and other minor processes. We will present new models of dust grain charging in the non-equilibrium inner and outer heliosheath plasmas using the plasma energy distribution obtained from IBEX ENA data and theoretical models of the non-equilibrium electrons. Implications of this study for grain trajectories and the interstellar magnetic field strength will be discussed.

  17. The 4.6 micron feature of -SiH groups in silicate dust grains and infrared cometary spectra

    NASA Astrophysics Data System (ADS)

    Blanco, A.; Fonti, S.; Orofino, V.

    1999-06-01

    Amorphous silicate dust grains have been produced in the laboratory by means of laser ablation of solid targets in different ambient atmospheres. In this work we show that, if the condensation occurs in the presence of hydrogen, the spectra of silicate grains, together with the characteristic 10 and 20 μm features, exhibit an absorption band around 4.6 μm. Such features, absent in the spectra of the same silicate grains produced in an oxygen atmosphere, may be attributed to a fundamental stretching vibration of -SiH functional groups bound into the grains or on their surface. Based on the cosmic abundance of the elements, silicates are expected to condense in the atmospheres of oxygen-rich stars where hydrogen is also abundant. This means that -SiH functional groups may be present also in the circumstellar and interstellar silicate dust grains. An absorption feature at 4.6 μm has already been observed in the absorbing dust of several protostellar embedded sources. The observation of a similar feature in comets can give important information on the origin and evolution of cometary material. Ltd.

  18. Stochastic Parameterization for Light Absorption by Internally Mixed BC/dust in Snow Grains for Application to Climate Models

    SciTech Connect

    Liou, K. N.; Takano, Y.; He, Cenlin; Yang, P.; Leung, Lai-Yung R.; Gu, Y.; Lee, W- L.

    2014-06-27

    A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.

  19. Kinetic instability of the dust acoustic mode in inhomogeneous, partially magnetized plasma with both positively and negatively charged grains

    SciTech Connect

    Vranjes, J.; Poedts, S.

    2010-08-15

    A purely kinetic instability of the dust acoustic mode in inhomogeneous plasmas is discussed. In the presence of a magnetic field, electrons and ions may be magnetized while at the same time dust grains may remain unmagnetized. Although the dynamics of the light species is strongly affected by the magnetic field, the dust acoustic mode may still propagate in practically any direction. The inhomogeneity implies a source of free energy for an instability that develops through the diamagnetic drift effects of the magnetized species. It is shown that this may be a powerful mechanism for the excitation of dust acoustic waves. The analysis presented in the work is also directly applicable to plasmas containing both positive and negative ions and electrons, provided that at least one of the two ion species is unmagnetized.

  20. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Misawa, Ruka; Bernard, Jean-Philippe

    Measuring precisely the faint polarization of the Far-Infrared and sub-millimetre sky is one of the next observational challenges of modern astronomy and cosmology. In particular, detection of the B-mode polarization from the Cosmic Microwave Background (CMB) may reveal the inflationary periods in the very early universe. Such measurements will require very high sensitivity and very low instrumental systematic effects. As for measurements of the CMB intensity, sensitive measurements of the CMB polarization will be made difficult by the presence of foreground emission from our own Milky Way, which is orders of magnitude stronger than the faint polarized cosmological signal. Such foreground emission will have to be understood very accurately and removed from cosmological measurements. This polarized emission is also interesting in itself, since it brings information relevant to the process of star formation, about the orientation of the magnetic field in our Galaxy through the alignment of dust grains. I will first summarize our current knowledge in this field, on the basis of extinction and emission measurements from the ground and airborne experiments and in the context of the recent measurements with the Planck satellite. I will then describe the concept and science goals of the PILOT balloon-borne experiment project (http://pilot.irap.omp.eu). This project is funded by the French space agency (CNES: “Centre National des Etudes Spatiales”) and currently under final assembly and tests. The experiment is dedicated to measuring precisely the linear polarization of the faint interstellar diffuse dust emission in the Far-Infrared in our Galaxy and nearby galaxies. It is composed of a 0.83 m diameter telescope and a Helium 4 deware accommodating the rest of the optics and 2 focal plane arrays with a total of 2048 individual bolometers cooled to 300 mK, developed for the PACS instruments on board the Hershel satellite. It will be operating in two broad photometric

  1. Benchmarking the calculation of stochastic heating and emissivity of dust grains in the context of radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Misselt, Karl; Bianchi, Simone; Lunttila, Tuomas; Pinte, Christophe; Natale, Giovanni; Juvela, Mika; Fischera, Joerg; Fitzgerald, Michael P.; Gordon, Karl; Baes, Maarten; Steinacker, Jürgen

    2015-08-01

    Context. Thermal emission by stochastically heated dust grains (SHGs) plays an important role in the radiative transfer (RT) problem for a dusty medium. It is therefore essential to verify that RT codes properly calculate the dust emission before studying the effects of spatial distribution and other model parameters on the simulated observables. Aims: We define an appropriate problem for benchmarking dust emissivity calculations in the context of RT simulations, specifically including the emission from SHGs. Our aim is to provide a self-contained guide for implementors of such functionality and to offer insight into the effects of the various approximations and heuristics implemented by the participating codes to accelerate the calculations. Methods: The benchmark problem definition includes the optical and calorimetric material properties and the grain size distributions for a typical astronomical dust mixture with silicate, graphite, and PAH components. It also includes a series of analytically defined radiation fields to which the dust population is to be exposed and instructions for the desired output. We processed this problem using six RT codes participating in this benchmark effort and compared the results to a reference solution computed with the publicly available dust emission code DustEM. Results: The participating codes implement different heuristics to keep the calculation time at an acceptable level. We study the effects of these mechanisms on the calculated solutions and report on the level of (dis)agreement between the participating codes. For all but the most extreme input fields, we find agreement within 10% across the important wavelength range 3 μm ≤ λ ≤ 1000 μm. Conclusions: We conclude that the relevant modules in RT codes can and do produce fairly consistent results for the emissivity spectra of SHGs. This work can serve as a reference for implementors of dust RT codes, and it will pave the way for a more extensive benchmark effort

  2. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Cody, G.; Ferrior, T.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grun, E.; Hoppe, P.; Hudson, B.; Kearsley, A.; Lai, B.

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  3. Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter

    NASA Astrophysics Data System (ADS)

    Flynn, George

    Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter Chondritic, porous interplanetary dust particles (CP IDPs), the most primitive samples of extraterrestrial material available for laboratory analysis [1], are unequilibrated aggregates of mostly submicron, anhydrous grains of a diverse mineralogy. They contain organic matter not produced by parent body aqueous processing [2], some carrying H and N isotopic anomalies consistent with molecular cloud or outer Solar System material [3]. Scanning Transmission X-Ray Microscope (STXM) imaging at the C K-edge shows the individual grains in 10 micron aggregate CP IDPs are coated by a layer of carbonaceous material 100 nm thick. This structure implies a three-step formation sequence. First, individual grains condensed from the cooling nebular gas. Then complex, refractory organic molecules covered the surfaces of the grains either by deposition, formation in-situ, or a combination of both processes. Finally, the grains collided and stuck together forming the first dust-size material in the Solar System. Ultramicrotome sections, 70 to 100 nm thick were cut from several CP IDPs, embedded in elemental S to avoid exposure to C-based embedding media. X-ray Absorption Near Edge Structure (XANES) spectra were derived from image stacks obtained using a STXM. "Cluster analysis" was used to compare the C-XANES spectra from each of the pixels in an image stack and identify pixels exhibiting similar spectra. When applied to a CP IDP, cluster analysis identifies most carbonaceous grain coatings in a particle as having similar C-XANES spectra. Two processes are commonly suggested in the literature for production of organic grain coatings. The similarity in thickness and C-XANES spectra of the coatings on different minerals in the same IDP indicates the first, mineral specific catalysis, was not the process that produced these organic rims. Our results

  4. A NEW DETERMINATION OF THE BINDING ENERGY OF ATOMIC OXYGEN ON DUST GRAIN SURFACES: EXPERIMENTAL RESULTS AND SIMULATIONS

    SciTech Connect

    He, Jiao; Shi, Jianming; Hopkins, Tyler; Vidali, Gianfranco; Kaufman, Michael J.

    2015-03-10

    The energy to desorb atomic oxygen from an interstellar dust grain surface, E{sub des}, is an important controlling parameter in gas-grain models; its value impacts the temperature range over which oxygen resides on a dust grain. However, no prior measurement has been done of the desorption energy. We report the first direct measurement of E{sub des} for atomic oxygen from dust grain analogs. The values of E{sub des} are 1660 ± 60 and 1850 ± 90 K for porous amorphous water ice and for a bare amorphous silicate film, respectively, or about twice the value previously adopted in simulations of the chemical evolution of a cloud. We use the new values to study oxygen chemistry as a function of depth in a molecular cloud. For n = 10{sup 4} cm{sup −3} and G{sub 0} = 10{sup 2} (G{sub 0} = 1 is the average local interstellar radiation field), the main result of the adoption of the higher oxygen binding energy is that H{sub 2}O can form on grains at lower visual extinction A{sub V}, closer to the cloud surface. A higher binding energy of O results in more formation of OH and H{sub 2}O on grains, which are subsequently desorbed by far-ultraviolet radiation, with consequences for gas-phase chemistry. For higher values of n and G{sub 0}, the higher binding energy can lead to a large increase in the column of H{sub 2}O but a decrease in the column of O{sub 2}.

  5. Three-dimensional dust-ion-acoustic rogue waves in a magnetized dusty pair-ion plasma with nonthermal nonextensive electrons and opposite polarity dust grains

    SciTech Connect

    Guo, Shimin Mei, Liquan

    2014-08-15

    Dust-ion-acoustic (DIA) rogue waves are investigated in a three-dimensional magnetized plasma containing nonthermal electrons featuring Tsallis distribution, both positive and negative ions, and immobile dust grains having both positive and negative charges. Via the reductive perturbation method, a (3 + 1)-dimensional nonlinear Schrödinger (NLS) equation is derived to govern the dynamics of the DIA wave packets. The modulation instability of DIA waves described by the (3 + 1)-dimensional NLS equation is investigated. By means of the similarity transformation and symbolic computation, both the first- and second-order rogue wave solutions of the (3 + 1)-dimensional NLS equation are constructed in terms of rational functions. Moreover, the dynamics properties and the effects of plasma parameters on the nonlinear structures of rogue waves are discussed in detail. The results could be useful for understanding the physical mechanism of rogue waves in laboratory experiments where pair-ion plasmas with electrons and dust grains can be found.

  6. Stable motions of charged dust grains subject to solar wind, Poynting-Robertson drag, and the mean interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-10-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semi-major axis on secular time scales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semi-major axis.

  7. NanoSIMS STUDIES OF SMALL PRESOLAR SiC GRAINS: NEW INSIGHTS INTO SUPERNOVA NUCLEOSYNTHESIS, CHEMISTRY, AND DUST FORMATION

    SciTech Connect

    Hoppe, Peter; Leitner, Jan; Groener, Elmar; Marhas, Kuljeet K.; Meyer, Bradley S.; Amari, Sachiko

    2010-08-20

    We have studied more than 2000 presolar silicon carbide (SiC) grains from the Murchison CM2 chondrite in the size range 0.2-0.5 {mu}m for C- and Si-isotopic compositions. In a subset of these grains, we also measured N-, Mg-Al-, S-, and Ca-Ti-isotopic compositions as well as trace element concentrations. The overall picture emerging from the isotope data is quite comparable with that of larger grains, except for the abundances of grains from Type II supernovae (SNeII) and low-metallicity asymptotic giant branch (AGB) stars. Especially, the latter are much more abundant among submicrometer-sized grains than among micrometer-sized grains. This implies that SiC grains from lower-than-solar-metallicity AGB stars are on average smaller than those from solar metallicity AGB stars which provided the majority of presolar SiC grains. We identified five grains with large enrichments in {sup 29}Si (up to 3.5x solar) and {sup 30}Si (up to 3.9x solar in three of these grains). These grains are most likely from SNeII. The isotopically light S ({sup 32}S/{sup 34}S of 2x solar) together with the heavy Si in one of these grains suggests that molecule formation precedes macroscopic mixing and dust formation in SNII ejecta. This adds to the complexity of SN mixing calculations and should be considered in future studies. In total, about 2% of the presolar SiC grains in the size range 0.2-0.5 {mu}m appear to come from SNeII. This is about a factor of 2 higher than for micrometer-sized grains and suggests that SNeII, on average, produce smaller SiC grains than solar metallicity AGB stars. The high {sup 29}Si/{sup 30}Si ratio in one of the SN grains suggests that current SN models underestimate the {sup 29}Si production in the C- and Ne-burning regions by about a factor of 2. It is shown that with this adjustment the solar {sup 29}Si/{sup 28}Si ratio can be well reproduced in Galactic chemical evolution models and that a merger of our Galaxy with a low-metallicity satellite some 1.5 Gyr

  8. Study of the Effects of the Electric Field on Charging Measurements on Individual Micron-size Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.

  9. Variable extinction in HD 45677 and the evolution of dust grains in pre-main-sequence disks

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Halbedel, Elaine M.; Lawrence, Geoffrey F.; Smith, J. Allyn; Yanow, Ken

    1994-01-01

    Changes in the UV extinction and IR emission were sought in the Herbig Ae/Be star candidate HD 45677 (= FS CMa) by comparing UV, optical, and IR observations made approximately 10 yr apart. HD 45677 varied significantly, becoming more than 50% brighter in the UV and optical than it was a decade ago. A comparison of the observations between epochs indicates that if the variations are due to changes in dust obscuration, the dust acts as a gray absorber into the near-IR and must be depleted in grains smaller than 1 micron. This is similar to the results obtained on the circumstellar disks of stars like Vega and Beta Pic, and suggests that radiation pressure may be responsible for the small-grain depletion. In addition, the total IR flux seems to have declined, indicating a decrease in the total mass of the dust envelope that contributes to the IR emission in this part of the spectrum. Due to the anomalous nature of the extinction, the use of normal extinction curves to deredden the spectral energy distributions of stars with circumstellar dust may lead to significant errors and should be used with great caution.

  10. On the dissipation of the rotation energy of dust grains in interstellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2016-04-01

    A new mechanism is described, analysed and visualized, for the dissipation of suprathermal rotation energy of molecules in magnetic fields, a necessary condition for their alignment. It relies upon the Lorentz force perturbing the motion of every atom of the structure, as each is known to carry its own net electric charge because of spatial fluctuations in electron density. If the molecule is large enough that the frequency of its lowest frequency phonon lies near or below the rotation frequency, then the rotation couples with the molecular normal modes and energy flows from the former to the latter. The rate of this exchange is very fast, and the vibrational energy is radiated away in the IR at a still faster rate, which completes the removal of rotation energy. The energy decay rate scales like the field intensity, the initial angular velocity, the number of atoms in the grain and the inverse of the moment of inertia. It does not depend on the susceptibility. Here, the focus is on carbon-rich molecules which are diamagnetic. The same process must occur if the molecule is paramagnetic or bathes in an electric field instead. A semi-empirical method of chemical modelling was used extensively to illustrate and quantify these concepts as applied to a hydrocarbon molecule. The motion of a rotating molecule in a field was monitored in time so as to reveal the energy transfer and visualize the evolution of its orientation towards the stable configuration.

  11. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    PubMed

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem. PMID:19947210

  12. Charged Dust Grain Dynamics Subject to Solar Wind, Poynting–Robertson Drag, and the Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-09-01

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  13. Charged Dust Grain Dynamics Subject to Solar Wind, Poynting-Robertson Drag, and the Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-09-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  14. Time-fractional Schamel-KdV equation for dust-ion-acoustic waves in pair-ion plasma with trapped electrons and opposite polarity dust grains

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; He, Yaling; Li, Yibao

    2016-03-01

    Nonlinear propagation of dust-ion-acoustic (DIA) waves is investigated in a one-dimensional, unmagnetized plasma containing positive ions, negative ions, trapped electrons featuring vortex-like distribution, and immobile dust grains having both positive and negative charges. Via reductive perturbation method, Agrawal's method, and Euler-Lagrange equation, the time-fractional Schamel-KdV equation under the sense of Riesz fractional derivative is derived to describe nonlinear behavior of DIA waves. The approximate solution of the time-fractional Schamel-KdV equation is constructed in terms of Jacobi elliptic functions by variational iteration method. The effect of the plasma parameters on the DIA solitary waves is also discussed in detail.

  15. Optical/near-infrared polarization survey of Sh 2-29: Magnetic fields, dense cloud fragmentations, and anomalous dust grain sizes

    SciTech Connect

    Santos, Fábio P.; Franco, Gabriel A. P.; Reis, Wilson; Roman-Lopes, Alexandre; Román-Zúñiga, Carlos G. E-mail: franco@fisica.ufmg.br E-mail: roman@dfuls.cl

    2014-03-01

    Sh 2-29 is a conspicuous star-forming region marked by the presence of massive embedded stars as well as several notable interstellar structures. In this research, our goals were to determine the role of magnetic fields and to study the size distribution of interstellar dust particles within this turbulent environment. We have used a set of optical and near-infrared polarimetric data obtained at OPD/LNA (Brazil) and CTIO (Chile), correlated with extinction maps, Two Micron All Sky Survey data, and images from the Digitized Sky Survey and Spitzer. The region's most striking feature is a swept out interstellar cavity whose polarimetric maps indicate that magnetic field lines were dragged outward, piling up along its borders. This led to a higher magnetic strength value (≈400 μG) and an abrupt increase in polarization degree, probably due to an enhancement in alignment efficiency. Furthermore, dense cloud fragmentations with peak A{sub V} between 20 and 37 mag were probably triggered by its expansion. The presence of 24 μm point-like sources indicates possible newborn stars inside this dense environment. A statistical analysis of the angular dispersion function revealed areas where field lines are aligned in a well-ordered pattern, seemingly due to compression effects from the H II region expansion. Finally, Serkowski function fits were used to study the ratio of the total-to-selective extinction, revealing a dual population of anomalous grain particle sizes. This trend suggests that both effects of coagulation and fragmentation of interstellar grains are present in the region.

  16. Relevance of Respiratory Symptoms and Signs to Ventilatory Capacity Changes after Exposure to Grain Dust and Phosphate Rock Dust

    PubMed Central

    Gandevia, Bryan; Ritchie, Blair

    1966-01-01

    Ventilatory capacity was measured before and after exposure to high concentrations of wheat dust in 24 men, 18 of whom were similarly studied while working with calcium phosphate rock. Changes in ventilatory capacity were examined in relation to respiratory symptoms as commonly elicited in occupational surveys, and to the presence or absence of a productive cough on request and under observation. A significant decrease in the forced expiratory volume at one second was observed within half an hour of beginning work in the wheat dust, and this decrease was maintained throughout the work shift. A smaller significant decrease was found on exposure to phosphate rock over several hours, no significant change occurring within the first half-hour. Greater or more consistent decreases were recorded in those men who gave a history of persistent cough and sputum, and more particularly in those who had a productive cough on request, than in those without these features. A history of symptoms on exposure failed to define a group showing any more severe ventilatory reaction on exposure to wheat dust than the average. Some of the factors influencing the history of symptoms in occupational populations are reviewed, and the advantage of an objective sign, as provided by a deliberate cough, is indicated in defining an `abnormal' group within such a population. PMID:5946127

  17. Re-evaluation of the chemistry of dust grains in the coma of Comet Halley

    NASA Astrophysics Data System (ADS)

    Mukhin, L.; Dolnikov, G.; Evlanov, E.; Fomenkova, M.; Prilutsky, O.; Sagdeev, R.

    1991-04-01

    The chemical composition of individual grains in the coma of Comet Halley are evaluated here as a function of their mass based on data from the PUMA 1 and 2 mass spectrometers on the Vega mission. It is found that the compositions of heavy and light grains are very different, with light grains being Mg-rich, whereas the mean Mg(+)/SI(+) ratio in heavy grains is similar to CI chrondritic. The marked difference in composition between light and heavy grains indicates that the origin of the two grain populations might be different.

  18. Why are carbonaceous grains unaligned in the ISM? - HAWC+ polarimetry of IRC+10216

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.

    2015-10-01

    Polarization due to aligned dust grains is a well-known tool for probing interstellar magnetic fields. The detailed physics of the grain alignment mechanism has, however, been poorly understood and it's only in the last decade that the promise of a quantitative, observationally supported, theory has emerged. A well-tested alignment theory would allow dust polarimetry to more securely probe the magnetic fields, but also to address issues of grain size distributions, mineralogy, and environmental parameters. Radiative Alignment Torque (RAT) theory predicts that asymmetric dust grain are spun up and, if paramagnetic, aligned with the magnetic field, through interaction with the radiation field. The theory provides a number of quantitative predictions, many of which are supported by observations. One - as of yet untested - prediction would resolve the conundrum of why carbonaceous dust does not contribute to ISM polarization. Under RAT alignment carbonaceous grains are spun-up by the radiation but, because such dust is diamagnetic, does not align with the magnetic field. The theory, however, also predicts that for an intense, highly anisotropic radiation field, the grains will align with the radiation. We will test this prediction by performing HAWC+ polarimetry of the carbon rich circumstellar envelope of IRC+10216.

  19. Isotopic and elemental compositions of stardust and protosolar dust grains in primitive meteorites

    NASA Astrophysics Data System (ADS)

    Bose, Maitrayee

    This dissertation presents the results and implications of the isotopic and elemental analyses of presolar silicate grains from the primitive chondrites, Acfer 094, SAH 97096, and ALHA77307. Oxygen-anomalous, C-anomalous, and N-anomalous grains were identified by O, C, and N isotopic imaging, respectively, using the NanoSIMS 50. Subsequently, the elemental compositions of the grains carrying the anomalous isotopic signatures were acquired in the PHI 700 Auger Nanoprobe. Some silicate grains with unique O isotopic compositions were measured for Si and Fe isotopes. The isotopic analyses indicate that a majority of the silicate and oxide grains are 17 O-rich with solar to sub-solar 18 O/ 16 O ratios and come from less than 2.2 M⊙ Red Giant or Asymptotic Giant Branch stars. The second most abundant fraction of grains show large 18 O excesses and come from core collapse supernovae. The next most abundant fraction of grains comes from high metallicity AGB stars of approximately solar mass. A minor fraction of the grains exhibit large excesses in 16 O and formed in core collapse supernova ejecta. Grains with extreme 17 O excesses are the latest addition to the presolar grain inventory. These grains may come from binary star systems where one star goes nova. Numerous presolar SiC and N-anomalous carbonaceous grains were identified in the matrix of ALHA77307. The SiC grains are predominantly mainstream grains and may have condensed in 1-3 M⊙ AGB stars. The carbonaceous grains may have formed by ionmolecule reactions in the protosolar nebula or interstellar medium. A few carbonaceous grains exhibit 13C-rich compositions; grains with such compositions are rare, which implies that either the fractionation effects that produce C anomalies in opposite directions cancel them out or secondary processing destroyed grains with C anomalies. The elemental compositions of the silicate grains are predominantly nonstoichiometric (61%), with some grains exhibiting olivine- or pyroxene

  20. Exploring the Role of Sub-micron-sized Dust Grains in the Atmospheres of Red L0–L6 Dwarfs

    NASA Astrophysics Data System (ADS)

    Hiranaka, Kay; Cruz, Kelle L.; Douglas, Stephanie T.; Marley, Mark S.; Baldassare, Vivienne F.

    2016-10-01

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markov Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1–100 μm) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.

  1. DUST PRODUCTION FACTORIES IN THE EARLY UNIVERSE: FORMATION OF CARBON GRAINS IN RED-SUPERGIANT WINDS OF VERY MASSIVE POPULATION III STARS

    SciTech Connect

    Nozawa, Takaya; Yoon, Sung-Chul; Maeda, Keiichi; Kozasa, Takashi; Nomoto, Ken'ichi; Langer, Norbert

    2014-06-01

    We investigate the formation of dust in a stellar wind during the red-supergiant (RSG) phase of a very massive Population III star with a zero-age main sequence mass of 500 M {sub ☉}. We show that, in a carbon-rich wind with a constant velocity, carbon grains can form with a lognormal-like size distribution, and that all of the carbon available for dust formation finally condenses into dust for wide ranges of the mass-loss rate ((0.1-3) × 10{sup –3} M {sub ☉} yr{sup –1}) and wind velocity (1-100 km s{sup –1}). We also find that the acceleration of the wind, driven by newly formed dust, suppresses the grain growth but still allows more than half of the gas-phase carbon to finally be locked up in dust grains. These results indicate that, at most, 1.7 M {sub ☉} of carbon grains can form during the RSG phase of 500 M {sub ☉} Population III stars. Such a high dust yield could place very massive primordial stars as important sources of dust at the very early epoch of the universe if the initial mass function of Population III stars was top-heavy. We also briefly discuss a new formation scenario of carbon-rich ultra-metal-poor stars, considering feedback from very massive Population III stars.

  2. Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307 - Origins and evidence for diverse, primitive nebular dust components

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.

    1993-01-01

    SEM, TEM, and electron microprobe analysis were used to investigate in detail the mineralogical and chemical characteristics of dark matrix and fine-grained rims in the unequilibrated CO3 chondrite ALHA77307. Data obtained revealed that there was a remarkable diversity of distinct mineralogical components, which can be identified using their chemical and textural characteristics. The matrix and rim components in ALHA77307 formed by disequilibrium condensation process as fine-grained amorphous dust that is represented by the abundant amorphous component in the matrix. Subsequent thermal processing of this condensate material, in a variety of environments in the nebula, caused partial or complete recrystallization of the fine-grained dust.

  3. Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming

    1995-01-01

    Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.

  4. Grain physics and infrared dust emission in active galactic nucleus environments

    SciTech Connect

    Hensley, Brandon S.; Ostriker, Jeremiah P.; Ciotti, Luca

    2014-07-01

    We study the effects of a detailed dust treatment on the properties and evolution of early-type galaxies containing central black holes, as determined by active galactic nucleus (AGN) feedback. We find that during cooling flow episodes, radiation pressure on the dust in and interior to infalling shells of cold gas can greatly impact the amount of gas able to be accreted and therefore the frequency of AGN bursts. However, the overall hydrodynamic evolution of all models, including mass budget, is relatively robust to the assumptions on dust. We find that IR re-emission from hot dust can dominate the bolometric luminosity of the galaxy during the early stages of an AGN burst, reaching values in excess of 10{sup 46} erg s{sup –1}. The AGN-emitted UV is largely absorbed, but the optical depth in the IR does not exceed unity, so the radiation momentum input never exceeds L {sub BH}/c. We constrain the viability of our models by comparing the AGN duty cycle, broadband luminosities, dust mass, black hole mass, and other model predictions to current observations. These constraints force us towards models wherein the dust to metals ratios are ≅ 1% of the Galactic value, and only models with a dynamic dust to gas ratio are able to produce both quiescent galaxies consistent with observations and high obscured fractions during AGN 'on' phases. During AGN outbursts, we predict that a large fraction of the FIR luminosity can be attributed to warm dust emission (≅ 100 K) from dense dusty gas within ≤1 kpc reradiating the AGN UV emission.

  5. Analysis of the Organic Matter in Interplanetary Dust Particles: Clues to the Organic Matter in Comets, Asteroids, and Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2003-01-01

    Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.

  6. Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment

    NASA Astrophysics Data System (ADS)

    Börzsönyi, Tamás; Somfai, Ellák; Szabó, Balázs; Wegner, Sandra; Mier, Pascal; Rose, Georg; Stannarius, Ralf

    2016-09-01

    Granular material flowing through bottlenecks, like the openings of silos, tend to clog and thus inhibit further flow. We study this phenomenon in a three-dimensional hopper for spherical and shape-anisotropic particles by means of x-ray tomography. The x-ray tomograms provide information on the bulk of the granular filling, and allows us to determine the particle positions and orientations inside the silo. In addition, it allows us to calculate local packing densities in different parts of the container. We find that in the flowing zone of the silo particles show a preferred orientation and thereby a higher order. Similarly to simple shear flows, the average orientation of the particles is not parallel to the streamlines but encloses a certain angle with it. In most parts of the hopper, the angular distribution of the particles did not reach the one corresponding to stationary shear flow, thus the average orientation angle in the hopper deviates more from the streamlines than in stationary shear flows. In the flowing parts of the silo, shear induced dilation is observed, which is more pronounced for elongated grains than for nearly spherical particles. The clogged state is characterized by a dome, i.e. the geometry of the layer of grains blocking the outflow. The shape of the dome depends on the particle shape.

  7. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; Abe, L.; Akiyama, E.; Brandner, W.; Brandt, T.; Carson J.; Currie, T.; Egner, S.; Feldt, M.; Grady, Carol A.; Guyon, O.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Henning, T.; Hodapp, K.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G.; Kuzuhara, M.; Kwon, J.; Matsuo, T.; McElwain, M. W.; Mayama, S.

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  8. THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 {sup ,}

    SciTech Connect

    Hashimoto, J.; Wisniewski, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Ohashi, N.; Kudo, T.; Egner, S.; Guyon, O.; Kusakabe, N.; Akiyama, E.; Abe, L.; Brandner, W.; Carson, J.; Feldt, M.; Brandt, T.; Currie, T.; Grady, C. A.; and others

    2015-01-20

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  9. Locations of stationary/periodic solutions in mean motion resonances according to the properties of dust grains

    NASA Astrophysics Data System (ADS)

    Pástor, P.

    2016-07-01

    The equations of secular evolution for dust grains in mean motion resonances with a planet are solved for stationary points. Non-gravitational effects caused by stellar radiation (the Poynting-Robertson effect and the stellar wind) are taken into account. The solutions are stationary in the semimajor axis, eccentricity and resonant angle, but allow the pericentre to advance. The semimajor axis of stationary solutions can be slightly shifted from the exact resonant value. The periodicity of the stationary solutions in a reference frame orbiting with the planet is proved analytically. The existence of periodic solutions in mean motion resonances means that analytical theory enables infinitely long capture times for dust particles. The stationary solutions are periodic motions to which the eccentricity asymptotically approaches and around which the libration occurs. Initial conditions corresponding to the stationary solutions are successfully found by numerically integrating the equation of motion. Numerically and analytically determined shifts of the semimajor axis from the exact resonance for the stationary solutions are in excellent agreement. The stationary solutions can be plotted by the locations of pericentres in the reference frame orbiting with the planet. The pericentres are distributed in space according to the properties of the dust particles.

  10. COMET 22P/KOPFF: DUST ENVIRONMENT AND GRAIN EJECTION ANISOTROPY FROM VISIBLE AND INFRARED OBSERVATIONS

    SciTech Connect

    Moreno, Fernando; Pozuelos, Francisco; Aceituno, Francisco; Casanova, Victor; Sota, Alfredo

    2012-06-20

    We present optical observations and Monte Carlo models of the dust coma, tail, and trail structures of the comet 22P/Kopff during the 2002 and 2009 apparitions. Dust loss rates, ejection velocities, and power-law size distribution functions are derived as functions of the heliocentric distance using pre- and post-perihelion imaging observations during both apparitions. The 2009 post-perihelion images can be accurately fitted by an isotropic ejection model. On the other hand, strong dust ejection anisotropies are required to fit the near-coma regions at large heliocentric distances (both inbound at r{sub h} = 2.5 AU and outbound at r{sub h} = 2.6 AU) for the 2002 apparition. These asymmetries are compatible with a scenario where dust ejection is mostly seasonally driven, coming mainly from regions near subsolar latitudes at far heliocentric distances inbound and outbound. At intermediate to near-perihelion heliocentric distances, the outgassing would affect much more extended latitude regions, the emission becoming almost isotropic near perihelion. We derived a maximum dust production rate of 260 kg s{sup -1} at perihelion, and an averaged production rate over one orbit of 40 kg s{sup -1}. An enhanced emission rate, also accompanied by a large ejection velocity, is predicted at r{sub h} > 2.5 pre-perihelion. The model has also been extended to the thermal infrared in order to be applied to available trail observations of this comet taken with IRAS and Infrared Space Observatory spacecrafts. The modeled trail intensities are in good agreement with those observations, which is remarkable taking into account that those data are sensitive to dust ejection patterns corresponding to several orbits before the 2002 and 2009 apparitions.

  11. EVOLUTION OF SNOW LINE IN OPTICALLY THICK PROTOPLANETARY DISKS: EFFECTS OF WATER ICE OPACITY AND DUST GRAIN SIZE

    SciTech Connect

    Oka, Akinori; Nakamoto, Taishi; Ida, Shigeru E-mail: nakamoto@geo.titech.ac.jp

    2011-09-10

    Evolution of a snow line in an optically thick protoplanetary disk is investigated with numerical simulations. The ice-condensing region in the disk is obtained by calculating the temperature and the density with the 1+1D approach. The snow line migrates as the mass accretion rate ( M-dot ) in the disk decreases with time. Calculations are carried out from an early phase with high disk accretion rates ( M-dot {approx}10{sup -7} M{sub sun} yr{sup -1}) to a later phase with low disk accretion rates ( M-dot {approx}10{sup -12} M{sub sun} yr{sup -1}) using the same numerical method. It is found that the snow line moves inward for M-dot {approx}>10{sup -10} M{sub sun} yr{sup -1}, while it gradually moves outward in the later evolution phase with M-dot {approx}<10{sup -10} M{sub sun} yr{sup -1}. In addition to the silicate opacity, the ice opacity is taken into consideration. In the inward migration phase, the additional ice opacity increases the distance of the snow line from the central star by a factor of 1.3 for dust grains {approx}< 10 {mu}m in size and of 1.6 for {approx}> 100 {mu}m. It is inevitable that the snow line comes inside Earth's orbit in the course of the disk evolution if the viscosity parameter {alpha} is in the range 0.001-0.1, the dust-to-gas mass ratio is higher than a tenth of the solar abundance value, and the dust grains are smaller than 1 mm. The formation of water-devoid planetesimals in the terrestrial planet region seems to be difficult throughout the disk evolution, which imposes a new challenge to planet formation theory.

  12. Vertically aligned dust particles under the influence of crossed electric and magnetic fields in the sheath of a radio frequency discharge

    NASA Astrophysics Data System (ADS)

    Puttscher, M.; Melzer, A.

    2015-07-01

    We present experiments on two dust particles with a size of a few microns that are levitated in the sheath region of an rf discharge in the presence of an external magnetic field transverse to the sheath electric field. The two particles are vertically aligned due to the ion focusing effect. First, it is observed that the magnetic field causes a displacement of the dust particles either in the E → × B → - or in the opposite direction. Second, at a sufficiently large neutral gas pressure, the vertical alignment breaks up when the magnetic field strength is increased. The occurrence of this dissociation is described by the horizontal force balance on the two particles.

  13. Exploring the wake of a dust particle by a continuously approaching test grain

    SciTech Connect

    Jung, Hendrik Greiner, Franko; Asnaz, Oguz Han; Piel, Alexander; Carstensen, Jan

    2015-05-15

    The structure of the ion wake behind a dust particle in the plasma sheath of an rf discharge is studied in a two-particle system. The wake formation leads to attractive forces between the negatively charged dust and can cause a reduction of the charge of a particle. By evaluating the dynamic response of the particle system to small external perturbations, these quantities can be measured. Plasma inherent etching processes are used to achieve a continuous mass loss and hence an increasing levitation height of the lower particle, so that the structure of the wake of the upper particle, which is nearly unaffected by etching, can be probed. The results show a significant modification of the wake structure in the plasma sheath to one long potential tail.

  14. A study on blood eosinophil level and ventilatory pulmonary function of the workers exposed to storage grain dust.

    PubMed

    Chattopadhyay, B P; Mahata, A; Kundu, S; Alam, J; Das, S; Roychowdhury, A

    2007-01-01

    The workers engaged in storage grain handling are exposed to storage grain dust and suffer from different respiratory symptoms like, cough wheezing, chest tightness, eye and nasal irritations. It has been reported abroad and the present study results noted that the grain handlers have allergic symptoms like redness of eyes, itching, sneezing, skin rash, breathlessness and decrement of pulmonary function test values. According to their nature of job, the workers of storage grain godowns were divided into four categories i.e., load handling worker (LHW), ancillary, quality control and depot administration workers. The pulmonary function tests (PFT) and the differential count of leucocytes were carried out among the workers by standard technique. Decrement of pulmonary function test values was noted with the increment of blood eosinophil level.The PFT results were presented according to the blood eosinophil level. The decrement of mean PFT values were noticed as the blood level of eosinophil gradually increased from, up to -4%, >4-10% and above 10%. The maximum numbers of workers in different job categories are belonged to >4 -10% of eosinophil level. The percentage figure of workers in different departments were LHW 48.38%, (n=45), ancillary 38.88%, (n=7), quality control 54.54% (n=6) and depot administration workers 47.05% (n=16) are belonged to that range. Among the total workers the higher figure was found >4-10% ranges 47.43% (n=74) workers. The allergic manifestations like redness, itchiness and watering of eyes, sneezing, cough, breathless etc. are reported. These workers have blood eosinophil level and low pulmonary function test values. The respiratory impairments among the workers are restrictive, obstructive and combined restrictive and obstructive type.

  15. Intergalactic Dust

    NASA Astrophysics Data System (ADS)

    Li, A.

    2002-12-01

    We study the composition and sizes of intergalactic dust based on the expulsion of interstellar dust from the galactic disk. Interstellar grains in the Galactic disk are modelled as a mixture of amorphous silicate dust and carbonaceous dust consisting of polycyclic aromatic hydrocarbon (PAH) molecules and larger graphitic grains (Li & Draine 2001) with size distributions like those of the Milky Way dust (Weingartner & Draine 2001). We model their dynamic evolution in terms of the collective effects caused by (1) radiative acceleration, (2) gravitational attraction, (3) gas drag, (4) thermal sputtering, and (5) Lorenz force from the galactic magnetic field (Ferrara et al. 1991). Radiation pressure from the stellar disk exerts an upward force on dust grains and may ultimately expel them out of the entire galaxy. Gravitational force from the stellar, dust and gas disk as well as the dark matter halo exerts a downward force. Thermal sputtering erodes all grains to some degree but more efficiently destroys small grains. This, together with the fact that (1) very small grains (with small radiation pressure efficiencies) are not well coupled to starlight; (2) for large grains the radiative force to the gravitational force is approximately inversely proportional to grain size, acts as a size ``filter'' for dust leaking into the intergalactic space. Since the radiation pressure efficiency and the grain destruction rate are sensitive to dust composition, the relative importance of carbon dust compared to silicate dust expelled into the intergalactic space differs from that in the galactic plane. We derive the size distributions of both silicate and carbonaceous dust finally getting into the intergalactic space and obtain an intergalactic extinction curve. The predicted intergalactic infrared emission spectrum is calculated. References: Ferrara, A., Ferrini, F., Franco, J., & Barsella, B. 1991, ApJ, 381, 137 Li, A., & Draine, B.T. 2001, ApJ, 554, 778 Weingartner, J

  16. Process for determining the fuel flow into the gasifier of a partial oxidation installation for solid, fine-grain or dust-like fuels

    SciTech Connect

    Forster, M.; Geidis, U.

    1980-01-08

    The fuel flow into the gasifier of a partial oxidation installation using solid fine-grain or dust-like fuel is determined by a radiometric density measurement of the fuel immediately prior to its entry into the gasifier and while the fuel particles are suspended in a gaseous or vaporous medium.

  17. The magnetized sheath of a dusty plasma with nanosize dust grains

    SciTech Connect

    Mehdipour, H.; Foroutan, G.

    2010-08-15

    The magnetized sheath of a dusty plasma is investigated via numerical simulations of stationary multifluid equations by taking into account the electric, magnetic, gravitational, ion drag, neutral drag, and thermophoretic forces. Dependence of the sheath properties on the characteristics of the magnetic field and plasma parameters is explored. The sheath dynamics is mainly governed by the electric and ion drag forces and the effect of gravitation is negligible. The sheath demonstrates a nonmonotonic behavior against variations of the magnetic intensity and its angle of incidence. The sheath thickness and the maximum of dust density distribution decrease with increasing the ion to electron density ratio at the sheath edge, but increase with growing electron temperature and the positive temperature gradient of the neutrals. The effects of ion drag are similar to those of the gravitational force as both of them accelerate the dust to the wall. By a suitable configuration of the temperature gradient in the neutral gas, thermophoretic force can be utilized to deposit the building units of nanostructures on a substrate or remove any unwanted contaminant from its neighborhood.

  18. Nonlinear ion acoustic waves in a quantum degenerate warm plasma with dust grains

    SciTech Connect

    Dubinov, A. E.; Kolotkov, D. Yu.; Sazonkin, M. A.

    2011-01-15

    A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli's pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.

  19. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  20. Quaternary dust sources on the Chinese Loess Plateau: a view from single zircon grains, heavy minerals and quartz luminescence

    NASA Astrophysics Data System (ADS)

    Stevens, T.; Carter, A.; Vermeesch, P.; Bird, A.; Rittner, M.; Lu, H.; Andò, S.; Garzanti, E.; Nie, J.; Adamiec, G.; Zeng, L.; Zhang, H.; Xu, Z.

    2013-12-01

    The origin of loess deposits on the Chinese Loess Plateau (CLP), one of the most valuable Cenozoic climate archives on land, is the subject of considerable debate. A large number of sources have been proposed for the vast quantity of dust that forms the up to 400 m thick loess sequences that cover the c. 640,000 km2 the CLP, including deserts, alluvial fans and mountain regions. There is also debate over whether sources shift across the CLP, within loess units, between units and across the Quaternary/Pliocene boundary. Furthermore, the role of river systems in sediment supply to the CLP has not previously been substantively addressed. Geochemical analysis of bulk sediment from loess is limited by mixing of different source influences and so here we apply a variety of techniques to Quaternary sequences on the CLP. We use single-grain based techniques on zircons and heavy mineral analyses in an attempt to discriminate between potential multiple sources and to test the influence of proximal deserts and major rivers on CLP dust. In addition, we utilise information from detailed optically stimulated luminescence dating of quartz from loess to identify rapid shifts in source region on the CLP. Provenance signatures from samples from the eastern Mu Us and the Tengger deserts can be explained by local sources and recycling of the underlying Cretaceous rock. However, the western Mu Us desert as well as Quaternary loess shows different zircon U-Pb age spectra and heavy mineral distributions, indicative of strong influence from northeastern Tibet. Further, samples from the Yellow River are close to identical to these western Mu Us samples and crucially, also to Quaternary samples from the Loess Plateau. This suggests that the Tibetan-derived sediments are unlikely to have been transported from Tibet by wind, but rather may have been delivered by the Yellow River. This provides the first evidence of a possible genetic link between the Yellow River and the CLP. However, there

  1. A comparative study of the grain-size distribution of surface dust and stormwater runoff quality on typical urban roads and roofs in Beijing, China.

    PubMed

    Shen, Zhenyao; Liu, Jin; Aini, Guzhanuer; Gong, Yongwei

    2016-02-01

    The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 μm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (<38 μm) contributed most on roofs (23.46-41.71 %). Event-mean concentrations (EMCs) and FF30 values for most runoff pollutants tended to be higher on roofs than on roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 μm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 μm) are likely the main source of dissolved pollutants. PMID:26438368

  2. PROTOPLANETARY DISK MASSES IN IC348: A RAPID DECLINE IN THE POPULATION OF SMALL DUST GRAINS AFTER 1 Myr

    SciTech Connect

    Lee, Nicholas; Williams, Jonathan P.; Cieza, Lucas A.

    2011-08-01

    We present a 1.3 mm continuum survey of protoplanetary disks in the 2-3 Myr old cluster, IC348, with the Submillimeter Array. We observed 85 young stellar objects and detected 10 with 1.3 mm fluxes greater than 2 mJy. The brightest source is a young embedded protostar driving a molecular outflow. The other nine detections are dusty disks around optically visible stars. Our millimeter flux measurements translate into total disk masses ranging from 2 to 6 Jupiter masses. Each detected disk has strong mid-infrared emission in excess of the stellar photosphere and has H{alpha} equivalent widths larger than the average in the cluster and indicative of ongoing gas accretion. The disk mass distribution, however, is shifted by about a factor of 20 to lower masses, compared to that in the {approx}1 Myr old Taurus and Ophiuchus regions. These observations reveal the rapid decline in the number of small dust grains in disks with time and probably their concomitant growth beyond millimeter sizes. Moreover, if IC348 is to form planets in the same proportion as detected in the field, these faint millimeter detections may represent the best candidates in the cluster to study the progression from planetesimals to planets.

  3. Prevalence of exposure to solvents, metals, grain dust, and other hazards among farmers in the Agricultural Health Study.

    PubMed

    Coble, Joseph; Hoppin, Jane A; Engel, Lawrence; Elci, Omur Cinar; Dosemeci, Mustafa; Lynch, Charles F; Alavanja, Michael

    2002-11-01

    Exposures to multiple chemical, physical, and biological agents in agricultural work environments can result in confounding that may obscure or distort risks observed in epidemiologic studies. The Agricultural Health Study (AHS) is a large epidemiology study being conducted to investigate health risks among pesticide applicators and their families. During enrollment in the AHS, questionnaires were administered to over 52,000 licensed pesticide applicators from North Carolina and Iowa, who were mostly farmers. Questions about the frequency of various farming tasks were used to estimate the prevalence of exposure to solvents (25%), metals (68%), grain dusts (65%), diesel exhaust fumes (93%), and other hazards, including exposure to pesticides. Most of the farmers in the AHS reported performing routine maintenance tasks at least once a month, such as painting (63%), welding (64%), and repair of pesticide equipment (58%). The majority of farmers (74% in North Carolina; 59% in Iowa) reported holding nonfarm jobs, of which the most frequent were construction and transportation. The majority of the farmers enrolled in the AHS (55%) also reported that they mixed or applied pesticides on 10 or more days per year. The associations between the use of pesticides and the frequency with which the farmers in the AHS reported performing various types of specific farming activities were assessed to evaluate potential confounding. Confounding risk ratios calculated for these activities suggest that the magnitude of bias due to confounding is likely to be minimal. PMID:12415490

  4. CO2 formation on interstellar dust grains: a detailed study of the barrier of the CO + O channel

    NASA Astrophysics Data System (ADS)

    Minissale, M.; Congiu, E.; Manicò, G.; Pirronello, V.; Dulieu, F.

    2013-11-01

    Context. The formation of carbon dioxide in quiescent regions of molecular clouds has not yet been fully understood, even though CO2 is one of the most abundant species in interstellar ices. Aims: CO2 formation is studied via oxidation of CO molecules on cold surfaces under conditions close to those encountered in quiescent molecular clouds. Methods: Carbon monoxide and oxygen atoms are codeposited using two differentially pumped beam lines on two different surfaces (amorphous water ice or oxydized graphite) held at given temperatures between 10 and 60 K. The products are probed via mass spectroscopy by using the temperature-programmed desorption technique. Results: We show that the reaction CO + O can form carbon dioxide in solid phase with an efficiency that depends on the temperature of the surface. The activation barrier for the reaction, based on modelling results, is estimated to be in the range of 780-475 K/kb. Our model also allows us to distinguish the mechanisms (Eley Rideal or Langmuir-Hinshelwood) at play in different temperature regimes. Our results suggest that competition between CO2 formation via CO + O and other surface reactions of O is a key factor in the yields of CO2 obtained experimentally. Conclusions: CO2 can be formed by the CO + O reaction on cold surfaces via processes that mimic carbon dioxide formation in the interstellar medium. Astrophysically, the presence of CO2 in quiescent molecular clouds could be explained by the reaction CO + O occurring on interstellar dust grains.

  5. Spin-related magnetism of interstellar grains

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.; De, B. R.

    1978-01-01

    The magnetic dipole moments and internal magnetic fields due to the spin of electrically charged elongated nonmagnetic interstellar grains in kinetic equilibrium with their surroundings are computed for the grain-size range from 0.01 to 1.0 micron. It is shown that the induced magnetic moments and internal magnetic fields of charged spinning nonmagnetic grains of arbitrary composition and prolate spheroidal shape can be appreciable, possibly even exceeding 0.01 emu/cu cm for 0.01-micron grains. The results indicate that virtually all grains smaller than 0.1 micron in mean diameter, and all elongated grains smaller than about 1 micron in length, are immersed in local magnetic fields due to spin that are much larger than the ambient galactic field. Some implications of this effect are discussed in relation to the polarization of starlight by aligned dust grains and the primordial remanent magnetization found in primitive carbonaceous chondrites.

  6. Infrared observations of an outburst of small dust grains from the nucleus of Comet P/Halley 1986 III at perihelion

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Johnson, C. H.; Magnuson, S. D.; Ney, E. P.; Hayward, T. L.

    1995-01-01

    A close examination of the 0.7- to 23-micron infrared data base acquired by Gehrz and Ney (1992), suggests that the nucleus of Comet P/Halley 1986 III emitted a burst of small dust grains during a 3-day period commencing within hours of perihelion passage on 1986 February 9.46 UT. The outburst was characterized by significant increases in the coma's grain color temperature T(sub obs), temperature excess (superheat: S = T(sub obs)/T(sub BB)), infrared luminosity, albedo, and 10-micron silicate emission feature strength. These changes are all consistent with the sudden ejection from the nucleus of a cloud of grains with radii of approximately 0.5 micron. This outburst may have produced the dust that was responsible for some of the tail streamers photographed on 1986 February 22 UT. The peak of the dust outburst occurred about 3 days before a pronounced increase in the water production rate measured by the Pioneer Venus Orbiter Ultraviolet Spectrometer. We suggest that jets that release large quantities of small particles may be largely responsible for some of the variable infrared behavior that has been reported for P/Halley and other comets during the past two decades. Such jets may also account for some of the differences IR Type I and IR Type II comets.

  7. FORMATION OF SiC GRAINS IN PULSATION-ENHANCED DUST-DRIVEN WIND AROUND CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Yasuda, Yuki; Kozasa, Takashi

    2012-02-01

    We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich asymptotic giant branch (C-rich AGB) stars to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process: one is the local thermal equilibrium (LTE) case where the vibration temperature of SiC clusters T{sub v} is equal to the gas temperature as usual, and another is the non-LTE case in which T{sub v} is assumed to be the same as the temperature of small SiC grains. The results of the hydrodynamical calculations for a model with stellar parameters of mass M{sub *} = 1.0 M{sub Sun }, luminosity L{sub *} = 10{sup 4} L{sub Sun }, effective temperature T{sub eff} = 2600 K, C/O ratio = 1.4, and pulsation period P = 650 days show the following: in the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains, and the resulting averaged mass ratio of SiC to carbon grains of {approx}10{sup -8} is too small to reproduce the value of 0.01-0.3, which is inferred from the radiative transfer models. On the other hand, in the non-LTE case, the formation region of the SiC grains is more internal and/or almost identical to that of the carbon grains due to the so-called inverse greenhouse effect. The mass ratio of SiC to carbon grains averaged at the outer boundary ranges from 0.098 to 0.23 for the sticking probability {alpha}{sub s} = 0.1-1.0. The size distributions with the peak at {approx}0.2-0.3 {mu}m in radius cover the range of size derived from the analysis of the presolar SiC grains. Thus, the difference between the temperatures of the small cluster and gas plays a crucial role in the formation process of SiC grains around C-rich AGB stars, and this aspect should be explored for the formation process of dust grains in astrophysical environments.

  8. Effect of the shape of the electron energy distribution function on the dust grain charge and its screening in glow discharge plasmas

    SciTech Connect

    Derbenev, I. N.; Dyatko, N. A.; Filippov, A. V.

    2012-03-15

    The dust grain charge in the plasma of a glow discharge in noble gases and nitrogen is calculated in the orbit motion limited model for reduced fields in the range of E/N = 1-20 Td. The calculations were performed using the electron energy distribution functions (EEDFs) obtained by solving the Boltzmann equation numerically with allowance for elastic and inelastic electron scattering and analytically with allowance for only elastic scattering and (for nitrogen) excitation of rotational levels, as well as using a Maxwellian EEDF. In the latter case, either the characteristic electron energy or mean electron energy multiplied by two thirds was used as the electron temperature. It is shown that the calculations with the use of a Maxwellian EEDF yield larger values of the grain charge as compared to those calculated with EEDFs obtained by solving the Boltzmann equation. The range of E/N values is determined in which analytical expressions for the EEDF obtained with allowance for elastic scattering and excitation of rotational levels are applicable to calculating the grain charge. The effect of the EEDF shape on the screening of the dust grain charge in plasma is investigated. The Debye screening length in case of a Maxwellian EEDF is shown to be shorter than that obtained with EEDFs calculated by numerically solving the Boltzmann equation.

  9. Effect of the shape of the electron energy distribution function on the dust grain charge and its screening in glow discharge plasmas

    NASA Astrophysics Data System (ADS)

    Derbenev, I. N.; Dyatko, N. A.; Filippov, A. V.

    2012-03-01

    The dust grain charge in the plasma of a glow discharge in noble gases and nitrogen is calculated in the orbit motion limited model for reduced fields in the range of E/N = 1-20 Td. The calculations were performed using the electron energy distribution functions (EEDFs) obtained by solving the Boltzmann equation numerically with allowance for elastic and inelastic electron scattering and analytically with allowance for only elastic scattering and (for nitrogen) excitation of rotational levels, as well as using a Maxwellian EEDF. In the latter case, either the characteristic electron energy or mean electron energy multiplied by two thirds was used as the electron temperature. It is shown that the calculations with the use of a Maxwellian EEDF yield larger values of the grain charge as compared to those calculated with EEDFs obtained by solving the Boltzmann equation. The range of E/N values is determined in which analytical expressions for the EEDF obtained with allowance for elastic scattering and excitation of rotational levels are applicable to calculating the grain charge. The effect of the EEDF shape on the screening of the dust grain charge in plasma is investigated. The Debye screening length in case of a Maxwellian EEDF is shown to be shorter than that obtained with EEDFs calculated by numerically solving the Boltzmann equation.

  10. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  11. Will Organic Synthesis Within Icy Grains or on Dust Surfaces in the Primitive Solar Nebula Completely Erase the Effects of Photochemical Self Shielding?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    There are at least 3 separate photochemical self-shielding models with different degrees of commonality. All of these models rely on the selective absorption of (12))C(16)O dissociative photons as the radiation source penetrates through the gas allowing the production of reactive O-17 and O-18 atoms within a specific volume. Each model also assumes that the undissociated C(16)O is stable and does not participate in the chemistry of nebular dust grains. In what follows we will argue that this last, very important assumption is simply not true despite the very high energy of the CO molecular bond.

  12. VERY LARGE TELESCOPE/NACO POLARIMETRIC DIFFERENTIAL IMAGING OF HD100546-DISK STRUCTURE AND DUST GRAIN PROPERTIES BETWEEN 10 AND 140 AU

    SciTech Connect

    Quanz, Sascha P.; Schmid, Hans Martin; Meyer, Michael R.; Geissler, Kerstin; Henning, Thomas; Brandner, Wolfgang; Wolf, Sebastian

    2011-09-01

    We present polarimetric differential imaging (PDI) data of the circumstellar disk around the Herbig Ae/Be star HD100546 obtained with Very Large Telescope/NACO. We resolve the disk in polarized light in the H and K{sub s} filter between {approx}0.''1 and 1.''4 (i.e., {approx}10-140 AU). The innermost disk regions are directly imaged for the first time and the mean apparent disk inclination and position angle are derived. The surface brightness along the disk major axis drops off roughly with S(r){proportional_to}r {sup -3} but has a maximum around 0.''15 suggesting a marginal detection of the main disk inner rim at {approx}15 AU. We find a significant brightness asymmetry along the disk minor axis in both filters with the far side of the disk appearing brighter than the near side. This enhanced backward scattering and a low total polarization degree of the scattered disk flux of 14{sup +19}{sub -8}% suggest that the dust grains on the disk surface are larger than typical interstellar medium grains. Empirical scattering functions reveal the backward scattering peak at the largest scattering angles and a second maximum for the smallest scattering angles. This indicates a second dust grain population preferably forward scattering and smaller in size. It shows that, relatively, in the inner disk regions (40-50 AU) a higher fraction of larger grains is found compared to the outer disk regions (100-110 AU). Finally, our images reveal distinct substructures between 25 and 35 AU physical separation from the star and we discuss the possible origin for the two features in the context of ongoing planet formation.

  13. Constraint on the polarization of electric dipole emission from spinning dust

    SciTech Connect

    Hoang, Thiem; Martin, P. G.; Lazarian, A.

    2013-12-20

    Planck results have revealed that the electric dipole emission from polycyclic aromatic hydrocarbons (PAHs) is the most reliable explanation for the anomalous microwave emission that interferes with cosmic microwave background (CMB) radiation experiments. The emerging question is to what extent this emission component contaminates the polarized CMB radiation. We present constraints on polarized dust emission for the model of grain-size distribution and grain alignment that best fits the observed extinction and polarization curves. Two stars with a prominent polarization feature at λ = 2175 Å—HD 197770 and HD 147933-4—are chosen for our study. For HD 197770, we find that the model with aligned silicate grains plus weakly aligned PAHs can successfully reproduce the 2175 Å polarization feature; in contrast, for HD 147933-4, we find that the alignment of only silicate grains can account for that feature. The alignment function of PAHs for the best-fit model to the HD 197770 data is used to constrain polarized spinning dust emission. We find that the degree of polarization of spinning dust emission is about 1.6% at frequency ν ≈ 3 GHz and declines to below 0.9% for ν > 20 GHz. We also predict the degree of polarization of thermal dust emission at 353 GHz to be P {sub em} ≈ 11% and 14% for the lines of sight to the HD 197770 and HD 147933-4 stars, respectively.

  14. Magnetic measurements of the upper critical field, irreversibility line, anisotropy, and magnetic penetration depth of grain-aligned YBa sub 2 Cu sub 4 O sub 8

    SciTech Connect

    Lee, W.C.; Ginsberg, D.M. )

    1992-04-01

    We have measured the upper critical field and the irreversibility line of grain-aligned YBa{sub 2}Cu{sub 4}O{sub 8}, with the magnetic field oriented perpendicular to the CuO{sub 2} planes. The upper critical field's slope, {ital dH}{sub {ital c}2}/{ital dT}, is {minus}1.57 T/K, corresponding to a zero-temperature Ginzburg-Landau (GL) coherence length of 19.5 A. The irreversibility line obeys a power-law behavior similar to that of 90-K YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}. Using the lower-critical-field data, we obtain the zero-temperature magnetic penetration depth {lambda}{sub {ital a}{ital b}}(0)=1960 A and GL parameter {kappa}{sub {ital c}}=100.

  15. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  16. Towards a Unified Model of Polarized Emission and Extinction from Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon; Draine, Bruce T.

    2014-06-01

    We present models of interstellar grains that reproduce observational constraints on dust extinction, polarized extinction, infrared emission, and elemental abundances. Employing spheroidal graphite-PAH and "astrosilicate" grains of varying axial ratio, we constrain the size distribution and degree of alignment as a function of grain size. We discuss in particular the polarized emission from each model in the context of results from Planck as well as the effects of including contributions from ferromagnetic iron nanoparticles. We outline our next steps in developing a model of dust in the diffuse ISM by leveraging observational constraints on scattering and adapting our models to environments other than the diffuse ISM.

  17. Stardust Interstellar Preliminary Examination X: Impact Speeds and Directions of Interstellar Grains on the Stardust Dust Collector

    NASA Technical Reports Server (NTRS)

    Sterken, Veerle J.; Westphal, Andrew J.; Altobelli, Nicolas; Grun, Eberhard; Hillier, Jon K.; Postberg, Frank; Allen, Carlton; Stroud, Rhonda M.; Sandford, S. A.; Zolensky, Michael E.

    2014-01-01

    On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (less than 10 km per second) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta greater than 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 grams per cubic centimeter, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations.

  18. LACK OF INTERACTION BETWEEN THE DUST GRAINS AND THE ANOMALOUS RADIO JET IN THE NEARBY SPIRAL GALAXY NGC 4258

    SciTech Connect

    Laine, Seppo; Krause, Marita; Tabatabaei, Fatemeh S.; Siopis, Christos E-mail: mkrause@mpifr-bonn.mpg.d E-mail: christos.siopis@ulb.ac.b

    2010-10-15

    We obtained Spitzer/IRAC 3.6-8 {mu}m images of the nearby spiral galaxy NGC 4258 to study possible interactions between dust and the radio jet. In our analysis, we also included high-resolution radio continuum, H{alpha}, CO, and X-ray data. Our data reveal that the 8 {mu}m emission, believed to originate largely from polycyclic aromatic hydrocarbon molecules and hot dust, is an excellent tracer of the normal spiral structure in NGC 4258, and hence it originates from the galactic plane. We investigated the possibility of dust destruction by the radio jet by calculating correlation coefficients between the 8 {mu}m and radio continuum emissions along the jet in two independent ways, namely, (1) from wavelet-transformed maps of the original images at different spatial scales and (2) from one-dimensional intensity cuts perpendicular to the projected path of the radio jet on the sky. No definitive sign of a correlation (or anticorrelation) was detected on relevant spatial scales with either approach, implying that any dust destruction must take place at spatial scales that are not resolved by our observations.

  19. Change of Magnetic Field-gas Alignment at the Gravity-driven Alfvénic Transition in Molecular Clouds: Implications for Dust Polarization Observations

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun

    2016-10-01

    Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicular to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.

  20. From dust to life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    After initially challenging the dirty-ice theory of interstellar grains, Fred Hoyle and the present author proposed carbon (graphite) grains, mixtures of refractory grains, organic polymers, biochemicals and finally bacterial grains as models of interstellar dust. The present contribution summarizes this trend and reviews the main arguments supporting a modern version of panspermia.

  1. Temperature of cometary dust

    NASA Astrophysics Data System (ADS)

    Henning, Th.; Weidlich, U.

    1988-05-01

    The variation of dust temperature with heliocentric distance for a comet is calculated using the optical constants of an astronomically important silicate. The silicate, described by Drane (1985), is assumed to be similar to cometary dust. The temperatures of cometary dust grains are determined by the energy balance between the absorbed sunlight and emitted thermal radiation, and equilibrium temperatures of dust grains for different radii and heliocentric distances are compared. Deviations between computed and observed temperatures are attributed to variations in the chemical composition of the ablated grains.

  2. Diverse Anhydrous Silicates in a Fine-Grained Rim in the Weakly Altered CM2 Chondrite Queen Elizabeth Range 97990: Evidence for the Localized Preservation of Pristine Nebular Dust in CM Chondrites.

    NASA Astrophysics Data System (ADS)

    Brearley, A. J.

    2016-08-01

    A fine-grained rim the QUE 97990 CM2 chondrite contains diverse submicron crystalline anhydrous silicates, including olivines, low-Ca and high Ca pyroxenes and represents a more pristine sample of nebular dust than is present in most CM chondrites.

  3. Physical Alteration of Martian Dust Grains, Its Influence on Detection of Clays and Identification of Aqueous Processes on Mars

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Drief, Ahmed; Dyar, Darby

    2003-01-01

    Clays, if present on Mars, have been illusive. Determining whether or not clay minerals and other aqueous alteration species are present on Mars provides key information about the extent and duration of aqueous processes on Mars. The purpose of this study is to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. Physical alteration through grinding was shown to greatly affect the structure and a number of properties of antigorite and kaolinite. This project builds on an initial study and includes a combination of SEM, HRTEM, reflectance and M ssbauer spectroscopies. Grain size was found to decrease, as expected, with grinding. In addition, nanophase carbonate, Si-OH and iron oxide species were formed.

  4. A stochastic model and Monte Carlo algorithm for fluctuation-induced H{sub 2} formation on the surface of interstellar dust grains

    SciTech Connect

    Sabelfeld, K.K.

    2015-09-01

    A stochastic algorithm for simulation of fluctuation-induced kinetics of H{sub 2} formation on grain surfaces is suggested as a generalization of the technique developed in our recent studies [1] where this method was developed to describe the annihilation of spatially separate electrons and holes in a disordered semiconductor. The stochastic model is based on the spatially inhomogeneous, nonlinear integro-differential Smoluchowski equations with random source term. In this paper we derive the general system of Smoluchowski type equations for the formation of H{sub 2} from two hydrogen atoms on the surface of interstellar dust grains with physisorption and chemisorption sites. We focus in this study on the spatial distribution, and numerically investigate the segregation in the case of a source with a continuous generation in time and randomly distributed in space. The stochastic particle method presented is based on a probabilistic interpretation of the underlying process as a stochastic Markov process of interacting particle system in discrete but randomly progressed time instances. The segregation is analyzed through the correlation analysis of the vector random field of concentrations which appears to be isotropic in space and stationary in time.

  5. A stochastic model and Monte Carlo algorithm for fluctuation-induced H2 formation on the surface of interstellar dust grains

    NASA Astrophysics Data System (ADS)

    Sabelfeld, K. K.

    2015-09-01

    A stochastic algorithm for simulation of fluctuation-induced kinetics of H2 formation on grain surfaces is suggested as a generalization of the technique developed in our recent studies [1] where this method was developed to describe the annihilation of spatially separate electrons and holes in a disordered semiconductor. The stochastic model is based on the spatially inhomogeneous, nonlinear integro-differential Smoluchowski equations with random source term. In this paper we derive the general system of Smoluchowski type equations for the formation of H2 from two hydrogen atoms on the surface of interstellar dust grains with physisorption and chemisorption sites. We focus in this study on the spatial distribution, and numerically investigate the segregation in the case of a source with a continuous generation in time and randomly distributed in space. The stochastic particle method presented is based on a probabilistic interpretation of the underlying process as a stochastic Markov process of interacting particle system in discrete but randomly progressed time instances. The segregation is analyzed through the correlation analysis of the vector random field of concentrations which appears to be isotropic in space and stationary in time.

  6. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; Bernardis, P. de; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Longval, Y.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Mot, B.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-08-01

    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project, which aims at characterizing one of these foreground sources, the polarized continuum emission by dust in the diffuse interstellar medium. The PILOT experiment also constitutes a test-bed for using multiplexed bolometer arrays for polarization measurements. This paper presents the instrument and its expected performances. Performance measured during ground calibrations of the instrument and in flight will be described in a forthcoming paper.

  7. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; Bernardis, P. de; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Longval, Y.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Mot, B.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-10-01

    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project, which aims at characterizing one of these foreground sources, the polarized continuum emission by dust in the diffuse interstellar medium. The PILOT experiment also constitutes a test-bed for using multiplexed bolometer arrays for polarization measurements. This paper presents the instrument and its expected performances. Performance measured during ground calibrations of the instrument and in flight will be described in a forthcoming paper.

  8. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Misawa, R.; Bernard, J.-Ph.; Ade, P.; André, Y.; de Bernardis, P.; Bouzit, M.; Charra, M.; Crane, B.; Dubois, J. P.; Engel, C.; Griffin, M.; Hargrave, P.; Leriche, B.; Longval, Y.; Maes, S.; Marty, C.; Marty, W.; Masi, S.; Mot, B.; Narbonne, J.; Pajot, F.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Tucker, C.

    2014-07-01

    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Back- ground, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project which will aim at characterizing one of these foreground sources, the polarization of the dust continuum emission in the diffuse interstellar medium. The PILOT experiment will also constitute a test-bed for using multiplexed bolometer arrays for polarization measurements. We present the results of ground tests obtained just before the first flight of the instrument.

  9. Exobiological implications of dust aggregation in planetary atmospheres: An experiment for the gas-grain simulation facility

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.

    1991-01-01

    The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.

  10. Radiative transfer with POLARIS. I. Analysis of magnetic fields through synthetic dust continuum polarization measurements

    NASA Astrophysics Data System (ADS)

    Reissl, S.; Wolf, S.; Brauer, R.

    2016-09-01

    Aims: We present POLARIS (POLArized RadIation Simulator), a newly developed three-dimensional Monte-Carlo radiative transfer code. POLARIS was designed to calculate dust temperature, polarization maps, and spectral energy distributions. It is optimized to handle data that results from sophisticated magneto-hydrodynamic simulations. The main purpose of the code is to prepare and analyze multi-wavelength continuum polarization measurements in the context of magnetic field studies in the interstellar medium. An exemplary application is the investigation of the role of magnetic fields in star formation processes. Methods: We combine currently discussed state-of-the-art grain alignment theories with existing dust heating and polarization algorithms. We test the POLARIS code on multiple scales in complex astrophysical systems that are associated with different stages of star formation. POLARIS uses the full spectrum of dust polarization mechanisms to trace the underlying magnetic field morphology. Results: Resulting temperature distributions are consistent with the density and position of radiation sources resulting from magneto-hydrodynamic (MHD) - collapse simulations. The calculated layers of aligned dust grains in the considered cirumstellar disk models are in excellent agreement with theoretical predictions. Finally, we compute unique patterns in synthetic multi-wavelength polarization maps that are dependent on applied dust-model and grain-alignment theory in analytical cloud models.

  11. Comet C2012 S1 (ISON): Observations of the Dust Grains From SOFIA and of the Atomic Gas From NSO Dunn and Mcmath-Pierce Solar Telescopes

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Woodward, Charles E.; Harker, David E.; Kelley, Michael S. P.; Sitko, Michael; Reach, William T.; De Pater, Imke; Gehrz, Robert D.; Kolokolova, Ludmilla; Cochran, Anita L.; McKay, Adam J.; Reardon, Kevin; Cauzzi, Gianna; Tozzi, Gian Paolo; Christian, Damian J.; Jess, David B.; Mathioudakis, Mihalis; Lisse, Carey Michael; Morgenthaler, Jeffrey P.; Knight, Matthew Manning

    2013-01-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our SOFIA (+FORCAST) mid- to far-IR images and spectroscopy (approx. 5-35 microns) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h approx. = 1.18 AU). Dust characteristics, identified through the 10 micron silicate emission feature and its strength, as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 microns, and near 16, 19, 23.5, 27.5, and 33 microns are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) to large and/or compact grains (e.g., C/2007 N4 (Lulin) and C/2006 P1 (McNaught)). Measurement of the crystalline peaks in contrast to the broad 10 and 20 micron amorphous silicate features yields the cometary silicate crystalline mass fraction, which is a benchmark for radial transport in our protoplanetary disk. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals. Only SOFIA can look for cometary organics in the 5-8 micron region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20-Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to

  12. Magnetic field effects on the motion of circumplanetary dust

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel Simon

    Hypervelocity impacts on satellites or ring particles replenish circumplanetary dusty rings with grains of all sizes. Due to interactions with the plasma environment and sunlight, these grains become electrically charged. We study the motion of charged dust grains launched at the Kepler orbital speed, under the combined effects of gravity and the electromagnetic force. We conduct numerical simulations of dust grain trajectories, covering a broad range of launch distances from the planetary surface to beyond synchronous orbit, and the full range of charge-to-mass ratios from ions to rocks, with both positive and negative electric potentials. Initially, we assume that dust grains have a constant electric potential, and, treating the spinning planetary magnetic field as an aligned and centered dipole, we map regions of radial instability (positive grains only), where dust grains are driven to escape or collide with the planet at high speed, and vertical instability (both positive and negative charges) whereby grains launched near the equatorial plane and are forced up magnetic field lines to high latitudes, where they may collide with the planet. We derive analytical criteria for local stability in the equatorial plane, and solve for the boundaries between all unstable and stable outcomes. Comparing our analytical solutions to our numerical simulations, we develop an extensive model for the radial, vertical and azimuthal motions of dust grains of arbitrary size and launch location. We test these solutions at Jupiter and Saturn, both of whose magnetic fields are reasonably well represented by aligned dipoles, as well as at the Earth, whose magnetic field is close to an anti-aligned dipole. We then evaluate the robustness of our stability boundaries to more general conditions. Firstly, we examine the effects of non-zero launch speeds, of up to 0.5 km s-1, in the frame of the parent body. Although these only weakly affect stability boundaries, we find that the influence

  13. Evidence for an Interstellar Dust Filament in the Outer Heliosheath

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Andersson, B.-G.; Berdyugin, A.; Piirola, V.; Funsten, H. O.; Magalhaes, A. M.; Seriacopi, D. B.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Wiktorowicz, S. J.

    2015-05-01

    A recently discovered filament of polarized starlight that traces a coherent magnetic field is shown to have several properties that are consistent with an origin in the outer heliosheath of the heliosphere: (1) the magnetic field that provides the best fit to the polarization position angles is directed toward \\ell = 357.°3, b = 17.°0 (±11.°2) this direction is within 6.°7 ± 11.°2 of the observed upwind direction of the flow of interstellar neutral helium gas through the heliosphere. (2) The magnetic field is ordered; the component of the variation of the polarization position angles that can be attributed to magnetic turbulence is ±9.°6. (3) The axis of the elongated filament can be approximated by a line that defines an angle of 80° ± 14° with the plane that is formed by the interstellar magnetic field (ISMF) vector and the vector of the inflowing neutral gas (the {\\boldsymbol{BV}} plane). We propose that this polarization feature arises from aligned interstellar dust grains in the outer heliosheath where the interstellar plasma and magnetic field are deflected around the heliosphere. This interpretation suggests that the polarization is seen where stream lines of the flow and the draped ISMF lines are approximately parallel to each other and perpendicular to the sightline. An ordered magnetic field is required so that grain alignment is not disrupted during the interaction. The filament location is consistent with dust plumes previously predicted to form around the heliosphere. The proposed outer heliosheath location of the polarizing grains can be tested with three-dimensional models that track torques on asymmetric dust grains as they propagate through the heliosheath plasma, and using these models to evaluate grain alignment and the asymmetric extinction of the grains.

  14. The interaction of hydrogen with the {010} surfaces of Mg and Fe olivine as models for interstellar dust grains: a density functional theory study.

    PubMed

    Downing, C A; Ahmady, B; Catlow, C R A; de Leeuw, N H

    2013-07-13

    There is no consensus as yet to account for the significant presence of water on the terrestrial planets, but suggested sources include direct hydrogen adsorption from the parent molecular cloud after the planets' formation, and delivery of hydrous material via comets or asteroids external to the zone of the terrestrial planets. Alternatively, a more recent idea is that water may have directly adsorbed onto the interstellar dust grains involved in planetary formation. In this work, we use electronic structure calculations based on the density functional theory to investigate and compare the bulk and {010} surface structures of the magnesium and iron end-members of the silicate mineral olivine, namely forsterite and fayalite, respectively. We also report our results on the adsorption of atomic hydrogen at the mineral surfaces, where our calculations show that there is no activation barrier to the adsorption of atomic hydrogen at these surfaces. Furthermore, different surface sites activate the atom to form either adsorbed hydride or proton species in the form of hydroxy groups on the same surface, which indicates that these mineral surfaces may have acted as catalytic sites in the immobilization and reaction of hydrogen atoms to form dihydrogen gas or water molecules. PMID:23734054

  15. DISCOVERY OF THE METHOXY RADICAL, CH{sub 3}O, TOWARD B1: DUST GRAIN AND GAS-PHASE CHEMISTRY IN COLD DARK CLOUDS

    SciTech Connect

    Cernicharo, J.; Jimenez-Escobar, A.; Munoz Caro, G. M.; Marcelino, N.; Roueff, E.; Gerin, M.

    2012-11-10

    We report on the discovery of the methoxy radical (CH{sub 3}O) toward the cold and dense core B1-b based on the observation, with the IRAM 30 m radio telescope, of several lines at 3 and 2 mm wavelengths. Besides this new molecular species we also report on the detection of many lines arising from methyl mercaptan (CH{sub 3}SH), formic acid (HCOOH), propynal (HCCCHO), acetaldehyde (CH{sub 3}CHO), dimethyl ether (CH{sub 3}OCH{sub 3}), methyl formate (CH{sub 3}OCOH), and the formyl radical (HCO). The column density of all these species is {approx_equal}10{sup 12} cm{sup -2}, corresponding to abundances of {approx_equal}10{sup -11}. The similarity in abundances for all these species strongly suggest that they are formed on the surface of dust grains and ejected to the gas phase through non-thermal desorption processes, most likely cosmic rays or secondary photons. Nevertheless, laboratory experiments indicate that the CH{sub 3}O isomer released to the gas phase is CH{sub 2}OH rather than the methoxy one. Possible gas-phase formation routes to CH{sub 3}O from OH and methanol are discussed.

  16. The interaction of hydrogen with the {010} surfaces of Mg and Fe olivine as models for interstellar dust grains: a density functional theory study

    PubMed Central

    Downing, C. A.; Ahmady, B.; Catlow, C. R. A.; de Leeuw, N. H.

    2013-01-01

    There is no consensus as yet to account for the significant presence of water on the terrestrial planets, but suggested sources include direct hydrogen adsorption from the parent molecular cloud after the planets’ formation, and delivery of hydrous material via comets or asteroids external to the zone of the terrestrial planets. Alternatively, a more recent idea is that water may have directly adsorbed onto the interstellar dust grains involved in planetary formation. In this work, we use electronic structure calculations based on the density functional theory to investigate and compare the bulk and {010} surface structures of the magnesium and iron end-members of the silicate mineral olivine, namely forsterite and fayalite, respectively. We also report our results on the adsorption of atomic hydrogen at the mineral surfaces, where our calculations show that there is no activation barrier to the adsorption of atomic hydrogen at these surfaces. Furthermore, different surface sites activate the atom to form either adsorbed hydride or proton species in the form of hydroxy groups on the same surface, which indicates that these mineral surfaces may have acted as catalytic sites in the immobilization and reaction of hydrogen atoms to form dihydrogen gas or water molecules. PMID:23734054

  17. Dusts and Molds

    MedlinePlus

    ... of dust can result in sensitization. Symptoms include chills, fever, cough, chest congestion, fatigue, and shortness of ... grain and forage products. Symptoms include cough, fever, chills, body aches, and fatigue. These symptoms appear from ...

  18. DUST FORMATION IN MACRONOVAE

    SciTech Connect

    Takami, Hajime; Ioka, Kunihito; Nozawa, Takaya E-mail: kunihito.ioka@kek.jp

    2014-07-01

    We examine dust formation in macronovae (as known as kilonovae), which are the bright ejecta of neutron star binary mergers and one of the leading sites of r-process nucleosynthesis. In light of information about the first macronova candidate associated with GRB 130603B, we find that dust grains of r-process elements have difficulty forming because of the low number density of the r-process atoms, while carbon or elements lighter than iron can condense into dust if they are abundant. Dust grains absorb emission from ejecta with an opacity even greater than that of the r-process elements, and re-emit photons at infrared wavelengths. Such dust emission can potentially account for macronovae without r-process nucleosynthesis as an alternative model. This dust scenario predicts a spectrum with fewer features than the r-process model and day-scale optical-to-ultraviolet emission.

  19. Grains in galactic haloes.

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Barsella, B.; Ferrini, F.; Greenberg, J. M.; Aiello, S.

    1989-12-01

    The authors considered the effect of extensive forces on dust grains subjected to the light and matter distribution of the spiral galaxy NGC 3198. They have shown that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. The authors present here the preliminary results of the study of the motion of a dust grain for NGC 3198.

  20. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  1. Combustibility determination for cotton gin dust and almond huller dust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar (OSHA, 2009), can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, OSHA initiated action to develop a mandatory standard to comprehen...

  2. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  3. A Dust Grain Photoemission Experiment

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.

    2000-01-01

    A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.

  4. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  5. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    SciTech Connect

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-10-20

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.

  6. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  7. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  8. Interstellar and Cometary Dust

    NASA Astrophysics Data System (ADS)

    Mathis, John S.

    1997-12-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  9. Infrared emission from tidal disruption events - probing the pc-scale dust content around galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Evans, Neal J.

    2016-05-01

    Recent UV-optical surveys have been successful in finding tidal disruption events (TDEs), in which a star is tidally disrupted by a supermassive black hole (BH). These TDEs release a huge amount of radiation energy Erad ˜ 1051-1052 erg into the circum-nuclear medium. If the medium is dusty, most of the radiation energy will be absorbed by dust grains within ˜1 pc from the BH and re-radiated in the infrared. We calculate the dust emission light curve from a 1D radiative transfer model, taking into account the time-dependent heating, cooling and sublimation of dust grains. We show that the dust emission peaks at 3-10 μm and has typical luminosities between 1042 and 1043 erg s-1 (with sky covering factor of dusty clouds ranging from 0.1 to 1). This is detectable by current generation of telescopes. In the near future, James Webb Space Telescope will be able to perform photometric and spectroscopic measurements, in which silicate or polycyclic aromatic hydrocarbon features may be found. Dust grains are non-spherical and may be aligned with the magnetic field, so the dust emission may be significantly polarized. Observations at rest-frame wavelength ≥ 2 μm have only been reported from two TDE candidates, SDSS J0952+2143 and SwiftJ1644+57. Although consistent with the dust emission from TDEs, the mid-infrared fluxes of the two events may be from other sources. Long-term monitoring is needed to draw a firm conclusion. We also point out two nearby TDE candidates (ASASSN-14ae and -14li) where the dust emission may be currently detectable. Detection of dust infrared emission from TDEs would provide information regarding the dust content and its distribution in the central pc of non-active galactic nuclei, which is hard to probe otherwise.

  10. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  11. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  12. Preparation, analysis, and release of simulated interplanetary grains into low earth orbit

    SciTech Connect

    Stephens, J.R.; Strong, I.B.; Kunkle, T.D.

    1985-01-01

    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials and is a major subject of this workshop. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere, observations have been the only method of deducing the properties of extraterrestrial particles. Terrestrial laboratory experiments typically seek not to reproduce astrophysical conditions but to illuminate fundamental dust processes and properties which must be extrapolated to interesting astrophysical conditions. In this report, we discuss the formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles. We also discuss efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit, thus extending the conditions under which dust experiments may be performed. The objectives of this study are threefold: (1) Elucidate the optical properties, including scattering and absorption, of simulated interstellar grains including SiC, silicates, and carbon grains produced in the laboratory. (2) Develop the capabilities to release grains and volatile materials into the near-Earth environment and study their dynamics and optical properties. (3) Study the interaction of released materials with the near-Earth environment to elucidate grain behavior in astrophysical environments. Interaction of grains with their environment may, for example, lead to grain alignment or coagulation, which results in observable phenomena such as polarization of lighter or a change of the scattering properties of the grains.

  13. A New Parameter Regime for Dust in Plasma: the Case of Dense and Supersonic Plasma Flows

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui; Wurden, Glen A.

    2008-09-07

    The co-existence between charged micron-size particulates of matter and plasma electrons and ions can lead to interesting physics phenomena. Some of the most spectacular observations in laboratory low ionized gases include the formation of aligned dust structures, the propagation of dust waves or self-organization leading to dust voids. Here, the dust dynamics is established by the forces of gravity, of electrostatic interaction with electric fields within the plasma, of friction with the neutral gas, and by the Coulomb repulsion between grains. Measurements of dust trajectories have been carried out in situ when the plasma density is about 6-7 orders of magnitude higher than in typical laboratory dusty plasmas, i.e. {approx}10{sup 22} m{sup -3}, and the ion temperature is a few eV. The plasma flows at speeds of the order of 20-60 km/s. Two observed features characterize dust in this new plasma regime: the plasma drag force dominates over all other forces acting on the grains and the microparticles are heated to temperatures sufficiently high, to become self-illuminated. Simultaneous observation at different moments in time of up to a few hundred flying dust grains has been possible due to the timing capabilities of a high-speed camera equipped with a telephoto lens. Dust speed of a few km/s and accelerations of {approx}10{sup 5}-10{sup 6} m/s{sup 2} have been inferred using the time-of-flight technique. Among the applications of hypervelocity dust are local diagnostics performed on hot plasmas, interstellar propulsion or simulation of meteorite impacts.

  14. Magnetic field surrounding the starburst nucleus of the galaxy M82 from polarized dust emission

    PubMed

    Greaves; Holland; Jenness; Hawarden

    2000-04-13

    Magnetic fields may play an important role in the star-formation process, especially in the central regions of 'starburst' galaxies where star formation is vigorous. But the field directions are very difficult to determine in the dense molecular gas out of which the stars form, so it has hitherto been impossible to test this hypothesis. Dust grains in interstellar clouds tend to be magnetically aligned, and it is possible to determine the alignment direction based on the polarization of optical light due to preferential extinction along the long axes of the aligned grains. This technique works, however, only for diffuse gas, not for the dense molecular gas. Here we report observations of polarized thermal emission from the aligned dust grains in the central region of M82, which directly traces the magnetic field structure (as projected onto the plane of the sky). Organized field lines are seen around the brightest star-forming regions, while in the dusty halo the field lines form a giant magnetic bubble possibly blown out by the galaxy's 'superwind'.

  15. PILOT optical alignment

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  16. Assignment of quinone derivatives as the main compound class composing 'interstellar' grains based on both polarity ions detected by the 'Cometary and Interstellar Dust Analyser' (CIDA) onboard the spacecraft STARDUST.

    PubMed

    Krueger, Franz R; Werther, Wolfgang; Kissel, Jochen; Schmid, Erich R

    2004-01-01

    The 'Cometary and Interstellar Dust Analyser' (CIDA) is a particle impact time-of-flight mass spectrometer onboard the NASA spacecraft STARDUST. A series of positive and negative ion mass spectra from the impact of (apparently) interstellar dust particles has been collected since 1999. In the meantime laboratory work has been performed to better understand the ion formation processes of organic grains impacting at those speeds (>15 km/s) and to relate them to some other ion formation methods. The key ion types were the negative ions, with some additional information from the positive ions. Here, first the principal ion formation rules are briefly reviewed. Secondly, the common substance class is inferred mainly by the application of exclusion principles, and appears to be partly condensed aromatic and quinonoid compounds with high oxygen and low nitrogen content. Oxygen appears to be present in quinone-type structures with condensed aromatic rings, possibly with furan substructures and some hydroxyl moieties. Some nitrogen may be present in pyrrole- or quinoline-type structures. Considerations of thermodynamics and radiation physics of these dust particles within the solar system are consistent with this interpretation. Quinoenzyme cofactors such as the known compound pyrroloquinoline-quinone (PQQ) and its subconstituents would be expected to yield similar mass spectra.

  17. Tracing gas and magnetic field with dust : lessons from Planck & Herschel

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent

    2015-08-01

    Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.

  18. Origins of GEMS Grains

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  19. Dust settling in magnetorotationally driven turbulent discs - I. Numerical methods and evidence for a vigorous streaming instability

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Tilley, David A.; Rettig, Terrence; Brittain, Sean D.

    2009-07-01

    In this paper, we have used the RIEMANN code for computational astrophysics to study the interaction of a realistic distribution of dust grains with gas at specific radial locations in a vertically stratified protostellar accretion disc. The disc was modelled to have the density and temperature of a minimum mass solar nebula, and shearing box simulations at radii of 0.3 and 10 au are reported here. The disc was driven to a fully developed turbulence via the magnetorotational instability (MRI). The simulations span three gas scaleheights about the disc's midplane. We find that the inclusion of standard dust-to-gas ratios does not have any significant effect on the MRI even when the dust sediments to the midplane of the accretion disc. The density distribution of the dust of all sizes reached a Gaussian profile within two scaleheights of the disc's midplane. The vertical scaleheights of these Gaussian profiles are shown to be proportional to the reciprocal of the square root of the dust radius when large spherical dust grains are considered. This result is consistent with theoretical expectation. The largest two families of dust in one of our simulations show a strong tendency to settle to the midplane of the accretion disc. The large dust tends to organize itself into elongated clumps of high density. The dynamics of these clumps is shown to be consistent with a streaming instability. The streaming instability is seen to be very vigorous and persistent once it forms. Each stream of high-density dust displays a reduced rms velocity dispersion. The velocity directions within the streams are also aligned relative to the mean shear, providing further evidence that we are witnessing a streaming instability. The densest clumpings of large dust are shown to form where the streams intersect. We have also shown that the mean free path and collision time for dust that participates in the streaming instability are reduced by almost two orders of magnitude relative to the

  20. Formation and dissociation of dust molecules in dusty plasma

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng

    2016-09-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.

  1. Interstellar Dust Scattering Properties

    NASA Astrophysics Data System (ADS)

    Gordon, K. D.

    2004-05-01

    Studies of dust scattering properties in astrophysical objects with Milky Way interstellar dust are reviewed. Such objects are reflection nebulae, dark clouds, and the Diffuse Galactic Light (DGL). To ensure their basic quality, studies had to satisfy four basic criteria to be included in this review. These four criteria significantly reduced the scatter in dust properties measurements, especially in the case of the DGL. Determinations of dust scattering properties were found to be internally consistent for each object type as well as consistent between object types. The 2175 Å bump is seen as an absorption feature. Comparisons with dust grain models find general agreement with significant disagreements at particular wavelengths (especially in the far-ultraviolet). Finally, unanswered questions and future directions are enumerated.

  2. Model for the accumulation of solar wind radiation damage effects in lunar dust grains, based on recent results concerning implantation and erosion effects

    SciTech Connect

    Borg, J.; Bibring, J.P.; Cowsik, G.; Langevin, Y.; Maurette, M.

    1983-02-15

    In this paper we present our most recent results on ion implantation and erosion effects, intended to reproduce the superficial amorphous layers of radiation damage observed with a high voltage electron microscope on ..mu..m-sized grains extracted from the lunar regolith and which result from the exposure of the grains to the solar wind. We next outline theoretical computations which yield the thickness distribution of such amorphous layers as a function of the exposure time of the grains at the surface of the moon, the He/H ratio, and the speed distribution in the solar wind. From this model, the position of the peak in the solar wind speed distribution is the major parameter controlling the thickness of the amorphous layer.

  3. eblur/dust: a modular python approach for dust extinction and scattering

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2016-03-01

    I will present a library of python codes -- github.com/eblur/dust -- which calculate dust scattering and extinction properties from the IR to the X-ray. The modular interface allows for custom defined dust grain size distributions, optical constants, and scattering physics. These codes are currently undergoing a major overhaul to include multiple scattering effects, parallel processing, parameterized grain size distributions beyond power law, and optical constants for different grain compositions. I use eblur/dust primarily to study dust scattering images in the X-ray, but they may be extended to applications at other wavelengths.

  4. LADEE Search for a Dust Exosphere: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Stubbs, T. J.; Elphic, R.

    2014-01-01

    The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.

  5. Changes in Transmembrane Helix Alignment by Arginine Residues revealed by Solid-State NMR Experiments and Coarse-Grained MD Simulations

    PubMed Central

    Vostrikov, Vitaly V.; Hall, Benjamin A.; Greathouse, Denise V.; Koeppe, Roger E.; Sansom, Mark S. P.

    2010-01-01

    Independent experimental and computational approaches show agreement concerning arginine/membrane interactions when a single arginine is introduced at selected positions within the membrane-spanning region of acetyl-GGALW5LALALAL12AL14ALALW19LAGA-ethanolamide, designated GWALP23. Peptide sequence isomers having Arg in position 12 or position 14 display markedly different behaviors, as deduced by both solid-state NMR experiments and coarse-grained molecular dynamics (CG-MD) simulations. With respect to the membrane normal of DOPC or DPPC lipid bilayer membranes, GWALP23-R14 shows one major state whose apparent average tilt is ~10° greater than that of GWALP23. The presence of R14 furthermore induces bilayer thinning and peptide displacement to “lift” the charged guanidinium toward the bilayer surface. By contrast, GWALP23-R12 exhibits multiple states that are in slow exchange on the NMR time scale, with CG-MD simulations indicating two distinct positions with different screw rotation angles in the membrane, along with an increased tendency to exit the lipid bilayer. PMID:20373735

  6. Interstellar Dust Models

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2004-01-01

    A viable interstellar dust model - characterized by the composition, morphology, and size distribution of the dust grains and by the abundance of the different elements locked up in the dust - should fit all observational constraints arising primarily from the interactions of the dust with incident radiation or the ambient gas. As a minimum, these should include the average interstellar extinction, the infrared emission from the diffuse interstellar medium (ISM), and the observed interstellar abundances of the various refractory elements. The last constraint has been largely ignored, resulting in dust models that require more elements to be in the dust phase than available in the ISM. In this talk I will describe the most recent advances towards the construction of a comprehensive dust model made by Zubko, Dwek, and Arendt, who, for the first time, included the interstellar abundances as explicit constraints in the construction of interstellar dust models. The results showed the existence of many distinct models that satisfy the basic set of observational constraints, including bare spherical silicate and graphite particles, PAHs, as well as spherical composite particles containing silicate, organic refractories, water ice, and voids. Recently, a new interstellar dust constituent has emerged, consisting of metallic needles. These needles constitute a very small fraction of the interstellar dust abundance, and their existence is primarily manifested in the 4 to 8 micron wavelength region, where they dominate the interstellar extinction. Preliminary studies show that these models may be distinguished by their X-ray halos, which are produced primarily by small angle scattering off large dust particles along the line of sight to bright X-ray sources, and probe dust properties largely inaccessible at other wavelengths.

  7. Twisted dust acoustic waves in dusty plasmas

    SciTech Connect

    Shukla, P. K.

    2012-08-15

    We examine linear dust acoustic waves (DAWs) in a dusty plasma with strongly correlated dust grains, and discuss possibility of a twisted DA vortex beam carrying orbital angular momentum (OAM). For our purposes, we use the Boltzmann distributed electron and ion density perturbations, the dust continuity and generalized viscoelastic dust momentum equations, and Poisson's equation to obtain a dispersion relation for the modified DAWs. The effects of the polarization force, strong dust couplings, and dust charge fluctuations on the DAW spectrum are examined. Furthermore, we demonstrate that the DAW can propagate as a twisted vortex beam carrying OAM. A twisted DA vortex structure can trap and transport dust particles in dusty plasmas.

  8. Radiative Torque Alignment: Essential Physical Processes

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.

    2007-05-01

    Aligned grains provide a unique way to trace magnetic field topology in many astrophysical environments. In Lazarian & Hoang (2006), we derived analytical expressions for radiative torque (RAT) components, and studied the dynamics of grains assuming that the maximal inertia axis is always parallel to angular momentum. In this paper, to get insight into the dynamics of grains when thermal fluctuations are accounted for, we use AMO, and perform analytically averaging for RAT components. In addition, we study the RAT alignment for irregular grains (shape 1 and 3). We also evaluate the influence of suprathermal torques arising from H2 formation, as well as randomizing collisions with atomic gas on the alignment of grains driven by radiative torques (RATs). Our study is both based on the analytical model (AMO) and numerical calculations of RATs for irregular grains. To describe the H2 formation torques and random collisions we use the Langevin equation approach. We show that when thermal fluctuations are included, for both AMO and irregular grains, RATs tend to align grains at attractor points with low angular momentum (low-J attractor point). We found that random collisions by atomic gas act to substantially disalign the grain alignment in the case the phase trajectory map has only the low-J attractor point. In particular, if there exist attractor points at high angular momentum in the phase trajectory map, gas bombardment can move grains from the low- J attractor point to the high-J attractor point. Thus the degree of alignment increases.

  9. The effect of dust size distribution on the damping of the solitary waves in a dusty plasma

    SciTech Connect

    Yang, Xue; Xu, Yan-Xia; Qi, Xin; Wang, Cang-Long; Duan, Wen-Shan; Yang, Lei

    2013-05-15

    The effect of the dust size distribution on the damping rate of the solitary wave in a dusty plasma is investigated in the present paper. It is found that the damping rate increases as either the mean radius of dust grains increases or as the total number density of the dust grains increases. The damping rate is less for usual dusty plasma (about which the number density of the smaller dust grains is larger than that of the larger dust grains) than that of the unusual dusty plasma (about which the number density of the larger dust grains is larger than that of the smaller dust grains)

  10. ORIGIN OF DUST AROUND V1309 SCO

    SciTech Connect

    Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2013-11-01

    The origin of dust grains in the interstellar medium is still an unanswered problem. Nicholls et al. found the presence of a significant amount of dust around V1309 Sco, which may originate from the merger of a contact binary. We investigate the origin of dust around V1309 Sco and suggest that these dust grains are produced in the binary-merger ejecta. By means of the AGBDUST code, we estimate that ∼5.2 × 10{sup –4} M{sub ☉} dust grains are produced with a radii of ∼10{sup –5} cm. These dust grains are mainly composed of silicate and iron grains. Because the mass of the binary merger ejecta is very small, the contribution of dust produced by binary merger ejecta to the overall dust production in the interstellar medium is negligible. However, it is important to note that the discovery of a significant amount of dust around V1309 Sco offers a direct support for the idea that common-envelope ejecta provides an ideal environment for dust formation and growth. Therefore, we confirm that common envelope ejecta can be important source of cosmic dust.

  11. Dust-Plasma

    SciTech Connect

    Marelene Rosenberg

    2005-02-22

    Our theoretical research on dust-plasma interactions has concentrated on three main areas: a)studies of grain charging and applications; b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; c) waves in strongly coupled dusty plasmas.

  12. Quasar Dust Factories.

    NASA Astrophysics Data System (ADS)

    Marengo, Massimo; Elvis, Martin; Karovska, Margarita

    We show that quasars are naturally copious producers of dust, assuming only that the quasar broad emission lines (BELs) are produced by gas clouds that are part of an outflowing wind. These BEL clouds have large initial densities (ne ˜109 - 1011 cm-3) so that as they expand quasi-adiabatically they cool from an initial T = 104 K to a dust-capable T = 103 K, and reduce their pressures from ˜0.1 dyn cm-2 to ˜ 10-3 -10-5 dyn cm-2.. This places the expanded BEL clouds in the (T,P) dust forming regime of late-type giants extended atmospheres, both static and pulsing. The result applies whether the clouds have C/O abundance ratio greater or lower than 1. Photo-destruction of the grains by the quasar UV/X-ray continuum is not important, as the BEL clouds reach these conditions several parsecs from the quasar nucleus, well below the dust evaporation temperature. This result offers a new insight for the strong link between quasars and dust, and for the heavy obscuration around many quasars. It also introduces a new means of forming dust at early cosmological times, and a direct mechanism for the injection of such dust in the intergalactic medium. Since dust at high z is found only by observing quasars, our result allows far less dust to be present at early epochs, since dust only need be present where a quasar is, rather than the quasar illuminating pre-existing dust which would then need to be present in all galaxies at high z. See astro-ph/0202002 or ApJ 576, L107 (2002).

  13. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  14. Mass Spectrometry of Contemporary Interstellar Dust by the Cassini Space Craft

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Fiege, K.; Altobelli, N.; Srama, R.; Trieloff, M.

    2014-09-01

    Cassini’s dust detector (CDA) recorded over 30 mass spectra of individual interstellar dust grains crossing the solar system. The composition of all grains is surprisingly similar and is depleted in organics if compared with astronomical observations.

  15. Observations Of Scattered Light From Cometary Dust And Their Interpretation

    NASA Astrophysics Data System (ADS)

    Jockers, Klaus

    1997-09-01

    This review begins with a discussion of the techniques needed for observations of scattered light from cometary dust. After an introduction into the basic concepts of the scattering process, observations of the phase curves of brightness, colour and polarization are covered. Images of colour and polarization are presented and the observed relation of colour and polarization in jets and shells is discussed. The interpretation of the measurements is based on the power law size distributions of dust grains observed from space. The power index must lie between 2 and 4 to provide the mass budget and visibility of the dust coma in accordance with the basic facts of cometary physics. Application of mechanical (radiation pressure) theory to cometary images allows us to derive related power law distributions for comets not explored by spacecraft. Grain scattering models are presented and compared with observations. A prediction is made of the spatial distribution of Stokes parameters U and V in the presence of aligned particles. Up to now such patterns have not been observed. Future work should include the exploration of comets at small and possibly very small phase angles and a detailed comparison of polarization and colour images of comets with thermal images and with models based on mechanical theory.

  16. A Microphysically-based Approach to Inferring Porosity, Grain Size, and Dust Abundance in the Seasonal Caps from Atmospherically-corrected TES Spectra

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, J.; Titus, T. N.

    2003-01-01

    One of the highlights of the TES observations in the polar regions has been the identification of a "cryptic" region in the south where CO2 appears to be in the form of a solid slab rather than a fluffy frost. While the exact mechanism(s) by which the cryptic region is formed are still subject of some debate, it appears certain that a type of rapid metamorphism related to the high volatility of CO2 ice is involved. The high volatility of CO2 ice under martian conditions has several Solar System analogs (N2 on Triton and Pluto, SO2 on Io), thus making the martian cryptic region somewhat less cryptic and certainly non-unique among planetary objects. In an endmember scenario, both the formation and the spectral properties of the cryptic region (and of other areas in the seasonal caps) can be quantitatively modeled by considering sintering of an ensemble of quasi-spherical CO2 grains. This model includes the special case of instanteneous slab formation, which occurs when the grains are sufficiently small (in the submicron range) so that their sintering timescale is short relative to the deposition timescale (a situation analogous to the "sintering" of water droplets falling into a pond).

  17. Dust Telescopes and Active Dust Collectors: Linking Dust to Their Sources

    NASA Astrophysics Data System (ADS)

    Drake, K. J.; Sternovsky, Z.; Gruen, E.; Srama, R.; Auer, S.; Horanyi, M.; Kempf, S.; Krueger, H.; Postberg, F.

    2010-12-01

    Cosmic dust particles from remote sites and times are treasures of information. By determining the dust particles' source and their elemental properties, we can learn about the environments, where they were formed and processed. Born as stardust in the cool atmospheres of giant stars or in novae and supernovae explosions, the particles are subsequently modified in the interstellar medium. Interplanetary dust that originates from comets and asteroids represents even more processed material at different stages of Solar System evolution. Interstellar and interplanetary dust particles from various sources can be detected and analyzed in the near-Earth space environment. The newly developed instruments Dust Telescope and Active Dust Collector are able to determine the origin of dust particles and provide their elemental composition. A Dust Telescope is a combination of a Dust Trajectory Sensor (DTS) [1] together with an analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals when a charged grain flies through a position sensitive electrode system. A modern DTS can measure dust particles as small as 0.2 µm in radius and dust speeds up to 100 km/s. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number up to >100 [2]. The advanced Dust Telescope is capable of identifying interstellar and interplanetary grains, and measuring their mass, velocity vector, charge, elemental and isotopic compositions. An Active Dust Collector combines a DTS with an aerogel or other dust collector materials, e.g. like the ones used on the Stardust mission. The combination of a DTS with a dust collector provides not only individual trajectories of the collected particles but also their impact time and position on the collector which proves essential to

  18. 2002 Kuiper prize lecture: Dust Astronomy

    NASA Astrophysics Data System (ADS)

    Grün, Eberhard; Srama, Ralf; Krüger, Harald; Kempf, Sascha; Dikarev, Valeri; Helfert, Stefan; Moragas-Klostermeyer, Georg

    2005-03-01

    Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called "Dust Astronomy" which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.

  19. The effect of airborne dust on astronomical polarization measurements

    NASA Astrophysics Data System (ADS)

    Bailey, Jeremy; Ulanowski, Z.; Lucas, P. W.; Hough, J. H.; Hirst, E.; Tamura, M.

    2008-05-01

    In the past, it has generally been assumed that polarization observations made with ground-based telescopes are unaffected by the passage of light through the Earth's atmosphere. Here, we report observations with a new high-sensitivity astronomical polarimeter (PlanetPol) made during a Saharan dust event over the La Palma observatory in 2005 May that show excess linear polarization in the horizontal direction due to the passage of the starlight through the dust. The polarization reached a maximum value of 4.8 × 10-5 at 56° zenith distance and varied over five nights in proportion to the change in dust optical depth. Polarization of transmitted light (dichroism) does not occur for spherical or randomly oriented non-spherical particles. Thus, these results imply that some fraction of the dust grain population aligns with a preferred orientation. We use T-matrix models to demonstrate that the observed polarization direction implies a vertical orientation for the long axis of the particles. We suggest a possible mechanism for vertical orientation resulting from the electric field in the atmosphere. These results will need to be taken into account in the design and use of future instruments for high-sensitivity astronomical polarimetry. The results also indicate possible new approaches to studying aerosol particles and their effects on the Earth's atmosphere.

  20. Laboratory simulation of dust interactions close to lunar surface

    NASA Astrophysics Data System (ADS)

    Pavlu, Jiri; Vysinka, Marek; Richterova, Ivana; Safrankova, Jana; Nemecek, Zdenek

    2016-04-01

    Dust grains in space can be frequently found close to exposed surfaces, e.g., at the Moon, asteroids, comets, etc. A broad variety of solar particles-dust interactions plays its role - electrons and UV charge the grains, ions can sputter or somewhat modify the grain structure. While the grain levitating above the surface can rotate along all three axes, thus interacting nearly isotropically, the grain lying on the surface cannot move and it is exposed from one side only. We study spherical micron-sized glass grains as a representative of the silicate-type space dust. Particular interactions were experimentally observed in both an electrodynamic trap (levitating dust) and a scanning electron microscope (dust on the surface). We present a comparison of both approaches together with models of particular processes and situations; we predict and discuss dust behaviour at the lunar surface vicinity.

  1. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  2. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with

  3. In-situ dust measurements by a lunar lander

    NASA Astrophysics Data System (ADS)

    Srama, Ralf; Sternovsky, Zoltan; Horanyi, Mihaly; Gruen, Eberhard; Krueger, Harald; Laufer, Rene; Roeser, Hans-Peter; Postberg, Frank; Kempf, Sascha; Moragas-Klostermeyer, Georg; Mocker, Anna; Fiege, Katherina; Li, Yanwei

    2012-07-01

    Charged dust grains on the lunar surface impact our future exploration of the moon. Serious problems for exploration activities were revealed by the Apollo missions. Dust shows strong adhesion to equipment and clothes and makes breathing difficult within a spacecraft. The micron- and submicron sized grains are embedded in the lunar plasma environment and their physical properties determine their dynamics. The solar wind, UV light and shadows lead to temporal effects in plasma densities and dust grain charging states. The dust populations relevant for the processes on the surface are: interplanetary and interstellar dust, levitated dust and, especially, dust ejecta generated by primary impacts on the surface. A dust instrument on the surface shall distinguish the three populations and characterize their charging state, size, speed and directionality distribution. Dust measurements shall be performed in conjunction with surface plasma and surface electric field characterizations.

  4. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  5. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis

    NASA Astrophysics Data System (ADS)

    Li, Yun; Song, Yougui; Lai, Zhongping; Han, Li; An, Zhisheng

    2016-09-01

    Due to lack of reliable proxies from the Westerlies-dominant region, the strength change of Northern Hemisphere Westerlies remains poorly understood. The aim of this study is to provide a reliable paleoclimatic proxy about the Northern Hemisphere Westerlies change. Here we report a 30.7 m thick loess section from the Ili basin directly controlled by the Westerlies. Based on optically stimulated luminescence (OSL) and high resolution grain-size records, we reconstruct the change history of the Westerlies strength during the last glacial period (mainly Marine Isotope Stages 2, MIS2), being similar with the Westerlies index recorded in the Qinghai Lake sediments. Within error limits, all ages are in stratigraphic order. We further compare the climatic records among the Ili loess, Qinghai Lake and the NGRIP, their similarity shows a good climatic coupling relationship among the Central Asia, East Asia and the North Atlantic, and the Westerlies plays a critical influence in transporting the North Atlantic signal to Central and East Asia.

  6. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis.

    PubMed

    Li, Yun; Song, Yougui; Lai, Zhongping; Han, Li; An, Zhisheng

    2016-01-01

    Due to lack of reliable proxies from the Westerlies-dominant region, the strength change of Northern Hemisphere Westerlies remains poorly understood. The aim of this study is to provide a reliable paleoclimatic proxy about the Northern Hemisphere Westerlies change. Here we report a 30.7 m thick loess section from the Ili basin directly controlled by the Westerlies. Based on optically stimulated luminescence (OSL) and high resolution grain-size records, we reconstruct the change history of the Westerlies strength during the last glacial period (mainly Marine Isotope Stages 2, MIS2), being similar with the Westerlies index recorded in the Qinghai Lake sediments. Within error limits, all ages are in stratigraphic order. We further compare the climatic records among the Ili loess, Qinghai Lake and the NGRIP, their similarity shows a good climatic coupling relationship among the Central Asia, East Asia and the North Atlantic, and the Westerlies plays a critical influence in transporting the North Atlantic signal to Central and East Asia. PMID:27586593

  7. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis

    PubMed Central

    Li, Yun; Song, Yougui; Lai, Zhongping; Han, Li; An, Zhisheng

    2016-01-01

    Due to lack of reliable proxies from the Westerlies-dominant region, the strength change of Northern Hemisphere Westerlies remains poorly understood. The aim of this study is to provide a reliable paleoclimatic proxy about the Northern Hemisphere Westerlies change. Here we report a 30.7 m thick loess section from the Ili basin directly controlled by the Westerlies. Based on optically stimulated luminescence (OSL) and high resolution grain-size records, we reconstruct the change history of the Westerlies strength during the last glacial period (mainly Marine Isotope Stages 2, MIS2), being similar with the Westerlies index recorded in the Qinghai Lake sediments. Within error limits, all ages are in stratigraphic order. We further compare the climatic records among the Ili loess, Qinghai Lake and the NGRIP, their similarity shows a good climatic coupling relationship among the Central Asia, East Asia and the North Atlantic, and the Westerlies plays a critical influence in transporting the North Atlantic signal to Central and East Asia. PMID:27586593

  8. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis.

    PubMed

    Li, Yun; Song, Yougui; Lai, Zhongping; Han, Li; An, Zhisheng

    2016-09-02

    Due to lack of reliable proxies from the Westerlies-dominant region, the strength change of Northern Hemisphere Westerlies remains poorly understood. The aim of this study is to provide a reliable paleoclimatic proxy about the Northern Hemisphere Westerlies change. Here we report a 30.7 m thick loess section from the Ili basin directly controlled by the Westerlies. Based on optically stimulated luminescence (OSL) and high resolution grain-size records, we reconstruct the change history of the Westerlies strength during the last glacial period (mainly Marine Isotope Stages 2, MIS2), being similar with the Westerlies index recorded in the Qinghai Lake sediments. Within error limits, all ages are in stratigraphic order. We further compare the climatic records among the Ili loess, Qinghai Lake and the NGRIP, their similarity shows a good climatic coupling relationship among the Central Asia, East Asia and the North Atlantic, and the Westerlies plays a critical influence in transporting the North Atlantic signal to Central and East Asia.

  9. Solar wind magnetic field bending of Jovian dust trajectories.

    PubMed

    Zook, H A; Grün, E; Baguhl, M; Hamilton, D P; Linkert, G; Liou, J; Forsyth, R; Phillips, J L

    1996-11-29

    From September 1991 to October 1992, the cosmic dust detector on the Ulysses spacecraft recorded 11 short bursts, or streams, of dust. These dust grains emanated from the jovian system, and their trajectories were strongly affected by solar wind magnetic field forces. Analyses of the on-board measurements of these fields, and of stream approach directions, show that stream-associated dust grain masses are of the order of 10(-18) gram and dust grain velocities exceed 200 kilometers per second. These masses and velocities are, respectively, about 10(3) times less massive and 5 to 10 times faster than earlier reported. PMID:8929405

  10. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  11. EVOLUTION OF SIZE DISTRIBUTION OF ICY GRAINS BY SUBLIMATION AND CONDENSATION

    SciTech Connect

    Kuroiwa, Takuto; Sirono, Sin-iti

    2011-09-20

    In the outer part of a protoplanetary disk, dust grains consist of silicate core covered by an ice mantle. A temporal heating event in the disk results in sublimation of the ice mantle. After the end of the heating event, as the temperature decreases, H{sub 2}O molecules recondense on the surface of the dust grain. Ultimately, the dust grain is covered by an ice mantle. Because the equilibrium vapor pressure on the grain surface decreases with the grain size, a large grain grows faster than a small grain. As a result, the size of an icy dust grain changes as a result of the heating event. The change in size also affects the mechanical properties of the dust aggregates formed by the icy grains. In this paper, we investigated the evolution of the size distribution of icy dust grains during sublimation and condensation. We found that the size evolution of icy grains can be divided into two stages. In the first stage, the icy grains grow through condensation of H{sub 2}O molecules. In the second stage, the size of grains changes further as H{sub 2}O molecules are transferred between icy grains while the surrounding gas condenses. The size distribution of the icy dust grains becomes bimodal, with a small number of relatively large grains and many small grains without an icy mantle. Possible effects of the size change on the evolution of icy dust aggregates are discussed.

  12. Charging of interplanetary grains

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Johnson, R. E.; Newcomb, John L.

    1995-01-01

    The objective of this program is to quantify, by laboratory experiments, the charging of ices and other insulators subject to irradiation with electrons, ions and ultraviolet photons and to model special conditions based on the data. The system and conditions to be studied are those relevant for charging of dust in magnetospheric plasmas. The measurements are supplemented by computer simulations of charging or grains under a variety of conditions. Our work for this period involved experiments on water ice, improved models of charging of ice grains for Saturn's E-ring, and the construction of apparatus for electron impact studies and measurements of electron energy distributions.

  13. Radiative torque alignment: essential physical processes

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.

    2008-07-01

    We study the physical processes that affect the alignment of grains subject to radiative torques (RATs). To describe the action of RATs, we use the analytical model (AMO) of RATs introduced in our previous paper. We focus our discussion on the alignment by anisotropic radiation flux with respect to the magnetic field, which defines the axis of grain Larmor precession. Such an alignment does not invoke paramagnetic dissipation (i.e. the Davis-Greenstein mechanism), but, nevertheless, grains tend to be aligned with long axes perpendicular to the magnetic field. When we account for thermal fluctuations within grains, we show that for grains that are characterized by a triaxial ellipsoid of inertia, the zero-J attractor point obtained in our earlier study develops into a low-J attractor point. The value of angular momentum at the low-J attractor point is of the order of the thermal angular momentum corresponding to the grain temperature. We show that, for situations when the direction of radiative flux is nearly perpendicular to a magnetic field, the alignment of grains with long axes parallel to the magnetic field (i.e. `wrong alignment') reported in our previous paper, disappears in the presence of thermal fluctuations. Thus, all grains are aligned with their long axes perpendicular to the magnetic field. We study the effects of stochastic gaseous bombardment and show that gaseous bombardment can drive grains from low-J to high-J attractor points in cases when high-J attractor points are present. As the alignment of grain axes with respect to angular momentum is higher for higher values of J, counter-intuitively, gaseous bombardment can increase the degree of grain alignment with respect to the magnetic field. We also study the effects of torques induced by H2 formation and show that they can change the value of angular momentum at high-J attractor points, but marginally affect the value of angular momentum at low-J attractor points. We compare the AMO results with

  14. The dust budget crisis in high-redshift submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Gomez, H.; Dunne, L.; Aragon-Salamanca, A.; Dye, S.; Maddox, S.; da Cunha, E.; van der Werf, P.

    We apply a chemical evolution model to investigate the sources and evolution of dust in a sample of 26 high-redshift (z > 1) submillimetre galaxies (SMGs) with complete photometry from the UV-submillimetre. Models with dust produced only by low-intermediate mass stars fall a factor 240 short of the observed dust masses of SMGs, the well-known ‘dust-budget crisis’. Adding an extra source of dust from supernovae can account for the dust mass in 19% of the sample. After accounting for dust produced by supernovae the remaining deficit in the dust mass provides support for higher supernova yields or substantial grain growth in the interstellar medium. Efficient destruction of dust by supernova shocks increases the tension between the model and observed dust masses. Models which best reproduce the physical properties of SMGs have a rapid build-up of dust from both stellar and interstellar sources and minimal dust destruction.

  15. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    article title:  Massive Dust Storm over Australia     View ... at JPL September 22, 2009 - Massive dust storm over Australia. project:  MISR category:  ... Sep 22, 2009 Images:  Dust Storm location:  Australia and New Zealand ...

  16. Dust properties from scattering

    NASA Astrophysics Data System (ADS)

    Lefèvre, C.; Pagani, L.; Min, M.; Poteet, C.; Whittet, D.; Cambrésy, L.

    2016-05-01

    Dust grains evolve during the life cycle of the interstellar matter. From their birth places to dense molecular clouds, they grow by coagulation and acquire ice mantles, mainly composed of water. These morphological changes affect their optical properties. However, it remains a highly degenerate issue to determine their composition, size distribution, and shape from observations. In particular, using wavelengths associated to dust emission alone is not sufficient to investigate dense cold cores. Fortunately, scattering has turned out to be a powerful tool to investigate molecular clouds from the outer regions to the core. In particular, it is possible to quantify the amount of dust aggregates needed to reproduce observations from 1.25 to 8 μm.

  17. Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Kavitha, L.; Lavanya, C.; Senthil Kumar, V.; Gopi, D.; Pasqua, A.

    2016-04-01

    We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales much shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.

  18. Effect of dust particle polarization on scattering processes in complex plasmas

    SciTech Connect

    Kodanova, S. K.; Ramazanov, T. S.; Bastykova, N. Kh.; Moldabekov, Zh. A.

    2015-06-15

    Screened interaction potentials in dusty plasmas taking into account the polarization of dust particles have been obtained. On the basis of screened potentials scattering processes for ion-dust particle and dust particle-dust particle pairs have been studied. In particular, the scattering cross section is considered. The scattering processes for which the dust grain polarization is unimportant have been found. The effect of zero angle dust particle-dust particle scattering is predicted.

  19. Dust Growth in Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Tsytovich, V. N.

    2002-12-01

    Dust formation in space is important in diverse environments such as dust molecular clouds, proto-planetary nebulae, stellar outbursts, and supernova explosions. The formation of dust proceeds the formation of stellar objects and planets. In all these environments the dust particles interact with both neutral and plasma particles as well as with (ultraviolet) radiation and cosmic rays. The conventional view of grain growth is one based on accretion by the Van der Waals and chemical forces [Watson and Salpeter [14] considered in detail both theoretically and numerically (Kempf at all [6],Meaking [7]( and confirmed recently by micro-gravity experiments Blum et all [2]). The usual point of view is that the dust grow is occurring in dust molecular clouds at very low temperatures ~ (10 - 30)° K and is a slow process - dust grows to a size of about 0.1 μm in 106 - 109 years. This contradicts recent observations of dust growing in winds of C-stars in about 10 years and behind the supernova SN1987A shock in about 500 days. Also recent observation of star formation at the edge of irradiated dust clouds suggests that new plasma mechanism operates in star formation. Dusty plasma mechanisms of agglomeration are analyzed as an explanation of the new astrophysical observation. New micro-gravity experiments are proposed for observing the plasma mechanisms of dust agglomeration at gas pressures substantially higher than used in ([2]. Calculations for the growth rates of dust agglomeration due to plasma mechanisms are presented. It is shown that at large neutral gas densities the dust plasma attraction provides an explanation of dust grow in about 10 days observed in H-star winds. Ionization by cosmic rays and by radioactive dust can provide the dust attraction necessary for forming dust clumping observed in molecular clouds and the fractal plasma clumping can enhance the time to reach the gravitational contraction phase operating at the final stage of star formation. A new

  20. Self-confinement of finite dust clusters in isotropic plasmas.

    PubMed

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  1. Dust levitation about Itokawa's equator

    NASA Astrophysics Data System (ADS)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    Introduction: Electrostatic dust motion has been hypothesized to occur on the asteroids, due to the observations of the Eros dust ponds [1] and the potential presence of such a phenomenon on the Moon [2]. There are two phases of electrostatic dust motion: lofting and the subsequent trajectories. The feasibility of electrostatic dust lofting can be assessed by comparing the strength of the electrostatic force to the gravity and cohesion which hold the grain on to the surface [3--5]. The motion of the dust grains after they detach from the surface can be described as either ballistic, escaping, or levitating. We are interested in dust levitation because it could potentially redistribute grains on the surface of an asteroid (for instance, producing the Eros dust ponds) and it could also be hazardous to spacecraft. Specifically, levitating dust could obscure the observations of surface-based spacecraft or possibly trigger obstacle avoidance routines during landing. Dust Levitation: Dust levitation is defined as the altitude oscillation of grains prior to their redeposition on the surface of an asteroid. Levitation occurs about equilibria where the electrostatic and gravity forces on the grain are equal and opposite. An equilibrium state is defined as a position and charge for a specific grain size. We have previously identified equilibria using a 1D plasma model and a simple gravity model for Itokawa [6]. In this simple model, the largest grain that was capable of stable levitation above Itokawa was 3 microns (in radius) [6]. Additionally, we have shown that levitating dust grains follow the variation in the equilibria for a rotating asteroid (i.e., the grain continues to oscillate about an equilibrium state that approaches the surface) [7]. Due to the nonspherical shape of Itokawa, both the gravity and plasma environments are much more complicated than the 1D approximations made in our previous work. Thus, in order to accurately assess the feasibility of dust

  2. Circumstellar dust in symbiotic novae

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2015-08-01

    Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 µm) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 17·10-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use

  3. The size distribution of interstellar grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.

    1987-01-01

    Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.

  4. Dust formation in Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    McKinnon, Ryan; Torrey, Paul; Vogelsberger, Mark

    2016-04-01

    We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals on to existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at z = 0, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at z = 0 originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for z ≳ 5. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.

  5. Dust properties of NGC 2076

    NASA Astrophysics Data System (ADS)

    Sahu, D. K.; Pandey, S. K.; Kembhavi, Ajit

    1998-05-01

    We present multiband CCD surface photometry of NGC 2076, an early-type galaxy with a broad dust lane. We investigate the wavelength dependence of the dust extinction and derive the apparent extinction law. The extinction varies linearly with inverse wavelength with a ratio of total to selective extinction R_V = 2.70+/-0.28. The smaller value of R_V relative to the Galactic value implies that the size of `large' dust grains, responsible for extinction, is smaller than that in our Galaxy. We calculate the dust mass from total extinction, as well as from the color excess. We use IRAS data on FIR emission to determine the dust temperature, star formation rate and star formation efficiency. Based on observations taken from VBO, Kavalur, India

  6. Estimation of high altitude Martian dust parameters

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  7. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  8. Curriculum Alignment.

    ERIC Educational Resources Information Center

    Crowell, Ronald; Tissot, Paula

    Curriculum alignment (CA) refers to the congruence of all the elements of a school's curriculum: curriculum goals; instructional program--what is taught and the materials used; and tests used to judge outcomes. CA can be a very powerful can be a very powerful factor in improving schools. Although further research is needed on CA, there is…

  9. Experiments on Planetesimal Formation with Tempered Dust

    NASA Astrophysics Data System (ADS)

    Wurm, G.; De Beule, C.; Landers, J.; Salamon, S.; Wende, H.

    2016-08-01

    Dust aggregates that drift inwards in the Solar Nebula are subject to elevated temperatures. This changes their composition, grain size distribution and morphology. Eventually, these effects might strongly increase their ability to stick and grow.

  10. On dust entrainment in photoevaporative winds

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark A.; Price, Daniel J.; Laibe, Guillaume; Maddison, Sarah T.

    2016-09-01

    We investigate dust entrainment by photoevaporative winds in protoplanetary discs using dusty smoothed particle hydrodynamics. We use unequal-mass particles to resolve more than five orders of magnitude in disc/outflow density and a one-fluid formulation to efficiently simulate an equivalent magnitude range in drag stopping time. We find that only micron-sized dust grains and smaller can be entrained in extreme-UV radiation-driven winds. The maximum grain size is set by dust settling in the disc rather than aerodynamic drag in the wind. More generally, there is a linear relationship between the base flow density and the maximum entrainable grain size in the wind. A pileup of micron-sized dust grains can occur in the upper atmosphere at critical radii in the disc as grains decouple from the low-density wind. Entrainment is a strong function of location in the disc, resulting in a size sorting of grains in the outflow - the largest grain being carried out between 10 and 20 au. The peak dust density for each grain size occurs at the inner edge of its own entrainment region.

  11. Investigating dust trapping in transition disks with millimeter-wave polarization

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  12. Dust observations at orbital altitudes surrounding Mars.

    PubMed

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

  13. Dust observations at orbital altitudes surrounding Mars.

    PubMed

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere. PMID:26542578

  14. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    NASA Astrophysics Data System (ADS)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  15. Extralunar dust in apollo cores?

    PubMed

    Barber, D J; Hutcheon, I; Price, P B

    1971-01-29

    Densities of nuclear tracks exceed 10(11) per square centimeter in several percent of the micrometer-size silicate grains from all depths in the 12-and 60-centimeter lunar cores. Either these grains were irradiated in space as extralunar dust or the ratio of iron to hydrogen in low-energy (about 1 million electron volts per nucleon) solar particles is orders of magnitude higher than in the photosphere.

  16. Comet C/2012 S1 (ISON): Observations of the Dust Grains from SOFIA and of the Atomic Gas from NSO Dunn and McMath-Pierce Solar Telescopes (Invited)

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Sitko, M.; Reach, W. T.; De Pater, I.; Gehrz, R. D.; Kolokolova, L.; Cochran, A. L.; McKay, A. J.; Reardon, K.; Cauzzi, G.; Tozzi, G.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.; Lisse, C. M.; Morgenthaler, J. P.; Knight, M. M.

    2013-12-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures

  17. Grain-grain interaction in stationary dusty plasma

    SciTech Connect

    Lampe, Martin; Joyce, Glenn

    2015-02-15

    We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is larger than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.

  18. Electrostatically-driven Dust Motion near Itokawa

    NASA Astrophysics Data System (ADS)

    Hartzell, Christine; Zimmerman, Michael

    2014-11-01

    Electrostatically-dominated dust motion has been hypothesized to occur on the Moon and asteroids. In our previous work, we used a 1-dimensional plasma and gravity model to show that micron-sized dust grains could stably levitate above the surface of Itokawa. However, we have now implemented a 2-dimensional model that more accurately represents the irregular surface of Itokawa, including topographic details important for both gravitational and plasma dynamics. Using this state-of-the-art model, we have discovered equilibria about which dust grains may be able to levitate near the surface of the asteroid. Here, we show trajectories of dust grains about the equilibria. By studying the behavior of dust grains, we will assess whether the identified equilibria are numerical artifacts and, if not, determine the stability of the equilibria. Studying the dynamics of dust grains near the surface of Itokawa will allow us to assess the importance of electrostatically-dominated dust motion in the morphological evolution of this body.

  19. Gas and Dust in the Orion Bar

    NASA Astrophysics Data System (ADS)

    Arab, H.; Compiègne, M.; Habart, E.; Abergel, A.

    2011-11-01

    We use the DustEM model coupled with a radiative transfer code to fit the Herschel and Spitzer emission of the Orion Bar. The thermal dust emission at the 250-μm peak position is well reproduced but we overestimate the stochastically heated grain emission. The dust model parameters are checked with the Meudon PDR code and are consistent with the spectroscopic data from the SPIRE FTS.

  20. Dust tail striae: Lessons from recent comets

    NASA Astrophysics Data System (ADS)

    Jones, G.; Battams, K.

    2014-07-01

    Striae are features rarely observed in cometary dust tails. These are near-linear structures that, unlike synchronic bands, are not aligned with the nucleus position, and have only been clearly observed in a few high-production-rate comets, including C/1957 P1 (Mrkos), C/1962 C1 (Seki-Lines), C/1975 V1 (West), and C/1996 O1 (Hale-Bopp). The formation of striae is difficult to explain, but several scenarios for their creation have been proposed [1]. These include that of Sekanina & Farrell [2], who proposed that striae are the result of a two-step fragmentation process, where parent particles are released from the nucleus which, after a delay, all fragment over a very short period of time. The fragmentation products then separate according to their β parameter, i.e., the degree to which the particles are influenced by radiation pressure force compared to gravitational force, to form the linear structures we observe as striae. Although there are issues with identifying a process through which many particles will collectively delay their break-up and then fragment within a short period, this scenario does fit many observations well [3]. Other proposed scenarios are more complex, including the formation of striae through a continuous cascade of fragmentation to ever smaller particle sizes [4]. As these formation scenarios result in different distributions of dust-particle sizes within individual striae, the processes occurring may therefore be identifiable if these distributions can be inferred. If the fragmentation processes taking place can be identified, then, in turn, more could be learnt about the structure of the original dust grains that go on to form these sometimes beautiful tail structures. Here, we present the analysis of striae in several comets observed from space by the SOHO LASCO coronagraph [5] and SECCHI heliospheric imagers aboard the twin STEREO spacecraft [6]. The comets studied are C/2002 V1 (NEAT) in January 2002, C/2006 P1 (McNaught) during its

  1. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  2. Searching for inflationary B modes: can dust emission properties be extrapolated from 350 GHz to 150 GHz?

    NASA Astrophysics Data System (ADS)

    Tassis, Konstantinos; Pavlidou, Vasiliki

    2015-07-01

    Recent Planck results have shown that radiation from the cosmic microwave background passes through foregrounds in which aligned dust grains produce polarized dust emission, even in regions of the sky with the lowest level of dust emission. One of the most commonly used ways to remove the dust foreground is to extrapolate the polarized dust emission signal from frequencies where it dominates (e.g. ˜350 GHz) to frequencies commonly targeted by cosmic microwave background experiments (e.g. ˜150 GHz). In this Letter, we describe an interstellar medium effect that can lead to decorrelation of the dust emission polarization pattern between different frequencies due to multiple contributions along the line of sight. Using a simple 2-cloud model we show that there are two conditions under which this decorrelation can be large: (a) the ratio of polarized intensities between the two clouds changes between the two frequencies; (b) the magnetic fields between the two clouds contributing along a line of sight are significantly misaligned. In such cases, the 350 GHz polarized sky map is not predictive of that at 150 GHz. We propose a possible correction for this effect, using information from optopolarimetric surveys of dichroicly absorbed starlight.

  3. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  4. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, Dániel; Lauretta, Dante S.

    2010-01-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  5. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  6. Dust acoustic instability in a strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Kalman, G. J.; Hartmann, P.; Goree, J.

    2013-10-01

    Dusty plasmas are plasmas containing charged micron to sub-micron size dust grains (solid particulates). Because the grains can be multiply charged and are much more massive than the ions, the presence of dust can lead to novel waves such as the dust acoustic wave, which is a compressional wave that can be excited by a flow of ions that is driven by an electric field. Moreover, the large dust charge can result in strong Coulomb coupling between the dust grains, where the electrostatic energy between neighboring grains is larger than their thermal (kinetic) energy. When the coupling between dust grains is strong, but not large enough for crystallization, the dust is in the strongly coupled liquid phase. This poster theoretically investigates the dust acoustic instability, which is driven by sub-thermal ion flow, in a three-dimensional dusty plasma in the strongly coupled liquid phase. It is found that strong coupling enhances the instability. The application is to microgravity experiments with dusty plasma planned for the PK-4 and PlasmaLab instruments, which are in development for the International Space Station. Microgravity conditions enable the preparation of dust clouds under these sub-thermal ion flow conditions by avoiding the need for strong electric fields to levitate the dust grains.

  7. Image alignment

    SciTech Connect

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  8. Flying Through Dust From Asteroids

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  9. 7 CFR 800.61 - Prohibited grain handling practices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... channels, except for vegetable oil which may be used as a dust suppressant in accordance with (d)(4) of... at export port locations as set forth in 7 CFR part 810 and as dust removed from grain and collected... as dust sweepings; and (2) Defined for other than export elevators as set forth in 7 CFR part 810....

  10. 7 CFR 800.61 - Prohibited grain handling practices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... channels, except for vegetable oil which may be used as a dust suppressant in accordance with (d)(4) of... at export port locations as set forth in 7 CFR part 810 and as dust removed from grain and collected... as dust sweepings; and (2) Defined for other than export elevators as set forth in 7 CFR part 810....

  11. 7 CFR 800.61 - Prohibited grain handling practices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... channels, except for vegetable oil which may be used as a dust suppressant in accordance with (d)(4) of... at export port locations as set forth in 7 CFR part 810 and as dust removed from grain and collected... as dust sweepings; and (2) Defined for other than export elevators as set forth in 7 CFR part 810....

  12. 7 CFR 800.61 - Prohibited grain handling practices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... channels, except for vegetable oil which may be used as a dust suppressant in accordance with (d)(4) of... at export port locations as set forth in 7 CFR part 810 and as dust removed from grain and collected... as dust sweepings; and (2) Defined for other than export elevators as set forth in 7 CFR part 810....

  13. 7 CFR 800.61 - Prohibited grain handling practices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... channels, except for vegetable oil which may be used as a dust suppressant in accordance with (d)(4) of... at export port locations as set forth in 7 CFR part 810 and as dust removed from grain and collected... as dust sweepings; and (2) Defined for other than export elevators as set forth in 7 CFR part 810....

  14. Electrodynamics of submicron dust in the cometary coma

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.; Hassan, M. H. A.

    1983-05-01

    Electromagnetic forces derived from the solar wind fields act strongly on submicron dust grains in the cometary coma. The grain charge and thus the forces are sensitive to composition and cometary plasma conditions, as well as to grain size. For dielectric grains of 0.1 μm and conducting grains of 0.3 μm or less, the electromagnetic forces dominate over radiation pressure. The stronger accelerations may produce fan-like structures as sometimes observed. They would also cause grains to circumvent the shields designed to protect the Giotto and Vega spacecrafts speeding through comet Halley's dust coma.

  15. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  16. Dust polarisation and magnetic field geometry in Proto Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Sabin, L.; Zhang, Q.; Zijlstra, A.; Patel, N. A.; Vázquez, R.; Zauderer, B. A.; Contreras, M. E.; Guillén, P. F.

    2014-04-01

    The role of magnetic fields in late type stars and their nebulae, such as proto-planetary (PPNe) and planetary nebulae (PNe), is poorly known from an observational point of view. We therefore present new submillimeter observations realised with the Sub-Millimeter Array (SMA) which unveil the dust continuum polarisation in two well known PPNe: CRL 618 and OH 231.8+4.2. Assuming the current grain alignment theory, we also trace the geometry of the magnetic field in these two objects. The combination of this study with previous submillimeter observations, done with SCUBA at JCMT, will then pave the way for a better understanding of the evolution of magnetic fields in the envelopes of PPNe and PNe.

  17. 75 FR 10739 - Combustible Dust

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ..., plastics, biosolids, candy, sugar, spice, starch, flour, feed, grain, fertilizer, tobacco, paper, soap... for combustible dust. (74 FR 54334, Oct. 21, 2009) II. Stakeholder Meetings OSHA conducted two... notice of intent electronically, by facsimile, or by hard copy. OSHA intends to give preference...

  18. Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons

    SciTech Connect

    Ishak-Boushaki, M.; Djellout, D.; Annou, R.

    2012-07-15

    The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.

  19. Lunar Dust Experiment (LDEX): First Results

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Gagnard, Sam; Gathright, David; Gruen, Eberhard; James, David; Kempf, Sascha; Lankton, Mark; Srama, Ralf; Sternovsky, Zoltan; Szalay, Jamey

    2014-05-01

    The lunar dust environment is expected to be dominated by submicron-sized dust particles released from the Moon due to the continual bombardment by micrometeoroids, and possibly due to UV radiation and plasma-induced near-surface intense electric fields. The Lunar Dust EXperiment (LDEX) instrument is designed to map the spatial and temporal variability of the dust size and density distributions in the lunar environment onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission [1, 2] orbiting the Moon since 10/6/2013. LDEX is an impact detector, capable of reliably detecting and measuring the mass of submicron and micron sized dust grains. LDEX also measures the collective currents from low-energy ions and from the impacts of dust grains that are below the detection threshold for single dust impacts; hence it can search for the putative population of grains with radii ~ 0.1 μm lofted over the terminator regions by plasma effects. This talk will summarize the preliminary analysis of the observations to date: 1) LDEX identified the dust ejecta cloud that is maintained by micrometeoroid bombardment. As predicted, the density of the dust ejecta cloud rapidly increases toward the surface, and it also shows strong temporal variability, most likely related to the stochastic nature of the meteoroid impacts. 2) LDEX, as of yet, has not confirmed the existence of levitated dust clouds. This puts strict new upper limits on the density of small lofted grains, especially during periods of low ion fluxes entering the instrument. [1] Elphic et al., Proc. Lunar. Sci. Conf. 44th, 1719 (2013) [2] Horanyi et al., Proc. Lunar. Sci. Conf. 43th, 1659 (2012).

  20. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    NASA Astrophysics Data System (ADS)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  1. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  2. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    ... April 11, 2004 (top panels) contrast strongly with the dust storm that swept across Iraq and Saudi Arabia on May 13, 2004 (bottom panels). ... Apr 11 and May 13, 2004 Images:  Dust Storm location:  Middle East thumbnail:  ...

  3. Migration of tungsten dust in tokamaks: role of dust-wall collisions

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.

    2013-12-01

    The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.

  4. The dust budget crisis in high-redshift submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Gomez, H. L.; Dunne, L.; Aragón-Salamanca, A.; Dye, S.; Maddox, S.; da Cunha, E.; van der Werf, P.

    2014-06-01

    We apply a chemical evolution model to investigate the sources and evolution of dust in a sample of 26 high-redshift (z > 1) submillimetre galaxies (SMGs) from the literature, with complete photometry from ultraviolet to the submillimetre. We show that dust produced only by low-intermediate-mass stars falls a factor 240 short of the observed dust masses of SMGs, the well-known `dust-budget crisis'. Adding an extra source of dust from supernovae can account for the dust mass in 19 per cent of the SMG sample. Even after accounting for dust produced by supernovae the remaining deficit in the dust mass budget provides support for higher supernova yields, substantial grain growth in the interstellar medium or a top-heavy IMF. Including efficient destruction of dust by supernova shocks increases the tension between our model and observed SMG dust masses. The models which best reproduce the physical properties of SMGs have a rapid build-up of dust from both stellar and interstellar sources and minimal dust destruction. Alternatively, invoking a top-heavy IMF or significant changes in the dust grain properties can solve the dust budget crisis only if dust is produced by both low-mass stars and supernovae and is not efficiently destroyed by supernova shocks.

  5. An improved model for interplanetary dust fluxes in the outer Solar System

    NASA Astrophysics Data System (ADS)

    Poppe, Andrew R.

    2016-01-01

    We present an improved model for interplanetary dust grain fluxes in the outer Solar System constrained by in situ dust density observations. A dynamical dust grain tracing code is used to establish relative dust grain densities and three-dimensional velocity distributions in the outer Solar System for four main sources of dust grains: Jupiter-family comets, Halley-type comets, Oort-Cloud comets, and Edgeworth-Kuiper Belt objects. Model densities are constrained by in situ dust measurements by the New Horizons Student Dust Counter, the Pioneer 10 meteoroid detector, and the Galileo Dust Detection System (DDS). The model predicts that Jupiter-family comet grains dominate the interplanetary dust grain mass flux inside approximately 10 AU, Oort-Cloud cometary grains may dominate between 10 and 25 AU, and Edgeworth-Kuiper Belt grains are dominant outside 25 AU. The model also predicts that while the total interplanetary mass flux at Jupiter roughly matches that inferred by the analysis of the Galileo DDS measurements, mass fluxes to Saturn, Uranus, and Neptune are at least one order-of-magnitude lower than that predicted by extrapolations of dust grain flux models from 1 AU. Finally, we compare the model predictions of interplanetary dust oxygen influx to the giant planet atmospheres with various observational and photochemical constraints and generally find good agreement, with the exception of Jupiter, which suggests the possibility of additional chemical pathways for exogenous oxygen in Jupiter's atmosphere.

  6. Dust production in supernovae and AGB stars

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2015-08-01

    In the last decade, the role of supernovae on dust has changed; it has been long proposed that supernovae are dust destroyers, but now recent observations show that core-collapse supernovae can become dust factories. Theoretical models of dust evolution in galaxies have predicted that core-collapse supernovae can be an important source of dust in galaxies, if these supernovae can form a significant mass of dust (0.1-1 solar masses). The Herschel Space Observatory and ALMA detected dust in the ejecta of Supernova 1987A. They revealed an estimated 0.5 solar masses of dust. Herschel also found nearly 0.1 solar masses of dust in historical supernovae remnants, namely Cassiopeia A and the Crab Nebula. If dust grains can survive future interaction with the supernova winds and ambient interstellar medium, core-collapse supernovae can be an important source of dust in the interstellar media of galaxies. We further discuss the total dust mass injected by AGB stars and SNe into the interstellar medium of the Magellanic Clouds.

  7. Contemporary Interstellar Dust Measured by Cassini: A Chemically Homogenised Population, not Circumstellar Dust

    NASA Astrophysics Data System (ADS)

    Trieloff, M.; Altobelli, N.; Postberg, F.; Fiege, K.; Srama, R.

    2016-08-01

    36 grains of contemporary interstellar dust analysed by Cassini contain the major rock forming elements (Mg, Si, Fe, Ca) in roughly cosmic abundances. This population likely derives from destruction and recondensation processes in the ISM.

  8. Impact of Lunar Dust on the Exploration Initiative

    NASA Astrophysics Data System (ADS)

    Stubbs, T. J.; Vondrak, R. R.; Farrell, W. M.

    2004-12-01

    From the Apollo era it is known that dust grains on the Moon can cause serious problems for exploration activities. Such problems include adhering to clothing and equipment, reducing external visibility on landings, and causing difficulty to breathing and vision within the spacecraft. An important step in dealing with dust-related problems is to understand how dust grains behave in the lunar environment. The electrostatic charging of dust grains and the lunar surface by interaction with the local plasma environment and the photoemission of electrons due to solar UV and X-rays is a likely cause of some of these problems. It can also act as a mechanism for transporting dust away from the surface, as the like-charged surface and dust act to repel each other. There is much evidence to suggest that sunlight scattered at the terminators, as observed by surface landers and astronauts in orbit, is caused by "dust clouds" composed of ˜0.1 \\mum grains at altitudes of ˜1-100 km. In order to explain these observations, we propose a dynamic "fountain" model in which charged dust grains follow ballistic trajectories, subsequent to being accelerated upwards through a narrow sheath region by the surface electric field. These dust grains could affect the optical quality of the lunar environment for astronomical observations and interfere with exploration activities.

  9. Shock Fabrics in Fine-Grained Micrometeorites

    NASA Astrophysics Data System (ADS)

    Suttle, M. D.; Genge, M. J.; Russell, S. S.

    2016-08-01

    Low grade (S1) shock fabrics are identified in unmelted fine-grained micrometeorites through the presence of aligned dehydration cracks. This study suggests hydrated micrometeorites originate predominantly from rubble-pile asteroids.

  10. Let There Be Dust

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.

    2011-09-01

    Most of the ordinary matter in the universe is hydrogen and helium. In galaxies such as ours, heavier elements make up only about 1% of the mass, and about half of this is tied up in small particles, termed dust grains, that range in size from a nanometer to a fraction of a micrometer. Interstellar dust contains an appreciable fraction of the carbon and most of the refractory elements, such as magnesium, silicon, and iron. Because these particles are comparable in size to the wavelength of light, they are very effective at absorbing it. As a result, the Milky Way is much fainter in the night sky than it would otherwise be. This absorbed light is reradiated, but because the dust in the interstellar medium is so cold - about 20° above absolute zero - it is radiated at very long wavelengths, at around 200 μm. Such radiation can be observed only from space, and the European Space Agency's Herschel Space Observatory was designed to do just that. On page 1258 of this issue, Matsuura et al. (1) present Herschel observations showing that substantial amounts of dust are created in the aftermath of a supernova, the titanic explosion that terminates the life of a massive star.

  11. Saltation Impact as a Means for Raising Dust on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    2002-01-01

    Experiments were conducted under atmospheric pressures appropriate for Earth and Mars to determine the efficiency of sand in saltation as a means for raising dust into the atmosphere under wind speeds which would otherwise be too low for dust entrainment. Experiments involving intimate mixtures of sand and dust (1:1 ratio by mass) showed that after an initial flurry of activity of a few seconds duration, the bed stabilized with little movement of either sand or dust. In contrast, sands set into saltation upwind fro= dust beds were efficient in injecting the dust into suspension, with low-pressure Martian conditions being some five times more efficient than terrestrial conditions. This result is attributed to the higher kinetic energies of the saltating grains on Mars, which is a consequence of the higher velocities of the grains. These results suggest that sands saltating across dust beds on Mars are an effective means for setting dust into suspension.

  12. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  13. Dust measurements at high ecliptic latitudes.

    PubMed

    Baguhl, M; Hamilton, D P; Grün, E; Fechtig, H; Kissel, J; Linkert, D; Linkert, G; Riemann, R; Staubach, P; Dermott, S F; Hanner, M S; Polanskey, C; Lindblad, B A; Mann; McDonnell, J A; Morfill, G E; Schwehm, G; Zook, H A

    1995-05-19

    Along Ulysses' path from Jupiter to the south ecliptic pole, the onboard dust detector measured a dust impact rate that varied slowly from 0.2 to 0.5 impacts per day. The dominant component of the dust flux arrived from an ecliptic latitude and longitude of 100 + 10 degrees and 280 degrees +/- 30 degrees which indicates an interstellar origin. An additional flux of small particles, which do not come from the interstellar direction and are unlikely to be zodiacal dust grains, appeared south of -45 degrees latitude. One explanation is that these particles are beta-meteoroids accelerated away from the sun by radiation pressure and electromagnetic forces. PMID:17774227

  14. Dust measurements at high ecliptic latitudes.

    PubMed

    Baguhl, M; Hamilton, D P; Grün, E; Fechtig, H; Kissel, J; Linkert, D; Linkert, G; Riemann, R; Staubach, P; Dermott, S F; Hanner, M S; Polanskey, C; Lindblad, B A; Mann; McDonnell, J A; Morfill, G E; Schwehm, G; Zook, H A

    1995-05-19

    Along Ulysses' path from Jupiter to the south ecliptic pole, the onboard dust detector measured a dust impact rate that varied slowly from 0.2 to 0.5 impacts per day. The dominant component of the dust flux arrived from an ecliptic latitude and longitude of 100 + 10 degrees and 280 degrees +/- 30 degrees which indicates an interstellar origin. An additional flux of small particles, which do not come from the interstellar direction and are unlikely to be zodiacal dust grains, appeared south of -45 degrees latitude. One explanation is that these particles are beta-meteoroids accelerated away from the sun by radiation pressure and electromagnetic forces.

  15. Modeling Dust in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Aniano Porcile, Gonzalo Jorge

    We are in a very special moment for the study of the interstellar medium (ISM). The Spitzer Space Telescope had provided, and currently Herschel Space Observatory is providing, invaluable infrared (IR) observations of a variety of astrophysical systems. These observations allow us to model several ongoing processes in the ISM, and in particular to study the physical properties of the interstellar dust. Determining the dust properties accurately is an extremely difficult task: even the overall amount of dust in other galaxies has often been very uncertain. In the current work, we develop "state of the art'' tools for image processing and dust modeling that allows study of the interstellar dust in other galaxies using the new infrared data. We start by developing, the now "industry-standard'', convolution kernels. They allow us to accurately combine data from several space- and ground-based telescopes, to perform multi-wavelength studies. They are a key development for doing resolved studies of astrophysical systems. We follow by analyzing the performance of "modified blackbody'' (MBB) dust models when applied to realistic spectral energy distributions (SEDs), where we use a specific physical model, the Draine and Li (2007, DL07) dust model, to generate the synthetic SEDs. We show that MBB models can have a large bias in the inferred dust parameters, and therefore it is important to use more realistic dust models. We provide "correction'' formulae to compensate for the MBB bias, useful when the more sophisticated dust modeling is not available. Using the DL07 dust model, which contains amorphous silicate and carbonaceous grains, we perform careful modeling of the dust properties in a large sample of well-resolved galaxies observed by the KINGFISH survey. With data from 3.6µm to 500µm, dust models are strongly constrained. For each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons

  16. A new method to generate dust with astrophysical properties

    SciTech Connect

    Hansen, J F; van Breugel, W; Bringa, E M; Graham, G A; Remington, B A; Taylor, E A; Tielens, A G

    2010-04-21

    In interstellar and interplanetary space, the size distribution and composition of dust grains play an important role. For example, dust grains determine optical and ultraviolet extinction levels in astronomical observations, dominate the cooling rate of our Galaxy, and sets the thermal balance and radiative cooling rates in molecular clouds, which are the birth place of stars. Dust grains are also a source of damage and failure to space hardware and thus present a hazard to space flight. To model the size distribution and composition of dust grains, and their effect in the above scenarios, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new experiment which employs a laser to subject dust grains to pressure spikes similar to those of colliding astrophysical dust, and which accelerates the grains to astrophysical velocities. The new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields.

  17. Composition, structure, and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.

    1987-01-01

    Different dust components present in the interstellar medium (IM) such as amorphous carbon, polycyclic aromatic hydrocarbons, and those IM components which are organic refractory grains and icy grain mantles are discussed as well as their relative importance. The physical properties of grain surface chemistry are discussed with attention given to the surface structure of materials, the adsorption energy and residence time of species on a grain surface, and the sticking probability. Consideration is also given to the contribution of grains to the gas-phase composition of molecular clouds.

  18. Molecules and dust in Cassiopeia A. II. Dust sputtering and diagnosis of supernova dust survival in remnants

    NASA Astrophysics Data System (ADS)

    Biscaro, Chiara; Cherchneff, Isabelle

    2016-05-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains that formed in the Type II-b supernova ejecta by modelling the sputtering of grains. The dust is located in dense ejecta clumps that are crossed by the reverse shock. We also investigate further sputtering in the inter-clump medium gas once the clumps have been disrupted by the reverse shock. The dust evolution in the dense ejecta clumps of Type II-P supernovae and their remnants is also explored. We study oxygen-rich clumps that describe the oxygen core of the ejecta, and carbon-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the various dust components that form in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive grain-size distributions and masses for the dust as a function of time. Both non-thermal sputtering within clumps and thermal sputtering in the inter-clump medium gas are studied. We find that non-thermal sputtering in the clumps is important for all supernova types and accounts for reducing the grain population by ~ 40% to 80% in mass, depending on the clump gas over-density, the grain type and size, and the shock velocity in the clump. A Type II-b SN forms small grains that are sputtered within the clumps and in the inter-clump medium. For Cas A, silicate grains do not survive thermal sputtering in the inter-clump medium, while alumina, silicon carbide, and carbon dust may survive in the remnant. Our derived masses of currently processed silicate, alumina and carbon grains agree well with the values derived from the observations of warm dust, and seem to indicate that the dust is currently being processed within clumps by non-thermal sputtering. Out of the ~ 0.03M⊙ of dust formed in the ejecta, between 30% and 60% of this mass is present today in Cas A, and only 6% to 11% of the initial mass will survive the remnant phase. Grains formed in Type II-P supernovae are

  19. The Origin of Dust in High-z Galaxies

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2010-01-01

    The discovery of massive amounts of dust in the high-redshift galaxy Jl148+5251, when the universe was merely'" 900 Myr old, presents a unique opportunity for studying the role of massive stars in the formation and destruction of dust grains, and the potential role of AGB as dust sources as well. In this talk I will review the different models for the presence of dust and the origin of the infrared emission in these galaxies.

  20. Flux and composition of interstellar dust at Saturn from Cassini's Cosmic Dust Analyzer.

    PubMed

    Altobelli, N; Postberg, F; Fiege, K; Trieloff, M; Kimura, H; Sterken, V J; Hsu, H-W; Hillier, J; Khawaja, N; Moragas-Klostermeyer, G; Blum, J; Burton, M; Srama, R; Kempf, S; Gruen, E

    2016-04-15

    Interstellar dust (ISD) is the condensed phase of the interstellar medium. In situ data from the Cosmic Dust Analyzer on board the Cassini spacecraft reveal that the Saturnian system is passed by ISD grains from our immediate interstellar neighborhood, the local interstellar cloud. We determine the mass distribution of 36 interstellar grains, their elemental composition, and a lower limit for the ISD flux at Saturn. Mass spectra and grain dynamics suggest the presence of magnesium-rich grains of silicate and oxide composition, partly with iron inclusions. Major rock-forming elements (magnesium, silicon, iron, and calcium) are present in cosmic abundances, with only small grain-to-grain variations, but sulfur and carbon are depleted. The ISD grains in the solar neighborhood appear to be homogenized, likely by repeated processing in the interstellar medium.

  1. Flux and composition of interstellar dust at Saturn from Cassini's Cosmic Dust Analyzer.

    PubMed

    Altobelli, N; Postberg, F; Fiege, K; Trieloff, M; Kimura, H; Sterken, V J; Hsu, H-W; Hillier, J; Khawaja, N; Moragas-Klostermeyer, G; Blum, J; Burton, M; Srama, R; Kempf, S; Gruen, E

    2016-04-15

    Interstellar dust (ISD) is the condensed phase of the interstellar medium. In situ data from the Cosmic Dust Analyzer on board the Cassini spacecraft reveal that the Saturnian system is passed by ISD grains from our immediate interstellar neighborhood, the local interstellar cloud. We determine the mass distribution of 36 interstellar grains, their elemental composition, and a lower limit for the ISD flux at Saturn. Mass spectra and grain dynamics suggest the presence of magnesium-rich grains of silicate and oxide composition, partly with iron inclusions. Major rock-forming elements (magnesium, silicon, iron, and calcium) are present in cosmic abundances, with only small grain-to-grain variations, but sulfur and carbon are depleted. The ISD grains in the solar neighborhood appear to be homogenized, likely by repeated processing in the interstellar medium. PMID:27081064

  2. Carbon in comet dust

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1990-01-01

    The association of Halley particle results with data from existing meteoritic materials that can be analyzed in the laboratory is discussed. Comet samples must exist in present collections of meteoritic materials and the Halley results provide clues for identifying them. Although it is not presently possible to positively identify cometary meteorites or cometary interplanetary dust (IDP) samples, it is possible to determine which materials are similar to Halley dust and which ones are distinctly unlike Halley. The properties of these existing Halley-compatible samples provide insight into the possible properties of cometary material. Positive identification of meteoritic comet samples or direct samples returned from a comet nucleus would of course revolutionize our ability to study carbonaceous matter in comets. Modern analytical techniques are very powerful and it is possible to perform elemental, chemical, mineralogical and even limited isotopic analysis on micron-size particles. There is an important synergism between the laboratory studies of collected samples and astronomical data from comets and interstellar grains. To fully interpret results there must be convincing methods for associating a particular class or classes of meteoritic material with comets. Ultimately this will be done by direct comet sample return such as the Rosetta mission under development by ESA. At the present time the only links that can be made involve comparison with sample properties and measurable properties of comets. Unfortunately there is at present no known unique property of cometary dust that allows its absolute identification in the laboratory. The results from Halley encounters and observation do provide much new information on cometary grains. The Halley grain compositions, density, size distribution and scattering properties all provide a basis for future investigations. Other Halley properties such as the presence of polyoxymethylene and the 3.4um emission feature could

  3. Dust in the Quasar Wind (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy.

    Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from?

    Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young.

    Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds.

    Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  4. Ulysses dust measurements near Jupiter.

    PubMed

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  5. Dust trap formation in a non-self-sustained discharge with external gas ionization

    SciTech Connect

    Filippov, A. V. Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  6. Dust trap formation in a non-self-sustained discharge with external gas ionization

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Babichev, V. N.; Pal', A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-01

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  7. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  8. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm   ... CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, ...

  9. Global alignment: Finding rearrangements during alignment

    SciTech Connect

    Brudno, Michael; Malde, Sanket; Poliakov, Alexander; Do, Chuong B.; Couronne, Olivier; Dubchak, Inna; Batzoglou, Serafim

    2003-01-06

    Motivation: To compare entire genomes from different species, biologists increasingly need alignment methods that are efficient enough to handle long sequences, and accurate enough to correctly align the conserved biological features between distant species. The two main classes of pairwise alignments are global alignment, where one string is transformed into the other, and local alignment, where all locations of similarity between the two strings are returned. Global alignments are less prone to demonstrating false homology as each letter of one sequence is constrained to being aligned to only one letter of the other. Local alignments, on the other hand, can cope with rearrangements between non-syntenic, orthologous sequences by identifying similar regions in sequences; this, however, comes at the expense of a higher false positive rate due to the inability of local aligners to take into account overall conservation maps.

  10. Collisional dust fragmentation near nuclear surface within cometary jets

    NASA Astrophysics Data System (ADS)

    Steckloff, J.; Melosh, J.

    2014-07-01

    Previous studies of dust and grain fragmentation within cometary comae have focused on dust fragmentation schemes far from the nucleus [1-4]. In this work, we explore how to quantitatively constrain dust fragmentation mechanisms near the nuclear surface, and show that dust fragmentation within dust jets of Comet 9P/Tempel 1 is dominated by collisions. The dust jets on Tempel 1 that originate from a long scarp [5] obey power-law radiance profiles [6], which is the function describing the radiance (a proxy for dust) along the centerline of a dust jet as a function of height above the surface. The exponent of these power-law radiance profiles within the first kilometer of the surface is greater than -1, indicative of dust fragmentation. We constructed a one-dimensional numerical model of a cometary dust jet, which incorporates two end-member dust fragmentation schemes: binary fission and grain shedding [1]. In binary fission, an initial dust grain continually splits into two equal size pieces after a specified period of time (τ_{s}), whereas, in grain shedding, an initial dust grain continually loses a thin layer (Δ R) of fundamentally small grains from its surface. We model dust as spherical grains that conserve volume during fragmentation, with an initially uniform diameter of up to 5 cm. We model these two schemes without assuming a driving mechanism. Rather, we constrain their fundamental splitting parameters to generate power-law radiance profiles. We formulate the binary fission splitting time (τ_{s (R)}) and the grain shedding thickness of the shed layer (Δ R_{(R)}) as functions of the size of the dust grain (R). This generates power-law radiance profiles when the split time has the functional dependence τ_{s (R)} ∝ R^{-2} or when the depth of the shed layer has the functional dependence on the powers of the radius of the grain of Δ R_{(R)} ∝ R^{2} and higher. We then incorporate a power-law size-frequency distribution of initial grain sizes into our

  11. Lunar Dust and Dusty Plasma Physics

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.

  12. Comet Dust After Deep Impact

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  13. Collisional Grooming Models of the Kuiper Belt Dust Cloud

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Stark, Christopher C.

    2010-01-01

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of approximately 10 (exp -4) primarily show an azimuthally- symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 (exp -6) and 10 (exp-7)), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ("transport dominated") to being dominated by the birth ring ("collision dominated") when the optical depth reaches a critical value of r approximately v/c, where v is the local Keplerian speed.

  14. COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD

    SciTech Connect

    Kuchner, Marc J.; Stark, Christopher C. E-mail: starkc@umd.ed

    2010-10-15

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of {approx}10{sup -4} primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10{sup -6} and 10{sup -7}), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of {tau} {approx} v/c, where v is the local Keplerian speed.

  15. Grain mantles: The impact on grain evolution and selective extinction

    NASA Technical Reports Server (NTRS)

    Joseph, Charles L.

    1989-01-01

    Depletion studies are used to infer the presence of mantles and to constrain grain evolutionary models in the diffuse interstellar medium. The presence of these mantles appears to be important in the evolution of the grains inside diffuse as well as dense clouds. In dense clouds where the element-to-element abundances sometimes differ from those found in diffuse clouds, empirical relationships are starting to emerge between gas abundances and various types of peculiar selective extinction. These peculiar extinction curves may be the results of nonvolatile mantle formation on grain cores or may reflect chemical differences due to variations in the intrinsic metalicity from one cloud to another. A simple model of the time evolution of a parcel of gas and dust as observed by the depletion of two elements is presented. Different studies of grain evolution and selective extinction are discussed and compared.

  16. A Dynamic Fountain Model for Lunar Dust

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Vondrak, R. R.; Farrell, W. M.

    2005-01-01

    During the Apollo era of exploration it was discovered that sunlight was scattered at the terminators giving rise to horizon glow and streamers above the lunar surface. This was observed from the dark side of the Moon during sunset and sunrise by both surface landers and astronauts in orbit. These observations were quite unexpected, as the Moon was thought to be a pristine environment with a negligible atmosphere or exosphere. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. It has since been demonstrated that this dust population could have serious implications for astronomical observations from the lunar surface. The lunar surface is electrostatically charged by the Moon s large-scale interaction with the local plasma environment and the photoemission of electrons due to solar ultra-violet (UV) light and X-rays. The like-charged surface and dust grains then act to repel each other, such that under certain conditions the dust grains are lifted above the surface. We present a dynamic fountain model which can explain how sub-micron dust is able to reach altitudes of up to approximately 100 km above the lunar surface. Previous static dust levitation models are most applicable to the heavier micron-sized grains in close proximity proximity to the surface, but they cannot explain the presence of extremely light grains at high altitudes. If we relax the static constraint applied to previous models, and instead assume that the grains are in constant motion (under the action of dynamic forces), a new picture emerges for the behavior of sub-micron lunar dust.

  17. Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.

    2008-01-01

    The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar rob