Sample records for aligned dust grains

  1. Alignment of dust grains in ionized regions

    NASA Technical Reports Server (NTRS)

    Anderson, Nels; Watson, William D.

    1993-01-01

    The rate at which charged dust grains in a plasma are torqued by passing ions and electrons is calculated. When photo-emission of electrons is not important, attraction of ions by the grain monopole potential increases the rate at which the grains' spins are dealigned by nearly an order of magnitude. Consequently, the energy density of the magnetic field required to align grains in an H II region may be increased by about an order of magnitude. In contrast, electric dipole and quadrupole moments are unlikely to produce large dealignment rates for grains of modest length-to-width ratio. Nonetheless, for positively charged grains these higher-order moments likely prevent monopole repulsion of ions from reducing the dealignment rate far below that for neutral grains. The presence of positive grain charge therefore does not greatly facilitate grain alignment in an H II region.

  2. Simulation study of spheroidal dust gains charging: Applicable to dust grain alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahed, H.; Sobhanian, S.; Mahmoodi, J.

    2006-09-15

    The charging process of nonspherical dust grains in an unmagnetized plasma as well as in the presence of a magnetic field is studied. It is shown that unlike the spherical dust grain, due to nonhomogeneity of charge distribution on the spheroidal dust surface, the resultant electric forces on electrons and ions are different. This process produces some surface charge density gradient on the nonspherical grain surface. Effects of a magnetic field and other plasma parameters on the properties of the dust particulate are studied. It has been shown that the alignment direction could be changed or even reversed with themore » magnetic field and plasma parameters. Finally, the charge distribution on the spheroidal grain surface is studied for different ambient parameters including plasma temperature, neutral collision frequency, and the magnitude of the magnetic field.« less

  3. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 Angstroms, and the grain rotation rates are obtained by analyzing the low frequency (approximately 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  4. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.

  5. Properties and Alignment of Interstellar Dust Grains toward Type Ia Supernovae with Anomalous Polarization Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr; Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8; Institute of Theoretical Physics, Goethe Universität Frankfurt, D-60438 Frankfurt am Main

    Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios ( R {sub V} < 2) and wavelengths of maximum polarization ( λ{sub max} < 0.4 μ m) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SNmore » 2008fp, and SN 2014J). We find that to reproduce low values of R{sub V}, a significant enhancement in the mass of small grains of radius a < 0.1 μ m is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ{sub max} ∼ 0.15 μ m, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.« less

  6. A UNIFIED MODEL OF GRAIN ALIGNMENT: RADIATIVE ALIGNMENT OF INTERSTELLAR GRAINS WITH MAGNETIC INCLUSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem; Lazarian, A.

    The radiative torque (RAT) alignment of interstellar grains with ordinary paramagnetic susceptibilities has been supported by earlier studies. The alignment of such grains depends on the so-called RAT parameter q {sup max}, which is determined by the grain shape. In this paper, we elaborate on our model of RAT alignment for grains with enhanced magnetic susceptibility due to iron inclusions, such that RAT alignment is magnetically enhanced, which we term the MRAT mechanism. Such grains can be aligned with high angular momentum at the so-called high- J attractor points, achieving a high degree of alignment. Using our analytical model ofmore » RATs, we derive the critical value of the magnetic relaxation parameter δ {sub m} to produce high- J attractor points as functions of q {sup max} and the anisotropic radiation angle relative to the magnetic field ψ . We find that if about 10% of the total iron abundance present in silicate grains is forming iron clusters, this is sufficient to produce high- J attractor points for all reasonable values of q {sup max}. To calculate the degree of grain alignment, we carry out numerical simulations of MRAT alignment by including stochastic excitations from gas collisions and magnetic fluctuations. We show that large grains can achieve perfect alignment when the high- J attractor point is present, regardless of the values of q {sup max}. Our obtained results pave the way for the physical modeling of polarized thermal dust emission as well as magnetic dipole emission. We also find that millimeter-sized grains in accretion disks may be aligned with the magnetic field if they are incorporated with iron nanoparticles.« less

  7. Alignment of Irregular Grains by Mechanical Torques

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Cho, Jungyeon; Lazarian, A.

    2018-01-01

    We study the alignment of irregular dust grains by mechanical torques due to the drift of grains through the ambient gas. We first calculate mechanical alignment torques (MATs) resulting from specular reflection of gas atoms for seven irregular shapes: one shape of mirror symmetry, three highly irregular shapes (HIS), and three weakly irregular shapes (WIS). We find that the grain with mirror symmetry experiences negligible MATs due to its mirror-symmetry geometry. Three HIS can produce strong MATs, which exhibit some generic properties as radiative torques (RATs), while three WIS produce less efficient MATs. We then study grain alignment by MATs for the different angles between the drift velocity and the ambient magnetic field, for paramagnetic and superparamagnetic grains assuming efficient internal relaxation. We find that for HIS grains, MATs can align subsonically drifting grains in the same way as RATs, with low-J and high-J attractors. For supersonic drift, MATs can align grains with low-J and high-J attractors, analogous to RAT alignment by anisotropic radiation. We also show that the joint action of MATs and magnetic torques in grains with iron inclusions can lead to perfect MAT alignment. Our results point out the potential importance of MAT alignment for HIS grains predicted by the analytical model of Lazarian & Hoang, although more theoretical and observational studies are required due to uncertainty in the shape of interstellar grains. We outline astrophysical environments where MAT alignment is potentially important.

  8. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  9. Radiative Grain Alignment in Protoplanetary Disks: Implications for Polarimetric Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tazaki, Ryo; Lazarian, Alexandre; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp

    2017-04-10

    We apply the theory of radiative torque (RAT) alignment for studying protoplanetary disks around a T-Tauri star and perform 3D radiative transfer calculations to provide the expected maps of polarized radiation to be compared with observations, such as with ALMA. We revisit the issue of grain alignment for large grains expected in the protoplanetary disks and find that mm-sized grains at the midplane do not align with the magnetic field since the Larmor precession timescale for such large grains becomes longer than the gaseous damping timescale. Hence, for these grains the RAT theory predicts that the alignment axis is determinedmore » by the grain precession with respect to the radiative flux. As a result, we expect that the polarization will be in the azimuthal direction for a face-on disk. It is also shown that if dust grains have superparamagnetic inclusions, magnetic field alignment is possible for (sub-)micron grains at the surface layer of disks, and this can be tested by mid-infrared polarimetric observations.« less

  10. Interplay of dust alignment, grain growth, and magnetic fields in polarization: lessons from the emission-to-extinction ratio

    NASA Astrophysics Data System (ADS)

    Fanciullo, L.; Guillet, V.; Boulanger, F.; Jones, A. P.

    2017-06-01

    Context. Polarized extinction and emission from dust in the interstellar medium (ISM) are hard to interpret, as their dependence on dust optical properties, grain alignment, and magnetic field orientation is complex. This is particularly true in molecular clouds. The aforementioned phenomena are usually considered independently in polarization studies, while it is likely that they all contribute and their effects have yet to be disentangled. Aims: The data available today are not yet used to their full potential. The combination of emission and extinction, in particular, provides information not available from either of them alone. We combine data from the scientific literature on polarized dust extinction with Planck data on polarized emission, and we use them to constrain the possible variations in dust and environmental conditions inside molecular clouds, and especially translucent lines of sight, taking the magnetic field orientation into account. Methods: We focused on the dependence between λmax (the wavelength of maximum polarization in extinction) and other observables such as the extinction polarization, the emission polarization, and the ratio between the two. We set out to reproduce these correlations using Monte Carlo simulations in which we varied the relevant quantities in a dust model, which are grain alignment, size distribution, and magnetic field orientation, to mimic the diverse conditions that are expected inside molecular clouds. Results: None of the quantities we chose can explain the observational data on their own: the best results are obtained when all quantities vary significantly across and within clouds. However, some of the data, most notably the stars with a low ratio of polarization in emission to polarization in extinction, are not reproduced by our simulation. Conclusions: Our results suggest not only that dust evolution is necessary to explain polarization in molecular clouds, but that a simple change in size distribution is not

  11. Grain dust and the lungs.

    PubMed Central

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  12. 3D Radiative Transfer Code for Polarized Scattered Light with Aligned Grains

    NASA Astrophysics Data System (ADS)

    Pelkonen, V. M.; Penttilä, A.; Juvela, M.; Muinonen, K.

    2017-12-01

    Polarized scattered light has been observed in cometary comae and in circumstellar disks. It carries information about the grains from which the light scattered. However, modelling polarized scattered light is a complicated problem. We are working on a 3D Monte Carlo radiative transfer code which incorporates hierarchical grid structure (octree) and the full Stokes vector for both the incoming radiation and the radiation scattered by dust grains. In octree grid format an upper level cell can be divided into 8 subcells by halving the cell in each of the three axis. Levels of further refinement of the grid may be added, until the desired resolution is reached. The radiation field is calculated with Monte Carlo methods. The path of the model ray is traced in the cloud: absorbed intensity is counted in each cell, and from time to time, the model ray is scattered towards a new direction as determined by the dust model. Due to the non-spherical grains and the polarization, the scattering problem will be the main issue for the code and most time consuming. The scattering parameters will be taken from the models for individual grains. We can introduce populations of different grain shapes into the dust model, and randomly select, based on their amounts, from which shape the model ray scatters. Similarly, we can include aligned and non-aligned subpopulations of these grains, based on the grain alignment calculations, to see which grains should be oriented with the magnetic field, or, in the absence of a magnetic field close to the comet nucleus, with another axis of alignment (e.g., the radiation direction). The 3D nature of the grid allows us to assign these values, as well as density, for each computational cell, to model phenomena like e.g., cometary jets. The code will record polarized scattered light towards one or more observer directions within a single simulation run. These results can then be compared with the observations of comets at different phase angles, or

  13. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  14. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  15. Physical properties of five grain dust types.

    PubMed Central

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  16. Magnetic Field Strengths and Grain Alignment Variations in the Local Bubble Wall

    NASA Astrophysics Data System (ADS)

    Medan, Ilija; Andersson, B.-G.

    2018-01-01

    Optical and infrared continuum polarization is known to be due to irregular dust grains aligned with the magnetic field. This provides an important tool to probe the geometry and strength of those fields, particularly if the variations in the grain alignment efficiencies can be understood. Here, we examine polarization variations observed throughout the Local Bubble for b>30○, using a large polarization survey of the North Galactic cap from Berdyugin et al. (2014). These data are supported by archival photometric and spectroscopic data along with the mapping of the Local Bubble by Lallement et al. (2003). We can accurately model the observational data assuming that the grain alignment variations are due to the radiation from the OB associations within 1 kpc of the sun. This strongly supports radiatively driven grain alignment. We also probe the relative strength of the magnetic field in the wall of the Local Bubble using the Davis-Chandrasekhar-Fermi method. We find evidence for a bimodal field strength distribution, where the variations in the field are correlated with the variations in grain alignment efficiency, indicating that the higher strength regions might represent a compression of the wall by the interaction of the outflow in the Local Bubble and the opposing flows by the surrounding OB associations.

  17. New results in the theory of dust grain alignment

    NASA Technical Reports Server (NTRS)

    Cugnon, Pierre

    1989-01-01

    Two complementary approaches are used in an attempt to propose an appropriate formulation of the solution to the problem of magnetic alignment of grains in the diffuse and/or the more denser clouds, whatever the mechanism of rotational excitation can be. The interest of such a unified formulation is mainly that the same theoretical expression for polarization can be used everywhere, allowing for easier comparisons between regions where the physical conditions are highly different. The first consists in applying a Monte-Carlo method to a limited number of representative cases, for which all the torques acting on the grain are taken into account: impulsive random torques due to direct collisions with gas atoms, to evaporation of atoms from the surface, and to exo-energetic recombinations forming hydrogen molecules, followed by violent ejections from peculiar sites; magnetic torques. Three characteristic times are associated with these torques: the collisional damping time, the time necessary to change completely the actual sites configuration narrowly bound to the correlation time of the suprathermal torque; and the magnetic damping time. The second approach starts from a heuristic point of view. It consists in a generalization of results (Cugnon, 1983; see also Purcell and Spitzer, 1971; Greenberg, 1978) obtained for thermal alignment to the suprathermal case. It appears indeed that in two extreme cases, the thermal formulation may be used after redefinition of involved times and temperatures.

  18. Shotgun Pyrosequencing Metagenomic Analyses of Dusts from Swine Confinement and Grain Facilities

    PubMed Central

    Boissy, Robert J.; Romberger, Debra J.; Roughead, William A.; Weissenburger-Moser, Lisa; Poole, Jill A.; LeVan, Tricia D.

    2014-01-01

    Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses

  19. Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities.

    PubMed

    Boissy, Robert J; Romberger, Debra J; Roughead, William A; Weissenburger-Moser, Lisa; Poole, Jill A; LeVan, Tricia D

    2014-01-01

    Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses

  20. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    PubMed Central

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  1. Experimental Investigations of the Physical and Optical Properties of Individual Micron/Submicron-Size Dust Grains in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; LeClair, A.

    2014-01-01

    Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.

  2. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-04-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allowmore » us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.« less

  3. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers.

    PubMed Central

    Lewis, D M; Romeo, P A; Olenchock, S A

    1986-01-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies. PMID:3709478

  4. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  5. Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem; Martin, P. G.; Lazarian, A.

    2014-07-20

    We present a novel method to measure the strength of interstellar magnetic fields using ultraviolet (UV) polarization of starlight that is in part produced by weakly aligned, small dust grains. We begin with calculating the degrees of the paramagnetic alignment of small (size a ∼ 0.01 μm) and very small (a ∼ 0.001 μm) grains in the interstellar magnetic field due to the Davis-Greenstein relaxation and resonance relaxation. To calculate the degrees of paramagnetic alignment, we use Langevin equations and take into account various interaction processes essential for the rotational dynamics of small grains. We find that the alignment ofmore » small grains is necessary to reproduce the observed polarization in the UV, although the polarization arising from these small grains is negligible at the optical and infrared (IR) wavelengths. Based on fitting theoretical models to observed extinction and polarization curves, we find that the best-fit model for the case with the peak wavelength of polarization λ{sub max} < 0.55 μm requires a higher degree of alignment of small grains than for the typical case with λ{sub max} = 0.55 μm. We interpret the correlation between the systematic increase of the UV polarization relative to maximum polarization (i.e., of p(6 μm{sup –1})/p{sub max}) with λ{sub max}{sup −1} for cases of low λ{sub max} by appealing to the higher degree of alignment of small grains. We utilize the correlation of the paramagnetic alignment of small grains with the magnetic field strength B to suggest a new way to measure B using the observable parameters λ{sub max} and p(6 μm{sup –1})/p{sub max}.« less

  6. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  7. Effects of grain dust on lungs prior to and following dust remediation.

    PubMed

    Pahwa, Punam; Dosman, James A; McDuffie, Helen H

    2008-12-01

    To determine longitudinal estimates of pulmonary function decline in Canadian grain elevator workers before and after dust control by analyzing data collected from five regions of Canada over 15 years. Declines in forced expired volume in one second and forced vital capacity before and after dust control were estimated by using a generalized estimating equations approach. For grain workers who were in the grain industry for 20 or more years both before and after dust control: the mean annual loss of forced expired volume in one second was greatest among current smoking grain workers followed by ex-smokers and nonsmokers, respectively. Similar results were obtained for forced vital capacity. Grain dust control was effective in reducing decline in the lung function measurements among grain workers in all smoking and exposure categories.

  8. Experimental Study of Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  9. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  10. Role of electron temperature on charging of dust grains

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Chakraborty, M.; Saikia, B. K.

    2007-02-01

    Dust grains are produced by evaporation of silver in an experimental setup consisting of a dust chamber, a plasma chamber, and a deflection chamber. Due to differential pressure between the dust and plasma chambers, the dust grains move upward and after passing through plasma they become negatively charged. These charged dust grains are then deflected by a dc field applied across a pair of deflector plates in the deflection chamber. Both from the amount of deflection and also from the floating potential, the number of charges collected on the dust grains is calculated. As the gas pressure is changed, the plasma density and the electron temperature changes. Dust charge is then calculated at each value of pressure from the deflection and floating potential. It is found that the electron temperature has a profound effect in the accumulation of charge on dust grains.

  11. [Asthma due to grain dust].

    PubMed

    Baur, X; Preisser, A; Wegner, R

    2003-06-01

    The actual literature as well as two case reports described in detail show that grain dust induces asthmatic reactions and ODTS which are obviously not of allergic origin. For diagnosis occupational-type exposure tests are decisive whereas allergological testing usually is not. Endotoxins which are present in the grain dust samples in high concentrations have to be regarded as the major causative components. To avoid irreversible lung function impairment a comprehensive early diagnosis is necessary. Generally, a remarkable reduction of exposure to dust with high levels of airborne endotoxin in agriculture has to be achieved since in many workplaces corresponding exposures are still rather high.

  12. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  13. Simulating galactic dust grain evolution on a moving mesh

    NASA Astrophysics Data System (ADS)

    McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul

    2018-05-01

    Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.

  14. Laboratory Investigation of Space and Planetary Dust Grains

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  15. Acute symptoms following exposure to grain dust in farming.

    PubMed Central

    Manfreda, J; Holford-Strevens, V; Cheang, M; Warren, C P

    1986-01-01

    History of acute symptoms (cough, wheezing, shortness of breath, fever, stuffy nose, and skin itching/rash) following exposure to grain dust was obtained from 661 male and 535 female current and former farmers. These symptoms were relatively common: 60% of male and 25% of female farmers reported at least one such symptom on exposure to grain dust. Association of cough, wheezing, shortness of breath, and stuffy nose with skin reactivity and capacity to form IgE is consistent with an allergic nature of these symptoms. Barley and oats dust were perceived as dust most often producing symptoms. On the other hand, grain fever showed a different pattern, i.e., it was not associated with either skin reactivity or total IgE. Smoking might modify the susceptibility to react to grain dust with symptoms. Only those who reported wheezing on exposure to grain dust may have an increased risk to develop chronic airflow obstruction. PMID:3709486

  16. Dust Grain Charge above the Lunar terminator

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pavlu, Jiri; Vysinka, Marek

    Interaction of a lunar surface with the solar wind and magnetosphere leads to its charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a shielding of solar light and solar wind ions by hills, craters, and boulders that can locally influence the surface potential. Moreover, a presence of a plasma wake can strongly affect this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred volts (night side). An electric field above the charged surface can lead to a levitation of dust grains as it has been observed by several spacecraft and by astronauts during Apollo missions. Although charging and transport of dust grains above the lunar surface are in the center of interest for many years, these phenomena are not still completely understood. We present calculation of an equilibrium potential of dust grains above the lunar surface. We focus on a terminator area during the Earth’s plasma sheet crossing. We use the secondary electron emission model for dust grains which takes into account an influence of the grain size, material, and surface roughness and findings from laboratory experiments with charging of lunar dust simulants by an electron beam.

  17. Exposure to grain dust and microbial components in the Norwegian grain and compound feed industry.

    PubMed

    Halstensen, Anne Straumfors; Heldal, Kari Kulvik; Wouters, Inge M; Skogstad, Marit; Ellingsen, Dag G; Eduard, Wijnand

    2013-11-01

    The aim of this study was to extensively characterize grain workers' personal exposure during work in Norwegian grain elevators and compound feed mills, to identify differences in exposures between the workplaces and seasons, and to study the correlations between different microbial components. Samples of airborne dust (n = 166) were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified. Correlations between dust and microbial components and differences between workplaces and seasons were investigated. Determinants of endotoxin and β-1→3-glucan exposure were evaluated by linear mixed-effect regression modeling. The workers were exposed to an overall geometric mean of 1.0mg m(-3) inhalable grain dust [geometric standard deviation (GSD) = 3.7], 628 endotoxin units m(-3) (GSD = 5.9), 7.4 µg m(-3) of β-1→3-glucan (GSD = 5.6), 21 × 10(4) bacteria m(-3) (GSD = 7.9) and 3.6 × 10(4) fungal spores m(-3) (GSD = 3.4). The grain dust exposure levels were similar across workplaces and seasons, but the microbial content of the grain dust varied substantially between workplaces. Exposure levels of all microbial components were significantly higher in grain elevators compared with all other workplaces. The grain dust exposure was significantly correlated (Pearson's r) with endotoxin (rp = 0.65), β-1→3-glucan (rp = 0.72), bacteria (rp = 0.44) and fungal spore (rp = 0.48) exposure, whereas the explained variances were strongly dependent on the workplace. Bacteria, grain dust, and workplace were important determinants for endotoxin exposure, whereas fungal spores, grain dust, and workplace were important determinants for β-1→3-glucan exposure. Although the workers were exposed to a relatively low mean dust level, the microbial exposure was high. Furthermore, the

  18. An Experimental Study on the Structure of Cosmic Dust Aggregates and Their Alignment by Motion Relative to Gas.

    PubMed

    Wurm; Blum

    2000-01-20

    We experimentally studied the shape of dust grains grown in a cluster-cluster type of aggregation (CCA) and derived characteristic axial ratios to describe the nonsphericity. CCAs might be described by an axial ratio rhoCCA=rg,max&solm0;rg,min approximately 2.0 in the limit of large aggregates, where rg,min and rg,max describe the minimum and maximum radius of gyration, while small aggregates show a somewhat larger value in their mean axial ratio up to rhoCCA approximately 3.0 but rapidly decrease to the limit rhoCCA approximately 2.0. The axial ratios for large aggregates are in agreement with the general findings of different authors for axial ratios of interstellar dust grains that are generally described by rods or spheroids. Beyond this kind of agreement, our approach does not necessarily require a special shape for individual dust grains but rather offers a physical process to generate nonsphericity. Although the simple shapes might be sufficient for first-order applications and are easier to handle analytically, our results offer a firm ground of special axial ratios for rods or spheroids on a more physical basis apart from any ad hoc assumptions. We also find an alignment of the aggregates during sedimentation in a gas along the drift axis leading to an axial ratio of rhoCCA,align=1.21+/-0.02 with respect to the drift axis and an axis perpendicular to this drift. This result is directly applicable to dust grains in protoplanetary disks and planetary atmospheres.

  19. Ochratoxin A in grain dust--estimated exposure and relations to agricultural practices in grain production.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Elen, Oleif; Eduard, Wijnand

    2004-01-01

    Ochratoxin A (OTA) is a nephrotoxin frequently contaminating grains. OTA inhalation during grain handling may therefore represent a health risk to farmers, and was the subject of this study. Airborne and settled grain dust was collected during grain work on 84 Norwegian farms. Climate and agricultural practices on each farm were registered. Penicillium spp., Aspergillus spp. and OTA in settled dust were measured. Settled dust contained median 4 microg OTA/kg dust (range 2-128), correlating with Penicillium spp. (median 40 cfu/mg; range 0-32000, rs =0.33; p < 0.01). Similar levels were found across grain species, districts and agricultural practices. Penicillium levels, but not OTA levels, were higher in storage than in threshing dust (p=0.003), and increased with storage time (rs =0.51, p < 0.001). Farmers were exposed to median 1 mg/m3 (range 0.2-15) dust during threshing and median 7 mg/m3 (range 1-110) dust during storage work, equalling median 3.7 pg/m3 (range 0.6-200) and median 40 pg/m3 (range 2-14000) OTA, respectively (p < 0.001). Agricultural practices could not predict OTA, Penicillium or Aspergillus contamination. Compared to oral intake of OTA, the inhalant exposure during grain work was low, although varying by more than 1,000-fold. However, the farmers may occasionally be highly exposed, particularly during handling of stored grain.

  20. Dust Spectroscopy and the Nature of Grains

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.

  1. On the theory of dynamics of dust grain in plasma

    NASA Astrophysics Data System (ADS)

    Stepanenko, A. A.; Krasheninnikov, S. I.

    2013-03-01

    The dynamics of rotationally symmetric dust grains in plasma embedded in a magnetic field are of concern. The general expressions for forces and torques acting on dust are found. It is shown that dust spinning is determined by torques related to both the Lorentz force (dominant for relatively small grains) and the gyro-motion of plasma particles impinging the grain (which prevails for large grains). The stability of grain spinning is analyzed and it is shown that, for some cases (e.g., oblate spheroid), there is no stable dynamic equilibrium of grain spinning.

  2. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that

  3. Astrophysical dust grains in stars, the interstellar medium, and the solar system

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1991-01-01

    Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.

  4. The role of endotoxin in grain dust exposure and airway obstruction.

    PubMed

    Von Essen, S

    1997-05-01

    Grain dust exposure is a common cause of respiratory symptoms in grain workers, feed mill employees, and farmers. Many of these workers develop wheezing and acute and chronic bronchitis symptoms, which can be associated with obstructive changes on pulmonary function testing. It has recently been demonstrated that grain dust exposure causes neutrophilic airways inflammation and systemic symptoms related to release of interleukin-1, tumor necrosis factor, interleukin-6, and other mediators of inflammation. Although grain dust is a heterogenous substance, endotoxin has received the greatest amount of attention as a possible cause of the airway inflammation that occurs after grain dust exposure. Although endotoxin undoubtedly causes a portion of the changes seen after grain dust exposure, it is becoming clear that other substances play a role as well.

  5. Formation of dust grains with impurities in red giant winds

    NASA Technical Reports Server (NTRS)

    Dominik, Carsten

    1994-01-01

    Among the several proposed carriers of diffuse interstellar bands (DIB's) are impurities in small dust grains, especially in iron oxide grains (Huffman 1977) and silicate grains (Huffman 1970). Most promising are single ion impurities since they can reproduce the observed band widths (Whittet 1992). These oxygen-rich grains are believed to originate mostly in the mass flows from red giants and in supernovae ejecta (e.g. Gehrz 1989). A question of considerable impact for the origin of DIB's is therefore, whether these grains are produced as mainly clean crystals or as some dirty materials. A formalism has been developed that allows tracking of the heterogeneous growth of a dust grain and its internal structure during the dust formation process. This formalism has been applied to the dust formation in the outflow from a red giant star.

  6. Observations of dusty plasmas with magnetized dust grains

    NASA Astrophysics Data System (ADS)

    Luo, Q.-Z.; D'Angelo, N.

    2000-11-01

    We report a newly observed phenomenon in a dusty plasma device of the \\mbox{Q-machine} type. At low plasma densities the time required by the plasma to return to its no-dust conditions, after the dust dispenser is turned off, can be as long as many tens of seconds or longer. A tentative interpretation of this observation in terms of magnetized dust grains is advanced. It appears that an important loss mechanism of fine dust grains is by ion drag along the magnetic field lines. The effect of ion drag is somewhat counteracted by the -µ∇B force present when the magnetic field has a mirror geometry.

  7. A FAR-INFRARED OBSERVATIONAL TEST OF THE DIRECTIONAL DEPENDENCE IN RADIATIVE GRAIN ALIGNMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaillancourt, John E.; Andersson, B.-G., E-mail: jvaillancourt@sofia.usra.edu, E-mail: bg@sofia.usra.edu

    The alignment of interstellar dust grains with magnetic fields provides a key method for measuring the strength and morphology of the fields. In turn, this provides a means to study the role of magnetic fields from diffuse gas to dense star-forming regions. The physical mechanism for aligning the grains has been a long-term subject of study and debate. The theory of radiative torques, in which an anisotropic radiation field imparts sufficient torques to align the grains while simultaneously spinning them to high rotational velocities, has passed a number of observational tests. Here we use archival polarization data in dense regionsmore » of the Orion molecular cloud (OMC-1) at 100, 350, and 850 μm to test the prediction that the alignment efficiency is dependent upon the relative orientations of the magnetic field and radiation anisotropy. We find that the expected polarization signal, with a 180-degree period, exists at all wavelengths out to radii of 1.5 arcmin centered on the Becklin–Neugebauer Kleinmann-Low (BNKL) object in OMC-1. The probabilities that these signals would occur due to random noise are low (≲1%), and are lowest toward BNKL compared to the rest of the cloud. Additionally, the relative magnetic field to radiation anisotropy directions accord with theoretical predictions in that they agree to better than 15° at 100 μm and 4° at 350 μm.« less

  8. SEP events and wake region lunar dust charging with grain radii

    NASA Astrophysics Data System (ADS)

    Chandran, S. B. Rakesh; Rajesh, S. R.; Abraham, A.; Renuka, G.; Venugopal, Chandu

    2017-01-01

    Our lunar surface is exposed to all kinds of radiations from the Sun, since it lacks a global magnetic field. Like lunar surface, dust particles are also exposed to plasmas and UV radiation and, consequently they carry electrostatic charges. During Solar Energetic Particle events (SEPs) secondary electron emission plays a vital role in charging of lunar dusts. To study the lunar dust charging during SEPs on lunar wake region, we derived an expression for lunar dust potential and analysed how it varies with different electron temperatures and grain radii. Because of high energetic solar fluxes, secondary yield (δ) values reach up to 2.3 for 0.5 μm dust grain. We got maximum yield at an energy of 550 eV which is in well agreement with lunar sample experimental observation (Anderegg et al., 1972). It is observed that yield value increases with electron energy, reaches to a maximum value and then decreases. During SEPs heavier dust grains show larger yield values because of the geometry of the grains. On the wake region, the dust potential reaches up to -497 V for 0.5 μm dust grain. The electric field of these grains could present a significant threat to manned and unmanned missions to the Moon.

  9. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  10. Positive column of a glow discharge in neon with charged dust grains (a review)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M.

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in amore » discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.« less

  11. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  12. Attraction of likely charged nano-sized grains in dust-electron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnyakov, Vladimir I., E-mail: eksvar@ukr.net

    2016-01-15

    Dust-electron plasma, which contains only the dust grains and electrons, emitted by them, is studied. Assumption of almost uniform spatial electrons distribution, which deviates from the uniformity only near the dust grains, leads to the grain charge division into two parts: first part is the individual for each grain “visible” charge and the second part is the common charge of the neutralized background. The visible grain charge can be both negative and positive, while the total grain charge is only positive. The attraction of likely charged grains is possible, because the grain interaction is determined by the visible charges. Themore » equilibrium state between attraction and repulsion of grains is demonstrated.« less

  13. Dust grains from the heart of supernovae

    NASA Astrophysics Data System (ADS)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the

  14. Image charge effects on electron capture by dust grains in dusty plasmas.

    PubMed

    Jung, Y D; Tawara, H

    2001-07-01

    Electron-capture processes by negatively charged dust grains from hydrogenic ions in dusty plasmas are investigated in accordance with the classical Bohr-Lindhard model. The attractive interaction between the electron in a hydrogenic ion and its own image charge inside the dust grain is included to obtain the total interaction energy between the electron and the dust grain. The electron-capture radius is determined by the total interaction energy and the kinetic energy of the released electron in the frame of the projectile dust grain. The classical straight-line trajectory approximation is applied to the motion of the ion in order to visualize the electron-capture cross section as a function of the impact parameter, kinetic energy of the projectile ion, and dust charge. It is found that the image charge inside the dust grain plays a significant role in the electron-capture process near the surface of the dust grain. The electron-capture cross section is found to be quite sensitive to the collision energy and dust charge.

  15. Infrared emission from isolated dust clouds in the presence of very small dust grains

    NASA Technical Reports Server (NTRS)

    Lis, Dariusz C.; Leung, Chun M.

    1991-01-01

    Models of the effects of small grain-generated temperature fluctuations on the IR spectrum and surface brightness of externally heated interstellar dust clouds are presently constructed on the basis of a continuum radiation transport computer code which encompasses the transient heating of small dust grains. The models assume a constant fractional abundance of large and small grains throughout the given cloud. A comparison of model results with IRAS observations indicates that the observed 12-25 micron band emissions are associated with about 10-A radius grains, while the 60-100 micron emission is primarily due to large grains which are heated under the equilibrium conditions.

  16. Composition of extracts of airborne grain dusts: lectins and lymphocyte mitogens.

    PubMed Central

    Olenchock, S A; Lewis, D M; Mull, J C

    1986-01-01

    Airborne grain dusts are heterogeneous materials that can elicit acute and chronic respiratory pathophysiology in exposed workers. Previous characterizations of the dusts include the identification of viable microbial contaminants, mycotoxins, and endotoxins. We provide information on the lectin-like activity of grain dust extracts and its possible biological relationship. Hemagglutination of erythrocytes and immunochemical modulation by antibody to specific lectins showed the presence of these substances in extracts of airborne dusts from barley, corn, and rye. Proliferation of normal rat splenic lymphocytes in vitro provided evidence for direct biological effects on the cells of the immune system. These data expand the knowledge of the composition of grain dusts (extracts), and suggest possible mechanisms that may contribute to respiratory disease in grain workers. PMID:3709474

  17. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    NASA Astrophysics Data System (ADS)

    Muñoz, O.; Moreno, F.; Vargas-Martín, F.; Guirado, D.; Escobar-Cerezo, J.; Min, M.; Hovenier, J. W.

    2017-09-01

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (I) soft forward peaks and (II) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.

  18. PROPERTIES OF DUST GRAINS PROBED WITH EXTINCTION CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozawa, Takaya; Fukugita, Masataka

    Modern data of the extinction curve from the ultraviolet to the near-infrared are revisited to study properties of dust grains in the Milky Way (MW) and the Small Magellanic Cloud (SMC). We confirm that the graphite-silicate mixture of grains yields the observed extinction curve with the simple power-law distribution of the grain size but with a cutoff at some maximal size: the parameters are tightly constrained to be q = 3.5 {+-} 0.2 for the size distribution a {sup -q} and the maximum radius a{sub max} = 0.24 {+-} 0.05 {mu}m, for both MW and SMC. The abundance of grains,more » and hence the elemental abundance, is constrained from the reddening versus hydrogen column density, E(B - V)/N{sub H}. If we take the solar elemental abundance as the standard for the MW, >56% of carbon should be in graphite dust, while it is <40% in the SMC using its available abundance estimate. This disparity and the relative abundance of C to Si explain the difference of the two curves. We find that 50%-60% of carbon may not necessarily be in graphite but in the amorphous or glassy phase. Iron may also be in the metallic phase or up to {approx}80% in magnetite rather than in silicates, so that the Mg/Fe ratio in astronomical olivine is arbitrary. With these substitutions, the parameters of the grain size remain unchanged. The mass density of dust grains relative to hydrogen is {rho}{sub dust}/{rho}{sub H}= 1 / (120{sup +10}{sub -16}) for the MW and 1 / (760{sup +70}{sub -90}) for the SMC under the elemental abundance constraints. We underline the importance of the wavelength dependence of the extinction curve in the near-infrared in constructing the dust model: if A{sub {lambda}}{proportional_to}{lambda}{sup -{gamma}} with {gamma} {approx_equal} 1.6, the power-law grain-size model fails, whereas it works if {gamma} {approx_equal} 1.8-2.0.« less

  19. Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains

    NASA Technical Reports Server (NTRS)

    Yorke, H.; Suttner, G.; Lin, D.

    1999-01-01

    Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and due to corresponding changes in the medium's opacity significantly influence the evolution during early phase of star formation.

  20. Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains

    NASA Technical Reports Server (NTRS)

    Yorke, H.; Lin, D.; Suttner, G.

    1999-01-01

    Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and -- due to corresponding changes in the medium's opacity significantly -- influence the evolution during early phases of star formation.

  1. A note on dust grain charging in space plasmas

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.

    1992-01-01

    Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.

  2. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  3. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz, O.; Moreno, F.; Guirado, D.

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Furthermore » computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.« less

  4. Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.

    2008-01-01

    It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.

  5. Exposure to grain dust in Great Britain.

    PubMed

    Spankie, Sally; Cherrie, John W

    2012-01-01

    Airborne grain dust is a complex mixture of fragments of organic material from grain, plus mineral matter from soil, and possible insect, fungal, or bacterial contamination or their toxic products, such as endotoxin. In the 1990s, grain workers in Britain were frequently exposed to inhalable dust >10 mg.m(-3) (8 h), with particularly high exposures being found at terminals where grain was imported or exported and in drying operations (personal exposure typically approximately 20 mg.m(-3)). Since then, the industry has made substantial progress in improving the control of airborne dust through better-designed processes, increased automation, and an improved focus on product quality. We have used information from the published scientific literature and a small survey of industry representatives to estimate current exposure levels. These data suggest that current long-term exposure to inhalable dust for most workers is on average less than approximately 3 mg.m(-3), with perhaps 15-20% of individual personal exposures being >10 mg.m(-3). There are no published data from Britain on short-term exposure during cleaning and other tasks. We have estimated average levels for a range of tasks and judge that the highest levels, for example during some cleaning activities and certain process tasks such as loading and packing, are probably approximately10 mg.m(-3). Endotoxin levels were judged likely to be <10⁴ EU m(-3) throughout the industry provided inhalable dust levels are <10 mg.m(-3). There are no published exposure data on mycotoxin, respirable crystalline silica, and mite contamination but these are not considered to present widespread problems in the British industry. Further research should be carried out to confirm these findings.

  6. The role of endotoxin in grain dust-induced lung disease.

    PubMed

    Schwartz, D A; Thorne, P S; Yagla, S J; Burmeister, L F; Olenchock, S A; Watt, J L; Quinn, T J

    1995-08-01

    To identify the role of endotoxin in grain dust-induced lung disease, we conducted a population-based, cross-sectional investigation among grain handlers and postal workers. The study subjects were selected by randomly sampling all grain facilities and post offices within 100 miles of Iowa City. Our study population consisted of 410 grain workers and 201 postal workers. Grain workers were found to be exposed to higher concentrations of airborne dust (p = 0.0001) and endotoxin (p = 0.0001) when compared with postal workers. Grain workers had a significantly higher prevalence of work-related (cough, phlegm, wheezing, chest tightness, and dyspnea) and chronic (usual cough or phlegm production) respiratory symptoms than postal workers. Moreover, after controlling for age, gender, and cigarette smoking status, work-related respiratory symptoms were strongly associated with the concentration of endotoxin in the bioaerosol in the work setting. The concentration of total dust in the bioaerosol was marginally related to these respiratory problems. After controlling for age, gender, and cigarette smoking status, grain workers were found to have reduced spirometric measures of airflow (FEV1, FEV1/FVC, and FEF25-75) and enhanced airway reactivity to inhaled histamine when compared with postal workers. Although the total dust concentration in the work environment appeared to have little effect on these measures of airflow obstruction, higher concentrations of endotoxin in the bioaerosol were associated with diminished measures of airflow and enhanced bronchial reactivity. Our results indicate that the concentration of endotoxin in the bioaerosol may be particularly important in the development of grain dust-induced lung disease.

  7. Trajectories and distribution of interstellar dust grains in the heliosphere

    DOE PAGES

    Slavin, Jonathan D.; Frisch, Priscilla C.; Müller, Hans-Reinhard; ...

    2012-11-01

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. Here, we present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculationsmore » done separately for each polarity. Small grains a gr ≲ 0.01 μm are completely excluded from the inner heliosphere. Large grains, a gr ≳ 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. Our result points to the need to include the time variation in the SWMF polarity during grain propagation. This provides valuable insights for interpretation of the in situ dust observations from Ulysses.« less

  8. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland.

    PubMed

    Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Dutkiewicz, Jacek

    2007-01-01

    During combine harvesting of 5 various cereal crops (rye, barley, oats, buckwheat, corn) 24 samples of grain and 24 samples of settled grain dust were collected on farms located in the Lublin province of eastern Poland. The samples were examined for the concentration of total microfungi, Fusarium species, deoxynivalenol (DON), nivalenol (NIV), and ochratoxin A (OTA). Microfungi able to grow on malt agar were present in 79.2% of grain samples and in 91.7% of grain dust samples in the concentrations of 1.0-801.3x10(3) cfu/g and 1.5-12440.0x10(3) cfu/g, respectively. The concentration of microfungi in grain dust samples was significantly greater than in grain samples (p<0.01). Fusarium strains were isolated from 54.2% of grain samples and from 58.3% of grain dust samples in the concentrations of 0.1-375.0x10(3) cfu/g and 4.0-7,700.0x10(3) cfu/g, respectively. They were found in all samples of grain and grain dust from rye, barley and corn, but only in 0-16.7% of samples of grain and grain dust from oats and buckwheat. DON was found in 79.2% of grain samples and in 100% of grain dust samples in the concentrations of 0.001-0.18 microg/g and 0.006-0.283 microg/g, respectively. NIV was detected in 62.5% of grain samples and in 94.4% of grain dust samples in the concentrations of 0.004-0.502 microg/g and 0.005-0.339 microg/g, respectively. OTA was detected in 58.3% of grain samples and in 91.7% of grain dust samples in the concentrations of 0.00039- 0.00195 microg/g and 0.00036-0.00285 microg/g, respectively. The concentrations of DON, total fusariotoxins (DON+NIV) and OTA were significantly greater in grain dust samples than in grain samples (p<0.05, p<0.05, and p<0.001, respectively). The concentration of Fusarium poae in the samples of rye grain and dust was significantly correlated with the concentrations of DON (p<0.05), NIV (p<0.01), and total fusariotoxins (p<0.05). Similarly, the concentration of Fusarium culmorum in the samples of barley grain and dust was

  9. Aspergillus candidus: a respiratory hazard associated with grain dust.

    PubMed

    Krysinska-Traczyk, E; Dutkiewicz, J

    2000-01-01

    The concentration of Aspergillus candidus in samples of grain dust and of air polluted with grain dust was found to be large (respectively 3.0 x 10(5) - 3.0 x 10(9) cfu/g and 5.0 x 10(3) - 6.47 x 10(5) cfu/m(3)) and proved to be significantly greater compared to samples of other organic dusts (p<0.001). Rabbits exposed to long-term inhalation of the cell extract of A. candidus revealed a positive cellular and humoral response, demonstrated by the significant (p<0.01) inhibition of leukocyte migration in the presence of specific antigen and by production of precipitins against antigen of the fungus. The inhibition of leukocyte migration was even stronger in another group of rabbits exposed twice to the inhalation of live A. candidus spores. A group of grain workers reacted significantly more frequently to extract of A. candidus in the leukocyte migration inhibition test (p<0.01) and precipitation test (p<0.05), compared to the control group not exposed to organic dusts. It was concluded that Aspergillus candidus, because of its common occurrence and strong immunomodulating properties, poses an important occupational hazard for grain handling workers

  10. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with sizemore » of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.« less

  11. Magnetically aligned dust and SiO maser polarisation in the envelope of the red supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Khouri, T.; Martí-Vidal, I.; Tafoya, D.; Baudry, A.; Etoka, S.; Humphreys, E. M. L.; Jones, T. J.; Kemball, A.; O'Gorman, E.; Pérez-Sánchez, A. F.; Richards, A. M. S.

    2017-07-01

    Aims: Polarisation observations of circumstellar dust and molecular (thermal and maser) lines provide unique information about dust properties and magnetic fields in circumstellar envelopes of evolved stars. Methods: We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 science verification observations of the red supergiant VY CMa to study the polarisation of SiO thermal/maser lines and dust continuum at 1.7 mm wavelength. We analyse both linear and circular polarisation and derive the magnetic field strength and structure, assuming the polarisation of the lines originates from the Zeeman effect, and that of the dust originates from aligned dust grains. We also discuss other effects that could give rise to the observed polarisation. Results: We detect, for the first time, significant polarisation ( 3%) of the circumstellar dust emission at millimeter wavelengths. The polarisation is uniform with an electric vector position angle of 8°. Varying levels of linear polarisation are detected for the J = 4 - 328SiO v = 0, 1, 2, and 29SiO v = 0, 1 lines, with the strongest polarisation fraction of 30% found for the 29SiO v = 1 maser. The linear polarisation vectors rotate with velocity, consistent with earlier observations. We also find significant (up to 1%) circular polarisation in several lines, consistent with previous measurements. We conclude that the detection is robust against calibration and regular instrumental errors, although we cannot yet fully rule out non-standard instrumental effects. Conclusions: Emission from magnetically aligned grains is the most likely origin of the observed continuum polarisation. This implies that the dust is embedded in a magnetic field >13 mG. The maser line polarisation traces the magnetic field structure. The magnetic field in the gas and dust is consistent with an approximately toroidal field configuration, but only higher angular resolution observations will be able to reveal more detailed field structure. If the

  12. Nonlinear screening of dust grains and structurization of dusty plasma: II. formation and stability of dust structures

    NASA Astrophysics Data System (ADS)

    Tsytovich, V. N.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-10-01

    The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.

  13. Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro.

    PubMed Central

    Brown, D M; Donaldson, K

    1996-01-01

    OBJECTIVE: The aim of the study was to investigate the ability of two organic dusts, wool and grain, and their soluble leachates to stimulate secretion of tumour necrosis factor (TNF) by rat alveolar macrophages with special reference to the role of lipopolysaccharide (LPS). METHODS: Rat alveolar macrophages were isolated by bronchoalveolar lavage (BAL) and treated in vitro with whole dust, dust leachates, and a standard LPS preparation. TNF production was measured in supernatants with the L929 cell line bioassay. RESULTS: Both wool and grain dust samples were capable of stimulating TNF release from rat alveolar macrophages in a dose-dependent manner. The standard LPS preparation caused a dose-dependent secretion of TNF. Leachates prepared from the dusts contained LPS and also caused TNF release but leachable LPS could not account for the TNF release and it was clear that non-LPS leachable activity was present in the grain dust and that wool dust particles themselves were capable of causing release of TNF. The role of LPS in wool dust leachates was further investigated by treating peritoneal macrophages from two strains of mice, LPS responders (C3H) and LPS non-responders (C3H/HEJ), with LPS. The non-responder mouse macrophages produced very low concentrations of TNF in response to the wool dust leachates compared with the responders. CONCLUSIONS: LPS and other unidentified leachable substances present on the surface of grain dust, and to a lesser extent on wool dust, are a trigger for TNF release by lung macrophages. Wool dust particles themselves stimulate TNF. TNF release from macrophages could contribute to enhancement of inflammatory responses and symptoms of bronchitis and breathlessness in workers exposed to organic dusts such as wool and grain. PMID:8758033

  14. Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro.

    PubMed

    Brown, D M; Donaldson, K

    1996-06-01

    The aim of the study was to investigate the ability of two organic dusts, wool and grain, and their soluble leachates to stimulate secretion of tumour necrosis factor (TNF) by rat alveolar macrophages with special reference to the role of lipopolysaccharide (LPS). Rat alveolar macrophages were isolated by bronchoalveolar lavage (BAL) and treated in vitro with whole dust, dust leachates, and a standard LPS preparation. TNF production was measured in supernatants with the L929 cell line bioassay. Both wool and grain dust samples were capable of stimulating TNF release from rat alveolar macrophages in a dose-dependent manner. The standard LPS preparation caused a dose-dependent secretion of TNF. Leachates prepared from the dusts contained LPS and also caused TNF release but leachable LPS could not account for the TNF release and it was clear that non-LPS leachable activity was present in the grain dust and that wool dust particles themselves were capable of causing release of TNF. The role of LPS in wool dust leachates was further investigated by treating peritoneal macrophages from two strains of mice, LPS responders (C3H) and LPS non-responders (C3H/HEJ), with LPS. The non-responder mouse macrophages produced very low concentrations of TNF in response to the wool dust leachates compared with the responders. LPS and other unidentified leachable substances present on the surface of grain dust, and to a lesser extent on wool dust, are a trigger for TNF release by lung macrophages. Wool dust particles themselves stimulate TNF. TNF release from macrophages could contribute to enhancement of inflammatory responses and symptoms of bronchitis and breathlessness in workers exposed to organic dusts such as wool and grain.

  15. Nasal lavage cellularity, grain dust, and airflow obstruction.

    PubMed

    Blaski, C A; Watt, J L; Quinn, T J; Thorne, P S; Schwartz, D A

    1996-04-01

    To evaluate the clinical utility of nasal lavage (NL), we performed post-work shift NL on 172 grain workers and 78 postal worker control subjects. The grain worker group included a higher percentage of current smokers (25.7% vs 16.7%) and a lower percentage of former smokers (21.15% vs 35.9%) compared with the postal workers. The control subjects included more female workers and were slightly older than the grain workers. Compared with the postal workers, the grain workers were exposed to significantly greater concentrations of total dust (0.1 +/- 0.0 vs 6.8 +/- 1.4 mg/m3; mean +/- SEM) and total endotoxin (4.3 +/- 0.8 vs 2,372.4 +/- 653.8 endotoxin units/m3). NL from gain workers showed a higher concentration of total cells (55,000 +/- 14,000 vs 25,000 +/- 5,000 cells per milliliter; p=0.03), a higher concentration of squamous epithelial cells (17,029.0 +/- 4,177 .0 vs 7,103.7 +/- 1,479.8 cells per milliliter; p=0.03), and a higher concentration of neutrophils (40,058.0 +/- 12,803.2 vs 17,891.0 +/- 3,822.3 cells per milliliter; p=0.10) compared with postal workers. Importantly, these differences in NL cellularity between grain workers and postal workers were observed within the three strata of smokers. To further assess the importance of total cells, squamous epithelial cells, and neutrophils in the NL fluid of grain workers, we investigated the relationship between these cell concentrations and (1) measures of dust and endotoxin exposure during the work shift. (2) spirometric measures of airflow obtained immediately before the NL, and (3) work-related respiratory symptoms. The concentration of total cells, the concentration of squamous epithelial cells, or the concentration of neutrophils in the NL was not associated with ambient levels of dust or endotoxin, with baseline or cross-shift changes in lung function, or with work-related respiratory symptoms. These findings suggest that increased NL cellularity may be seen in workers exposed to high dust levels

  16. Laboratory Studies on the Charging of Dust Grains in a Plasma

    NASA Astrophysics Data System (ADS)

    Xu, Wenjun

    1993-01-01

    The charging of dust grains by the surrounding plasma is studied in a dusty plasma device (DPD) (Xu, W., B. Song, R. L. Merlino, and N. D'Angelo, Rev. Sci. Instrum., 63, 5266, 1992). The dusty plasma device consists of a rotating-drum dust dispersal device used in conjunction with an existing Q-machine, to produce extended, steady state, magnetized plasma columns. The dust density in the dust chamber is controlled by the drum rotation speed. The device is capable of generating a dusty plasma in which as much as about 90% of the negative charge is attached to the dust grains of 1-10mu m size. Measurements of the dust parameter eta, the percentage of negative charge on free electrons in the dusty plasma, are presented. The dust parameter eta is found to depend on the rotational speed of the dust chamber, plasma density and the type and size of different dust. The dust parameter eta is calculated from a pair of Langmuir curves taken with and without dust under the same conditions. The operation of the dust chamber as described above has been confirmed by the agreement between the measurements of eta and the direct mechanical measurements consisting of weighing dust samples collected within the rotation dust chamber, at different rotation rates. By varying the ratio d/lambda_ {rm D} between the intergrain distance and the plasma Debye length, the effects predicted by Goertz and Ip (Goertz, C. K., and W-H. Ip, Geophys. Res. Lett., 11, 349, 1984), and subsequently reanalyzed in a more general fashion by Whipple et al. (Whipple, E. C., T. G. Northrop, and D. A. Mendis, J. Geophys. Rev., 90, 7405, 1985), as "isolated" dust grains become "closely packed" grains, have been demonstrated experimentally (Xu, W., N. D'Angelo, and R. L. Merlino, J. Geophys. Rev., 98, 7843, 1993). Similar results are presented and compared for two types of dust, kaolin and Al_2O _3, which have been studied in the experiment.

  17. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  18. Work Tasks as Determinants of Grain Dust and Microbial Exposure in the Norwegian Grain and Compound Feed Industry.

    PubMed

    Straumfors, Anne; Heldal, Kari Kulvik; Wouters, Inge M; Eduard, Wijnand

    2015-07-01

    The grain and compound feed industry entails inevitable risks of exposure to grain dust and its microbial content. The objective of this study was therefore to investigate task-dependent exposure differences in order to create knowledge basis for awareness and exposure reducing measures in the Norwegian grain and compound feed industry. A total of 166 samples of airborne dust were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified and used as individual outcomes in mixed models with worker nested in company as random effect and different departments and tasks as fixed effects. The exposure levels were highest in grain elevator departments. Exposure to endotoxins was particularly high. Tasks that represented the highest and lowest exposures varied depending on the bioaerosol component. The most important determinants for elevated dust exposure were cleaning and process controlling. Cleaning increased the dust exposure level by a factor of 2.44 of the reference, from 0.65 to 1.58mg m(-3), whereas process controlling increased the dust exposure level by a factor of 2.97, from 0.65 to 1.93mg m(-3). Process controlling was associated with significantly less grain dust exposure in compound feed mills and the combined grain elevators and compound feed mills, than in grain elevators. The exposure was reduced by a factor of 0.18 and 0.22, from 1.93 to 0.34mg m(-3) and to 0.42mg m(-3), respectively, compared with the grain elevators. Inspection/maintenance, cleaning, and grain rotation and emptying were determinants of higher exposure to both endotoxin and β-1→3-glucans. Seed winnowing was in addition a strong determinant for endotoxin, whereas mixing of animal feed implied higher β-1→3-glucan exposure. Cleaning was the only task that contributed significantly to

  19. The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli

    2013-01-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  20. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  1. Trichothecene mycotoxins and their determinants in settled dust related to grain production.

    PubMed

    Nordby, Karl-Christian; Halstensen, Anne Straumfors; Elen, Oleif; Clasen, Per-Erik; Langseth, Wenche; Kristensen, Petter; Eduard, Wijnand

    2004-01-01

    We hypothesise that inhalant exposure to mycotoxins causes developmental outcomes and certain hormone-related cancers that are associated with grain farming in an epidemiological study. The aim of the present study was to identify and validate determinants of measured trichothecene mycotoxins in grain dust as work environmental trichothecene exposure indicators. Settled grain dust was collected in 92 Norwegian farms during seasons of 1999 and 2000. Production characteristics and climatic data were studied as determinants of trichothecenes in settled dust samples obtained during the production of barley (N = 59), oats (N = 32), and spring wheat (N = 13). Median concentrations of trichothecenes in grain dust were <20, 54, and < 50 mg/kg (ranges < 20-340, < 30-2400, and < 50-1200) for deoxynivalenol (DON), HT-2 toxin (HT-2) and T-2 toxin (T-2) respectively. Late blight potato rot (fungal) forecasts have been broadcast in Norway to help prevent this potato disease. Fungal forecasts representing wet, temperate, and humid meteorological conditions were identified as strong determinants of trichothecene mycotoxins in settled grain dust in this study. Differences in cereal species, production properties and districts contributed less to explain mycotoxin concentrations. Fungal forecasts are validated as indicators of mycotoxin exposure of grain farmers and their use in epidemiological studies may be warranted.

  2. Dust models compatible with Planck intensity and polarization data in translucent lines of sight

    NASA Astrophysics Data System (ADS)

    Guillet, V.; Fanciullo, L.; Verstraete, L.; Boulanger, F.; Jones, A. P.; Miville-Deschênes, M.-A.; Ysard, N.; Levrier, F.; Alves, M.

    2018-02-01

    Context. Current dust models are challenged by the dust properties inferred from the analysis of Planck observations in total and polarized emission. Aims: We propose new dust models compatible with polarized and unpolarized data in extinction and emission for translucent lines of sight (0.5 < AV < 2.5). Methods: We amended the DustEM tool to model polarized extinction and emission. We fit the spectral dependence of the mean extinction, polarized extinction, total and polarized spectral energy distributions (SEDs) with polycyclic aromatic hydrocarbons, astrosilicate and amorphous carbon (a-C) grains. The astrosilicate population is aligned along the magnetic field lines, while the a-C population may be aligned or not. Results: With their current optical properties, oblate astrosilicate grains are not emissive enough to reproduce the emission to extinction polarization ratio P353/pV derived with Planck data. Successful models are those using prolate astrosilicate grains with an elongation a/b = 3 and an inclusion of 20% porosity. The spectral dependence of the polarized SED is steeper in our models than in the data. Models perform slightly better when a-C grains are aligned. A small (6%) volume inclusion of a-C in the astrosilicate matrix removes the need for porosity and perfect grain alignment, and improves the fit to the polarized SED. Conclusions: Dust models based on astrosilicates can be reconciled with data by adapting the shape of grains and adding inclusions of porosity or a-C in the astrosilicate matrix.

  3. Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Myers, Philip C.; Stephens, Ian W.; Tobin, John; Commerçon, Benoît; Henning, Thomas; Looney, Leslie; Kwon, Woojin; Segura-Cox, Dominique; Harris, Robert

    2018-06-01

    We present high-resolution (∼30 au) ALMA Band 6 dust polarization observations of VLA 1623. The VLA 1623 data resolve compact ∼40 au inner disks around the two protobinary sources, VLA 1623-A and VLA 1623-B, and also an extended ∼180 au ring of dust around VLA 1623-A. This dust ring was previously identified as a large disk in lower-resolution observations. We detect highly structured dust polarization toward the inner disks and the extended ring with typical polarization fractions ≈1.7% and ≈2.4%, respectively. The two components also show distinct polarization morphologies. The inner disks have uniform polarization angles aligned with their minor axes. This morphology is consistent with expectations from dust scattering. By contrast, the extended dust ring has an azimuthal polarization morphology not previously seen in lower-resolution observations. We find that our observations are well-fit by a static, oblate spheroid model with a flux-frozen, poloidal magnetic field. We propose that the polarization traces magnetic grain alignment likely from flux freezing on large scales and magnetic diffusion on small scales. Alternatively, the azimuthal polarization may be attributed to grain alignment by the anisotropic radiation field. If the grains are radiatively aligned, then our observations indicate that large (∼100 μm) dust grains grow quickly at large angular extents. Finally, we identify significant proper motion of VLA 1623 using our observations and those in the literature. This result indicates that the proper motion of nearby systems must be corrected for when combining ALMA data from different epochs.

  4. A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casassus, Simon; Marino, Sebastian; Pérez, Sebastian

    2015-10-20

    A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at submillimeter wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply confined and should follow a distribution that is markedly different from the gas. However, gas tracers such as {sup 12}CO and the infrared emission frommore » small grains are both very optically thick where the submillimeter continuum originates, so previous observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core accretion. Here we report multifrequency observations of HD 142527, from 34 to 700 GHz, that reveal a compact concentration of grains approaching centimeter sizes, with a few Earth masses, embedded in a large-scale crescent of smaller, submillimeter-sized particles. The emission peaks at wavelengths shorter than ∼1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is efficient enough for grains observable at centimeter wavelengths to lead to compact concentrations.« less

  5. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  6. Disintegration of Dust Aggregates in Interstellar Shocks and the Lifetime of Dust Grains in the ISM

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Jones, A. P.; Tielens, A. G. G. M.; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    Interstellar grains are destroyed by shock waves moving through the ISM. In fact, the destruction of grains may be so effective that it is difficult to explain the observed abundance of dust in the ISM as a steady state between input of grains from stellar sources and destruction of grains in shocks. This is especially a problem for the larger grains. Therefore, the dust grains must be protected in some way. Jones et al. have already considered coatings and the increased post-shock drag effects for low density grains. In molecular clouds and dense clouds, coagulation of grains is an important process, and the largest interstellar grains may indeed be aggregates of smaller grains rather than homogeneous particles. This may provide a means to protect the larger grains, in that, in moderate velocity grain-grain collisions in a shock the aggregates may disintegrate rather than be vaporized. The released small particles are more resilient to shock destruction (except in fast shocks) and may reform larger grains later, recovering the observed size distribution. We have developed a model for the binding forces in grain aggregates and apply this model to the collisions between an aggregate and fast small grains. We discuss the results in the light of statistical collision probabilities and grain life times.

  7. Head-on collision of dust acoustic solitons in a nonextensive plasma with variable size dust grains of arbitrary charge

    NASA Astrophysics Data System (ADS)

    Behery, E. E.

    2016-11-01

    The head-on collision of two dust acoustic solitons (DASs) in a nonextensive plasma with positive or negative dust grains fluid including the effect of dust size distribution (DSD) is studied. The phase shifts for the two solitons due to the collision are derived by applying the extended Poincaré-Lighthill-Kuo (PLK) method. The influences of the power law DSD and the nonextensivity of plasma particles on the characteristic properties of the head-on collision of DASs are analyzed. It is found that the phase shifts can vanish, only for the case of positive dust grains, for certain values and ranges of the dust grain radius and the entropic index of ions (qi) . Also, they undergo a cutoff in the range of qi>1 for the subextensive distribution. A brief discussion of possible applications in laboratory and space plasmas is included.

  8. Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming

    1995-01-01

    Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.

  9. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  10. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies

  11. The effect of the ambient plasma conditions on the variation of charge on dust grains

    NASA Astrophysics Data System (ADS)

    Chakraborty, M.; Kausik, S. S.; Saikia, B. K.; Kakati, M.; Bujarbarua, S.

    2003-02-01

    An experimental study has been performed into the variation of charge on dust grains with change in the ambient plasma conditons. A dust beam containing submicron sized silver grains was passed through plasma. The dust grains were charged by the plasma particles as well as by primary electrons from the filament. An increase in the filament current increased both the plasma density and the number density of the primary electrons. The grain charge was found out both from the deflection of the dust grains and also from the floating potential. The experimental observations shows that the secondary emission caused by the primary electrons significantly influenced and played a prominent role in the establishment of charge on the grains.

  12. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  13. Charging and shielding of a non-spherical dust grain in a plasma

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Delzanno, G.

    2013-12-01

    The interaction of objects with a plasma is a classic problem of plasma physics. Originally, it was investigated in the framework of probe theory but more recently its interest has grown in connection with space and complex or dusty plasmas. It is customary to assume that the dust grains are spherical, and theories such as the Orbital Motion Limited (OML) theory are usually applied to calculate the dust charge. However, in nature dust grains have a variety of sizes and shapes. It is therefore natural to ask about the influence of the dust shape on the charging and shielding process. In order to answer this question, we study the charging and shielding of a non-spherical dust grain immersed in a Maxwellian plasma at rest. We consider prolate ellipsoids, varying parametrically the aspect ratio while keeping the surface area constant. The study is conducted with CPIC [1], a newly developed Particle-In-Cell code in curvilinear geometry that conforms to objects of arbitrary shape. For a plasma with temperature ratio equal to unity and for a dust grain with characteristic size of the order of the Debye length, it is shown that the floating potential has a very weak dependence on the geometry, while the charge on the grain increases by a factor of three when the aspect ratio changes from one (a sphere) to hundred (a needle-like ellipsoid). These results are consistent with the higher capacitance of ellipsoidal dust grains, but also indicate that the screening length depends on the geometry. Scaling studies of the dependence of the charging time and screening length on the aspect ratio and plasma conditions are presented, including theoretical considerations to support the numerical results. [1] G.L. Delzanno, et al, ';CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies', under review.

  14. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Morfill, G.; Gruen, E.

    1993-01-01

    The Ulysses mission detected quasi-periodic streams of high-velocity submicron-sized dust particles during its encounter with Jupiter. It is shown here how the dust events could result from the acceleration and subsequent ejection of small grains by Jupiter's magnetosphere. Dust grains entering the plasma environment of the magnetosphere become charged, with the result that their motion is then determined by both electromagnetic and gravitational forces. This process is modeled, and it is found that only those particles in a certain size range gain sufficient energy to escape the Jovian system. Moreover, if Io is assumed to be the source of the dust grains, its location in geographic and geomagnetic coordinates determines the exit direction of the escaping particles, providing a possible explanation for the observed periodicities. The calculated mass and velocity range of the escaping dust gains are consistent with the Ulysses findings.

  15. Magnetorotational instability in protoplanetary discs: the effect of dust grains

    NASA Astrophysics Data System (ADS)

    Salmeron, Raquel; Wardle, Mark

    2008-08-01

    We investigate the linear growth and vertical structure of the magnetorotational instability (MRI) in weakly ionized, stratified protoplanetary discs. The magnetic field is initially vertical and dust grains are assumed to be well mixed with the gas over the entire vertical dimension of the disc. For simplicity, all the grains are assumed to have the same radius (a = 0.1,1 or 3μm) and constitute a constant fraction (1 per cent) of the total mass of the gas. Solutions are obtained at representative radial locations (R = 5 and 10 au) from the central protostar for a minimum-mass solar nebula model and different choices of the initial magnetic field strength, configuration of the diffusivity tensor and grain sizes. We find that when no grain are present, or they are >~1μm in radius, the mid-plane of the disc remains magnetically coupled for field strengths up to a few gauss at both radii. In contrast, when a population of small grains (a = 0.1μm) is mixed with the gas, the section of the disc within two tidal scaleheights from the mid-plane is magnetically inactive and only magnetic fields weaker than ~50 mG can effectively couple to the fluid. At 5 au, Ohmic diffusion dominates for z/H <~ 1 when the field is relatively weak (B <~ a few milligauss), irrespective of the properties of the grain population. Conversely, at 10 au this diffusion term is unimportant in all the scenarios studied here. High above the mid-plane (z/H >~ 5), ambipolar diffusion is severe and prevents the field from coupling to the gas for all B. Hall diffusion is dominant for a wide range of field strengths at both radii when dust grains are present. The growth rate, wavenumber and range of magnetic field strengths for which MRI-unstable modes exist are all drastically diminished when dust grains are present, particularly when they are small (a ~ 0.1μm). In fact, MRI perturbations grow at 5 au (10 au) for B <~ 160 mG (130 mG) when 3μm grains are mixed with the gas. This upper limit on the

  16. Effect of particles attachment to multi-sized dust grains present in electrostatic sheaths of discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaham, B.; Faculté des Sciences et des Sciences Appliquées, Université de Bouira Rue Drissi Yahia 10000 Bouira; Tahraoui, A., E-mail: alatif-tahraoui@yahoo.fr

    The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grainsmore » trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.« less

  17. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  18. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    PubMed

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  19. Ochratoxin A and citrinin loads in stored wheat grains: impact of grain dust and possible prediction using ergosterol measurement.

    PubMed

    Tangni, E K; Pussemier, L

    2006-02-01

    Crop storage should be carried out under hygienic conditions to ensure safe products, but sometimes grain dust which has settled from previous storage may be left over and incorporated to the following stored grains. This paper describes the results obtained using a lab model developed in order to assess the impact of grain dust incorporation for its direct contribution as a contaminant but also as an inoculum in stored wheat. Settled grain dust (4 samples) released from Belgian grain storages were collected and analysed by HPLC for ergosterol, ochratoxin A (OTA) and citrinin (CIT) content. For OTA and for ergosterol, there was a high degree of variability in concentrations found in the dust samples (from 17.3-318 ng g(-1) and from 39-823 microg g(-1), respectively) whilst for CIT, the range was less significant (from 137-344 ng g(-1)). Incorporation of grain dust into wheat storage contributed to an increase in the concentrations of mycotoxins in the stored grain. Dust acts as a contaminant and as an inoculum. According to these two ways, patterns of mycotoxin generation vary with the nature of the mycotoxin, the mycotoxigenic potential of dust and the water activity of the wheat. OTA and CIT showed a very versatile image when considering the amounts of toxins produced under the selected experimental conditions. The development of a robust tool to forecast the mycotoxigenicity of dust was based on the determination of ergosterol content as a general marker of fungal biomass. Present results suggest that this predictive tool would only be valid for predicting the contamination level of CIT and OTA at reasonable moisture content (14-20%). The potential risk of having highly contaminated batches from stock to stock may thus occur and this paper discusses possible pathways leading to OTA and CIT contamination either under wet or dry storage conditions. We therefore, recommend taking precautionary measures not only by controlling and maintaining moisture at a

  20. LUNAR SURFACE AND DUST GRAIN POTENTIALS DURING THE EARTH’S MAGNETOSPHERE CROSSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaverka, J.; Richterová, I.; Pavlu, J.

    2016-07-10

    Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itselfmore » and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.« less

  1. Dust grains from the heart of supernovae

    NASA Astrophysics Data System (ADS)

    Bocchio, Marco; Marassi, Stefania; Schneider, Raffaella; Bianchi, Simone; Limongi, Marco; Chieffi, A.

    2016-06-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. We have developed a new code (GRASH_Rev) which follows the newly-formed dust evolution throughout the supernova explosion until the merging of the forward shock with the circumstellar ISM. We have considered four well studied SNe in the Milky Way and Large Magellanic Cloud: SN1987A, CasA, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations and estimate that between 1 and 8% of the observed mass will survive, leading to a SN dust production rate of (3.9± 3.7)×10^(-4) MM_{⊙})/yr in the Milky Way. This value is one order of magnitude larger than the dust production rate by AGB stars but insufficient to counterbalance the dust destruction by SNe, therefore requiring dust accretion in the gas phase.

  2. A Wealth of Dust Grains in Quasar Winds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This plot of data captured by NASA's Spitzer Space Telescope reveals dust entrained in the winds rushing away from a quasar, or growing black hole. The quasar, called PG2112+059, is located deep inside a galaxy 8 billion light-years away. Astronomers believe the dust might have been forged in the winds, which would help explain where dust in the very early universe came from.

    The data were captured by Spitzer's infrared spectrograph, an instrument that splits apart light from the quasar into a spectrum that reveals telltale signs of different minerals. Each type of mineral, or dust grain, has a unique signature, as can be seen in the graph, or spectrum, above.

    The strongest features are from the mineral amorphous olivine, or glass (purple); the mineral forsterite found in sand (blue); and the mineral corundum found in rubies (light blue). The detection of forsterite and corundum is highly unusual in galaxies without quasars. Therefore, their presence is a key clue that these grains might have been created in the quasar winds and not by dying stars as they are in our Milky Way galaxy. Forsterite is destroyed quickly in normal galaxies by radiation, so it must be continually produced to be detected by Spitzer.

    Corundum is hard, and provides a seed that softer, more common minerals usually cover up. As a result, corundum is usually not seen in spectra of galaxies. Since Spitzer did detect the mineral, it is probably forming in a clumpy environment, which is expected in quasar winds. All together, the signatures of the unusual minerals in this spectrum point towards dust grains forming in the winds blowing away from quasars.

  3. Grain Temperature and Infrared Emission from Carbon Dust of Mixed Composition

    NASA Astrophysics Data System (ADS)

    Bartlett, S.; Duley, W. W.

    1996-06-01

    The equilibrium temperature of carbonaceous dust grains whose composition is consistent with IR spectra of diffuse cloud and dense cloud dust has been calculated using random covalent network (RCN) solutions for amorphous dust having a mixed graphite, diamond, and polymeric hydrocarbon composition. An effective medium approximation has been adopted to describe optical and thermal constants for dust compositions consistent with IR absorption spectra. A small amount of sp2 hybridized carbon in the form of aromatic rings is found to have a significant effect in reducing equilibrium temperature in dust with high diamond/polymer content. This formalism has also been used to calculate nonequilibrium emission spectra of very small grains (VSGs) subjected to stochastic heating in the interstellar radiation field. Such grains are found to emit strongly in sharp IR bands associated with C-H bonds at 3.4 μm and longer wavelengths. The effect of varying graphite/diamond/hydrocarbon composition on nonequilibrium emission by VSGs can also be described using this formalism. The ratio of emission at 12 and 25 μm is found to be high for VSGs with a large fraction of diamond or polymeric hydrocarbon but decreases dramatically for dust with a large sp2 aromatic component.

  4. Coagulation of dust grains in the plasma of an RF discharge in argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal', A. F.

    2009-03-15

    Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.

  5. Dust grain characterization — Direct measurement of light scattering

    NASA Astrophysics Data System (ADS)

    BartoÅ, P.; Pavlů, J.

    2018-01-01

    Dust grains play a key role in dusty plasma since they interact with the plasma we can use them to study plasma itself. The grains are illuminated by visible light (e.g., a laser sheet) and the situation is captured with camera. Despite of simplicity, light scattering on similar-to-wavelength sized grains is complex phenomenon. Interaction of the electromagnetic wave with material has to be computed with respect to Maxwell equations — analytic solution is nowadays available only for several selected shapes like sphere, coated sphere, or infinite cylinder. Moreover, material constants needed for computations are usually unknown. For computation result verification and material constant determination, we designed and developed a device directly measur­ing light scattering profiles. Single dust grains are trapped in the ultrasonic field (so called "acoustic levitation") and illuminated by the laser beam. Scattered light is then measured by a photodiode mounted on rotating platform. Synchronous detection is employed for a noise reduction. This setup brings several benefits against conventional methods: (1) it works in the free air, (2) the measured grain is captured for a long time, and (3) the grain could be of arbitrary shape.

  6. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  7. Ultrathin amorphous coatings on lunar dust grains.

    PubMed

    Bibring, J P; Duraud, J P; Durrieu, L; Jouret, C; Maurette, M; Meunier, R

    1972-02-18

    UItrathin amorphous coatings have been observed by high-voltage electron microscopy on micrometer-sized dust grains from the Apollo 11, Apollo 12, Apollo 14, and Luna 16 missions. Calibration experiments show that these coatings result from an "ancient" implantation of solar wind ions in the grains. This phenomenon has interdisciplinary applications concerning the past activity of the sun, the lunar albedo, the ancient lunar atmosphere and magnetic field, the carbon content of lunar soils, and lunar dynamic processes.

  8. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individualmore » micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.« less

  9. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  10. [The epidemiological validation of the MPEL for grain dust in the atmosphere].

    PubMed

    Pinigin, M A; Cherepov, E M; Safiulin, A A; Petrova, I V; Mukhambetova, L Kh; Osipova, E M; Veselov, A P

    1998-01-01

    The use of calculating and gravimetric methods for examining the grain dust pollution of the ambient air at the site of an elevator determined the maximum single, mean daily, and mean annual concentrations at different distances from the source of dust emission. The mean ratio of these concentrations was 12.1:4.3:1, respectively. The calculated concentration-effect and concentration-time relationships provided evidence for the maximum single, mean daily, and mean annual allowable concentrations for grain dust in the ambient air.

  11. Rapid formation of large dust grains in the luminous supernova 2010jl.

    PubMed

    Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C

    2014-07-17

    The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

  12. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Dong-Ning; Yang, Yang; Yan, Qiang

    Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

  13. GIADA On-Board Rosetta: Early Dust Grain Detections and Dust Coma Characterization of Comet 67P/C-G

    NASA Astrophysics Data System (ADS)

    Rotundi, A.; Della Corte, V.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Sordini, R.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Fulle, M.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Grün, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zakharov, V.; Zarnecki, J.

    2014-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) flying on-board Rosetta is devoted to study the cometary dust environment of 67P/Churiumov-Gerasimenko. GIADA is composed of 3 sub-systems: the GDS (Grain Detection System), based on grain detection through light scattering; an IS (Impact Sensor), giving momentum measurement detecting the impact on a sensed plate connected with 5 piezoelectric sensors; the MBS (MicroBalances System), constituted of 5 Quartz Crystal Microbalances (QCMs), giving cumulative deposited dust mass by measuring the variations of the sensors' frequency. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the velocity distribution of dust grains emitted from the cometary nucleus.No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such large heliocentric distances are available up to date. We present here the first results obtained from the beginning of the Rosetta scientific phase. We will report dust grains early detection at about 800 km from the nucleus in August 2014 and the following measurements that allowed us characterizing the 67P/C-G dust environment at distances less than 100 km from the nucleus and single grains dynamical properties. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project

  14. A bimodal dust grain distribution in the IC 434 H ii region

    NASA Astrophysics Data System (ADS)

    Ochsendorf, B. B.; Tielens, A. G. G. M.

    2015-04-01

    Context. Studies of dust evolution and processing in different phases of the interstellar medium (ISM) is essential to understanding the lifecycle of dust in space. Recent results have challenged the capabilities and validity of current dust models, indicating that the properties of interstellar dust evolve as it transits between different phases of the ISM. Aims: We characterize the dust content from the IC 434 H ii region, and present a scenario that results in the large-scale structure of the region seen to date. Methods: We conduct a multi-wavelength study of the dust emission from the ionized gas, and combine this with modeling, from large scales that provide insight into the history of the IC 434/L1630 region, to small scales that allow us to infer quantitative properties of the dust content inside the H ii region. Results: The dust enters the H ii region through momentum transfer with a champagne flow of ionized gas, set up by a chance encounter between the L1630 molecular cloud and the star cluster of σ Ori. We observe two clearly separated dust populations inside the ionized gas, that show different observational properties, as well as contrasting optical properties. Population A is colder (~25 K) than predicted by widely-used dust models, its temperature is insensitive to an increase of the impinging radiation field, it is momentum-coupled to the gas, and efficiently absorbs radiation pressure to form a dust wave at 1.0 pc ahead of σ Ori AB. Population B is characterized by a constant [20/30] flux ratio throughout the H ii region, heats up to ~75 K close to the star, and is less efficient in absorbing radiation pressure, forming a dust wave at 0.1 pc from the star. Conclusions: The dust inside IC 434 is bimodal. The characteristics of population A are remarkable and cannot be explained by current dust models. We argue that large porous grains or fluffy aggregates are potential candidates to explain much of the observational characteristics. Population B

  15. Dust exposure in workers from grain storage facilities in Costa Rica.

    PubMed

    Rodríguez-Zamora, María G; Medina-Escobar, Lourdes; Mora, Glend; Zock, Jan-Paul; van Wendel de Joode, Berna; Mora, Ana M

    2017-08-01

    About 12 million workers are involved in the production of basic grains in Central America. However, few studies in the region have examined the occupational factors associated with inhalable dust exposure. (i) To assess the exposure to inhalable dust in workers from rice, maize, and wheat storage facilities in Costa Rica; (ii) to examine the occupational factors associated with this exposure; and (iii) to measure concentrations of respirable and thoracic particles in different areas of the storage facilities. We measured inhalable (<100μm) dust concentrations in 176 personal samples collected from 136 workers of eight grain storage facilities in Costa Rica. We also measured respirable (<4μm) and thoracic (<10μm) dust particles in several areas of the storage facilities. Geometric mean (GM) and geometric standard deviation (GSD) inhalable dust concentrations were 2.0mg/m 3 and 7.8 (range=<0.2-275.4mg/m 3 ). Personal inhalable dust concentrations were associated with job category [GM for category/GM for administrative staff and other workers (95% CI)=4.4 (2.6, 7.2) for packing; 20.4 (12.3, 34.7) for dehulling; 109.6 (50.1, 234.4) for unloading in flat bed sheds; 24.0 (14.5, 39.8) for unloading in pits; and 31.6 (18.6, 52.5) for drying], and cleaning task [15.8 (95% CI: 10.0, 26.3) in workers who cleaned in addition to their regular tasks]. Higher area concentrations of thoracic dust particles were found in wheat (GM and GSD=4.3mg/m 3 and 4.5) and maize (3.0mg/m 3 and 3.9) storage facilities, and in grain drying (2.3mg/m 3 and 3.1) and unloading (1.5mg/m 3 and 4.8) areas. Operators of grain storage facilities showed elevated inhalable dust concentrations, mostly above international exposure limits. Better engineering and administrative controls are needed. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Constraining dust properties in circumstellar envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of carbon dust

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-10-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.

  17. Methanol extract of grain dust shows complement fixing activity and other characteristics similar to tannic acid.

    PubMed Central

    Skea, D; Broder, I

    1986-01-01

    We have found several similarities between tannic acid and grain dust extract prepared with methanol. Both formed a precipitate with IgG, and these interactions were inhibited by albumin. In addition, both preparations fixed complement; this activity was heat stable and was removed by prior adsorption of the preparations with hide powder. Adsorption with polyvinyl polypyrrolidone reduced the complement-fixing activity of tannic acid but not that of the methanol grain dust extract. The similarities between tannic acid and the methanol grain dust extract are consistent with the presence of a tannin or tanninlike material in grain dust. Images FIGURE 1. PMID:3709479

  18. The temperature of large dust grains in molecular clouds

    NASA Technical Reports Server (NTRS)

    Clark, F. O.; Laureijs, R. J.; Prusti, T.

    1991-01-01

    The temperature of the large dust grains is calculated from three molecular clouds ranging in visual extinction from 2.5 to 8 mag, by comparing maps of either extinction derived from star counts or gas column density derived from molecular observations to I(100). Both techniques show the dust temperature declining into clouds. The two techniques do not agree in absolute scale.

  19. Trajectories of charged dust grains in the cometary environment

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Mendis, D. A.

    1985-07-01

    Using a simple model of the particles and fields environment of a comet, the trajectories of the smallest (micron- and submicron-sized) dust grains that are expected to be released from a cometary nucleus are calculated. It is shown that electromagnetic forces play a crucial role in the dynamics of these particles. The present calculations indicate not only the asymmetry of the sunward dust envelopes that have been suggested earlier by other authors, but they also indicate the possible existence of wavy dust features far down the tail, reminiscent of the peculiar wavy dust feature observed in the dust tail of Comet Ikeya-Seki 1965f. The importance of these findings in studying the lower end of the cometary dust mass spectrum during the forthcoming fly-by missions to Comet Halley is underscored.

  20. Enhanced neutrophil chemotactic activity after bronchial challenge in subjects with grain dust-induced asthma.

    PubMed

    Park, H S; Jung, K S

    1998-03-01

    There have been few reports suggesting involvement of neutrophils in induction of bronchoconstriction after inhalation of grain dust. To understand the role of neutrophils in pathogenesis of grain dust-induced asthma. We observed serum neutrophil chemotactic activity during grain dust-bronchoprovocation tests in six asthmatic subjects with positive bronchial challenges (group I). They were compared with those of six symptomatic subjects from the same workplace with negative bronchial challenges (group II). After grain dust inhalation, serum neutrophil chemotactic activity significantly increased at 30 minutes (P = .028), and then decreased to baseline level at 240 minutes (P = .028) in five subjects of group I having isolated early asthmatic responses. Enhanced neutrophil chemotactic activity was persistent for up to 240 minutes in one asthmatic subject having both early and late asthmatic responses. There was, however, no significant change in serum neutrophil chemotactic activity during bronchial challenges in subjects of group II. Pre-incubation of sera with anti-interleukin-8 (IL-8) antibody did not affect the neutrophil chemotactic activity results of group I subjects. These results suggest that enhanced neutrophil chemotactic activity distinct from IL-8 may contribute to significant bronchoconstriction induced by grain dust.

  1. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

    NASA Astrophysics Data System (ADS)

    Begum, M.; Das, N.

    2018-01-01

    The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

  2. Dust Grain Charge in the Lunar Environment

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Richterova, Ivana; Vysinka, Marek; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2014-05-01

    Interaction of a lunar surface with solar wind and magnetosphere plasmas leads to it charging by several processes as photoemission, a collection of primary particles and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a presence of crustal magnetic anomalies with can generate a "mini-magnetosphere" capable for more or less complete shielding the surface. On the other hand, shielding of solar light and plasma particles by rocks and craters can also locally influence the surface potential as well as a presence of a plasma wake strongly changes this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred of volts (night side). At the night side, negative potentials can reach -4 kV during solar energetic particle (SEP) events. Recent measurements of the surface potential by Lunar Prospector and Artemis spacecraft have shown surprisingly high negative dayside surface potentials (-500 V) during the magnetotail crossings as well as the positive surface potential higher than 100 V. One possible explanation is its non-monotonic profile above a surface where the potential minimum is formed by the space charge. Dust grains presented in this complicated environment are also charged by similar processes as the lunar surface. A strong dependence of the secondary electron yield on the grain size can significantly influence dust charging mainly in the Earth's plasma sheet where an equilibrium grain potential can by different than the surface potential and can reach even the opposite sign. This process can lead to levitation of dust above a surface observed by the Surveyor spacecraft.

  3. Mechanisms of dust grain charging in plasma with allowance for electron emission processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mol’kov, S. I.; Savin, V. N., E-mail: moped@onego.ru

    2017-02-15

    The process of dust grain charging is described with allowance for secondary, ion-induced, photoelectric, and thermal electron emission from the grain surface. The roughness of the grain surface is taken into account. An intermediate charging regime involving ion–atom collisions and electron ionization in the perturbed plasma region is analyzed using the moment equations and Poisson’s equation. A calculation method is proposed that allows one to take into account the influence of all the above effects and determine the radius of the plasma region perturbed by the dust grain.

  4. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on

  5. Properties of grains derived from IRAS observations of dust

    NASA Technical Reports Server (NTRS)

    Wesselius, P. R.; Chlewicki, Grzegorz; Laureijs, Rene J.

    1989-01-01

    The authors used the results of Infrared Astronomy Satellite (IRAS) observations of diffuse medium dust to develop a theoretical model of the infrared properties of grains. Recent models based entirely on traditional observations of extinction and polarization include only particles whose equilibrium temperatures do not exceed 20 K in the diffuse interstellar medium. These classical grains, for which the authors have adopted the multipopulation model developed by Hong and Greenberg (1980), can explain only the emission in the IRAS 100 micron band. The measurements at shorter wavelengths (12, 25 and 60 microns) require two new particle populations. Vibrational fluorescence from aromatic molecules provides the most likely explanation for the emission observed at 12 microns, with polycyclic aeromatic hydrocarbons (PAHs) containing about 10 percent of cosmic carbon. A simplified model of the emission process shows that PAH molecules can also explain most of the emission measured by IRAS at 25 microns. The authors identified the warm particles responsible for the excess 60 microns emission with small (a approx. equals 0.01 microns) iron grains. A compilation of the available data on the optical properties of iron indicates that the diffuse medium temperature of small iron particles should be close to 50 K and implies that a large, possibly dominant, fraction of cosmic iron must be locked up in metallic particles in order to match the observed 60 microns intensities. The model matches the infrared fluxes typically observed by IRAS in the diffuse medium and can also reproduce the infrared surface brightness distribution in individual clouds. In particular, the combination of iron and classical cool grains can explain the surprising observations of the 60/100 microns flux ratio in clouds, which is either constant or increases slightly towards higher opacities. The presence of metallic grains has significant implications for the physics of the interstellar medium, including

  6. Analysis of the Effect of Prevailing Weather Conditions on the Occurrence of Grain Dust Explosions.

    PubMed

    Sanghi, Achint; Ambrose, R P Kingsly

    2016-07-27

    Grain dust explosions have been occurring in the U.S. for the past twenty years. In the past ten years, there have been an average of ten explosions a year, resulting in nine fatalities and 93 injuries. In more than half of these cases, the ignition source remains unidentified. The effect of ambient humidity on the likelihood of a dust explosion has been discussed for many years. However, no investigation into a possible link between the two has been carried out. In this study, we analyzed local weather data and grain dust explosions during the period 2006 to 2014 to measure potential relationships between the two events. The 84 analyzed explosions do not show any trend with regard to prevailing temperatures, or relative or absolute humidity. In addition, the ignition source could not be identified in 54 of the incidents. The majority of grain dust explosion incidents occurred at grain elevator facilities, where the dust generation potential was high compared with grain processing industries. Copyright© by the American Society of Agricultural Engineers.

  7. Artist rendering of dust grains colliding at low speeds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.

  8. Ion implantation effects in 'cosmic' dust grains

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Meunier, R.; Jouffrey, B.; Jouret, C.

    1974-01-01

    Cosmic dust grains, whatever their origin may be, have probably suffered a complex sequence of events including exposure to high doses of low-energy nuclear particles and cycles of turbulent motions. High-voltage electron microscope observations of micron-sized grains either naturally exposed to space environmental parameters on the lunar surface or artificially subjected to space simulated conditions strongly suggest that such events could drastically modify the mineralogical composition of the grains and considerably ease their aggregation during collisions at low speeds. Furthermore, combined mass spectrometer and ionic analyzer studies show that small carbon compounds can be both synthesized during the implantation of a mixture of low-energy D, C, N ions in various solids and released in space by ion sputtering.

  9. Recommendations for reducing the effect of grain dust on the lungs. Canadian Thoracic Society Standards Committee.

    PubMed

    Becklake, M; Broder, I; Chan-Yeung, M; Dosman, J A; Ernst, P; Herbert, F A; Kennedy, S M; Warren, P W

    1996-11-15

    To assess the appropriateness of the current Canadian standards for exposure to grain dust in the workplace. The current permissible exposure limit of 10 mg of total grain dust per cubic metre of air (expressed as mg/m3) as an 8-hour time-weighted average exposure, or a lower permissible exposure limit. Acute symptoms of grain-dust exposure, such as cough, phlegm production, wheezing and dyspnea, similar chronic symptoms, and spirometric deficits revealing obstructive or restrictive disease. Articles published from 1924 to December 1993 were identified from Index Medicus and the bibliographies of pertinent articles. Subsequent articles published from 1994 (when the recommendations were approved by the Canadian Thoracic Society Standards Committee) to June 1996 were retrieved through a search of MEDLINE, and modification of the recommendations was not found to be necessary. Studies of interest were those that linked measurements of total grain dust levels to the development of acute and chronic respiratory symptoms and changes in lung function in exposed workers. Papers on the effects of grain dust on workers in feed mills were not included because other nutrients such as animal products may have been added to the grain. Unpublished reports (e.g., to Labour Canada) were included as sources of information. A high value was placed on minimizing the biological harm that grain dust has on the lungs of grain workers. A permissible exposure limit of 5 mg/m3 would control the short-term effects of exposure to grain dust on workers. Evidence is insufficient to determine what level is needed to prevent long-term effects. The economic implications of implementing a lower permissible exposure limit have not been evaluated. The current Canadian standards for grain-dust exposure should be reviewed by Labour Canada and the grain industry. A permissible exposure level of 5 mg/m3 is recommended to control short-term effects. Further measurements that link the levels of exposure to

  10. Recommendations for reducing the effect of grain dust on the lungs. Canadian Thoracic Society Standards Committee.

    PubMed Central

    Becklake, M; Broder, I; Chan-Yeung, M; Dosman, J A; Ernst, P; Herbert, F A; Kennedy, S M; Warren, P W

    1996-01-01

    OBJECTIVE: To assess the appropriateness of the current Canadian standards for exposure to grain dust in the workplace. OPTIONS: The current permissible exposure limit of 10 mg of total grain dust per cubic metre of air (expressed as mg/m3) as an 8-hour time-weighted average exposure, or a lower permissible exposure limit. OUTCOMES: Acute symptoms of grain-dust exposure, such as cough, phlegm production, wheezing and dyspnea, similar chronic symptoms, and spirometric deficits revealing obstructive or restrictive disease. EVIDENCE: Articles published from 1924 to December 1993 were identified from Index Medicus and the bibliographies of pertinent articles. Subsequent articles published from 1994 (when the recommendations were approved by the Canadian Thoracic Society Standards Committee) to June 1996 were retrieved through a search of MEDLINE, and modification of the recommendations was not found to be necessary. Studies of interest were those that linked measurements of total grain dust levels to the development of acute and chronic respiratory symptoms and changes in lung function in exposed workers. Papers on the effects of grain dust on workers in feed mills were not included because other nutrients such as animal products may have been added to the grain. Unpublished reports (e.g., to Labour Canada) were included as sources of information. VALUES: A high value was placed on minimizing the biological harm that grain dust has on the lungs of grain workers. BENEFITS, HARMS AND COSTS: A permissible exposure limit of 5 mg/m3 would control the short-term effects of exposure to grain dust on workers. Evidence is insufficient to determine what level is needed to prevent long-term effects. The economic implications of implementing a lower permissible exposure limit have not been evaluated. RECOMMENDATIONS: The current Canadian standards for grain-dust exposure should be reviewed by Labour Canada and the grain industry. A permissible exposure level of 5 mg/m3 is

  11. Large dust grains in the wind of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Scicluna, P.; Siebenmorgen, R.; Wesson, R.; Blommaert, J. A. D. L.; Kasper, M.; Voshchinnikov, N. V.; Wolf, S.

    2015-12-01

    Massive stars live short lives, losing large amounts of mass through their stellar wind. Their mass is a key factor determining how and when they explode as supernovae, enriching the interstellar medium with heavy elements and dust. During the red supergiant phase, mass-loss rates increase prodigiously, but the driving mechanism has proven elusive. Here we present high-contrast optical polarimetric-imaging observations of the extreme red supergiant VY Canis Majoris and its clumpy, dusty, mass-loss envelope, using the new extreme-adaptive-optics instrument SPHERE at the VLT. These observations allow us to make the first direct and unambiguous detection of submicron dust grains in the ejecta; we derive an average grain radius ~0.5 μm, 50 times larger than in the diffuse ISM, large enough to receive significant radiation pressure by photon scattering. We find evidence for varying grain sizes throughout the ejecta, highlighting the dynamical nature of the envelope. Grains with 0.5 μm sizes are likely to reach a safe distance from the eventual explosion of VY Canis Majoris; hence it may inject upwards of 10-2 M⊙ of dust into the ISM. Based on observations made with European Southern Observatory (ESO) telescopes at the La Silla Paranal Observatory under program 60.A-9368(A).Appendix A is available in electronic form at http://www.aanda.org

  12. Interstellar Dust in the Heliosheath: Tentative Discovery of the Magnetic Wall of the Heliosphere

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.

    2005-12-01

    The evident identification of interstellar dust grains entrained in the magnetic wall of the heliosphere is reported. It is shown that the distribution of dust grains causing the weak polarization of light from nearby stars is consistent with polarization by small charged interstellar dust grains captured in the heliosphere magnetic wall (Tinbergen 1982, Frisch 2005). There is an offset between the deflected small charged polarizing dust grains, radius less than 0.2 microns, and the undeflected large grain population, radius larger than 0.2 microns. The region of maximum polarization is towards ecliptic coordinates lambda,beta = 295,0 deg, which is offset along the ecliptic longitude by about 35 deg from the heliosphere nose and extends to low ecliptic latitudes where the heliosphere magnetic wall is expected. An offset is also found between the best aligned dust grains, near lambda=281 deg to 220 deg, and the upwind direction of the undeflected inflow of large grains seen by Ulysses and Galileo. In the aligned-grain region, the polarization strength anti-correlates with ecliptic latitude, indicating that the magnetic wall was predominantly at negative ecliptic latitudes when these data were acquired. These data are consistent with model predictions for an interstellar magnetic field which is tilted by 60 deg with respect to the ecliptic plane, and parallel to the galactic plane. References: Tinbergen, 1982: AA, v105, p53; Frisch, 2005: to appear in ApJL.

  13. Dynamics of dust in astrophysical plasma and implications

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem

    2012-06-01

    Dust is a ubiquitous constituent of the interstellar medium, molecular clouds, and circumstellar and protoplanetary disks. Dust emission interferes with observations of cosmic microwave background (CMB) temperature anisotropy and its polarized emission dominates the CMB B-mode polarization that prevents us from getting insight into the inflation epoch of the early universe. In my PhD thesis, I have studied fundamental physical processes of dust dynamics in astrophysical plasma and explored their implications for observations of the CMB, studies of magnetic fields, and formation of planets. I have investigated the spinning dust emission from very small grains (e.g., polycyclic aromatic hydrocarbons) of non-spherical shapes (including spheroid and triaxial ellipsoid shapes) that have grain axes fluctuating around grain angular momentum due to internal thermal fluctuations within the grain. I have proposed an approach based on Fourier transform to find power spectrum of spinning dust emission from grains of arbitrary grain shape. In particular, I have devised a method to find exact grain angular momentum distribution using the Langevin equation. I have explored the effects of transient spin-up by single-ion collisions, transient heating by single UV photons, and compressible turbulence on spinning dust emission. This improved model of spinning dust emission well reproduces observation data by Wilkinson Microwave Anisotropy Probe and allows a reliable separation of Galactic contamination from the CMB. I have identified grain helicity as the major driver for grain alignment via radiative torques (RATs) and suggested an analytical model of RATs based on this concept. Dust polarization predicted by the model has been confirmed by numerous observations, and can be used as a frequency template for the CMB B-mode searches. I have proposed a new type of dust acceleration due to magnetohydrodynamic turbulence through transit time damping for large grains, and quantified a

  14. Size and density sorting of dust grains in SPH simulations of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline

    2017-07-01

    The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.

  15. Constraining Dust Properties in Circumstellar Envelopes of C-Stars in the Small Magellanic Cloud: Optical Constants And Grain Size Of Carbon Dust

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Berhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-07-01

    We present our recent investigation aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC).We applied our recent dust growth model, coupled with a radiative transfer code, to the dusty CSEs of C-stars along the TP-AGB phase, for which we computed spectra and colors. We then compared our modeled colors in the Near and Mid Infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing different optical constants data sets for carbon dust. We constrained the optical properties of carbon dust by identifying the combinations of typical grain size and optical constants data set which simultaneously reproduce several colors in the NIR and MIR wavelengths. In particular, the different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We concluded that the complete set of selected NIR and MIR colors are best reproduced by small grains, with sizes between 0.06 and 0.1 mum, rather than by large grains of 0.2-0.4 mum. The inability of large grains to reproduce NIR and MIR colors is found to be independent of the adopted optical data set and the deviations between models and observations tend to increase for increasing grain sizes. We also find a possible trend of the typical grain size with mss-loss and/or carbon-excess in the CSEs of these stars.The work presented is preparatory to future studies aimed at calibrating the TP-AGB phase through resolved stellar populations in the framework of the STARKEY project.

  16. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II--Deleterious effects: Dust-borne endotoxins and allergens--focus on grain dust, other agricultural dusts and wood dust.

    PubMed

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz

    2016-01-01

    Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4)-10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3)-10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained

  17. Molecular Hydrogen Formation : Effect of Dust Grain Temperature Fluctuations

    NASA Astrophysics Data System (ADS)

    Bron, Emeric; Le Bourlot, Jacques; Le Petit, Franck

    2013-06-01

    H_{2} formation is a hot topic in astrochemistry. Thanks to Copernicus and FUSE satellites, its formation rate on dust grains in diffuse interstellar gas has been inferred (Jura 1974, Gry et al. 2002). Nevertheless, detection of H_2 emission in PDRs by ISO and Spitzer (Habart et al., 2004, 2005, 2011 ) showed that its formation mechanism can be efficient on warm grains (warmer than 30K), whereas experimental studies showed that Langmuir-Hinshelwood mechanism is only efficient in a narrow window of grain temperatures (typically between 10-20 K). The Eley-Rideal mechanism, in which H atoms are chemically bound to grains surfaces could explain such a formation rate in PDRs (Le Bourlot et al. 2012 ). Usual dust size distributions (e.g. Mathis et al. 1977 ) favor smaller grains in a way that makes most of the available grain surface belong to small grains. As small grains are subject to large temperature fluctuations due to UV-photons absorption, calculations at a fixed temperature give incorrect results under strong UV-fields. Here, we present a comprehensive study of the influence of this stochastic effect on H_2 formation by Langmuir-Hinshelwood and Eley-Rideal mechanisms. We use a master equation approach to calculate the statistics of coupled fluctuations of the temperature and adsorbed H population of a grain. Doing so, we are able to calculate the formation rate on a grain under a given radiation field and given gas conditions. We find that the Eley-Rideal mechanism remains an efficient mechanism in PDRs, and that the Langmuir-Hinshelwood mechanism is more efficient than expected on warm grains. This procedure is then coupled to full cloud simulations with the Meudon PDR code. We compare the new results with more classical evaluations of the formation rate, and present the differences in terms of chemical structure of the cloud and observable line intensities. We will also highlight the influence of some microphysical parameters on the results.

  18. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir

    2015-11-15

    In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  19. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    NASA Astrophysics Data System (ADS)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  20. Dust grain resonant capture: A statistical study

    NASA Technical Reports Server (NTRS)

    Marzari, F.; Vanzani, V.; Weidenschilling, S. J.

    1993-01-01

    A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.

  1. Injurious effects of wool and grain dusts on alveolar epithelial cells and macrophages in vitro.

    PubMed Central

    Brown, D M; Donaldson, K

    1991-01-01

    Epidemiological studies of workers in wool textile mills have shown a direct relation between the concentration of wool dust in the air and respiratory symptoms. Injurious effects of wool dust on the bronchial epithelium could be important in causing inflammation and irritation. A pulmonary epithelial cell line in vitro was therefore used to study the toxic effects of wool dust. Cells of the A549 epithelial cell line were labelled with 51Cr and treated with whole wool dusts and extracts of wool, after which injury was assessed. Also, the effects of grain dust, which also causes a form of airway obstruction, were studied. The epithelial injury was assessed by measuring 51Cr release from cells as an indication of lysis, and by monitoring cells which had detached from the substratum. No significant injury to A549 cells was caused by culture with any of the dusts collected from the air but surface "ledge" dust caused significant lysis at some doses. Quartz, used as a toxic control dust, caused significant lysis at the highest concentration of 100 micrograms/well. To determine whether any injurious material was soluble the dusts were incubated in saline and extracts collected. No extracts caused significant injury to epithelial cells. A similar lack of toxicity was found when 51Cr labelled control alveolar macrophages were targets for injury. Significant release of radiolabel was evident when macrophages were exposed to quartz at concentrations of 10 and 20 micrograms/well, there being no significant injury with either wool or grain dusts. These data suggest that neither wool nor grain dust produce direct injury to epithelial cells, and further studies are necessary to explain inflammation leading to respiratory symptoms in wool and grain workers. PMID:2015211

  2. Pentoxifylline does not alter the response to inhaled grain dust.

    PubMed

    Jagielo, P J; Watt, J L; Quinn, T J; Knapp, H R; Schwartz, D A

    1997-05-01

    Pentoxifylline (PTX) has been shown to reduce sepsis-induced neutrophil sequestration in the lung and inhibit endotoxin-mediated release of tumor necrosis factor-alpha (TNF-alpha). Previously, we have shown that endotoxin appears to be the principal agent in grain dust causing airway inflammation and airflow obstruction following grain dust inhalation. To determine whether PTX affects the physiologic and inflammatory events following acute grain dust inhalation, 10 healthy, nonsmoking subjects with normal airway reactivity were treated with PTX or placebo (PL) followed by corn dust extract (CDE) inhalation (0.08 mL/kg), using a single-blinded, crossover design. Subjects received PTX (1,200 mg/d) or PL for 4 days prior to CDE inhalation and 400 mg PTX or PL on the exposure day. Both respiratory symptoms and declines in FEV1 and FVC occurred following CDE exposure in both groups, but there were no significant differences in the frequency of symptoms or percent declines from baseline in the FEV1 and FVC at any of the time points measured in the study. Elevations in peripheral blood leukocyte and neutrophil concentrations and BAL total cell, neutrophil, TNF-alpha, and interleukin-8 concentrations were measured 4 h following exposure to CDE in both the PTX- and PL-treated subjects, but no significant differences were found between treatment groups. These results suggest that pretreatment with PTX prior to inhalation of CDE, in the doses used in this study, does not alter the acute physiologic or inflammatory events following exposure to inhaled CDE.

  3. Respiratory symptoms and ventilatory performance in workers exposed to grain and grain based food dusts.

    PubMed

    Deacon, S P; Paddle, G M

    1998-05-01

    A health surveillance study of male grain food manufacturing workers used a respiratory health questionnaire and spirometry to assess the prevalence of work-related respiratory symptoms and impaired ventilatory performance. The prevalence of cough, breathlessness, wheeze and chest tightness was between 8-13% but was 20% for rhinitis. Rhinitis was the most common symptom with 37% of those reporting rhinitis describing this as work-related. A case-control analysis of workers reporting rhinitis did not identify any specific occupational activities associated with increased risk of rhinitis. Smoking habit and all respiratory symptoms apart from rhinitis had a significant effect upon ventilatory performance. Occupational exposure to raw grains, flour, ingredients and finished food was categorized as high, medium or low in either continuous or intermediate patterns. Multiple regression analysis confirmed the effects of height, age and smoking upon ventilatory performance. However, occupational exposure to grain, flour, food ingredients and cooked food dusts had no effect upon ventilatory performance. It is concluded that smoking habit is the major determinant of respiratory symptoms and impaired ventilatory function. The excess complaints of rhinitis warrant further study but it would appear that the current occupational exposure limits for grain, flour, food ingredients and cooked food dusts are adequate to protect workers against impairment of ventilatory performance.

  4. THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Michael Chun-Yuan; Francesco, J. Di; Johnstone, D.

    2016-07-20

    The dust emissivity spectral index, β , is a critical parameter for deriving the mass and temperature of star-forming structures and, consequently, their gravitational stability. The β value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present β , dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting spectral energy distributions to combined Herschel and JCMT observations in the 160, 250, 350, 500, and 850 μ m bands. Most of the derived β andmore » dust temperature values fall within the ranges of 1.0–2.7 and 8–20 K, respectively. In Perseus, we find the β distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant localized β variations within individual clumps and find low- β regions correlate with local temperature peaks, hinting at the possible origins of low- β grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.« less

  5. Cometary and interstellar dust grains - Analysis by ion microprobe mass spectrometry and other techniques

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1991-01-01

    A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.

  6. Ultraviolet interstellar linear polarization. I - Applicability of current dust grain models

    NASA Technical Reports Server (NTRS)

    Wolff, Michael J.; Clayton, Geoffrey C.; Meade, Marilyn R.

    1993-01-01

    UV spectropolarimetric observations yielding data on the wavelength-dependence of interstellar polarization along eight lines of sight facilitate the evaluation of dust grain models previously used to fit the extinction and polarization in the visible and IR. These models pertain to bare silicate/graphite grains, silicate cores with organic refractory mantles, silicate cores with amorphous carbon mantles, and composite grains. The eight lines-of-sight show three different interstellar polarization dependences.

  7. Implications of grain size variation in magnetic field alignment of block copolymer blends

    DOE PAGES

    Rokhlenko, Yekaterina; Majewski, Pawel W.; Larson, Steven R.; ...

    2017-03-28

    Recent experiments have highlighted the intrinsic magnetic anisotropy in coil–coil diblock copolymers, specifically in poly(styrene- block-4-vinylpyridine) (PS- b-P4VP), that enables magnetic field alignment at field strengths of a few tesla. We consider here the alignment response of two low molecular weight (MW) lamallae-forming PS- b-P4VP systems. Cooling across the disorder–order transition temperature (T odt) results in strong alignment for the higher MW sample (5.5K), whereas little alignment is discernible for the lower MW system (3.6K). This disparity under otherwise identical conditions of field strength and cooling rate suggests that different average grain sizes are produced during slow cooling of thesemore » materials, with larger grains formed in the higher MW material. Blending the block copolymers results in homogeneous samples which display T odt, d-spacings, and grain sizes that are intermediate between the two neat diblocks. Similarly, the alignment quality displays a smooth variation with the concentration of the higher MW diblock in the blends, and the size of grains likewise interpolates between limits set by the neat diblocks, with a factor of 3.5× difference in the grain size observed in high vs low MW neat diblocks. Finally, these results highlight the importance of grain growth kinetics in dictating the field response in block copolymers and suggests an unconventional route for the manipulation of such kinetics.« less

  8. Implications of grain size variation in magnetic field alignment of block copolymer blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhlenko, Yekaterina; Majewski, Pawel W.; Larson, Steven R.

    Recent experiments have highlighted the intrinsic magnetic anisotropy in coil–coil diblock copolymers, specifically in poly(styrene- block-4-vinylpyridine) (PS- b-P4VP), that enables magnetic field alignment at field strengths of a few tesla. We consider here the alignment response of two low molecular weight (MW) lamallae-forming PS- b-P4VP systems. Cooling across the disorder–order transition temperature (T odt) results in strong alignment for the higher MW sample (5.5K), whereas little alignment is discernible for the lower MW system (3.6K). This disparity under otherwise identical conditions of field strength and cooling rate suggests that different average grain sizes are produced during slow cooling of thesemore » materials, with larger grains formed in the higher MW material. Blending the block copolymers results in homogeneous samples which display T odt, d-spacings, and grain sizes that are intermediate between the two neat diblocks. Similarly, the alignment quality displays a smooth variation with the concentration of the higher MW diblock in the blends, and the size of grains likewise interpolates between limits set by the neat diblocks, with a factor of 3.5× difference in the grain size observed in high vs low MW neat diblocks. Finally, these results highlight the importance of grain growth kinetics in dictating the field response in block copolymers and suggests an unconventional route for the manipulation of such kinetics.« less

  9. Supernova Remnants As Laboratories For Determining The Properties Of Ejecta Dust And The Processing Of Dust Grains In Shocks

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Temim, Tea

    Recent infrared satellites, such as the Spitzer, Herschel, and WISE, have obtained a wealth of spectral and broadband data on the infrared (IR) emission from dust in supernova remnants (SNRs). Supernovae (SNe) are important producers of newly condensed dust during the early free-expansion phase of their evolution, and the dominant destroyers of dust during the subsequent remnant phase of their evolution. The infrared observations hold the key for determining their role in the origin and evolution of dust in the universe. We propose to model the composition, abundance, and size distribution of the dust in select Galactic and Magellanic Cloud remnants. As explained in detail below, the remnants were selected for the availability of IR and X-ray observations. All selected remnants have Spitzer IRS spectral data in the 5-35 μm regions which allow us to determine the effect of grain processing in the shock. Some have spectral maps that allow the distinction between the IR emission from SN-condensed and swept up circumstellar and interstellar dust. All remnants have also been covered by Spitzer, Herschel, and WISE imaging, and have existing X-ray Chandra and/or XMM observations. The dust in some remnants is radiatively-heated by a pulsar wind nebula, and in others collisionally- heated by shocked X-ray or line emitting gas. We will use physical models to calculate the radiative and collisional heating of SNR dust, the equilibrium or fluctuating dust temperatures, and the resulting IR emission for various dust compositions and size distributions. Specific examples of Cas A, SN1987A, the Crab Nebula, and Puppis A, are discussed in detail to illustrate our modeling approach. Our study will be the first comprehensive and physical analysis of a large sample of SNRs in different evolutionary states and different astrophysical environments. They will cover a wide range of interactions between the dust grains and their surroundings, including the radioactively- powered and

  10. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    NASA Technical Reports Server (NTRS)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  11. Toxigenic Fusarium spp. as determinants of trichothecene mycotoxins in settled grain dust.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Klemsdal, Sonja Sletner; Elen, Oleif; Clasen, Per-Erik; Eduard, Wijnand

    2006-12-01

    Trichothecenes are immunosuppressive mycotoxins produced mainly by Fusarium spp. and often are detected as natural contaminants of grain and other agricultural products. Exposure to trichothecenes through inhalation during grain work may represent possible health risks for grain farmers. We aimed, therefore, to investigate the level of Fusarium spp. and trichothecenes in settled grain dust collected during work on 92 Norwegian farms. Mycotoxins were determined by gas chromatography-mass spectrometry, whereas the Fusarium spp. were identified and quantified both by species-specific semiquantitative polymerase chain reaction (PCR) and by cultivation. All potential trichothecene-producing molds in the grain dust were quantified using a PCR assay specific for tri5, the gene coding for trichodiene synthase that catalyzes the first step in the trichothecene biosynthesis. We performed correlation analysis between mold-DNA and mycotoxins to assess whether the PCR-detected DNA could be used as indicators of the mycotoxins. The methodological problem of detecting small amounts of airborne mycotoxins during grain work may then be avoided. Whereas the trichothecene-producing Fusarium species in grain dust could not be identified or quantified to a sufficient extent by cultivation, all investigated Fusarium spp. could be specifically detected by PCR and quantified from the DNA agarose gel band intensities. Furthermore, we observed a strong correlation between the trichothecenes HT-2 toxin (HT-2) or T-2 toxin (T-2) and DNA specific for tri5 (r = 0.68 for HT-2 and r = 0.50 for T-2; p < 0.001), F. langsethiae (r = 0.77 for HT-2 and r = 0.59 for T-2; p < 0.001), or F. poae (r = 0.41 for HT-2 and r = 0.35 for T-2; p < 0.001). However, only a moderate correlation was observed between the trichothecene deoxynivalenol (DON) and the combination of its producers, F. culmorum and F. graminearum (r = 0.24, p = 0.02), and no significant correlation was observed between DON and tri5. PCR

  12. Grain sorghum dust increases macromolecular efflux from the in situ nasal mucosa.

    PubMed

    Gao, X P

    1998-04-01

    The purpose of this study was to determine whether an aqueous extract of grain sorghum dust increases macromolecular efflux from the nasal mucosa in vivo and, if so, whether this response is mediated, in part, by substance P. Suffusion of grain sorghum dust extract on the in situ nasal mucosa of anesthetized hamsters elicits a significant increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass, 70 kDa; P < 0.05). This response is significantly attenuated by CP-96345 and RP-67580, two selective, but structurally distinct, nonpeptide neurokinin 1 (substance P)-receptor antagonists, but not by CP-96344, the 2R,3R enantiomer of CP-96345 (P < 0.05). CP-96345 has no significant effects on adenosine-induced increase in clearance of FITC-dextran from the in situ nasal mucosa. CP-96345 and RP-67580, but not CP-96344, significantly attenuate substance P-induced increases in clearance of FITC-dextran from the in situ nasal mucosa (P < 0.05). Collectively, these data suggest that grain sorghum dust elicits neurogenic plasma exudation from the in situ nasal mucosa.

  13. Understating Polarization in the Interstellar Medium Through the Theory of Radiative Torque Alignment

    NASA Astrophysics Data System (ADS)

    Caputo, Miranda; Andersson, B.-G.; Kulas, Kristin Rose

    2018-06-01

    Although it is known that the dust grains in the ISM align with magnetic fields, the alignment physics of these particles is still somewhat unclear. Utilizing direct observational data and Radiative Alignment Torque (RAT) theory, further constraints can be put onto this alignment. Due to the physics of this alignment, there is a linear relationship between the extinction of the light seen through a dust cloud (AV) and the wavelength of maximum polarization. A previous study, focusing on the Taurus cloud, found that there is a second, steeper relationship seen beyond an extinction of about four magnitudes, likely due to grain growth, in addition to the original linear relationship. We present early results from observations of low-to-medium extinction lines of sight in the starless cloud L183 (aka L134N), aimed at testing the Taurus results. We are currently extending the survey of stars behind L183 to higher extinctions to better probe the origins of the bifurcation seen in the Taurus results.

  14. Dust grains and gas in the circumstellar envelopes around luminous red giant stars

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Dyck, H. M.

    1986-01-01

    Far-infrared color-color diagrams have been constructed for over 100 of the brightest evolved stars in the IRAS Point Source Catalog. The diagrams are used to deduce average values of the dust grain emissivity index (p) between 12 and 100 microns. Grains in C-rich and O-rich environments have similar values of p between 12 and 25 microns and between 60 and 100 microns, but between 25 and 60 microns p is larger by approximately 0.4 for the O-rich stars. Dust grains in envelopes around S-type stars seem to have 25 to 60 micron emissivities more nearly like grains in O-rich rather than C-rich environments. CO and HCN emissions from various stars are used to reclassify several stars as oxygen or carbon rich.

  15. Dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux in vivo.

    PubMed

    Akhter, S R; Ikezaki, H; Gao, X P; Rubinstein, I

    1999-05-01

    The purpose of this study was to determine whether dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux from the in situ hamster cheek pouch and, if so, whether this response is specific. By using intravital microscopy, we found that an aqueous extract of grain sorghum dust elicited significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (FITC-dextran; mol mass, 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated substance P-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch but had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on arteriolar diameter in the cheek pouch. On balance, these data indicate that dexamethasone attenuates grain sorghum dust extract- and substance P-induced increases in macromolecular efflux from the in situ hamster cheek pouch in a specific fashion.

  16. Evolution of Icy Dust Grains in the Vicinity of a Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Hilchenbach, M.

    2009-12-01

    From late 2014 onwards, ESA's cornerstone mission ROSETTA will orbit the comet 67P/Churyumov-Gerasimenko. One instrument, COSIMA, will collect cometary dust grains and analyze the grains via secondary mass spectrometry. Models of the evolution of icy dust, accelerated by drag forces of subliming gas and exposed to solar radiation, should set constrains on the detection limits of the COSIMA instrument for volatile icy components. A straightforward modeling approach is applied as a baseline for the observational planing schedule of the instrument operations in the years 2014/2015 as ROSETTA escorts the comet nucleus up to perihelion and beyond.

  17. Physico-chemical characterization of grain dust in storage air of Bangalore.

    PubMed

    Mukherjee, A K; Nag, D P; Kakde, Y; Babu, K R; Prdkash, M N; Rao, S R

    1998-06-01

    An Anderson personal cascade impactor was used to study the particle mass size distribution in the storage air of two major grain storage centers in Bangalore. Dust levels in storage air as well as the personal exposures of workers were determined along with a detailed study on the particle size distribution. Protein and carbohydrate content of the dust were also determined respectively in the phosphate buffer saline (PBS) and water extracts by using the standard analytical techniques. Personal exposures in both of the grain storage centers have been found to be much above the limit prescribed by ACGIH (1995-96). But the results of particle size analysis showed a higher particle mass distribution in the non-respirable size range. The mass median diameters (MMD) of the storage air particulate of both the centers were found to be beyond the respirable range. Presence of protein and carbohydrate in the storage air dust is indicative of the existence of glyco-proteins, mostly of membrane origin.

  18. Secondary emission from dust grains: Comparison of experimental and model results

    NASA Astrophysics Data System (ADS)

    Richterova, I.; Pavlu, J.; Nemecek, Z.; Safrankova, J.; Zilavy, P.

    The motion, coalescence, and other processes in dust clouds are determined by the dust charge. Since dust grains in the space are bombarded by energetic electrons, the secondary emission is an important process contributing to their charge. It is generally expected that the secondary emission yield is related to surface properties of the bombarded body. However, it is well known that secondary emission from small bodies is determined not only by their composition but an effect of dimension can be very important when the penetration depth of primary electrons is comparable with the grain size. It implies that the secondary emission yield can be influenced by the substrate material if the surface layer is thin enough. We have developed a simple Monte Carlo model of secondary emission that was successfully applied on the dust simulants from glass and melanine formaldehyd (MF) resin and matched very well experimental results. In order to check the influence of surface layers, we have modified the model for spheres covered by a layer with different material properties. The results of model simulations are compared with measurements on MF spheres covered by different metals.

  19. Size distribution of dust grains: A problem of self-similarity

    NASA Technical Reports Server (NTRS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e

  20. COMPARTMENTALIZATION OF THE INFLAMMATORY RESPONSE TO INHALED GRAIN DUST

    EPA Science Inventory


    Interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha, and the secreted form of the IL-1 receptor antagonist (sIL-1RA) are involved in the inflammatory response to inhaled grain dust. Previously, we found considerable production of these cytokines in the lower...

  1. Tentative Identification of Interstellar Dust in the Magnetic Wall of the Heliosphere

    NASA Astrophysics Data System (ADS)

    Frisch, Priscilla C.

    2005-10-01

    Observations of the weak polarization of light from nearby stars, reported by Tinbergen, are consistent with polarization by small (radius <0.14 μm), interstellar dust grains entrained in the magnetic wall of the heliosphere. The region of maximum polarization is toward ecliptic coordinates (λ, β)~(295deg, 0deg), corresponding to (l, b) = (20°, -21°). The direction of maximum polarization is offset along the ecliptic longitude by ~35° from the nose of the heliosphere and extends to low ecliptic latitudes. An offset is also seen between the region with the best-aligned dust grains, λ~281deg-330deg, and the upwind direction of the undeflected large grains, λ~259deg, β~+8deg, which are observed by Ulysses and Galileo to be flowing into the heliosphere. In the aligned-grain region, the strength of polarization anticorrelates with ecliptic latitude, indicating that the magnetic wall is predominantly at negative ecliptic latitudes. An extension of the magnetic wall to β<0deg, formed by the interstellar magnetic field BIS draped over the heliosphere, is consistent with predictions by Linde (1998). A consistent interpretation follows if the maximum-polarization region traces the heliosphere magnetic wall in a direction approximately perpendicular to BIS, while the region of best-aligned dust samples the region where BIS drapes smoothly over the heliosphere with maximum compression. These data are consistent with BIS being tilted by 60° with respect to the ecliptic plane and parallel to the Galactic plane. Interstellar dust grains captured in the heliosheath may also introduce a weak, but important, large-scale contaminant for the cosmic microwave background signal with a symmetry consistent with the relative tilts of BIS and the ecliptic.

  2. Terrestrial in situ sampling of dust devils (relative particle loads and vertical grain size distributions) as an equivalent for martian dust devils.

    NASA Astrophysics Data System (ADS)

    Raack, J.; Dennis, R.; Balme, M. R.; Taj-Eddine, K.; Ori, G. G.

    2017-12-01

    Dust devils are small vertical convective vortices which occur on Earth and Mars [1] but their internal structure is almost unknown. Here we report on in situ samples of two active dust devils in the Sahara Desert in southern Morocco [2]. For the sampling we used a 4 m high aluminium pipe with sampling areas made of removable adhesive tape. We took samples between 0.1-4 m with a sampling interval of 0.5 m and between 0.5-2 m with an interval of 0.25 m, respectively. The maximum diameter of all particles of the different sampling heights were then measured using an optical microscope to gain vertical grain size distributions and relative particle loads. Our measurements imply that both dust devils have a general comparable internal structure despite their different strengths and dimensions which indicates that the dust devils probably represents the surficial grain size distribution they move over. The particle sizes within the dust devils decrease nearly exponential with height which is comparable to results by [3]. Furthermore, our results show that about 80-90 % of the total particle load were lifted only within the first meter, which is a direct evidence for the existence of a sand skirt. If we assume that grains with a diameter <31 μm can go into suspension [4], our results show that only less than 0.1 wt% can be entrained into the atmosphere. Although this amount seems very low, these values represent between 60 and 70 % of all lifted particles due to the small grain sizes and their low weight. On Mars, the amount of lifted particles will be general higher as the dust coverage is larger [5], although the atmosphere can only suspend smaller grain sizes ( <20 μm) [6] compared to Earth. During our field campaign we observed numerous larger dust devils each day which were up to several hundred meters tall and had diameters of several tens of meters. This implies a much higher input of fine grained material into the atmosphere (which will have an influence on the

  3. EXPLORING THE ROLE OF SUB-MICRON-SIZED DUST GRAINS IN THE ATMOSPHERES OF RED L0–L6 DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranaka, Kay; Cruz, Kelle L.; Baldassare, Vivienne F.

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markovmore » Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1–100 μ m) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.« less

  4. Experimental human exposure to inhaled grain dust and ammonia: towards a model of concentrated animal feeding operations.

    PubMed

    Sigurdarson, Sigurdur T; O'Shaughnessy, Patrick T; Watt, Janet A; Kline, Joel N

    2004-10-01

    Ammonia and endotoxin-rich dust are present in high concentrations in swine confinement facilities; exposure to this environment is linked to workers' respiratory problems. We hypothesized that experimental exposure to ammonia and dust would impair pulmonary function, and that these exposures would be synergistic. We exposed six normal subjects and eight subjects with mild asthma to ammonia (16-25 ppm) and/or endotoxin-rich grain dust (4 mg/m3). Pulmonary function and exhaled NOx were measured before and after exposure. There was no significant change in pulmonary function in the normal subjects following any of the exposure conditions. Among asthmatics, a significant transient decrease in FEV1 was induced by grain dust, but was not altered by ammonia; increased bronchial hyperreactivity was also noted in this group. In a vulnerable population, exposure to grain dust results in transient airflow obstruction. Short-term exposure to ammonia does not increase this response.

  5. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  6. Modelling grain alignment by radiative torques and hydrogen formation torques in reflection nebula

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.; Andersson, B.-G.

    2015-04-01

    Reflection nebulae - dense cores - illuminated by surrounding stars offer a unique opportunity to directly test our quantitative model of grain alignment based on radiative torques (RATs) and to explore new effects arising from additional torques. In this paper, we first perform detailed modelling of grain alignment by RATs for the IC 63 reflection nebula illuminated both by a nearby γ Cas star and the diffuse interstellar radiation field. We calculate linear polarization pλ of background stars by radiatively aligned grains and explore the variation of fractional polarization (pλ/AV) with visual extinction AV across the cloud. Our results show that the variation of pV/AV versus AV from the dayside of IC 63 to its centre can be represented by a power law (p_V/A_V∝ A_V^{η }) with different slopes depending on AV. We find a shallow slope η ˜ -0.1 for AV < 3 and a very steep slope η ˜ -2 for AV > 4. We then consider the effects of additional torques due to H2 formation and model grain alignment by joint action of RATs and H2 torques. We find that pV/AV tends to increase with an increasing magnitude of H2 torques. In particular, the theoretical predictions obtained for pV/AV and peak wavelength λmax in this case show an improved agreement with the observational data. Our results reinforce the predictive power of the RAT alignment mechanism in a broad range of environmental conditions and show the effect of pinwheel torques in environments with efficient H2 formation. Physical parameters involved in H2 formation may be constrained using detailed modelling of grain alignment combined with observational data. In addition, we discuss implications of our modelling for interpreting latest observational data by Planck and other ground-based instruments.

  7. Size and density distribution of very small dust grains in the Barnard 5 cloud

    NASA Technical Reports Server (NTRS)

    Lis, Dariusz C.; Leung, Chun Ming

    1991-01-01

    The effects of the temperature fluctuations in small graphite grains on the energy spectrum and the IR surface brightness of an isolated dust cloud heated externally by the interstellar radiation field were investigated using a series of models based on a radiation transport computer code. This code treats self-consistently the thermal coupling between the transient heating of very small dust grains and the equilibrium heating of conventional large grains. The model results were compared with the IRAS observations of the Barnard 5 (B5) cloud, showing that the 25-micron emission of the cloud must be produced by small grains with a 6-10 A radius, which also contribute about 50 percent to the observed 12-micron emission. The remaining 12 micron flux may be produced by the polycyclic aromatic hydrocarbons. The 60-and 100-micron radiation is dominated by emission from large grains heated under equilibrium conditions.

  8. The Charging of Dust Grains in the Inner Heliosheath

    NASA Astrophysics Data System (ADS)

    Avinash, K.; Slavin, J.; Zank, G. P.; Frisch, P.

    2008-12-01

    Equilibrium electric charge and surface potential on a dust grain in the heliosheath are calculated. The grain is charged due to heliosheath plasma flux, photo electrons flux, secondary electron emission flux and transmission flux. Realistically, the heliosheath plasma consists of solar electrons, solar wind ions [SWI] and pick up ions [PUI]. These species interact differently with TS and thus have different characteristics down stream in the heliosheath. The PUI suffer multiple reflections at TS and are accelerated to high energies in the range of ~ 106 K. The solar electrons, on the other hand, are heated adiabatically through the TS and have temperature in the range ~ 5x105 K. The SWI may have a smaller temperature typically in the range 1-5x104 K The density of electrons could be in the range ~5 x 10-4 cm-3, while the ratio of PUI to SWI density could range from 0.1 to 0.5. Taking into account these parameters, grain charging due to different plasma species and other fluxes mentioned earlier, is calculated. Our results show that (a) surface potential is very sensitive to electron temp. It goes through a maxima and for realistic values close to or less than 5x105 K it can be as big as 26V which is twice the value calculated by Kimura and Mann1. This may have implications for electrostatic disruption and the size distribution of dust particles in the heliosheath. With PUI density the surface potential increases about 10 to 20 %. Though temperature of PUI is significantly larger than that of electrons, it is not large enough to make up for the mass ratio of electrons to protons. On account small temperature and electron/proton mass ratio, the effect of SWI on dust charge is very weak. (1) H. Kimura and I. Mann, Ap.J. 499, 454 (1998).

  9. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Eduard, Wijnand; Klemsdal, Sonja Sletner

    2006-12-01

    Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.

  10. Study of the Effects of the Electric Field on Charging Measurements on Individual Micron-size Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.

  11. MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark; Price, Daniel J.; Laibe, Guillaume

    2018-05-01

    We present a new algorithm, MULTIGRAIN, for modelling the dynamics of an entire population of small dust grains immersed in gas, typical of conditions that are found in molecular clouds and protoplanetary discs. The MULTIGRAIN method is more accurate than single-phase simulations because the gas experiences a backreaction from each dust phase and communicates this change to the other phases, thereby indirectly coupling the dust phases together. The MULTIGRAIN method is fast, explicit and low storage, requiring only an array of dust fractions and their derivatives defined for each resolution element.

  12. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  13. Grain dust and respiratory health in South African milling workers.

    PubMed Central

    Bachmann, M; Myers, J E

    1991-01-01

    Respiratory health was investigated in 224 grain milling workers. The likelihood of respiratory symptoms and chronic airflow limitation was raised for workers exposed to dust independent of the effects of smoking. Smokers were more likely than non-smokers to respond to a bronchodilator at the end of the working week. Dust was more strongly associated with most abnormal outcomes than was smoking. Subjective categories of exposure to dust were more strongly associated with most abnormal outcomes than were objective categories. The prevalence of all symptoms at the time of a survey conducted at the mill six years before was higher in workers who subsequently left the mill than in those who remained employed although the differences were not significant. PMID:1931723

  14. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Zook, H. A.; Baguhl, M.; Balogh, A.; Bame, S. J.; Fechtig, H.; Forsyth, R.; Hanner, M. S.; Horanyi, M.; Kissel, J.

    1993-01-01

    Within 1 AU from Jupiter, the dust detector aboard the Ulysses spacecraft during the flyby on February 8, 1992 recorded periodic bursts of submicron dust particles with durations ranging from several hours to two days and occurring at about monthly intervals. These particles arrived at Ulysses in collimate streams radiating from close to the line-of-sight direction to Jupiter, suggesting a Jovian origin for the periodic bursts. Ulysses also detected a flux of micron-sized dust particles moving in high-velocity retrograde orbits. These grains are identified here as being of interstellar origin.

  15. H2O grain size and the amount of dust in Mars' residual north polar cap

    NASA Technical Reports Server (NTRS)

    Kieffer, Hugh H.

    1990-01-01

    In Mars' north polar cap, the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 microns or more. Ice of this granularity containing 30 percent fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be 'old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain.

  16. H2O grain size and the amount of dust in Mars' residual North polar cap

    USGS Publications Warehouse

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  17. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  18. Neutrophilic respiratory tract inflammation and peripheral blood neutrophilia after grain sorghum dust extract challenge.

    PubMed

    Von Essen, S G; O'Neill, D P; McGranaghan, S; Olenchock, S A; Rennard, S I

    1995-11-01

    To determine if inhalation of grain sorghum dust in the laboratory would cause neutrophilic upper and lower respiratory tract inflammation in human volunteers, as well as systemic signs of illness. Prospective. University of Nebraska Medical Center. Thirty normal volunteers. Inhalation challenge with 20 mL of a nebulized solution of filter-sterilized grain sorghum dust extract (GSDE). One group received prednisone, 20 mg for 2 days, prior to the challenge. Bronchoscopy with bronchoalveolar lavage (BAL) was performed 24 h after challenge, with samples collected as bronchial and alveolar fractions. Findings included visible signs of airways inflammation, quantified as the bronchitis index. The percentage of bronchial neutrophils was significantly increased in those challenged with GSDE vs the control solution, Hanks' balanced salt solution (40.3 +/- 4.5% vs 14.3 +/- 5.1%, p < or = .01). Similar findings were seen in the alveolar fraction. Pretreatment with corticosteroids did not prevent the rise in neutrophils recovered by BAL. Peripheral blood neutrophils were also increased in volunteers challenged with the grain dust extract. To explain the increase in peripheral blood neutrophil counts, the capacity of the peripheral blood neutrophils to migrate in chemotaxis experiments was examined. The results demonstrate an increase in peripheral blood neutrophils and an increase in chemotactic responsiveness. Inhalation challenge with a grain dust extract causes respiratory tract inflammation and a peripheral blood neutrophilia. One reason for this may be an increase in activated peripheral blood neutrophils.

  19. Confinement and Structural Changes in Vertically Aligned Dust Structures

    NASA Astrophysics Data System (ADS)

    Hyde, Truell

    2013-10-01

    In physics, confinement is known to influence collective system behavior. Examples include coulomb crystal variants such as those formed from ions or dust particles (classical), electrons in quantum dots (quantum) and the structural changes observed in vertically aligned dust particle systems formed within a glass box placed on the lower electrode of a Gaseous Electronics Conference (GEC) rf reference cell. Recent experimental studies have expanded the above to include the biological domain by showing that the stability and dynamics of proteins confined through encapsulation and enzyme molecules placed in inorganic cavities such as those found in biosensors are also directly influenced by their confinement. In this paper, the self-assembly and subsequent collective behavior of structures formed from n, charged dust particles interacting with one another and located within a glass box placed on the lower, powered electrode of a GEC rf reference cell is discussed. Self-organized formation of vertically aligned one-dimensional chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from one-dimensional chain structures, through a zigzag transition to a two-dimensional, spindle like structures, and then to various three-dimensional, helical structures exhibiting various symmetries. Stable configurations are shown to be strongly dependent upon system confinement. The critical conditions for structural transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop will be shown to be in good agreement with molecular dynamics simulations.

  20. Catalysis by Dust Grains in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Kress, Monika E.; Tielens, Alexander G. G. M.

    1996-01-01

    In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, we have applied our time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10(exp -5) to 1 bar and temperatures from 450 to 650 K. Under these physical conditions, the reaction 3H2 + CO yields CH4 + H2O is readily catalyzed by an iron or nickel surface, whereas the same reaction is kinetically inhibited in the gas phase. Our model results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.

  1. Presence of specific IgG antibody to grain dust does not go with respiratory symptoms.

    PubMed Central

    Park, H. S.; Suh, C. H.; Nahm, D. H.; Kim, H. Y.

    1999-01-01

    A high prevalence of work-related symptoms in relation to grain dust exposure has been reported in grain dust workers, but the role of the specific IgG antibody is unknown. To study the possible role of specific IgG (sIgG) and specific IgG4 (sIgG4) in the development of work-related symptoms, sIgG and sIgG4 subclass antibodies against grain dust antigens were determined by ELISA in sera from 43 workers and 27 non-exposed controls. They were compared with results of specific IgE antibodies, exposure intensity and the presence of respiratory symptoms. SIgG and sIgG4 antibodies were detectable in almost all sera of exposed workers, and the prevalence were significantly higher than those of controls (p<0.05). Higher sIgG4 was noted in workers with specific IgE (p<0.05). The correlation between sIgG and exposure duration was significant (p<0.05). There was no association between the prevalence of sIgG and sIgG4 and the presence of respiratory symptoms, or work stations. In conclusion, these results suggest that the existence of sIgG and sIgG4 might represent a response to grain dust exposure and may unlikely play a role in the etiology of respiratory symptoms. PMID:10102522

  2. Presence of specific IgG antibody to grain dust does not go with respiratory symptoms.

    PubMed

    Park, H S; Suh, C H; Nahm, D H; Kim, H Y

    1999-02-01

    A high prevalence of work-related symptoms in relation to grain dust exposure has been reported in grain dust workers, but the role of the specific IgG antibody is unknown. To study the possible role of specific IgG (sIgG) and specific IgG4 (sIgG4) in the development of work-related symptoms, sIgG and sIgG4 subclass antibodies against grain dust antigens were determined by ELISA in sera from 43 workers and 27 non-exposed controls. They were compared with results of specific IgE antibodies, exposure intensity and the presence of respiratory symptoms. SIgG and sIgG4 antibodies were detectable in almost all sera of exposed workers, and the prevalence were significantly higher than those of controls (p<0.05). Higher sIgG4 was noted in workers with specific IgE (p<0.05). The correlation between sIgG and exposure duration was significant (p<0.05). There was no association between the prevalence of sIgG and sIgG4 and the presence of respiratory symptoms, or work stations. In conclusion, these results suggest that the existence of sIgG and sIgG4 might represent a response to grain dust exposure and may unlikely play a role in the etiology of respiratory symptoms.

  3. Atomistic and infrared study of CO-water amorphous ice onto olivine dust grain

    NASA Astrophysics Data System (ADS)

    Escamilla-Roa, Elizabeth; Moreno, Fernando; López-Moreno, J. Juan; Sainz-Díaz, C. Ignacio

    2017-01-01

    This work is a study of CO and H2O molecules as adsorbates that interact on the surface of olivine dust grains. Olivine (forsterite) is present on the Earth, planetary dust, in the interstellar medium (ISM) and in particular in comets. The composition of amorphous ice is very important for the interpretation of processes that occur in the solar system and the ISM. Dust particles in ISM are composed of a heterogeneous mixture of amorphous or crystalline silicates (e.g. olivine) organic material, carbon, and other minor constituents. These dust grains are embedded in a matrix of ices, such as H2O, CO, CO2, NH3, and CH4. We consider that any amorphous ice will interact and grow faster on dust grain surfaces. In this work we explore the adsorption of CO-H2O amorphous ice onto several (100) forsterite surfaces (dipolar and non-dipolar), by using first principle calculations based on density functional theory (DFT). These models are applied to two possible situations: i) adsorption of CO molecules mixed into an amorphous ice matrix (gas mixture) and adsorbed directly onto the forsterite surface. This interaction has lower adsorption energy than polar molecules (H2O and NH3) adsorbed on this surface; ii) adsorption of CO when the surface has previously been covered by amorphous water ice (onion model). In this case the calculations show that adsorption energy is low, indicating that this interaction is weak and therefore the CO can be desorbed with a small increase of temperature. Vibration spectroscopy for the most stable complex was also studied and the frequencies were in good agreement with experimental frequency values.

  4. Effects of exposure to grain dust in Polish farmers: work-related symptoms and immunologic response to microbial antigens associated with dust.

    PubMed

    Skórska, C; Mackiewicz, B; Dutkiewicz, J; Krysińska-Traczyk, E; Milanowski, J; Feltovich, H; Lange, J; Thorne, P

    1998-01-01

    Medical examinations were performed in a group of 76 Polish farmers heavily exposed to grain dust during harvesting and threshing, and in a group of 63 healthy urban dwellers not exposed to organic dusts (controls). The examinations included: interview concerning the occurrence of respiratory disorders and work-related symptoms, physical examination, lung function tests, and allergological tests comprising skin prick test with 4 microbial antigens associated with grain dust and agar-gel precipitation test with 12 microbial antigens. As many as 34 farmers (44.7%) reported the occurrence of work-related symptoms during harvesting and threshing. The most common was dry cough reported by 20 individuals (26.3%). Dyspnoea was reported by 15 farmers (19.7%), tiredness by 12 (15.7%), chest tightness by 8 (10.5%), plugging of nose and hoarseness by 5 each (6. 5%). No control subjects reported these work-related symptoms. The mean spirometric values in the examined group of farmers were within the normal range, but a significant post-shift decrease of these values was observed after work with grain. The farmers showed a frequency of the positive early skin reactions to environmental allergens in the range of 10.8 - 45.5%, and a frequency of positive precipitin reactions in range of 3.9 - 40.8%. The control group responded to the majority of allergens with a significantly lower frequency of positive results compared to the farmers. The obtained results showed a high response of grain farmers to inhalant microbial allergens and indicate a potential risk of occupational respiratory diseases (such as allergic alveolitis, asthma, Organic Dust Toxic Syndrome) among this population

  5. First-principles simulations of electrostatic interactions between dust grains

    NASA Astrophysics Data System (ADS)

    Itou, H.; Amano, T.; Hoshino, M.

    2014-12-01

    We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. [Phys. Lett. A 239, 181-186 (1998)]. Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams [Phys. Lett. A 278, 152-158 (2000)], indicating the absence of the ODS attractive force.

  6. Shear alignment and orientational order of shape-anisotropic grains

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; Wegner, Sandra; Szabó, Balázs; Börzsönyi, Tamás

    2014-03-01

    Granular matter research was focused for a long time mainly on ensembles of spherical or irregularly shaped grains. In recent years, interest has grown in the study of anisometric, i.e. elongated or flattened particles [see e. g. Börzsönyi, Soft Matter 9, 7401 (2013)]. However, many related phenomena are still only little understood, quantitative experiments are scarce. We investigate shear induced order and alignment of macroscopic shape-anisotropic particles by means of X-ray computed tomography. Packing and orientation of individual grains in sheared ensembles of prolate and oblate objects (ellipsoids, cylinders and similar) are resolved non-invasively [T. Börzsönyi PRL 108, 228302 (2012)]. The experiments show that many observations are qualitatively and even quantitatively comparable to the behavior of well-understood molecular liquid crystals. We establish quantitative relations between aspect ratios and shear alignment. The induced orientational order influences local packing as well as macroscopic friction properties.

  7. Charging of dust grains in a plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-05-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended SF6 is admitted into the vacuum system. The relatively cold (Te≈0.2eV ) readily attach to SF6 molecules to form SF6- negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ɛ, the ratio of the electron to positive ion density, is sufficiently small. The K+ positive ions (mass 39amu) and SF6- negative ions (mass 146amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.

  8. Dynamics of aspherical dust grains in a cometary atmosphere: I. axially symmetric grains in a spherically symmetric atmosphere

    NASA Astrophysics Data System (ADS)

    Ivanovski, S. L.; Zakharov, V. V.; Della Corte, V.; Crifo, J.-F.; Rotundi, A.; Fulle, M.

    2017-01-01

    In-situ measurements of individual dust grain parameters in the immediate vicinity of a cometary nucleus are being carried by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. For the interpretations of these observational data, a model of dust grain motion as realistic as possible is requested. In particular, the results of the Stardust mission and analysis of samples of interplanetary dust have shown that these particles are highly aspherical, which should be taken into account in any credible model. The aim of the present work is to study the dynamics of ellipsoidal shape particles with various aspect ratios introduced in a spherically symmetric expanding gas flow and to reveal the possible differences in dynamics between spherical and aspherical particles. Their translational and rotational motion under influence of the gravity and of the aerodynamic force and torque is numerically integrated in a wide range of physical parameters values including those of comet 67P/Churyumov-Gerasimenko. The main distinctions of the dynamics of spherical and ellipsoidal particles are discussed. The aerodynamic characteristics of the ellipsoidal particles, and examples of their translational and rotational motion in the postulated gas flow are presented.

  9. Induction of histamine release in vitro from rat peritoneal mast cells by extracts of grain dust.

    PubMed Central

    Warren, C P; Holford-Strevens, V

    1986-01-01

    The ability of extracts of grain dust and wheat to induce histamine release from rat peritoneal cells was investigated. Some grain dusts, with a high endotoxin content, were found to produce cytotoxic histamine release. Extract of wheat dust, with a low endotoxin release, produced noncytotoxic histamine release from peritoneal cells but not from purified mast cells. This reaction was dependent on the presence of phosphatidyl serine. The agent did not appear to be a lectin because histamine release was not enhanced by passive sensitization of mast cells with IgE. The activity occurred only over a narrow range of concentrations of the extract of wheat. The cause was unclear. PMID:2423321

  10. GEMS and New Pre-Accretionally Irradiated RELICT Grains in Interplanetary Dust - The Plot Thickens

    NASA Astrophysics Data System (ADS)

    Bradley, J.

    1995-09-01

    The hypothesis that GEMS (glass with embedded metal and sulfides) in interplanetary dust particles (IDPs) might be the long-sought interstellar silicate grains is undergoing close scrutiny [1-3]. GEMS are proposed to be interstellar because: (a) they are abundant in cometary IDPs; (b) they were irradiated prior to incorporation into IDPs; (c) both their size distribution and Oamorphous silicate" microstructures are consistent with those of interstellar silicates; (d) they contain nanometer-sized (superparamagnetic) alpha-iron inclusions, which provides a simple explanation for the observed interstellar grain alignment and polarization [4,5]. Challenges to the GEMS hypothesis include the following: (a) GEMS may have formed and been irradiated in the solar nebula rather than a presolar interstellar environment; (b) non-solar isotope abundances have yet to be measured in GEMS; (c) the irradiation regime required to produce the observed effects in GEMS might be incompatible with the interstellar medium; (b) relationships between GEMS and carbon (e.g. core/mantle) need clarification; (c) major element abundances in GEMS should be consistent with observed interstellar gas phase depletions [2,3]. GEMS may indeed have formed in the solar nebula, in which case they would be the oldest known solar nebula solids [2]. An interstellar origin for GEMS does not require detection of non-solar isotope abundances [6]. Irradiation experiments are in progress to simulate the properties of GEMS. The petrographic relationship between GEMS and carbon in IDPs is being investigated (by examining IDPs embedded and thin-sectioned in carbon-free media). Major element abundances in GEMS are being evaluated in terms on interstellar gas phase abundances. For example, sulfur is not highly depleted in the interstellar gas, implying that it must be significantly depleted in interstellar grains [3]. GEMS are significantly depleted in sulfur relative to solar abundances. Analytical electron

  11. Diamond, aromatic, aliphatic components of interstellar dust grains: Random covalent networks in carbonaceous grains

    NASA Astrophysics Data System (ADS)

    Duley, W. W.

    1995-05-01

    A formalism based on the theory of random covalent networks (RCNs) in amorphous solids is developed for carbonaceous dust grains. RCN solutions provide optimized structures and relative compositions for amorphous materials. By inclusion of aliphatic, aromatic, and diamond clusters, solutions specific to interstellar materials can be obtained and compared with infrared spectral data. It is found that distinct RCN solutions corresponding to diffuse cloud and molecular cloud materials are possible. Specific solutions are derived for three representative objects: VI Cyg No. 12, NGC 7538 (IRS 9), and GC IRS 7. While diffuse cloud conditions with a preponderance of sp2 and sp3 bonded aliphatic CH species can be reproduced under a variety of RCN conditions, the presence of an abundant tertiary CH or diamond component is highly constrained. These solutions are related quantitatively to carbon depletions and can be used to provide a quantitative estimate of carbon in these various dust components. Despite the abundance of C6 aromatic rings in many RCN solutions, the infrared absorption due to the aromatic stretch at approximately 3.3 micrometers is weak under all conditions. The RCN formalism is shown to provide a useful method for tracing the evolutionary properties of interstellar carbonaceous grains.

  12. Modified dust ion-acoustic surface waves in a semi-bounded magnetized plasma containing the rotating dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion relation for modified dust ion-acoustic surface waves in the magnetized dusty plasma containing the rotating dust grains is derived, and the effects of magnetic field configuration on the resonant growth rate are investigated. We present the results that the resonant growth rates of the wave would increase with the ratio of ion plasma frequency to cyclotron frequency as well as with the increase of wave number for the case of perpendicular magnetic field configuration when the ion plasma frequency is greater than the dust rotation frequency. For the parallel magnetic field configuration, we find that the instability occursmore » only for some limited ranges of the wave number and the ratio of ion plasma frequency to cyclotron frequency. The resonant growth rate is found to decrease with the increase of the wave number. The influence of dust rotational frequency on the instability is also discussed.« less

  13. Dust grains in the coma of 67P/Churyumov-Gerasimenko - link with surface properties and cometary activity

    NASA Astrophysics Data System (ADS)

    Capria, M. T.; Ivanovski, S.; Zakharov, W.; Capaccioni, F.; Filacchione, G.; De Sanctis, M. C.; Rotundi, A.; Della Corte, V.; Longobardo, A.; Palomba, E.; Colangeli, L.; Bockelee-Morvan, D.; Erard, S.; Leyrat, C.

    2016-11-01

    The imaging spectrometer VIRTIS and the dust analyzer GIADA, onboard Rosetta, made an extensive observation of the dust particles in the coma of the comet 67P/Churyumov-Gerasimenko. From the analysis of GIADA data, two different kind of particles have been revealed, compact and fluffy with different compositions and dynamical properties. Compact particles are characterized by densities of about 10E3 kg/m3, while fluffy particles have an almost fractal nature, with densities less than 1 kg/m3. In this work we present the initial results of a model linking the dust flux distribution, as obtained from a theoretical thermal nucleus model, with a model describing the dynamics of aspherical grains in the coma. The results are discussed in the context of the latest observations from VIRTIS and GIADA instruments. The 2D nucleus thermal model, when applied to the real shape of the comet, provides the size distribution and physical properties of the emitted grains at different times and location on the surface. The thermal model can simulate grains of various size distribution, composition and physical properties. This information is used as an input for the dust dynamical model that follows the emitted particles in the coma. The main source of heating is the solar illumination. In the dust dynamical model, the grain trajectory of emitted particles remains in a plane perpendicular to the rotational axis and the direction of illumination is taken to be in the same plane (i.e. does not cause transversal forces). The dust particles are assumed to be isothermal convex bodies and temperature changes only induce modest changes in the aerodynamic force (twice higher temperature changes aerodynamic force less than 30%). This study reviews the theoretical values at which temperature difference starts to play a role on the dynamics. We discuss to what extent the particle's temperature affects the terminal velocities of the dust grains in the 67P coma in dependence on their mass and

  14. Dust grains in the coma of 67P/Churyumov-Gerasimenko - link with surface properties and cometary activity

    NASA Astrophysics Data System (ADS)

    Capria, Maria Teresa; Ivanovski, Stavro; Zakharov, Vladimir; Capaccioni, Fabrizio; Filacchione, Gianrico; De Sanctis, Maria Cristina; rotundi, alessandra; della corte, vincenzo; Longobardo, Andrea; Palomba, Ernesto; colangeli, luigi; Bockelee-Morvan, Dominique; Érard, Stéphane; Leyrat, Cedric; VIRTIS, GIADA

    2016-10-01

    The imaging spectrometer VIRTIS and the dust analyzer GIADA, onboard Rosetta, made an extensive observation of the dust particles in the coma of the comet 67P/Churyumov-Gerasimenko. From the analysis of GIADA data, two different kind of particles have been revealed, compact and fluffy with different compositions and dynamical properties. Compact particles are characterized by densities of about 103 kg/m3, while fluffy particles have an almost fractal nature, with densities less than 1 kg/m3.In this work we present the initial results of a model linking the dust flux distribution, as obtained from a theoretical thermal nucleus model, with a model describing the dynamics of aspherical grains in the coma. The results are discussed in the context of the latest observations from VIRTIS and GIADA instruments.The 2D nucleus thermal model, when applied to the real shape of the comet, provides the size distribution and physical properties of the emitted grains at different times and location on the surface. The thermal model can simulate grains of various size distribution, composition and physical properties. This information is used as an input for the dust dynamical model that follows the emitted particles in the coma. The main source of heating is the solar illumination. In the dust dynamical model, the grain trajectory of emitted particles remains in a plane perpendicular to the rotational axis and the direction of illumination is taken to be in the same plane (i.e. does not cause transversal forces). The dust particles are assumed to be isothermal convex bodies and temperature changes only induce modest changes in the aerodynamic force (twice higher temperature changes aerodynamic force less than ~30%). This study reviews the theoretical values at which temperature difference starts to play a role on the dynamics. We discuss to what extent the particle's temperature affects the terminal velocities of the dust grains in the 67P coma in dependence on their mass and

  15. Relativistic Gas Drag on Dust Grains and Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr; Korea University of Science and Technology, Daejeon, 34113

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative duemore » to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.« less

  16. Comparison of dust related respiratory effects in Dutch and Canadian grain handling industries: a pooled analysis.

    PubMed Central

    Peelen, S J; Heederik, D; Dimich-Ward, H D; Chan-Yeung, M; Kennedy, S M

    1996-01-01

    OBJECTIVES: Four previously conducted epidemiological studies in more than 1200 grain workers were used to compare exposure-response relations between exposure to grain dust and respiratory health. METHODS: The studies included Dutch workers from an animal feed mill and a transfer grain elevator and Canadian workers from a terminal grain elevator and the docks. Relations between forced expiratory volume in one second (FEV1) and exposure were analysed with multiple regression analysis corrected for smoking, age, and height. Exposure variables examined included cumulative and current dust exposure and the numbers of years a subject was employed in the industry. Sampling efficiencies of the Dutch and Canadian measurement techniques were compared in a pilot study. Results of this study were used to correct slopes of exposure-response relations for differences in dust fractions sampled by Dutch and Canadian personal dust samplers. RESULTS: Negative exposure-response relations were shown for regressions of FEV1 on cumulative and current exposure and years employed. Slopes of the exposure-response relations differed by a factor of three to five between industries, apart from results for cumulative exposure. Here the variation in slopes differed by a factor of 100, from -1 to -0.009 ml/mg.y/m3. The variation in slopes between industries reduced to between twofold to fivefold when the Dutch transfer elevator workers were not considered. There was evidence that the small exposure-response slope found for this group is caused by misclassification of exposure and a strong healthy worker effect. Alternative, but less likely explanations for the variation in slopes were differences in exposure concentrations, composition of grain dust, exposure characteristics, and measurement techniques. CONCLUSION: In conclusion, this study showed moderately similar negative exposure-response relations for four different populations from different countries, despite differences in methods of

  17. Comparison of dust related respiratory effects in Dutch and Canadian grain handling industries: a pooled analysis.

    PubMed

    Peelen, S J; Heederik, D; Dimich-Ward, H D; Chan-Yeung, M; Kennedy, S M

    1996-08-01

    Four previously conducted epidemiological studies in more than 1200 grain workers were used to compare exposure-response relations between exposure to grain dust and respiratory health. The studies included Dutch workers from an animal feed mill and a transfer grain elevator and Canadian workers from a terminal grain elevator and the docks. Relations between forced expiratory volume in one second (FEV1) and exposure were analysed with multiple regression analysis corrected for smoking, age, and height. Exposure variables examined included cumulative and current dust exposure and the numbers of years a subject was employed in the industry. Sampling efficiencies of the Dutch and Canadian measurement techniques were compared in a pilot study. Results of this study were used to correct slopes of exposure-response relations for differences in dust fractions sampled by Dutch and Canadian personal dust samplers. Negative exposure-response relations were shown for regressions of FEV1 on cumulative and current exposure and years employed. Slopes of the exposure-response relations differed by a factor of three to five between industries, apart from results for cumulative exposure. Here the variation in slopes differed by a factor of 100, from -1 to -0.009 ml/mg.y/m3. The variation in slopes between industries reduced to between twofold to fivefold when the Dutch transfer elevator workers were not considered. There was evidence that the small exposure-response slope found for this group is caused by misclassification of exposure and a strong healthy worker effect. Alternative, but less likely explanations for the variation in slopes were differences in exposure concentrations, composition of grain dust, exposure characteristics, and measurement techniques. In conclusion, this study showed moderately similar negative exposure-response relations for four different populations from different countries, despite differences in methods of exposure assessment and exposure estimation.

  18. From Nuclei to Dust Grains: How the AGB Machinery Works

    NASA Astrophysics Data System (ADS)

    Gobrecht, D.; Cristallo, S.; Piersanti, L.

    2015-12-01

    With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.

  19. Atomic-scale simulation of dust grain collisions: Surface chemistry and dissipation beyond existing theory

    NASA Astrophysics Data System (ADS)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.

    2017-10-01

    The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.

  20. The influence of grain growth in circumstellar dust envelopes on observed colors and polarization of some eruptive stars

    NASA Technical Reports Server (NTRS)

    Efimov, Yu. S.

    1989-01-01

    R CrB stars are classical examples of stars where dust envelope formation takes place. Dust envelope formation was detected around the Kuwano-Honda object (PU Vul) in 1980 to 1981 when the star's brightness fell to 8(sup m). Such envelopes are also formed at nova outbursts. The process of dust envelope formation leads to appreciable variations in optical characteristics, which are seen in specific color and polarization variations in the course of light fading and the appearance of IR radiation. It is shown that the model of a circumstellar dust envelope with aligned particles of changing size can be successfully applied to explain most phenomena observed at the time of light minima for a number of eruptive stars. The polarization may arise in a nonspherical dust envelope or be produced by alignment of nonspherical particles.

  1. Excitation of Kelvin Helmholtz instability by an ion beam in a plasma with negatively charged dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Kavita; Sharma, Suresh C.

    2015-02-15

    An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.

  2. Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.

    2014-06-01

    A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.

  3. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of `polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm `carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  4. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    PubMed

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  5. Grain dust-induced lung inflammation is reduced by Rhodobacter sphaeroides diphosphoryl lipid A.

    PubMed

    Jagielo, P J; Quinn, T J; Qureshi, N; Schwartz, D A

    1998-01-01

    To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001-100 micrograms/ml), LPS (0.02 microgram endotoxin activity/ml), or corn dust extract (CDE; 0.02 microgram endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-alpha stimulatory effect at 100 micrograms/ml. In contrast, incubation with LPS or CDE resulted in TNF-alpha release at 0.02 microgram/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 microgram endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-alpha with concentrations of RsDPLA of up to 10 micrograms/ml but not at 100 micrograms/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 micrograms of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 micrograms/m3) or LPS (7.2 and 0.28 micrograms/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS

  6. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  7. Grain elevator workers show work-related pulmonary function changes and dose-effect relationships with dust exposure.

    PubMed Central

    Corey, P; Hutcheon, M; Broder, I; Mintz, S

    1982-01-01

    The purpose of this study was to determine whether grain handlers underwent work-related changes in their pulmonary function and, if so, to examine the dose-effect relationships with dust exposure. The pulmonary function of grain handlers was measured at the beginning and end of work shifts over a period of one week, during which their exposure to dust was measured daily. The results showed changes indicative of a within-day obstructive change, in addition to a small restrictive defect occurring over the course of a week. Civic outside labourers who were examined as a control group showed a similar within-week obstructive change without any associated restriction of lung volume. The data on the grain handlers were also used to examine the dose-effect relationships of dust exposure, both on baseline pulmonary function and on within-day changes in these measurements. The baseline flow rates of workers who did not wear a mask were found to vary inversely with their average exposure to respirable dust. In addition, the flow rates underwent a within-day decrease that varied directly with their corresponding exposure to respirable dust and was unrelated to mask wearing. The median of the slopes for this relationship indicated that 50% of the subjects had a decrease of at least 923 ml/s in the value of their Vmax50%VC for each 1 mg/m3 increase in the concentration of respirable dust. Non-respirable dust did not have a measurable effect either on the baseline or the within-day changes in pulmonary function. The acute changes were unaffected by age, duration of employment, or extent of smoking. PMID:7138793

  8. Effect of grain alignment distribution on magnetic properties in (MM, Nd)-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoqiang; Yue, Ming; Zhu, Minggang; Liu, Weiqiang; Li, Yuqing; Xi, Longlong; Li, Jiajie; Zhang, Jiuxing; Li, Wei

    2018-03-01

    H cj of (MM x Nd1-x )-Fe-B sintered magnets decreases distinctly with x increasing when misch metal (MM) content (x) ranges from 0.3 to 1. Practical application is taken into consideration so that the (MM0.6Nd0.4)-Fe-B components are chosen to analyze the changes in behavior of the magnetic properties. Both Magnet II and Magnet III belong to (MM0.6Nd0.4)-Fe-B sintered magnets, however, it should be noted that Magnet II is prepared by the single alloying method (SAM) and Magnet III is prepared by the double main phase alloy method (DMPAM). Core-shell structures of the magnets prepared by DMPAM can result in the higher H cj and lower knee-point coercivity (H k) compared with that by SAM. Furthermore, for Magnet II, the abnormal grain growth contributes to a better grain alignment and smaller distribution coefficient (σ) defined as the degree of grain alignment, which will enforce a higher tendency of the H cj decreasing and H k increasing. The expression of their normalized coercivity h(σ) is deduced by combining Gao’s starting field model with Kronmüller’s nucleation mechanism. Based on the overall h(σ) ~ σ curve, the best desirable h(σ) value is calculated when σ  =  0.09. Theoretically, for Magnet III, the resultant larger σ should be attributed to the more uniform grain alignment. In addition, the deviations of grain size distributions on the c-plane become more remarkable with more MM concentrates, which can be presented by SEM images. Meanwhile, by means of the pole figures, it is also verified that the grain alignment distribution becomes much more diverse with x increasing. Therefore, it can be predicted whether the grain alignment distribution is significant for H k and H cj of (MM x Nd1-x )-Fe-B sintered magnets (x  ≠  0.6) prepared by SAM/DMPAM or not.

  9. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1994-01-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  10. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    PubMed Central

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  11. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    PubMed Central

    2016-01-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090

  12. Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the PHANTOM SPH code

    NASA Astrophysics Data System (ADS)

    Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.

    2018-06-01

    We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly and marginally coupled grains.

  13. Drift dust acoustic soliton in the presence of field-aligned sheared flow and nonextensivity effects

    NASA Astrophysics Data System (ADS)

    Shah, AttaUllah; Mushtaq, A.; Farooq, M.; Khan, Aurangzeb; Aman-ur-Rehman

    2018-05-01

    Low frequency electrostatic dust drift acoustic (DDA) waves are studied in an inhomogeneous dust magnetoplasma comprised of dust components of opposite polarity, Boltzmannian ions, and nonextensive distributed electrons. The magnetic-field-aligned dust sheared flow drives the electrostatic drift waves in the presence of ions and electrons. The sheared flow decreases or increases the frequency of the DDA wave, mostly depending on its polarity. The conditions of instability for this mode, with nonextensivity and dust streaming effects, are discussed. The nonlinear dynamics is then investigated for the DDA wave by deriving the Koeteweg-deVries (KdV) nonlinear equation. The KdV equation yields an electrostatic structure in the form of a DDA soliton. The relevancy of the work to laboratory four component dusty plasmas is illustrated.

  14. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the

  15. Neurogenic plasma exudation mediates grain dust-induced tissue injury in vivo.

    PubMed

    Gao, X P; Von Essen, S; Rubinstein, I

    1997-02-01

    The purpose of this study was to determine whether an aqueous extract of grain sorghum dust (GDE) elicits neurogenic plasma exudation in the oral mucosa in vivo. Using intravital microscopy, we found that GDE elicited significant, concentration-dependent leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the hamster cheek pouch (P < 0.05). The selective, nonpeptide neurokinin(1) (substance P) receptor antagonists, CP-96,345 and RP-67580, but not the 2R,3R enantiomer CP-96,344, significantly attenuated GDE-induced leaky site formation and increase in clearance of FITC-dextran (P < 0.05). Indomethacin had no significant effects on GDE-induced responses. CP-96,345 had no significant effects of adenosine-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch. We conclude that GDE elicits neurogenic plasma exudation from the oral mucosa in vivo. We suggest that this process is one mechanism whereby grain sorghum dust elicits immediate oral mucosa inflammation in vivo.

  16. Stochastic Parameterization for Light Absorption by Internally Mixed BC/dust in Snow Grains for Application to Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, K. N.; Takano, Y.; He, Cenlin

    2014-06-27

    A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions ofmore » BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.« less

  17. Bonanza: An extremely large dust grain from a supernova

    NASA Astrophysics Data System (ADS)

    Gyngard, Frank; Jadhav, Manavi; Nittler, Larry R.; Stroud, Rhonda M.; Zinner, Ernst

    2018-01-01

    We report the morphology, microstructure, and isotopic composition of the largest SiC stardust grain known to have condensed from a supernova. The 25-μm diameter grain, termed Bonanza, was found in an acid-resistant residue of the Murchison meteorite. Grains of such large size have neither been observed around supernovae nor predicted to form in stellar environments. The large size of Bonanza has allowed the measurement of the isotopic composition of more elements in it than any other previous presolar grain, including: Li, B, C, N, Mg, Al, Si, S, Ca, Ti, Fe, and Ni. Bonanza exhibits large isotopic anomalies in the elements C, N, Mg, Si, Ca, Ti, Fe, and Ni typical of an astrophysical origin in ejecta of a Type II core-collapse supernova and comparable to those previously observed for other presolar SiC grains of type X. Additionally, we extracted multiple focused ion beam lift-out sections from different regions of the grain. Our transmission electron microscopy demonstrates that the crystalline order varies at the micrometer scale, and includes rare, higher order polytype domains (e.g., 15 R). Analyses with STEM-EDS show Bonanza contains a heterogeneous distribution of subgrains with sizes ranging from <10 nm to >100 nm of Ti(N, C); Fe, Ni-rich grains with variable Fe:Ni; and (Al, Mg)N. Bonanza also has the highest ever inferred initial 26Al/27Al ratio, consistent with its supernova origin. This unique grain affords us the largest expanse of data, both microstructurally and isotopically, to compare with detailed calculations of nucleosynthesis and dust condensation in supernovae.

  18. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Spann, James F., Jr.; Craven, Paul D.; West, E.; Pratico, Jared; Scheianu, D.; Tankosic, D.; Venturini, C. C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 1 - 100 micrometer diameter are levitated in a vacuum chamber at pressures approx. 10(exp -5) torr and exposed to a collimated beam of UV radiation in the 120-300 nanometers spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV radiation wavelength with a spectral resolution of 8 nanometers. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on Al2O3 and silicate particles, and in particular on JSC-1 Mars regolith simulants, to determine the photoelectron yields and surface equilibrium potentials of dust particles when exposed to UV radiation in the 120-250 micrometers spectral range. A brief discussion of the experimental procedure, the results of photoemission experiments, and comparisons with theoretical models will be presented.

  19. DustEM: Dust extinction and emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  20. Measuring the Dust Grains and Distance to X Persei Via Its X-ray Halo

    NASA Astrophysics Data System (ADS)

    Smith, Randall

    2006-09-01

    We propose to observe the X-ray halo of the high mass X-ray binary pulsar X Per to measure interstellar dust grains along the line of sight (LOS) and to determine the distance to X Per. The X-ray halo is formed by scattering from grains along the LOS, which for X Per appear to be concentrated in one molecular cloud. Unlike many other X-ray halo observations, this low-absorption high-latitude sightline is well-characterized from absorption spectroscopy done with HST, Copernicus, and FUSE. This halo observation will measure the distance to the cloud and the dust size distribution in it. We will also be able to determine the distance to X Per by measuring the time delayed pulses in the X-ray halo.

  1. Airway responsiveness to methacholine, respiratory symptoms, and dust exposure levels in grain and flour mill workers in eastern France.

    PubMed

    Massin, N; Bohadana, A B; Wild, P; Kolopp-Sarda, M N; Toamain, J P

    1995-06-01

    Our goal was to assess the relation between dust exposure levels and the respiratory health status of workers in grain and flour mills in eastern France. We studied 118 male workers from 11 mills and 164 unexposed male controls. Dust concentration was measured by personal sampling methods. Outcome variables included respiratory symptoms, routine pulmonary function tests, and indices of airway responsiveness to methacholine. A great within- and between-area variability of inhalable dust concentration was found in all mills. A dose-response relationship was observed between dust exposure levels and chronic respiratory symptoms, suggesting that exposure to grain and flour dust may lead to chronic bronchitis. A significant relation was found between dust exposure and airway hyper-responsiveness; this finding is important since it has been hypothesized that the latter abnormality may lead to or be a predisposing factor in subsequent chronic, irreversible airflow obstruction.

  2. Constraints on interstellar dust models from extinction and spectro-polarimetry

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.

    2017-12-01

    We present polarisation spectra of seven stars in the lines-of-sight towards the Sco OB1 association. Our spectra were obtained within the framework of the Large Interstellar Polarization Survey carried out with the FORS instrument of the ESO VLT. We have modelled the wavelength-dependence of extinction and linear polarisation with a dust model for the diffuse interstellar medium which consists of a mixture of particles with size ranging from the molecular domain of 0.5 nm up to 350 nm. We have included stochastically heated small dust grains with radii between 0.5 and 6 nm made of graphite and silicate, as well as polycyclic aromatic hydrocarbon molecules (PAHs), and we have assumed that larger particles are prolate spheroids made of amorphous carbon and silicate. Overall, a dust model with eight free parameters best reproduces the observations, and is in agreement with cosmic abundance constraints. Reducing the number of free parameters leads to results that are inconsistent with the cosmic abundances of silicate and carbon. We found that aligned silicates are the dominant contributor to the observed polarisation, and that the polarisation spectra are best-fit by a lower limit of the equivolume sphere radius of aligned grains of 70-200 nm.

  3. On the injection of fine dust from the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Maravilla, D.; Flammer, K. R.; Mendis, D. A.

    1995-01-01

    Using a simple aligned dipole model of the Jovian magnetic field, and exploiting integrals of the gravito-electrodynamic equation of motion of charged dust, we obtain an analytic result which characterizes the nature of the orbits of grains of different (fixed) charge-to-mass ratios launched at different velocities from different radial distances from Jupiter. This enables us to consider various possible sources of the dust-streams emanating from Jupiter which have been observed by the Ulysses spacecraft. We conclude that Jupiter's volcanically active satellite Io is the likely source, in agreement with the earlier calculations and simulations of Horanyi et al. using a detailed three-dimensional model of the Jovian magnetosphere. Our estimates of the size range and the velocity range of these dust grains are also in good agreement with those of the above authors and are within the error bars of the observations.

  4. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    PubMed

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-01-29

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Tentative Identification of Interstellar Dust in the Magnetic Wall of the Heliosphere

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.

    2006-06-01

    Data showing that light from nearby stars, <40 pc, is weakly polarized are consistent with the capture and alignment of dust grains in the magnetic wall of the heliosphere. These data, from Tinbergen (1982) and Piirola (1977), were acquired during the solar minimum of the mid-1970's when the magnetic wall was expected to form at negative ecliptic latitudes because the solar magnetic polarity was north-pole-positive. The polarization is seen primarily at negative ecliptic latitudes, consistent with the expected magnetic wall position. The interstellar magnetic field direction at the Sun is derived from these data. The small dust grains most likely to cause the polarization are also the grains excluded from the heliosphere by small gyroradii, <100 AU. The direction of maximum polarization is offset by ˜ 20 --40 deg. from the inflow direction of the large grains that are gravitationally focused in the heliosphere tail. Interstellar dust grains in and near the heliosphere form a potential contaminant of the cosmic microwave background signal, which should then be identifiable because the spatial behavior of these grains depends on the phase of the 22 year solar magnetic activity cycle. The author would like to thank NASA for supporting her research.

  6. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; hide

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  7. Occupational asthma and IgE sensitization to grain dust.

    PubMed Central

    Park, H. S.; Nahm, D. H.; Suh, C. H.; Kwon, O. Y.; Kim, K. S.; Lee, S. W.; Chung, H. K.

    1998-01-01

    To evaluate type I hypersensitivity to grain dust (GD), its prevalence and relationship to respiratory dysfunction, we studied clinical and immunologic features, including skin prick tests (SPT), serum specific IgE, and bronchoprovocation tests of 43 employees working in the animal feed industry. To further characterize IgE-mediated reaction, SDS-PAGE and electroblot studies were performed. Our survey revealed that 15 (34.9%) subjects had work-related skin response (> or =2+ of A/H ratio) to GD, thirteen (30.2%) had high specific IgE antibody against GD. The specific IgE antibody was detected more frequently in symptomatic workers (40%) than in asymptomatic workers (11%). Significant association was found between specific IgE antibody and atopy or smoking (p<0.05). The ELISA inhibition test of GD revealed significant inhibitions by GD extract and minimal inhibitions by the house dust mite, storage mite and corn dust. Immunoblot analysis showed 8 IgE binding components within GD ranging from 13.5 to 142.5 kDa. Two bands (13.5, 33 kDa) were bound to the IgE from more than 50% of the 14 sera tested. In conclusion, these findings suggest that GD inhalation could induce IgE-mediated bronchoconstriction in exposed workers. PMID:9681805

  8. Occupational asthma and IgE sensitization to grain dust.

    PubMed

    Park, H S; Nahm, D H; Suh, C H; Kwon, O Y; Kim, K S; Lee, S W; Chung, H K

    1998-06-01

    To evaluate type I hypersensitivity to grain dust (GD), its prevalence and relationship to respiratory dysfunction, we studied clinical and immunologic features, including skin prick tests (SPT), serum specific IgE, and bronchoprovocation tests of 43 employees working in the animal feed industry. To further characterize IgE-mediated reaction, SDS-PAGE and electroblot studies were performed. Our survey revealed that 15 (34.9%) subjects had work-related skin response (> or =2+ of A/H ratio) to GD, thirteen (30.2%) had high specific IgE antibody against GD. The specific IgE antibody was detected more frequently in symptomatic workers (40%) than in asymptomatic workers (11%). Significant association was found between specific IgE antibody and atopy or smoking (p<0.05). The ELISA inhibition test of GD revealed significant inhibitions by GD extract and minimal inhibitions by the house dust mite, storage mite and corn dust. Immunoblot analysis showed 8 IgE binding components within GD ranging from 13.5 to 142.5 kDa. Two bands (13.5, 33 kDa) were bound to the IgE from more than 50% of the 14 sera tested. In conclusion, these findings suggest that GD inhalation could induce IgE-mediated bronchoconstriction in exposed workers.

  9. Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust -- interstellar grains?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.

    1994-01-01

    Ultrafine-grained matrix is a unique and fundamental building block of chondritic porous (CP) interplanetary dust particles. Most IDPs so far determined to be of cometary origin belong to the CP class. The matrix in CP IDPs is not homogeneous but rather a loose mixture of discrete single crystals (e.g., olivine, pyroxene, Fe sulfides) and polyphase grains. The petrographic diversity observed among the polyphase grains suggest that they were formed under variable physiochemical conditions. One particular class of polyphase grains are a dominant component in cometary IDPs. Although their occurrence is well documented, the terminology used to describe them is confused. They have been called many names. Here they are simply called GEMS (Glass with Embedded Metal and Sulfides). The bulk compositions of GEMS are within a factor of 3 chondritic (solar) for all major elements except C. Quantitative thin-film X-ray (EDS) analyses have shown that GEMS are systematically depleted in Mg and Si, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Electron energy-loss spectroscopy (EELS) suggests that the excess O is present as hydroxyl (-OH) groups. These same chemical 'anomalies' were observed in solar-wind-irradiated amorphous rims on the surfaces of IDPs, suggesting that the compositions of GEMS reflect prior exposure to ionizing radiation. In order to test this hypothesis, a sample of Allende (CV3) matrix was exposed to proton flux. Radiation-damaged amorphous rims on olivine and pyroxene crystals in the Allende sample were found to be depleted in Mg and Ca, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Thus, the compositions of GEMS are indeed consistent with exposure to ionizing radiation. This study suggests that chemical as well as isotopic anomalies may be used to identify presolar interstellar grains in primitive meteoritic materials.

  10. Large Interstellar Polarisation Survey:The Dust Elongation When Combining Optical-Submm Polarisation

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, Ralf; Voschinnikov, N.; Bagnulo, S.; Cox, N.; Cami, J.

    2017-10-01

    The Planck mission has shown that dust properties of the diffuse ISM varies on a large scale and we present variability on a small scales. We present FORS spectro-polarimetry obtained by the Large Interstellar Polarisation Survey along 60 sight-lines. We fit these combined with extinction data by a silicate and carbon dust model with grain sizes ranging from the molecular to the sub-mic. domain. Large silicates of prolate shape account for the observed polarisation. For 37 sight-lines we complement our data set with UVES high-resolution spectra that establish the presence of single or multiple clouds along individual sight-lines. We find correlations between extinction and Serkowski parameters with the dust model and that the presence of multiple clouds depolarises the incoming radiation. However, there is a degeneracy in the dust model between alignment efficiency and the elongation of the grains. This degeneracy can be broken by combining polarization data in the optical-to-submm. This is of wide general interest as it improves the accuracy of deriving dust masses. We show that a flat IR/submm polarisation spectrum with substantial polarisation is predicted from dust models.

  11. Grain growth in Class I protostar Per-emb-50: a dust continuum analysis with NOEMA & SMA .

    NASA Astrophysics Data System (ADS)

    Agurto-Gangas, C.; Pineda, J. E.; Testi, L.; Caselli, P.; Szucs, L.; Tazzari, M.; Dunham, M.; Stephens, I. W.; Miotello, A.

    A good understanding of when dust grains grow from sub-micrometer to millimeter sizes occurs is crucial for models of planet formation. This provides the first step towards the production of pebbles and planetesimals in protoplanetary disks. Thanks to detailed studies of the spectral index in Class II disks, it is well established that Class II objects have already dust grains of millimetres sizes, however, it is not clear when in the star formation process this grain growth occurs. Here, we present interferometric data from NOEMA at 3 mm and SMA at 1.3 mm of the Class I protostar, Per-emb-50, to determine the flux density spectral index at mm-wavelengths of the unresolved disk and the surrounding envelope. We find a spectral index in the unresolved disk 30% smaller than the envelope, alpha env=2.18, comparable to values obtained toward Class 0 sources.

  12. Light Scattering by Wavelength-Sized Particles "Dusted" with Subwavelength-Sized Grains

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.

    2011-01-01

    The numerically exact superposition T-matrix method is used to compute the scattering cross sections and the Stokes scattering matrix for polydisperse spherical particles covered with a large number of much smaller grains. We show that the optical effect of the presence of microscopic dust on the surfaces of wavelength-sized, weakly absorbing particles is much less significant than that of a major overall asphericity of the particle shape.

  13. FORMATION AND ALIGNMENT OF ELONGATED, FRACTAL-LIKE WATER-ICE GRAINS IN EXTREMELY COLD, WEAKLY IONIZED PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Kil-Byoung; Bellan, Paul M., E-mail: kbchai@caltech.edu, E-mail: pbellan@caltech.edu

    2015-04-01

    Elongated, fractal-like water-ice grains are observed to form spontaneously when water vapor is injected into a weakly ionized laboratory plasma formed in a background gas cooled to an astrophysically relevant temperature. The water-ice grains form in 1–2 minutes, levitate with regular spacing, and are aligned parallel to the sheath electric field. Water-ice grains formed in plasma where the neutrals and ions have low mass, such as hydrogen and helium, are larger, more elongated, and more fractal-like than water-ice grains formed in plasmas where the neutrals and ions have high mass such as argon and krypton. Typical aspect ratios (length tomore » width ratio) are as great as 5 while typical fractal dimensions are ∼1.7. Water-ice grain lengths in plasmas with low neutral and ion masses can be several hundred microns long. Infrared absorption spectroscopy reveals that the water-ice grains are crystalline and so are similar in constitution to the water-ice grains in protoplanetary disks, Saturn’s rings, and mesospheric clouds. The properties and behavior of these laboratory water-ice grains may provide insights into morphology and alignment behavior of water-ice grains in astrophysical dusty plasmas.« less

  14. Grain Size Distribution and Health Risk Assessment of Metals in Outdoor Dust in Chengdu, Southwestern China.

    PubMed

    Chen, Mengqin; Pi, Lu; Luo, Yan; Geng, Meng; Hu, Wenli; Li, Zhi; Su, Shijun; Gan, Zhiwei; Ding, Sanglan

    2016-04-01

    A total of 27 outdoor dust samples from roads, parks, and high spots were collected and analyzed to investigate the contamination of 11 metals (Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, Sb, and Pb) in Chengdu, China. The results showed that the samples from the high spots exhibited the highest heavy metal level compared with those from the roads and the parks, except for Ni, Cu, and Pb. The dust was classified into five grain size fractions. The mean loads of each grain size fraction of 11 determined metals displayed similar distribution, and the contribution of median size (63-125, 125-250, 250-500 μm) fractions accounted for more than 70% of overall heavy metal loads. The health risk posed by the determined metals to human via dust ingestion, dermal contact, and inhalation was investigated. Oral and respiratory bioaccessible parts of the metals in dust were extracted using simulated stomach solution and composite lung serum. The mean bioaccessibilities of 11 investigated metals in the gastric solution were much higher than those in the composite lung serum, especially Zn, Cd, and Pb. Ingestion was the most important exposure pathway with percentage greater than 70% for both children and adults. Risk evaluation results illustrated that children in Chengdu might suffer noncarcinogenic risk when exposed to outdoor dust. Given that the cancer risk values of Pb and Cr larger than 1 × 10(-4), potential carcinogenic risk might occur for Chengdu residents through outdoor dust intake.

  15. Variable extinction in HD 45677 and the evolution of dust grains in pre-main-sequence disks

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Halbedel, Elaine M.; Lawrence, Geoffrey F.; Smith, J. Allyn; Yanow, Ken

    1994-01-01

    Changes in the UV extinction and IR emission were sought in the Herbig Ae/Be star candidate HD 45677 (= FS CMa) by comparing UV, optical, and IR observations made approximately 10 yr apart. HD 45677 varied significantly, becoming more than 50% brighter in the UV and optical than it was a decade ago. A comparison of the observations between epochs indicates that if the variations are due to changes in dust obscuration, the dust acts as a gray absorber into the near-IR and must be depleted in grains smaller than 1 micron. This is similar to the results obtained on the circumstellar disks of stars like Vega and Beta Pic, and suggests that radiation pressure may be responsible for the small-grain depletion. In addition, the total IR flux seems to have declined, indicating a decrease in the total mass of the dust envelope that contributes to the IR emission in this part of the spectrum. Due to the anomalous nature of the extinction, the use of normal extinction curves to deredden the spectral energy distributions of stars with circumstellar dust may lead to significant errors and should be used with great caution.

  16. THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, J.; Wisniewski, J.; Tsukagoshi, T.

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum atmore » 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.« less

  17. Coarse-grained Mineral Dust Deposition in Alpine Lake Sediments: Implications for Regional Drought Patterns and Land-use Changes in the Southwest USA

    NASA Astrophysics Data System (ADS)

    Pedraza, A.; Kingsley, C.; Marchitto, T. M., Jr.; Lora, J. M.; Pollen, A.; Vollmer, T.; Leithold, E. L.; Mitchell, J.; Tripati, A. K.; Bhattacharya, A.

    2017-12-01

    Mineral dust accumulation is often causally associated with aridity. However, the relation might not be as straightforward. Consideration of grain sizes and geochemical fingerprinting of the coarse grain fraction will clearly have an impact on how we interpret the sedimentary record of mineral dust in depositional environments e.g. coarse grain fractions of mineral dust would most certainly be transported over relatively short distances and as such in depositional environments, the depositional rate of coarse grains must be determined in order to reliably understand erosional patterns associated with meteorological events (such as frequency of intense wind events such as tornadoes), climatological phenomenon (such as regional droughts) as well as more recently land-use changes. In this study we separate the two size fractions of mineral dust accumulation- fine fraction (typically <4 microns) and coarse fraction (typically >25 microns using grain size analysis from well-studied cores collected from several lake sites distributed across the western southwestern and the Great Plain regions; furthermore we use trace element analysis in each size fraction to identify contributing source regions. We find evidence that the coarser-grain size fraction in the studied lake cores could be of regional origin (and not just local in orgin);. the coarser fraction also appears to be related to intense meteorological events (i.e., the occurrence of cyclones). Analysis is underway to understand the impact of land-use changes on coarse grain fraction

  18. Plasma drag on a dust grain due to Coulomb collisions

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Birmingham, T. J.

    1990-01-01

    Expressions are given for the drag due to Coulomb collisions on a charged dust grain moving through a plasma. The commonly used Chandrasekhar (1943) result does not include large scattering angles or plasma collective effects. An equation given by Morfill et al. (1980) which does include large scattering angles, is limited to one-dimensional plasma particle motion and can give at least an order of magnitude too much drag. This paper also makes use of an analogy between the drag problem and problems in electrostatics. This analogy permits generalization to any isotropic plasma of an observation made by Chandrasekhar for a Maxwellian, namely, that the drag is independent of the presence or absence of plasma particles moving faster than the grain. Finally, the contribution of plasma collective effects to the drag is studied with the inclusion of large scattering angles.

  19. Synergistic Instance-Level Subspace Alignment for Fine-Grained Sketch-Based Image Retrieval.

    PubMed

    Li, Ke; Pang, Kaiyue; Song, Yi-Zhe; Hospedales, Timothy M; Xiang, Tao; Zhang, Honggang

    2017-08-25

    We study the problem of fine-grained sketch-based image retrieval. By performing instance-level (rather than category-level) retrieval, it embodies a timely and practical application, particularly with the ubiquitous availability of touchscreens. Three factors contribute to the challenging nature of the problem: (i) free-hand sketches are inherently abstract and iconic, making visual comparisons with photos difficult, (ii) sketches and photos are in two different visual domains, i.e. black and white lines vs. color pixels, and (iii) fine-grained distinctions are especially challenging when executed across domain and abstraction-level. To address these challenges, we propose to bridge the image-sketch gap both at the high-level via parts and attributes, as well as at the low-level, via introducing a new domain alignment method. More specifically, (i) we contribute a dataset with 304 photos and 912 sketches, where each sketch and image is annotated with its semantic parts and associated part-level attributes. With the help of this dataset, we investigate (ii) how strongly-supervised deformable part-based models can be learned that subsequently enable automatic detection of part-level attributes, and provide pose-aligned sketch-image comparisons. To reduce the sketch-image gap when comparing low-level features, we also (iii) propose a novel method for instance-level domain-alignment, that exploits both subspace and instance-level cues to better align the domains. Finally (iv) these are combined in a matching framework integrating aligned low-level features, mid-level geometric structure and high-level semantic attributes. Extensive experiments conducted on our new dataset demonstrate effectiveness of the proposed method.

  20. Effects of polymorphic variations in tumor necrosis factor alpha and occupational exposure to grain dust on longitudinal decline in pulmonary function.

    PubMed

    Pahwa, Punam; Nakagawa, Kazuko; Koehncke, Niels; McDuffie, Helen H

    2009-01-01

    Longitudinal declines in pulmonary function are associated with individuals experiencing occupational exposure to organic dusts in combination with lifestyle factors such as cigarette smoking and with genetic factors, and interactions between these factors. To investigate the relationship between polymorphism of genes encoding Tumor Necrosis Factor Alpha (TNF-alpha) and longitudinal lung function decline in grain workers exposed to grain dust. Male grain handlers who participated in the Saskatchewan Grain Workers Surveillance Program from 2002 through 2005 provided demographic, occupational, lifestyle, and respiratory symptoms information as well as pulmonary function measurements and DNA for genotyping. Marginal models using the generalized estimating equations approach were fitted by using a SAS PROC GENMOD to predict the annual decline in Forced Expired Volume in one second (FEV(1)) and Forced Vital Capacity (FVC). Smoking intensity contributed to the decline in FEV(1.)Among *1/*1 homozygotes and *1/*2 heterozygotes, grain workers with <10 years in the grain industry had significantly lower FEV(1)declines compared to those of the other two exposure groups (>10 and < or =20 years, and >20 years in the grain industry). The annual declines in FEV(1)for grain workers who were either *1/*1 homozygote or *1/*2 heterozygote and had been in the grain industry for <10 years were lower by comparison to those of grain workers who were *2/*2 genotype and had been in the industry for <10 years. This research demonstrates that years in the grain industry is an effect modifier between TNF-alpha 308 genotype and longitudinal decline in FEV(1)in male subjects exposed to grain dust.

  1. Lunar dust charging by photoelectric emissions

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-05-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with

  2. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with

  3. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  4. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak, E-mail: Lorin_Matthews@baylor.edu

    2013-10-20

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface ofmore » an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.« less

  5. Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter

    NASA Astrophysics Data System (ADS)

    Flynn, George

    Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter Chondritic, porous interplanetary dust particles (CP IDPs), the most primitive samples of extraterrestrial material available for laboratory analysis [1], are unequilibrated aggregates of mostly submicron, anhydrous grains of a diverse mineralogy. They contain organic matter not produced by parent body aqueous processing [2], some carrying H and N isotopic anomalies consistent with molecular cloud or outer Solar System material [3]. Scanning Transmission X-Ray Microscope (STXM) imaging at the C K-edge shows the individual grains in 10 micron aggregate CP IDPs are coated by a layer of carbonaceous material 100 nm thick. This structure implies a three-step formation sequence. First, individual grains condensed from the cooling nebular gas. Then complex, refractory organic molecules covered the surfaces of the grains either by deposition, formation in-situ, or a combination of both processes. Finally, the grains collided and stuck together forming the first dust-size material in the Solar System. Ultramicrotome sections, 70 to 100 nm thick were cut from several CP IDPs, embedded in elemental S to avoid exposure to C-based embedding media. X-ray Absorption Near Edge Structure (XANES) spectra were derived from image stacks obtained using a STXM. "Cluster analysis" was used to compare the C-XANES spectra from each of the pixels in an image stack and identify pixels exhibiting similar spectra. When applied to a CP IDP, cluster analysis identifies most carbonaceous grain coatings in a particle as having similar C-XANES spectra. Two processes are commonly suggested in the literature for production of organic grain coatings. The similarity in thickness and C-XANES spectra of the coatings on different minerals in the same IDP indicates the first, mineral specific catalysis, was not the process that produced these organic rims. Our results

  6. CHARGED DUST GRAIN DYNAMICS SUBJECT TO SOLAR WIND, POYNTING–ROBERTSON DRAG, AND THE INTERPLANETARY MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase ormore » decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.« less

  7. Developing ISM Dust Grain Models with Precision Elemental Abundances from IXO

    NASA Technical Reports Server (NTRS)

    Valencic, L. A.; Smith, R. K.; Juet, A.

    2009-01-01

    The exact nature of interstellar dust grains in the Galaxy remains mysterious, despite their ubiquity. Many viable models exist, based on available IR-UV data and assumed elemental abundances. However, the abundances, which are perhaps the most stringent constraint, are not well known: modelers must use proxies in the absence of direct measurements for the diffuse interstellar medium (ISM). Recent revisions of these proxy values have only added to confusion over which is the best representative for the diffuse ISM, and highlighted the need for direct, high signal-to-noise measurements from the ISM itself. The International X-ray Observatory's superior facilities will enable high-precision elemental abundance measurements. We ill show how these results will measure both the overall ISM abundances and challenge dust models, allowing us to construct a more realistic picture of the ISM.

  8. Imaging Polarized Dust Emission in Star Formation Regions with the OVRO MM Array

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel; Carlstrom, John

    1996-01-01

    We present OVRO interferometric observations of linearly polarized emission from magnetically aligned dust grains which allow the magnetic field geometry in nearby star formation regions to be probed on scales ranging from 100 to 3000 AU. Current results include observations of the young stellar objects NGC1333/IRAS 4A, IRAS 16293-2422 and Orion IRc2-KL.

  9. Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255

    NASA Astrophysics Data System (ADS)

    Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Ménard, François; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide; Currie, Thayne; Akiyama, Eiji; Mayama, Satoshi; Follette, Katherine B.; Nakagawa, Takao

    2017-01-01

    We present H-band (1.6 μm) scattered light observations of the transitional disk RX J1615.3-3255, located in the 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 ± 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 μm continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.

  10. Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255

    NASA Technical Reports Server (NTRS)

    Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Menard, Francois; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; hide

    2017-01-01

    We present H-band (1.6 micron) scattered light observations of the transitional disk RX J1615.3-3255, located in the approx. 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.

  11. Tracing gas and magnetic field with dust : lessons from Planck & Herschel

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent

    2015-08-01

    Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.

  12. A New 3D Multi-fluid Dust Model: A Study of the Effects of Activity and Nucleus Rotation on Dust Grain Behavior at Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.

    2017-11-01

    Improving our capability to interpret observations of cometary dust is necessary to deepen our understanding of the role of dust in the formation of comets and in altering the cometary environments. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on the BATS-R-US code. This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is run in the rotating comet reference frame, the centrifugal and Coriolis forces are included. The boundary conditions on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real-shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the mesh is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. Our model achieved comparable results to the Direct Simulation Monte Carlo method and the Rosetta/OSIRIS observations. It is also applied to study the effects of the rotating nucleus and the cometary activity and offers interpretations of some dust observations of comet 67P/Churyumov-Gerasimenko.

  13. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  14. Effect of grain-alignment on the levitation force of melt-processed YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wan-min; Zhou, Lian; Feng, Yong; Zhang, Ping-xiang; Wu, Min-zhi; Wu, Xiao-zu; Gawalek, W.

    1999-07-01

    Single-domain YBCO bulk superconductors have been fabricated by Top Seeded Melt Slow Cooling Growth(TSSCG) process. Two typical YBCO cylinder samples with differential grain-alignment were selected for the investigation of the relationship between the grain-alignment and the levitation force under the same testing condition at liquid nitrogen temperature. It is found that the levitation force values is much different for the two samples, the levitation force of the sample with H par c-axis is more than two times higher than that of the samples with H ⊥ c-axis. So it is necessary to take account of this anisotropy in practical applications. The relationship between a magnet and a superconductor can be well described with a double exponential function. All the results are discussed in details.

  15. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    Aeolian dust in the atmosphere may have a cooling effect when small particles in the high atmosphere block incoming solar energy (e.g., Claquin et al., 2003) but it may also act as a 'greenhouse gas' when larger particles in the lower atmosphere trap energy that was reflected from the Earth's surface (e.g., Otto et al., 2007). Therefore, it is of vital importance to have a good understanding of the particle-size distribution of aeolian dust in space and time. As wind is a very size-selective transport mechanism, the sediments it carries typically have a very-well sorted grain-size distribution, which gradually fines from proximal to distal deposition sites. This fact has been used in numerous paleo-environmental studies to both determine source-to-sink changes in the particle size of aeolian dust (e.g., Weltje and Prins, 2003; Holz et al., 2004; Prins and Vriend, 2007) and to quantify mass-accumulation rates of aeolian dust (e.g., Prins and Weltje 1999; Stuut et al., 2002; Prins et al., 2007; Prins and Vriend, 2007; Stuut et al., 2007; Tjallingii et al., 2008; Prins et al., 2009). Studies on modern wind-blown particles have demonstrated that particle size of dust not only is a function of lateral but also vertical transport distance (e.g., Torres-Padron et al., 2002; Stuut et al., 2005). Nonetheless, there are still many unresolved questions related to the physical properties of wind-blown particles like e.g., the case of "giant" quartz particles found on Hawaii (Betzer et al., 1988) that can only originate from Asia but have a too large size for the distance they travelled through the atmosphere. Here, we present examples of dust particle-size distributions from terrestrial (loess) as well as marine (deep-sea sediments) sedimentary archives and their spatial and temporal changes. With this contribution we hope to provide quantitative data for the modelling community in order to get a better grip on the role of wind-blown particles in the climate system. Cited

  16. Assessment of Workers' Exposure to Grain Dust and Bioaerosols During the Loading of Vessels' Hold: An Example at a Port in the Province of Québec.

    PubMed

    Marchand, Geneviève; Gardette, Marie; Nguyen, Kiet; Amano, Valérie; Neesham-Grenon, Eve; Debia, Maximilien

    2017-08-01

    Longshoremen are exposed to large amounts of grain dust while loading of grain into the holds of vessels. Grain dust inhalation has been linked to respiratory diseases such as chronic bronchitis, hypersensitivity, pneumonitis, and toxic pneumonitis. Our objective was to characterize the exposure of longshoremen to inhalable and total dust, endotoxins, and cultivable bacteria and fungi during the loading of grain in a vessel's hold at the Port of Montreal in order to assess the potential health risks. Sampling campaigns were conducted during the loading of two different types of grain (wheat and corn). Environmental samples of microorganisms (bacteria, fungus, and actinomycetes) were taken near the top opening of the ship's holds while personal breathing zone measurements of dust and endotoxins were sampled during the worker's 5-hour shifts. Our study show that all measurements are above the recommendations with concentration going up to 390 mg m-3 of total dust, 89 mg m-3 of inhalable fraction, 550 000 EU m-3 of endotoxins, 20 000 CFU m-3 of bacteria, 61 000 CFU m-3 of fungus and 2500 CFU m-3 of actinomycetes. In conclusion, longshoremen are exposed to very high levels of dust and of microorganisms and their components during grain loading work. Protective equipment needs to be enforced for all workers during such tasks in order to reduce their exposure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Investigating dust trapping in transition disks with millimeter-wave polarization

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  18. A solid state physics approach to the interaction between organic molecules and interstellar dust grains: (C60) on SiC

    NASA Astrophysics Data System (ADS)

    Merino, P.; Martin-Gago, J. A.; Cernicharo, J.

    2011-05-01

    We have modeled the interaction of large organic molecules and dust grains in the interstellar medium by means of conventional surface science techniques such as scanning probe microscopes (SPM) and X-ray photoelectron spectroscopy (XPS) among others. With these surface analysis techniques, no frequently used in astrochemistry, we can recreate model systems where the interstellar environment, in a wide range of conditions of pressure and temperature, can be studied. The accurate control of the species that can be studied enables us to simulate in our laboratory the reactions of important molecules on the surface of dust grains. These new kind of experiments provide new information about the chemical mechanisms of the interaction between dust grains and organic molecules which can be compared with the models and the observations. We use a state of the art ultra high vacuum chamber (UHV) with base pressure of 1× 10-10 mbar (2× 106 ppcm^3) where we can prepare macroscopic single-crystal samples simulating a particular dust grain surface. The clean surfaces are exposed to different molecules. The complete system molecule-substrate can be characterized down to the Armstrong scale with the scanning tunneling microscope (STM) and even single molecule orbitals can be resolved. The combination of this technique with diffraction and spectroscopic tools allows us to fully understand the adsorption configuration and chemistry of a particular molecular species on a modeled dust grain surface. Here we present, as a proof-of-concept, the study of a broadly studied molecule, fullerene, (C60) on a silicon carbide (SiC) surface. The stellar winds of carbon-rich red-giants are rich in SiC grains in the inner hot (1500K) shell. These grains can then be covered with C_2 H_2, C H_4 and other hydrocarbons that could lead to complex organic molecules, even PAHs, when they move apart from the star. In the present study we simulate the reaction of C60 molecules with the Si rich (3x3) 6H

  19. The effects of nedocromil sodium on the response to grain dust in West Australian grain workers.

    PubMed Central

    Blainey, A D; Musk, A W; Ryan, G; Phillips, M J; Buccilli, C; Troon, S; Kidd, G

    1990-01-01

    Seasonal grain workers in Western Australia who develop respiratory symptoms after exposure to grain dust develop concomitant changes in lung function and bronchial responsiveness to methacholine. The mechanisms underlying these changes are not known. A detailed study was undertaken of seasonal grain workers in Western Australia to evaluate the effect of nedocromil sodium (Fisons, United Kingdom) on these changes to see if they could be prevented by this drug. Forty seven subjects participated. Symptoms and forced expiratory volume in one second (FEV1) were recorded before the study and before, during, and after each working shift, and bronchial responsiveness to methacholine was measured at the beginning and end of the study. Twenty three subjects received nedocromil and 22 received a placebo in a double blind design; there was no difference in baseline characteristics between the two groups. At the end of the study, no differences were found between the nedocromil and placebo groups in the prevalence of symptoms or development of new symptoms during the study. The drug had no effect on changes in methacholine PD20 or FEV1. As in previous studies, new symptoms developing during the season were more common in atopic subjects and were associated with a fall in methacholine PD20. It is concluded that nedocromil has no effect on the development of new symptoms in grain workers. The mechanisms underlying these symptoms require further study. PMID:2171630

  20. Collision velocity of dust grains in self-gravitating protoplanetary discs

    PubMed Central

    Booth, Richard A.; Clarke, Cathie J.

    2016-01-01

    We have conducted the first comprehensive numerical investigation of the relative velocity distribution of dust particles in self-gravitating protoplanetary discs with a view to assessing the viability of planetesimal formation via direct collapse in such environments. The viability depends crucially on the large sizes that are preferentially collected in pressure maxima produced by transient spiral features (Stokes numbers, St ∼ 1); growth to these size scales requires that collision velocities remain low enough that grain growth is not reversed by fragmentation. We show that, for a single-sized dust population, velocity driving by the disc's gravitational perturbations is only effective for St > 3, while coupling to the gas velocity dominates otherwise. We develop a criterion for understanding this result in terms of the stopping distance being of the order of the disc scaleheight. Nevertheless, the relative velocities induced by differential radial drift in multi-sized dust populations are too high to allow the growth of silicate dust particles beyond St ∼ 10− 2 or 10−1 (10 cm to m sizes at 30 au), such Stokes numbers being insufficient to allow concentration of solids in spiral features. However, for icy solids (which may survive collisions up to several 10 m s−1), growth to St ∼ 1 (10 m size) may be possible beyond 30 au from the star. Such objects would be concentrated in spiral features and could potentially produce larger icy planetesimals/comets by gravitational collapse. These planetesimals would acquire moderate eccentricities and remain unmodified over the remaining lifetime of the disc. PMID:27346980

  1. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    NASA Astrophysics Data System (ADS)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  2. Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307 - Origins and evidence for diverse, primitive nebular dust components

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.

    1993-01-01

    SEM, TEM, and electron microprobe analysis were used to investigate in detail the mineralogical and chemical characteristics of dark matrix and fine-grained rims in the unequilibrated CO3 chondrite ALHA77307. Data obtained revealed that there was a remarkable diversity of distinct mineralogical components, which can be identified using their chemical and textural characteristics. The matrix and rim components in ALHA77307 formed by disequilibrium condensation process as fine-grained amorphous dust that is represented by the abundant amorphous component in the matrix. Subsequent thermal processing of this condensate material, in a variety of environments in the nebula, caused partial or complete recrystallization of the fine-grained dust.

  3. Interstellar dust and related topics; Proceedings of the Symposium, State University of New York, Albany, N.Y., May 29-June 2, 1972

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M. (Editor); Van De Hulst, H. C.

    1973-01-01

    Theoretical studies and observations of interstellar dust are described in papers dealing with the passive properties of dust grains, their physical and chemical activities in the interstellar medium, and their interactions in association with stars. The papers are grouped according to the principal topics of (1) extinction and polarization, (2) diffuse interstellar features, (3) dust around and in close association with stars, (4) reflection nebulae and other aspects of dust scattering properties, (5) alignment mechanisms, (6) distribution of molecules and processes of molecule formation, (7) radiation effects on dust, (8) physical and chemical interactions of dust with the ambient medium, and (9) gas and dust in H II regions. Individual items are announced in this issue.

  4. Segmented Mirror Image Degradation Due to Surface Dust, Alignment and Figure

    NASA Technical Reports Server (NTRS)

    Schreur, Julian J.

    1999-01-01

    In 1996 an algorithm was developed to include the effects of surface roughness in the calculation of the point spread function of a telescope mirror. This algorithm has been extended to include the effects of alignment errors and figure errors for the individual elements, and an overall contamination by surface dust. The final algorithm builds an array for a guard-banded pupil function of a mirror that may or may not have a central hole, a central reflecting segment, or an outer ring of segments. The central hole, central reflecting segment, and outer ring may be circular or polygonal, and the outer segments may have trimmed comers. The modeled point spread functions show that x-tilt and y-tilt, or the corresponding R-tilt and theta-tilt for a segment in an outer ring, is readily apparent for maximum wavefront errors of 0.1 lambda. A similar sized piston error is also apparent, but integral wavelength piston errors are not. Severe piston error introduces a focus error of the opposite sign, so piston could be adjusted to compensate for segments with varying focal lengths. Dust affects the image principally by decreasing the Strehl ratio, or peak intensity of the image. For an eight-meter telescope a 25% coverage by dust produced a scattered light intensity of 10(exp -9) of the peak intensity, a level well below detectability.

  5. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  6. The Evolution of Dust in the Multiphase ISM: Grain Destruction Processes

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark

    1999-01-01

    This proposal covered year one of a long term project in which we acquired the necessary hardware and softwaxe needed to calculate grain destruction processes in the interstellar medium (ISM). The long term goal of this research is to develop a model for the dust evolution in the ISM capable of explaining observations of elemental depletions, the grain size distribution, and the emission characteristics of the ISM from the X-ray through the FIR. We purchased a SUN Ultra 10 workstation and peripheral devices including an Exabyte Tape drive, HP Laser Printer, and Seagate External Hard Disk. The PI installed the hardware and Solaris operating system on the workstation and integrated the hardware into the network. Software was also purchased to enable connections to the workstation from a PC (Hummingbird Exceed). Additional freeware required to carry out the proposed program was installed on the system including compilers (g77, gcc, g++), editors (emacs), a markup language (LaTeX), and display programs (WIP, XV, SAOtng). We have also successfully modified the required plot files to work with our system which display the results of grain processing.

  7. TEMPERATURE SPECTRA OF INTERSTELLAR DUST GRAINS HEATED BY COSMIC RAYS. I. TRANSLUCENT CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvāns, Juris, E-mail: juris.kalvans@venta.lv

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas–grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f{sub T}, s{sup −1}, determines how often a certain temperature T{sub CR}, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f{sub T} and T{sub CR} spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μ m and such grains covered withmore » ice mantles of thickness 0.1 a and 0.3 a . Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A{sub V} = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T{sub CR} spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T{sub CR} values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20–30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.« less

  8. A new 3D multi-fluid dust model: a study of the effects of activity and nucleus rotation on the dust grains' behavior in the cometary environment

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Toth, G.; Fougere, N.; Tenishev, V.; Huang, Z.; Jia, X.; Hansen, K. C.; Gombosi, T. I.; Bieler, A. M.; Rubin, M.

    2016-12-01

    Cometary dust observations may deepen our understanding of the role of dust in the formation of comets and in altering the cometary environment. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on BATS-R-US in the University of Michigan's Space Weather Modeling Framework (SWMF). This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is running in the rotating comet reference frame with a real shaped nucleus in the computational domain, the fictitious centrifugal and Coriolis forces are included. The boundary condition on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun, which drives sublimation and the radiation pressure force, revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the grid is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. The effects of the rotating nucleus and the activity region on the surface are discussed and preliminary results are presented. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  9. Infrared emission from tidal disruption events - probing the pc-scale dust content around galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Evans, Neal J.

    2016-05-01

    Recent UV-optical surveys have been successful in finding tidal disruption events (TDEs), in which a star is tidally disrupted by a supermassive black hole (BH). These TDEs release a huge amount of radiation energy Erad ˜ 1051-1052 erg into the circum-nuclear medium. If the medium is dusty, most of the radiation energy will be absorbed by dust grains within ˜1 pc from the BH and re-radiated in the infrared. We calculate the dust emission light curve from a 1D radiative transfer model, taking into account the time-dependent heating, cooling and sublimation of dust grains. We show that the dust emission peaks at 3-10 μm and has typical luminosities between 1042 and 1043 erg s-1 (with sky covering factor of dusty clouds ranging from 0.1 to 1). This is detectable by current generation of telescopes. In the near future, James Webb Space Telescope will be able to perform photometric and spectroscopic measurements, in which silicate or polycyclic aromatic hydrocarbon features may be found. Dust grains are non-spherical and may be aligned with the magnetic field, so the dust emission may be significantly polarized. Observations at rest-frame wavelength ≥ 2 μm have only been reported from two TDE candidates, SDSS J0952+2143 and SwiftJ1644+57. Although consistent with the dust emission from TDEs, the mid-infrared fluxes of the two events may be from other sources. Long-term monitoring is needed to draw a firm conclusion. We also point out two nearby TDE candidates (ASASSN-14ae and -14li) where the dust emission may be currently detectable. Detection of dust infrared emission from TDEs would provide information regarding the dust content and its distribution in the central pc of non-active galactic nuclei, which is hard to probe otherwise.

  10. On the AU Microscopii debris disk. Density profiles, grain properties, and dust dynamics

    NASA Astrophysics Data System (ADS)

    Augereau, J.-C.; Beust, H.

    2006-09-01

    Context: . AU Mic is a young M-type star surrounded by an edge-on optically thin debris disk that shares many common observational properties with the disk around β Pictoris. In particular, the scattered light surface brightness profile falls off as ˜ r-5 outside 120 AU for β Pictoris and 35 AU for AU Mic. In both cases, the disk color rises as the distance increases beyond these reference radii. Aims: . In this paper, we present the first comprehensive analysis of the AU Mic disk properties since the system was resolved by Kalas et al. (2004, Science, 303, 1990). We explore whether the dynamical model, which successfully reproduces the β Pictoris brightness profile (e.g., Augereau et al. 2001, A&A, 370, 447), could apply to AU Mic. Methods: . We calculate the surface density profile of the AU Mic disk by performing the inversion of the near-IR and visible scattered light brightness profiles measured by Liu (2004, Science, 305, 1442) and Krist et al. (2005, AJ, 129, 1008), respectively. We discuss the grain properties by analysing the blue color of the disk in the visible (Krist et al. 2005) and by fitting the disk spectral energy distribution. Finally, we evaluate the radiation and wind forces on the grains. The impact of the recurrent X-ray and UV-flares on the dust dynamics is also discussed. Results: . We show that irrespective of the mean scattering asymmetry factor of the grains, most of the emission arises from an asymmetric, collisionally-dominated region that peaks close to the surface brightness break around 35 AU. The elementary scatterers at visible wavelengths are found to be sub-micronic, but the inferred size distribution underestimates the number of large grains, resulting in sub-millimeter emissions that are too low compared to the observations. From our inversion procedure, we find that the V- to H-band scattering cross sections ratio increases outside 40 AU, in line with the observed color gradient of the disk. This behavior is expected if

  11. Measurement of photoemission and secondary emission from laboratory dust grains

    NASA Technical Reports Server (NTRS)

    Hazelton, Robert C.; Yadlowsky, Edward J.; Settersten, Thomas B.; Spanjers, Gregory G.; Moschella, John J.

    1995-01-01

    The overall goal of this project is experimentally determine the emission properties of dust grains in order to provide theorists and modelers with an accurate data base to use in codes that predict the charging of grains in various plasma environments encountered in the magnetospheres of the planets. In general these modelers use values which have been measured on planar, bulk samples of the materials in question. The large enhancements expected due to the small size of grains can have a dramatic impact upon the predictions and the ultimate utility of these predictions. The first experimental measurement of energy resolved profiles of the secondary electron emission coefficient, 6, of sub-micron diameter particles has been accomplished. Bismuth particles in the size range of .022 to .165 micrometers were generated in a moderate pressure vacuum oven (average size is a function of oven temperature and pressure) and introduced into a high vacuum chamber where they interacted with a high energy electron beam (0.4 to 20 keV). Large enhancements in emission were observed with a peak value, delta(sub max) = 4. 5 measured for the ensemble of particles with a mean size of .022 micrometers. This is in contrast to the published value, delta(sub max) = 1.2, for bulk bismuth. The observed profiles are in general agreement with recent theoretical predictions made by Chow et al. at UCSD.

  12. DELIVERY OF DUST GRAINS FROM COMET C/2013 A1 (SIDING SPRING) TO MARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tricarico, Pasquale; Samarasinha, Nalin H.; Sykes, Mark V.

    Comet C/2013 A1 (Siding Spring) will have a close encounter with Mars on 2014 October 19. We model the dynamical evolution of dust grains from the time of their ejection from the comet nucleus to the close encounter with Mars, and determine the flux at Mars. Constraints on the ejection velocity from Hubble Space Telescope observations indicate that the bulk of the grains will likely miss Mars, although it is possible that a few percent of the grains with higher velocities will reach Mars, peaking approximately 90-100 minutes after the close approach of the nucleus, and consisting mostly of millimeter-radiusmore » grains ejected from the comet nucleus at a heliocentric distance of approximately 9 AU or larger. At higher velocities, younger grains from submillimeter to several millimeters can also reach Mars, although an even smaller fraction of grains is expected have these velocities, with negligible effect on the peak timing. Using NEOWISE observations of the comet, we can estimate that the maximum fluence will be of the order of 10{sup –7} grains m{sup –2}. We include a detailed analysis of how the expected fluence depends on the grain density, ejection velocity, and size-frequency distribution, to account for current model uncertainties and in preparation of possible refined model values in the near future.« less

  13. The irreversibility line of magnetically grain-aligned Hg-1212 sample - Evidences of flux line lattice melting

    NASA Astrophysics Data System (ADS)

    de Andrade, R., Jr.; Lanfredi, A. J. C.; Ortiz, W. A.; Leite, E. R.

    1997-08-01

    The irreversibility line (IL) of a magnetically grain-aligned HgBa2CaCu2O6+δ (Hg-1212) sample was determined from magnetization measurements, with the magnetic fieldH parallel to the samplec-axis. The grain-aligned sample was made by mixing powdered polycrystalline samples with epoxy resin, cured under 94 KOe at room temperature. For fields below 10 kOe the Il is well fitted by a model of flux line lattice melting due to thermal fluctuations. For higher fields the IL behavior changes to an exponential growth of Hirr with 1/T. This change is related to a corresponding alteration in the character of the vortex fluctuations leading to the melting of the flux line lattice.

  14. Grain-scale alignment of melt in sheared partially molten rocks: implications for viscous anisotropy

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Quintanilla-Terminel, Alejandra; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Presence of melt significantly influences rheological properties of partially molten rocks by providing fast diffusional pathways. Under stress, melt aligns at the grain scale and this alignment induces viscous anisotropy in the deforming aggregate. One of the consequences of viscous anisotropy is melt segregation into melt-rich sheets oriented at low angle to the shear plane on much larger scales than the grain scale. The magnitude and orientation of viscous anisotropy with respect to the applied stress are important parameters for constitutive models (Takei and Holtzman 2009) that must be constrained by experimental studies. In this contribution, we analyze the shape preferred orientation (SPO) of individual grain-scale melt pockets in deformed partially molten mantle rocks. The starting materials were obtained by isostatically hot-pressing olivine + basalt and olivine + chromite + basalt powders. These partially molten rocks were deformed in general shear or torsion at a confining pressure, Pc = 300 MPa, temperature, T = 1200° - 1250° C, and strain rates of 10-3 - 10-5 s-1to finite shear strains, γ, of 0.5 - 5. After the experiment, high resolution backscattered electron images were obtained using a SEM equipped with a field emission gun. Individual melt pockets were segmented and their SPO analyzed using the paror and surfor methods and Fourier transforms (Heilbronner and Barret 2014). Melt segregation into melt-rich sheets inclined at 15° -20° antithetic with respect to the shear plane occurs in three-phase system (olivine + chromite + basalt) and in two-phase systems (olivine + basalt) twisted to high strain. The SPO of individual melt pockets within the melt-rich bands is moderately strong (b/a ≈ 0.8) and is always steeper (20° -40°) than the average melt-rich band orientation. In the two-phase system (olivine + basalt) sheared to lower strains, no distinct melt-rich sheets are observed. Individual grain-scale melt pockets are oriented at 45° -55

  15. Desiccant dusts synergize the effect of Beauveria bassiana (Hyphomycetes: Moniliales) on stored-grain beetles.

    PubMed

    Lord, J C

    2001-04-01

    Diatomaceous earth (DE) is a desiccant insecticide and most efficacious in low humidity. It acts on insect cuticle by absorbing lipids, and perhaps by cuticular abrasion. Beauveria bassiana (Balsamo) Vuillemin, an entomopathogenic fungus, is most efficacious in high humidity and has a complex interaction with cuticular lipids. Interaction between these materials may enhance insect control performance. Assays with stored-grain beetles were conducted with B. bassiana at rates of 11, 33, 100, and 300 mg of conidia per kilogram of grain with and without single rates of DE that killed 10% or less of the target beetles. The assays revealed synergism in effects on adult Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.) at all doses. There was statistically significant synergism for adult Cryptolestes ferrugineus (Stephens) and larval R. dominica but at only one B. bassiana rate for each target. Both amorphous silicon dioxide, a sorptive dust, and diamond dust, an abrasive, showed synergistic interaction with B. bassiana on adult R. dominica. These results may provide a basis for a least-toxic approach to control of stored-product beetles and for efficacy-enhancing formulation of entomopathogenic fungi.

  16. Cosmological simulation with dust formation and destruction

    NASA Astrophysics Data System (ADS)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  17. Correlated nanoscale characterization of a unique complex oxygen-rich stardust grain: Implications for circumstellar dust formation

    NASA Astrophysics Data System (ADS)

    Leitner, J.; Hoppe, P.; Floss, C.; Hillion, F.; Henkel, T.

    2018-01-01

    We report the light to intermediate-mass element abundances as well as the oxygen, magnesium, silicon, and titanium isotope compositions of a unique and unusually large (0.8 μm × 3.75 μm) presolar O-rich grain from the Krymka LL3.2 chondrite. The O-, Al-, and Ti-isotopic compositions are largely compatible with an origin from an asymptotic giant branch (AGB) star of 1.5 solar masses with a metallicity that is 15% higher than the solar metallicity. The grain has an elevated 17O/16O ratio (8.40 ± 0.16 × 10-4) compared to solar, and slightly sub-solar 18O/16O ratio (1.83 ± 0.03 × 10-3). It shows evidence for the presence of initial 26Al, suggesting formation after the first dredge-up, during one of the early third dredge-up (TDU) episodes. Titanium isotopic data indicate condensation of the grain before significant amounts of material from the He-burning shell were admixed to the stellar surface with progressive TDUs. We observed a small excess in 30Si (δ30Si = 41 ± 5‰), which most likely is inherited from the parent star's initial Si-isotopic composition. For such stars stellar models predict a C/O-ratio < 1 even after the onset of TDU, thus allowing the condensation of O-rich dust. The grain is an unusual complex presolar grain, consisting of an Al-Ca-Ti-oxide core, surrounded by an Mg-Ca-silicate mantle, and resembles the condensation sequence for a cooling gas of solar composition at pressures and dust/gas ratios typically observed for circumstellar envelopes around evolved stars. We also report the first observation of phosphorus in a presolar grain, although the origin of the P-bearing phase remains ambiguous.

  18. Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl

    2017-12-01

    We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.

  19. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Histamine in cereal dusts

    PubMed Central

    Nicholls, P. J.

    1970-01-01

    Nicholls, P. J. (1970).Brit. J. industr. Med.,27, 179-180. Histamine in cereal dusts. It has been found that workers exposed to cereal grain dusts may experience acute mild respiratory distress. An attempt has been made to explain this observation by examining the pharmacological activity of aqueous extracts of several cereal dusts from the holds of cargo ships. Histamine, but no other active agent, was found in the samples. It is unlikely that the concentration of histamine in these dusts is sufficient to cause respiratory distress in dockers unloading cereal grain cargoes. PMID:5428638

  1. Formation and dissociation of dust molecules in dusty plasma

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng

    2016-09-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.

  2. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  3. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  4. Combustibility determination for cotton gin dust and almond huller dust

    USDA-ARS?s Scientific Manuscript database

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar (OSHA, 2009), can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, OSHA initiated action to develop a mandatory standard to comprehen...

  5. Effect of Charged-Magnetic Grains in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Perry, Jonathan; Matthews, Lorin; Hyde, Truell

    Effects of Charged-Magnetic Grains in Protoplanetary Disks Jonathan, Perry, Lorin Swint Matthews, and Truell W. Hyde Center for Astrophysics, Space Physics, and Engi-neering Research, addressPlaceNamePlaceNameplaceBaylor StreetPlaceTypeUniversity, Stree-taddressOne Bear Place 97316 Waco, TX 76798 USA The interaction and growth of dust grains is an important process in early planetesimal formation. The structure of aggregates formed from dust depend largely on the initial properties within the dust population, whether the grains are charged or uncharged, magnetic or non-magnetic. Theoretical simulations exam-ining pair-wise interactions between aggregates indicate that charged magnetic grains exhibit different growth behavior than populations consisting of exclusively charged or exclusively mag-netic grains. This study extends that work to predict how charged-magnetic grains influence grain growth within a protoplanetary disk. An N-body simulation containing various mixtures of dust materials is used to examine the differences in dust coagulation in the presence of charged magnetic aggregates. The growth of the dust aggregates is analyzed to determine the effects that charged magnetic grains contribute to the evolution of the dust cloud. Comparison of the rate of aggregation as well as the dynamic exponent relating mass of a cluster to the elapsed time will both be discussed.

  6. Probing the interstellar dust towards the Galactic Centre: dust-scattering halo around AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall

    2017-07-01

    AX J1745.6-2901 is an X-ray binary located at only 1.45 arcmin from Sgr A⋆, showcasing a strong X-ray dust-scattering halo. We combine Chandra and XMM-Newton observations to study the halo around this X-ray binary. Our study shows two major thick dust layers along the line of sight (LOS) towards AX J1745.6-2901. The LOS position and NH of these two layers depend on the dust grain models with different grain size distributions and abundances. But for all the 19 dust grain models considered, dust layer-1 is consistently found to be within a fractional distance of 0.11 (mean value: 0.05) to AX J1745.6-2901 and contains only (19-34) per cent (mean value: 26 per cent) of the total LOS dust. The remaining dust is contained in layer-2, which is distributed from the Earth up to a mean fractional distance of 0.64. A significant separation between the two layers is found for all the dust grain models, with a mean fractional distance of 0.31. Besides, an extended wing component is discovered in the halo, which implies a higher fraction of dust grains with typical sizes ≲590 Å than considered in current dust grain models. Assuming AX J1745.6-2901 is 8 kpc away, dust layer-2 would be located in the Galactic disc several kpc away from the Galactic Centre (GC). The dust scattering halo biases the observed spectrum of AX J1745.6-2901 severely in both spectral shape and flux, and also introduces a strong dependence on the size of the instrumental point spread function and the source extraction region. We build xspec models to account for this spectral bias, which allow us to recover the intrinsic spectrum of AX J1745.6-2901 free from dust-scattering opacity. If dust layer-2 also intervenes along the LOS to Sgr A⋆ and other nearby GC sources, a significant spectral correction for the dust-scattering opacity would be necessary for all these GC sources.

  7. Dust settling in magnetorotationally driven turbulent discs - I. Numerical methods and evidence for a vigorous streaming instability

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Tilley, David A.; Rettig, Terrence; Brittain, Sean D.

    2009-07-01

    In this paper, we have used the RIEMANN code for computational astrophysics to study the interaction of a realistic distribution of dust grains with gas at specific radial locations in a vertically stratified protostellar accretion disc. The disc was modelled to have the density and temperature of a minimum mass solar nebula, and shearing box simulations at radii of 0.3 and 10 au are reported here. The disc was driven to a fully developed turbulence via the magnetorotational instability (MRI). The simulations span three gas scaleheights about the disc's midplane. We find that the inclusion of standard dust-to-gas ratios does not have any significant effect on the MRI even when the dust sediments to the midplane of the accretion disc. The density distribution of the dust of all sizes reached a Gaussian profile within two scaleheights of the disc's midplane. The vertical scaleheights of these Gaussian profiles are shown to be proportional to the reciprocal of the square root of the dust radius when large spherical dust grains are considered. This result is consistent with theoretical expectation. The largest two families of dust in one of our simulations show a strong tendency to settle to the midplane of the accretion disc. The large dust tends to organize itself into elongated clumps of high density. The dynamics of these clumps is shown to be consistent with a streaming instability. The streaming instability is seen to be very vigorous and persistent once it forms. Each stream of high-density dust displays a reduced rms velocity dispersion. The velocity directions within the streams are also aligned relative to the mean shear, providing further evidence that we are witnessing a streaming instability. The densest clumpings of large dust are shown to form where the streams intersect. We have also shown that the mean free path and collision time for dust that participates in the streaming instability are reduced by almost two orders of magnitude relative to the

  8. [The status of the body protective systems in children in atmospheric pollution by grain dust].

    PubMed

    Mukhambetova, L Kh; Petrova, I V; Pinigin, M A; Leshchenko, G M; Shekhter, O V; Safiulin, A A; Astakhova, L F

    1998-01-01

    The use of noninvasive methods has revealed changes in the detoxification and immune systems in children exposed to grain dust-polluted ambient air. Impaired detoxification and immunity may be considered to be a manifestation of the common pathological mechanism responsible for reduced resistance to adverse factors and they lead to the increased risk of nonspecific infectious processes and allergy in the population.

  9. Airborne microorganisms associated with grain handling.

    PubMed

    Swan, J R; Crook, B

    1998-01-01

    There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.

  10. Cross-shift changes in blood inflammatory markers occur in the absence of airway obstruction in workers exposed to grain dust.

    PubMed

    Borm, P J; Schins, R P; Derhaag, T J; Kant, I; Jorna, T H

    1996-04-01

    Grain dust is well known to cause both acute and chronic respiratory disorders, and endotoxins are considered key components in this. Since endotoxins are known to elicit proinflammatory mediators, we investigated cytokine (tumor necrosis factor [TNF], interleukin-6, interleukin-8) release and a number of proinflammatory and anti-inflammatory proteins (soluble TNF receptors, lipopolysaccharide (LPS) binding protein, bactericidal permeability increasing protein (BPI), C-reactive protein) in plasma of workers exposed to grain dust. In two surveys during 1 week, lung function was measured daily before and after the shift, using flow-volume curves and/or forced oscillation measurements. On Monday and Friday, blood samples (30 mL) were drawn and cytokine release was determined by enzyme-linked immunosorbent assay in supernatant of isolated monocytes or whole blood culture, either unstimulated or on the ex vivo stimulation with 3 ng/mL or 1,000 ng/mL endotoxin. Individual exposures were determined from stationary dust measurements at every workplace combined with personal task analysis during all shifts. In both surveys, no cross-week change in lung function parameters was observed. In the first survey (average exposure: 20.2 mg/m3), monocyte spontaneous TNF release was increased sevenfold cross week (p<0.001) and was significantly related both to individual dust exposure (r=0.62) of that week and the increase in soluble TNF receptor 75 kD (r=0.85). In the second survey, where average exposure was much lower (3.67 mg/m3), impedance parameters indicated a significant improvement of airway function, and cross-week changes in inflammatory markers were minimal. Therefore, we conclude that inflammatory events can be used to monitor adverse respiratory effects of moderate grain dust exposure.

  11. Physical characteristics of cometary dust from optical studies

    NASA Technical Reports Server (NTRS)

    Hanner, M. S.

    1980-01-01

    Observations of the sunlight scattered and thermal emission from cometary dust, which may be used to infer the physical properties of the dust grains, are reviewed. Consideration is given to the observed wavelength dependence of the scattered light from cometary coma and tails, the average scattering function of the dust grains, the average grain Bond albedo, the polarization of the scattered light, and grain temperatures deduced from thermal infrared emission. The thermal properties of dust grains are illustrated for models based on magnetite or olivine grain materials, with consideration given to the variation of thermal properties with particle radius and heliocentric distance. Comparison of the models with observations indicates that a disordered or amorphous olivine composition can give a reasonable fit to the data for appropriate grain sizes and temperatures. The observations acquired are noted to indicate an optically important particle size of 1 micron, with silicate particles not larger than a few microns usually present although pure silicate grains can not be responsible for the thermal emission, and the cometary dust grains are most likely not spherical. Further observations needed in the infrared are indicated.

  12. Effect of grain alignment on magnetic properties of Hg(Re)-1223 superconductors

    NASA Astrophysics Data System (ADS)

    Sakamoto, N.; Noguchi, S.; Akune, T.; Matsumoto, Y.

    2002-08-01

    Alignment of HgBa 2Ca 2Cu 3Re 0.2O y (Hg(Re)-1223) powders was made in epoxy resin under a high magnetic field of 10 T to be confirmed by X-ray analysis. DC magnetizations and AC susceptibilities of the grain aligned specimen were measured by SQUID and PPMS magnetometers at temperatures of 5-110 K and under the field of 0-14 T for both field directions of B parallel and perpendicular to ab-plane. The magnetization width for B parallel to the c-axis ΔMc showed high values at low field, decreased rather rapidly with the magnetic field compared to that for B parallel to the ab-plane ΔMab and became lower than ΔMab above a crossing field Bcr. Peak-heights of the imaginary parts of the AC susceptibilities χ″ were largest at B∥ c-axis. Non-aligned samples always showed intermediate characteristics between B∥ c-axis and B∥ ab-plane. Irreversibility fields of all samples were also evaluated. Correlations of the pinning mechanism with the crystal axis orientations are discussed.

  13. Work-related asthma in a population exposed to grain, flour and other ingredient dusts.

    PubMed

    Smith, T A; Lumley, K P

    1996-02-01

    The purpose of the study was to determine the prevalence and causation of work-related asthmatic symptoms in a population exposed to grain, flour and other ingredient dusts. Where workers complained of asthmatic symptoms which were the result of dust exposure, follow-up aimed to identify whether the symptoms were the result of sensitisation or of non-specific irritation. A questionnaire was presented to 3,450 workers who had exposure to dust during the course of flour milling (528), bread baking (1,756), cake baking (209) and other activities in food preparation (957). Those with positive responses were followed-up by taking a formal history, examination, skin prick testing and serial peak flow measurement. The overall prevalence of work-related asthmatic symptoms was 4.4% (153 out of 3,450). In the group who were followed-up (128 out of 153), non-specific respiratory irritation was thought to be the cause in 90 (2.6%), whilst sensitisation was responsible for symptoms in 12 (0.3%). Of the 12 cases due to sensitisation, the agents responsible were: fungal amylase (10 cases, all associated with bread baking), flour (one case, associated with flour packing), and grain (one case, associated with flour milling). Non-specific irritation is considerably more common than sensitisation as the cause of work-related asthmatic symptoms in flour milling, baking and other flour-based industries. The prevalence of sensitisation to flour is very low (less than 1 in 1,000) in all these industries. The principal sensitiser encountered in modern plant bakeries appears to be fungal amylase. The most important source of exposure to fungal amylase is probably the debagging, sieving, weighing and mixing of bread improvers.

  14. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinte, C.; Ménard, F.; Dent, W. R. F.

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulatedmore » into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.« less

  15. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  16. Featured Image: Making Dust in the Lab

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224

  17. Determination of parameters for hypervelocity dust grains encountered in near-Earth space

    NASA Technical Reports Server (NTRS)

    Tanner, William G.; Maag, Carl R.; Alexander, W. Merle; Sappenfield, Patricia

    1993-01-01

    Primarily interest was in the determination of the population of micrometeoroids and space debris and interpretation of the hole size in a thin film or in a micropore foam returned from space with theoretical calculations describing the event. In order to augment the significance of the theoretical calculations of the impact event, an experiment designed to analyze the charge production due to hypervelocity impacts on thin films also produced data which described the penetration properties of micron and sub-micron sized projectiles. The thin film penetration sites in the 500 A and 1000 A aluminum films were counted and a size distribution function was derived. In the case of the very smallest dust grains, there were no independent measurements of velocities like that which existed for the larger dust grains (d(sub p) is less than or equal to 1 micron). The primary task then became to assess the relationship between the penetration hole and the particle diameter of the projectile which made the hole. The most promising means to assess the measure of the diameters of impacting grains came in the form of comparing cratering mechanics to penetration mechanics. Future experimentation will produce measurements of the cratering as opposed to the penetrating event. Particles encountered by surfaces while being flown in space will degrade that surface in a systematic manner even when the impact is with small hypervelocity particles, d(sub p) is less than or equal to 10 microns. Though not to a degree which would precipitate a catastrophic failure of a system, the degradation of the materials comprising the interconnected system will occur. It is the degradation of the optical system and the subsequent embrittlement of other materials that can lead to degradation if not to failure. It is to this end that research was conducted to compare the primary consequences for experiments which will be flown to those which have been returned.

  18. Dust Grains and the Luminosity of Circumnuclear Water Masers in Active Galaxies

    NASA Technical Reports Server (NTRS)

    Collison, Alan J.; Watson, William D.

    1995-01-01

    In previous calculations for the luminosities of 22 GHz water masers, the pumping is reduced and ultimately quenched with increasing depth into the gas because of trapping of the infrared (approximately equals 30-150 micrometers), spectral line radiation of the water molecule. When the absorption (and reemission) of infrared radiation by dust grains is included, we demonstrate that the pumping is no longer quenched but remains constant with increasing optical depth. A temperature difference between the grains and the gas is required. Such conditions are expected to occur, for example, in the circumnuclear masing environments created by X-rays in active galaxies. Here, the calculated 22 GHz maser luminosities are increased by more than an order of magnitude. Application to the well-studied, circumnuclear masing disk in the galaxy NGC 4258 yields a maser luminosity near that inferred from observations if the observed X-ray flux is assumed to be incident onto only the inner surface of the disk.

  19. Origins of GEMS Grains

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  20. The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns–Tsallis complex plasma

    NASA Astrophysics Data System (ADS)

    El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; Elbendary, A. A.; Taha, R. M.

    2018-05-01

    The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns-Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov-Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.

  1. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  2. Self-confinement of finite dust clusters in isotropic plasmas.

    PubMed

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  3. FORMATION OF SiC GRAINS IN PULSATION-ENHANCED DUST-DRIVEN WIND AROUND CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Yuki; Kozasa, Takashi, E-mail: yuki@antares-a.sci.hokudai.ac.jp

    2012-02-01

    We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich asymptotic giant branch (C-rich AGB) stars to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process: one is the local thermal equilibrium (LTE) case where the vibration temperature of SiC clusters T{sub v} is equal to the gas temperature as usual, and another is the non-LTE case in which T{sub v} is assumed to be the same as the temperature of small SiC grains. The results of the hydrodynamical calculations for a modelmore » with stellar parameters of mass M{sub *} = 1.0 M{sub Sun }, luminosity L{sub *} = 10{sup 4} L{sub Sun }, effective temperature T{sub eff} = 2600 K, C/O ratio = 1.4, and pulsation period P = 650 days show the following: in the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains, and the resulting averaged mass ratio of SiC to carbon grains of {approx}10{sup -8} is too small to reproduce the value of 0.01-0.3, which is inferred from the radiative transfer models. On the other hand, in the non-LTE case, the formation region of the SiC grains is more internal and/or almost identical to that of the carbon grains due to the so-called inverse greenhouse effect. The mass ratio of SiC to carbon grains averaged at the outer boundary ranges from 0.098 to 0.23 for the sticking probability {alpha}{sub s} = 0.1-1.0. The size distributions with the peak at {approx}0.2-0.3 {mu}m in radius cover the range of size derived from the analysis of the presolar SiC grains. Thus, the difference between the temperatures of the small cluster and gas plays a crucial role in the formation process of SiC grains around C-rich AGB stars, and this aspect should be explored for the formation process of dust grains in astrophysical environments.« less

  4. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  5. The Electric Environment of Martian Dust Devils

    NASA Astrophysics Data System (ADS)

    Barth, E. L.; Farrell, W. M.; Rafkin, S. C.

    2017-12-01

    While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.

  6. Helical structures in vertically aligned dust particle chains in a complex plasma

    NASA Astrophysics Data System (ADS)

    Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.

    2013-05-01

    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].

  7. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    NASA Astrophysics Data System (ADS)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  8. Infrared observations of an outburst of small dust grains from the nucleus of Comet P/Halley 1986 III at perihelion

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Johnson, C. H.; Magnuson, S. D.; Ney, E. P.; Hayward, T. L.

    1995-01-01

    A close examination of the 0.7- to 23-micron infrared data base acquired by Gehrz and Ney (1992), suggests that the nucleus of Comet P/Halley 1986 III emitted a burst of small dust grains during a 3-day period commencing within hours of perihelion passage on 1986 February 9.46 UT. The outburst was characterized by significant increases in the coma's grain color temperature T(sub obs), temperature excess (superheat: S = T(sub obs)/T(sub BB)), infrared luminosity, albedo, and 10-micron silicate emission feature strength. These changes are all consistent with the sudden ejection from the nucleus of a cloud of grains with radii of approximately 0.5 micron. This outburst may have produced the dust that was responsible for some of the tail streamers photographed on 1986 February 22 UT. The peak of the dust outburst occurred about 3 days before a pronounced increase in the water production rate measured by the Pioneer Venus Orbiter Ultraviolet Spectrometer. We suggest that jets that release large quantities of small particles may be largely responsible for some of the variable infrared behavior that has been reported for P/Halley and other comets during the past two decades. Such jets may also account for some of the differences IR Type I and IR Type II comets.

  9. Stardust@home: A Massively Distributed Public Search for Interstellar Dust in the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.

    2005-01-01

    In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.

  10. A new method to generate dust with astrophysical properties

    NASA Astrophysics Data System (ADS)

    Hansen, J. F.; van Breugel, W.; Bringa, E. M.; Eberly, B.; Graham, G. A.; Remington, B. A.; Taylor, E. A.; Tielens, A. G. G. M.

    2011-05-01

    To model the size distribution and composition of interstellar and interplanetary dust grains, and their effect on a wide range of phenomena, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new laser experiment that subjects dust grains to pressure spikes similar to those of colliding astrophysical dust, and that accelerates the grains to astrophysical velocities. This new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields. We also measure the in-flight velocity ( ~ 4.5km/s) of hundreds of grains simultaneously by use of a particle image velocimetry (PIV) technique.

  11. Effect of stochastic grain heating on cold dense clouds chemistry

    NASA Astrophysics Data System (ADS)

    Chen, Long-Fei; Chang, Qiang; Xi, Hong-Wei

    2018-06-01

    The temperatures of dust grains play important roles in the chemical evolution of molecular clouds. Unlike large grains, the temperature fluctuations of small grains induced by photons may be significant. Therefore, if the grain size distribution is included in astrochemical models, the temperatures of small dust grains may not be assumed to be constant. We simulate a full gas-grain reaction network with a set of dust grain radii using the classical MRN grain size distribution and include the temperature fluctuations of small dust grains. Monte Carlo method is used to simulate the real-time dust grain's temperature fluctuations which is caused by the external low energy photons and the internal cosmic ray induced secondary photons. The increase of dust grains radii as ice mantles accumulate on grain surfaces is also included in our models. We found that surface CO2 abundances in models with grain size distribution and temperature fluctuations are more than one order of magnitude larger than those with single grain size. Small amounts of terrestrial complex organic molecules (COMs) can also be formed on small grains due to the temperature spikes induced by external low energy photons. However, cosmic ray induced secondary photons overheat small grains so that surface CO sublime and less radicals are formed on grains surfaces, thus the production of surface CO2 and COMs decreases by about one order of magnitude. The overheating of small grains can be offset by grain growth so that the formation of surface CO2 and COMs becomes more efficient.

  12. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  13. Silicate dust in a Vega-excess system

    NASA Technical Reports Server (NTRS)

    Skinner, C. J.; Barlow, M. J.; Justtanont, K.

    1992-01-01

    The 10-micron spectrum of the K5V star SAO 179815 (= HD 98800) is presented, and conclusively demonstrates the presence of small silicate dust grains around this star. The 9.7-micron silicate dust feature is unusually broad and shallow in this system. This, together with the slow fall-off of flux at longer wavelengths, constrains the size and density distributions of dust grains in models of the disk. It is found that there must be a significant population of small grains, as well as a population of large grains in order to explain all the observed properties of the disk.

  14. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries.

    PubMed

    Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-11-11

    Thin films of the iron-based superconductor BaFe 2 (As 1-x P x ) 2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (J c ). The Ba122:P film exhibited higher J c at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe 2 As 2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors.

  15. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  16. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  17. Annealing of Silicate Dust by Nebular Shocks at 10 AU

    NASA Technical Reports Server (NTRS)

    Harker, David E.; Desch, Steven J.; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Silicate dust grains in the interstellar medium are known to be mostly amorphous, yet crystalline silicate grains have been observed in many long-period comets and in protoplanetary disks. Annealing of amorphous silicate grains into crystalline grains requires temperatures greater than or approximately equal to 1000 K, but exposure of dust grains in comets to such high temperatures is apparently incompatible with the generally low temperatures experienced by comets. This has led to the proposal of models in which dust grains were thermally processed near the protoSun, then underwent considerable radial transport until they reached the gas giant planet region where the long-period comets originated. We hypothesize instead that silicate dust grains were annealed in situ, by shock waves triggered by gravitational instabilities. We assume a shock speed of 5 km/s, a plausible value for shocks driven by gravitational instabilities. We calculate the peak temperatures of pyroxene grains under conditions typical in protoplanetary disks at 5-10 AU. We show that in situ annealing of micron-sized dust grains can occur, obviating the need for large-scale radial transport.

  18. Dust trap formation in a non-self-sustained discharge with external gas ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N.; Pal’, A. F.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. Themore » interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.« less

  19. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  20. Photophoretic Levitation and Trapping of Dust in the Inner Regions of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; McClure, Melissa K.

    2017-01-01

    In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk. In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.

  1. PHOTOPHORETIC LEVITATION AND TRAPPING OF DUST IN THE INNER REGIONS OF PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, Colin P.; McClure, Melissa K., E-mail: cmcnally@nbi.dk, E-mail: mmcclure@eso.org

    In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk.more » In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.« less

  2. A comparative study of the grain-size distribution of surface dust and stormwater runoff quality on typical urban roads and roofs in Beijing, China.

    PubMed

    Shen, Zhenyao; Liu, Jin; Aini, Guzhanuer; Gong, Yongwei

    2016-02-01

    The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 μm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (<38 μm) contributed most on roofs (23.46-41.71 %). Event-mean concentrations (EMCs) and FF30 values for most runoff pollutants tended to be higher on roofs than on roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 μm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 μm) are likely the main source of dissolved pollutants.

  3. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  4. Composition, structure and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Allamandola, Louis J.

    1986-01-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.

  5. The dust scattering halo of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; Paerels, F.

    2015-10-01

    Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.

  6. The fundamentally different dynamics of dust and gas in molecular clouds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Lee, Hyunseok

    2016-03-01

    We study the behaviour of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behaviour of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a ≳ 0.01 micron exhibit dramatic (exceeding factor ˜1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The `clumping factor' < n_dust2 > / < n_dust > 2 of the dust (critical for dust growth/coagulation/shattering) can reach ˜100, for grains in the ideal size range. The dust clustering is maximized around scales ˜ 0.2 pc (a/μm) (ngas/100 cm- 3)- 1, and is `averaged out' on larger scales. However, because the density varies widely in supersonic turbulence, the dynamic range of scales (and interesting grain sizes) for these fluctuations is much broader than in the subsonic case. Our results are applicable to MCs of essentially all sizes and densities, but we note how Lorentz forces and other physics (neglected here) may change them in some regimes. We discuss the potentially dramatic consequences for star formation, dust growth and destruction, and dust-based observations of MCs.

  7. COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchner, Marc J.; Stark, Christopher C., E-mail: Marc.Kuchner@nasa.go, E-mail: starkc@umd.ed

    2010-10-15

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of {approx}10{sup -4} primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10{sup -6} and 10{sup -7}), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature ismore » caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of {tau} {approx} v/c, where v is the local Keplerian speed.« less

  8. Charging of Interstellar Dust Grains in the out-of-equilibrium Heliosheath Plasma traced by IBEX ENAs

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Ogasawara, K.; Livadiotis, G.; Slavin, J. D.; McComas, D. J.; Funsten, H. O.; Schwadron, N.; Heerikhuisen, J.

    2017-12-01

    Dusty bow waves are common around stars and anticipated around the heliosphere due to the deficit of low-mass interstellar dust grains in the inner heliosphere. Interstellar grains entering the heliosphere must first cross barriers of non-Maxwellian plasma in the heliosheath regions where collisional charging of grains is highly effective. IBEX measures 0.1-6 keV ENAs in the heliosheath plasma, providing an in situ sample of the heliosheath plasma thermodynamics that can be used for grain-charging calculations. Plasma in three-quarters of the sky can be described with a stationary state kappa-distribution, giving predictions for kappa, kappa-distribution temperature, and plasma density [1]. This thermodynamic description allows a more realistic evaluation of the dominant heliosheath electron and ion currents, and hence also grain gyroradii and exclusion from the heliosphere. At the highest temperatures ion collisional currents dominate grain charging; at lower temperatures collisional electron currents are more important together with the photoelectric ejection of electrons. An absence of data on the thermodynamical state of heliosheath electrons has led to the assumption of similar thermodynamic parameters for the electron and ion populations. The balance between electron, proton and photoionization currents on the grains then yield the equilibrium grain charges. Grain gyroradii calculated based on these charging currents differentiate between interstellar grains able to penetrate the heliosphere, versus those that are excluded, and allow predictions of properties of the dusty bow wave likely to be present around the heliosphere. The smallest grains are excluded and grains at the high latitude edges of the described regions tend to have systematically lower grain potentials. Grain charging calculations utilize the modeling of [2]. [1] Livadiotis et al., ApJ 734, 1 (2011). [2] Weingartner Draine, ApJSS 263 (2001)

  9. Polarization Science with the ngVLA: magnetic fields and dust properties in cores, disks and on larger scales

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda; Hull, Chat

    2018-01-01

    Polarization capabilities of the ngVLA will enable exploration of a wide range of phenomena including: (1) magnetic fields in protostellar cores and protoplanetary disks via polarized emission from magnetically aligned dust grains and spectral lines, including in regions optically thick at ALMA wavelengths; (2) polarization from dust scattering in disks, (3) spectral-line polarization from the Zeeman and Goldreich-Kylafis effects, and (4) magnetic fields in protostellar jets and OB-star-forming cores via synchrotron emission.We will discuss each of these science drivers in turn, with a particular emphasis on why the ngVLA provides a unique means of probing dust properties in the midplane of protoplanetary disks and hence the building blocks of planets in the innermost regions of disks.

  10. From dust to life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    After initially challenging the dirty-ice theory of interstellar grains, Fred Hoyle and the present author proposed carbon (graphite) grains, mixtures of refractory grains, organic polymers, biochemicals and finally bacterial grains as models of interstellar dust. The present contribution summarizes this trend and reviews the main arguments supporting a modern version of panspermia.

  11. Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavitha, L., E-mail: louiskavitha@yahoo.co.in; The Abdus Salam International Centre for Theoretical Physics, Trieste; Lavanya, C.

    We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales muchmore » shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.« less

  12. LADEE Search for a Dust Exosphere: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Stubbs, T. J.; Elphic, R.

    2014-01-01

    The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.

  13. Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Packham, C.; Roche, P. F.; Alonso-Herrero, A.; Díaz-Santos, T.; Nikutta, R.; González-Martín, O.; Álvarez, C. A.; Esquej, P.; Espinosa, J. M. Rodríguez; Perlman, E.; Ramos Almeida, C.; Telesco, C. M.

    2016-06-01

    We present subarcsecond 7.5-13 μm imaging- and spectro-polarimetric observations of NGC 1068 using CanariCam on the 10.4-m Gran Telescopio CANARIAS. At all wavelengths, we find: (1) A 90 × 60 pc extended polarized feature in the northern ionization cone, with a uniform ˜44° polarization angle. Its polarization arises from dust and gas emission in the ionization cone, heated by the active nucleus and jet, and further extinguished by aligned dust grains in the host galaxy. The polarization spectrum of the jet-molecular cloud interaction at ˜24 pc from the core is highly polarized, and does not show a silicate feature, suggesting that the dust grains are different from those in the interstellar medium. (2) A southern polarized feature at ˜9.6 pc from the core. Its polarization arises from a dust emission component extinguished by a large concentration of dust in the galaxy disc. We cannot distinguish between dust emission from magnetically aligned dust grains directly heated by the jet close to the core, and aligned dust grains in the dusty obscuring material surrounding the central engine. Silicate-like grains reproduce the polarized dust emission in this feature, suggesting different dust compositions in both ionization cones. (3) An upper limit of polarization degree of 0.3 per cent in the core. Based on our polarization model, the expected polarization of the obscuring dusty material is ≲0.1 per cent in the 8-13 μm wavelength range. This low polarization may be arising from the passage of radiation through aligned dust grains in the shielded edges of the clumps.

  14. The Journey of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2007-01-01

    Interstellar dust particles undergo a complex journey in space. It commences with their formation in stellar outflows or outbursts, but may end in very different ways. Their fates range from sudden "death by destruction" promptly after their formation to maturity and inclusion in protoplanetary objects in stellar nursery homes. Throughout this journey dust grains are subjected to a host of interstellar processes in different astrophysical environments which leave their imprint on the dust and affects their surrounding environment. In this review I will summarize our current knowledge of the field, emphasizing what we still need to know to gain a full understanding of interstellar dust grains and their journey through the ISM.

  15. Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.

    2008-01-01

    The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar robotic and human missions.

  16. Dust in the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Rodrigues, C. V.; Coyne, G. V.; Magalhaes, A. M.

    1995-01-01

    We discuss simultaneous dust model fits to our extinction and polarization data for the Small Magellanic Cloud (SMC) using existing dust models. Dust model fits to the wavelength dependent polarization are possible for stars with small lambda(sub max). They generally imply size distributions which are narrower and have smaller average sizes compared to those in the Galaxy. The best fits for the extinction curves are obtained with a power law size distribution. The typical, monotonic SMC extinction curve can be well fit with graphite and silicate grains if a small fraction of the SMC carbon is locked up in the grains. Amorphous carbon and silicate grains also fit the data well.

  17. Measurements of Lunar Dust Charging Properties by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.

    2009-01-01

    Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.

  18. Spectrophotometry of Dust in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  19. The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium

    NASA Astrophysics Data System (ADS)

    Peters, Thomas; Zhukovska, Svitlana; Naab, Thorsten; Girichidis, Philipp; Walch, Stefanie; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Seifried, Daniel

    2017-06-01

    Dust grains are an important component of the interstellar medium (ISM) of galaxies. We present the first direct measurement of the residence times of interstellar dust in the different ISM phases, and of the transition rates between these phases, in realistic hydrodynamical simulations of the multiphase ISM. Our simulations include a time-dependent chemical network that follows the abundances of H+, H, H2, C+ and CO and take into account self-shielding by gas and dust using a tree-based radiation transfer method. Supernova explosions are injected either at random locations, at density peaks, or as a mixture of the two. For each simulation, we investigate how matter circulates between the ISM phases and find more sizeable transitions than considered in simple mass exchange schemes in the literature. The derived residence times in the ISM phases are characterized by broad distributions, in particular for the molecular, warm and hot medium. The most realistic simulations with random and mixed driving have median residence times in the molecular, cold, warm and hot phase around 17, 7, 44 and 1 Myr, respectively. The transition rates measured in the random driving run are in good agreement with observations of Ti gas-phase depletion in the warm and cold phases in a simple depletion model. ISM phase definitions based on chemical abundance rather than temperature cuts are physically more meaningful, but lead to significantly different transition rates and residence times because there is no direct correspondence between the two definitions.

  20. Migration of tungsten dust in tokamaks: role of dust-wall collisions

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.

    2013-12-01

    The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.

  1. On interstellar light polarization by diamagnetic silicate and carbon dust in the infrared

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2018-04-01

    The motion of diamagnetic dust particles in interstellar magnetic fields is studied numerically with several different sets of parameters. Two types of behaviour are observed, depending on the value of the critical number R, which is a function of the grain inertia, the magnetic susceptibility of the material and of the strength of rotation braking. If R ≤ 10, the grain ends up in a static state and perfectly aligned with the magnetic field, after a few braking times. If not, it goes on precessing and nutating about the field vector for a much longer time. Usual parameters are such that the first situation can hardly be observed. Fortunately, in the second and more likely situation, there remains a persistent partial alignment that is far from negligible, although it decreases as the field decreases and as R increases. The solution of the complete equations of motion of grains in a field helps understanding the details of this behaviour. One particular case of an ellipsoidal forsterite silicate grain is studied in detail and shown to polarize light in agreement with astronomical measurements of absolute polarization in the infrared. Phonons are shown to contribute to the progressive flattening of extinction and polarization towards long wavelengths. The measured dielectric properties of forsterite qualitatively fit the Serkowski peak in the visible.

  2. Post-perihelion photometry of dust grains in the coma of 67P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Frattin, E.; Cremonese, G.; Simioni, E.; Bertini, I.; Lazzarin, M.; Ott, T.; Drolshagen, E.; La Forgia, F.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Ferrari, S.; Ferri, F.; Fornasier, S.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutierrez, P. J.; Güttler, C.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lopez Moreno, J. J.; Lucchetti, A.; Marzari, F.; Massironi, M.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Penasa, L.; Shi, X.; Thomas, N.; Tubiana, C.; Vincent, J.-B.

    2017-07-01

    We present a photometric analysis of individual dust grains in the coma of comet 67P/Churyumov-Gerasimenko using OSIRIS images taken from 2015 July to 2016 January. We analysed a sample of 555 taken during 18 d at heliocentric distances ranging between 1.25 and 2.04 au and at nucleocentric distances between 80 and 437 km. An automated method to detect the tracks was specifically developed. The images were taken by OSIRIS NAC in four different filters: Near-IR (882 nm), Orange (649 nm), FarOrange (649 nm) and Blue (480 nm). It was not always possible to recognize all the grains in the four filters, hence we measured the spectral slope in two wavelengths ranges: in the interval [480-649] nm, for 1179 grains, and in the interval [649-882] nm, for 746 grains. We studied the evolution of the two populations' average spectral slopes. The data result scattered around the average value in the range [480-649] nm, while in the [649-882] nm we observe a slight decreasing moving away from the Sun as well as a slight increasing with the nucleocentric distance. A spectrophotometric analysis was performed on a subsample of 339 grains. Three major groups were defined, based on the spectral slope between [535-882] nm: (I) the steep spectra that may be related with organic material, (II) the spectra with an intermediate slope, likely a mixture of silicates and organics and (III) flat spectra that may be associated with a high abundance of water ice.

  3. Dust Evolution in Galaxy Cluster Simulations

    NASA Astrophysics Data System (ADS)

    Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano

    2018-06-01

    We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).

  4. Separation of mycotoxin-containing sources in grain dust and determination of their mycotoxin potential.

    PubMed Central

    Palmgren, M S; Lee, L S

    1986-01-01

    Two distinct reservoirs of mycotoxins exist in fungal-infected cereal grains--the fungal spores and the spore-free mycelium-substrate matrix. Many fungal spores are of respirable size and the mycelium-substrate matrix can be pulverized to form particles of respirable size during routine handling of grain. In order to determine the contribution of each source to the level of mycotoxin contamination of dust, we developed techniques to harvest and separate mycelium-substrate matrices from spores of fungi. Conventional quantitative chromatographic analyses of separated materials indicated that aflatoxin from Aspergillus parasiticus, norsolorinic acid from a mutant of A. parasiticus, and secalonic acid D from Penicillium oxalicum were concentrated in the mycelium-substrate matrices and not in the spores. In contrast, spores of Aspergillus niger and Aspergillus fumigatus contained significant concentrations of aurasperone C and fumigaclavine C, respectively; only negligible amounts of the toxins were detected in the mycelium-substrate matrices of these two fungi. PMID:3709472

  5. Chemical Evolution of Interstellar Dust into Planetary Materials

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic

  6. ANALYSIS OF THE INSTABILITY DUE TO GAS–DUST FRICTION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadmehri, Mohsen, E-mail: m.shadmehri@gu.ac.ir

    2016-02-01

    We study the stability of a dust layer in a gaseous disk subject to linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary disks (PPDs). A second dust phase with a small mass, compared to the first dust phase, would reduce the growth timescale by a factormore » of two or more, especially when its coupling to the gas is weak. This means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping is accelerated. Thus, the presence of dust particles of various sizes must be considered in studies of dust clumping in PPDs where both large and small dust grains are present.« less

  7. Dust in the Quasar Wind (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy.

    Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from?

    Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young.

    Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds.

    Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  8. The effect of radiation pressure on spatial distribution of dust inside H II regions

    NASA Astrophysics Data System (ADS)

    Ishiki, Shohei; Okamoto, Takashi; Inoue, Akio K.

    2018-02-01

    We investigate the impact of radiation pressure on spatial dust distribution inside H II regions using one-dimensional radiation hydrodynamic simulations, which include absorption and re-emission of photons by dust. In order to investigate grain-size effects as well, we introduce two additional fluid components describing large and small dust grains in the simulations. Relative velocity between dust and gas strongly depends on the drag force. We include collisional drag force and coulomb drag force. We find that, in a compact H II region, a dust cavity region is formed by radiation pressure. Resulting dust cavity sizes (˜0.2 pc) agree with observational estimates reasonably well. Since dust inside an H II region is strongly charged, relative velocity between dust and gas is mainly determined by the coulomb drag force. Strength of the coulomb drag force is about 2 order of magnitude larger than that of the collisional drag force. In addition, in a cloud of mass 105 M⊙, we find that the radiation pressure changes the grain-size distribution inside H II regions. Since large (0.1 μm) dust grains are accelerated more efficiently than small (0.01 μm) grains, the large-to-small grain mass ratio becomes smaller by an order of magnitude compared with the initial one. Resulting dust-size distributions depend on the luminosity of the radiation source. The large and small grain segregation becomes weaker when we assume stronger radiation source, since dust grain charges become larger under stronger radiation and hence coulomb drag force becomes stronger.

  9. Dust variations in the diffuse interstellar medium: constraints on Milky Way dust from Planck-HFI observations

    NASA Astrophysics Data System (ADS)

    Ysard, N.; Köhler, M.; Jones, A.; Miville-Deschênes, M.-A.; Abergel, A.; Fanciullo, L.

    2015-05-01

    Context. The Planck-HFI all-sky survey from 353 to 857 GHz combined with the IRAS data at 100 μm (3000 GHz, IRIS version of the data) show that the dust properties vary from line of sight to line of sight in the diffuse interstellar medium (ISM) at high Galactic latitude (1019 ≤ NH ≤ 2.5 × 1020 H/cm2, for a sky coverage of ~12%). Aims: These observations contradict the usual thinking of uniform dust properties, even in the most diffuse areas of the sky. Thus, our aim is to explain these variations with changes in the ISM properties and with evolution of the grain properties. Methods: Our starting point is the latest core-mantle dust model. This model consists of small aromatic-rich carbon grains, larger amorphous carbonaceous grains with an aliphatic-rich core and an aromatic-rich mantle, and amorphous silicates (mixture of olivine and pyroxene types) with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observed variations. The dust properties are also varied in terms of their mantle thickness, metallic nano-inclusions, carbon abundance locked in the grains, and size distributions. Results: We show that variations in the radiation field intensity and gas density distribution cannot explain variations observed with Planck-HFI but that radiation fields harder than the standard ISRF may participate in creating part of the observed variations. We further show that variations in the mantle thickness on the grains coupled with changes in their size distributions can reproduce most of the observations. We concurrently put a limit on the mantle thickness of the silicates, which should not exceed ~ 10 to 15 nm, and find that aromatic-rich mantles are definitely needed for the carbonaceous grain population with a thickness of at least 5 to 7.5 nm. We also find that changes in the carbon cosmic abundance included in the grains

  10. The Tranisiting Dust of Boyajian's Star

    NASA Astrophysics Data System (ADS)

    Bodman, Eva; Ellis, Tyler G.; Boyajian, Tabetha S.; Wright, Jason

    2018-06-01

    From May to October of 2017, Boyajian's Star displayed four days-long dips in observed flux, which are referred to as “Elsie,” “Celeste,” “Skara Brae,” and “Angkor” (Boyajian et al. 2018). This Elsie family dip event was monitored with the Las Cumbres Observatory in three bands, B, r', and i'. Looking at each dip individually, we analyze the multi-band photometry for wavelength dependency in dip depth to constrain properties of the transiting material. We find that all of the dips show non-grey extinction and are consistent with optically thin dust. Interpreting the dips as transiting dust clouds, we constrain the properties of the dust grains and find that the average grain radius is <1 micron, assuming silicate composition. This wavelength dependency and grain size is inconsistent with observed properties of the long-term “secular” dimming (Meng et al. 2017), suggesting that the dust causing the dips is from a separate population.

  11. Comparison of Morphologies of Apollo 17 Dust Particles with Lunar Simulant, JSC-1

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Kihm, Kenneth D.; Day, James D. M.

    2005-01-01

    Lunar dust (< 20 microns) makes up approx.20 wt.% of the lunar soil. Because of the abrasive and adhering nature of lunar soil, a detailed knowledge of the morphology (size, shape and abundance) of lunar dust is important for dust mitigation on the Moon. This represents a critical step towards the establishment of long-term human presence on the Moon (Taylor et al. 2005). Machinery design for in-situ resource utilization (ISRU) on the Moon also requires detailed information on dust morphology and general physical/chemical characteristics. Here, we report a morphological study of Apollo 17 dust sample 70051 and compare it to lunar soil stimulant, JSC-1. W e have obtained SEM images of dust grains from sample 70051 soil (Fig. 1). The dust grains imaged are composed of fragments of minerals, rocks, agglutinates and glass. Most particles consist largely of agglutinitic impact glass with their typical vesicular textures (fine bubbles). All grains show sub-angular to angular shapes, commonly with sharp edges, common for crushed glass fragments. There are mainly four textures: (1) ropey-textured pieces (typical for agglutinates), (2) angular shards, (3) blocky bits, and (4) Swiss-cheese grains. This last type with its high concentration of submicron bubbles, occurs on all scales. Submicron cracks are also present in most grains. Dust-sized grains of lunar soil simulant, JSC-1, were also studied. JSC-1 is a basaltic tuff with relatively high glass content (approx.50%; McKay et al. 1994). It was initially chosen in the early 90s to approximate the geotechnical properties of the average lunar soil (Klosky et al. 1996). JSC-1 dust grains also show angular blocky and shard textures (Fig. 2), similar to those of lunar dust. However, the JSC-1 grains lack the Swiss-cheese textured particles, as well as submicron cracks and bubbles in most grains.

  12. The Enigma of Lunar Dust Transport

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Stubbs, T. J.; Vondrak, R. R.; Delory, G. T.; Halekas, J. S.

    2011-01-01

    We will review the highly contrasting points of view regarding the ability of fine dust grains to become transported in the near-space lunar environment. While Surveyor and Apollo camera images suggest the presence of a horizon glow that has been provocatively interpreted as levitated and/or lofted dust, there is contrasting geological evidence to indicate that surface regolith has not been moved in a substantial way. While electric forces have been suggested as a driver for grain dynamics, recent detailed modeling of near-surface non-monotonic potentials would suggest grains could not get to large heights. While lofting models require submicron grains to hold/contain 100's of elementary charges, it can be shown analytical1y that a grain residing on a flat surface would have an extremely low probability of having even a single electron on its surface, Can these diametrically opposing viewpoints be reconciled? We will review the pros and cons on both sides. and suggest that the UVS and LDEX instrument on LADEE will provide key new insights on dust transport at the Moon.

  13. The Evolution of Dust in the Multiphase Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Slavin, Jonathan

    2003-01-01

    Interstellar dust has a profound effect on the structure and evolution of the interstellar medium (ISM) and on the processes by which stars form from it. Dust obscures regions of star formation from view, and the uncertain quantities of elements in dust makes it difficult to measure accurately the abundances of the elements in low density regions. Despite the central importance of dust in astrophysics, we cannot answer some of the most basic questions about it: Why is it that most of the refractory elements are in dust grains? What determines the sizes of interstellar grains? It has been the goal of our proposed theoretical investigations to address these questions by studying the destruction of interstellar grains, and to develop observational diagnostics that can test the models we develop.

  14. Craters formed in mineral dust by hypervelocity microparticles.

    NASA Technical Reports Server (NTRS)

    Vedder, J. F.

    1972-01-01

    As a simulation of erosion processes on the lunar surface, impact craters were formed in dust targets by 2- to 5-micron-diameter polystyrene spheres with velocities between 2.5 and 12 km/sec. For weakly cohesive, thick targets of basalt dust with a maximum grain size comparable to the projectile diameter, the craters had an average projectile-to-diameter diameter ratio of 25, and the displaced mass was 3 orders of magnitude greater than the projectile mass. In a simulation of the effect of a dust covering on lunar rocks, a layer of cohesive, fine-grained basalt dust with a thickness nearly twice the projectile diameter protected a glass substrate from damage, but an area about 50 times the cross-sectional area of the projectile was cleared of all but a few grains. Impact damage was produced in glass under a thinner dust layer.

  15. Locations of stationary/periodic solutions in mean motion resonances according to the properties of dust grains

    NASA Astrophysics Data System (ADS)

    Pástor, P.

    2016-07-01

    The equations of secular evolution for dust grains in mean motion resonances with a planet are solved for stationary points. Non-gravitational effects caused by stellar radiation (the Poynting-Robertson effect and the stellar wind) are taken into account. The solutions are stationary in the semimajor axis, eccentricity and resonant angle, but allow the pericentre to advance. The semimajor axis of stationary solutions can be slightly shifted from the exact resonant value. The periodicity of the stationary solutions in a reference frame orbiting with the planet is proved analytically. The existence of periodic solutions in mean motion resonances means that analytical theory enables infinitely long capture times for dust particles. The stationary solutions are periodic motions to which the eccentricity asymptotically approaches and around which the libration occurs. Initial conditions corresponding to the stationary solutions are successfully found by numerically integrating the equation of motion. Numerically and analytically determined shifts of the semimajor axis from the exact resonance for the stationary solutions are in excellent agreement. The stationary solutions can be plotted by the locations of pericentres in the reference frame orbiting with the planet. The pericentres are distributed in space according to the properties of the dust particles.

  16. Characteristics of the Dust-Plasma Interaction Near Enceladus' South Pole

    NASA Technical Reports Server (NTRS)

    Shafiq, Muhammad; Wahlund, J.-E.; Morooka, M. W; Kurth, W. S.; Farrell, W. M.

    2010-01-01

    We present RPWS Langmuir probe data from the third Enceladus flyby (E3) showing (he presence of dusty plasma near Enceladus' South Pole. There is a sharp rise in both the electron and ion number densities when the spacecraft traverses through Enceladus plume. The ion density near Enceladus is found to increase abruptly from about 10(exp 2) cm (exp -3) before the closest approach to 10(exp 5) cm (exp -3) just 30 s after the closest approach, an amount two orders of magnitude higher than the electron density. Assuming that the inconsistency between the electron and ion number densities is due to the presence of dust particles that are collecting the missing electron charges, we present dusty plasma characteristics down to sub-micron particle sizes. By assuming a differential dust number density for a range in dust sizes and by making use of Langmuir probe data, the dust densities for certain lower limits in dust size distribution were estimated. In order to achieve the dust densities of micrometer and larger sized grains comparable to the ones reported in the literature. we show that the power law size distribution must hold down to at least 0.03 micron such that the total differential number density is dominated by the smallest sub-micron sized grains. The total dust number density in Enceladus' plume is of the order of l0(exp 2) cm(exp -3) reducing to 1 cm(exp -3) in the E- ring. The dust density for micrometer and larger sized grains is estimated to be about 10(exp -4) cm(exp -3) in the plume while it is about 10(exp -6) - 10(exp -7) cm(exp -3) in the E-ring. Dust charge for micron sized grains is estimated to be about eight thousand electron charges reducing to below one hundred electron charges for 0.03 micron sized grains. The effective dusty plasma Debye length is estimated and compared with intergrain distance as well as the electron Debye length. The maximum dust charging time of 1.4 h is found for 0.03 11mmicron sized grains just 1 min before the closest

  17. The Search for Interstellar Sulfide Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, Scott

    2010-01-01

    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  18. Vegetable dust and airway disease: inflammatory mechanisms.

    PubMed Central

    Cooper, J A; Buck, M G; Gee, J B

    1986-01-01

    Exposure to cotton or grain dust causes an obstructive bronchitis in certain subjects, mechanisms of which are poorly understood. A difficulty encountered in discerning mechanisms of this airway disease is the lack of knowledge of the active components of these dusts. Clinical features suggest common but not exact mechanisms of the airway disease associated with these vegetable dusts. Human and animal studies show evidence of acellular and cellular inflammatory mechanisms of the bronchoconstriction and inflammation associated with these disorders. Potential cellular sources include alveolar macrophages, polymorphonuclear leukocytes, mast cells, basophils, eosinophils and lymphocytes. Acellular origins include the complement and humoral antibody systems, both of which have been implicated, although their pathogenic role in grain or cotton dust disorders is uncertain. In this review we critically address potential inflammatory mechanisms of airway alterations resulting from cotton or grain dust exposure. General mechanisms of bronchoconstriction are first presented, then specific studies dealing with either of the two dusts are discussed. We believe this area of research may be fruitful in dissecting mechanisms of bronchoconstriction and airway inflammation, especially as more human studies are undertaken. PMID:3519205

  19. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Marle, A. J.; Meliani, Z.; Keppens, R.

    2011-06-20

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varyingmore » sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 {mu}m) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.« less

  20. Investigations of Wind/WAVES Dust Impacts

    NASA Astrophysics Data System (ADS)

    St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.

    2017-12-01

    The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year

  1. The size distribution of interstellar grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.

    1987-01-01

    Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.

  2. Dust in the small Magellanic Cloud. 2: Dust models from interstellar polarization and extinction data

    NASA Technical Reports Server (NTRS)

    Rodrigues, C. V.; Magalhaes, A. M.; Coyne, G. V.

    1995-01-01

    We study the dust in the Small Magellanic Cloud using our polarization and extinction data (Paper 1) and existing dust models. The data suggest that the monotonic SMC extinction curve is related to values of lambda(sub max), the wavelength of maximum polarization, which are on the average smaller than the mean for the Galaxy. On the other hand, AZV 456, a star with an extinction similar to that for the Galaxy, shows a value of lambda(sub max) similar to the mean for the Galaxy. We discuss simultaneous dust model fits to extinction and polarization. Fits to the wavelength dependent polarization data are possible for stars with small lambda(sub max). In general, they imply dust size distributions which are narrower and have smaller mean sizes compared to typical size distributions for the Galaxy. However, stars with lambda(sub max) close to the Galactic norm, which also have a narrower polarization curve, cannot be fit adequately. This holds true for all of the dust models considered. The best fits to the extinction curves are obtained with a power law size distribution by assuming that the cylindrical and spherical silicate grains have a volume distribution which is continuous from the smaller spheres to the larger cylinders. The size distribution for the cylinders is taken from the fit to the polarization. The 'typical', monotonic SMC extinction curve can be fit well with graphite and silicate grains if a small fraction of the SMC carbon is locked up in the grain. However, amorphous carbon and silicate grains also fit the data well. AZV456, which has an extinction curve similar to that for the Galaxy, has a UV bump which is too blue to be fit by spherical graphite grains.

  3. Animal model of grain worker's lung.

    PubMed Central

    Stepner, N; Broder, I; Baumal, R

    1986-01-01

    We examined the light microscopic changes in the lungs of rabbits exposed to grain dust for variable periods of time, to determine whether an animal model of grain worker's lung could be developed. Experimental animals were exposed to grain dust at a concentration of 20 mg/m3 for 7 hr/day, 5 days/week, for up to 6 months. The lungs of these rabbits demonstrated a granulomatous interstitial pneumonitis associated with exudation of mononuclear cells into the alveoli and conducting airways. These changes appeared within 5 days of the onset of exposure and reached a peak at 3 weeks but were sustained through the longest exposure interval. No abnormalities were observed in the lungs of control rabbits. These results show three points of consistency with those obtained in epidemiologic studies of grain elevator workers. First, the rapid appearance of the experimental changes suggests that the mechanism of tissue injury may not be immunologic. Second, the occurrence of the histopathologic alterations in the interstitium, alveoli, and airways corresponds with the combined restrictive and obstructive ventilatory defect described in the human epidemiologic studies. Third, the absence of lung fibrosis in rabbits exposed to dust for 6 months suggests that the pneumonitis is reversible. Thus this experimental model shows promise of helping to clarify the nature and mechanism of the adverse pulmonary effects of grain dust. Images FIGURE 1. FIGURE 2. PMID:3709485

  4. The Lunar Dust Environment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  5. Parameterizing the interstellar dust temperature

    NASA Astrophysics Data System (ADS)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  6. Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yoshinori; Korenaga, Jun

    2017-11-01

    We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a large temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.

  7. Non-monotonic spatial distribution of the interstellar dust in astrospheres: finite gyroradius effect

    NASA Astrophysics Data System (ADS)

    Katushkina, O. A.; Alexashov, D. B.; Izmodenov, V. V.; Gvaramadze, V. V.

    2017-02-01

    High-resolution mid-infrared observations of astrospheres show that many of them have filamentary (cirrus-like) structure. Using numerical models of dust dynamics in astrospheres, we suggest that their filamentary structure might be related to specific spatial distribution of the interstellar dust around the stars, caused by a gyrorotation of charged dust grains in the interstellar magnetic field. Our numerical model describes the dust dynamics in astrospheres under an influence of the Lorentz force and assumption of a constant dust charge. Calculations are performed for the dust grains with different sizes separately. It is shown that non-monotonic spatial dust distribution (viewed as filaments) appears for dust grains with the period of gyromotion comparable with the characteristic time-scale of the dust motion in the astrosphere. Numerical modelling demonstrates that the number of filaments depends on charge-to-mass ratio of dust.

  8. Testing of a Plasmadynamic Hypervelocity Dust Accelerator

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.

    2006-10-01

    A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.

  9. Nonlinear properties of small amplitude dust ion acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Ghosh, Samiran; Sarkar, S.; Khan, Manoranjan; Gupta, M. R.

    2000-09-01

    In this paper some nonlinear characteristics of small amplitude dust ion acoustic solitary wave in three component dusty plasma consisting of electrons, ions, and dust grains have been studied. Simultaneously, the charge fluctuation dynamics of the dust grains under the assumption that the dust charging time scale is much smaller than the dust hydrodynamic time scale has been considered here. The ion dust collision has also been incorporated. It has been seen that a damped Korteweg-de Vries (KdV) equation governs the nonlinear dust ion acoustic wave. The damping arises due to ion dust collision, under the assumption that the ion hydrodynamical time scale is much smaller than that of the ion dust collision. Numerical investigations reveal that the dust ion acoustic wave admits only a positive potential, i.e., compressive soliton.

  10. Escape mechanisms of dust in Io

    NASA Astrophysics Data System (ADS)

    Flandes, A.

    The injection of material into the jovian magnetosphere through Io's volcanic activity makes possible the formation of structures such as the plasma torus and the dust ballerina skirt. Io's high temperature volcanism produces spectacular plumes, but even the tallest plumes, as those of Pelen Patera, will not produce enough energy to defeat the gravitational attraction of Io. The fact is that dust escapes from Io, which implies that a second mechanism is acting on the grains. Grains brought to the top of the highest plumes by the volcanic forces are still under Io's gravitational pull, but need only a minimum charge (~10-1 4 C) so that the Lorentz force due to the Jovian magnetic field equilibrates this attraction. In the volcanic vents, the escape velocity of the ejected material and its own density produces enough collisions to create charges. On top of the highest plumes (~500km) charged grains are exposed to the plasma torus that co-rotates rigidly with Jupiter and, due to the relative velocity among Io and the torus, the grains will be dragged away from Io. As it is well known, these dust grains will also be dragged away from Jupiter.

  11. Grain-grain interaction in stationary dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampe, Martin; Joyce, Glenn

    We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is largermore » than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.« less

  12. Induced nucleation of carbon dust in red giant stars

    NASA Technical Reports Server (NTRS)

    Cadwell, Brian J.; Wang, Hai; Feigelson, Eric D.; Frenklach, Michael

    1994-01-01

    This study quantitatively tests the proposed model of induced nucleation of carbonaceous grains in carbon-rich red giant stars. Induced nucleation is the process of grain growth initiated by the presence of reactive surfaces provided by seed particles. The numerical study was performed using a deailed chemical kinetic model of carbon deposition, grain coagulation, and homogeneous nucleation of polycyclic aromatic hydrocarbons (PAHs). The model uses a method of moments to keep track of developing grain population in the forming dust shell. We test the efficiency of grain formation for large ranges of dust shell parameters typical for carbon stars. Our model is capable of producing a range of optically thick and thin dust shells in carbon stars. Results are in accord with (IRAS) spectral classes of carbon stars. The resulting composite grains produced are consistent with those recently found in ancient meteorites. This model also provides a realistic explanation for high abundances of (PAHs) in the interstellar medium and some planetary nebulae.

  13. Dust as a versatile matter for high-temperature plasma diagnostic.

    PubMed

    Wang, Zhehui; Ticos, Catalin M

    2008-10-01

    Dust varies from a few nanometers to a fraction of a millimeter in size. Dust also offers essentially unlimited choices in material composition and structure. The potential of dust for high-temperature plasma diagnostic is largely unfulfilled yet. The principles of dust spectroscopy to measure internal magnetic field, microparticle tracer velocimetry to measure plasma flow, and dust photometry to measure heat flux are described. Two main components of the different dust diagnostics are a dust injector and a dust imaging system. The dust injector delivers a certain number of dust grains into a plasma. The imaging system collects and selectively detects certain photons resulted from dust-plasma interaction. One piece of dust gives the local plasma quantity, a collection of dust grains together reveals either two-dimensional (using only one or two imaging cameras) or three-dimensional (using two or more imaging cameras) structures of the measured quantity. A generic conceptual design suitable for all three types of dust diagnostics is presented.

  14. THE FORMATION OF THE PRIMITIVE STAR SDSS J102915+172927: EFFECT OF THE DUST MASS AND THE GRAIN-SIZE DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, S.; Banerjee, R.; Grassi, T.

    Understanding the formation of the extremely metal-poor star SDSS J102915+172927 is of fundamental importance to improve our knowledge on the transition between the first and second generation of stars in the universe. In this paper, we perform three-dimensional cosmological hydrodynamical simulations of dust-enriched halos during the early stages of the collapse process including a detailed treatment of the dust physics. We employ the astrochemistry package krome coupled with the hydrodynamical code enzo assuming grain-size distributions produced by the explosion of core-collapse supernovae (SNe) of 20 and 35 M {sub ⊙} primordial stars, which are suitable to reproduce the chemical patternmore » of the SDSS J102915+172927 star. We find that the dust mass yield produced from Population III SNe explosions is the most important factor that drives the thermal evolution and the dynamical properties of the halos. Hence, for the specific distributions relevant in this context, the composition, the dust optical properties, and the size range have only minor effects on the results due to similar cooling functions. We also show that the critical dust mass to enable fragmentation provided by semi-analytical models should be revised, as we obtain values one order of magnitude larger. This determines the transition from disk fragmentation to a more filamentary fragmentation mode, and suggests that likely more than one single SN event or efficient dust growth should be invoked to get such high dust content.« less

  15. Characteristic Features of Double Layers in Rotating, Magnetized Plasma Contaminated with Dust Grains with Varying Charges

    NASA Astrophysics Data System (ADS)

    Paul, Jaydeep; Nag, Apratim; Devi, Karabi; Das, Himadri Sekhar

    2018-03-01

    The evolution and the characteristic features of double layers in a plasma under slow rotation and contaminated with dust grains with varying charges under the effect of an external magnetic field are studied. The Coriolis force resulting from the slow rotation is responsible for the generation of an equivalent magnetic field. A comparatively new pseudopotential approach has been used to derive the small amplitude double layers. The effect of the relative electron-ion concentration, as well as the temperature ratio, on the formation of the double layers has also been investigated. The study reveals that compressive, as well as rarefactive, double layers can be made to co-exist in plasma by controlling the dust charge fluctuation effect supplemented by variations of the plasma constituents. The effectiveness of slow rotation in causing double layers to exist has also emanated from the study. The results obtained could be of interest because of their possible applications in both laboratories and space.

  16. A new hybrid particle/fluid model for cometary dust

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Tenishev, V.; Toth, G.; Hansen, K. C.; Huang, Z.; Gombosi, T. I.; Fougere, N.; Rubin, M.

    2017-12-01

    Cometary dust grains, which originate from comets, are believed to contain clues to the formation and the evolution of comets. They also play an important role in shaping the cometary environment, as they are able to decelerate and heat the gas through collisions, carry charges and interact with the plasma environment, and possibly sublimate gases. Therefore, the loss rate and behavior of dust grains are of interest to scientists. Currently, mainly two types of numerical dust models exist: particle models and fluid models have been developed. Particle models, which keep track of the positions and velocities of all gas and dust particles, allow crossing dust trajectories and a more accurate description of returning dust grains than the fluid model. However, in order to compute the gas drag force, the particle model needs to follow more gas particles than dust particles. A fluid model is usually more computationally efficient and is often used to provide simulations on larger spatial and temporal scales. In this work, a new hybrid model is developed to combine the advantages of both particle and fluid models. In the new approach a fluid model based on the University of Michigan BATSRUS code computes the gas properties, and feeds the gas drag force to the particle model, which is based on the Adaptive Mesh Particle Simulator (AMPS) code, to calculate the motion of dust grains. The coupling is done via the Space Weather Modeling Framework (SWMF). In addition to the capability of simulating the long-term dust phenomena, the model can also designate small active regions on the nucleus for comparison with the temporary fine dust features in observations. With the assistance of the newly developed model, the effect of viewing angles on observed dust jet shapes and the transportation of heavy dust grains from the southern to the northern hemisphere of comet 67P/Churyumov-Gerasimenko will be studied and compared with Rosetta mission images. Preliminary results will be

  17. Infrared dust and millimeter-wave carbon monoxide emission in the Orion region

    NASA Technical Reports Server (NTRS)

    Bally, John; Langer, William D.; Liu, Weihong

    1991-01-01

    The far-infrared dust emission seen by the IRAS satellite in the Orion region is analyzed as a function of the local radiation field intensity, and the dust temperature and opacity are compared with (C-12)O and (C-13)O emission. The infrared radiation is interpreted within the framework of a single-component large grain model and a multicomponent grain model consisting of subpopulations of grains with size-dependent temperatures. A strong dependence of the 100-micron optical depth derived is found using the large grain model on the average line-of-sight dust temperature and radiation field. In the hot environment surrounding high-luminosity sources and H II regions, all dust along the line-of-sight radiates at 100 microns, and the dust-to-gas ratio, based on the 100-micron opacity and I(/C-13/O), appears to be in agreement with the standard value, about 1 percent by mass. A relationship is found between the inferred dust-to-gas ratio and the radiation field intensity responsible for heating the dust which can be used to estimate the gas column density from the dust opacity derived from the 60- and 100-micron IRAS fluxes.

  18. Analytical electron microscopy of fine-grained phases in primitive interplanetary dust particles and carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Mackinnon, Ian D. R.; Rietmeijer, Frans J. M.; Mckay, David S.

    1987-01-01

    In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a variety of AEM techniques. Identification of over 250 individual grains within one chondritic porous (CP) IDP shows that most phases could be formed by low temperature processes and that heating of the IDP during atmospheric entry is minimal and less than 600 C. In a review of the mineralogy of IDPs, it was suggested that the occurrence of other silicates such as enstatite whiskers is consistent with the formation in an early turbulent period of the solar nebula. Experimental confirmation of fundamental chemical and physical processes in a stellar environment, such as vapor phase condensation, nucleation, and growth by annealing, is an important aspect of astrophysical models for the evolution of the Solar System. A detailed comparison of chondritic IDP and carbonaceous chondrite mineralogies shows significant differences between the types of silicate minerals as well as the predominant oxides.

  19. Identification of a Compound Spinel and Silicate Presolar Grain in a Chondritic Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2014-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance.

  20. Fluffy dust forms icy planetesimals by static compression

    NASA Astrophysics Data System (ADS)

    Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji

    2013-09-01

    Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.

  1. Near-infrared scattering as a dust diagnostic

    NASA Astrophysics Data System (ADS)

    Saajasto, Mika; Juvela, Mika; Malinen, Johanna

    2018-06-01

    Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted

  2. Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Yoshinori; Korenaga, Jun

    We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a largemore » temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.« less

  3. Nonlinear dust-lattice waves: a modified Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, N. F.

    Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.

  4. Dust Processing in Supernova Remnants: Spitzer MIPS SED and IRS Observations

    NASA Technical Reports Server (NTRS)

    Hewitt, John W.; Petre, Robert; Katsuda Satoru; Andersen, M.; Rho, J.; Reach, W. T.; Bernard, J. P.

    2011-01-01

    We present Spitzer MIPS SED and IRS observations of 14 Galactic Supernova Remnants previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [OI] emission, ionic lines, and emission from molecular hydrogen. Through black-body fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three component dust model composed of populations of big grains, very small grains, and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of very small grains to big grains is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2--3. We suggest that dust shattering is responsible for the relative over-abundance of small grains, in agreement with prediction from dust destruction models. However, two of the SNRs are best fit with a very low abundance of carbon grains to silicate grains and with a very high radiation field. A likely reason for the low abundance of small carbon grains is sputtering. We find evidence for silicate emission at 20 $\\mu$m in their SEDs, indicating that they are young SNRs based on the strong radiation field necessary to reproduce the observed SEDs.

  5. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    NASA Technical Reports Server (NTRS)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  6. Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.

    PubMed

    Hughs, Sidney E; Wakelyn, Phillip J

    2017-04-26

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.

  7. Longitudinal decline in lung function measurements among Saskatchewan grain workers.

    PubMed

    Pahwa, Punam; Senthilselvan, Ambikaipakan; McDuffie, Helen H; Dosman, James A

    2003-04-01

    To evaluate the relationship between the long term effects of grain dust and decline in lung function among grain elevator workers in Saskatchewan, studied over a 15-year period. The Grain Dust Medical Surveillance Program was started by Labour Canada in 1978 and longitudinally studied the respiratory health of Canadian grain elevator workers over a 15-year period (1978 to 1993). Data on respiratory symptoms and pulmonary function tests (forced expiratory volume in 1 s [FEV1], forced vital capacity [FVC]) were collected once every three years; each three-year interval was called a 'cycle'. Data from Saskatchewan were analyzed for this report. A transitional model using the generalized estimating equations approach was fitted using a SAS macro to predict the annual decline in FEV1 and FVC. Previous lung function, as one of the covariates in the transitional model, played an important role. Significant predictors of FEV1 were previous FEV1, base height, weight, years in the grain industry, current smoking status, cycle II, cycle III and cycle V. Significant predictors of FVC were previous FVC, base height, weight, years in the grain industry, cycle II, cycle III and cycle IV. The estimated annual decline in FEV1 and FVC increased according to length of time in the grain industry among nonsmoking, ex-smoking and smoking grain elevator workers. Lung function values improved after dust control, and yearly declines in FEV1 and FVC after dust control were smaller compared with yearly losses before dust control.

  8. Dust in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Rodmann, Jens

    2006-02-01

    This thesis presents observational and theoretical studies of the size and spatial distribution of dust particles in circumstellar disks. Using millimetre interferometric observations of optically thick disks around T Tauri stars, I provide conclusive evidence for the presence of millimetre- to centimetre-sized dust aggregates. These findings demonstrate that dust grain growth to pebble-sized dust particles is completed within less than 1 Myr in the outer disks around low-mass pre-main-sequence stars. The modelling of the infrared spectral energy distributions of several solar-type main-sequence stars and their associated circumstellar debris disks reveals the ubiquity of inner gaps devoid of substantial amounts of dust among Vega-type infrared excess sources. It is argued that the absence of circumstellar material in the inner disks is most likely the result of the gravitational influence of a large planet and/or a lack of dust-producing minor bodies in the dust-free region. Finally, I describe a numerical model to simulate the dynamical evolution of dust particles in debris disks, taking into account the gravitational perturbations by planets, photon radiation pressure, and dissipative drag forces due to the Poynting-Robertson effect and stellar wind. The validity of the code it established by several tests and comparison to semi-analytic approximations. The debris disk model is applied to simulate the main structural features of a ring of circumstellar material around the main-sequence star HD 181327. The best agreement between model and observation is achieved for dust grains a few tens of microns in size locked in the 1:1 resonance with a Jupiter-mass planet (or above) on a circular orbit.

  9. Dance into the fire: dust survival inside supernova remnants

    NASA Astrophysics Data System (ADS)

    Micelotta, Elisabetta R.; Dwek, Eli; Slavin, Jonathan D.

    2016-06-01

    Core collapse supernovae (CCSNe) are important sources of interstellar dust, potentially capable of producing 1 M_{⊙}) of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift universe. Our goal is to identify the dust destruction mechanisms in the ejecta, and derive the net amount of dust that survives the passage of the reverse shock. To do so, we have developed analytical models for the evolution of a supernova blast wave and of the reverse shock, and the simultaneous processing of the dust inside the cavity of the supernova remnant. We have applied our models to the special case of the clumpy ejecta of the remnant of Cassiopeia A (Cas A), assuming that the dust (silicates and carbon grains) resides in cool oxygen-rich ejecta clumps which are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma (smooth ejecta). The passage of the reverse shock through the clumps gives rise to a relative gas-grain motion and also destroys the clumps. While residing in the ejecta clouds, dust is processed via kinetic sputtering, which is terminated either when the grains escape the clumps, or when the clumps are destroyed by the reverse shock. In either case, grain destruction proceeds thereafter by thermal sputtering in the hot shocked smooth ejecta. We find that 12 and 16 percent of silicate and carbon dust, respectively, survive the passage of the reverse shock by the time the shock has reached the center of the remnant. These fractions depend on the morphology of the ejecta and the medium into which the remnant is expanding, as well as the composition and size distribution of the grains that formed in the ejecta. Results will

  10. IONIZATION AND DUST CHARGING IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivlev, A. V.; Caselli, P.; Akimkin, V. V., E-mail: ivlev@mpe.mpg.de

    2016-12-10

    Ionization–recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field, and development of instabilities in protoplanetary disks. We determine a critical gas density above which the recombination of electrons and ions on the grain surface dominates over the gas-phase recombination. For this regime, we present a self-consistent analytical model, which allows us to calculate exactly the abundances of charged species in dusty gas, without making assumptions on the grain charge distribution. To demonstrate the importance ofmore » the proposed approach, we check whether the conventional approximation of low grain charges is valid for typical protoplanetary disks, and discuss the implications for dust coagulation and development of the “dead zone” in the disk. The presented model is applicable for arbitrary grain-size distributions and, for given dust properties and conditions of the disk, has only one free parameter—the effective mass of the ions, shown to have a small effect on the results. The model can be easily included in numerical simulations following the dust evolution in dense molecular clouds and protoplanetary disks.« less

  11. COMPACT DUST CONCENTRATION IN THE MWC 758 PROTOPLANETARY DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, S.; Casassus, S.; Perez, S.

    2015-11-01

    The formation of planetesimals requires that primordial dust grains grow from micron- to kilometer-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka and Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk, indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensitymore » maximum to the northwest of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a nonaxisymmetric parametric model inspired by a steady-state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarized emission. Continuum observations at a different wavelength are necessary to conclude whether the VLA-ALMA difference is an opacity or a real dust segregation.« less

  12. ISM DUST GRAINS AND N-BAND SPECTRAL VARIABILITY IN THE SPATIALLY RESOLVED SUBARCSECOND BINARY UY Aur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.

    2010-03-10

    The 10 {mu}m silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries ({approx}<3''; {approx}< 420 AU) at the distances of the nearest star-forming regions ({approx}140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0.''88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR,more » and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk.« less

  13. Dust Acoustic Wave Excitation in a Plasma with Warm Dust

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.

    2008-11-01

    Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).

  14. Cometary dust: the diversity of primitive refractory grains

    PubMed Central

    Ishii, H. A.

    2017-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium–aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554979

  15. OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tazaki, Ryo; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp

    2015-02-01

    We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast tomore » homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.« less

  16. Comet Dust After Deep Impact

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  17. Studies on plasma profiles and its effect on dust charging in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhay, M.

    2010-02-01

    Plasma profiles and its influence on dust charging are studied in hydrogen plasma. The plasma is produced in a high vacuum device by a hot cathode discharge method and is confined by a cusped magnetic field cage. A cylindrical Espion advanced Langmuir probe having 0.15 mm diameter and 10.0 mm length is used to study the plasma parameters for various discharge conditions. Optimum operational discharge parameters in terms of charging of the dust grains are studied. The charge on the surface of the dust particle is calculated from the capacitance model and the current by the dust grains is measured by the combination of a Faraday cup and an electrometer. Unlike our previous experiments in which dust grains were produced in-situ, here a dust dropper is used to drop the dust particles into the plasma.

  18. Dust on Snow Processes and Impacts in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Okin, G. S.

    2015-12-01

    In the Upper Colorado River Basin episodic deposition of mineral dust onto mountain snow cover frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau, and deposition rates have increased since the intensive settlement in the western USA in the mid 1880s. Dust deposition darkens the snow surface, and accelerates snowmelt through reduction of albedo and further indirect reduction of albedo by accelerating the growth of snow grain size. Observation and modeling of dust-on-snow processes began in 2005 at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, work which has shown that dust advances melt, shifts runoff timing and intensity, and reduces total water yield. The consistency of deposition and magnitude of impacts highlighted the need for more detailed understanding of the radiative impacts of dust-on-snow in this region. Here I will present results from a novel, high resolution, daily snow property dataset, collected at SBBSA over the 2013 ablation season, to facilitate physically based radiative transfer and snowmelt modeling. Measurements included snow albedo and vertical profiles of snow density, optical snow grain size, and dust/black carbon concentrations. This dataset was used to assess the relationship between episodic dust events, snow grain growth, and albedo over time, and observe the relation between deposited dust and melt water. Additionally, modeling results include the determination of the regionally specific dust-on-snow complex refractive index and radiative forcing partitioning between dust and black carbon, and dust and snow grain growth.

  19. A modified Rayleigh-Gans-Debye formula for small angle X-ray scattering by interstellar dust grains

    NASA Astrophysics Data System (ADS)

    Sharma, Subodh K.

    2015-05-01

    A widely used approximation in studies relating to small angle differential scattering cross-section of X-rays scattered by interstellar dust grains is the well known Rayleigh-Gans-Debye approximation (RGDA). The validity of this approximation, however, is limited only to X-ray energies greater than about 1 keV. At lower energies, this approximation overestimates the exact results. In this paper a modification to the RGDA is suggested. It is shown that a combination of the RGDA with Ramsauer approximation retains the formal simplicity of the RGDA and also yields good agreement with Mie computations at all X-ray energies.

  20. Dust particles interaction with plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticos, C. M.; Jepu, I.; Lungu, C. P.

    2009-11-10

    The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.

  1. Interstellar abundances - Gas and dust

    NASA Technical Reports Server (NTRS)

    Field, G. B.

    1974-01-01

    Data on abundances of interstellar atoms, ions and molecules in front of zeta Oph are assembled and analyzed. The gas-phase abundances of at least 11 heavy elements are significantly lower, relative to hydrogen, than in the solar system. The abundance deficiencies of certain elements correlate with the temperatures derived theoretically for particle condensation in stellar atmospheres or nebulae, suggesting that these elements have condensed into dust grains near stars. There is evidence that other elements have accreted onto such grains after their arrival in interstellar space. The extinction spectrum of zeta Oph can be explained qualitatively and, to a degree, quantitatively by dust grains composed of silicates, graphite, silicon carbide, and iron, with mantles composed of complex molecules of H, C, N, and O. This composition is consistent with the observed gas-phase deficiencies.

  2. Analytical study of spheroidal dust grains in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahed, H.; Mahmoodi, J.; Sobhanian, S.

    2006-05-15

    Using the modified spheroidal equations, the potential of a spheroidal conducting grain, floated in a plasma, is calculated. The electric field and capacitance for both prolate and oblate spheroidal grains are investigated. The solutions, obtained up to the second-order approximation, show that the plasma screening causes the equipotential surfaces around the grain to be more elongated or flattened than the potential spheroids of the Laplace equation. This leads to the variation of the plasma concentration around the grain.

  3. Characterizing the Variable Dust Permeability of Planet-induced Gaps

    NASA Astrophysics Data System (ADS)

    Weber, Philipp; Benítez-Llambay, Pablo; Gressel, Oliver; Krapp, Leonardo; Pessah, Martin E.

    2018-02-01

    Aerodynamic theory predicts that dust grains in protoplanetary disks will drift radially inward on comparatively short timescales. In this context, it has long been known that the presence of a gap opened by a planet can significantly alter the dust dynamics. In this paper, we carry out a systematic study employing long-term numerical simulations aimed at characterizing the critical particle size for retention outside a gap as a function of particle size, as well as various key parameters defining the protoplanetary disk model. To this end, we perform multifluid hydrodynamical simulations in two dimensions, including different dust species, which we treat as pressureless fluids. We initialize the dust outside of the planet’s orbit and study under which conditions dust grains are able to cross the gap carved by the planet. In agreement with previous work, we find that the permeability of the gap depends both on dust dynamical properties and the gas disk structure: while small dust follows the viscously accreting gas through the gap, dust grains approaching a critical size are progressively filtered out. Moreover, we introduce and compute a depletion factor that enables us to quantify the way in which higher viscosity, smaller planet mass, or a more massive disk can shift this critical size to larger values. Our results indicate that gap-opening planets may act to deplete the inner reaches of protoplanetary disks of large dust grains—potentially limiting the accretion of solids onto forming terrestrial planets.

  4. Modeling dust emission in the Magellanic Clouds with Spitzer and Herschel

    NASA Astrophysics Data System (ADS)

    Chastenet, Jérémy; Bot, Caroline; Gordon, Karl D.; Bocchio, Marco; Roman-Duval, Julia; Jones, Anthony P.; Ysard, Nathalie

    2017-05-01

    Context. Dust modeling is crucial to infer dust properties and budget for galaxy studies. However, there are systematic disparities between dust grain models that result in corresponding systematic differences in the inferred dust properties of galaxies. Quantifying these systematics requires a consistent fitting analysis. Aims: We compare the output dust parameters and assess the differences between two dust grain models, the DustEM model and THEMIS. In this study, we use a single fitting method applied to all the models to extract a coherent and unique statistical analysis. Methods: We fit the models to the dust emission seen by Spitzer and Herschel in the Small and Large Magellanic Clouds (SMC and LMC). The observations cover the infrared (IR) spectrum from a few microns to the sub-millimeter range. For each fitted pixel, we calculate the full n-D likelihood based on a previously described method. The free parameters are both environmental (U, the interstellar radiation field strength; αISRF, power-law coefficient for a multi-U environment; Ω∗, the starlight strength) and intrinsic to the model (YI: abundances of the grain species I; αsCM20, coefficient in the small carbon grain size distribution). Results: Fractional residuals of five different sets of parameters show that fitting THEMIS brings a more accurate reproduction of the observations than the DustEM model. However, independent variations of the dust species show strong model-dependencies. We find that the abundance of silicates can only be constrained to an upper-limit and that the silicate/carbon ratio is different than that seen in our Galaxy. In the LMC, our fits result in dust masses slightly lower than those found in the literature, by a factor lower than 2. In the SMC, we find dust masses in agreement with previous studies.

  5. Effects of dust size distribution on dust acoustic waves in two-dimensional unmagnetized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Guangjun; Duan Wenshan; Tian Duoxiang

    2008-04-15

    For unmagnetized dusty plasma with many different dust grain species containing both hot isothermal electrons and ions, both the linear dispersion relation and the Kadomtsev-Petviashvili equation for small, but finite amplitude dust acoustic waves are obtained. The linear dispersion relation is investigated numerically. Furthermore, the variations of amplitude, width, and propagation velocity of the nonlinear solitary wave with an arbitrary dust size distribution function are studied as well. Moreover, both the power law distribution and the Gaussian distribution are approximately simulated by using appropriate arbitrary dust size distribution functions.

  6. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  7. The Cassini Cosmic Dust Analyser CDA - A 10 year exploration of Saturn's dust environment

    NASA Astrophysics Data System (ADS)

    Srama, Ralf

    2014-05-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Since then, the German-lead Cosmic Dust Analyser (CDA) was operated continuously for 10 years in orbit around Saturn. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as previously known) allowed the definition of a dynamical dust model of Saturns E ring describing the observed properties. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn.

  8. Respiratory profiles of grain handlers and sedentary workers.

    PubMed Central

    Herbert, F. A.; Woytowich, V.; Schram, E.; Baldwin, D.

    1981-01-01

    During 1978, grain handlers employed at three large inland grain terminals were studied along with an equal number of office workers matched for sex, age and smoking history. Respiratory symptoms and spirometric abnormalities were no more frequent in 16 grain handlers who were non-smokers than in their controls. However, 20 grain handlers who were smokers complained significantly more (P less than 0.01) of grade 1 dyspnea and had significantly lower ratios of forced expiratory volume in the first second to forced vital capacity (P less than 0.05) than their controls. Only 3% of the grain handlers were sensitive to grain dust, and 18% were found to be atopic but to have good lung function. A family history of asthma or allergic rhinitis was no more frequent in the grain handlers than in the control subjects. We conclude that the combination of cigarette smoking and exposure to grain dust causes a deterioration in lung function. PMID:7260809

  9. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  10. Dust devils on Mars

    NASA Technical Reports Server (NTRS)

    Thomas, P. G.; Gierasch, P.

    1985-01-01

    Large columns of dust have been discovered rising above plains on Mars. The storms are probably analogous to terrestrial dust devils, but their size indicates that they are more similar to tornadoes in intensity. They occur at locations where the soil has been strongly warmed by the Sun, and there the surface is smooth and fine grained. These are the same conditions that favor dust devils on Earth. Warm gas from the lowest atmospheric layer converges and rises in a thin column, with intense swirl developing at the edge of the column. In one area a mosaic of Viking images shows 97 vortices in a three day period. This represents a density of vortices of about one in each 900 square kilometers. Thus, these dust devils may be important in moving dust or starting over dust storms.

  11. Excess longitudinal decline in lung function in grain farmers.

    PubMed

    Senthilselvan, Ambikaipakan; Chénard, Liliane; Grover, Vaneeta; Kirychuk, Shelley P; Hagel, Louise; Ulmer, Kendra; Hurst, Thomas S; Dosman, James A

    2010-04-01

    Workers in intensive agricultural operations are exposed to dust and endotoxin that are associated with respiratory effects. The authors investigated the longitudinal changes in lung function in male grain farmers. In this study, male grain farmers (n = 263) and male nonfarming control subjects (n = 261) studies initially in 1990/91 were followed-up in 1994/95 and 2003/04. After controlling for potential confounders, grain farmers had an excess annual decline of 9.2 ml/year (95% confidence interval [CI]: 2.7, 15.8, p = .006) in forced vital capacity (FVC) in comparison to control. Long-term exposure to grain dust and other substances in lifetime grain farmers results in progressive loss in lung function.

  12. Dust Destruction Rates and Lifetimes in the Magellanic Clouds

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Tchernyshyov, Kirill; Boyer, Martha L.; Meixner, Margaret; Gall, Christa; Roman-Duval, Julia

    2015-01-01

    The nature, composition, abundance, and size distribution of dust in galaxies is determined by the rate at which it is created in the different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetime and destruction efficiencies of silicate and carbon dust in these galaxies. We find dust lifetimes of 22+/-13 Myr (30+/-17 Myr) for silicate (carbon) grains in the LMC, and 54 +/- 32 Myr (72 +/- 43 Myr) for silicate (carbon) grains in the SMC. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass, and the fact that the dust-destroying isolated SNe in the MCs seem to be preferentially occurring in regions with higher than average dust-to-gas (D2G) mass ratios. We also calculate the supernova rate and the current star formation rate in the MCs, and use them to derive maximum dust injection rates by asymptotic giant branch (AGB) stars and core collapse supernovae (CCSNe). We find that the injection rates are an order of magnitude lower than the dust destruction rates by the SNRs. This supports the conclusion that, unless the dust destruction rates have been considerably overestimated, most of the dust must be reconstituted from surviving grains in dense molecular clouds. More generally, we also discuss the dependence of the dust destruction rate on the local D2G mass ratio and the ambient gas density and metallicity, as well as the application of our results to other galaxies and dust evolution models.

  13. Gaps and rings carved by vortices in protoplanetary dust

    NASA Astrophysics Data System (ADS)

    Barge, Pierre; Ricci, Luca; Carilli, Christopher Luke; Previn-Ratnasingam, Rathish

    2017-09-01

    Context. Large-scale vortices in protoplanetary disks are thought to form and survive for long periods of time. Hence, they can significantly change the global disk evolution and particularly the distribution of the solid particles embedded in the gas, possibly explaining asymmetries and dust concentrations recently observed at submillimeter and millimeter wavelengths. Aims: We investigate the spatial distribution of dust grains using a simple model of protoplanetary disk hosted by a giant gaseous vortex. We explore the dependence of the results on grain size and deduce possible consequences and predictions for observations of the dust thermal emission at submillimeter and millimeter wavelengths. Methods: Global 2D simulations with a bi-fluid code are used to follow the evolution of a single population of solid particles aerodynamically coupled to the gas. Possible observational signatures of the dust thermal emission are obtained using simulators of ALMA and Nest Generation Very Large Array (ngVLA) observations. Results: We find that a giant vortex not only captures dust grains with Stokes number St< 1 but can also affect the distribution of larger grains (with St 1) carving a gap associated with a ring composed of incompletely trapped particles. The results are presented for different particle sizes and associated with their possible signatures in disk observations. Conclusions: Gap clearing in the dust spatial distribution could be due to the interaction with a giant gaseous vortex and their associated spiral waves without the gravitational assistance of a planet. Hence, strong dust concentrations at short sub-mm wavelengths associated with a gap and an irregular ring at longer mm and cm wavelengths could indicate the presence of an unseen gaseous vortex.

  14. MEDUSA (Martian Environmental DUst Systematic Analyser) for the monitoring of the Martian atmospheric dust and water vapour

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Battaglia, R.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Palomba, E.; Palumbo, P.; Panizza, A.; Rotundi, A.

    2004-03-01

    The knowledge of Martian airborne dust properties and about mechanisms of dust settling/raising to/from the surface are important to determine climate and surface evolution on Mars. Water is an important tracer of climatic changes on long time-scales and is strictly related to the presence of life forms. The study in situ of dust and water vapour properties and evolution in Martian atmosphere is useful to trace back the planet climate, also in function of life form development. This investigation is also appropriate in preparation to future manned exploration of the planet (in relation to hazardous conditions). In this work we discuss the concept of the MEDUSA (Martian Environmental Dust Analyser) experiment that is designed to provide data on grain size and mass distribution, number density, velocity and scattering properties and on water vapour concentration. The instrument is a multisensor system based on optical and impact detection of grains, coupled with cumulative deposition sensors.

  15. The magnetized sheath of a dusty plasma with grains size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Jing, E-mail: ouj@ipp.ac.cn; Gan, Chunyun; Lin, Binbin

    2015-05-15

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected valuemore » of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.« less

  16. Constraints on the structure of hot exozodiacal dust belts

    NASA Astrophysics Data System (ADS)

    Kirchschlager, Florian; Wolf, Sebastian; Krivov, Alexander V.; Mutschke, Harald; Brunngräber, Robert

    2017-05-01

    Recent interferometric surveys of nearby main-sequence stars show a faint but significant near-infrared excess in roughly two dozen systems, I.e. around 10-30 per cent of stars surveyed. This excess is attributed to dust located in the immediate vicinity of the star, the origin of which is highly debated. We used previously published interferometric observations to constrain the properties and distribution of this hot dust. Considering both scattered radiation and thermal re-emission, we modelled the observed excess in nine of these systems. We find that grains have to be sufficiently absorbing to be consistent with the observed excess, while dielectric grains with pure silicate compositions fail to reproduce the observations. The dust should be located within ˜0.01-1 au from the star depending on its luminosity. Furthermore, we find a significant trend for the disc radius to increase with the stellar luminosity. The dust grains are determined to be below 0.2-0.5 μm, but above 0.02-0.15 μm in radius. The dust masses amount to (0.2-3.5) × 10- 9 M⊕. The near-infrared excess is probably dominated by thermal re-emission, though a contribution of scattered light up to 35 per cent cannot be completely excluded. The polarization degree predicted by our models is always below 5 per cent, and for grains smaller than ˜ 0.2 {μm even below 1 per cent. We also modelled the observed near-infrared excess of another 10 systems with poorer data in the mid-infrared. The basic results for these systems appear qualitatively similar, yet the constraints on the dust location and the grain sizes are weaker.

  17. The Entry of Nano-dust Particles into the Terrestrial Magnetosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Juhasz, A.

    2016-12-01

    Nano-dust particles have been suggested to be responsible for spurious antenna signals on several spacecraft near 1 AU. Most of these tiny motes are generated in the solar vicinity where the collision-rate between larger inward migrating dust particles increases generating copious amounts of smaller dust grains. The vast majority of the dust grains is predicted to be lost to the Sun, but a fraction of them can be expelled by radiation pressure, and the solar wind plasma flow. Particles in the nano-meter size range can be incorporated in the solar wind, and arrive near 1 AU with characteristic speeds of approximately 400 km/s. Larger, but still submicron sized particles, that are expelled by radiation pressure, represent the so-called beta-meteoroid population. Both of these populations of dust particles can be detected by dedicated dust instruments near 1 AU. A fraction of these particles can also penetrate the terrestrial magnetosphere and possibly bombard spacecraft orbiting the Earth. This talk will explore the dynamics of nano-grains and beta-meteoroids entering the magnetosphere, and predict their spatial, mass and speed distributions as function of solar wind conditions.

  18. Self-Consistent Simulation of the Brownian Stage of Dust Growth

    NASA Technical Reports Server (NTRS)

    Kempf, S.; Pfalzner, S.; Henning, Th.

    1996-01-01

    It is a widely accepted view that in proto-planetary accretion disks the collision and following sticking of dust particles embedded in the gas eventually leads to the formation of planetesimals (coagulation). For the smallest dust grains, Brownian motion is assumed to be the dominant source of their relative velocities leading to collisions between these dust grains. As the dust grains grow they eventually couple to the turbulent motion of the gas which then drives the coagulation much more efficiently. Many numerical coagulation simulations have been carried out to calculate the fractal dimension of the aggregates, which determines the duration of the ineffective Brownian stage of growth. Predominantly on-lattice and off-lattice methods were used. However, both methods require simplification of the astrophysical conditions. The aggregates found by those methods had a fractal dimension of approximately 2 which is equivalent to a constant, mass-independent friction time. If this value were valid for the conditions in an accretion disk, this would mean that the coagulation process would finally 'freeze out' and the growth of a planetesimal would be impossible within the lifetime of an accretion disk. In order to investigate whether this fractal dimension is model independent, we simulate self-consistently the Brownian stage of the coagulation by an N-particle code. This method has the advantage that no further assumptions about homogeneity of the dust have to be made. In our model, the dust grains are considered as aggregates built up of spheres. The equation of motion of the dust grains is based on the probability density for the diffusive transport within the gas atmosphere. Because of the very low number density of the dust grains, only 2-body-collisions have to be considered. As the Brownian stage of growth is very inefficient, the system is to be simulated over long periods of time. In order to find close particle pairs of the system which are most likely to

  19. Dust Devil Tracks

    NASA Astrophysics Data System (ADS)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand

  20. Respiratory disease of workers harvesting grain.

    PubMed Central

    Darke, C S; Knowelden, J; Lacey, J; Milford Ward, A

    1976-01-01

    The incidence of respiratory symptoms caused by grain dust during harvesting was surveyed in a group of Lincolnshire farmers. A quarter complained of respiratory distress after working on combine harvesters or near grain driers and elevators, with cough, wheezing, and breathlessness, sometimes so severe as to prevent work. The airborne dust around combine harvesters contained up to 200 million fungus spores/m3 air with Cladosporium predominant while drivers were exposed to up to 20 million spores/m3 air. Verticillium/Paecilomyces type spores, mostly from Verticillium lecanii, Aphanocladium album, and Paecilomyces bacillosporus, were abundant in the dust. Extracts of these species produced immediate weal reactions in skin tests, precipitin reactions with sera, and rapid decreases in FEV1 when inhaled by affected workers. There was no delayed reactions. Results suggest type I immediate hypersensitivity to the spores although the physical effect of a heavy dust deposit could be important. Drivers could be protected by cabs ventilated with filtered air. PMID:941115

  1. Circumstellar dust in symbiotic novae

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2015-08-01

    Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 µm) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 17·10-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use

  2. Random dust charge fluctuations in the near-Enceladus plasma

    NASA Astrophysics Data System (ADS)

    Yaroshenko, V. V.; Lühr, H.

    2014-08-01

    Stochastic dust charge fluctuations have been studied in the light of Cassini data on the near-Enceladus plasma environment. Estimates of fluctuation time scales showed that this process can be of importance for the grains emanating from the icy moon. The analytical modeling predicts that in the dust-loaded Enceladus plasma a majority of the grains acquires fluctuating negative charges, but there might appear a minority of positively charged particles. The probability of this effect mostly depends on the ratio of the dust/plasma number densities. Our findings appear to be supported by the available Cassini Plasma Spectrometer measurements of the charged grain distributions during E3 and E5 plume flybys. The theoretical results can also provide new insights into the intricate process of particle dynamics in the inner magnetosphere.

  3. Study of the prevalence of chronic, non-specific lung disease and related health problems in the grain-handling industry. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankin, J.; Bates, J.; Claremont, A.

    1986-10-01

    A total of 310 grain handlers was studied, with attention to prevalence and characteristics of clinical, psychological, immunological, radiological, serological blood and urine parameters to determine any apparent effects from grain-dust exposure. Grain handlers had a higher prevalence of respiratory symptoms and signs than did the city workers who comprised the comparison group. Evidence of accumulative respiratory effect due to recurring exposures to grain dust was found. Acute and chronic airway reactions were induced by exposure to grain dust. Wheezing and dyspnea on exposure were related to length of employment. Grain fever syndrome was prevalent. Cases of acute recurrent conjunctivitismore » and rhinitis were found along with skin pruritus, mainly on exposure to barley dust. Pesticide exposure caused temporary disabling symptoms. Lung function was adversely affected by grain-dust exposure. Exposure to grain mites and insects in contaminated cereal grain caused a reaction among grain workers.« less

  4. Effect of Trapped Ions on Shielding and Floating Potential of a Dust Grain in a Plasma

    NASA Astrophysics Data System (ADS)

    Lampe, Martin; Ganguli, Gurudas; Joyce, Glenn; Gavrishchaka, Valeriy

    2001-10-01

    The problem of electrostatic shielding around a small spherical collector immersed in plasma, and the related problem of electron and ion flow to the collector, date to the origins of plasma physics. Beginning with Mott-Smith and Langmuir (1926), calculations have typically neglected collisions, on the grounds that the mean free path is long compared to shielding length scales, i.e. the Debye length. However, investigators beginning with Bernstein and Rabinowitz (1959) have known that negative-energy trapped ions, created by occasional collisions, might be important. We present an analytic calculation of the density of trapped and untrapped ions, self-consistent with the potential. Under typical conditions for dust grains immersed in a discharge plasma, trapped ions dominate the shielding cloud in steady state, even in the limit of very long mean free path. As a result the shielded potential is different from the results of orbital motion limited theory. Collisions also greatly increase the ion current to the collector, thereby decreasing the floating potential and the grain charge by a factor as large as two to three.

  5. Trapping Dust to Form Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  6. Effects of road dust on the growth characteristics of Sophora japonica L. seedlings.

    PubMed

    Bao, Le; Qu, Laiye; Ma, Keming; Lin, Lin

    2016-08-01

    Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load, composition and grain size impacts on plants; however, there is a lack of integrated dust effect studies involving these three aspects. In our study, Sophora japonica seedlings were artificially dusted with road dust collected from the road surface of Beijing so that we could study the impacts of this dust on nitrogen/carbon allocation, biomass allocation and photosynthetic pigments from the three aspects of composition, load and grain size. The results showed that the growth characteristics of S. japonica seedlings were mostly influenced by dust composition and load. Leaf N, root-shoot ratio and chlorophyll a/b were significantly affected by dust composition and load; leaf C/N, shoot biomass, total chlorophyll and carotenoid were significantly affected by dust load; stem N and stem C/N were significantly affected by dust composition; while the dust grain size alone did not affect any of the growth characteristics. Road dust did influence the growth characteristics more extensively than loam. Therefore, a higher dust load could increase the differences between road dust and loam treatments. The elements in dust are well correlated to the shoot N, shoot C/N, and root-shoot ratio of S. japonica seedlings. This knowledge could benefit the management of urban green spaces. Copyright © 2016. Published by Elsevier B.V.

  7. Common Warm Dust Temperatures Around Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Morales, Farisa; Rieke, George; Werner, Michael; Stapelfeldt, Karl; Bryden, Geoffrey; Su, Kate

    2011-01-01

    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-KO) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (∼ 190 K and ∼60 K for the inner and outer dust components, respectively)-slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ∼ 150 K can deposit particles into an inner/warm belt, where the small grains are heated to dust Temperatures of -190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-KO stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon.

  8. The MAGO experiment for dust environment monitoring on the Martian surface

    NASA Astrophysics Data System (ADS)

    Palumbo, P.; Battaglia, R.; Brucato, J. R.; Colangeli, L.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Mennella, V.; Palomba, E.; Panizza, A.; Rotundi, A.

    2004-01-01

    Among the main directions identified for future Martian exploration, the study of the properties of dust dispersed in the atmosphere, its cycle and the impact on climate are considered of primary relevance. Dust storms, dust devils and the dust ``cycle'' have been identified and studied by past remote and in situ experiments, but little quantitative information is available on these processes, so far. The airborne dust contributes to the determination of the dynamic and thermodynamic evolution of the atmosphere, including the large-scale circulation processes and its impact on the climate of Mars. Moreover, aeolian erosion, redistribution of dust on the surface and weathering processes are mostly known only qualitatively. In order to improve our knowledge of the airborne dust evolution and other atmospheric processes, it is mandatory to measure the amount, mass-size distribution and dynamical properties of solid particles in the Martian atmosphere as a function of time. In this context, there is clearly a need for the implementation of experiments dedicated to study directly atmospheric dust. The Martian atmospheric grain observer (MAGO) experiment is aimed at providing direct quantitative measurements of mass and size distributions of dust particles, a goal that has never been fully achieved so far. The instrument design combines three types of sensors to monitor in situ the dust mass flux (micro balance system, MBS) and single grain properties (grain detection system, GDS+impact sensor, IS). Technical solutions and science capabilities are discussed in this paper.

  9. Low-temperature crystallization of silicate dust in circumstellar disks.

    PubMed

    Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C

    1999-10-07

    Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.

  10. The determination of cloud masses and dust characteristics from submillimetre thermal emission

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1983-01-01

    The principles by which the dust and masses and total masses of interstellar clouds and certain characteristics of interstellar dust grains can be derived from observations of far infrared and submillimeter thermal emission are reviewed. To the extent possible, the discussion will be independent of particular grain models.

  11. Dust silicate emission in FIR/submm

    NASA Astrophysics Data System (ADS)

    Coupeaud, A.; Demyk, K.; Mény, C.; Nayral, C.

    2010-12-01

    The far-infrared to millimeter wavelength (FIR-mm) range in astronomical observations is dominated by the thermal emission from large (10-100 nm) and cold (10-20 K) dust grains, which are in thermal equilibrium with the interstellar radiation field. However, the physics of the FIR-mm emission from such cold matter is not well understood as shown by the observed dependence with the temperature of the spectral index of the dust emissivity β and by the observed far infrared excess. Interestingly, a similar behaviour is observed in experiments of characterization of the spectral properties of dust analogues. We present a study of the optical properties of analogues of interstellar silicate grains at low temperature in the FIR/submm range aiming to understand their peculiar behaviour. Such studies are essential for the interpretation of the Herschel and Planck data.

  12. Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations

    NASA Astrophysics Data System (ADS)

    Meier, Patrick; Motschmann, Uwe; Schmidt, Jürgen; Spahn, Frank; Hill, Thomas W.; Dong, Yaxue; Jones, Geraint H.; Kriegel, Hendrik

    2015-12-01

    Negatively and positively charged nano-sized ice grains were detected in the Enceladus plume by the Cassini Plasma Spectrometer (CAPS). However, no data for uncharged grains, and thus for the total amount of dust, are available. In this paper we estimate this population of uncharged grains based on a model of stochastic charging in thermodynamic equilibrium and on the assumption of quasi-neutrality in the plasma-dust system. This estimation is improved upon by combining simulations of the dust component of the plume and simulations for the plasma environment into one self-consistent model. Calibration of this model with CAPS data provides a total dust production rate of about 12 kg s-1, including larger dust grains up to a few microns in size. We find that the fraction of charged grains dominates over that of the uncharged grains. Moreover, our model reproduces densities of both negatively and positively charged nanograins measured by Cassini CAPS. In Enceladus' plume ion densities up to ~104cm-3 are required by the self-consistent model, resulting in an electron depletion of about 50% in the plasma, because electrons are attached to the negatively charged nanograins. These ion densities correspond to effective ionization rates of about 10-7s-1, which are about two orders of magnitude higher than expected.

  13. ``Particle traps'' at planet gap edges in disks: effects of grain growth and fragmentation

    NASA Astrophysics Data System (ADS)

    Gonzalez, J.-F.; Laibe, G.; Maddison, S. T.; Pinte, C.; Ménard, F.

    2014-12-01

    We model the dust evolution in protoplanetary disks (PPD) with 3D, Smoothed Particle Hydrodynamics (SPH), two-phase (gas+dust) hydrodynamical simulations. The gas+dust dynamics, where aerodynamic drag leads to the vertical settling and radial migration of grains, is consistently treated. In a previous work, we characterized the spatial distribution of non-growing dust grains of different sizes in a disk containing a gap-opening planet and investigated the gap's detectability with ALMA. Here we take into account the effects of grain growth and fragmentation and study their impact on the distribution of solids in the disk. We show that rapid grain growth in the ``particle traps'' at the edges of planet gaps are strongly affected by fragmentation. We discuss the consequences for ALMA and NOEMA observations.

  14. ISM Dust Grains and N-band Spectral Variability in the Spatially Resolved Subarcsecond Binary UY Aur

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Greene, Thomas P.; Males, Jared R.; Beck, Tracy L.

    2010-03-01

    The 10 μm silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries (lsim3''; <~ 420 AU) at the distances of the nearest star-forming regions (~140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0farcs88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR, and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk. The observations reported here were partially obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.

  15. Discrete stochastic charging of aggregate grains

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  16. Influence of Non-Maxwellian Particles on Dust Acoustic Waves in a Dusty Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    M. Nouri, Kadijani; Zareamoghaddam, H.

    2013-11-01

    In this paper an investigation into dust acoustic solitary waves (DASWs) in the presence of superthermal electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of both electrons and ions is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified Korteweg-de Vries (mKdV) equation using Reductive Perturbation Theory (RPT). Two types of solitary waves, fast and slow dust acoustic soliton (DAS) exist in this plasma. Calculations reveal that compressive solitary structures are possibly propagated in the plasma where dust grains are negatively (or positively) charged. The properties of DASs are also investigated numerically.

  17. Spatially resolving the dust properties and submillimetre excess in M 33

    NASA Astrophysics Data System (ADS)

    Relaño, M.; De Looze, I.; Kennicutt, R. C.; Lisenfeld, U.; Dariush, A.; Verley, S.; Braine, J.; Tabatabaei, F.; Kramer, C.; Boquien, M.; Xilouris, M.; Gratier, P.

    2018-05-01

    Context. The relative abundance of the dust grain types in the interstellar medium is directly linked to physical quantities that trace the evolution of galaxies. Because of the poor spatial resolution of the infrared and submillimetre data, we are able to study the dependence of the resolved infrared spectral energy distribution (SED) across regions of the interstellar medium (ISM) with different physical properties in just a few objects. Aims: We aim to study the dust properties of the whole disc of M 33 at spatial scales of 170 pc. This analysis allows us to infer how the relative dust grain abundance changes with the conditions of the ISM, study the existence of a submillimetre excess and look for trends of the gas-to-dust mass ratio (GDR) with other physical properties of the galaxy. Methods: For each pixel in the disc of M 33 we have fitted the infrared SED using a physically motivated dust model that assumes an emissivity index β close to two. We applied a Bayesian statistical method to fit the individual SEDs and derived the best output values from the study of the probability density function of each parameter. We derived the relative amount of the different dust grains in the model, the total dust mass, and the strength of the interstellar radiation field (ISRF) heating the dust at each spatial location. Results: The relative abundance of very small grains tends to increase, and for big grains to decrease, at high values of Hα luminosity. This shows that the dust grains are modified inside the star-forming regions, in agreement with a theoretical framework of dust evolution under different physical conditions. The radial dependence of the GDR is consistent with the shallow metallicity gradient observed in this galaxy. The strength of the ISRF derived in our model correlates with the star formation rate in the galaxy in a pixel by pixel basis. Although this is expected, it is the first time that a correlation between the two quantities has been reported

  18. Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities 200 km s(exp -1) for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of approximately 2 compared to those of Jones et al. (1996), who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of approximately 3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of approximately 2-3 Gyr. These increases, while not able resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step towards understanding the origin, and evolution of dust in the ISM.

  19. Tin in a chondritic interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.

  20. Nitrogen chemistry on dust grains: the formation of hydroxylamine, precursor to glycine

    NASA Astrophysics Data System (ADS)

    Vidali, Gianfranco; Lemaire, Jean Louis; Shi, Jianming; Hopkins, Tyler; Garrod, Rob; He, Jiao

    2015-08-01

    In ices coating dust grains in molecular clouds, nitrogen-containing molecules - mostly NH3 - are present in sizable quantity, up to 15-20% with respect to water ice, the largest component. We studied the oxidation of ammonia in a series of experiments using beams of oxygen and ammonia in various configurations (co-deposition and sequential deposition with various NH3:O ratios). We detected the formation of hydroxylamine (NH2OH) and other products, depending on the degree of oxidation. A simulation of a dense cloud with input from experimental data shows that on and in ices at 14 K and with modest activation energy for reaction, NH2OH is easily formed and its abundance never falls below a tenth of the NH3 abundance. Strategies for detection of hydroxylamine in the ISM will be presented.This work is supported by the NSF Astronomy and Astrophysics Division (grant No.1311958 to G.V.). R.T.G. acknowledges the support of the NASA Astrophysics Theory Program (grant No. NNX11AC38G).

  1. Deflection of the local interstellar dust flow by solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Landgraf, M.; Augustsson, K.; Grun, E.; Gustafson, B. A.

    1999-01-01

    Interstellar dust grains intercepted by the dust detectors on the Ulysses and Galileo spacecrafts at heliocentric distances from 2 to 4 astronomical units show a deficit of grains with masses from 1 x 10(-17) to 3 x 10(-16) kilograms relative to grains intercepted outside 4 astronomical units. To divert grains out of the 2- to 4-astronomical unit region, the solar radiation pressure must be 1.4 to 1.8 times the force of solar gravity. These figures are consistent with the optical properties of spherical or elongated grains that consist of astronomical silicates or organic refractory material. Pure graphite grains with diameters of 0.2 to 0.4 micrometer experience a solar radiation pressure force as much as twice the force of solar gravity.

  2. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  3. High negative charge of a dust particle in a hot cathode discharge.

    PubMed

    Arnas, C; Mikikian, M; Doveil, F

    1999-12-01

    Dust particle levitation experiments in a plasma produced by a hot filament discharge, operating at low argon pressure, are presented. The basic characteristics of a dust grain trapped in a plate sheath edge in these experimental conditions are reported. Taking into account the sheath potential profiles measured with a differential emissive probe diagnostic, the forces applied to an isolated dust grain can be determined. Two different experimental methods yield approximately the same value for the dust charge. The observed high negative charge is mainly due to the contribution of the primary electrons emitted by the filaments as predicted by a simple model.

  4. Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust

    NASA Technical Reports Server (NTRS)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; hide

    2014-01-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (rh approx.1.15 AU, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a narrow size distribution dominated by approx. micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 microns and by a silicate feature strength of approx.1.1 and an 8-13microns continuum greybody color temperature of approx. 275-280 K (using Tbb ? r-0.5 h and Tbb approx. 260-265 K from Subaru COMICS, 2013-Oct-19 UT)[1,2]. N-band spectra of comet ISON with the BASS instrument on the NASA IRTF (2013-Nov-11-12 UT) show a silicate feature strength of approx. 1.1 and an 11.2microns forsterite peak.[3] Our thermal models yield constraints the dust composition as well as grain size distribution parameters: slope, peak grain size, porosity. Specifically, ISON's dust has a low silicate-to- amorphous carbon ratio (approx. 1:9), and the coma size distribution has a steep slope (N4.5) such that the coma is dominated by micron-sized, moderately porous, carbon-rich dust grains. The N-band continuum color temperature implies submicronto micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the size distribution to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A proxy for the dust production rate is f? approx.1500 cm, akin to Af?. ISON has a moderate-to-low dust-to-gas ratio. Comet ISON's dust grain size distribution does not appear similar to the few well-studied long-period Nearly Isotropic Comets (NICs), namely C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) that had smaller and/or more highly porous grains and larger sizes, or C/2007 N4 (Lulin) and C/2006 P1 (McNaught) that had large and/or compact grains. Radial transport to comet-forming disk distances

  5. Investigation of dust transport on the lunar surface in laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Wang, X.; Horanyi, M.; Robertson, S. H.

    2009-12-01

    There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.

  6. The dynamics of submicron-sized dust particles lost from Phobos

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Tatrallyay, M.; Juhasz, A.; Luhmann, J. G.

    1991-01-01

    The dynamics of submicron-sized dielectric particles lost from the Martian moon Phobos are studied in connection with the possible detection of dust by the Phobos 2 spacecraft. The motion of these small dust grains is influenced not only by gravity but also by solar radiation pressure and electromagnetic forces. The plasma environment of Mars is described by applying a hybrid gasdynamic-cometary model. Some of the submicron-sized grains ejected at speeds on the order of a few tens meters per second can stay in orbit around Mars for several months forming a nonuniform and time-dependent dust halo.

  7. Lunar Airborne Dust Toxicity Hazard Assessments (Invited)

    NASA Astrophysics Data System (ADS)

    Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.

    2009-12-01

    The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system

  8. Dust remobilization tests in DIII-D divertor

    NASA Astrophysics Data System (ADS)

    Bykov, I.; Rudakov, D.; Moyer, R.; Ratynskaia, S.; Tolias, P.; Deangeli, M.; McLean, A.; Bystrov, K.

    2015-11-01

    Accumulation of dust on hot surfaces is a safety concern for ITER operation. We studied the life cycle of pre-deposited dust under ITER-relevant conditions by exposing W samples with W, C and Al (surrogate for Be) dust at the outer strike point (OSP) in a few ELMy H-mode discharges using DiMES. The maxima in the dust ejection rate correspond to ELM crashes under both attached and detached OSP conditions, as confirmed by a fast camera monitoring DiMES. SEM mapping of dust before and after exposures shows that >95 % of C and <5 % of metal dust gets remobilized in a few shots. In discharges with detached OSP, remaining Al particles melt and fuse together, forming larger spherical grains. At elevated heat flux with attached OSP, they melt, destruct and fuse with W substrate, which is not thermally affected. In this mode W grains partly melt and adjacent particles can weld together, forming larger asymmetric agglomerates with increased adhesion to the surface. We show that these results are consistent with recent observations from Pilot-PSI. Work supported by the US DOE under DE-FC02-04ER54698, DE-FG02-07ER54917 and DE-AC52-07NA27344.

  9. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    NASA Astrophysics Data System (ADS)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  10. Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Fanciullo, L.; Guillet, V.; Aniano, G.; Jones, A. P.; Ysard, N.; Miville-Deschênes, M.-A.; Boulanger, F.; Köhler, M.

    2015-08-01

    Aims: We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. Methods: We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS, and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. Results: We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor ~2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Conclusions: Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the V band extinction cross-section presents variations of the order of ~20% (40-50% in extreme cases), while ISRF intensity varies by ~30% (~60% in extreme cases). This must be accounted for in future modelling. Appendices are available in electronic form at http://www.aanda.org

  11. Dust in Extragalactic Reflection Nebulae

    NASA Astrophysics Data System (ADS)

    Lee, Chris H.; Hodges-Kluck, Edmund J.

    2017-08-01

    Observational evidence for extragalactic dust has been recently found in the form of UV extragalactic reflection nebulae around edge-on spiral galaxies, but the nature of the dust is largely unknown. To derive dust parameters, UV fluxes from the spacecrafts GALEX and Swift have been compared with model UV halo SEDs, which have been created from galaxy template spectra and a silicate-graphite dust model. The model contains two free parameters, which are fractional composition and maximum grain size. These analyses have been done for a sample of 8 nearby edge-on spiral galaxies with bright UV halos, where the dust properties can be spatially resolved, such as inside and outside of galactic winds or as a function of height from the galactic disc. The dust properties give insight into how dust is expelled from the galactic disc, which can also be applied to understanding gaseous outflows from the galaxies as well.

  12. Accurate Modeling of X-ray Extinction by Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Hoffman, John; Draine, B. T.

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  13. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, John; Draine, B. T., E-mail: jah5@astro.princeton.edu, E-mail: draine@astro.princeton.edu

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must bemore » taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.« less

  14. A Massive Shell of Supernova-Formed Dust in SNR G54.1+0.3

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Arendt, Richard G.; Borkowski, Kazimiera J.; Reynolds, Stephen P.; Slane, Patrick; Gelfand, Joseph D.; Raymond, John C.

    2017-01-01

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapsesupernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed inSN1987A. We present an analysis of observations from the Spitzer Space Telescope, Herschel SpaceObservatory, Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding thepulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 m to amagnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, whichexhibits the same spectral signature. If this species is responsible for producing the observed spectral feature andaccounts for a significant fraction of the observed infrared continuum, we find that it would be the dominantconstituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such ascarbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3Me. Wediscuss how these results may be affected by varying dust grain properties and self-consistent grain heating models.The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SNformeddust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a clusterin which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 1627Me andimply a high dust condensation efficiency, similar to that found for Cas A and SN1987A. The study providesanother example of significant dust formation in a Type IIP SN explosion and sheds light on the properties ofpristine SN-condensed dust.

  15. Dust Observations by Faraday Cups Onboard Spektr-R

    NASA Astrophysics Data System (ADS)

    Pavlu, J.; Kociscak, S.; Safrankova, J.; Nemecek, Z.; Prech, L.

    2017-12-01

    Dust of both interstellar and interplanetary origins was reported in many in-situ experiments devoted to dust detection during past tens of years. Recently, a number of reports employed unintended devices to observe dust (Voyager, Cassini, STEREO …). Most of such observations is based on impact ionization occurring when hypervelocity grains hit a surface being vaporized together with a portion of the surface material. The thermal ionization generates a plasma plume and the dust detection is based on collection of plasma particles by, e.g., antennas. In this contribution, we apply a similar approach to dust impact detection using the multi Faraday cup instrument (BMSW) onboard the Spektr-R spacecraft. It is orbiting the Earth along the highly elliptical trajectory with perigee of 2 and apogee of 50 Re. The BMSW instrument consists of 6 Faraday cups measuring local environmental properties with a rate as high as 30 Hz, i.e., high enough to detect aforementioned plasma plumes. The advantages of the multiple Faraday cup instrument include an easy recognition of dust impacts among plasma disturbances/solitons — dust grain impact can be detected only by one Faraday cup at a given time. We analyze Faraday cup waveforms applying simple criteria on impact spike shape and find a number of dust impact candidates. Based on this experience, we suggest a modification of future devices with a similar detection system.

  16. The Large-Grained Dust Coma of 174P/Echeclus

    NASA Technical Reports Server (NTRS)

    Bauer, James M.; Choi, Young-Jun; Weissman, Paul R.; Stansberry, John A.; Fernandez, Yanga R.; Roe, Henry G.; Buratti, Bonnie J.; Sung, Hyun-Il

    2008-01-01

    On 2005 December 30, Y.-J. Choi and P. R. Weissman discovered that the formerly dormant Centaur 2000 EC98 was in strong outburst. Previous observations by P. Rousselot et al. spanning a 3-year period indicated a lack of coma down to the 27 mag arcsec 2 level.We present Spitzer Space Telescope MIPS observations of this newly active Centaur--now known as 174P/Echeclus (2000 EC98)--or 60558 Echeclus--taken in 2006 late February. The images show strong signal at both the 24 and 70 micron bands and reveal an extended coma about 2' in diameter. Analyses yield estimates of the coma signal contribution that are in excess of 90% of the total signal in the 24 micron band. Dust production estimates ranging from 1.7-4 x 10(exp 2) kg/s are on the order of 30 times that seen in other Centaurs. Simultaneous visible-wavelength observations were also obtained with Palomar Observatory's 200-inch telescope, the 1.8-m Vatican Advanced Technology Telescope, the Bohyunsan Optical Astronomy Observatory (BOAO) 1.8-m telescope, and Table Mountain Observatory's 0.6-m telescope, revealing a coma morphology nearly identical to the mid-IR observations. The grain size distribution derived from the data yields a log particle mass power-law with slope parameter (alpha) = -0.87 +/- 0.07, and is consistent with steady cometary-activity, such as that observed during the Stardust spacecraft's encounter at 81P/Wild 2, and not with an impact driven event, such as that caused by the Deep Impact experiment.

  17. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    NASA Astrophysics Data System (ADS)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  18. Astronomy in Denver: Spatial distributions of dust properties via far-IR broadband map with HerPlaNS

    NASA Astrophysics Data System (ADS)

    Asano, Kentaro; Ueta, Toshiya; Ladjal, Djazia; Exter, Katrina; Otsuka, Masaaki; HerPlaNS Consortium

    2018-06-01

    We present the results of our analyses on dust properties in all of Galactic planetary nebulae based on 5-band broadband images in the far-IR taken with the Herschel Space Observatory.By fitting surface brightness distributions of dust thermal emission at 70, 160, 250, 350 and 500 microns with a single-temperature modified black body function, we derive spatially resolved maps of the dust emissivity power-law index (beta) and dust temperature (Td), as well as the column density.We find that circumstellar dust grains in PNe occupy a specific region in the beta-Td space, which is distinct from that occupied by dust grains in the Interstellar Matter (ISM) and star forming regions (SFRs). Unlike those in the ISM and SFRs, dust grains in PNe exhibit little variation in beta while a large spread in Td, suggesting rather homogeneous dust properties.This work is part of the Herschel Planetary Nebula Survey Plus (HerPlaNS+) supported by the NASA Astrophysics Data Analysis Program.

  19. Analysis of the Organic Matter in Interplanetary Dust Particles: Clues to the Organic Matter in Comets, Asteroids, and Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2003-01-01

    Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.

  20. Dust-trapping Rossby vortices in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Meheut, H.; Meliani, Z.; Varniere, P.; Benz, W.

    2012-09-01

    Context. One of the most challenging steps in planet formation theory is the one leading to the formation of planetesimals of kilometre size. A promising scenario involves the existence of vortices able to concentrate a large amount of dust and grains in their centres. Up to now this scenario has mostly been studied in 2D razor thin disks. A 3D study including, simultaneously, the formation and resulting dust concentration of the vortices with vertical settling, is still missing. Aims: The Rossby wave instability self-consistently forms 3D vortices, which have the unique quality of presenting a large-scale vertical velocity in their centre. Here we aim to study how this newly discovered effect can alter the dynamic evolution of the dust. Methods: We performed global 3D simulations of the RWI in a radially and vertically stratified disk using the code MPI-AMRVAC. After the growth phase of the instability, the gas and solid phases are modelled by a bi-fluid approach, where the dust is considered as a fluid without pressure. Both the drag force of the gas on the dust and the back reaction of the dust on the gas are included. Multiple grain sizes from 1 mm to 5 cm are used with a constant density distribution. Results: We obtain in a short timescale a high concentration of the largest grains in the vortices. Indeed, in 3 rotations the dust-to-gas density ratio grows from 10-2 to unity leading to a concentration of mass up to that of Mars in one vortex. The presence of the radial drift is also at the origin of a dust pile-up at the radius of the vortices. Lastly, the vertical velocity of the gas in the vortex causes the sedimentation process to be reversed, the mm size dust is lifted and higher concentrations are obtained in the upper layer than in the midplane. Conclusions: The Rossby wave instability is a promising mechanism for planetesimal formation, and the results presented here can be of particular interest in the context of future observations of protoplanetary

  1. Multiple generations of grain aggregation in different environments preceded solar system body formation.

    PubMed

    Ishii, Hope A; Bradley, John P; Bechtel, Hans A; Brownlee, Donald E; Bustillo, Karen C; Ciston, James; Cuzzi, Jeffrey N; Floss, Christine; Joswiak, David J

    2018-06-26

    The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous ( a -) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a- silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous a- silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a- silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds. Copyright © 2018 the Author(s). Published by PNAS.

  2. Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins

    NASA Technical Reports Server (NTRS)

    Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko

    2016-01-01

    Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.

  3. Emission from small dust particles in diffuse and molecular cloud medium

    NASA Technical Reports Server (NTRS)

    Bernard, J. P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances.

  4. Composition, structure, and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.

    1987-01-01

    Different dust components present in the interstellar medium (IM) such as amorphous carbon, polycyclic aromatic hydrocarbons, and those IM components which are organic refractory grains and icy grain mantles are discussed as well as their relative importance. The physical properties of grain surface chemistry are discussed with attention given to the surface structure of materials, the adsorption energy and residence time of species on a grain surface, and the sticking probability. Consideration is also given to the contribution of grains to the gas-phase composition of molecular clouds.

  5. Types, Sizes, Shapes and Distributions of Mars Ice and Dust Aerosols from the MGS TES Emission Phase Function Observations

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2001-12-01

    A full Mars year (1999-2001) of emission phase function (EPF observations from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) provide the most complete study of Mars dust and ice aerosol properties to date. TES visible (solar band average) and infrared spectral (6-30 micron, 10 invcm res) EPF sequences are analyzed self-consistently with detailed multiple scattering radiative transfer (RT) codes to obtain first-time seasonal/latitudinal distributions of aerosol visible optical depths, particle sizes, and single scattering phase functions. As a consequence of the combined angular and wavelength coverage, we are able to define two distinct ice cloud types at 45S-45N latitudes on Mars. Type 1 ice clouds exhibit small particle sizes (1-2 micron radii), as well as a broad, deep minimum in side scattering indicative of aligned ice grains (see Wolff et al., 2001). Type 1 ice aerosols are most prevalent in the southern hemisphere during Mars aphelion, but also appear more widely distributed in season and latitude as topographic and high altitude (above 20 km) ice hazes. Type 2 ice clouds exhibit larger particle sizes (2-4 microns) and a much narrower side-scattering minimum, indicative of poorer grain alignment or a change in particle shape relative to the type 1 ice clouds (see Wolff et al., 2001). Type 2 ice clouds appear most prominently in the northern subtropical aphelion cloud belt, where relatively low altitudes of water vapor saturation (10 km) coincide with strong advective transport (Clancy et al., 1996). Retrieved dust particle radii of 1.5-1.8 micron are consistent with Pathfinder (Tomasko et al., 1999) and recent Viking/Mariner 9 reanalyses (e.g., size distribution B of Clancy et al., 1995). Detailed spectral modeling of the solar passband also implies agreement of EPF-derived dust single scattering albedos (ssa) with the ssa results from Tomasko et al.(table 8 therein). Spatial and seasonal changes in the dust ssa (0.92-0.95, solar band

  6. Observational Evidence for Mixing and Dust Condensation in Core-Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent findings of isotopic anomalies of Ca-44 (the decay product of Ti-44) and the enhanced ratio of Si-28/Si-30 in SiC grains X, TiC subgrains, and graphite dust grains within primitive meteorites provides strong evidence that these presolar grains came from core-collapse supernovae. The chemical composition of the presolar grains requires macroscopic mixing of newly nucleo-synthesized elements from explosive silicon burning at the innermost zone of the ejects to higher velocities where C exists and where C/O > 1 in either the outer edge of the oxygen zone or in the He-C zone. To date, the only core-collapse supernova observed to form dust is the brightest supernova of the past four centuries, SN1987A in the Large Magellanic Cloud. Observations of SN1987A confirm large scale macroscopic mixing occurs in the explosions of massive stars. Rayleigh-Taylor instabilities macroscopically mix most of the ejects into regions which are still chemically homogeneous and which cool with different time scales. Only small clumps in the ejects are microscopically mixed. Observations show that dust condensed in the ejects of SN1987A after approx.500 days in the Fe-rich gas. Neither silicates nor SiC grains were seen in the dust emission spectrum of SN1987A. SN1987A, the Rosetta Stone of core-collapse supernovae, shows that while the mixing required to explain presolar grains occurs, the rapid cooling of the Fe zone and the sustained high temperatures of the O-Si, O-C, and He-C zones favor the formation of iron-rich rather than oxygen- or carbon-rich grains.

  7. A STUDY OF DUST AND GAS AT MARS FROM COMET C/2013 A1 (SIDING SPRING)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Michael S. P.; Farnham, Tony L.; Bodewits, Dennis

    Although the nucleus of comet C/2013 A1 (Siding Spring) will safely pass Mars in 2014 October, the dust in the coma and tail will more closely approach the planet. Using a dynamical model of comet dust, we estimate the impact fluence. Based on our nominal model no impacts are expected at Mars. Relaxing our nominal model's parameters, the fluence is no greater than ∼10{sup –7} grains m{sup –2} for grain radii larger than 10 μm. Mars-orbiting spacecraft are unlikely to be impacted by large dust grains, but Mars may receive as many as ∼10{sup 7} grains, or ∼100 kg of total dust.more » We also estimate the flux of impacting gas molecules commonly observed in comet comae.« less

  8. Chemical Composition of the Semi-Volatile Grains of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Wurz, P.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Korth, A.; Mall, U.; Reme, H.; Rubin, M.; Tzou, C. Y.

    2017-12-01

    Rosetta was in orbit of comet 67P/Churyumov-Gerasimenko from August 2014 to September 2016. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) experiment that has been continuously collecting data on the chemical composition and activity of the coma from 3.5 AU to pericentre at 1.24 AU and out again to 3.5 AU. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA recorded the neutral gas and thermal plasma in the comet's coma. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution, and high time resolution and large mass range. COPS measures total gas densities, bulk velocities, and gas temperatures. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. The release of volatiles from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust grain is completely evaporated after a few seconds, the RTOF instrument is best suited for the investigation of its chemical composition since complete mass spectra are recorded during this time. During the mission 9 dust grains were observed with RTOF during the October 2014 to July 2016 time period. It is estimated that these grains contain about 10-15 g of volatiles. The mass spectra were interpreted with a set of 75 molecules, with the major groups of chemical species being hydrocarbons, oxygenated hydrocarbons, nitrogen-bearing molecules, sulphur-bearing molecules, halogenated molecules and others. About 70% of these grains are depleted in water compared to the comet coma, thus, can be considered as semi-volatile dust grains, and the other about 30% are water grains. The chemical composition varies considerably from grain to grain

  9. Modified jeans instability for dust grains in a plasma.

    PubMed

    Delzanno, G L; Lapenta, G

    2005-05-06

    An investigation of the properties of linear stability is conducted for a system consisting of particles having mass m and charge q, interacting through the gravitational and electrostatic force (Jeans instability). However, in light of recent works showing that dust particles in a plasma can have a Lennard-Jones-like shielding potential, a new set of equations has been derived, where the electrostatic interaction among the dust particles is Lennard-Jones-like instead of Coulomb-like. A new condition for the gravitational instability is derived, showing a broader spectrum of unstable modes with faster growth rates.

  10. Gas-grain energy transfer in solar nebula shock waves: Implications for the origin of chondrules

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Horanyi, M.

    1993-01-01

    Meteoritic chondrules provide evidence for the occurrence of rapid transient heating events in the protoplanetary nebula. Astronomical evidence suggests that gas dynamic shock waves are likely to be excited in protostellar accretion disks by processes such as protosolar mass ejections, nonaxisymmetric structures in an evolving disk, and impact on the nebula surface of infalling 'clumps' of circumstellar gas. Previous detailed calculations of gas-grain energy and momentum transfer have supported the possibility that such shock waves could have melted pre-existing chondrule-sized grains. The main requirement for grains to reach melting temperatures in shock waves with plausibly low Mach numbers is that grains existed in dust-rich zones (optical depth greater than 1) where radiative cooling of a given grain can be nearly balanced by radiation from surrounding grains. Localized dust-rich zones also provide a means of explaining the apparent small spatial scale of heating events. For example, the scale size of at least some optically thick dust-rich zones must have been relatively small (less than 10 kilometers) to be consistent with petrologic evidence for accretion of hot material onto cold chondrules. The implied number density of mm-sized grains for these zones would be greater than 30 m(exp -3). In this paper, we make several improvements of our earlier calculations to include radiation self-consistently in the shock jump conditions, and we include heating of grains due to radiation from the shocked gas. In addition, we estimate the importance of momentum feedback of dust concentrations onto the shocked gas which would tend to reduce the efficiency of gas dynamic heating of grains in the center of the dust cloud.

  11. A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temim, Tea; Dwek, Eli; Arendt, Richard G.

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present an analysis of observations from the Spitzer Space Telescope , Herschel Space Observatory , Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 μ m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, whichmore » exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed infrared continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3 M {sub ⊙}. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16–27 M {sub ⊙} and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN explosion and sheds light on the properties of pristine SN-condensed dust.« less

  12. Dust Evolution in Nova Cassiopeia 1993

    NASA Astrophysics Data System (ADS)

    Eyres, S. P. S.; Evans, A.; Geballe, T. R.; Davies, J. K.; Rawlings, J. M. C.

    1997-07-01

    We present UKIRT spectroscopy of Nova Cassiopeia 1993 (= V705 Cas) in KLNQ bands, taken in 1994 and 1995. Fitting the continuum indicates a dust temperature T ˜ 740 750 K in the latter part of 1994; this is similar to earlier measurements, and consistent with the “isothermal” behaviour observed in novae with optically thick dust shells. The β-index drops from 0.8 to 0.4 over the same period. This suggests grain growth; grain diameter increases from < 0.54 µm around day 256, to > 0.57 µm by day 342. The UIR features differ from those in other Galactic sources, and are similar to those in V842 Cen. This suggests fundamental differences between the UIR carriers, or environments, in novae and other Galactic sources. The silicate feature is consistent with an amorphous structure, in contrast to previous novae. We believe that grains in V705 Cas form two populations: silicates, and hydrocarbons.

  13. AKARI and Spinning Dust: A look at microwave dust emission via the Infrared

    NASA Astrophysics Data System (ADS)

    Bell, Aaron Christopher; Onaka, Takashi; Wu, Ronin; Doi, Yasuo

    2015-08-01

    Rapidly spinning dust particles having a permanent electric dipole moment have been shown to be a likely carrier of the anomalous microwave emission (AME), a continuous excess of microwave flux in the 10 to 90 GHz range. Small grains, possibly polycyclic aromatic hydrocarbons (PAHs), are a leading suspect. Due to the overlap frequency overlap with the CMB, the AME is requiring cosmologists to consider the ISM with more care. ISM astronomers are also needing to consider the contribution of cosmological radiation to large-scale dust investigations. We present data from AKARI/Infrared Camera (IRC) due to the effective PAH band coverage of its 9 um survey to investigate PAH emission within 98 AME candidate regions identified by Planck Collaboration et al. (2014). We supplement AKARI data with the four Infrared Astronomical Satellite (IRAS) all-sky maps and complement with the Planck High Frequency Instrument (HFI) bands at 857 and 545GHz to constrain the full dust SED. We sample analyse the SEDs of all 98 regions. We utilize all 7 AKARI photometric bands, as well as the 4 IRAS bands and 2 HFI. We carry out a modified blackbody fitting, and estimate the optical depth of thermal dust at 250 um, and compare this to AME parameters. We also show plots of each band's average intensity for all 98 regions vs. AME parameters. We find a positive trend between the optical depth and AME. In the band-by-band comparison the AKARI 9 um intensity shows a weaker trend with AME. In general, the MIR correlates less strongly with AME than the FIR. The optical depth vs. AME trend improves slightly when looking only at significant AME regions. Scaling the IR intensities by the ISRF strength G0 does not improve the correlations. We cannot offer strong support of a spinning dust model. The results highlight the need for full dust SED modelling, and for a better understanding of the role that magnetic dipole emission from dust grains could play in producing the AME.

  14. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P., E-mail: jslavin@cfa.harvard.edu

    2015-04-10

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grainmore » destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s{sup −1} for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM.« less

  15. The concept of a facility for cosmic dust research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.; hide

    1996-01-01

    A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.

  16. Beyond Orbital-Motion-Limited theory effects for dust transport in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delzanno, Gian Luca; Tang, Xianzhu

    Dust transport in tokamaks is very important for ITER. Can many kilograms of dust really accumulate in the device? Can the dust survive? The conventional dust transport model is based on Orbital-Motion-Limited theory (OML). But OML can break in the limit where the dust grain becomes positively charged due to electron emission processes because it overestimates the dust collected power. An OML + approximation of the emitted electrons trapped/passing boundary is shown to be in good agreement with PIC simulations.

  17. Grain formation around carbon stars. 1: Stationary outflow models

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun Ming

    1995-01-01

    Asymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in

  18. The Chemical Composition and Gas-to-Dust Mass Ratio of Nearby Interstellar Matter

    NASA Technical Reports Server (NTRS)

    Frisch, Priscilla C.; Slavin, Jonathan D.

    2003-01-01

    We use recent results on interstellar gas toward nearby stars and interstellar by-products within the solar system to select among the equilibrium radiative transfer models of the nearest interstellar material presented in Slavin & Frisch. For the assumption that O/H - 400 parts per million, models 2 and 8 are found to yield good fits to available data on interstellar material inside and outside of the heliosphere, with the exception of the Ne abundance in the pickup ion and anomalous cosmic-ray populations. For these models, the interstellar medium (ISM) at the entry point to the heliosphere has n(H(sup 0)) = 0.202-0.208/cu cm, n(He(sup 0) = 0.0137-0.0152/cu cm, and ionizations X(H) = 0.29-0.30, X(He) = 0.47-0.51. These best models suggest that the chemical composition of the nearby ISM is approx.60%-70% subsolar if S is undepleted. Both H(0) and H(+) need to be included when evaluating abundances of ions found in warm diffuse clouds. Models 2 and 8 yield an H filtration factor of approx.0.46. Gas-to-dust mass ratios for the ISM toward epsilon CMa are R(sub gd) = 178-183 for solar abundances of Holweger or R(sub gd) = 611-657 for an interstellar abundance standard 70% solar. Direct observations of dust grains in the solar system by Ulysses and Galileo yield R(sub gd) appr0x. 115 for models 2 and 8, supporting earlier results (Frisch and coworkers). If the local ISM abundances are subsolar, then gas and dust are decoupled over small spatial scales. The inferred variation in R(sub gd) over parsec length scales is consistent with the fact that the ISM near the Sun is part of a dynamically active cluster of cloudlets flowing away from the Sco-Cen association. Observations toward stars within approx.500 pc show that R(sub gd) correlates with the percentage of the dust mass that is carried by iron, suggesting that an Fe-rich grain core (by mass) remains after grain destruction. Evidently large dust grains (>10(exp -13) g) and small dust grains (<10(exp -13) g) are not

  19. GIADA on-board Rosetta: comet 67P/C-G dust coma characterization

    NASA Astrophysics Data System (ADS)

    Rotundi, Alessandra; Della Corte, Vincenzo; Fulle, Marco; Sordini, Roberto; Ivanovski, Stavro; Accolla, Mario; Ferrari, Marco; Lucarelli, Francesca; Zakharov, Vladimir; Mazzotta Epifani, Elena; López-Moreno, José J.; Rodríguez, Julio; Colangeli, Luigi; Palumbo, Pasquale; Bussoletti, Ezio; Crifo, Jean-Francois; Esposito, Francesca; Green, Simon F.; Grün, Eberhard; Lamy, Philippe L.

    2015-04-01

    21ESA-ESAC, Camino Bajo del Castillo, s/n., Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spagna GIADA consists of three subsystems: 1) the Grain Detection System (GDS) to detect dust grains as they pass through a laser curtain, 2) the Impact Sensor (IS) to measure grain momentum derived from the impact on a plate connected to five piezoelectric sensors, and 3) the MicroBalances System (MBS); five quartz crystal microbalances in roughly orthogonal directions providing the cumulative dust flux of grains smaller than 10 microns. GDS provides data on grain speed and its optical cross section. The IS grain momentum measurement, when combined with the GDS detection time, provides a direct measurement of grain speed and mass. These combined measurements characterize single grain dust dynamics in the coma of 67P/CG. No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such high heliocentric distances are available up to date. We present here the results obtained by GIADA, which began operating in continuous mode on 18 July 2014 when the comet was at a heliocentric distance of 3.7 AU. The first grain detection occurred when the spacecraft was 814 km from the nucleus on 1 August 2014. From August the 1st up to December the 11th, GIADA detected more than 800 grains, for which the 3D spatial distribution was determined. About 700 out of 800 are GDS only detections: "dust clouds", i.e. slow dust grains (≈ 0.5 m/s) crossing the laser curtain very close in time (e.g. 129 grains in 11 s), probably fluffy grains. IS only detections are about 70, i.e. ≈ 1/10 of the GDS only. This ratio is quite different from what we got for the early detections (August - September) when the ration was ≈ 3, suggesting the presence of different types of particle (bigger, brighter, less dense).The combined GDS+IS detections, i.e. measured by both the GDS and IS detectors, are about 70 and allowed us to extract the

  20. Investigating the interstellar dust through the Fe K-edge

    NASA Astrophysics Data System (ADS)

    Rogantini, D.; Costantini, E.; Zeegers, S. T.; de Vries, C. P.; Bras, W.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.

    2018-01-01

    Context. The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm-2). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. Aims: In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. Methods: In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. Results: From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust. The absorption, scattering, and extinction cross sections of the compounds are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A22

  1. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  2. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  3. Heating of Porous Icy Dust Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirono, Sin-iti

    At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H{sub 2}O ice. Because H{sub 2}O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. Themore » mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.« less

  4. Heliotropic dust rings for Earth climate engineering

    NASA Astrophysics Data System (ADS)

    Bewick, R.; Lücking, C.; Colombo, C.; Sanchez, J. P.; McInnes, C. R.

    2013-04-01

    This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth's J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.

  5. Creation of fully vectorized FORTRAN code for integrating the movement of dust grains in interplanetary environments

    NASA Technical Reports Server (NTRS)

    Colquitt, Walter

    1989-01-01

    The main objective is to improve the performance of a specific FORTRAN computer code from the Planetary Sciences Division of NASA/Johnson Space Center when used on a modern vectorizing supercomputer. The code is used to calculate orbits of dust grains that separate from comets and asteroids. This code accounts for influences of the sun and 8 planets (neglecting Pluto), solar wind, and solar light pressure including Poynting-Robertson drag. Calculations allow one to study the motion of these particles as they are influenced by the Earth or one of the other planets. Some of these particles become trapped just beyond the Earth for long periods of time. These integer period resonances vary from 3 orbits of the Earth and 2 orbits of the particles to as high as 14 to 13.

  6. Comet C/2012 S1 (ISON)'s carbon-rich and micron-size-dominated coma dust

    NASA Astrophysics Data System (ADS)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; Lisse, C.; de Pater, I.; Gehrz, R.; Kolokolova, L.

    2014-07-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (r_h ˜ 1.15 au, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a steep (and therefor narrow) grain size distribution (GSD) dominated by ˜ micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 μ m and by a silicate feature strength of ˜1.1 and an 8-13 μ m continuum greybody color temperature of ˜275-280 K (using T_{bb}∝ {r}_h^{-0.5} and T_{bb}˜260-265 K from Subaru+COMICS, 2013-Oct-19 UT) [1,2]. Spectra of comet ISON with IRTF+BASS (2013-Nov-11-12 UT) also show a silicate feature strength of ˜1.1 as well as an 11.2 μ m forsterite peak [3]. Our thermal models [6], which employ 0.1-1000 μ m grains, yield constraints for the dust composition as well as GSD parameters of slope, peak grain size, porosity: ISON's dust has a low silicate-to-amorphous carbon ratio (˜1:9), the GSD has a steep slope (N≃4.5), a peak grain radius of ˜0.7 μ m, and moderately porous grains. Specifically, the 8-13 μ m continuum color temperature implies submicron- to micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the GSD to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A IR proxy for the dust production rate is ɛ f ρ ˜ 1500 cm [4], which is akin to but larger than Afρ in scattered light (2013-Oct-20 UT, Afρ=796 cm(±5 %) in V-band from Swift) [5]. Also, ISON had a moderate-to-low dust-to-gas ratio [6]. Comet ISON's dust composition and GSD properties are distinct from the few well-studied long-period Nearly Isotropic Comets (NICs) that all had 'typical' GSD slopes (3.4≤N≤3.7) and silicate-to-amorphous carbon ratios ≫1 as well as the following properties: C/1995 O1 (Hale-Bopp)[7,8,9,10] and C/2001 Q4

  7. Dust around the Cool Component of D-Type Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2018-04-01

    D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.

  8. Lunar Dust and Dusty Plasma Physics

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.

  9. The Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Benisty, M.; Pinilla, P.; Ginski, C.; de Boer, J.; Avenhaus, H.; Henning, Th.; Zurlo, A.; Boccaletti, A.; Augereau, J.-C.; Birnstiel, T.; Dominik, C.; Facchini, S.; Fedele, D.; Janson, M.; Keppler, M.; Kral, Q.; Langlois, M.; Ligi, R.; Maire, A.-L.; Ménard, F.; Meyer, M.; Pinte, C.; Quanz, S. P.; Sauvage, J.-F.; Sezestre, É.; Stolker, T.; Szulágyi, J.; van Boekel, R.; van der Plas, G.; Villenave, M.; Baruffolo, A.; Baudoz, P.; Le Mignant, D.; Maurel, D.; Ramos, J.; Weber, L.

    2017-11-01

    HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (˜1.2 μm) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0.″16 (˜19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0.″18 (˜21 au) and 0.″56 (˜66 au) and marginally detect a faint third gap at 0.″70-0.″73 (˜82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO program 095.C-0273.

  10. Light Scattering by Lunar Exospheric Dust: What could be Learned from LRO LAMP and LADEE UVS?

    NASA Astrophysics Data System (ADS)

    Glenar, D. A.; Stubbs, T. J.; Richard, D. T.; Stern, S. A.; Retherford, K. D.; Gladstone, R.; Feldman, P. D.; Colaprete, A.; Delory, G. T.

    2011-12-01

    Two complementary spectrometers, namely the Lunar Reconnaissance Orbiter, Lyman Alpha Mapping Project (LAMP) and the planned Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet Explorer (UVS) will carry out sensitive searches for high altitude exospheric dust, via detection of scattered sunlight. The combined spectral coverage of these instruments extends from far-UV to near-IR wavelengths. Over this wavelength range, grain size parameter (X=2πr/λ, with r the grain radius and λ the wavelength) changes dramatically, which makes broad wavelength coverage a good diagnostic of grain size. Utilizing different pointing geometries, both LAMP and UVS are able to observe dust over a range of scattering angles, as well as measure the dust vertical profile via limb measurements at multiple tangent heights. We summarize several categories of information that can be inferred from the data sets, using broadband simulations of horizon glow as observed at the limb. Grain scattering properties used in these simulations were computed for multiple grain shapes using Discrete-Dipole theory. Some cautionary remarks are included regarding the use of Mie theory to interpret scattering measurements.

  11. Chemical desorption and diffusive dust chemistry

    NASA Astrophysics Data System (ADS)

    Dulieu, Francois; Pirronello, Valerio; Minissale, Marco; Congiu, Emanuele; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Accolla, Mario; Cazaux, Stephanie; Manicò, Giulio

    In molecular clouds, gaseous species can accrete efficiently on the cold surfaces of dust grains. As for radical-radical reactions, the surface of the grains acts as a third body, and changes dramatically the efficiency of the reactions (i.e., H2 formation), or lowers considerably the barrier to formation (i.e., H2O synthesis) in comparison with gas phase reaction processes. These properties make dust grains efficient catalytic templates. However, the chemical role of dust grains depends on the diffusive properties of the reactive partners. Over the last years, we have developed experimental tools and methods to explore the chemistry occurring on cold (6-50K) surfaces. We have obtained some hints about the diffusivity of H on amorphous ice, and studied in detail the diffusion of O atoms. The latter species appears to have a hopping rate in the range 0.01-100 hops/sec. The diffusion rate of O atoms is dependent on the surface morphology and on the surface temperature. The diffusion law is compatible with a diffusion dominated by quantum tunnelling rather than classical thermal hopping. Using H, O, N atoms and, indirectly, OH and HCO radicals, we have begun to explore many chemical reactive networks. In this presentation, I will focus on the formation of H2O and CO2, and will propose many possible formation routes to obtain these chemical traps. The molecules formed on surfaces have a certain probability of desorbing upon their formation. This non-thermal desorption mechanism, or chemical desorption, has been proposed to explain why some molecules can be detected in the gas phase of those region where they were believed to be part of the icy mantles covering dust grains. We have shown that this process can be very efficient, but is very sensitive to the substrate and the surroundings of the reaction site, is dependent on the kind of molecule formed and its chemical pathway. In my presentation I will present how the surface coverage and the type of reaction can play a

  12. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-09-01

    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  13. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-01-01

    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  14. Effect of anisotropic dust pressure and superthermal electrons on propagation and stability of dust acoustic solitary waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashir, M. F., E-mail: frazbashir@yahoo.com; Behery, E. E., E-mail: eebehery@gmail.com; Department of Physics, Faculty of Science, Damietta University, P.O. 34517, New Damietta

    2015-06-15

    Employing the reductive perturbation technique, Zakharov–Kuznetzov (ZK) equation is derived for dust acoustic (DA) solitary waves in a magnetized plasma which consists the effects of dust anisotropic pressure, arbitrary charged dust particles, Boltzmann distributed ions, and Kappa distributed superthermal electrons. The ZK solitary wave solution is obtained. Using the small-k expansion method, the stability analysis for DA solitary waves is also discussed. The effects of the dust pressure anisotropy and the electron superthermality on the basic characteristics of DA waves as well as on the three-dimensional instability criterion are highlighted. It is found that the DA solitary wave is rarefactivemore » (compressive) for negative (positive) dust. In addition, the growth rate of instability increases rapidly as the superthermal spectral index of electrons increases with either positive or negative dust grains. A brief discussion for possible applications is included.« less

  15. Understanding the dust properties in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Decleir, Marjorie; Baes, Maarten; De Looze, Ilse; Camps, Peter

    2018-04-01

    Dust is a crucial component in the interstellar medium of galaxies. It regulates several physical and chemical processes. Dust grains are also efficient at absorbing and scattering ultraviolet/optical photons and then re-radiating the absorbed energy in the infrared/submm wavelength range. The spatial distribution and properties of dust in galaxies can hence be investigated in two complementary ways: by its attenuation effects at short wavelengths, and by its thermal emission at long wavelengths. Both approaches have their advantages and challenges. In this contribution, we discuss a number of recent interesting results on interstellar dust in nearby galaxies, obtained by our research group at Ghent University.

  16. Dust ring formation due to sublimation of dust grains drifting radially inward by the Poynting-Robertson drag: An analytical model

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Watanabe, Sei-ichiro; Kimura, Hiroshi; Yamamoto, Tetsuo

    2009-05-01

    Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.

  17. The Role of Grain Surface Reactions in the Chemistry of Star Forming Regions

    NASA Technical Reports Server (NTRS)

    Kress, M. E.; Tielens, A. G. G. M.; Roberge, W. G.

    1998-01-01

    The importance of reactions at the surfaces of dust grains has long been recognized to be one of the two main chemical processes that form molecules in cold, dark interstellar clouds where simple, saturated (fully-hydrogenated) molecules such as H2 water, methanol, H2CO, H2S, ammonia and CH4 are present in quantities far too high to be consistent with their extremely low gas phase formation rates. In cold dark regions of interstellar space, dust grains provide a substrate onto which gas-phase species can accrete and react. Grains provide a "third body" or a sink for the energy released in the exothermic reactions that form chemical bonds. In essence, the surfaces of dust grains open up alternative reaction pathways to form observed molecules whose abundances cannot be explained with gas-phase chemistry alone. This concept is taken one step further in this work: instead of merely acting as a substrate onto which radicals and molecules may physically adsorb, some grains may actively participate in the reaction itself, forming chemical bonds with the accreting species. Until recently, surface chemical reactions had not been thought to be important in warm circumstellar media because adspecies rapidly desorb from grains at very low temperatures; thus, the residence times of molecules and radicals on the surface of grains at all but the lowest temperatures are far too short to allow these reactions to occur. However, if the adspecies could adsorb more strongly, via a true chemical bond with surfaces of some dust grains, then grain surface reactions will play an important role in warm circumstellar regions as well. In this work, the surface-catalyzed reaction CO + 3 H2 yields CH4 + H2O is studied in the context that it may be very effective at converting the inorganic molecule CO into the simplest organic compound, methane. H2 and CO are the most abundant molecules in space, and the reaction converting them to methane, while kinetically inhibited in the gas phase under

  18. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons

    NASA Astrophysics Data System (ADS)

    Ahmadi, Abrishami S.; Nouri, Kadijani M.

    2014-06-01

    In this work, the effects of superthermal and trapped electrons on the oblique propagation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.

  19. Modelling of the sublimation of icy grains in the coma of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Shi, X.; Sierks, H.; Rose, M.; Güttler, C.; Tubiana, C.

    2015-10-01

    The ESA (European Space Agency) Rosetta spacecraft was launched on 2 March 2004, to reach comet 67P/Churyumov-Gerasimenko in August 2014. Since March 2014, images of the nucleus and the coma (gas and dust) of the comet have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera system [1] using both, the wide angle camera (WAC) and the narrow angle camera (NAC). The orbiter will be maintained in the vicinity of the comet until perihelion (Rh=1.3 AU) or even until Rh=1.8 AU post-perihelion (December 2015). Nineteen months of uninterrupted, close-up observations of the gas and dust coma will be obtained and will help to characterize the evolution of comet gas and dust activity during its approach to the Sun. Indeed, for the first time, we will follow the development of a comet's coma from a close distance. Also the study of the dust-gas interaction in the coma will highlight the sublimation of icy grains. Even if the sublimation of icy grains is known, it is not yet integrated in a complete dust-gas model. We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The code called PI-DSMC (www.pidsmc. com) can simulate millions of molecules for multiple species.When the gas flow is simulated, we inject the dust particle with a zero velocity and we take into account the 3 forces acting on the grains in a cometary environment (drag force, gravity and radiative pressure). We used the DLL (Dynamic Link Library) model to integrate the sublimation of icy grains in the gas flowand allow studying the effect of the additional gas on the dust particle trajectories. For a quantitative analysis of the sublimation of icy, outflowing grains we will consider an ensemble of grains of various radii with different compositions [2] The evolution of the grains, once they are ejected into the coma, depends on their initial size, their composition and the heliocentric distance (because the temperature of

  20. Charging and heat collection by a positively charged dust grain in a plasma.

    PubMed

    Delzanno, Gian Luca; Tang, Xian-Zhu

    2014-07-18

    Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional orbital-motion-limited (OML) theory can break down due to potential-well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML(+) approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature.