Xu, Yihui; Kuhlmann, Jan; Brennich, Martha; Komorowski, Karlo; Jahn, Reinhard; Steinem, Claudia; Salditt, Tim
2018-02-01
SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument
Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu; ...
2018-02-06
Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less
Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu
Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less
Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng
2016-03-03
The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.
Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Puzio, Michal; Luchowski, Rafal; Grudzinski, Wojciech; Mazur, Radoslaw; Garstka, Maciej; Maksymiec, Waldemar; Kulik, Andrzej; Dietler, Giovanni; Gruszecki, Wieslaw I
2013-06-01
In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation.
Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Puzio, Michal; Luchowski, Rafal; Grudzinski, Wojciech; Mazur, Radoslaw; Garstka, Maciej; Maksymiec, Waldemar; Kulik, Andrzej; Dietler, Giovanni; Gruszecki, Wieslaw I.
2013-01-01
In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation. PMID:23898030
Gruenbaum, Scott M; Pieniazek, Piotr A; Skinner, J L
2011-10-28
In a previous report, we calculated the infrared absorption spectrum and both the isotropic and anisotropic pump-probe signals for the OD stretch of isotopically dilute water in dilauroylphosphatidylcholine (DLPC) multi-bilayers as a function of the lipid hydration level. These results were then compared to recent experimental measurements and are in generally good agreement. In this paper, we will further investigate the structure and dynamics of hydration water using molecular dynamics simulations and calculations of the two-dimensional infrared and vibrational echo peak shift observables for hydration water in DLPC membranes. These observables have not yet been measured experimentally, but future comparisons may provide insight into spectral diffusion processes and hydration water heterogeneity. We find that at low hydration levels the motion of water molecules inside the lipid membrane is significantly arrested, resulting in very slow spectral diffusion. At higher hydration levels, spectral diffusion is more rapid, but still slower than in bulk water. We also investigate the effects of several common approximations on the calculation of spectroscopic observables by computing these observables within multiple levels of theory. The impact of these approximations on the resulting spectra affects our interpretation of these measurements and reveals that, for example, the cumulant approximation, which may be valid for certain systems, is not a good approximation for a highly heterogeneous environment such as hydration water in lipid multi-bilayers.
Gruenbaum, S M; Skinner, J L
2011-08-21
The vibrational spectroscopy of hydration water in dilauroylphosphatidylcholine lipid multi-bilayers is investigated using molecular dynamics simulations and a mixed quantum/classical model for the OD stretch spectroscopy of dilute HDO in H(2)O. FTIR absorption spectra, and isotropic and anisotropic pump-probe decay curves have been measured experimentally as a function of the hydration level of the lipid multi-bilayer, and our goal is to make connection with these experiments. To this end, we use third-order response functions, which allow us to include non-Gaussian frequency fluctuations, non-Condon effects, molecular rotations, and a fluctuating vibrational lifetime, all of which we believe are important for this system. We calculate the response functions using existing transition frequency and dipole maps. From the experiments it appears that there are two distinct vibrational lifetimes corresponding to HDO molecules in different molecular environments. In order to obtain these lifetimes, we consider a simple two-population model for hydration water hydrogen bonds. Assuming a different lifetime for each population, we then calculate the isotropic pump-probe decay, fitting to experiment to obtain the two lifetimes for each hydration level. With these lifetimes in hand, we then calculate FTIR spectra and pump-probe anisotropy decay as a function of hydration. This approach, therefore, permits a consistent calculation of all observables within a unified computational scheme. Our theoretical results are all in qualitative agreement with experiment. The vibrational lifetime of lipid-associated OD groups is found to be systematically shorter than that of the water-associated population, and the lifetimes of each population increase with decreasing hydration, in agreement with previous analysis. Our theoretical FTIR absorption spectra successfully reproduce the experimentally observed red-shift with decreasing lipid hydration, and we confirm a previous interpretation that this shift results from the hydrogen bonding of water to the lipid phosphate group. From the pump-probe anisotropy decay, we confirm that the reorientational motions of water molecules slow significantly as hydration decreases, with water bound in the lipid carbonyl region undergoing the slowest rotations. © 2011 American Institute of Physics
Gruenbaum, S. M.; Skinner, J. L.
2011-01-01
The vibrational spectroscopy of hydration water in dilauroylphosphatidylcholine lipid multi-bilayers is investigated using molecular dynamics simulations and a mixed quantum∕classical model for the OD stretch spectroscopy of dilute HDO in H2O. FTIR absorption spectra, and isotropic and anisotropic pump-probe decay curves have been measured experimentally as a function of the hydration level of the lipid multi-bilayer, and our goal is to make connection with these experiments. To this end, we use third-order response functions, which allow us to include non-Gaussian frequency fluctuations, non-Condon effects, molecular rotations, and a fluctuating vibrational lifetime, all of which we believe are important for this system. We calculate the response functions using existing transition frequency and dipole maps. From the experiments it appears that there are two distinct vibrational lifetimes corresponding to HDO molecules in different molecular environments. In order to obtain these lifetimes, we consider a simple two-population model for hydration water hydrogen bonds. Assuming a different lifetime for each population, we then calculate the isotropic pump-probe decay, fitting to experiment to obtain the two lifetimes for each hydration level. With these lifetimes in hand, we then calculate FTIR spectra and pump-probe anisotropy decay as a function of hydration. This approach, therefore, permits a consistent calculation of all observables within a unified computational scheme. Our theoretical results are all in qualitative agreement with experiment. The vibrational lifetime of lipid-associated OD groups is found to be systematically shorter than that of the water-associated population, and the lifetimes of each population increase with decreasing hydration, in agreement with previous analysis. Our theoretical FTIR absorption spectra successfully reproduce the experimentally observed red-shift with decreasing lipid hydration, and we confirm a previous interpretation that this shift results from the hydrogen bonding of water to the lipid phosphate group. From the pump-probe anisotropy decay, we confirm that the reorientational motions of water molecules slow significantly as hydration decreases, with water bound in the lipid carbonyl region undergoing the slowest rotations. PMID:21861584
Mason, R P; Chester, D W
1989-01-01
A "membrane bilayer pathway" model, involving ligand partition into the bilayer, lateral diffusion, and receptor binding has been invoked to describe the 1,4-dihydropyridine (DHP) calcium channel antagonist receptor binding mechanism. In an earlier study (Chester et al. 1987. Biophys. J. 52:1021-1030), the diffusional component of this model was examined using an active fluorescence labeled DHP calcium channel antagonist, nisoldipine-lissamine rhodamine B (Ns-R), in purified cardiac sarcolemmal (CSL) lipid multibilayers. Diffusion coefficient measurements on membrane-bound drug and phospholipid at maximum bilayer hydration yielded similar values (3.8 x 10(-8) cm2/s). However, decreases in bilayer hydration resulted in dramatically reduced diffusion coefficient values for both probes with substantially greater impact on Ns-R diffusion. These data suggested that hydration dependent diffusional differences could be a function of relative probe location along the bilayer normal. In this communication, we have addressed the relative effect of the rhodamine substituent on Ns-R diffusion complex by examining the diffusional dynamics of free rhodamine B under the same conditions used to evaluate Ns-R complex and phospholipid diffusion. X-ray diffraction studies were performed to determine the Ns-R location in the membrane and model the CSL lipid bilayer profile structure to give a rationale for the differences in probe diffusional dynamics as a function of interbilayer water space. PMID:2611332
Diffusion of dihydropyridine calcium channel antagonists in cardiac sarcolemmal lipid multibilayers.
Chester, D W; Herbette, L G; Mason, R P; Joslyn, A F; Triggle, D J; Koppel, D E
1987-01-01
A membrane bilayer pathway model has been proposed for the interaction of dihydropyridine (DHP) calcium channel antagonists with receptors in cardiac sarcolemma (Rhodes, D.G., J.G. Sarmiento, and L.G. Herbette. 1985. Mol. Pharmacol. 27:612-623) involving drug partition into the bilayer with subsequent receptor binding mediated (though probably not rate-limited) by diffusion within the bilayer. Recently, we have characterized the partition step, demonstrating that DHPs reside, on a time-average basis, near the bilayer hydrocarbon core/water interface. Drug distribution about this interface may define a plane of local concentration for lateral diffusion within the membrane. The studies presented herein examine the diffusional dynamics of an active rhodamine-labeled DHP and a fluorescent phospholipid analogue (DiIC16) in pure cardiac sarcolemmal lipid multibilayer preparations as a function of bilayer hydration. At maximal bilayer hydration, the drug diffuses over macroscopic distances within the bilayer at a rate identical to that of DiI (D = 3.8 X 10(-8) cm2/s), demonstrating the overall feasibility of the membrane diffusion model. The diffusion coefficients for both drug and lipid decreased substantially as the bilayers were dehydrated. While identical at maximal hydration, drug diffusion was significantly slower than that of DiIC16 in partially dehydrated bilayers, probably reflecting differences in mass distribution of these probes in the bilayer. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:2447967
Direct measurement of lateral transport in membranes by using time-resolved spatial photometry.
Kapitza, H G; McGregor, G; Jacobson, K A
1985-01-01
Spatially resolving light detectors allow, with proper calibration, quantitative analysis of the variations in two-dimensional intensity distributions over time. An ultrasensitive microfluorometer was assembled by using as a detector a microchannel plate-intensified video camera. The camera was interfaced with a software-based digital video analysis system to digitize, average, and process images and to directly control the timing of the experiments to minimize exposure of the specimen to light. The detector system has been characterized to allow its use as a photometer. A major application has been to perform fluorescence recovery after photobleaching measurements by using the camera in place of a photomultiplier tube (video-FRAP) with the goal of detecting possible anisotropic diffusion or convective flow. Analysis of the data on macromolecular diffusion in homogenous aqueous glycol solutions yielded diffusion constants in agreement with previous measurements. Results on lipid probe diffusion in dimyristoylphosphatidylcholine multibilayers indicated that at temperatures above the gel-to-liquid crystalline phase transition diffusion is isotropic, and analysis of video-FRAP data yielded diffusion coefficients consistent with those measured previously by using spot photobleaching. However, lipid probes in these multibilayers held just below the main phase transition temperature exhibited markedly anisotropic diffusive fluxes when the bleaching beam was positioned proximate to domain boundaries in the P beta' phase. Lipid probes and lectin receptor complexes diffused isotropically in fibroblast surface membranes with little evidence for diffusion channeled parallel to stress fibers. A second application was to trace the time evolution of cell surface reactions such as patching. The feasibility of following, on the optical scale, the growth of individual receptor clusters induced by the ligand wheat germ agglutinin was demonstrated. PMID:3858869
Direct measurement of lateral transport in membranes by using time-resolved spatial photometry.
Kapitza, H G; McGregor, G; Jacobson, K A
1985-06-01
Spatially resolving light detectors allow, with proper calibration, quantitative analysis of the variations in two-dimensional intensity distributions over time. An ultrasensitive microfluorometer was assembled by using as a detector a microchannel plate-intensified video camera. The camera was interfaced with a software-based digital video analysis system to digitize, average, and process images and to directly control the timing of the experiments to minimize exposure of the specimen to light. The detector system has been characterized to allow its use as a photometer. A major application has been to perform fluorescence recovery after photobleaching measurements by using the camera in place of a photomultiplier tube (video-FRAP) with the goal of detecting possible anisotropic diffusion or convective flow. Analysis of the data on macromolecular diffusion in homogenous aqueous glycol solutions yielded diffusion constants in agreement with previous measurements. Results on lipid probe diffusion in dimyristoylphosphatidylcholine multibilayers indicated that at temperatures above the gel-to-liquid crystalline phase transition diffusion is isotropic, and analysis of video-FRAP data yielded diffusion coefficients consistent with those measured previously by using spot photobleaching. However, lipid probes in these multibilayers held just below the main phase transition temperature exhibited markedly anisotropic diffusive fluxes when the bleaching beam was positioned proximate to domain boundaries in the P beta' phase. Lipid probes and lectin receptor complexes diffused isotropically in fibroblast surface membranes with little evidence for diffusion channeled parallel to stress fibers. A second application was to trace the time evolution of cell surface reactions such as patching. The feasibility of following, on the optical scale, the growth of individual receptor clusters induced by the ligand wheat germ agglutinin was demonstrated.
Vibrational spectroscopy of water at interfaces
Skinner, J. L.; Pieniazek, P. A.; Gruenbaum, S. M.
2011-01-01
Conspectus Recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, have made it possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider three aqueous interfaces: the water liquid/vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface, while in the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy such as FTIR, pump-probe, 2DIR, etc. can be used to probe the interfacial water. In this review, we discuss our attempts to model these three systems and interpret the existing experiments. In particular, for the water liquid/vapor interface we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and cancelling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H2O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red shift of the water OD stretch arises from stronger hydrogen bonding to phosphate oxygens. We develop a model for heterogeneous vibrational lifetime distributions, and implement the model to calculate isotropic and anisotropic pump-probe decays, and compare with experiment. PMID:22032305
Dynamics of crowding-induced mixing in phase separated lipid bilayers
Zeno, Wade F.; Johnson, Kaitlin E.; Sasaki, Darryl Y.; ...
2016-10-10
We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L o)–liquid disordered (L d) phase separated lipid bilayers when the following particles of increasing size bind to either the L o or L d phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu 2+ chelating mechanism, of lipids that specifically partition into either the Lo phase or Ld phase. The degree of steric pressure was controlled by varying themore » size of the bound particle (10–240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed L o phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Furthermore, our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeno, Wade F.; Johnson, Kaitlin E.; Sasaki, Darryl Y.
We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L o)–liquid disordered (L d) phase separated lipid bilayers when the following particles of increasing size bind to either the L o or L d phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu 2+ chelating mechanism, of lipids that specifically partition into either the Lo phase or Ld phase. The degree of steric pressure was controlled by varying themore » size of the bound particle (10–240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed L o phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Furthermore, our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.« less
Hybrid films with phase-separated domains: A new class of functional materials
NASA Astrophysics Data System (ADS)
Kang, Minjee; Leal, Cecilia
The cell membrane is highly compartmentalized over micro-and nano scale. The compartmentalized domains play an important role in regulating the diffusion and distribution of species within and across the membrane. In this work, we introduced nanoscale heterogeneities into lipid films for the purpose of developing nature-mimicking phase-separated materials. The mixtures of phospholipids and amphiphilic block copolymers self-assemble into supported 1D multi-bilayers. We observed that in each lamella, mixtures of lipid and polymer phase-separate into domains that differ in their composition akin to sub-phases in cholesterol-containing lipid bilayers. Interestingly, we found evidence that like-domains are in registry across multilayers, making phase separation three-dimensional. To exploit such distinctive domain structure for surface-mediated drug delivery, we incorporated pharmaceutical molecules into the films. The drug release study revealed that the presence of domains in hybrid films modifies the diffusion pathways of drugs that become confined within phase-separated domains. A comprehensive domain structure coupled with drug diffusion pathways in films will be presented, offering new perspectives in designing a thin-film matrix system for controlled drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1554435.
Revealing the membrane-bound structure of neurokinin A using neutron diffraction
NASA Astrophysics Data System (ADS)
Darkes, Malcolm J. M.; Hauss, Thomas; Dante, Silvia; Bradshaw, Jeremy P.
2000-03-01
Neurokinin A (or substance K) belongs to the tachykinin family, a group of small amphipathic peptides that bind to specific membrane-embedded, G-protein coupled receptors. The agonist/receptor complex is quaternary in nature because the receptor binding sites are thought to be located within the lipid bilayer and because the role of water cannot be ignored. The cell membrane acts as a solvent to accumulate peptide and an inducer of peptide secondary structure. The three-dimensional shape that the peptide assumes when associated to the cell membrane will be an important parameter with regards to the receptor selectivity and affinity. Neutron diffraction measurements were carried out in order to define the location of the N-terminus of the peptide in synthetic phospholipid multi-bilayer stacks.
Zeno, Wade F; Rystov, Alice; Sasaki, Darryl Y; Risbud, Subhash H; Longo, Marjorie L
2016-05-10
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.
Zeno, Wade F.; Rystov, Alice; Sasaki, Darryl Y.; ...
2016-04-20
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu 2+, chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domainsmore » of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10 –22 to 1.5 × 10 –20 J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. Furthermore, the mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeno, Wade F.; Rystov, Alice; Sasaki, Darryl Y.
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu 2+, chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domainsmore » of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10 –22 to 1.5 × 10 –20 J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. Furthermore, the mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.« less
Can membrane-bound carotenoid pigment zeaxanthin carry out a transmembrane proton transfer?
Kupisz, Kamila; Sujak, Agnieszka; Patyra, Magdalena; Trebacz, Kazimierz; Gruszecki, Wiesław I
2008-10-01
Polar carotenoid pigment zeaxanthin (beta,beta-carotene-3,3'-diol) incorporated into planar lipid membranes formed with diphytanoyl phosphatidylcholine increases the specific electric resistance of the membrane from ca. 4 to 13 x 10(7) Omega cm2 (at 5 mol% zeaxanthin with respect to lipid). Such an observation is consistent with the well known effect of polar carotenoids in decreasing fluidity and structural stabilization of lipid bilayers. Zeaxanthin incorporated into the lipid membrane at 1 mol% has very small effect on the overall membrane resistance but facilitates equilibration of the transmembrane proton gradient, as demonstrated with the application of the H+-sensitive antimony electrodes. Relatively low changes in the electrical potential suggest that the equilibration process may be associated with a symport/antiport activity or with a transmembrane transfer of the molecules of acid. UV-Vis linear dichroism analysis of multibilayer formed with the same lipid-carotenoid system shows that the transition dipole moment of the pigment molecules forms a mean angle of 21 degrees with respect to the axis normal to the plane of the membrane. This means that zeaxanthin spans the membrane and tends to have its two hydroxyl groups anchored in the opposite polar zones of the membrane. Detailed FTIR analysis of beta-carotene and zeaxanthin indicates that the polyene chain of carotenoids is able to form weak hydrogen bonds with water molecules. Possible molecular mechanisms responsible for proton transport by polyenes are discussed, including direct involvement of the polyene chain in proton transfer and indirect effect of the pigment on physical properties of the membrane.
On possible microscopic origins of the swelling of neutral lipid bilayers induced by simple salts.
Manciu, Marian; Ruckenstein, Eli
2007-05-01
It was recently suggested that the swelling of neutral multilipid bilayers upon addition of a salt can be simply explained only by the electrolyte screening of the van der Waals attractions, while assuming that the hydration force and the repulsion due to thermal undulations of membranes are unaffected by the salt. While we agree that the screening of the van der Waals interactions plays a role, we suggest that the increase in the hydration force upon addition of a salt has also to be taken into account. In a statistical model, which accounts for the membrane undulations, parameters could be found to explain the multibilayer swelling even when the van der Waals attraction is considered unaffected by the electrolyte screening. These results point out that the decrease by a factor of three of the Hamaker constant upon addition of a salt, suggested recently to be responsible for the swelling of neutral multilipid bilayers, is perhaps too large, and a smaller decrease in Hamaker constant, coupled with the above mentioned effects might explain the swelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambrano, Pablo; Suwalsky, Mario; Villena, Fernando
Memantine is a NMDA antagonist receptor clinically used for treating Alzheimer's disease. NMDA receptors are present in the human neurons and erythrocyte membranes. The aim of the present study was to investigate the effects of memantine on human erythrocytes. With this purpose, the drug was developed to in vitro interact with human red cells and bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). The latter represent lipids respectively present in both outer and inner monolayers of the red cell membrane. Results obtained by scanning electron microscopy (SEM) showed that memantine changed the normal biconcave shape of red cells to cup-shaped stomatocytes.more » According to the bilayer-couple hypothesis the drug intercalated into the inner monolayer of the erythrocyte membrane. Experimental results obtained by X-ray diffraction on multibilayers of DMPC and DMPE, and by differential scanning calorimetry on multilamellar vesicles indicated that memantine preferentially interacted with DMPC in a concentration-dependent manner. Thus, it can be concluded that in the low therapeutic plasma concentration of circa 1 μM memantine is located in NMDA receptor channel without affecting the erythrocyte shape. However, at higher concentrations, once the receptors became saturated excess of memantine molecules (20 μM) would interact with phosphoinositide lipids present in the inner monolayer of the erythrocyte membrane inducing the formation of stomatocytes. However, 40–50 μM memantine was required to interact with isolated phosphatidylcholine bilayers. - Highlights: • The interaction of memantine with human erythrocytes and lipid bilayers were assessed. • Memantine induced morphological changes to human erythrocytes. • Memantine interacted with classes of phospholipids present in the erythrocyte membrane. • Results support the hypothesis that memantine interacts with NMDA receptors.« less
Zambrano, Pablo; Suwalsky, Mario; Villena, Fernando; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz
2017-01-29
Memantine is a NMDA antagonist receptor clinically used for treating Alzheimer's disease. NMDA receptors are present in the human neurons and erythrocyte membranes. The aim of the present study was to investigate the effects of memantine on human erythrocytes. With this purpose, the drug was developed to in vitro interact with human red cells and bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). The latter represent lipids respectively present in both outer and inner monolayers of the red cell membrane. Results obtained by scanning electron microscopy (SEM) showed that memantine changed the normal biconcave shape of red cells to cup-shaped stomatocytes. According to the bilayer-couple hypothesis the drug intercalated into the inner monolayer of the erythrocyte membrane. Experimental results obtained by X-ray diffraction on multibilayers of DMPC and DMPE, and by differential scanning calorimetry on multilamellar vesicles indicated that memantine preferentially interacted with DMPC in a concentration-dependent manner. Thus, it can be concluded that in the low therapeutic plasma concentration of circa 1 μM memantine is located in NMDA receptor channel without affecting the erythrocyte shape. However, at higher concentrations, once the receptors became saturated excess of memantine molecules (20 μM) would interact with phosphoinositide lipids present in the inner monolayer of the erythrocyte membrane inducing the formation of stomatocytes. However, 40-50 μM memantine was required to interact with isolated phosphatidylcholine bilayers. Copyright © 2016 Elsevier Inc. All rights reserved.
Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.
McCaffrey, Jesse E; James, Zachary M; Thomas, David D
2015-01-01
We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of the array geometry in multi-bilayer hair cell sensors
NASA Astrophysics Data System (ADS)
Tamaddoni, Nima J.; Sarles, Stephen A.
2014-03-01
Recently, a bio-inspired, synthetic membrane-based hair cell sensor was fabricated and characterized. This sensor generates current in response to mechanical stimuli, such as airflow or free vibration, which perturb the sensor's hair. Vibration transferred from the hair to a lipid membrane (lipid bilayer) causes a voltage-dependent time rate of change in electrical capacitance of the membrane, which produces measurable current. Studies to date have been performed on systems containing only two droplets and a single bilayer, even though an array of multiple bilayers can be formed with more than 2 droplets. Thus, it is yet to be determined how multiple lipid bilayers affect the sensing response of a membrane-based hair cell sensor. In this work, we assemble serial droplet arrays with more than 1 bilayer to experimentally study the current generated by each membrane in response to perturbation of a single hair element. Two serial array configurations are studied: The first consists of a serial array of 3 bilayers formed using 4 droplets with the hair positioned in an end droplet. The second configuration consists of 3 droplets and 2 bilayers in series with the hair positioned in the central droplet. In serial arrays of up to four droplets, we observe that mechanotransduction of the hair's motion into a capacitive current occurs at every membrane, with bilayers positioned adjacent to the droplet containing the hair generating the largest sensing current. The measured currents suggest the total current generated by all bilayers in a 4-droplet, 3-bilaye array is greater than the current produced by a single-membrane sensor and similar in magnitude to the sum of currents output by 3, single-bilayer sensors operated independently. Moreover, we learned that bilayers positioned on the same side of the hair produce sensing currents that are in-phase, whereas bilayers positioned on opposite sides of the droplet containing the hair generate out-of-phase responses.
Multiscale modeling of transdermal drug delivery
NASA Astrophysics Data System (ADS)
Rim, Jee Eun
2006-04-01
This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a homogenization procedure is performed over a model unit cell of the heterogeneous SC, resulting in effective diffusion parameters. These effective parameters are the macroscopic diffusion coefficients for the homogeneous medium that is "equivalent" to the heterogeneous SC, and thus can be used in finite element simulations of the macroscopic diffusion process.
Schmidt, Thomas H; Kandt, Christian
2012-10-22
At the beginning of each molecular dynamics membrane simulation stands the generation of a suitable starting structure which includes the working steps of aligning membrane and protein and seamlessly accommodating the protein in the membrane. Here we introduce two efficient and complementary methods based on pre-equilibrated membrane patches, automating these steps. Using a voxel-based cast of the coarse-grained protein, LAMBADA computes a hydrophilicity profile-derived scoring function based on which the optimal rotation and translation operations are determined to align protein and membrane. Employing an entirely geometrical approach, LAMBADA is independent from any precalculated data and aligns even large membrane proteins within minutes on a regular workstation. LAMBADA is the first tool performing the entire alignment process automatically while providing the user with the explicit 3D coordinates of the aligned protein and membrane. The second tool is an extension of the InflateGRO method addressing the shortcomings of its predecessor in a fully automated workflow. Determining the exact number of overlapping lipids based on the area occupied by the protein and restricting expansion, compression and energy minimization steps to a subset of relevant lipids through automatically calculated and system-optimized operation parameters, InflateGRO2 yields optimal lipid packing and reduces lipid vacuum exposure to a minimum preserving as much of the equilibrated membrane structure as possible. Applicable to atomistic and coarse grain structures in MARTINI format, InflateGRO2 offers high accuracy, fast performance, and increased application flexibility permitting the easy preparation of systems exhibiting heterogeneous lipid composition as well as embedding proteins into multiple membranes. Both tools can be used separately, in combination with other methods, or in tandem permitting a fully automated workflow while retaining a maximum level of usage control and flexibility. To assess the performance of both methods, we carried out test runs using 22 membrane proteins of different size and transmembrane structure.
Takeshita, K.; Utsumi, H.; Hamada, A.
1987-01-01
The relation between the dynamic properties of the haptenic site of lipid haptens and the phase transition of the host lattice was investigated using head group spin-labeled phosphatidylethanolamines, that is, spin-label lipid haptens (Brûlet, P., and H. M. McConnell, 1976, Proc. Natl. Acad. Sci. USA., 73:2977-2981; Brûlet, P., and H. M. McConnell, 1977, Biochemistry, 16:1209-1217). The electron spin resonance (ESR) spectra of the lipid haptens in liposomal membranes showed three narrow resonance lines, whose widths and hyperfine splitting values suggested that the haptenic site, i.e., the spin-label moiety, should be exposed in the water phase. The line width of each peak depended on the host lipid species and on the incubation temperature. A temperature study using dipalmitoylphosphatidylcholine (DPPC) liposomes showed that the dynamic properties of the haptenic site were related to the main phase transition and the subphase transition of the host lattice but not to the prephase transition. The angular amplitudes of the tumbling motion of the haptenic site were estimated using oriented multibilayer systems. The angular amplitude of dipalmitoyl-phosphatidyl-N-[[N-(1-oxyl-2,2,6, 6-tetramethyl-4-piperidinyl)-carbamoyl]-methyl]-ethanolamine in DPPC membranes was 63 degrees at 2 degrees C, and it increased slightly with an increase in temperature regardless of the phase transition of the host lattice. The value for egg phosphatidylcholine (PC) at 25 degrees C was the same as for DPPC above its main phase transition temperature. Rotational correlation time analysis showed that the axial rotation of the haptenic site was preferable to the tumbling motion of the rotational axis, and the predominance depended on the phase transition, Lc----L beta' and P beta'----L alpha. Elongation of the spacer arm between the haptenic site and phosphate increased the angular amplitude of the tumbling motion but reduced the effect of the host lattice. Spin-label lipid haptens with unsaturated fatty acyl chains were distributed heterogeneously in DPPC membranes, whereas those with the same fatty acyl chain as the host lattice were distributed randomly. The ESR spectrum of a lipid hapten under its prephase transition temperature showed two components, broad and narrow. This suggests that at least two different domains, a hapten-rich domain and a hapten-poor one, may coexist in membranes. ESR measurements at various temperatures suggested that the haptenic site fraction in the hapten-rich domain decreased in part during the phase transition from L beta' to P beta', and disappeared completely in the La phase. The spatial mobility and lateral diffusion of lipid haptens will be discussed in greater detail. PMID:2822160
Lipid decorated liquid crystal pressure sensors
NASA Astrophysics Data System (ADS)
Lopatkina, Tetiana; Popov, Piotr; Honaker, Lawrence; Jakli, Antal; Mann, Elizabeth; Mann's Group Collaboration; Jakli's Group Collaboration
Surfactants usually promote the alignment of liquid crystal (LC) director parallel to the surfactant chains, and thus on average normal to the substrate (homeotropic), whereas water promotes tangential (planar) alignment. A water-LC interface is therefore very sensitive to the presence of surfactants, such as lipids: this is the principle of LC-based chemical and biological sensing introduced by Abbott et al.Using a modified configuration, we found that at higher than 10 micro molar lipid concentration, the uniformly dark texture seen for homeotropic alignment between left-, and right-handed circular polarizers becomes unstable and slowly brightens again. This texture shows extreme sensitivity to external air pressure variations offering its use for sensitive pressure sensors. Our analysis indicates an osmotic pressure induced bending of the suspended films explaining both the birefringence and pressure sensitivity. In the talk we will discuss the experimental details of these effects. This work was financially supported by NSF DMR No. DMR-0907055.
Torque Induced on Lipid Microtubules with Optical Tweezers
NASA Astrophysics Data System (ADS)
wichean, T. Na; Charrunchon, S.; Pattanaporkratana, A.; Limtrakul, J.; Chattham, N.
2017-09-01
Chiral Phospholipids are found self-assembled into cylindrical tubules of 500 nm in diameter by helical winding of bilayer stripes under cooling in ethanol and water solution. Theoretical prediction and experimental evidence reported so far confirmed the modulated tilt direction in a helical striped pattern of the tubules. This molecular orientation morphology results in optically birefringent tubules. We investigate an individual lipid microtubule under a single optical trap of 532 nm linearly polarized laser. Spontaneous rotation of a lipid tubule induced by radiation torque was observed with only one sense of rotation caused by chirality of a lipid tubule. Rotation discontinued once the high refractive index axis of a lipid tubule aligned with a polarization axis of the laser. We further explored a lipid tubule under circularly polarized optical trap. It was found that a lipid tubule was continuously rotated confirming the tubule birefringent property. We modified the shape of optical trap by cylindrical lens obtaining an elliptical profile optical trap. A lipid tubule can be aligned along the elongated length of optical trap. We reported an investigation of competition between polarized light torque on a birefringent lipid tubule versus torque from intensity gradient of an elongated optical trap.
Sahu, Indra D; Mayo, Daniel J; Subbaraman, Nidhi; Inbaraj, Johnson J; McCarrick, Robert M; Lorigan, Gary A
2017-08-01
Characterizing membrane protein structure and dynamics in the lipid bilayer membrane is very important but experimentally challenging. EPR spectroscopy offers a unique set of techniques to investigate a membrane protein structure, dynamics, topology, and distance constraints in lipid bilayers. Previously our lab demonstrated the use of magnetically aligned phospholipid bilayers (bicelles) for probing topology and dynamics of the membrane peptide M2δ of the acetyl choline receptor (AchR) as a proof of concept. In this study, magnetically aligned phospholipid bilayers and rigid spin labels were further utilized to provide improved dynamic information and topology of M2δ peptide. Seven TOAC-labeled AchR M2δ peptides were synthesized to demonstrate the utility of a multi-labeling amino acid substitution alignment strategy. Our data revealed the helical tilts to be 11°, 17°, 9°, 17°, 16°, 11°, 9°±4° for residues I7TOAC, Q13TOAC, A14TOAC, V15TOAC, C16TOAC, L17TOAC, and L18TOAC, respectively. The average helical tilt of the M2δ peptide was determined to be ∼13°. This study also revealed that the TOAC labels were attached to the M2δ peptide with different dynamics suggesting that the sites towards the C-terminal end are more rigid when compared to the sites towards the N-terminus. The dynamics of the TOAC labeled sites were more resolved in the aligned samples when compared to the randomly disordered samples. This study highlights the use of magnetically aligned lipid bilayer EPR technique to determine a more accurate helical tilt and more resolved local dynamics of AchR M2δ peptide. Copyright © 2017 Elsevier B.V. All rights reserved.
Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi
2011-11-01
Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011
Aligning nanodiscs at the air-water interface, a neutron reflectivity study.
Wadsäter, Maria; Simonsen, Jens B; Lauridsen, Torsten; Tveten, Erlend Grytli; Naur, Peter; Bjørnholm, Thomas; Wacklin, Hanna; Mortensen, Kell; Arleth, Lise; Feidenhans'l, Robert; Cárdenas, Marité
2011-12-20
Nanodiscs are self-assembled nanostructures composed of a belt protein and a small patch of lipid bilayer, which can solubilize membrane proteins in a lipid bilayer environment. We present a method for the alignment of a well-defined two-dimensional layer of nanodiscs at the air-water interface by careful design of an insoluble surfactant monolayer at the surface. We used neutron reflectivity to demonstrate the feasibility of this approach and to elucidate the structure of the nanodisc layer. The proof of concept is hereby presented with the use of nanodiscs composed of a mixture of two different lipid (DMPC and DMPG) types to obtain a net overall negative charge of the nanodiscs. We find that the nanodisc layer has a thickness or 40.9 ± 2.6 Å with a surface coverage of 66 ± 4%. This layer is located about 15 Å below a cationic surfactant layer at the air-water interface. The high level of organization within the nanodiscs layer is reflected by a low interfacial roughness (~4.5 Å) found. The use of the nanodisc as a biomimetic model of the cell membrane allows for studies of single membrane proteins isolated in a confined lipid environment. The 2D alignment of nanodiscs could therefore enable studies of high-density layers containing membrane proteins that, in contrast to membrane proteins reconstituted in a continuous lipid bilayer, remain isolated from influences of neighboring membrane proteins within the layer. © 2011 American Chemical Society
Crowell, K J; Macdonald, P M
2001-01-01
Solid-state deuterium ((2)H) NMR spectroscopy was used to study the reorientation of magnetically ordered bicelles in the presence of the paramagnetic lanthanide Eu(3+). Bicelles were composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) plus 1,2-dihexanoyl-sn-glycero-3-phosphocholine plus either the anionic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol, or the cationic lipid 1,2-dimyristoyl-3-trimethyl ammonium propane. Alignment of the bicelles in the magnetic field produced (2)H NMR spectra consisting of a pair of quadrupole doublets, one from the alpha-deuterons and one from the beta-deuterons of DMPC-alpha,beta-d(4). Eu(3+) addition induced the appearance of a second set of quadrupole doublets, having approximately twice the quadrupolar splittings of the originals, and growing progressively in intensity with increasing Eu(3+), at the expense of the intensity of the originals. The new resonances were attributed to bicelles having a parallel alignment with respect to the magnetic field, as opposed to the perpendicular alignment preferred in the absence of Eu(3+). Therefore, the equilibrium degree and kinetics of reorientation could be evaluated from the (2)H NMR spectra. For more cationic initial surface charges, higher amounts of added Eu(3+) were required to induce a given degree of reorientation. However, the equilibrium degree of bicellar reorientation was found to depend solely on the amount of bound Eu(3+), regardless of the bicelle composition. The kinetics of reorientation were a function of lipid concentration. At high lipid concentration, a single fast rate of reorientation (minutes) described the approach to the equilibrium degree of orientation. At lower lipid concentrations, two rates processes were discernible: one fast (minutes) and one slow (hours). The data indicate, therefore, that bicelle reorientation is a phase transition made critical by bicelle-bicelle interactions. PMID:11423411
Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suwalsky, Mario, E-mail: msuwalsk@udec.cl; Zambrano, Pablo; Mennickent, Sigrid
Research highlights: {yields} PPA is a common ingredient in cough-cold medication and appetite suppressants. {yields} Reports on its effects on human erythrocytes are very scarce. {yields} We found that PPA induced in vitro morphological changes to human erythrocytes. {yields} PPA interacted with isolated unsealed human erythrocyte membranes. {yields} PPA interacted with class of lipid present in the erythrocyte membrane outer monolayer. -- Abstract: Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada.more » Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 {mu}M; (c) X-ray diffraction studies showed that PPA in the 0.1-0.5 mM range induced increasing structural perturbation to DMPC, but no effects on DMPE multibilayers were detected.« less
Suwalsky, Mario; Belmar, Jessica; Villena, Fernando; Gallardo, María José; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz
2013-11-01
Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures. Copyright © 2013 Elsevier Inc. All rights reserved.
Tsugawa, Hiroshi; Ohta, Erika; Izumi, Yoshihiro; Ogiwara, Atsushi; Yukihira, Daichi; Bamba, Takeshi; Fukusaki, Eiichiro; Arita, Masanori
2014-01-01
Based on theoretically calculated comprehensive lipid libraries, in lipidomics as many as 1000 multiple reaction monitoring (MRM) transitions can be monitored for each single run. On the other hand, lipid analysis from each MRM chromatogram requires tremendous manual efforts to identify and quantify lipid species. Isotopic peaks differing by up to a few atomic masses further complicate analysis. To accelerate the identification and quantification process we developed novel software, MRM-DIFF, for the differential analysis of large-scale MRM assays. It supports a correlation optimized warping (COW) algorithm to align MRM chromatograms and utilizes quality control (QC) sample datasets to automatically adjust the alignment parameters. Moreover, user-defined reference libraries that include the molecular formula, retention time, and MRM transition can be used to identify target lipids and to correct peak abundances by considering isotopic peaks. Here, we demonstrate the software pipeline and introduce key points for MRM-based lipidomics research to reduce the mis-identification and overestimation of lipid profiles. The MRM-DIFF program, example data set and the tutorials are downloadable at the "Standalone software" section of the PRIMe (Platform for RIKEN Metabolomics, http://prime.psc.riken.jp/) database website.
Tsugawa, Hiroshi; Ohta, Erika; Izumi, Yoshihiro; Ogiwara, Atsushi; Yukihira, Daichi; Bamba, Takeshi; Fukusaki, Eiichiro; Arita, Masanori
2015-01-01
Based on theoretically calculated comprehensive lipid libraries, in lipidomics as many as 1000 multiple reaction monitoring (MRM) transitions can be monitored for each single run. On the other hand, lipid analysis from each MRM chromatogram requires tremendous manual efforts to identify and quantify lipid species. Isotopic peaks differing by up to a few atomic masses further complicate analysis. To accelerate the identification and quantification process we developed novel software, MRM-DIFF, for the differential analysis of large-scale MRM assays. It supports a correlation optimized warping (COW) algorithm to align MRM chromatograms and utilizes quality control (QC) sample datasets to automatically adjust the alignment parameters. Moreover, user-defined reference libraries that include the molecular formula, retention time, and MRM transition can be used to identify target lipids and to correct peak abundances by considering isotopic peaks. Here, we demonstrate the software pipeline and introduce key points for MRM-based lipidomics research to reduce the mis-identification and overestimation of lipid profiles. The MRM-DIFF program, example data set and the tutorials are downloadable at the “Standalone software” section of the PRIMe (Platform for RIKEN Metabolomics, http://prime.psc.riken.jp/) database website. PMID:25688256
Chekmenev, Eduard Y; Hu, Jun; Gor'kov, Peter L; Brey, William W; Cross, Timothy A; Ruuge, Andres; Smirnov, Alex I
2005-04-01
This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.
How sterol tilt regulates properties and organization of lipid membranes and membrane insertions
Khelashvili, George; Harries, Daniel
2013-01-01
Serving as a crucial component of mammalian cells, cholesterol critically regulates the functions of biomembranes. This review focuses on a specific property of cholesterol and other sterols: the tilt modulus χ that quantifies the energetic cost of tilting sterol molecules inside the lipid membrane. We show how χ is involved in determining properties of cholesterol-containing membranes, and detail a novel approach to quantify its value from atomistic molecular dynamics (MD) simulations. Specifically, we link χ with other structural, thermodynamic, and mechanical properties of cholesterol-containing lipid membranes, and delineate how this useful parameter can be obtained from the sterol tilt probability distributions derived from relatively small-scale unbiased MD simulations. We demonstrate how the tilt modulus quantitatively describes the aligning field that sterol molecules create inside the phospholipid bilayers, and we relate χ to the bending rigidity of the lipid bilayer through effective tilt and splay energy contributions to the elastic deformations. Moreover, we show how χ can conveniently characterize the “condensing effect” of cholesterol on phospholipids. Finally, we demonstrate the importance of this cholesterol aligning field to the proper folding and interactions of membrane peptides. Given the relative ease of obtaining the tilt modulus from atomistic simulations, we propose that χ can be routinely used to characterize the mechanical properties of sterol/lipid bilayers, and can also serve as a required fitting parameter in multi-scaled simulations of lipid membrane models to relate the different levels of coarse-grained details. PMID:23291283
Advances on the Transfer of Lipids by Lipid Transfer Proteins.
Wong, Louise H; Čopič, Alenka; Levine, Tim P
2017-07-01
Transfer of lipid across the cytoplasm is an essential process for intracellular lipid traffic. Lipid transfer proteins (LTPs) are defined by highly controlled in vitro experiments. The functional relevance of these is supported by evidence for the same reactions inside cells. Major advances in the LTP field have come from structural bioinformatics identifying new LTPs, and from the development of countercurrent models for LTPs. However, the ultimate aim is to unite in vitro and in vivo data, and this is where much progress remains to be made. Even where in vitro and in vivo experiments align, rates of transfer tend not to match. Here we set out some of the advances that might test how LTPs work. Copyright © 2017. Published by Elsevier Ltd.
Heisig, M; Lieckfeldt, R; Wittum, G; Mazurkevich, G; Lee, G
1996-03-01
The diffusion equation should be solved for the non-steady-state problem of drug diffusion within a two-dimensional, biphasic stratum corneum membrane having homogeneous lipid and corneocyte phases. A numerical method was developed for a brick-and-mortar SC-geometry, enabling an explicit solution for time-dependent drug concentration within both phases. The lag time and permeability were calculated. It is shown how the barrier property of this model membrane depends on relative phase permeability, corneocyte alignment, and corneocyte-lipid partition coefficient. Additionally, the time-dependent drug concentration profiles within the membrane can be observed during the lag and steady-state phases. The model SC-membrane predicts, from purely morphological principles, lag times and permeabilities that are in good agreement with experimental values. The long lag times and very small permeabilities reported for human SC can only be predicted for a highly-staggered corneocyte geometry and corneocytes that are 1000 times less permeable than the lipid phase. Although the former conclusion is reasonable, the latter is questionable. The elongated, flattened corneocyte shape renders lag time and permeability insensitive to large changes in their alignment within the SC. Corneocyte/lipid partitioning is found to be fundamentally different to SC/donor partitioning, since increasing drug lipophilicity always reduces both lag time and permeability.
Matsui, Ryoichi; Uchida, Noriyuki; Ohtani, Masataka; Yamada, Kuniyo; Shigeta, Arisu; Kawamura, Izuru; Aida, Takuzo; Ishida, Yasuhiro
2016-12-05
Five novel surfactants were prepared by modifying the three hydroxy groups of sodium cholate with triethylene glycol chains endcapped with an amide (SC-C 1 , SC- n C 4 , and SC- n C 5 ) or a carbamoyl group (SC-O n C 4 and SC-O t C 4 ). The phase behavior of aqueous mixtures of these surfactants with 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) was systematically studied by 31 P NMR spectroscopy. The surfactants endcapped with carbamate groups (SC-O n C 4 and SC-O t C 4 ) formed magnetically alignable bicelles over unprecedentedly wide ranges of conditions, in terms of temperature (from 21-23 to >90 °C), lipid/surfactant ratio (from 5 to 8), total lipid content (5-20 wt %), and lipid type [DMPC, 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine (DLPC), or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)]. In conjunction with appropriate phospholipids, the carbamate-endcapped surfactants afforded unique bicelles, characterized by exceptional thermal stabilities (from 0 to >90 °C), biomimetic lipid compositions (DMPC/POPC=25:75 to 50:50), and extremely large 2 H quadrupole splittings (up to 71 Hz). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments.
Bomer, Johan G; Prokofyev, Alexander V; van den Berg, Albert; Le Gac, Séverine
2014-12-07
We report a wafer-scale fabrication process for the production of glass-FEP-glass microdevices using UV-curable adhesive (NOA81) as gluing material, which is applied using a novel "spin & roll" approach. Devices are characterized for the uniformity of the gluing layer, presence of glue in the microchannels, and alignment precision. Experiments on lipid bilayers with electrophysiological recordings using a model pore-forming polypeptide are demonstrated.
Cholesterol's location in lipid bilayers
Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; ...
2016-04-04
It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered L o phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the L o phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group ismore » in the vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less
Nanofabricated Racks of Aligned and Anchored DNA Substrates for Single-Molecule Imaging
2009-01-01
Single-molecule studies of biological macromolecules can benefit from new experimental platforms that facilitate experimental design and data acquisition. Here we develop new strategies to construct curtains of DNA in which the molecules are aligned with respect to one another and maintained in an extended configuration by anchoring both ends of the DNA to the surface of a microfluidic sample chamber that is otherwise coated with an inert lipid bilayer. This “double-tethered” DNA substrate configuration is established through the use of nanofabricated rack patterns comprised of two distinct functional elements: linear barriers to lipid diffusion that align DNA molecules anchored by one end to the bilayer and antibody-coated pentagons that provide immobile anchor points for the opposite ends of the DNA. These devices enable the alignment and anchoring of thousands of individual DNA molecules, which can then be visualized using total internal reflection fluorescence microscopy under conditions that do not require continuous application of buffer flow to stretch the DNA. This unique strategy offers the potential for studying protein−DNA interactions on large DNA substrates without compromising measurements through application of hydrodynamic force. We provide a proof-of-principle demonstration that double-tethered DNA curtains made with nanofabricated rack patterns can be used in a one-dimensional diffusion assay that monitors the motion of quantum dot-tagged proteins along DNA. PMID:19736980
Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging.
Gorman, Jason; Fazio, Teresa; Wang, Feng; Wind, Shalom; Greene, Eric C
2010-01-19
Single-molecule studies of biological macromolecules can benefit from new experimental platforms that facilitate experimental design and data acquisition. Here we develop new strategies to construct curtains of DNA in which the molecules are aligned with respect to one another and maintained in an extended configuration by anchoring both ends of the DNA to the surface of a microfluidic sample chamber that is otherwise coated with an inert lipid bilayer. This "double-tethered" DNA substrate configuration is established through the use of nanofabricated rack patterns comprised of two distinct functional elements: linear barriers to lipid diffusion that align DNA molecules anchored by one end to the bilayer and antibody-coated pentagons that provide immobile anchor points for the opposite ends of the DNA. These devices enable the alignment and anchoring of thousands of individual DNA molecules, which can then be visualized using total internal reflection fluorescence microscopy under conditions that do not require continuous application of buffer flow to stretch the DNA. This unique strategy offers the potential for studying protein-DNA interactions on large DNA substrates without compromising measurements through application of hydrodynamic force. We provide a proof-of-principle demonstration that double-tethered DNA curtains made with nanofabricated rack patterns can be used in a one-dimensional diffusion assay that monitors the motion of quantum dot-tagged proteins along DNA.
Puri, Anu; Jang, Hyunbum; Yavlovich, Amichai; Masood, M. Athar; Veenstra, Timothy D.; Luna, Carlos; Aranda-Espinoza, Helim; Nussinov, Ruth; Blumenthal, Robert
2011-01-01
Photopolymerizable phospholipid DC8,9PC (1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine) exhibits unique assembly characteristics in the lipid bilayer. Due to the presence of the diacetylene groups, DC8,9PC undergoes polymerization upon UV (254 nm) exposure and assumes chromogenic properties. DC8,9PC photopolymerization in a gel phase matrix lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monitored by UV-VIS absorption spectroscopy occurred within 2 minutes after UV treatment, whereas no spectral shifts were observed when DC8,9PC was incorporated in a liquid phase matrix 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Liquid chromatography-tandem mass spectrometry analysis showed a decrease in DC8,9PC monomer in both DPPC and POPC environments without any change in matrix lipids in UV-treated samples. Molecular Dynamics (MD) simulations of DPPC/DC8,9PC and POPC/DC8,9PC bilayers indicate that the DC8,9PC molecules adjust to the thickness of the matrix lipid bilayer. Furthermore, motions of DC8,9PC in the gel phase bilayer are more restricted than in the fluid bilayer. The restricted motional flexibility of DC8,9PC (in the gel phase) enables the reactive diacetylenes in individual molecules to align and undergo polymerization, whereas the unrestricted motions in the fluid bilayer restrict polymerization due to the lack of appropriate alignment of the DC8,9PC fatty acyl chains. Fluorescence microscopy data indicates homogenous distribution of the lipid probe 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine rhodamine B sulfonyl ammonium salt (N-Rh-PE) in POPC/DC8,9PC monolayers, but domain formation in DPPC/DC8,9PC monolayers. These results show that the DC8,9PC molecules cluster and assume the preferred conformation in the gel phase matrix for UV-triggered polymerization reaction. PMID:22053903
Shi, Zheng; Wang, Zi-jie; Xu, Huai-long; Tian, Yang; Li, Xin; Bao, Jin-ku; Sun, Su-rong; Yue, Bi-song
2013-12-01
Non-specific lipid transfer proteins (ns-LTPs), ubiquitously found in various types of plants, have been well-known to transfer amphiphilic lipids and promote the lipid exchange between mitochondria and microbody. In this study, an in silico analysis was proposed to study ns-LTP in Peganum harmala L., which may belong to ns-LTP1 family, aiming at constructing its three-dimensional structure. Moreover, we adopted MEGA to analyze ns-LTPs and other species phylogenetically, which brought out an initial sequence alignment of ns-LTPs. In addition, we used molecular docking and molecular dynamics simulations to further investigate the affinities and stabilities of ns-LTP with several ligands complexes. Taken together, our results about ns-LTPs and their ligand-binding activities can provide a better understanding of the lipid-protein interactions, indicating some future applications of ns-LTP-mediated transport. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.
It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered L o phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the L o phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group ismore » in the vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less
Lipid tubules Formed by Flow-Controlled Hydration
NASA Astrophysics Data System (ADS)
Yuan, Jing; Hirst, Linda S.
2007-03-01
Self-assembled cylindrical tubules from lipid molecules have attracted considerable attention because of their interesting supramolecular structures and technological applications. Schnur et al. [1] reported the formation of tubular microstructures from a series of diacetylenic phospholipids after liposomes were cooled through their chain melting transition. After that, several methods have been developed to fabricate such unique microstructures mainly by means of deforming preformed Giant unilamellar vesicles. Here we present a simple strategy to construct lipid microtubules through a flow-controlled lipid hydration. Fluorescent microscopy and Confocal Laser Microscopy were used to visualize the formation and the structure of the lipid tubules. Tubules were found to develop following the direction of the dynamic flow with highly parallel alignment. At high flow speeds, partial cross-linking of the lipid tubules was observed. To demonstrate the generality of this method, different types of phospholipids, such as Phosphatidic Acid (PA), Phosphatidylserine (PS), Phosphatidylethanolamine (PE), and Phosphatidylglycerol (PG) were investigated. [1] J.M. Schnur et al, Science, 264, 945 (1994).
Hybrid and Nonhybrid Lipids Exert Common Effects on Membrane Raft Size and Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heberle, Frederick A; Doktorova, Milka; Goh, Shih Lin
2013-01-01
Nanometer-scale domains in cholesterolrich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chainasymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniquesmore » to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains.« less
Self-Assembling Brush Polymers Bearing Multisaccharides.
Lee, Jongchan; Kim, Jin Chul; Lee, Hoyeol; Song, Sungjin; Kim, Heesoo; Ree, Moonhor
2017-06-01
Three different series of brush polymers bearing glucosyl, maltosyl, or maltotriosyl moiety at the bristle end are successfully prepared by using cationic ring-opening polymerization and two sequential postmodification reactions. All brush polymers, except for the polymer containing 100 mol% maltotriosyl moiety, demonstrate the formation of multibilayer structure in films, always providing saccharide-enriched surface. These self-assembling features are remarkable, regarding the bulkiness of saccharide moieties and the kink in the bristle due to the triazole linker. The saccharide-enriched film surfaces reveal exceptionally high specific binding affinity to concanavalin A but suppress nonspecific binding of plasma proteins severely. Overall, the brush polymers bearing saccharide moieties of various kinds in this study are highly suitable materials for biomedical applications including biosensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Isabettini, Stéphane; Baumgartner, Mirjam E; Fischer, Peter; Windhab, Erich J; Liebi, Marianne; Kuster, Simon
2018-01-03
Bicelles are tunable disk-like polymolecular assemblies formed from a large variety of lipid mixtures. Applications range from membrane protein structural studies by nuclear magnetic resonance (NMR) to nanotechnological developments including the formation of optically active and magnetically switchable gels. Such technologies require high control of the assembly size, magnetic response and thermal resistance. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and its lanthanide ion (Ln 3+ ) chelating phospholipid conjugate, 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA), assemble into highly magnetically responsive assemblies such as DMPC/DMPE-DTPA/Ln 3+ (molar ratio 4:1:1) bicelles. Introduction of cholesterol (Chol-OH) and steroid derivatives in the bilayer results in another set of assemblies offering unique physico-chemical properties. For a given lipid composition, the magnetic alignability is proportional to the bicelle size. The complexation of Ln 3+ results in unprecedented magnetic responses in terms of both magnitude and alignment direction. The thermo-reversible collapse of the disk-like structures into vesicles upon heating allows tailoring of the assemblies' dimensions by extrusion through membrane filters with defined pore sizes. The magnetically alignable bicelles are regenerated by cooling to 5 °C, resulting in assembly dimensions defined by the vesicle precursors. Herein, this fabrication procedure is explained and the magnetic alignability of the assemblies is quantified by birefringence measurements under a 5.5 T magnetic field. The birefringence signal, originating from the phospholipid bilayer, further enables monitoring of polymolecular changes occurring in the bilayer. This simple technique is complementary to NMR experiments that are commonly employed to characterize bicelles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
YU,KUI; BRINKER,C. JEFFREY; HURD,ALAN J.
2000-11-22
Since the discovery of surfactant-templated silica by Mobil scientists in 1992, mesostructured silica has been synthesized in various forms including thin films, powders, particles, and fibers. In general, mesostructured silica has potential applications, such as in separation, catalysis, sensors, and fluidic microsystems. In respect to these potential applications, mesostructured silica in the form of thin films is perhaps one of the most promising candidates. The preparation of mesostructured silica films through preferential solvent evaporation-induced self-assembly (EISA) has recently received much attention in the laboratories. However, no amphiphile/silica films with reverse mesophases have ever been made through this EISA procedure. Furthermore,more » templates employed to date have been either surfactants or poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers, such as pluronic P-123, both of which are water-soluble and alcohol-soluble. Due to their relatively low molecular weight, the templated silica films with mesoscopic order have been limited to relatively small characteristic length scales. In the present communication, the authors report a novel synthetic method to prepare mesostructured amphiphilic/silica films with regular and reverse mesophases of large characteristic length scales. This method involves evaporation-induced self-assembly (EISA) of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers. In the present study, the PS-b-PEO diblocks are denoted as, for example, PS(215)-b-PEO(100), showing that this particular sample contains 215 S repeat units and 100 EO repeat units. This PS(215)-b-PEO(100) diblock possesses high molecular weight and does not directly mix with water or alcohol. To the authors knowledge, no studies have reported the use of water-insoluble and alcohol-insoluble amphiphilic diblocks as structure-directing agents in the synthesis of mesostructured silica films through EISA. It is believed that the present system is the first to yield amphiphile/silica films with regular and reverse mesophases, as well as curved multi-bilayer mesostructures, through EISA. The ready formation of the diblock/silica films with multi-bilayer vesicular mesostructures is discussed.« less
Jones, Jace W; Carter, Claire L; Li, Fei; Yu, Jianshi; Pierzchalski, Keely; Jackson, Isabel L; Vujaskovic, Zeljko; Kane, Maureen A
2017-03-01
Lipids represent biologically ubiquitous and highly dynamic molecules in terms of abundance and structural diversity. Whereas the potential for lipids to inform on disease/injury is promising, their unique characteristics make detection and identification of lipids from biological samples analytically demanding. We report the use of ultraperformance convergence chromatography (UPC 2 ), a variant of supercritical fluid chromatography, coupled to high-resolution, data-independent tandem mass spectrometry for characterization of total lipid extracts from mouse lung tissue. The UPC 2 platform resulted in lipid class separation and when combined with orthogonal column chemistries yielded chromatographic separation of intra-class species based on acyl chain hydrophobicity. Moreover, the combined approach of using UPC 2 with orthogonal column chemistries, accurate mass measurements, time-aligned low- and high-collision energy total ion chromatograms, and positive and negative ion mode product ion spectra correlation allowed for confident lipid identification. Of great interest was the identification of differentially expressed ceramides that were elevated 24 h post whole thorax lung irradiation. The identification of lipids that were elevated 24 h post-irradiation signifies a unique opportunity to investigate early mechanisms of action prior to the onset of clinical symptoms in the whole thorax lung irradiation mouse model. Copyright © 2016 John Wiley & Sons, Ltd.
Cardon, Thomas B; Tiburu, Elvis K; Lorigan, Gary A
2003-03-01
Our lab is developing a spin-labeled EPR spectroscopic technique complementary to solid-state NMR studies to study the structure, orientation, and dynamics of uniaxially aligned integral membrane proteins inserted into magnetically aligned discotic phospholipid bilayers, or bicelles. The focus of this study is to optimize and understand the mechanisms involved in the magnetic alignment process of bicelle disks in weak magnetic fields. Developing experimental conditions for optimized magnetic alignment of bicelles in low magnetic fields may prove useful to study the dynamics of membrane proteins and its interactions with lipids, drugs, steroids, signaling events, other proteins, etc. In weak magnetic fields, the magnetic alignment of Tm(3+)-doped bicelle disks was thermodynamically and kinetically very sensitive to experimental conditions. Tm(3+)-doped bicelles were magnetically aligned using the following optimized procedure: the temperature was slowly raised at a rate of 1.9K/min from an initial temperature being between 298 and 307K to a final temperature of 318K in the presence of a static magnetic field of 6300G. The spin probe 3beta-doxyl-5alpha-cholestane (cholestane) was inserted into the bicelle disks and utilized to monitor bicelle alignment by analyzing the anisotropic hyperfine splitting for the corresponding EPR spectra. The phases of the bicelles were determined using solid-state 2H NMR spectroscopy and compared with the corresponding EPR spectra. Macroscopic alignment commenced in the liquid crystalline nematic phase (307K), continued to increase upon slowly raising the temperature, and was well-aligned in the liquid crystalline lamellar smectic phase (318K).
Transmembrane peptides as sensors of the membrane physical state
NASA Astrophysics Data System (ADS)
Piotto, Stefano; Di Biasi, Luigi; Sessa, Lucia; Concilio, Simona
2018-05-01
Cell membranes are commonly considered fundamental structures having multiple roles such as confinement, storage of lipids, sustain and control of membrane proteins. In spite of their importance, many aspects remain unclear. The number of lipid types is orders of magnitude larger than the number of amino acids, and this compositional complexity is not clearly embedded in any membrane model. A diffused hypothesis is that the large lipid palette permits to recruit and organize specific proteins controlling the formation of specialized lipid domains and the lateral pressure profile of the bilayer. Unfortunately, a satisfactory knowledge of lipid abundance remains utopian because of the technical difficulties in isolating definite membrane regions. More importantly, a theoretical framework where to fit the lipidomic data is still missing. In this work, we wish to utilize the amino acid sequence and frequency of the membrane proteins as bioinformatics sensors of cell bilayers. The use of an alignment-free method to find a correlation between the sequences of transmembrane portion of membrane proteins with the membrane physical state suggested a new approach for the discovery of antimicrobial peptides.
Diffusion in Single Supported Lipid Bilayers
NASA Astrophysics Data System (ADS)
Armstrong, C. L.; Trapp, M.; Rheinstädter, M. C.
2011-03-01
Despite their potential relevance for the development of functionalized surfaces and biosensors, the study of single supported membranes using neutron scattering has been limited by the challenge of obtaining relevant dynamic information from a sample with minimal material. Using state of the art neutron instrumentation we have, for the first time, modeled lipid diffusion in single supported lipid bilayers. While we find that the diffusion coefficient for the single bilayer system is comparable to a multi-lamellar lipid system, the molecular mechanism for lipid motion in the single bilayer is a continuous diffusion process with no sign of the flow-like ballistic motion reported in the stacked membrane system. In the future, these membranes will be used to hold and align proteins, mimicking physiological conditions enabling the study of protein structure, function and interactions in relevant and highly topical membrane/protein systems with minimal sample material. C.L. Armstrong, M.D. Kaye, M. Zamponi, E. Mamontov, M. Tyagi, T. Jenkins and M.C. Rheinstädter, Soft Matter Communication, 2010, Advance Article, DOI: 10.1039/C0SM00637H
Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I
2006-10-15
A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.
A molecular theory for nonohmicity of the ion leak across the lipid-bilayer membrane.
Fujitani, Y; Bedeaux, D
1997-10-01
The current-voltage relationship of ion leak (i.e., ion transport involving neither special channels nor carriers) across the lipid-bilayer membrane has been observed to be log-linear above the ohmic regime. The coefficient of the linear term has been found to be universal for membranes and penetrants examined. This universality has been explained in terms of diffusion in an external field, where the ion position is described as a Markovian process. Such a diffusion picture can be questioned, however. It is also probable that a leaking ion gets over the potential barrier before experiencing sufficient random collision in the membrane, considering that each ion is surrounded with long lipid molecules aligned almost unidirectionally. As an alternative, we discuss this ion leak in terms of velocity distribution of the ions entering the membrane and density fluctuation of the lipids. We conclude that we can explain the universality without resorting to the diffusion picture.
Tamoxifen-model membrane interactions: an FT-IR study
NASA Astrophysics Data System (ADS)
Boyar, Handan; Severcan, Feride
1997-06-01
The temperature- and concentration-induced effects of tamoxifen (TAM) on dipalmitoyl phosphatidylcholine (DPPC) model membranes were investigated by the Fourier transform-infrared (FT-IR) spectroscopic technique. An investigation of the C-H stretching region and the CO mode reveals that the inclusion of TAM changes the physical properties of the DPPC multibilayers by (i) shifting the main phase transition to lower temperatures; (ii) broadening the transition profile slightly; (iii) disordering the system in the gel and in the liquid crystalline phases; (iv) increasing the dynamics in the gel phase and decreasing the dynamics of the acyl chains in the liquid crystalline phase; (v) increasing the mobility of the terminal methyl group region of the bilayer in the gel phase and decreasing it in the liquid crystalline phase; (vi) increasing the frequency of the CO stretching mode both in the gel and in the liquid crystalline phases, i.e. non-bonding with carbonyl groups.
Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species
Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria
2014-01-01
Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hanaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima Schwanniomyces occidentalis and Wickerhamomyces ciferii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals. PMID:24818698
Magnetically tunable control of light reflection in an unusual optical protein of squid
NASA Astrophysics Data System (ADS)
Iwasaka, M.; Tagawa, K.; Kikuchi, Y.
2017-05-01
In this study, we focused on the magnetically tunable changes in the reflectivity of the protein reflectin, which is generated by squid and used to control their body surface color for camouflage in seawater. A cellular organelle called an iridosome was separated from the skin of the dorsal part of a squid (cuttlefish; Sepia esculenta), and the light reflection dynamics of iridosomes containing reflectin were measured with and without exposure to a magnetic field of 500 mT. The magnetic field induced both steady and transient increases of reflection by the iridosomes, suggesting that a reversible conformational change occurred inside the iridosomes when the magnetic field was switched on and off. The intensity of light scattering perpendicular to the direction of the magnetic field increased when the magnetic field was applied. This kind of behavior (Type I) occurred in the majority (60%) of the measured samples. Another kind of reflection change (Type II) was a transient increase in light reflection. It is speculated that the wave-shaped structure of the lipid membrane connected to reflectin proteins changed to enhance the light reflection of reflectin by altering the diamagnetic orientation of the lipid layer in the bent part of the membrane under the applied magnetic field. Overall, our results suggest that the mesoscale lipid layers changed their alignment diamagnetically and the length between iridescent layers was modified by the magnetic field, even though no obvious change in alignment occurred at the microscale.
Lazzara, Thomas D; Behn, Daniela; Kliesch, Torben-Tobias; Janshoff, Andreas; Steinem, Claudia
2012-01-15
Anodic aluminum oxide (AAO) substrates with aligned, cylindrical, non-intersecting pores with diameters of 75 nm and depths of 3.5 or 10 μm were functionalized with lipid monolayers harboring different receptor lipids. AAO was first functionalized with dodecyl-trichlorosilane, followed by fusion of small unilamellar vesicles (SUVs) forming a lipid monolayer. The SUVs' lipid composition was transferred onto the AAO surface, allowing us to control the surface receptor density. Owing to the optical transparency of the AAO, the overall vesicle spreading process and subsequent protein binding to the receptor-doped lipid monolayers could be investigated in situ by optical waveguide spectroscopy (OWS). SUV spreading occurred at the pore-rim interface, followed by lateral diffusion of lipids within the pore-interior surface until homogeneous coverage was achieved with a lipid monolayer. The functionality of the system was demonstrated through streptavidin binding onto a biotin-DOPE containing POPC membrane, showing maximum protein coverage at 10 mol% of biotin-DOPE. The system enabled us to monitor in real-time the selective extraction of two histidine-tagged proteins, PIGEA14 (14 kDa) and ezrin (70 kDa), directly from cell lysate solutions using a DOGS-NTA(Ni)/DOPC (1:9) membrane. The purification process including protein binding and elution was monitored by OWS and confirmed by SDS-PAGE. Copyright © 2011 Elsevier Inc. All rights reserved.
Computational Functional Analysis of Lipid Metabolic Enzymes.
Bagnato, Carolina; Have, Arjen Ten; Prados, María B; Beligni, María V
2017-01-01
The computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism. In addition, some enzymes that do not have sequence similarity catalyze similar or even identical reactions. Some of the challenges that, albeit not unique, are more specific to lipid metabolism refer to the high compartmentalization of the routes, the catalysis in hydrophobic environments and, related to this, the function near or in biological membranes.In this work, we provide guidelines intended to assist in the proper functional annotation of lipid metabolic enzymes, based on previous experiences related to the phospholipase D superfamily and the annotation of the triglyceride synthesis pathway in algae. We describe a pipeline that starts with the definition of an initial set of sequences to be used in similarity-based searches and ends in the reconstruction of phylogenies. We also mention the main issues that have to be taken into consideration when using tools to analyze subcellular localization, hydrophobicity patterns, or presence of transmembrane domains in lipid metabolic enzymes.
High resolution microscopy of the lipid layer of the tear film.
King-Smith, P Ewen; Nichols, Jason J; Braun, Richard J; Nichols, Kelly K
2011-10-01
Tear film evaporation is controlled by the lipid layer and is an important factor in dry eye conditions. Because the barrier to evaporation depends on the structure of the lipid layer, a high resolution microscope has been constructed to study the lipid layer in dry and in normal eyes. The microscope incorporates the following features. First, a long working distance microscope objective is used with a high numerical aperture and resolution. Second, because such a high resolution objective has limited depth of focus, 2000 images are recorded with a video camera over a 20-sec period, with the expectation that some images will be in focus. Third, illumination is from a stroboscopic light source having a brief flash duration, to avoid blurring from movement of the lipid layer. Fourth, the image is in focus when the edge of the image is sharp - this feature is used to select images in good focus. Fifth, an aid is included to help align the cornea at normal incidence to the axis of the objective so that the whole lipid image can be in focus. High resolution microscopy has the potential to elucidate several characteristics of the normal and abnormal lipid layer, including different objects and backgrounds, changes in the blink cycle, stability and fluidity, dewetting, gel-like properties and possible relation to lipid domains. It is expected that high resolution microscopy of the lipid layer will provide information about the mechanisms of dry eye disorders. Illustrative results are presented, derived from over 10,000 images from 375 subjects.
Controlling carbon-nanotube-phospholipid solubility by curvature-dependent self-assembly.
Määttä, Jukka; Vierros, Sampsa; Sammalkorpi, Maria
2015-03-12
Control of aqueous dispersion is central in the processing and usage of nanoscale hydrophobic objects. However, selecting dispersive agents based on the size and form of the hydrophobic object and the role of coating morphology in dispersion efficiency remain important open questions. Here, the effect of the substrate and the dispersing molecule curvature, as well as, the influence of dispersant concentration on the adsorption morphology are examined by molecular simulations of graphene and carbon nanotube (CNT) substrates with phospholipids of varying curvature as the dispersing agents. Lipid spontaneous curvature is increased from close to zero (effectively cylindrical lipid) to highly positive (effectively conical lipid) by studying double tailed dipalmitoylphosphadidylcholine (DPPC) and single tailed lysophosphadidylcholine (LPC) which differ in the number of acyl chains but have identical headgroup. We find that lipids are good dispersion agents for both planar and curved nanoparticles and induce a dispersive barrier nonsize selectively. Differences in dispersion efficiency arise from lipid headgroup density and their extension from the hydrophobic substrate in the adsorption morphology. We map the packing morphology contributing factors and report that the aggregate morphologies depend on the competition of interactions rising from (1) hydrophobicity driven maximization of lipid-substrate contacts and lipid self-adhesion, (2) tail bending energy cost, (3) preferential alignment along the graphitic substrate principal axes, and (4) lipid headgroup preferential packing. Curved substrates adjust the morphology by changing the balance between the interaction strengths. Jointly, the findings show substrate curvature and dimensions are a way to tune lipid adsorption to desired, self-assembling patterns. Besides engineering dispersion efficiency, the findings could bear significance in designing materials with defined molecular scale, molecular coatings for orientation specific CNT assembly or lipid-based molecular masks and patterning on graphene.
Separating attoliter-sized compartments using fluid pore-spanning lipid bilayers.
Lazzara, Thomas D; Carnarius, Christian; Kocun, Marta; Janshoff, Andreas; Steinem, Claudia
2011-09-27
Anodic aluminum oxide (AAO) is a porous material having aligned cylindrical compartments with 55-60 nm diameter pores, and being several micrometers deep. A protocol was developed to generate pore-spanning fluid lipid bilayers separating the attoliter-sized compartments of the nanoporous material from the bulk solution, while preserving the optical transparency of the AAO. The AAO was selectively functionalized by silane chemistry to spread giant unilamellar vesicles (GUVs) resulting in large continuous membrane patches covering the pores. Formation of fluid single lipid bilayers through GUV rupture could be readily observed by fluorescence microscopy and further supported by conservation of membrane surface area, before and after GUV rupture. Fluorescence recovery after photobleaching gave low immobile fractions (5-15%) and lipid diffusion coefficients similar to those found for bilayers on silica. The entrapment of molecules within the porous underlying cylindrical compartments, as well as the exclusion of macromolecules from the nanopores, demonstrate the barrier function of the pore-spanning membranes and could be investigated in three-dimensions using confocal laser scanning fluorescence imaging. © 2011 American Chemical Society
Pan, Jianjun; Sahoo, Prasana K; Dalzini, Annalisa; Hayati, Zahra; Aryal, Chinta M; Teng, Peng; Cai, Jianfeng; Rodriguez Gutierrez, Humberto; Song, Likai
2017-05-18
A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.
Pan, Jianjun; Sahoo, Prasana K.; Dalzini, Annalisa; Hayati, Zahra; Aryal, Chinta M.; Teng, Peng; Cai, Jianfeng; Gutierrez, Humberto Rodriguez; Song, Likai
2018-01-01
A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. Force spectroscopy experiment shows that PrP106-126 reduces Young’s modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intra-chain conformation, while the inter-chain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the inter-chain interaction, while the intra-chain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs. PMID:28459565
Love-Gregory, Latisha; Kraja, Aldi T; Allum, Fiona; Aslibekyan, Stella; Hedman, Åsa K; Duan, Yanan; Borecki, Ingrid B; Arnett, Donna K; McCarthy, Mark I; Deloukas, Panos; Ordovas, Jose M; Hopkins, Paul N; Grundberg, Elin; Abumrad, Nada A
2016-12-01
Cluster of differentiation 36 (CD36) variants influence fasting lipids and risk of metabolic syndrome, but their impact on postprandial lipids, an independent risk factor for cardiovascular disease, is unclear. We determined the effects of SNPs within a ∼410 kb region encompassing CD36 and its proximal and distal promoters on chylomicron (CM) remnants and LDL particles at fasting and at 3.5 and 6 h following a high-fat meal (Genetics of Lipid Lowering Drugs and Diet Network study, n = 1,117). Five promoter variants associated with CMs, four with delayed TG clearance and five with LDL particle number. To assess mechanisms underlying the associations, we queried expression quantitative trait loci, DNA methylation, and ChIP-seq datasets for adipose and heart tissues that function in postprandial lipid clearance. Several SNPs that associated with higher serum lipids correlated with lower adipose and heart CD36 mRNA and aligned to active motifs for PPARγ, a major CD36 regulator. The SNPs also associated with DNA methylation sites that related to reduced CD36 mRNA and higher serum lipids, but mixed-model analyses indicated that the SNPs and methylation independently influence CD36 mRNA. The findings support contributions of CD36 SNPs that reduce adipose and heart CD36 RNA expression to inter-individual variability of postprandial lipid metabolism and document changes in CD36 DNA methylation that influence both CD36 expression and lipids. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
Sastre, Judit; Mannelli, Ilaria; Reigada, Ramon
2017-11-01
The toxic effects and environmental impact of nanomaterials, and in particular of Fullerene particles, are matters of serious concern. It has been reported that fullerene molecules enter the cell membrane and occupy its hydrophobic region. Understanding the effects of carbon-based nanoparticles on biological membranes is therefore of critical importance to determine their exposure risks. We report on a systematic coarse-grained molecular dynamics study of the interaction of fullerene molecules with simple model cell membranes. We have analyzed bilayers consisting of lipid species with different degrees of unsaturation and a variety of cholesterol fractions. Addition of fullerene particles to phase-segregated ternary membranes is also investigated in the context of the lipid raft model for the organization of the cell membrane. Fullerene addition to lipid membranes modifies their structural properties like thickness, area and internal ordering of the lipid species, as well as dynamical aspects such as molecular diffusion and cholesterol flip-flop. Interestingly, we show that phase-segregating ternary lipid membranes accumulate fullerene molecules preferentially in the liquid-disordered domains promoting phase-segregation and domain alignment across the membrane. Lipid membrane internal ordering determines the behavior and distribution of fullerene particle, and this, in turn, determines the influence of fullerene on the membrane. Lipid membranes are good solvents of fullerene molecules, and in particular those with low internal ordering. Preference of fullerene molecules to be dissolved in the more disordered hydrophobic regions of a lipid bilayer and the consequent alteration of its phase behavior may have important consequences on the activity of biological cell membranes and on the bioconcentration of fullerene in living organisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Adams, Mark; Wang, Eric; Zhuang, Xiaohong; Klauda, Jeffery B
2017-11-21
The lipid composition of bovine and human ocular lens membranes has been probed, and a variety of lipids have been found including phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL) with cholesterol being present in particularly high concentrations. In this study, we use the all-atom CHARMM36 force field to simulate binary, ternary, and quaternary mixtures as models of the ocular lens. High concentration of cholesterol, in combination with different and varying diversity of phospholipids (PL) and sphingolipids (SL), affect the structure of the ocular lens lipid bilayer. The following analyses were done for each simulation: surface area per lipid, component surface area per lipid, deuterium order parameters (S CD ), electron density profiles (EDP), membrane thickness, hydrogen bonding, radial distribution functions, clustering, and sterol tilt angle distribution. The S CD show significant bilayer alignment and packing in cholesterol-rich bilayers. The EDP show the transition from liquid crystalline to liquid ordered with the addition of cholesterol. Hydrogen bonds in our systems show the tendency for intramolecular interactions between cholesterol and fully saturated lipid tails for less complex bilayers. But with an increased number of components in the bilayer, the acyl chain of the lipids becomes a less important characteristic, and the headgroup of the lipid becomes more significant. Overall, cholesterol is the driving force of membrane structure of the ocular lens membrane where interactions between cholesterol, PL, and SL determine structure and function of the biomembrane. The goal of this work is to develop a baseline for further study of more physiologically realistic ocular lens lipid membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2017 Elsevier B.V. All rights reserved.
Lai, Yen-Ting; Cheng, Chao-Sheng; Liu, Yu-Nan; Liu, Yaw-Jen; Lyu, Ping-Chiang
2008-09-01
Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding. 2008 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Chris H.; Read, Randy J.; Deane, Janet E., E-mail: jed55@cam.ac.uk
A 1.8 Å resolution structure of the sphingolipid activator protein saposin A has been determined at pH 4.8, the physiologically relevant lysosomal pH for hydrolase enzyme activation and lipid-transfer activity. The saposins are essential cofactors for the normal lysosomal degradation of complex glycosphingolipids by acid hydrolase enzymes; defects in either saposin or hydrolase function lead to severe metabolic diseases. Saposin A (SapA) activates the enzyme β-galactocerebrosidase (GALC), which catalyzes the breakdown of β-d-galactocerebroside, the principal lipid component of myelin. SapA is known to bind lipids and detergents in a pH-dependent manner; this is accompanied by a striking transition from amore » ‘closed’ to an ‘open’ conformation. However, previous structures were determined at non-lysosomal pH. This work describes a 1.8 Å resolution X-ray crystal structure determined at the physiologically relevant lysosomal pH 4.8. In the absence of lipid or detergent at pH 4.8, SapA is observeed to adopt a conformation closely resembling the previously determined ‘closed’ conformation, showing that pH alone is not sufficient for the transition to the ‘open’ conformation. Structural alignments reveal small conformational changes, highlighting regions of flexibility.« less
Draeger, A; Monastyrskaya, K; Burkhard, F C; Wobus, A M; Moss, S E; Babiychuk, E B
2003-10-15
Muscle contraction implies flexibility in combination with force resistance and requires a high degree of sarcolemmal organization. Smooth muscle cells differentiate largely from mesenchymal precursor cells and gradually assume a highly periodic sarcolemmal organization. Skeletal muscle undergoes an even more striking differentiation programme, leading to cell fusion and alignment into myofibrils. The lipid bilayer of each cell type is further segregated into raft and non-raft microdomains of distinct lipid composition. Considering the extent of developmental rearrangement in skeletal muscle, we investigated sarcolemmal microdomain organization in skeletal and smooth muscle cells. The rafts in both muscle types are characterized by marker proteins belonging to the annexin family which localize to the inner membrane leaflet, as well as glycosyl-phosphatidyl-inositol (GPI)-anchored enzymes attached to the outer leaflet. We demonstrate that the profound structural rearrangements that occur during skeletal muscle maturation coincide with a striking decrease in membrane lipid segregation, downregulation of annexins 2 and 6, and a significant decrease in raft-associated 5'-nucleotidase activity. The relative paucity of lipid rafts in mature skeletal in contrast to smooth muscle suggests that the organization of sarcolemmal microdomains contributes to the muscle-specific differences in stimulatory responses and contractile properties.
Role of Conserved Proline Residues in Human Apolipoprotein A-IV Structure and Function*
Deng, Xiaodi; Walker, Ryan G.; Morris, Jamie; Davidson, W. Sean; Thompson, Thomas B.
2015-01-01
Apolipoprotein (apo)A-IV is a lipid emulsifying protein linked to a range of protective roles in obesity, diabetes, and cardiovascular disease. It exists in several states in plasma including lipid-bound in HDL and chylomicrons and as monomeric and dimeric lipid-free/poor forms. Our recent x-ray crystal structure of the central domain of apoA-IV shows that it adopts an elongated helical structure that dimerizes via two long reciprocating helices. A striking feature is the alignment of conserved proline residues across the dimer interface. We speculated that this plays important roles in the structure of the lipid-free protein and its ability to bind lipid. Here we show that the systematic conversion of these prolines to alanine increased the thermodynamic stability of apoA-IV and its propensity to oligomerize. Despite the structural stabilization, we noted an increase in the ability to bind and reorganize lipids and to promote cholesterol efflux from cells. The novel properties of these mutants allowed us to isolate the first trimeric form of an exchangeable apolipoprotein and characterize it by small-angle x-ray scattering and chemical cross-linking. The results suggest that the reciprocating helix interaction is a common feature of all apoA-IV oligomers. We propose a model of how self-association of apoA-IV can result in spherical lipoprotein particles, a model that may have broader applications to other exchangeable apolipoprotein family members. PMID:25733664
Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets.
Lu, Xinglin; Feng, Xunda; Werber, Jay R; Chu, Chiheng; Zucker, Ines; Kim, Jae-Hong; Osuji, Chinedum O; Elimelech, Menachem
2017-11-14
The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacterium Escherichia coli , GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.
Cholesterol orientation and tilt modulus in DMPC bilayers
Khelashvili, George; Pabst, Georg; Harries, Daniel
2010-01-01
We performed molecular dynamics (MD) simulations of hydrated bilayers containing mixtures of dimyristoylphosphatidylcholine (DMPC) and Cholesterol at various ratios, to study the effect of cholesterol concentration on its orientation, and to characterize the link between cholesterol tilt and overall phospholipid membrane organization. The simulations show a substantial probability for cholesterol molecules to transiently orient perpendicular to the bilayer normal, and suggest that cholesterol tilt may be an important factor for inducing membrane ordering. In particular, we find that as cholesterol concentration increases (1%–40% cholesterol) the average cholesterol orientation changes in a manner strongly (anti)correlated with the variation in membrane thickness. Furthermore, cholesterol orientation is found to be determined by the aligning force exerted by other cholesterol molecules. To quantify this aligning field, we analyzed cholesterol orientation using, to our knowledge, the first estimates of the cholesterol tilt modulus χ from MD simulations. Our calculations suggest that the aligning field that determines χ is indeed strongly linked to sterol composition. This empirical parameter (χ) should therefore become a useful quantitative measure to describe cholesterol interaction with other lipids in bilayers, particularly in various coarse-grained force fields. PMID:20518573
Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers.
Arseneault, Marjolaine; Bédard, Sarah; Boulet-Audet, Maxime; Pézolet, Michel
2010-03-02
Bovine lactoferricin (LfcinB) is an antimicrobial peptide obtained from the pepsin cleavage of lactoferrin. The activity of LfcinB has been extensively studied on diverse pathogens, but its mechanism of action still has to be elucidated. Because of its nonspecificity, its mode of action is assumed to be related to interactions with membranes. In this study, the interaction of LfcinB with a negatively charged monolayer of dipalmitoylphosphatidylglycerol has been investigated as a function of the surface pressure of the lipid film using in situ Brewster angle and polarization modulation infrared reflection absorption spectroscopy and on transferred monolayers by atomic force microscopy and polarized attenuated total reflection infrared spectroscopy. The data show clearly that LfcinB forms stable films at the air-water interface. They also reveal that the interaction of LfcinB with the lipid monolayer is modulated by the surface pressure. At low surface pressure, LfcinB inserts within the lipid film with its long molecular axis oriented mainly parallel to the acyl chains, while at high surface pressure, LfcinB is adsorbed under the lipid film, the hairpin being preferentially aligned parallel to the plane of the interface. The threshold for which the behavior changes is 20 mN/m. At this critical surface pressure, LfcinB interacts with the monolayer to form discoidal lipid-peptide assemblies. This structure may actually represent the mechanism of action of this peptide. The results obtained on monolayers are correlated by fluorescent probe release measurements of dye-containing vesicles made of lipids in different phases and support the important role of the lipid fluidity and packing on the activity of LfcinB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poad, Berwyck L. J.; Zheng, Xueyun; Mitchell, Todd W.
One of the most significant challenges in contemporary lipidomics lies in the separation and identification of lipid isomers that differ only in site(s) of unsaturation or geometric configuration of the carbon-carbon double bonds. While analytical separation techniques including ion mobility spectrometry (IMS) and liquid chromatography (LC) can separate isomeric lipids under appropriate conditions, conventional tandem mass spectrometry cannot provide unequivocal identification. To address this challenge, we have implemented ozone-induced dissociation (OzID) in-line with LC, IMS and high resolution mass spectrometry. Modification of an IMS- capable quadrupole time-of-flight mass spectrometer was undertaken to allow the introduction of ozone into the high-pressuremore » trapping ion funnel region preceding the IMS cell. This enabled the novel LC-OzID-IMS-MS configuration where ozonolysis of ionized lipids occurred rapidly (10 ms) without prior mass-selection. LC-elution time alignment combined with accurate mass and arrival time extraction of ozonolysis products facilitated correlation of precursor and product ions without mass-selection (and associated reductions in duty cycle). Unsaturated lipids across 11 classes were examined using this workflow in both positive and negative ion modalities and in all cases the positions of carbon-carbon double bonds were unequivocally assigned based on predictable OzID transitions. Under these conditions geometric isomers exhibited different IMS arrival time distributions and distinct OzID product ion ratios providing a means for discrimination of cis/trans double bonds in complex lipids. The combination of OzID with multidimensional separations shows significant promise for facile profiling of unsaturation patterns within complex lipidomes.« less
Xia, Yan; Li, Ming; Kučerka, Norbert; Li, Shutao; Nieh, Mu-Ping
2015-02-01
We have designed and constructed a temperature-controllable shear flow cell for in-situ study on flow alignable systems. The device has been tested in the neutron diffraction and has the potential to be applied in the small angle neutron scattering configuration to characterize the nanostructures of the materials under flow. The required sample amount is as small as 1 ml. The shear rate on the sample is controlled by the flow rate produced by an external pump and can potentially vary from 0.11 to 3.8 × 10(5) s(-1). Both unidirectional and oscillational flows are achievable by the setting of the pump. The instrument is validated by using a lipid bicellar mixture, which yields non-alignable nanodisc-like bicelles at low T and shear-alignable membranes at high T. Using the shear cell, the bicellar membranes can be aligned at 31 °C under the flow with a shear rate of 11.11 s(-1). Multiple high-order Bragg peaks are observed and the full width at half maximum of the "rocking curve" around the Bragg's condition is found to be 3.5°-4.1°. It is noteworthy that a portion of the membranes remains aligned even after the flow stops. Detailed and comprehensive intensity correction for the rocking curve has been derived based on the finite rectangular sample geometry and the absorption of the neutrons as a function of sample angle [See supplementary material at http://dx.doi.org/10.1063/1.4908165 for the detailed derivation of the absorption correction]. The device offers a new capability to study the conformational or orientational anisotropy of the solvated macromolecules or aggregates induced by the hydrodynamic interaction in a flow field.
Yu, Ying; Wang, Dong; Sun, Dong-Xiao; Xu, Gui-Yun; Li, Jun-Ying; Zhang, Yuan
2011-07-01
Liver fatty acid-binding protein (L-FABP) is closely related to intracellular transportation and deposition of lipids. A positive differential displayed fragment was found in the liver tissue among Silkie (CC), CAU-brown chicken (CD), and their reciprocal hybrids (CD and DC) at 8 weeks-old using differential display RT-PCR techniques (DDRT-PCR). Through recycling, sequencing, and alignment analysis, the fragment was identified as chicken liver fatty acid-binding protein gene (L-FABP, GenBank accession number AY321365). Reverse Northern dot blot and semi-quantitative RT-PCR revealed that the avian L-FABP gene was over-expressed in the liver tissue of the reciprocal hybrids (CD and DC) compared to their parental lines (CC and DD), which was consistent with the fact that higher abdomen fat weight and wider inter-muscular fat width observed in the reciprocal hybrids. Considering the higher expression of L-FABP may contribute to the increased lipid deposition in the hybrid chickens, the functional study of avian L-FABP is warranted in future.
Bickford, Justin S; Nick, Harry S
2013-12-01
Isoprenoid lipid carriers are essential in protein glycosylation and bacterial cell envelope biosynthesis. The enzymes involved in their metabolism (synthases, kinases and phosphatases) are therefore critical to cell viability. In this review, we focus on two broad groups of isoprenoid pyrophosphate phosphatases. One group, containing phosphatidic acid phosphatase motifs, includes the eukaryotic dolichyl pyrophosphate phosphatases and proposed recycling bacterial undecaprenol pyrophosphate phosphatases, PgpB, YbjB and YeiU/LpxT. The second group comprises the bacterial undecaprenol pyrophosphate phosphatase, BacA/UppP, responsible for initial formation of undecaprenyl phosphate, which we predict contains a tyrosine phosphate phosphatase motif resembling that of the tumour suppressor, phosphatase and tensin homologue (PTEN). Based on protein sequence alignments across species and 2D structure predictions, we propose catalytic and lipid recognition motifs unique to BacA/UppP enzymes. The verification of our proposed active-site residues would provide new strategies for the development of substrate-specific inhibitors which mimic both the lipid and pyrophosphate moieties, leading to the development of novel antimicrobial agents.
Illingworth, R. F.; Rose, A. H.; Beckett, A.
1973-01-01
Eighty to ninety percent of vegetative cells of Saccharomyces cerevisiae DCL 740 incubated in KCl-acetate medium form asci, the majority of which are four-spored. Ascospores are visible in asci after about 24 hr, and spore formation is complete after about 48 hr. The dry weight of the cells increases by about 75% during 48 hr of incubation, while the lipid content of the cells increases by a factor of four. The increase in lipid content is attributed mainly to an increased synthesis of sterol esters and triacylglycerols and to a lesser extent of phospholipids. The phospholipid and sterol compositions do not change appreciably, but there is a marked increase in the proportion of unsaturated fatty acid residues in ascan lipids. Uniformly labeled 14C-acetate is incorporated mainly into sterol esters and triacylglycerols and phospholipids. Pulse-labeling by adding acetate-U-14C to sporulating cultures and harvesting after a further 6 hr of incubation reveal two main periods of acetate incorporation, namely between 0 and 18 hr, and between 24 and 30 hr. Electron micrographs of thin sections through developing asci show that the principal changes in fine structure occur between 18 and 24 hr and include the appearance of numerous electron-transparent vesicles which become aligned around the meiotic nucleus, and the laying down of extensive endoplasmic reticulum membranes. Changes in fine structure are discussed in relation to the alterations in lipid content and composition of asci. Images PMID:4569408
Transmembrane Polyproline Helix.
Kubyshkin, Vladimir; Grage, Stephan L; Bürck, Jochen; Ulrich, Anne S; Budisa, Nediljko
2018-05-03
The third most abundant polypeptide conformation in nature, the polyproline-II helix, is a polar, extended secondary structure with a local organization stabilized by intercarbonyl interactions within the peptide chain. Here we design a hydrophobic polyproline-II helical peptide based on an oligomeric octahydroindole-2-carboxylic acid scaffold and demonstrate its transmembrane alignment in model lipid bilayers by means of solid-state 19 F NMR. As result, we provide a first example of a purely artificial transmembrane peptide with a structural organization that is not based on hydrogen-bonding.
Pawlak, Zenon; Gadomski, Adam; Sojka, Michal; Urbaniak, Wieslaw; Bełdowski, Piotr
2016-10-01
The amphoteric effect on the friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution. The cartilage surface was characterized using a combination of the pH, wettability, as well as the interfacial energy and friction coefficient testing methods to support lamellar-repulsive mechanism of hydration lubrication. It has been confirmed experimentally that phospholipidic multi-bilayers are essentially described as lamellar frictionless lubricants protecting the surface of the joints against wear. At the hydrophilicity limit, the low friction would then be due to (a) lamellar slippage of bilayers and (b) a short-range (nanometer-scale) repulsion between the interfaces of negatively charged (PO4(-)) cartilage surfaces, and in addition, contribution of the extracellular matrix (ECM) collagen fibers, hyaluronate, proteoglycans aggregates (PGs), glycoprotein termed lubricin and finally, lamellar PLs phases. In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Isabettini, Stéphane; Massabni, Sarah; Hodzic, Arnel; Durovic, Dzana; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Windhab, Erich J; Walde, Peter; Kuster, Simon
2017-08-09
Lanthanide ion (Ln 3+ ) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln 3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln 3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln 3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy 3+ and parallel alignment of those containing Tm 3+ . Moreover, samples with chelated Yb 3+ were more alignable than the Tm 3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln 3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln 3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.
NASA Astrophysics Data System (ADS)
Sahu, Indra D.; Hustedt, Eric J.; Ghimire, Harishchandra; Inbaraj, Johnson J.; McCarrick, Robert M.; Lorigan, Gary A.
2014-12-01
An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides. We measured an internitroxide distance of 15.3 Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3 Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yan; Li, Ming; Kučerka, Norbert
We have designed and constructed a temperature-controllable shear flow cell for in-situ study on flow alignable systems. The device has been tested in the neutron diffraction and has the potential to be applied in the small angle neutron scattering configuration to characterize the nanostructures of the materials under flow. The required sample amount is as small as 1 ml. The shear rate on the sample is controlled by the flow rate produced by an external pump and can potentially vary from 0.11 to 3.8 × 10{sup 5} s{sup −1}. Both unidirectional and oscillational flows are achievable by the setting ofmore » the pump. The instrument is validated by using a lipid bicellar mixture, which yields non-alignable nanodisc-like bicelles at low T and shear-alignable membranes at high T. Using the shear cell, the bicellar membranes can be aligned at 31 °C under the flow with a shear rate of 11.11 s{sup −1}. Multiple high-order Bragg peaks are observed and the full width at half maximum of the “rocking curve” around the Bragg’s condition is found to be 3.5°–4.1°. It is noteworthy that a portion of the membranes remains aligned even after the flow stops. Detailed and comprehensive intensity correction for the rocking curve has been derived based on the finite rectangular sample geometry and the absorption of the neutrons as a function of sample angle [See supplementary material at http://dx.doi.org/10.1063/1.4908165 for the detailed derivation of the absorption correction]. The device offers a new capability to study the conformational or orientational anisotropy of the solvated macromolecules or aggregates induced by the hydrodynamic interaction in a flow field.« less
Orthogonal functionalization of nanoporous substrates: control of 3D surface functionality.
Lazzara, Thomas D; Kliesch, Torben-Tobias; Janshoff, Andreas; Steinem, Claudia
2011-04-01
Anodic aluminum oxide (AAO) membranes with aligned, cylindrical, nonintersecting pores were selectively functionalized in order to create dual-functionality substrates with different pore-rim and pore-interior surface functionalities, using silane chemistry. We used a two-step process involving an evaporated thin gold film to protect the underlying surface functionality of the pore rims. Subsequent treatment with oxygen plasma of the modified AAO membrane removed the unprotected organic functional groups, i.e., the pore-interior surface. After gold removal, the substrate became optically transparent, and displayed two distinct surface functionalities, one at the pore-rim surface and another at the pore-interior surface. We achieved a selective hydrophobic functionalization with dodecyl-trichlorosilane of either the pore rims or the pore interiors. The deposition of planar lipid membranes on the functionalized areas by addition of small unilamellar vesicles occurred in a predetermined fashion. Small unilamellar vesicles only ruptured upon contact with the hydrophobic substrate regions forming solid supported hybrid bilayers. In addition, pore-rim functionalization with dodecyl-trichlorosilane allowed the formation of pore-spanning hybrid lipid membranes as a result of giant unilamellar vesicle rupture. Confocal laser scanning microscopy was employed to identify the selective spatial localization of the adsorbed fluorescently labeled lipids. The corresponding increase in the AAO refractive index due to lipid adsorption on the hydrophobic regions was monitored by optical waveguide spectroscopy. This simple orthogonal functionalization route is a promising method to control the three-dimensional surface functionality of nanoporous films. © 2011 American Chemical Society
Bird, Susan S.; Marur, Vasant R.; Stavrovskaya, Irina G.; Kristal, Bruce S.
2012-01-01
The increased presence of synthetic trans fatty acids into western diets has been shown to have deleterious effects on physiology and raising an individual’s risk of developing metabolic disease, cardiovascular disease, and stroke. The importance of these fatty acids for health and the diversity of their (patho) physiological effects suggest that not only should the free trans fatty acids be studied, but that monitoring the presence of these fats into the side-chains of biological lipids, such as glycerophospholipids, is also essential. We developed a high resolution LC-MS method that quantitatively monitors the major lipid classes found in biospecimens in an efficient, sensitive and robust manner while also characterizing individual lipid side-chains through the use of HCD fragmentation and chromatographic alignment. We herein show how this previously described reversed phase method can baseline separate the cis-trans isomers of phosphatidylglycerol and phosphatidylcholine (PC) with two 18:1 side chains, in both positive and negative mode, as neat solutions and when spiked into a biological matrix. Endogenous PC (18:1/18:1) cis and PC (18:1/18:1) trans isomers were examined in mitochondrial and serum profiling studies, where rats were fed diets enriched in either trans 18:1 fatty acids, or cis 18:1 fatty acids. In this study, we determined the cis:trans isomer ratios of PC (18:1/18:1) and related this ratio to dietary composition. This generalized LC-MS method enables the monitoring of trans fats in biological lipids in the context of a non-targeted method, allowing for relative quantitation and enhanced identification of unknown lipids in complex matrices. PMID:22656324
Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing.
Baumgartl, Martin; Gottschall, Thomas; Abreu-Afonso, Javier; Díez, Antonio; Meyer, Tobias; Dietzek, Benjamin; Rothhardt, Manfred; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas
2012-09-10
An environmentally-stable low-repetition rate fiber oscillator is developed to produce narrow-bandwidth pulses with several tens of picoseconds duration. Based on this oscillator an alignment-free all-fiber laser for multi-photon microscopy is realized using in-fiber frequency conversion based on four-wave-mixing. Both pump and Stokes pulses for coherent anti-Stokes Raman scattering (CARS) microscopy are readily available from one fiber end, intrinsically overlapped in space and time, which drastically simplifies the experimental handling for the user. The complete laser setup is mounted on a home-built laser scanning microscope with small footprint. High-quality multimodal microscope images of biological tissue are presented probing the CH-stretching resonance of lipids at an anti-Stokes Raman-shift of 2845 cm(-1) and second-harmonic generation of collagen. Due to its simplicity, compactness, maintenance-free operation, and ease-of-use the presented low-cost laser is an ideal source for bio-medical applications outside laser laboratories and in particular inside clinics.
Houang, Evelyne M; Bates, Frank S; Sham, Yuk Y; Metzger, Joseph M
2017-11-30
An all-atom phospholipid bilayer and triblock copolymer model was developed for molecular dynamics (MD) studies. These were performed to investigate the mechanism of interaction between membrane-stabilizing triblock copolymer P188 and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayers under applied lateral surface tension (γ) to model membrane mechanical stress. Results showed that P188 insertion is driven by the hydrophobic poly(propylene oxide) (PPO) core and dependent on bilayer area per lipid. Moreover, insertion of P188 increased the bilayer's resistance to mechanical rupture, as observed by a significant increase in the absolute lateral pressure required to disrupt the bilayer. To further investigate the specific chemical features of P188 underlying membrane stabilizer function, a series of MD simulations with triblock copolymers of the same class as P188 but of varying chemical composition and sizes were performed. Results showed that triblock copolymer insertion into the lipid bilayer is dependent on overall copolymer hydrophobicity, with higher copolymer hydrophobicity requiring a reduced bilayer area per lipid ratio for insertion. Further analysis revealed that the effect of copolymer insertion on membrane mechanical integrity was also dependent on hydrophobicity. Here, P188 insertion significantly increased the absolute apparent lateral pressure required to rupture the POPC bilayer, thereby protecting the membrane against mechanical stress. In marked contrast, highly hydrophobic copolymers decreased the lateral pressure necessary for membrane rupture and thus rendering the membrane significantly more susceptible to mechanical stress. These new in silico findings align with recent experimental findings using synthetic lipid bilayers and in muscle cells in vitro and mouse models in vivo. Collectively, these data underscore the importance of PEO-PPO-PEO copolymer chemical composition in copolymer-based muscle membrane stabilization in vitro and in vivo. All-atom modeling with MD simulations holds promise for investigating novel copolymers with enhanced membrane interacting properties.
Lee, Jonathan R. I.; Bagge-Hansen, Michael; Tunuguntla, Ramya; ...
2015-04-15
Here, phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. Inmore » this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ~30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.« less
Electrodeformation of multi-bilayer spherical concentric membranes by AC electric fields
NASA Astrophysics Data System (ADS)
Lira-Escobedo, J.; Arauz-Lara, J.; Aranda-Espinoza, H.; Adlerz, K.; Viveros-Mendez, P. X.; Aranda-Espinoza, S.
2017-09-01
It is now well established that external stresses alter the behaviour of cells, where such alterations can be as profound as changes in gene expression. A type of stresses of particular interest are those due to alternating-current (AC) electric fields. The effect of AC fields on cells is still not well understood, in particular it is not clear how these fields affect the cell nucleus and other organelles. Here, we propose that one possible mechanism is through the deformation of the membranes. In order to investigate the effect of AC fields on the morphological changes of the cell organelles, we modelled the cell as two concentric bilayer membranes. This model allows us to obtain the deformations induced by the AC field by balancing the elastic energy and the work done by the Maxwell stresses. Morphological phase diagrams are obtained as a function of the frequency and the electrical properties of the media and membranes. We demonstrate that the organelle shapes can be changed without modifying the shape of the external cell membrane and that the organelle deformation transitions can be used to measure, for example, the conductivity of the nucleus.
Villa, Juan A.; Cabezas, Matilde; de la Cruz, Fernando
2014-01-01
Triacylglycerols and wax esters are synthesized as energy storage molecules by some proteobacteria and actinobacteria under stress. The enzyme responsible for neutral lipid accumulation is the bifunctional wax ester synthase/acyl-coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT). Structural modeling of WS/DGAT suggests that it can adopt an acyl-CoA-dependent acyltransferase fold with the N-terminal and C-terminal domains connected by a helical linker, an architecture demonstrated experimentally by limited proteolysis. Moreover, we found that both domains form an active complex when coexpressed as independent polypeptides. The structural prediction and sequence alignment of different WS/DGAT proteins indicated catalytically important motifs in the enzyme. Their role was probed by measuring the activities of a series of alanine scanning mutants. Our study underscores the structural understanding of this protein family and paves the way for their modification to improve the production of neutral lipids. PMID:24296496
A Comparative Study of Human Saposins.
Garrido-Arandia, María; Cuevas-Zuviría, Bruno; Díaz-Perales, Araceli; Pacios, Luis F
2018-02-14
Saposins are small proteins implicated in trafficking and loading of lipids onto Cluster of Differentiation 1 (CD1) receptor proteins that in turn present lipid antigens to T cells and a variety of T-cell receptors, thus playing a crucial role in innate and adaptive immune responses in humans. Despite their low sequence identity, the four types of human saposins share a similar folding pattern consisting of four helices linked by three conserved disulfide bridges. However, their lipid-binding abilities as well as their activities in extracting, transporting and loading onto CD1 molecules a variety of sphingo- and phospholipids in biological membranes display two striking characteristics: a strong pH-dependence and a structural change between a compact, closed conformation and an open conformation. In this work, we present a comparative computational study of structural, electrostatic, and dynamic features of human saposins based upon their available experimental structures. By means of structural alignments, surface analyses, calculation of pH-dependent protonation states, Poisson-Boltzmann electrostatic potentials, and molecular dynamics simulations at three pH values representative of biological media where saposins fulfill their function, our results shed light into their intrinsic features. The similarities and differences in this class of proteins depend on tiny variations of local structural details that allow saposins to be key players in triggering responses in the human immune system.
NASA Astrophysics Data System (ADS)
Dabkowska, Aleksandra P.; Foglia, Fabrizia; Lawrence, M. Jayne; Lorenz, Christian D.; McLain, Sylvia E.
2011-12-01
The solution structure of the phosphocholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine (C3-PC) in 30 mol. % dimethylsulfoxide (DMSO)-water solutions has been determined by using neutron diffraction enhanced with isotopic substitution in combination with computer simulation techniques. By investigating the atomic scale hydration structure around the PC head group, a unique description of the displacement of water molecules by DMSO molecules is detailed around various locations of the head group. Specifically, DMSO molecules were found to be the most prevalent around the onium portion of the head group, with the dipoles of the DMSO molecules being aligned where the negatively charged oxygen can interact strongly with the positively charged lipid group. The phosphate group is also partially dehydrated by the presence of the DMSO molecules. However, around this group the bulkier positive end of the DMSO dipole is interacting with negatively charged groups of the lipid head group, the DMSO layer shows no obvious ordering as it cannot form hydrogen bonds with the oxygen atoms in the PO4 group such as water molecules can. Interestingly, DMSO-water contacts have also increased in the presence of the lipid molecule relative to DMSO-water contacts observed in pure DMSO/water solutions at similar concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
Evidence of a molecular boundary lubricant at snakeskin surfaces
Spinner, Marlene; Jaye, Cherno; Fischer, Daniel A.; Gorb, Stanislav N.; Weidner, Tobias
2015-01-01
During slithering locomotion the ventral scales at a snake's belly are in direct mechanical interaction with the environment, while the dorsal scales provide optical camouflage and thermoregulation. Recent work has demonstrated that compared to dorsal scales, ventral scales provide improved lubrication and wear protection. While biomechanic adaption of snake motion is of growing interest in the fields of material science and robotics, the mechanism for how ventral scales influence the friction between the snake and substrate, at the molecular level, is unknown. In this study, we characterize the outermost surface of snake scales using sum frequency generation (SFG) spectra and near-edge X-ray absorption fine structure (NEXAFS) images collected from recently shed California kingsnake (Lampropeltis californiae) epidermis. SFG's nonlinear optical selection rules provide information about the outermost surface of materials; NEXAFS takes advantage of the shallow escape depth of the electrons to probe the molecular structure of surfaces. Our analysis of the data revealed the existence of a previously unknown lipid coating on both the ventral and dorsal scales. Additionally, the molecular structure of this lipid coating closely aligns to the biological function: lipids on ventral scales form a highly ordered layer which provides both lubrication and wear protection at the snake's ventral surface. PMID:26655468
Evidence of a molecular boundary lubricant at snakeskin surfaces.
Baio, Joe E; Spinner, Marlene; Jaye, Cherno; Fischer, Daniel A; Gorb, Stanislav N; Weidner, Tobias
2015-12-06
During slithering locomotion the ventral scales at a snake's belly are in direct mechanical interaction with the environment, while the dorsal scales provide optical camouflage and thermoregulation. Recent work has demonstrated that compared to dorsal scales, ventral scales provide improved lubrication and wear protection. While biomechanic adaption of snake motion is of growing interest in the fields of material science and robotics, the mechanism for how ventral scales influence the friction between the snake and substrate, at the molecular level, is unknown. In this study, we characterize the outermost surface of snake scales using sum frequency generation (SFG) spectra and near-edge X-ray absorption fine structure (NEXAFS) images collected from recently shed California kingsnake (Lampropeltis californiae) epidermis. SFG's nonlinear optical selection rules provide information about the outermost surface of materials; NEXAFS takes advantage of the shallow escape depth of the electrons to probe the molecular structure of surfaces. Our analysis of the data revealed the existence of a previously unknown lipid coating on both the ventral and dorsal scales. Additionally, the molecular structure of this lipid coating closely aligns to the biological function: lipids on ventral scales form a highly ordered layer which provides both lubrication and wear protection at the snake's ventral surface. © 2015 The Author(s).
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
2017-10-20
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
Strandberg, Erik; Grau-Campistany, Ariadna; Wadhwani, Parvesh; Bürck, Jochen; Rabanal, Francesc; Ulrich, Anne S
2018-06-14
The amphipathic α-helical peptide KIA14 [(KIAGKIA) 2 -NH 2 ] was studied in membranes using circular dichroism and solid-state NMR spectroscopy to obtain global as well as local structural information. By analyzing 2 H NMR data from 10 analogues of KIA14 that were selectively labeled with Ala- d 3 , those positions that are properly folded into a helix could be determined within the membrane-bound peptide. The N-terminus was found to be unraveled, whereas positions 4-14 formed an ideal helix all the way to the C-terminus. The helicity did not change when Gly residues were replaced by Ala- d 3 but was reduced when Ile was replaced, indicating that large hydrophobic residues are required for membrane binding and helix formation. The reduced helicity was strongly correlated with a decrease in peptide-induced leakage from lipid vesicles. The orientation of the short KIA14 peptide was assessed in several lipid systems and compared with that of the longer KIA21 sequence [(KIAGKIA) 3 -NH 2 ]. In 1,2-dioleoyl- sn-glycero-3-phosphatidylcholine, both peptides are aligned flat on the membrane surface, whereas in 1,2-dimyristoyl- sn-glycero-3-phosphatidylcholine (DMPC)/1-myristoyl-2-hydroxy- sn-glycero-3-phosphatidylcholine (lyso-MPC) both are inserted into the membrane in an upright orientation. These two types of lipid systems had been selected for their strongly negative and positive spontaneous curvature, respectively. We propose that in these cases, the peptide orientation is largely determined by the lipid properties. On the other hand, in plain DMPC and 1,2-dilauroyl- sn-glycero-3-phosphatidylcholine, which have only a slight positive curvature, a marked difference in orientation is evident: the short KIA14 lies almost flat on the membrane surface, whereas the longer KIA21 is more tilted. We thus propose that out of the lipid systems tested here, DMPC (with hardly any curvature) is the least biased lipid system in which peptide orientation and realignment can be studied, allowing to compare and discriminate the intrinsic effects of the properties of the peptides as such.
Dynamics, Surface Electrostatics and Phase Properties of Nanoscale Curved Lipid Bilayers
NASA Astrophysics Data System (ADS)
Koolivand, Amir
Surface electrostatic potential of a lipid bilayer governs many vital functions of living cells. Several classes of proteins are known of exhibiting strong binding preferences to curved lipid bilayer surfaces. In this project we employed electron paramagnetic resonance (EPR) of a recently introduced phospholipid (IMTSL-PTE) bearing a pH-sensitive nitroxide covalently attached to the lipid head group to measure the surface electrostatics of the lipid membrane and nanopore-confined lipid bilayers as a function of the bilayer curvature. The pKa of the ionizable group of this lipid-based spin probe is reporting on the bilayer surface electrostatics potential by changes in the EPR spectra. Specifically, both rotational dynamics and magnetic parameters of the nitroxide are affected by the probe protonation. Effect of curvature on the surface electrostatic potential and dynamics of lipid bilayer was studied for POPG and DMPG unilamellar vesicles (ULVs). It was found that the magnitude of the negative surface electrostatic potential increased upon decrease in the vesicle diameter for the bilayers in the fluid phase; however, no significant changes were observed for DMPG ULVs in a gel phase. We speculate that biologically relevant fluid bilayer phase allows for a larger variability in the lipid packing density in the lipid polar head group region than a more ordered gel phase and it is likely that the lipid flip-flop is responsible for pH equilibration of IMTSL-PTE. The kinetic EPR study of nitroxide reduction showed that the rate of flip-flop is in the order of 10-5 s-1. The flip-flop rate constant increases when vesicle size deceases. Oxygen permeability measured by X-ban EPR decreases in higher curved vesicles---an observation that is consistent with a tighter packing in smaller vesicles. Partitioning of a small nitroxide molecule TEMPO into ULVs was measured by X-band (9 GHz) and W-band (95 GHz) EPR spectroscopy. The partitioning coefficient of this probe in the lipid phase of the bilayer was higher in smaller vesicles likely due to a larger number of defects in smaller vesicles allowing more water soluble molecules partitioning into lipid bilayers. However, the rotational correlation time for TEMPO slows down in smaller vesicles indicating an increase in the lipid packing. Pulsed EPR techniques, HYSCORE and ESEEM spectroscopy, were used to detect local water concentration and distinguish the hydrogen bonded water to the nitroxide from the bulk one. HYSCORE was then employed to investigate the effect of bilayer curvature on the water penetration into lipid bilayer and it was found that the higher curved lipids allow more water to penetrate into lipid bilayer as a result of more defects in the highly curved lipid vesicles. Nanopore-confined lipid bilayers formed inside ordered nanochannels of anodic aluminum oxide (AAO) have found many practical applications, serving as thermodynamically stable biophysical models of cellular membranes of concave curvature and allowing for stabilization of membrane proteins in functional conformations. It was found that surface potential of POPG lipids inside the AAO pores are higher than that of vesicles---the effect that is attributed to highly ordered and packed lipids inside the AAO nanopores. At pH=7.0 the AAO zeta potential was found to be -29+/-0.64 mV. Cytochrome C and poly glutamic acid as positively and negatively charged macromolecules in physiological pH (7.4) were used to prepare multilayer protein nanotubes and cytochrome c interaction with AAO was studied by CD and UV-Vis spectroscopy. Lipid nanotube arrays containing a transmembrane WALP peptide were also formed and these macroscopically aligned lipid nanotubes were studied by CD spectroscopy. The lipid phase transition of DMPC and binding of melittin, an antibacterial peptide model, were observed from a frequency change for the QCM quartz-AAO-Lipid as a promising "biosensor".
Tao, Yi-Fan; Qiang, Jun; Yin, Guo-Jun; Xu, Pao; Shi, Qiong; Bao, Jing-Wen
2017-10-01
MicroRNAs (miRNAs) play vital roles in modulating diverse metabolic processes in the liver, including lipid metabolism. Genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China, is susceptible to hepatic steatosis when reared in intensive culture systems. To investigate the miRNAs involved in GIFT lipid metabolism, two hepatic small RNA libraries from high-fat diet-fed and normal-fat diet-fed GIFT were constructed and sequenced using high-throughput sequencing technology. A total of 204 known and 56 novel miRNAs were identified by aligning the sequencing data with known Danio rerio miRNAs listed in miRBase 21.0. Six known miRNAs (miR-30a-5p, miR-34a, miR-145-5p, miR-29a, miR-205-5p, and miR-23a-3p) that were differentially expressed between the high-fat diet and normal-fat diet groups were validated by quantitative real-time PCR. Bioinformatics tools were used to predict the potential target genes of these differentially expressed miRNAs, and Gene Ontology enrichment analysis indicated that these miRNAs may play important roles in diet-induced hepatic steatosis in GIFT. Our results provide a foundation for further studies of the role of miRNAs in tilapia lipid homeostasis regulation, and may help to identify novel targets for therapeutic interventions to reduce the occurrence of fatty liver disease in farmed tilapia. Copyright © 2017. Published by Elsevier Ltd.
Analysis of Bacterial Lipooligosaccharides by MALDI-TOF MS with Traveling Wave Ion Mobility
NASA Astrophysics Data System (ADS)
Phillips, Nancy J.; John, Constance M.; Jarvis, Gary A.
2016-07-01
Lipooligosaccharides (LOS) are major microbial virulence factors displayed on the outer membrane of rough-type Gram-negative bacteria. These amphipathic glycolipids are comprised of two domains, a core oligosaccharide linked to a lipid A moiety. Isolated LOS samples are generally heterogeneous mixtures of glycoforms, with structural variability in both domains. Traditionally, the oligosaccharide and lipid A components of LOS have been analyzed separately following mild acid hydrolysis, although important acid-labile moieties can be cleaved. Recently, an improved method was introduced for analysis of intact LOS by MALDI-TOF MS using a thin layer matrix composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose. In addition to molecular ions, the spectra show in-source "prompt" fragments arising from regiospecific cleavage between the lipid A and oligosaccharide domains. Here, we demonstrate the use of traveling wave ion mobility spectrometry (TWIMS) for IMS-MS and IMS-MS/MS analyses of intact LOS from Neisseria spp. ionized by MALDI. Using IMS, the singly charged prompt fragments for the oligosaccharide and lipid A domains of LOS were readily separated into resolved ion plumes, permitting the extraction of specific subspectra, which led to increased confidence in assigning compositions and improved detection of less abundant ions. Moreover, IMS separation of precursor ions prior to collision-induced dissociation (CID) generated time-aligned, clean MS/MS spectra devoid of fragments from interfering species. Incorporating IMS into the profiling of intact LOS by MALDI-TOF MS exploits the unique domain structure of the molecule and offers a new means of extracting more detailed information from the analysis.
Afonin, Sergii; Dürr, Ulrich H N; Glaser, Ralf W; Ulrich, Anne S
2004-02-01
Solid state (19)F NMR revealed the conformation and alignment of the fusogenic peptide sequence B18 from the sea urchin fertilization protein bindin embedded in flat phospholipid bilayers. Single (19)F labels were introduced into nine distinct positions along the wild-type sequence by substituting each hydrophobic amino acid, one by one, with L-4-fluorophenylglycine. Their anisotropic chemical shifts were measured in uniaxially oriented membrane samples and used as orientational constraints to model the peptide structure in the membrane-bound state. Previous (1)H NMR studies of B18 in 30% TFE and in detergent micelles had shown that the peptide structure consists of two alpha-helical segments that are connected by a flexible hinge. This helix-break-helix motif was confirmed here by the solid-state (19)F NMR data, while no other secondary structure (beta-sheet, 3(10)-helix) was compatible with the set of orientational constraints. For both alpha-helical segments we found that the helical conformation extends all the way to the respective N- and C-termini of the peptide. Analysis of the corresponding tilt and azimuthal rotation angles showed that the N-terminal helix of B18 is immersed obliquely into the bilayer (at a tilt angle tau approximately 54 degrees), whereas the C-terminus is peripherally aligned (tau approximately 91 degrees). The azimuthal orientation of the two segments is consistent with the amphiphilic distribution of side-chains. The observed 'boomerang'-like mode of insertion into the membrane may thus explain how peptide binding leads to lipid dehydration and acyl chain perturbation as a prerequisite for bilayer fusion to occur. Copyright 2004 John Wiley & Sons, Ltd.
Anisotropic Brownian motion in ordered phases of DNA fragments.
Dobrindt, J; Rodrigo Teixeira da Silva, E; Alves, C; Oliveira, C L P; Nallet, F; Andreoli de Oliveira, E; Navailles, L
2012-01-01
Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.
Jasim, Anfal A.; Al-Bustan, Suzanne A.; Al-Kandari, Wafa; Al-Serri, Ahmad; AlAskar, Huda
2018-01-01
Common variants of Apolipoprotein A5 (APOA5) have been associated with lipid levels yet very few studies have reported full sequence data from various ethnic groups. The purpose of this study was to analyse the full APOA5 gene sequence to identify variants in 100 healthy Kuwaitis of Arab ethnicities and assess their association with variation in lipid levels in a cohort of 733 samples. Sanger method was used in the direct sequencing of the full 3.7 Kb APOA5 and multiple sequence alignment was used to identify variants. The complete APOA5 sequence in Kuwaiti Arabs has been deposited in GenBank (KJ401315). A total of 20 reported single nucleotide polymorphisms (SNPs) were identified. Two novel SNPs were also identified: a synonymous 2197G>A polymorphism at genomic position 116661525 and a 3′ UTR 3222 C>T polymorphism at genomic position 116660500 based on human genome assembly GRCh37/hg:19. Five SNPs along with the two novel SNPs were selected for validation in the cohort. Association of those SNPs with lipid levels was tested and minor alleles of three SNPs (rs2072560, rs2266788, and rs662799) were found significantly associated with TG and VLDL levels. This is the first study to report the full APOA5 sequence and SNPs in an Arab ethnic group. Analysis of the variants identified and comparison to other populations suggests a distinctive genetic component in Arabs. The positive association observed for rs2072560 and rs2266788 with TG and VLDL levels confirms their role in lipid metabolism. PMID:29686695
A theoretical study of diffusional transport over the alveolar surfactant layer.
Aberg, Christoffer; Sparr, Emma; Larsson, Marcus; Wennerström, Håkan
2010-10-06
In this communication, we analyse the passage of oxygen and carbon dioxide over the respiratory membrane. The lung surfactant membrane at the alveolar interface can have a very special arrangement, which affects the diffusional transport. We present a theoretical model for the diffusion of small molecules in membranes with a complex structure, and we specifically compare a membrane composed of a tubular bilayer network with a membrane consisting of a stack of bilayers. Oxygen and carbon dioxide differ in terms of their solubility in the aqueous and the lipid regions of the membrane, and we show that this difference clearly influences their transport properties in the different membrane structures. During normal respiration, the rate-limiting step for carbon dioxide transport is in the gas phase of the different compartments in the lung. For oxygen, on the other hand, the rate is limited by the transport between alveoli and the capillary blood vessels, including the lung surfactant membrane. In a membrane with a structure of a continuous tubular lipid network, oxygen transport is facilitated to a significant extent compared with the structure of aligned lipid bilayers. The model calculations in the present study show that transport of oxygen through the tubular structure is indeed ca 30 per cent faster than transport through a membrane composed of stacked bilayers. The tubular network will also facilitate the transport of apolar substances between the gas phase and the blood. Important examples are ethanol and other volatile liquids that can leave the blood through the lungs, and gaseous anaesthetics or volatile solvents that are inhaled. This exemplifies a new physiological role of a tubular lipid network in the lung surfactant membrane.
Membrane association and localization dynamics of the Ebola virus matrix protein VP40.
Gc, Jeevan B; Gerstman, Bernard S; Chapagain, Prem P
2017-10-01
The Ebola virus matrix protein VP40 is a major structural protein that provides the scaffolding for new Ebola virus particles. For this, VP40 is first trafficked to the lower leaflet of the plasma membrane (PM) in its dimeric form. Once associated with the PM, the VP40 dimers undergo structural rearrangements and oligomerize into hexamers and filaments that make up the virus matrix. Therefore, association of the VP40 dimers and their stabilization at the PM is a crucial step in the Ebola life-cycle. To understand the molecular details of the VP40 dimer-PM interactions, we investigated the dimer association with the inner leaflet of the PM using detailed all-atom molecular dynamics (MD) simulations. The formation of the dimer-PM complex is facilitated by the interactions of the VP40 lysine residues and the anionic lipids POPS, POPI, and PIP 2 in the PM. In contrast, the dimer fails to associate with a membrane without POPS, POPI, or PIP 2 lipids. We explored the mechanisms of the association and identified important residues and lipids involved in localization and stabilization of VP40 dimers at the PM. MD simulations elucidate the role of a C-terminal α-helix alignment parallel to the lipid bilayer surface as well as the creation of membrane defects that allow partial insertion of the hydrophobic residue V276 into the membrane to further stabilize the VP40 dimer-PM complex. Understanding the mechanisms of the VP40 dimer-PM association that facilitate oligomerization can be important for potentially targeting the VP40 for small molecules that can interfere with the virus life-cycle. Copyright © 2017 Elsevier B.V. All rights reserved.
Jasim, Anfal A; Al-Bustan, Suzanne A; Al-Kandari, Wafa; Al-Serri, Ahmad; AlAskar, Huda
2018-01-01
Common variants of Apolipoprotein A5 ( APOA 5) have been associated with lipid levels yet very few studies have reported full sequence data from various ethnic groups. The purpose of this study was to analyse the full APOA5 gene sequence to identify variants in 100 healthy Kuwaitis of Arab ethnicities and assess their association with variation in lipid levels in a cohort of 733 samples. Sanger method was used in the direct sequencing of the full 3.7 Kb APOA5 and multiple sequence alignment was used to identify variants. The complete APOA5 sequence in Kuwaiti Arabs has been deposited in GenBank (KJ401315). A total of 20 reported single nucleotide polymorphisms (SNPs) were identified. Two novel SNPs were also identified: a synonymous 2197G>A polymorphism at genomic position 116661525 and a 3' UTR 3222 C>T polymorphism at genomic position 116660500 based on human genome assembly GRCh37/hg:19. Five SNPs along with the two novel SNPs were selected for validation in the cohort. Association of those SNPs with lipid levels was tested and minor alleles of three SNPs (rs2072560, rs2266788, and rs662799) were found significantly associated with TG and VLDL levels. This is the first study to report the full APOA5 sequence and SNPs in an Arab ethnic group. Analysis of the variants identified and comparison to other populations suggests a distinctive genetic component in Arabs. The positive association observed for rs2072560 and rs2266788 with TG and VLDL levels confirms their role in lipid metabolism.
Chronobiology, endocrinology, and energy- and food-reward homeostasis.
Gonnissen, H K J; Hulshof, T; Westerterp-Plantenga, M S
2013-05-01
Energy- and food-reward homeostasis is the essential component for maintaining energy balance and its disruption may lead to metabolic disorders, including obesity and diabetes. Circadian alignment, quality sleep and sleep architecture in relation to energy- and food-reward homeostasis are crucial. A reduced sleep duration, quality sleep and rapid-eye movement sleep affect substrate oxidation, leptin and ghrelin concentrations, sleeping metabolic rate, appetite, food reward, hypothalamic-pituitary-adrenal (HPA)-axis activity, and gut-peptide concentrations, enhancing a positive energy balance. Circadian misalignment affects sleep architecture and the glucose-insulin metabolism, substrate oxidation, homeostasis model assessment of insulin resistance (HOMA-IR) index, leptin concentrations and HPA-axis activity. Mood disorders such as depression occur; reduced dopaminergic neuronal signaling shows decreased food reward. A good sleep hygiene, together with circadian alignment of food intake, a regular meal frequency, and attention for protein intake or diets, contributes in curing sleep abnormalities and overweight/obesity features by preventing overeating; normalizing substrate oxidation, stress, insulin and glucose metabolism including HOMA-IR index, and leptin, GLP-1 concentrations, lipid metabolism, appetite, energy expenditure and substrate oxidation; and normalizing food reward. Synchrony between circadian and metabolic processes including meal patterns plays an important role in the regulation of energy balance and body-weight control. Additive effects of circadian alignment including meal patterns, sleep restoration, and protein diets in the treatment of overweight and obesity are suggested. © 2013 The Authors. obesity reviews © 2013 International Association for the Study of Obesity.
Can we improve the nutritional quality of meat?
Scollan, Nigel D; Price, Eleri M; Morgan, Sarah A; Huws, Sharon A; Shingfield, Kevin J
2017-11-01
The nutritional value of meat is an increasingly important factor influencing consumer preferences for poultry, red meat and processed meat products. Intramuscular fat content and composition, in addition to high quality protein, trace minerals and vitamins are important determinants of nutritional value. Fat content of meat at retail has decreased substantially over the past 40 years through advances in animal genetics, nutrition and management and changes in processing techniques. Evidence of the association between diet and the incidence of human non-communicable diseases has driven an interest in developing production systems for lowering total SFA and trans fatty acid (TFA) content and enrichment of n-3 PUFA concentrations in meat and meat products. Typically, poultry and pork has a lower fat content, containing higher PUFA and lower TFA concentrations than lamb or beef. Animal genetics, nutrition and maturity, coupled with their rumen microbiome, are the main factors influencing tissue lipid content and relative proportions of SFA, MUFA and PUFA. Altering the fatty acid (FA) profile of lamb and beef is determined to a large extent by extensive plant and microbial lipolysis and subsequent microbial biohydrogenation of dietary lipid in the rumen, and one of the major reasons explaining the differences in lipid composition of meat from monogastrics and ruminants. Nutritional strategies can be used to align the fat content and FA composition of poultry, pork, lamb and beef with Public Health Guidelines for lowering the social and economic burden of chronic disease.
2012-01-01
Background Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres) conformers of the normal cellular prion protein (PrPC), with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. Findings Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. Conclusions This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels. PMID:22534096
Afonin, Sergii; Kubyshkin, Vladimir; Mykhailiuk, Pavel K; Komarov, Igor V; Ulrich, Anne S
2017-07-13
The cell-penetrating peptide SAP, which was designed as an amphipathic poly-l-proline helix II (PPII), was suggested to self-assemble into regular fibrils that are relevant for its internalization. Herein we have analyzed the structure of SAP in the membrane-bound state by solid-state 19 F-NMR, which revealed other structural states, in addition to the expected surface-aligned PPII. Trifluoromethyl-bicyclopentyl-glycine (CF 3 -Bpg) and two rigid isomers of trifluoromethyl-4,5-methanoprolines (CF 3 -MePro) were used as labels for 19 F-NMR analysis. The equilibria between different conformations of SAP were studied and were found to be shifted by the substituents at Pro-11. Synchrotron-CD results suggested that substituting Pro-11 by CF 3 -MePro governed the coil-to-PPII equilibrium in solution and in the presence of a lipid bilayer. Using CD and 19 F-NMR, we examined the slow kinetics of the association of SAP with membranes and the dependence of the SAP conformational dynamics on the lipid composition. The peptide did not bind to lipids in the solid ordered phase and aggregated only in the liquid ordered "raft"-like bilayers. Self-association could not be detected in solution or in the presence of liquid disordered membranes. Surface-bound amphipathic SAP in a nonaggregated state was structured as a mixture of nonideal extended conformations reflecting the equilibrium already present in solution, i.e., before binding to the membrane.
Ardhammar, Malin; Lincoln, Per; Nordén, Bengt
2002-11-26
Valuable information on protein-membrane organization may in principle be obtained from polarized-light absorption (linear dichroism, LD) measurement on shear-aligned lipid vesicle bilayers as model membranes. However, attempts to probe LD in the UV wavelength region (<250 nm) have so far failed because of strong polarized light scattering from the vesicles. Using sucrose to match the refractive index and suppress the light scattering of phosphatidylcholine vesicles, we have been able to detect LD bands also in the peptide-absorbing region (200-230 nm). The potential of refractive index matching in vesicle LD as a general method for studying membrane protein structure was investigated for the membrane pore-forming oligopeptide gramicidin incorporated into the liposome membranes. In the presence of sucrose, the LD signals arising from oriented tryptophan side chains as well as from n-->pi* and pi-->pi* transitions of the amide chromophore of the polypeptide backbone could be studied. The observation of a strongly negative LD for the first exciton transition ( approximately 204 nm) is consistent with a membrane-spanning orientation of two intertwined parallel gramicidin helices, as predicted by coupled-oscillator theory.
Membrane interaction of chrysophsin-1, a histidine-rich antimicrobial peptide from red sea bream.
Mason, A James; Bertani, Philippe; Moulay, Gilles; Marquette, Arnaud; Perrone, Barbara; Drake, Alex F; Kichler, Antoine; Bechinger, Burkhard
2007-12-25
Chrysophsin-1 is an amphipathic alpha-helical antimicrobial peptide produced in the gill cells of red sea bream. The peptide has broad range activity against both Gram-positive and Gram-negative bacteria but is more hemolytic than other antimicrobial peptides such as magainin. Here we explore the membrane interaction of chrysophsin-1 and determine its toxicity, in vitro, for human lung fibroblasts to obtain a mechanism for its antimicrobial activity and to understand the role of the unusual C-terminal RRRH sequence. At intermediate peptide concentrations, solid-state NMR methods reveal that chrysophsin-1 is aligned parallel to the membrane surface and the lipid acyl chains in mixed model membranes are destabilized, thereby being in agreement with models where permeabilization is an effect of transient membrane disruption. The C-terminal RRRH sequence was shown to have a large effect on the insertion of the peptide into membranes with differing lipid compositions and was found to be crucial for pore formation and toxicity of the peptide to fibroblasts. The combination of biophysical data and cell-based assays suggests likely mechanisms involved in both the antibiotic and toxic activity of chrysophsins.
NASA Astrophysics Data System (ADS)
Martinez-Espinoza, Maria Isabel; Maccagno, Massimo; Thea, Sergio; Alloisio, Marina
2018-01-01
Stable hydrosols of gold and silver nanoparticles coated with the quaternary-ammonium group endowed diacetylene DAAMM (N,N,N-trimethyl-3-(pentacosa-10,12-diynamido)propan-1-ammonium) were obtained through a ligand-exchange reaction leaving the morphology of the pristine cores unmodified. Photopolymerization of the chemisorbed diacetylene shell occurred in both red and blue phases thanks to the presence of internal, H-bondable amide functions in the monomer chain, which are supposed to help the formation of a packed bilayer on the metal surfaces. Multidisciplinary characterization of the polymerized samples, including spectroscopic, morphological and thermal techniques, highlighted that differences occur in the polymerization process on gold and silver nanoparticles under different experimental conditions, suggesting a higher affinity of the trimethylammonium headgroup for gold substrates in acidic media. With respect to the extensively investigated PCDA (pentacosa-10,12-diynoic acid), DAAMM showed reduced capability of photogenerating thick polymer shells, especially in the more delocalized blue form, probably because of the inefficiency of the cationic monomer to form the multi-bilayered architecture typical of the highly-performing, carboxyl-terminated diacetylene. On the other end, the inner cross-linked structure gives to poly(DAAMM)-coated nanohybrids increased stability in water with respect to self-assembled counterparts deriving from saturated cationic surfactants, making them a promising sensing platform for rapid and cost effective assays of real samples.
Hinsberger, Stefan; Hüsecken, Kristina; Groh, Matthias; Negri, Matthias; Haupenthal, Jörg; Hartmann, Rolf W
2013-11-14
The bacterial RNA polymerase (RNAP) is a validated target for broad spectrum antibiotics. However, the efficiency of drugs is reduced by resistance. To discover novel RNAP inhibitors, a pharmacophore based on the alignment of described inhibitors was used for virtual screening. In an optimization process of hit compounds, novel derivatives with improved in vitro potency were discovered. Investigations concerning the molecular mechanism of RNAP inhibition reveal that they prevent the protein-protein interaction (PPI) between σ(70) and the RNAP core enzyme. Besides of reducing RNA formation, the inhibitors were shown to interfere with bacterial lipid biosynthesis. The compounds were active against Gram-positive pathogens and revealed significantly lower resistance frequencies compared to clinically used rifampicin.
Shen, Yue; Liu, Mingzhe; Wang, Lili; Li, Zhuowei; Taylor, David C; Li, Zhixi; Zhang, Meng
2016-04-01
Caleosins are a class of Ca(2+) binding proteins that appear to be ubiquitous in plants. Some of the main proteins embedded in the lipid monolayer of lipid droplets, caleosins, play critical roles in the degradation of storage lipids during germination and in lipid trafficking. Some of them have been shown to have histidine-dependent peroxygenase activity, which is believed to participate in stress responses in Arabidopsis. In the model plant Arabidopsis thaliana, caleosins have been examined extensively. However, little is known on a genome-wide scale about these proteins in other members of the Brassicaceae. In this study, 51 caleosins in Brassica plants and Arabidopsis lyrata were investigated and analyzed in silico. Among them, 31 caleosins, including 7 in A. lyrata, 11 in Brassica oleracea and 13 in Brassica napus, are herein identified for the first time. Segmental duplication was the main form of gene expansion. Alignment, motif and phylogenetic analyses showed that Brassica caleosins belong to either the H-family or the L-family with different motif structures and physicochemical properties. Our findings strongly suggest that L-caleosins are evolved from H-caleosins. Predicted phosphorylation sites were differentially conserved in H-caleosin and L-caleosins, respectively. 'RY-repeat' elements and phytohormone-related cis-elements were identified in different caleosins, which suggest diverse physiological functions. Gene structure analysis indicated that most caleosins (38 out of 44) contained six exons and five introns and their intron phases were highly conserved. Structurally integrated caleosins, such as BrCLO3-3 and BrCLO4-2, showed high expression levels and may have important roles. Some caleosins, such as BrCLO2 and BoCLO8-2, lost motifs of the calcium binding domain, proline knot, potential phosphorylation sites and haem-binding sites. Combined with their low expression, it is suggested that these caleosins may have lost function.
Dubis, A; Zamaraeva, M V; Siergiejczyk, L; Charishnikova, O; Shlyonsky, V
2015-10-07
Calcium ionophoretic properties of ferutinin were re-evaluated in solvent-containing bilayer lipid membranes. The slopes of conductance-concentration curves suggest that in the presence of a solvent in the membrane the majority of complexes appear to consist of a single terpenoid molecule bound to one Ca ion. By contrast, the stoichiometry of ferutinin-Ca(2+) complexes in acetone determined using the conductometric method was 2 : 1. While the cation-cation selectivity of ferutinin did not change, the cation-anion selectivity slightly decreased in solvent containing membranes. FT-IR and NMR data together with DFT calculations at the B3LYP/6-31G(d) level of theory indicate that in the absence of Ca ions ferutinin molecules are hydrogen-bonded at the phenol hydroxyl groups. The variations of absorption assigned to -OH and -C-O stretching mode suggest that ferutinin interacts strongly with Ca ions via the hydroxyl group of ferutinol and carboxyl oxygen of the complex ether bond. The coordination through the carbonyl group of ferutinin was demonstrated by theoretical calculations. Taken together, ferutinin molecules form H-bonded dimers, while complexation of Ca(2+) by ferutinin ruptures this hydrogen bond due to spatial re-orientation of the ferutinin molecules from parallel to antiparallel alignment.
Phylogenetic profiles reveal structural/functional determinants of TRPC3 signal-sensing antennae
Ko, Kyung Dae; Bhardwaj, Gaurav; Hong, Yoojin; Chang, Gue Su; Kiselyov, Kirill
2009-01-01
Biochemical assessment of channel structure/function is incredibly challenging. Developing computational tools that provide these data would enable translational research, accelerating mechanistic experimentation for the bench scientist studying ion channels. Starting with the premise that protein sequence encodes information about structure, function and evolution (SF&E), we developed a unified framework for inferring SF&E from sequence information using a knowledge-based approach. The Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST) provides phylogenetic profiles that can model, ab initio, SF&E relationships of biological sequences at the whole protein, single domain and single-amino acid level.1,2 In our recent paper,4 we have applied GDDA-BLAST analysis to study canonical TRP (TRPC) channels1 and empirically validated predicted lipid-binding and trafficking activities contained within the TRPC3 TRP_2 domain of unknown function. Overall, our in silico, in vitro, and in vivo experiments support a model in which TRPC3 has signal-sensing antennae which are adorned with lipid-binding, trafficking and calmodulin regulatory domains. In this Addendum, we correlate our functional domain analysis with the cryo-EM structure of TRPC3.3 In addition, we synthesize recent studies with our new findings to provide a refined model on the mechanism(s) of TRPC3 activation/deactivation. PMID:19704910
Structural studies of the Sputnik virophage.
Sun, Siyang; La Scola, Bernard; Bowman, Valorie D; Ryan, Christopher M; Whitelegge, Julian P; Raoult, Didier; Rossmann, Michael G
2010-01-01
The virophage Sputnik is a satellite virus of the giant mimivirus and is the only satellite virus reported to date whose propagation adversely affects its host virus' production. Genome sequence analysis showed that Sputnik has genes related to viruses infecting all three domains of life. Here, we report structural studies of Sputnik, which show that it is about 740 A in diameter, has a T=27 icosahedral capsid, and has a lipid membrane inside the protein shell. Structural analyses suggest that the major capsid protein of Sputnik is likely to have a double jelly-roll fold, although sequence alignments do not show any detectable similarity with other viral double jelly-roll capsid proteins. Hence, the origin of Sputnik's capsid might have been derived from other viruses prior to its association with mimivirus.
Structural Studies of the Sputnik Virophage▿
Sun, Siyang; La Scola, Bernard; Bowman, Valorie D.; Ryan, Christopher M.; Whitelegge, Julian P.; Raoult, Didier; Rossmann, Michael G.
2010-01-01
The virophage Sputnik is a satellite virus of the giant mimivirus and is the only satellite virus reported to date whose propagation adversely affects its host virus' production. Genome sequence analysis showed that Sputnik has genes related to viruses infecting all three domains of life. Here, we report structural studies of Sputnik, which show that it is about 740 Å in diameter, has a T=27 icosahedral capsid, and has a lipid membrane inside the protein shell. Structural analyses suggest that the major capsid protein of Sputnik is likely to have a double jelly-roll fold, although sequence alignments do not show any detectable similarity with other viral double jelly-roll capsid proteins. Hence, the origin of Sputnik's capsid might have been derived from other viruses prior to its association with mimivirus. PMID:19889775
Morales, Hannah Hazel; Saleem, Qasim; Macdonald, Peter M
2014-12-23
The properties of bicelles composed of mixtures of long-chain lipids dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG), stabilized by zwitterionic bile salt analogue 3-[(3-cholamidopropyl)dimethyl-d6-ammonio]-2-hydroxy-1-propanesulfonate (CHAPSO-d6), deuterated at both amino methyls, were investigated by a combination of (31)P and (2)H NMR, focusing on the behavior of CHAPSO as a function of temperature. For compositions of molar ratio q = [DMPC + DMPG]/[CHAPSO] = 3, R = [DMPG]/[DMPC + DMPG] = 0, 0.01 and 0.10 and lipid concentration CL = 25 wt % lipid at temperatures of between 30 and 60 °C, magnetic alignment was readily achieved as assessed via both (31)P NMR of the phospholipids and (2)H NMR of CHAPSO-d6. Increasing temperature yielded higher values for the chemical shift anisotropy of the former and the quadrupole splitting of the latter, consistent with the progressive migration of CHAPSO from edge regions into planar regions of the bicellar assemblies. However, relative to dihexadecyl phosphatidylcholine (DHPC), CHAPSO exhibited lower miscibility with DMPC, although the presence of DMPG enhanced this miscibility. At 65 °C, thermal instability became evident in the appearance of a separate isotropic component in both (31)P and (2)H NMR spectra. This isotropic phase was CHAPSO-enriched but less so as a function of increasing DMPG. These findings indicate that the enhanced thermal stability of CHAPSO- versus DHPC-containing bicelles arises from a combination of the larger surface area that edge CHAPSO is able to mask, mole for mole, and its relative preference for edge regions, plus, possibly, specific interactions with DMPG.
Temperature driven annealing of perforations in bicellar model membranes.
Nieh, Mu-Ping; Raghunathan, V A; Pabst, Georg; Harroun, Thad; Nagashima, Kazuomi; Morales, Hannah; Katsaras, John; Macdonald, Peter
2011-04-19
Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing. © 2011 American Chemical Society
Multi-foci beamforming for thermal strain imaging using a single ultrasound linear array transducer
Nguyen, Man M; Ding, Xuan; Leers, Steven A.; Kim, Kang
2017-01-01
Ultrasound-induced thermal strain imaging (TSI) has been used to successfully identify lipid and water-based tissues in atherosclerotic plaques in some research settings. However, TSI faces several challenges to be realized in clinics. These challenges include motion artifacts, displacement tracking accuracy as well as limited heating capability which contributes to low thermal strain signal-to-noise ratio and a limited field of view. The goal of this paper is to address the challenge in heating tissue in TSI. Current TSI systems use separate heating and imaging transducers, which require physically aligning the heating and imaging beams and result in a bulky setup that limits in vivo operation. This paper proposes and evaluates a new design for heating beams that can be implemented on a linear array imaging transducer and can provide an improved heating area and efficiency as compared to previous implementations. The designed heating beams were implemented with a clinical linear array imaging transducer connected to a research ultrasound platform. In-vitro experiments using tissue mimicking phantoms with no blood flow showed that the new design resulted in an effective heating area of approximately 0.85 cm2 and a 0.3°C temperature rise in 2 seconds of heating, which compared well with in- silico finite element simulations. With the new heating beams, TSI was shown to be able to detect a lipid-mimicking rubber inclusion with a diameter of 1 cm from the water-based gelatin background, with a strain contrast of 2.3 (+0.14% strain in the rubber inclusion and −0.06% strain in the gelatin background). Lastly, lipid-based tissue in a 1-cm diameter human carotid endarterectomy (CEA) sample was identified with good agreement to histology. PMID:28318887
Spontaneous adsorption of coiled-coil model peptides K and E to a mixed lipid bilayer.
Pluhackova, Kristyna; Wassenaar, Tsjerk A; Kirsch, Sonja; Böckmann, Rainer A
2015-03-26
A molecular description of the lipid-protein interactions underlying the adsorption of proteins to membranes is crucial for understanding, for example, the specificity of adsorption or the binding strength of a protein to a bilayer, or for characterizing protein-induced changes of membrane properties. In this paper, we extend an automated in silico assay (DAFT) for binding studies and apply it to characterize the adsorption of the model fusion peptides E and K to a mixed phospholipid/cholesterol membrane using coarse-grained molecular dynamics simulations. In addition, we couple the coarse-grained protocol to reverse transformation to atomistic resolution, thereby allowing to study molecular interactions with high detail. The experimentally observed differential binding of the peptides E and K to membranes, as well as the increased binding affinity of helical over unstructered peptides, could be well reproduced using the polarizable Martini coarse-grained (CG) force field. Binding to neutral membranes is shown to be dominated by initial binding of the positively charged N-terminus to the phospholipid headgroup region, followed by membrane surface-aligned insertion of the peptide at the interface between the hydrophobic core of the membrane and its polar headgroup region. Both coarse-grained and atomistic simulations confirm a before hypothesized snorkeling of lysine side chains for the membrane-bound state of the peptide K. Cholesterol was found to be enriched in peptide vicinity, which is probably of importance for the mechanism of membrane fusion. The applied sequential multiscale method, using coarse-grained simulations for the slow adsorption process of peptides to membranes followed by backward transformation to atomistic detail and subsequent atomistic simulations of the preformed peptide-lipid complexes, is shown to be a versatile approach to study the interactions of peptides or proteins with biomembranes.
Du, Huiwen; Li, Denghua; Wang, Yibing; Wang, Chenxuan; Zhang, Dongdong; Yang, Yan-lian; Wang, Chen
2013-08-29
We report here the measurement of the temperature-dependent surface charge density of purple membrane (PM) by using electrostatic force microscopy (EFM). The surface charge density was measured to be 3.4 × 10(5) e/cm(2) at room temperature and reaches the minimum at around 52 °C. The initial decrease of the surface charge density could be attributed to the reduced dipole alignment because of the thermally induced protein mobility in PM. The increase of charge density at higher temperature could be ascribed to the weakened interaction between proteins and the lipids, which leads to the exposure of the charged amino acids. This work could be a benefit to the direct assessment of the structural stability and electric properties of biological membranes at the nanoscale.
Agbaje, O B A; Wirth, R; Morales, L F G; Shirai, K; Kosnik, M; Watanabe, T; Jacob, D E
2017-09-01
Tridacna derasa shells show a crossed lamellar microstructure consisting of three hierarchical lamellar structural orders. The mineral part is intimately intergrown with 0.9 wt% organics, namely polysaccharides, glycosylated and unglycosylated proteins and lipids, identified by Fourier transform infrared spectrometry. Transmission electron microscopy shows nanometre-sized grains with irregular grain boundaries and abundant voids. Twinning is observed across all spatial scales and results in a spread of the crystal orientation angles. Electron backscatter diffraction analysis shows a strong fibre texture with the [001] axes of aragonite aligned radially to the shell surface. The aragonitic [100] and [010] axes are oriented randomly around [001]. The random orientation of anisotropic crystallographic directions in this plane reduces anisotropy of the Young's modulus and adds to the optimization of mechanical properties of bivalve shells.
Tear film measurement by optical reflectometry technique
Lu, Hui; Wang, Michael R.; Wang, Jianhua; Shen, Meixiao
2014-01-01
Abstract. Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519
Ma, Sulan; Li, Hongchun; Tian, Kangzhen; Ye, Shuji; Luo, Yi
2014-02-06
Cholesterol organization and transport within a cell membrane are essential for human health and many cellular functions yet remain elusive so far. Using cholesterol analogue 6-ketocholestanol (6-KC) as a model, we have successfully exploited sum frequency generation vibrational spectroscopy (SFG-VS) to track the organization and transport of cholesterol in a membrane by combining achiral-sensitive ssp (ppp) and chiral-sensitive psp polarization measurements. It is found that 6-KC molecules are aligned at the outer leaflet of the DMPC lipid bilayer with a tilt angle of about 10°. 6-KC organizes itself by forming an α-β structure at low 6-KC concentration and most likely a β-β structure at high 6-KC concentration. Among all proposed models, our results favor the so-called umbrella model with formation of a 6-KC cluster. Moreover, we have found that the long anticipated flip-flop motion of 6-KC in the membrane takes time to occur, at least much longer than previously thought. All of these interesting findings indicate that it is critical to explore in situ, real-time, and label-free methodologies to obtain a precise molecular description of cholesterol's behavior in membranes. This study represents the first application of SFG to reveal the cholesterol-lipid interaction mechanism at the molecular level.
Liquid crystal interfaces: Experiments, simulations and biosensors
NASA Astrophysics Data System (ADS)
Popov, Piotr
Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by hydrocarbon surfaces at the atomic level. I show that the vertical alignment of a rod-like liquid crystal molecule first requires its insertion into the alignment layer. In CHAPTER 4, I investigate the Brownian behavior of a tracer molecule at an oil/water interface and explain the experimentally-observed anomaly of its increased mobility. Following my molecular dynamics simulation studies of liquid interfaces, I continue my work in CHAPTER 5 with experimental research. I employ the high sensitivity of liquid crystal alignment to the presence of amphiphiles adsorbed to the liquid crystal surface from water for potential biosensor applications. I propose a more accurate method of sensing using circular polarization and spectrophotometry. In CHAPTER 6, I investigate if cholesteric and smectic liquid crystals can potentially offer new modes of biosensing. In CHAPTER 7, I describe preliminary results toward constructing a liquid crystal biosensor platform with capabilities of specific sensitivity using proteins and antibodies. Finally in CHAPTER 8, I summarize the findings of my studies and research and suggest possible future experiments to further advance our knowledge in interfacial science for future applications.
Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.
Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro
2015-01-01
Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.
NASA Astrophysics Data System (ADS)
Valaparla, Sunil K.; Gao, Feng; Abdul-Ghani, Muhammad; Clarke, Geoffrey D.
2014-03-01
When muscle fibers are aligned with the B0 field, intramyocellular lipids (IMCL), important for providing energy during physical activity, can be resolved in proton magnetic resonance spectra (1H-MRS). Various muscles of the leg differ significantly in their proportion of fibers and angular distribution. This study determined the influence of muscle fiber type and orientation on IMCL using 1H-MRS and diffusion tensor imaging (DTI). Muscle fiber orientation relative to B0 was estimated by pennation angle (PA) measurements from DTI, providing orientation-specific extramyocellular lipid (EMCL) chemical shift data that were used for subject-specific IMCL quantification. Vastus lateralis (VL), tibialis anterior (TA) and soleus (SO) muscles of 6 healthy subjects (21-40 yrs) were studied on a Siemens 3T MRI system with a flex 4-channel coil. 1H-MRS were acquired using stimulated echo acquisition mode (STEAM, TR=3s, TE=270ms). DTI was performed using single shot EPI (b=600s/mm2, 30 directions, TR=4.5s, TE=82ms, and ten×5mm slices) with center slice indexed to the MRS voxel. The average PA's measured from ROI analysis of primary eigenvectors were PA=19.46+/-5.43 for unipennate VL, 15.65+/-3.73 for multipennate SO, and 7.04+/-3.34 for bipennate TA. Chemical shift (CS) was calculated using [3cos2θ-1] dependence: 0.17+/-0.02 for VL, 0.18+/-0.01 for SO and 0.19+/-0.004 ppm for TA. IMCL-CH2 concentrations from spectral analysis were 12.77+/-6.3 for VL, 3.07+/-1.63 for SO and 0.27+/-0.08 mmol/kg ww for TA. Small PA's were measured in TA and large CS with clear separation between EMCL and IMCL peaks were observed. Larger variations in PA were measured VL and SO resulting in an increased overlap of the EMCL on IMCL peaks.
Hayashi, Kazukuni; Busse, Hans-Jürgen; Golke, Jan; Anderson, James; Wan, Xuehua; Hou, Shaobin; Chain, Patrick S G; Prescott, Rebecca D; Donachie, Stuart P
2018-01-01
A Gram-negative, rod-shaped bacterium, designated KH87 T , was isolated from a fishing hook that had been baited and suspended in seawater off O'ahu, Hawai'i. Based on a comparison of 1524 nt of the 16S rRNA gene sequence of strain KH87 T , its nearest neighbours were the GammaproteobacteriaRheinheimera nanhaiensis E407-8 T (96.2 % identity), Rheinheimera chironomi K19414 T (96.0 %), Rheinheimera pacifica KMM 1406 T (95.8 %), Rheinheimera muenzenbergensis E49 T (95.7 %), Alishewanella solinquinati KMK6 T (94.9 %) and Arsukibacterium ikkense GCM72 T (94.6 %). Cells of KH87 T were motile by a single polar flagellum, strictly aerobic, and catalase- and oxidase-positive. Growth occurred between 4 and 39 °C, and in a circumneutral pH range. Major fatty acids in whole cells of strain KH87 T were cis-9-hexadecenoic acid, hexadecanoic acid and cis-11-octadecenoic acid. The quinone system contained mostly menaquinone MK-7, and a minor amount of ubiquinone Q-8. The polar lipid profile contained the major lipids phosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine, an unidentified aminolipid, and a lipid not containing phosphate, an amino group or a sugar moiety. Putrescine was the major polyamine. Physiological, biochemical and genomic data, including obligate halophily, absence of amylolytic activity, a quinone system dominated by MK-7 and DNA G+C content (42.0 mol%) distinguished KH87 T from extant Rheinheimera species; strain KH87 T was also distinguished by a multi-locus sequence analysis of aligned and concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences. Based on phenotypic and genotypic differences, the species Rheinheimera salexigens sp. nov. is proposed to accommodate KH87 T as the type strain (=ATCC BAA-2715 T =CIP 111115 T ). An emended description of the genus Rheinheimera is also proposed.
Nguyen, Man M; Ding, Xuan; Leers, Steven A; Kim, Kang
2017-06-01
Ultrasound-induced thermal strain imaging (TSI) has been used successfully to identify lipid- and water-based tissues in atherosclerotic plaques in some research settings. However, TSI faces several challenges to be realized in clinics. These challenges include motion artifacts and displacement tracking accuracy, as well as limited heating capability, which contributes to low thermal strain signal-to-noise ratio, and a limited field of view. Our goal was to address the challenge in heating tissue in TSI. Current TSI systems use separate heating and imaging transducers, which require physical alignment of the heating and imaging beams and result in a bulky setup that limits in vivo operation. We evaluated a new design for heating beams that can be implemented on a linear array imaging transducer and can provide improved heating area and efficiency as compared with previous implementations. The heating beams designed were implemented with a clinical linear array imaging transducer connected to a research ultrasound platform. In vitro experiments using tissue-mimicking phantoms with no blood flow revealed that the new design resulted in an effective heating area of approximately 0.85 cm 2 and a 0.3°C temperature rise in 2 s of heating, which compared well with in silico finite-element simulations. With the new heating beams, TSI was found to be able to detect a lipid-mimicking rubber inclusion with a diameter of 1 cm from the water-based gelatin background, with a strain contrast of 2.3 (+0.14% strain in the rubber inclusion and -0.06% strain in the gelatin background). Lastly, lipid-based tissue in a 1-cm-diameter human carotid endarterectomy (CEA) sample was identified in good agreement with histology. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurens, Lieve M. L.; Van Wychen, Stefanie; Pienkos, Philip T.
In order to establish and design long-term algae cultivation experiments, inter-laboratory projects need to harmonize the requirements of techno-economic and life-cycle analysis models, with standardized data inputs. In order to provide a consistent foundation and allow for integration and analysis of the results in computational technical and resource analysis models, we implemented closely coordinated, harmonized and objective analytical protocols along with a common language for measuring growth and productivity for the major algal components. We describe here the process by which we developed a harmonization framework for analysis across five geographically diverse testbed sites. Our goal was to align analyticalmore » procedures to ensure consistent reporting on biomass and lipid content, quality and yields to eliminate measurement variability as a source of uncertainty in production data. Developing standards for analysis that streamline reporting on composition and expected fuel yields from biomass is one of the major outcomes of this work and this provides a starting place for further advanced characterization of algae to support the techno-economical process analyses and account for the mass balance accounting of algal biomass. In conclusion, initial analysis of data obtained from field studies shows trends in compositional shifts of lipid and protein content of the biomass that are in support of the physiological experiments demonstrated in the first geographically distributed unified outdoor cultivation trials.« less
Laurens, Lieve M. L.; Van Wychen, Stefanie; Pienkos, Philip T.; ...
2017-04-26
In order to establish and design long-term algae cultivation experiments, inter-laboratory projects need to harmonize the requirements of techno-economic and life-cycle analysis models, with standardized data inputs. In order to provide a consistent foundation and allow for integration and analysis of the results in computational technical and resource analysis models, we implemented closely coordinated, harmonized and objective analytical protocols along with a common language for measuring growth and productivity for the major algal components. We describe here the process by which we developed a harmonization framework for analysis across five geographically diverse testbed sites. Our goal was to align analyticalmore » procedures to ensure consistent reporting on biomass and lipid content, quality and yields to eliminate measurement variability as a source of uncertainty in production data. Developing standards for analysis that streamline reporting on composition and expected fuel yields from biomass is one of the major outcomes of this work and this provides a starting place for further advanced characterization of algae to support the techno-economical process analyses and account for the mass balance accounting of algal biomass. In conclusion, initial analysis of data obtained from field studies shows trends in compositional shifts of lipid and protein content of the biomass that are in support of the physiological experiments demonstrated in the first geographically distributed unified outdoor cultivation trials.« less
Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil
2014-09-07
Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Müller-Wieland, Dirk; Leiter, Lawrence A; Cariou, Bertrand; Letierce, Alexia; Colhoun, Helen M; Del Prato, Stefano; Henry, Robert R; Tinahones, Francisco J; Aurand, Lisa; Maroni, Jaman; Ray, Kausik K; Bujas-Bobanovic, Maja
2017-05-25
Type 2 diabetes mellitus (T2DM) is often associated with mixed dyslipidaemia, where non-high-density lipoprotein cholesterol (non-HDL-C) levels may more closely align with cardiovascular risk than low-density lipoprotein cholesterol (LDL-C). We describe the design and rationale of the ODYSSEY DM-DYSLIPIDEMIA study that assesses the efficacy and safety of alirocumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, versus lipid-lowering usual care in individuals with T2DM and mixed dyslipidaemia at high cardiovascular risk with non-HDL-C inadequately controlled despite maximally tolerated statin therapy. For the first time, atherogenic cholesterol-lowering with a PCSK9 inhibitor will be assessed with non-HDL-C as the primary endpoint with usual care as the comparator. DM-DYSLIPIDEMIA is a Phase 3b/4, randomised, open-label, parallel group, multinational study that planned to enrol 420 individuals. Main inclusion criteria were T2DM and mixed dyslipidaemia (non-HDL-C ≥100 mg/dl [≥2.59 mmol/l], and triglycerides ≥150 and <500 mg/dl [≥1.70 and <5.65 mmol/l]) with documented atherosclerotic cardiovascular disease or ≥1 additional cardiovascular risk factor. Participants were randomised (2:1) to alirocumab 75 mg every 2 weeks (Q2W) or lipid-lowering usual care on top of maximally tolerated statin (or no statin if intolerant). If randomised to usual care, investigators were able to add their pre-specified choice of one of the following to the patient's current statin regimen: ezetimibe, fenofibrate, omega-3 fatty acids or nicotinic acid, in accordance with local standard-of-care. Alirocumab-treated individuals with non-HDL-C ≥100 mg/dl at week 8 will undergo a blinded dose increase to 150 mg Q2W at week 12. The primary efficacy endpoint is non-HDL-C change from baseline to week 24 with alirocumab versus usual care; other lipid levels (including LDL-C), glycaemia-related measures, safety and tolerability will also be assessed. Alirocumab will be compared to fenofibrate in a secondary analysis. Recruitment completed with 413 individuals randomised in 14 countries worldwide. Results of this trial are expected in the second quarter of 2017. ODYSSEY DM-DYSLIPIDEMIA will provide information on the efficacy and safety of alirocumab versus lipid-lowering usual care in individuals with T2DM and mixed dyslipidaemia at high cardiovascular risk using non-HDL-C as the primary efficacy endpoint. Trial registration NCT02642159 (registered December 24, 2015).
Oda, Reiko; Artzner, Franck; Laguerre, Michel; Huc, Ivan
2008-11-05
A detailed molecular organization of racemic 16-2-16 tartrate self-assembled multi-bilayer ribbons in the hydrated state is proposed where 16-2-16 amphiphiles, tartrate ions, and water molecules are all accurately positioned by comparing experimental X-ray powder diffraction and diffraction patterns derived from modeling studies. X-ray diffuse scattering studies show that molecular organization is not fundamentally altered when comparing the flat ribbons of the racemate to chirally twisted or helical ribbons of the pure tartrate enantiomer. Essential features of the three-dimensional molecular organizations of these structures include interdigitation of alkyl chains within each bilayer and well-defined networks of ionic and hydrogen bonds between cations, anions, and water molecules between bilayers. The detailed study of diffraction patterns also indicated that the gemini headgroups are oriented parallel to the long edge of the ribbons. The structure thus possesses a high cohesion and good crystallinity, and for the first time, we could relate the packing of the chiral molecules to the expression of the chirality at a mesoscopic scale. The organization of the ribbons at the molecular level sheds light on a number of their macroscopic features. Among these are the reason why enantiomerically pure 16-2-16 tartrate forms ribbons that consist of exactly two bilayers, and a plausible mechanism by which a chirally twisted or helical shape may emerge from the packing of chiral tartrate ions. Importantly, the distinction between commonly observed helical and twisted morphologies could be related to a subtle symmetry breaking. These results demonstrate that accurately solving the molecular structure of self-assembled soft materials--a process rarely achieved--is within reach, that it is a valid approach to correlate molecular parameters to macroscopic properties, and thus that it offers opportunities to modulate properties through molecular design.
Dai, Yuejie; Zhen, Jing; Zhang, Xiuli; Zhong, Yonghui; Liu, Shaodan; Sun, Ziyue; Guo, Yue; Wu, Qingli
2015-09-01
The complex structure of human aromatase (CYP19) and the open form of ΔTGEE mutant NADPH-cytochrome P450 reductase (mCPR) was constructed using template-based protein alignment method. Dynamic simulation of formed complex was performed on NAMD 2.9, in which CHARMm all 27_prot_lipid_na force field and an explicit TIP3P water solvent model were applied. The result showed mCPR in its open conformation could steadily combine with aromatase from the proximal face. Data analysis indicates hydrogen bonds and four salt bridges on the binding surface enhance the interaction between the two protein molecules. Amino acid, Lys108 plays a key role in aromatase activity through the formation of a salt bridge with Asp147 and two hydrogen bonds with Asp147 and Gln150 in mCPR. The optimal pathway for the first electron transfer from CPR to aromatase was revealed and calculated using HARLEM software. The rates for solvent mediated and non-solvent mediated electron transfer from FMNH2 to heme were determined as 1.04×10(6)s(-)(1) and 4.86×10(5)s(-)(1) respectively, which indicates the solvent water can facilitate the electron transfer from FMNH2 to heme. This study presents a novel strategy for the study of the protein-protein interactions based on the template-based protein alignment, which may help new aromtase development targeting the electron transfer between mCPR and aromatase. Copyright © 2015 Elsevier Inc. All rights reserved.
Side effects of anastrozole in the experimental pre-menopausal mammary carcinogenesis.
Sadlonova, V; Kubatka, P; Kajo, K; Ostatnikova, D; Nosalova, G; Adamicova, K; Sadlonova, J
2009-01-01
The aim of this study was to assess side effects of aromatase inhibitor anastrozole in the prevention of N-methyl-N-nitrosourea - induced pre-menopausal mammary carcinogenesis in female Sprague-Dawley rats. This model mimicked situation in healthy, but from the point of view of the development of breast cancer, high-risk pre-menopausal women.
Aromatase inhibitor anastrozole was used as a chemopreventive agent taken by the animals in the food during the whole period of time of the experiment. Group 1 - the control group had taken food without anastrozole, the groups 2 and 3 with anastrozole in various concentrations - 0.05 mg/1 kg of food (ANA 0.05) and 0.5 mg/1 kg of food (ANA 0.5).
In anastrozole-treated animals in comparison with untreated animals, macroscopic changes of uterus and vagina were not found. The values of absolute and relative wet weight of uterus and vagina in the groups ANA 0.05 and ANA 0.5 were comparable with the control. Histological examination did not show atrophic changes in endometrium of uterus and in epithelium of vagina in anastrozole-treated animals. In the group ANA 0.5 myometrium was significantly grosser than in the group ANA 0.05 (P<0.05). Anastrozole neither affects parameters of plasma lipid metabolism (triacylglycerols, total cholesterol, low - density lipoprotein cholesterol and high - density lipoprotein cholesterol) nor serum levels of sex hormones (estradiol, testosterone, dehydroepiandrosterone). Compact bone thickness in the groups with anastrozole was significantly increased in comparison with untreated animals (P<0.001). A significant increase in body weight was found in the group ANA 0.5 compared with the control group (P<0.01). The significant increase in body weight gain was not attended by the significant increase in food intake.
The side effects of aromatase inhibitor anastrozole in the prevention of N-methyl-N-nitrosourea - induced pre-menopausal mammary carcinogenesis in female Sprague-Dawley rats on myometrium, compact bone thickness and body weight gain were observed.
pre-menopausal mammary carcinogenesis, chemoprevention, aromatase inhibitors, anastrozole, side effects, female rats.Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis
Jones, Beryl M.; Wcislo, William T.; Robinson, Gene E.
2015-01-01
Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell–cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. PMID:26276382
Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis.
Jones, Beryl M; Wcislo, William T; Robinson, Gene E
2015-08-14
Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. Copyright © 2015 Jones et al.
Fluoride resistance and transport by riboswitch-controlled CLC antiporters
Stockbridge, Randy B.; Lim, Hyun-Ho; Otten, Renee; Williams, Carole; Shane, Tania; Weinberg, Zasha; Miller, Christopher
2012-01-01
A subclass of bacterial CLC anion-transporting proteins, phylogenetically distant from long-studied CLCs, was recently shown to be specifically up-regulated by F-. We establish here that a set of randomly selected representatives from this “CLCF” clade protect Escherichia coli from F- toxicity, and that the purified proteins catalyze transport of F- in liposomes. Sequence alignments and membrane transport experiments using 19F NMR, osmotic response assays, and planar lipid bilayer recordings reveal four mechanistic traits that set CLCF proteins apart from all other known CLCs. First, CLCFs lack conserved residues that form the anion binding site in canonical CLCs. Second, CLCFs exhibit high anion selectivity for F- over Cl-. Third, at a residue thought to distinguish CLC channels and transporters, CLCFs bear a channel-like valine rather than a transporter-like glutamate, and yet are F-/H+ antiporters. Finally, F-/H+ exchange occurs with 1∶1 stoichiometry, in contrast to the usual value of 2∶1. PMID:22949689
Fluoride resistance and transport by riboswitch-controlled CLC antiporters.
Stockbridge, Randy B; Lim, Hyun-Ho; Otten, Renee; Williams, Carole; Shane, Tania; Weinberg, Zasha; Miller, Christopher
2012-09-18
A subclass of bacterial CLC anion-transporting proteins, phylogenetically distant from long-studied CLCs, was recently shown to be specifically up-regulated by F(-). We establish here that a set of randomly selected representatives from this "CLC(F)" clade protect Escherichia coli from F(-) toxicity, and that the purified proteins catalyze transport of F(-) in liposomes. Sequence alignments and membrane transport experiments using (19)F NMR, osmotic response assays, and planar lipid bilayer recordings reveal four mechanistic traits that set CLC(F) proteins apart from all other known CLCs. First, CLC(F)s lack conserved residues that form the anion binding site in canonical CLCs. Second, CLC(F)s exhibit high anion selectivity for F(-) over Cl(-). Third, at a residue thought to distinguish CLC channels and transporters, CLC(F)s bear a channel-like valine rather than a transporter-like glutamate, and yet are F(-)/H(+) antiporters. Finally, F(-)/H(+) exchange occurs with 1:1 stoichiometry, in contrast to the usual value of 2:1.
Blum, J.S.; Han, S.; Lanoil, B.; Saltikov, C.; Witte, B.; Tabita, F.R.; Langley, S.; Beveridge, T.J.; Jahnke, L.; Oremland, R.S.
2009-01-01
Searles Lake occupies a closed basin harboring salt-saturated, alkaline brines that have exceptionally high concentrations of arsenic oxyanions. Strain SLAS-1T was previously isolated from Searles Lake (R. S. Oremland, T. R. Kulp, J. Switzer Blum, S. E. Hoeft, S. Baesman, L. G. Miller, and J. F. Stolz, Science 308:1305-1308, 2005). We now describe this extremophile with regard to its substrate affinities, its unusual mode of motility, sequenced arrABD gene cluster, cell envelope lipids, and its phylogenetic alignment within the order Halanaero-bacteriales, assigning it the name "Halarsenatibacter silvermanii" strain SLAS-1T. We also report on the substrate dynamics of an anaerobic enrichment culture obtained from Searles Lake that grows under conditions of salt saturation and whose members include a novel sulfate reducer of the order Desulfovibriales, the archaeon Halorhabdus utahensis, as well as a close homolog of strain SLAS-1T. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.
Blum, Jodi Switzer; Han, Sukkyun; Lanoil, Brian; Saltikov, Chad; Witte, Brian; Tabita, F Robert; Langley, Sean; Beveridge, Terry J; Jahnke, Linda; Oremland, Ronald S
2009-04-01
Searles Lake occupies a closed basin harboring salt-saturated, alkaline brines that have exceptionally high concentrations of arsenic oxyanions. Strain SLAS-1(T) was previously isolated from Searles Lake (R. S. Oremland, T. R. Kulp, J. Switzer Blum, S. E. Hoeft, S. Baesman, L. G. Miller, and J. F. Stolz, Science 308:1305-1308, 2005). We now describe this extremophile with regard to its substrate affinities, its unusual mode of motility, sequenced arrABD gene cluster, cell envelope lipids, and its phylogenetic alignment within the order Halanaerobacteriales, assigning it the name "Halarsenatibacter silvermanii" strain SLAS-1(T). We also report on the substrate dynamics of an anaerobic enrichment culture obtained from Searles Lake that grows under conditions of salt saturation and whose members include a novel sulfate reducer of the order Desulfovibriales, the archaeon Halorhabdus utahensis, as well as a close homolog of strain SLAS-1(T).
Normal myoblast fusion requires myoferlin
Doherty, Katherine R.; Cave, Andrew; Davis, Dawn Belt; Delmonte, Anthony J.; Posey, Avery; Earley, Judy U.; Hadhazy, Michele; McNally, Elizabeth M.
2014-01-01
Summary Muscle growth occurs during embryonic development and continues in adult life as regeneration. During embryonic muscle growth and regeneration in mature muscle, singly nucleated myoblasts fuse to each other to form myotubes. In muscle growth, singly nucleated myoblasts can also fuse to existing large, syncytial myofibers as a mechanism of increasing muscle mass without increasing myofiber number. Myoblast fusion requires the alignment and fusion of two apposed lipid bilayers. The repair of muscle plasma membrane disruptions also relies on the fusion of two apposed lipid bilayers. The protein dysferlin, the product of the Limb Girdle Muscular Dystrophy type 2 locus, has been shown to be necessary for efficient, calcium-sensitive, membrane resealing. We now show that the related protein myoferlin is highly expressed in myoblasts undergoing fusion, and is expressed at the site of myoblasts fusing to myotubes. Like dysferlin, we found that myoferlin binds phospholipids in a calcium-sensitive manner that requires the first C2A domain. We generated mice with a null allele of myoferlin. Myoferlin null myoblasts undergo initial fusion events, but they form large myotubes less efficiently in vitro, consistent with a defect in a later stage of myogenesis. In vivo, myoferlin null mice have smaller muscles than controls do, and myoferlin null muscle lacks large diameter myofibers. Additionally, myoferlin null muscle does not regenerate as well as wild-type muscle does, and instead displays a dystrophic phenotype. These data support a role for myoferlin in the maturation of myotubes and the formation of large myotubes that arise from the fusion of myoblasts to multinucleate myotubes. PMID:16280346
Campen, Matthew J.; Lund, Amie K.; Doyle-Eisele, Melanie L.; McDonald, Jacob D.; Knuckles, Travis L.; Rohr, Annette C.; Knipping, Eladio M.; Mauderly, Joe L.
2010-01-01
Background Emerging evidence suggests that the systemic vasculature may be a target of inhaled pollutants of vehicular origin. We have identified several murine markers of vascular toxicity that appear sensitive to inhalation exposures to combustion emissions. Objective We sought to examine the relative impact of various pollutant atmospheres and specific individual components on these markers of altered vascular transcription and lipid peroxidation. Methods Apolipoprotein E knockout (ApoE−/−) mice were exposed to whole combustion emissions (gasoline, diesel, coal, hardwood), biogenically derived secondary organic aerosols (SOAs), or prominent combustion-source gases [nitric oxide (NO), NO2, carbon monoxide (CO)] for 6 hr/day for 7 days. Aortas were assayed for transcriptional alterations of endothelin-1 (ET-1), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-2 (TIMP-2), and heme oxygenase-1 (HO-1), along with measures of vascular lipid peroxides (LPOs) and gelatinase activity. Results We noted transcriptional alterations with exposures to gasoline and diesel emissions. Interestingly, ET-1 and MMP-9 transcriptional effects could be recreated by exposure to CO and NO, but not NO2 or SOAs. Gelatinase activity aligned with levels of volatile hydrocarbons and also monoxide gases. Neither gases nor particles induced vascular LPO despite potent effects from whole vehicular emissions. Conclusions In this head-to-head comparison of the effects of several pollutants and pollutant mixtures, we found an important contribution to vascular toxicity from readily bioavailable monoxide gases and possibly from volatile hydrocarbons. These data support a role for traffic-related pollutants in driving cardiopulmonary morbidity and mortality. PMID:20197249
Rho, Myung Suk; Lee, Kwang Pum
2014-12-01
Geometric analysis of the nutritional regulatory responses was performed on an omnivorous mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) to test whether this beetle had the capacity to balance the intake of protein and carbohydrate. We also identified the pattern of ingestive trade-off employed when the insect was forced to balance the costs of over- and under-ingesting macronutrients. When allowed to mix their diet from two nutritionally imbalanced but complementary foods (protein-biased food: p35:c7 or p28:c5.6; carbohydrate-biased food: p7:c35 or p5.6:c28), beetles of both sexes actively regulated their intake of protein and carbohydrate to a ratio of 1:1. When confined to one of seven nutritionally imbalanced foods (p0:c42, p7:c35, p14:c28, p21:c21, p28:c14, p35:c7 or p42:c0), beetles over-ingested the excessive nutrient from these foods to such an extent that all the points of protein-carbohydrate intake aligned linearly in the nutrient space, a pattern that is characteristic of generalist feeders and omnivores. Under the restricted feeding conditions, males ate more nutrients but were less efficient at retaining their body lipids than females. Body lipid content was higher on carbohydrate-rich foods and was positively correlated with starvation resistance. Our results are consistent with the prediction based on the nutritional heterogeneity hypothesis, which links the nutritional regulatory responses of insects to their diet breadth and feeding ecology. Copyright © 2014. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.
A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered ontomore » the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.« less
Florine-Casteel, K
1990-01-01
Low-light digitized video fluorescence microscopy has been utilized to measure the steady-state polarized fluorescence from the membrane probe diphenylhexatriene (DPH) and its cationic and phosphatidylcholine derivatives 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and 2-[3-(diphenylhexatrienyl)propanoyl]-3-palmitoyl-L-alpha-phosphati dylcholine (DPH-PC), respectively, in cell-size (10-70 microns) unilamellar vesicles composed of gel-or fluid-phase phospholipid. Using an inverted microscope with epi-illumination optics and an intensified silicon intensified target camera interfaced to a minicomputer, fluorescence images of single vesicles were obtained at emission polarizer orientations of 0 degrees, 45 degrees, 90 degrees, and 135 degrees relative to the excitation light polarization direction. Fluorescence intensity ratios F90 degrees/F0 degrees (= F perpendicular/F parallel) and F135 degrees/F45 degrees were calculated on a pixel-by-pixel basis from digitized image pairs. Theoretical expressions were derived for collected polarized fluorescence as a function of position on the membrane surface as well as the degree of lipid order, in terms of the fluorophore's maximum angular motional freedom in the bilayer (identical to theta max), using a modification of the method of D. Axelrod (1979. Biophys. J. 26:557-574) together with the "wobbling-in-a-cone" model of probe rotational diffusion. Comparison of experimental polarization ratios with theoretical ratios yielded the following results. In gel-phase dipalmitoyl-phosphatidylcholine, the data for all three probes correspond to a model in which the cone angle theta max = 17 +/- 2 degrees and there exists a collective tilt of the phospholipid acyl chains of 30 degrees relative to the bilayer normal. In addition, approximately 5% of DPH and TMA-DPH molecules are aligned parallel to the plane of the bilayer. In fluid-phase palmitoyloleoyl-phosphatidylcholine, the data are well fit by models in which theta max = 60 +/- 2 degrees for DPH and DPH-PC and 32 +/- 4 degrees for TMA-DPH, with approximately 20% of DPH molecules and 10% of TMA-DPH molecules aligned parallel to the bilayer plane, and a net phospholipid tilt at or near the headgroup region of approximately 30 degrees. The results demonstrate that lipid order can be measured with a spatial resolution of approximately 1 micron2 in cell-size vesicles even with high aperture observation through a microscope. Images FIGURE 4 FIGURE 7 FIGURE 10 PMID:2393705
A random walk in physical biology
NASA Astrophysics Data System (ADS)
Peterson, Eric Lee
Biology as a scientific discipline is becoming evermore quantitative as tools become available to probe living systems on every scale from the macro to the micro and now even to the nanoscale. In quantitative biology the challenge is to understand the living world in an in vivo context, where it is often difficult for simple theoretical models to connect with the full richness and complexity of the observed data. Computational models and simulations offer a way to bridge the gap between simple theoretical models and real biological systems; towards that aspiration are presented in this thesis three case studies in applying computational models that may give insight into native biological structures.The first is concerned with soluble proteins; proteins, like DNA, are linear polymers written in a twenty-letter "language" of amino acids. Despite the astronomical number of possible proteins sequences, a great amount of similarity is observed among the folded structures of globular proteins. One useful way of discovering similar sequences is to align their sequences, as done e.g. by the popular BLAST program. By clustering together amino acids and reducing the alphabet that proteins are written in to fewer than twenty letters, we find that pairwise sequence alignments are actually more sensitive to proteins with similar structures.The second case study is concerned with the measurement of forces applied to a membrane. We demonstrate a general method for extracting the forces applied to a fluid lipid bilayer of arbitrary shape and show that the subpiconewton forces applied by optical tweezers to vesicles can be accurately measured in this way.In the third and final case study we examine the forces between proteins in a lipid bilayer membrane. Due to the bending of the membrane surrounding them, such proteins feel mutually attractive forces which can help them to self-organize and act in concert. These finding are relevant at the areal densities estimated for membrane proteins such as the MscL mechanosensitive channel. The findings of the analytical studies were confirmed by a Monte Carlo Markov Chain simulation using the fully two-dimensional potentials between two model proteins in a membrane.Living systems present us with beautiful and intricate structures, from the helices and sheets of a folded protein to the dynamic morphology of cellular organelles and the self-organization of proteins in a biomembrane and a synergy of theoretical and it in silico approaches should enable us to build and refine models of in vivo biological data.
COACH: profile-profile alignment of protein families using hidden Markov models.
Edgar, Robert C; Sjölander, Kimmen
2004-05-22
Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to profile-profile alignment we call Comparison of Alignments by Constructing Hidden Markov Models (HMMs) (COACH). COACH aligns two multiple sequence alignments by constructing a profile HMM from one alignment and aligning the other to that HMM. We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen parameter settings. COACH is freely available from www.drive5.com/lobster
CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.
Terashi, Genki; Takeda-Shitaka, Mayuko
2015-01-01
Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both single and multi-domain comparisons. The CAB-align software is freely available to academic users as stand-alone software at http://www.pharm.kitasato-u.ac.jp/bmd/bmd/Publications.html.
NASA Technical Reports Server (NTRS)
Evans, F. A.
1978-01-01
Space shuttle orbiter/IUS alignment transfer was evaluated. Although the orbiter alignment accuracy was originally believed to be the major contributor to the overall alignment transfer error, it was shown that orbiter alignment accuracy is not a factor affecting IUS alignment accuracy, if certain procedures are followed. Results are reported of alignment transfer accuracy analysis.
Comerford, A; Chooi, K Y; Nowak, M; Weinberg, P D; Sherwin, S J
2015-04-01
The medial layer of the arterial wall may play an important role in the regulation of water and solute transport across the wall. In particular, a high medial resistance to transport could cause accumulation of lipid-carrying molecules in the inner wall. In this study, the water transport properties of medial tissue were characterised in a numerical model, utilising experimentally obtained data for the medial microstructure and the relative permeability of different constituents. For the model, a new solver for flow in porous materials, based on a high-order splitting scheme, was implemented in the spectral/hp element library nektar++ and validated. The data were obtained by immersing excised aortic bifurcations in a solution of fluorescent protein tracer and subsequently imaging them with a confocal microscope. Cuboidal regions of interest were selected in which the microstructure and relative permeability of different structures were transformed to a computational mesh. Impermeable objects were treated fictitiously in the numerical scheme. On this cube, a pressure drop was applied in the three coordinate directions and the principal components of the permeability tensor were determined. The reconstructed images demonstrated the arrangement of elastic lamellae and interspersed smooth muscle cells in rat aortic media; the distribution and alignment of the smooth muscle cells varied spatially within the extracellular matrix. The numerical simulations highlighted that the heterogeneity of the medial structure is important in determining local water transport properties of the tissue, resulting in regional and directional variation of the permeability tensor. A major factor in this variation is the alignment and density of smooth muscle cells in the media, particularly adjacent to the adventitial layer.
Waardenberg, Ashley J; Bernardo, Bianca C; Ng, Dominic C H; Shepherd, Peter R; Cemerlang, Nelly; Sbroggiò, Mauro; Wells, Christine A; Dalrymple, Brian P; Brancaccio, Mara; Lin, Ruby C Y; McMullen, Julie R
2011-09-02
Maintenance of cardiac structure and Z-disc signaling are key factors responsible for protecting the heart in a setting of stress, but how these processes are regulated is not well defined. We recently demonstrated that PI3K(p110α) protects the heart against myocardial infarction. The aim of this study was to determine whether PI3K(p110α) directly regulates components of the Z-disc and cardiac structure. To address this question, a unique three-dimensional virtual muscle model was applied to gene expression data from transgenic mice with increased or decreased PI3K(p110α) activity under basal conditions (sham) and in a setting of myocardial infarction to display the location of structural proteins. Key findings from this analysis were then validated experimentally. The three-dimensional virtual muscle model visually highlighted reciprocally regulated transcripts associated with PI3K activation that encoded key components of the Z-disc and costamere, including melusin. Studies were performed to assess whether PI3K and melusin interact in the heart. Here, we identify a novel melusin-PI3K interaction that generates lipid kinase activity. The direct impact of PI3K(p110α) on myocyte structure was assessed by treating neonatal rat ventricular myocytes with PI3K(p110α) inhibitors and examining the myofiber morphology of hearts from PI3K transgenic mice. Results demonstrate that PI3K is critical for myofiber maturation and Z-disc alignment. In summary, PI3K regulates the expression of genes essential for cardiac structure and Z-disc signaling, interacts with melusin, and is critical for Z-disc alignment.
Waardenberg, Ashley J.; Bernardo, Bianca C.; Ng, Dominic C. H.; Shepherd, Peter R.; Cemerlang, Nelly; Sbroggiò, Mauro; Wells, Christine A.; Dalrymple, Brian P.; Brancaccio, Mara; Lin, Ruby C. Y.; McMullen, Julie R.
2011-01-01
Maintenance of cardiac structure and Z-disc signaling are key factors responsible for protecting the heart in a setting of stress, but how these processes are regulated is not well defined. We recently demonstrated that PI3K(p110α) protects the heart against myocardial infarction. The aim of this study was to determine whether PI3K(p110α) directly regulates components of the Z-disc and cardiac structure. To address this question, a unique three-dimensional virtual muscle model was applied to gene expression data from transgenic mice with increased or decreased PI3K(p110α) activity under basal conditions (sham) and in a setting of myocardial infarction to display the location of structural proteins. Key findings from this analysis were then validated experimentally. The three-dimensional virtual muscle model visually highlighted reciprocally regulated transcripts associated with PI3K activation that encoded key components of the Z-disc and costamere, including melusin. Studies were performed to assess whether PI3K and melusin interact in the heart. Here, we identify a novel melusin-PI3K interaction that generates lipid kinase activity. The direct impact of PI3K(p110α) on myocyte structure was assessed by treating neonatal rat ventricular myocytes with PI3K(p110α) inhibitors and examining the myofiber morphology of hearts from PI3K transgenic mice. Results demonstrate that PI3K is critical for myofiber maturation and Z-disc alignment. In summary, PI3K regulates the expression of genes essential for cardiac structure and Z-disc signaling, interacts with melusin, and is critical for Z-disc alignment. PMID:21757757
SFESA: a web server for pairwise alignment refinement by secondary structure shifts.
Tong, Jing; Pei, Jimin; Grishin, Nick V
2015-09-03
Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.
NASA Astrophysics Data System (ADS)
Walsh, Edward J.
1999-10-01
The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 2nd edition
D. Fennell Evans and Hakan Wennerstroem. Advances in Interfacial Engineering Series. Wiley-VCH: New York, 1999. xl + 632 pp. ISBN 0-471-24247-0. 89.95.
Commercial Nuclear Power: Assuring Safety for the Future
Charles B. Ramsey and Mohammed Modarres. Wiley-Interscience: New York, 1998. xxviii + 508 pp. ISBN 0-471-29186-2. 79.95.
Advances in Medicinal Chemistry, Vol. 4
Bruce E. Maryanoff and Allen B. Reitz, Eds. JAI Press: Stamford, CT, 1999. ISBN 1-7623-0064-7. 109.50.
Advances in Strained and Interesting Organic Molecules, Vol. 7
Brian Halton, Ed. JAI Press: Stamford, CT, 1999. xii + 259 pp. ISBN 0-7623-0530-4. 109.50.
Advances in Electron Transfer Chemistry, Vol. 6
Patrick S. Mariano, Ed. JAI Press: Stamford, CT, 1999. x + 171 pp. ISBN 0-7623-0213-5. 109.50.
Automating Science and Engineering Laboratories with Visual Basic
Mark F. Russo and Martin M. Echols. Wiley-Interscience Series on Laboratory Automation. Wiley-Interscience: New York, 1999. xx + 355 pp. ISBN 0-471-25493-2. 49.95.
Plantwide Process Control
Kelvin T. Erickson and John L. Hedrick. Wiley Series in Chemical Engineering. Wiley-Interscience: New York, 1999. xii + 547 pp. ISBN 0-471-17835-7. 89.95.
Heme Peroxidases
H. Brian Dunford. Wiley-VCH: New York, 1999. xiii + 507 pp. ISBN 0-471-24244-6. 195.00.
Industrial Ecology: Environmental Chemistry and Hazardous Wastes
Stanley E. Manahan. Lewis: Boca Raton, FL, 1999. 318 pp. ISBN 1-56670-381-6. 69.95.
Reviews in Computational Chemistry, Vol. 13
Kenny B. Lipkowitz and Donald B. Boyd. Wiley-VCH: New York, 1999. xxxiii + 426 pp. ISBN 0-471-33135-x. 135.00.
Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd edition
Drew Myers. Wiley-VCH: New York, 1999. xx + 501 pp. ISBN 0-471-33060-4. 94.95.
Onium Ions
George A. Olah, Kenneth K. Laali, Qi Wang, and G. K. Surya Prakash. Wiley-Interscience: New York, 1998. xv + 509 pp. ISBN 0-471-14877-6. 110.00.
Environmental Soil and Water Chemistry: Principles and Applications V. P. Evangelou. Wiley-Interscience: New York, 1998. xix + 564 pp. ISBN 0-471-16515-8. 79.95.
1001 Chemicals in Everyday Products, 2nd edition
Grace Ross Lewis. Wiley-Interscience: New York, 1999. x + 388 pp. ISBN 0-471-29212-5. 39.95.
Organic Coatings: Science and Technology, 2nd edition
Zeno W. Wicks Jr., Frank N. Jones, and S. Peter Pappas. Wiley-Interscience: New York, 1999. xxi + 630 pp. ISBN 0-471-24507-0. 125.00.
Progress in Inorganic Chemistry, Vol. 48
Kenneth D. Karlin, Ed. Wiley-Interscience: New York, 1999. vi + 603 pp. ISBN 0-471-32623-2. 145.00.
Occupational Biomechanics, 3rd edition
Don B. Chaffin, Gunnar B. Andersson, and Bernard J. Martin. Wiley-Interscience: New York, 1999. xvii + 579 pp. ISBN 0-471-24697-2. 69.95.
Advances in Photochemistry, Vol. 25
Douglas C. Neckers, David H. Volman, and Gunther Von Bünau. Wiley-Interscience: New York, 1999. xi + 238 pp. ISBN 0-471-32708-5. 110.00.
Distillation
Johann G. Stichlmair and James R. Fair. Wiley-VCH: New York, 1998. xiii + 524 pp. ISBN 0-471-25241-7. 94.95.
Ammonia - Principles and Industrial Practice
Maz Appl. Wiley-VCH: New York, 1999. ix + 301 pp. ISBN 3-527-29593-3. 160.00.
Precursor-Derived Ceramics: Synthesis, Structure, and High-Temperature Mechanical Properties
Fritz Aldinger, Fumihiro Wakai, and Joachim Bill, Eds. Wiley-VCH: New York, 1999. xv + 298 pp. ISBN 3-527-29814-2. 180.00.
Advances in Sonochemisty, Vol. 5
Timothy J. Mason. JAI Press: Stamford, CT, 1999. xi + 311 pp. ISBN 0-7623-0331-x. 109.50.
Fluid Metals: The Liquid-Vapor Transition of Metals
Friedrich Hensel and William W. Warren Jr. Princeton University Press: Princeton, NJ. 1999. xvii + 243 pp. ISBN 0-691-05830-x. 69.50.
Direct Phasing in Crystallography: Fundamentals and Applications
Carmelo Giacovazzo. Oxford University Press: New York, 1999. xxiii + 767 pp. ISBN 0-19-850072-6. 140.00.
Practical Environmental Analysis
M. Radojevic and V. N. Bashkin. Royal Society of Chemistry: Cambridge, UK. 1999. xx + 466 pp. ISBN 0-85404-594-5. £32.00.
Advances in Dendritic Macromolecules, Vol. 4 George R. Newkome, Ed. JAI Press: Stamford, CT, 1999. x + 207 pp. ISBN 0-7623-0347-6. 109.50.
Advances in Quantitative Structure-Property Relationships, Vol. 2
Marvin Charton. JAI Press: Stamford, CT, 1999. ix + 257 pp. ISBN 0-7623-0067-1. 109.50.
Pesticide Residues in Foods: Methods, Techniques, and Regulations
W. George Fong, H. Anson Moye, James N. Seiber, and John P. Toth. Chemical Analysis, Vol. 151.Wiley-Interscience: New York, 1999. xiv + 358 pp. ISBN 0-471-57400-7. $84.95.
A novel approach to multiple sequence alignment using hadoop data grids.
Sudha Sadasivam, G; Baktavatchalam, G
2010-01-01
Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences.
Fabrication of high temperature superconductors
Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya
2003-06-17
A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.
Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.
2015-11-01
Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangularmore » AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.« less
Unified Alignment of Protein-Protein Interaction Networks.
Malod-Dognin, Noël; Ban, Kristina; Pržulj, Nataša
2017-04-19
Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others.
Accelerating large-scale protein structure alignments with graphics processing units
2012-01-01
Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132
AlignMe—a membrane protein sequence alignment web server
Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.
2014-01-01
We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425
Overcoming low-alignment signal contrast induced alignment failure by alignment signal enhancement
NASA Astrophysics Data System (ADS)
Lee, Byeong Soo; Kim, Young Ha; Hwang, Hyunwoo; Lee, Jeongjin; Kong, Jeong Heung; Kang, Young Seog; Paarhuis, Bart; Kok, Haico; de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; Mason, Christopher; Aarts, Igor; de Boeij, Wim P.
2016-03-01
Overlay is one of the key factors which enables optical lithography extension to 1X node DRAM manufacturing. It is natural that accurate wafer alignment is a prerequisite for good device overlay. However, alignment failures or misalignments are commonly observed in a fab. There are many factors which could induce alignment problems. Low alignment signal contrast is one of the main issues. Alignment signal contrast can be degraded by opaque stack materials or by alignment mark degradation due to processes like CMP. This issue can be compounded by mark sub-segmentation from design rules in combination with double or quadruple spacer process. Alignment signal contrast can be improved by applying new material or process optimization, which sometimes lead to the addition of another process-step with higher costs. If we can amplify the signal components containing the position information and reduce other unwanted signal and background contributions then we can improve alignment performance without process change. In this paper we use ASML's new alignment sensor (as was introduced and released on the NXT:1980Di) and sample wafers with special stacks which can induce poor alignment signal to demonstrate alignment and overlay improvement.
MaxAlign: maximizing usable data in an alignment.
Gouveia-Oliveira, Rodrigo; Sackett, Peter W; Pedersen, Anders G
2007-08-28
The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.
Alignment methods: strategies, challenges, benchmarking, and comparative overview.
Löytynoja, Ari
2012-01-01
Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments' performance in downstream analyses is recommended.
System and method for 2D workpiece alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, William T.; Carlson, Charles T.; Smith, Scott A.
2015-07-14
A carrier capable of holding one or more workpieces is disclosed. The carrier includes movable projections located along the sides of each cell in the carrier. This carrier, in conjunction with a separate alignment apparatus, aligns each workpiece within its respective cell against several alignment pins, using a multiple step alignment process to guarantee proper positioning of the workpiece in the cell. First, the workpieces are moved toward one side of the cell. Once the workpieces have been aligned against this side, the workpieces are then moved toward an adjacent orthogonal side such that the workpieces are aligned to twomore » sides of the cell. Once aligned, the workpiece is held in place by the projections located along each side of each cell. In addition, the alignment pins are also used to align the associated mask, thereby guaranteeing that the mask is properly aligned to the workpiece.« less
Reid, Chelsea A; Davis, Jody L; Green, Jeffrey D
2013-01-01
Does attitude alignment predict attraction? Would you like a stranger more who shifts her/his attitudes to more closely align with yours? In pairs, participants (N = 77) discussed social issues about which they disagreed and received false feedback on whether the partner engaged in attitude alignment (shifted her/his attitudes toward the participant's attitude) following discussion. Participants also received false feedback about the proportion of similarity to the partner on a set of issues (i.e., 25%, 50%, or 75%). Participants reported greater attraction to partners who engaged in attitude alignment and who were more similar. Moreover, similarity and attitude alignment interacted. Similarity predicted attraction when attitude alignment did not occur, but did not predict attraction when attitude alignment did occur. Finally, partner attitude alignment led to participant attitude alignment, and perceived reasoning ability mediated the attitude alignment-attraction relationship.
Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M
2014-05-01
Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.
Kobayashi, Hiroshi; Parton, Angela; Czechanski, Anne; Durkin, Christopher; Kong, Chi-Chon; Barnes, David
2008-01-01
The multidrug resistance-associated protein 3 (MRP3/Mrp3) is a member of the ATP-binding cassette (ABC) protein family of membrane transporters and related proteins that act on a variety of xenobiotic and anionic molecules to transfer these substrates in an ATP-dependent manner. In recent years, useful comparative information regarding evolutionarily conserved structure and transport functions of these proteins has accrued through the use of primitive marine animals such as cartilaginous fish. Until recently, one missing tool in comparative studies with cartilaginous fish was cell culture. We have derived from the embryo of Squalus acanthias, the spiny dogfish shark, the S. acanthias embryo (SAE) mesenchymal stem cell line. This is the first continuously proliferating cell line from a cartilaginous fish. We identified expression of Mrp3 in this cell line, cloned the molecule, and examined molecular and cellular physiological aspects of the protein. Shark Mrp3 is characterized by three membrane-spanning domains and two nucleotide-binding domains. Multiple alignments with other species showed that the shark Mrp3 amino acid sequence was well conserved. The shark sequence was overall 64% identical to human MRP3, 72% identical to chicken Mrp3, and 71% identical to frog and stickleback Mrp3. Highest identity between shark and human amino acid sequence (82%) was seen in the carboxyl-terminal nucleotide-binding domain of the proteins. Cell culture experiments showed that mRNA for the protein was induced as much as 25-fold by peptide growth factors, fetal bovine serum, and lipid nutritional components, with the largest effect mediated by a combination of lipids including unsaturated and saturated fatty acids, cholesterol, and vitamin E. PMID:18284333
Kobayashi, Hiroshi; Parton, Angela; Czechanski, Anne; Durkin, Christopher; Kong, Chi-Chon; Barnes, David
2007-01-01
The multidrug resistance-associated protein 3 (MRP3/Mrp3) is a member of the ATP-binding cassette (ABC) protein family of membrane transporters and related proteins that act on a variety of xenobiotic and anionic molecules to transfer these substrates in an ATP-dependent manner. In recent years, useful comparative information regarding evolutionarily conserved structure and transport functions of these proteins has accrued through the use of primitive marine animals such as cartilaginous fish. Until recently, one missing tool in comparative studies with cartilaginous fish was cell culture. We have derived from the embryo of Squalus acanthias, the spiny dogfish shark, the S. acanthias embryo (SAE) mesenchymal stem cell line. This is the first continuously proliferating cell line from a cartilaginous fish. We identified expression of Mrp3 in this cell line, cloned the molecule, and examined molecular and cellular physiological aspects of the protein. Shark Mrp3 is characterized by three membrane-spanning domains and two nucleotide-binding domains. Multiple alignments with other species showed that the shark Mrp3 amino acid sequence was well conserved. The shark sequence was overall 64% identical to human MRP3, 72% identical to chicken Mrp3, and 71% identical to frog and stickleback Mrp3. Highest identity between shark and human amino acid sequence (82%) was seen in the carboxyl-terminal nucleotide-binding domain of the proteins. Cell culture experiments showed that mRNA for the protein was induced as much as 25-fold by peptide growth factors, fetal bovine serum, and lipid nutritional components, with the largest effect mediated by a combination of lipids including unsaturated and saturated fatty acids, cholesterol, and vitamin E.
Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field
NASA Technical Reports Server (NTRS)
Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.
2005-01-01
While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.
Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.
Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R
2009-07-01
The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/
Fee, Timothy; Downs, Crawford; Eberhardt, Alan; Zhou, Yong; Berry, Joel
2016-07-01
It is well documented that electrospun tissue engineering scaffolds can be fabricated with variable degrees of fiber alignment to produce scaffolds with anisotropic mechanical properties. Several attempts have been made to quantify the degree of fiber alignment within an electrospun scaffold using image-based methods. However, these methods are limited by the inability to produce a quantitative measure of alignment that can be used to make comparisons across publications. Therefore, we have developed a new approach to quantifying the alignment present within a scaffold from scanning electron microscopic (SEM) images. The alignment is determined by using the Sobel approximation of the image gradient to determine the distribution of gradient angles with an image. This data was fit to a Von Mises distribution to find the dispersion parameter κ, which was used as a quantitative measure of fiber alignment. We fabricated four groups of electrospun polycaprolactone (PCL) + Gelatin scaffolds with alignments ranging from κ = 1.9 (aligned) to κ = 0.25 (random) and tested our alignment quantification method on these scaffolds. It was found that our alignment quantification method could distinguish between scaffolds of different alignments more accurately than two other published methods. Additionally, the alignment parameter κ was found to be a good predictor the mechanical anisotropy of our electrospun scaffolds. The ability to quantify fiber alignment within and make direct comparisons of scaffold fiber alignment across publications can reduce ambiguity between published results where cells are cultured on "highly aligned" fibrous scaffolds. This could have important implications for characterizing mechanics and cellular behavior on aligned tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1680-1686, 2016. © 2016 Wiley Periodicals, Inc.
Aligning for accountable care: Strategic practices for change in accountable care organizations.
Hilligoss, Brian; Song, Paula H; McAlearney, Ann Scheck
Alignment within accountable care organizations (ACOs) is crucial if these new entities are to achieve their lofty goals. However, the concept of alignment remains underexamined, and we know little about the work entailed in creating alignment. The aim of this study was to develop the concept of aligning by identifying and describing the strategic practices administrators use to align the structures, processes, and behaviors of their organizations and individual providers in pursuit of accountable care. We conducted 2-year qualitative case studies of four ACOs that have assumed full risk for the costs and quality of care for defined populations. Five strategic aligning practices were used by all four ACOs. Informing both aligns providers' understandings with the goals and value proposition of the ACO and aligns the providers' attention with the drivers of performance. Involving both aligns ACO leaders' understandings with the realities facing providers and aligns the policies of the ACO with the needs of providers. Enhancing both aligns the operations of individual provider practices with the operations of the ACO and aligns the trust of providers with the ACO. Motivating aligns what providers value with the goals of the ACO. Finally, evolving is a metapractice of learning and adapting that guides the execution of the other four practices. Our findings suggest that there are second-order cognitive (e.g., understandings and attention) and cultural (e.g., trust and values) levels of alignment, as well as a first-order operational level (organizational structures, processes, and incentives). A well-aligned organization may require ongoing repositioning at each of these levels, as well as attention to both cooperative and coordinative dimensions of alignment. Implications for research and practice are discussed.
Using structure to explore the sequence alignment space of remote homologs.
Kuziemko, Andrew; Honig, Barry; Petrey, Donald
2011-10-01
Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.
Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations
NASA Astrophysics Data System (ADS)
Velliscig, Marco; Cacciato, Marcello; Schaye, Joop; Hoekstra, Henk; Bower, Richard G.; Crain, Robert A.; van Daalen, Marcel P.; Furlong, Michelle; McCarthy, I. G.; Schaller, Matthieu; Theuns, Tom
2015-12-01
We report results for the alignments of galaxies in the EAGLE and cosmo-OWLS hydrodynamical cosmological simulations as a function of galaxy separation (-1 ≤ log10(r/[ h-1 Mpc]) ≤ 2) and halo mass (10.7 ≤ log10(M200/[h-1 M⊙]) ≤ 15). We focus on two classes of alignments: the orientations of galaxies with respect to either the directions to, or the orientations of, surrounding galaxies. We find that the strength of the alignment is a strongly decreasing function of the distance between galaxies. For galaxies hosted by the most massive haloes in our simulations the alignment can remain significant up to ˜100 Mpc. Galaxies hosted by more massive haloes show stronger alignment. At a fixed halo mass, more aspherical or prolate galaxies exhibit stronger alignments. The spatial distribution of satellites is anisotropic and significantly aligned with the major axis of the main host halo. The major axes of satellite galaxies, when all stars are considered, are preferentially aligned towards the centre of the main host halo. The predicted projected direction-orientation alignment, ɛg+(rp), is in broad agreement with recent observations. We find that the orientation-orientation alignment is weaker than the orientation-direction alignment on all scales. Overall, the strength of galaxy alignments depends strongly on the subset of stars that are used to measure the orientations of galaxies and it is always weaker than the alignment of dark matter haloes. Thus, alignment models that use halo orientation as a direct proxy for galaxy orientation overestimate the impact of intrinsic galaxy alignments.
Alignment method for parabolic trough solar concentrators
Diver, Richard B [Albuquerque, NM
2010-02-23
A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.
Sharma, Virag; Hiller, Michael
2017-08-21
Genome alignments provide a powerful basis to transfer gene annotations from a well-annotated reference genome to many other aligned genomes. The completeness of these annotations crucially depends on the sensitivity of the underlying genome alignment. Here, we investigated the impact of the genome alignment parameters and found that parameters with a higher sensitivity allow the detection of thousands of novel alignments between orthologous exons that have been missed before. In particular, comparisons between species separated by an evolutionary distance of >0.75 substitutions per neutral site, like human and other non-placental vertebrates, benefit from increased sensitivity. To systematically test if increased sensitivity improves comparative gene annotations, we built a multiple alignment of 144 vertebrate genomes and used this alignment to map human genes to the other 143 vertebrates with CESAR. We found that higher alignment sensitivity substantially improves the completeness of comparative gene annotations by adding on average 2382 and 7440 novel exons and 117 and 317 novel genes for mammalian and non-mammalian species, respectively. Our results suggest a more sensitive alignment strategy that should generally be used for genome alignments between distantly-related species. Our 144-vertebrate genome alignment and the comparative gene annotations (https://bds.mpi-cbg.de/hillerlab/144VertebrateAlignment_CESAR/) are a valuable resource for comparative genomics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hashemifar, Somaye; Xu, Jinbo
2014-09-01
High-throughput experimental techniques have produced a large amount of protein-protein interaction (PPI) data. The study of PPI networks, such as comparative analysis, shall benefit the understanding of life process and diseases at the molecular level. One way of comparative analysis is to align PPI networks to identify conserved or species-specific subnetwork motifs. A few methods have been developed for global PPI network alignment, but it still remains challenging in terms of both accuracy and efficiency. This paper presents a novel global network alignment algorithm, denoted as HubAlign, that makes use of both network topology and sequence homology information, based upon the observation that topologically important proteins in a PPI network usually are much more conserved and thus, more likely to be aligned. HubAlign uses a minimum-degree heuristic algorithm to estimate the topological and functional importance of a protein from the global network topology information. Then HubAlign aligns topologically important proteins first and gradually extends the alignment to the whole network. Extensive tests indicate that HubAlign greatly outperforms several popular methods in terms of both accuracy and efficiency, especially in detecting functionally similar proteins. HubAlign is available freely for non-commercial purposes at http://ttic.uchicago.edu/∼hashemifar/software/HubAlign.zip. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
2017-01-01
The diversity of microbiota is best explored by understanding the phylogenetic structure of the microbial communities. Traditionally, sequence alignment has been used for phylogenetic inference. However, alignment-based approaches come with significant challenges and limitations when massive amounts of data are analyzed. In the recent decade, alignment-free approaches have enabled genome-scale phylogenetic inference. Here we evaluate three alignment-free methods: ACS, CVTree, and Kr for phylogenetic inference with 16s rRNA gene data. We use a taxonomic gold standard to compare the accuracy of alignment-free phylogenetic inference with that of common microbiome-wide phylogenetic inference pipelines based on PyNAST and MUSCLE alignments with FastTree and RAxML. We re-simulate fecal communities from Human Microbiome Project data to evaluate the performance of the methods on datasets with properties of real data. Our comparisons show that alignment-free methods are not inferior to alignment-based methods in giving accurate and robust phylogenic trees. Moreover, consensus ensembles of alignment-free phylogenies are superior to those built from alignment-based methods in their ability to highlight community differences in low power settings. In addition, the overall running times of alignment-based and alignment-free phylogenetic inference are comparable. Taken together our empirical results suggest that alignment-free methods provide a viable approach for microbiome-wide phylogenetic inference. PMID:29136663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welti, Ruth
2012-11-01
Presenters will discuss the latest advances in plant and algal lipid metabolism, oil synthesis, lipid signaling, lipid visualization, lipid biotechnology and its applications, the physiological and developmental roles of lipids, and plant lipids in health. Sessions include: Producing Nutritional Lipids; Metabolic biochemistry in the next decade; Triacylglycerols: Metabolism, function, and as a target for engineering; Lipids in Protection, Reproduction, and Development; Genetic and Lipidomic Approaches to Understanding Lipid Metabolism and Signaling; Lipid Signaling in Stress Responses; New Insights on the Path to Triacylglycerols; Membrane Lipid Signaling; Lipid Visualization; Development of Biofuels and Industrial Lipids.
Zhou, Carol L Ecale
2015-01-01
In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.
Health care's new game changer. Thinking like a health plan.
Eggbeer, Bill; Bowers, Krista
2014-10-01
The transition for hospitals from having only a provider's perspective to thinking more like a health plan will require strategic alignment on four fronts: Health plan alignment. Hospital and physician alignment. Leadership alignment. Organizational alignment.
Iterative non-sequential protein structural alignment.
Salem, Saeed; Zaki, Mohammed J; Bystroff, Christopher
2009-06-01
Structural similarity between proteins gives us insights into their evolutionary relationships when there is low sequence similarity. In this paper, we present a novel approach called SNAP for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process consisting of a superposition step and an alignment step, until convergence. We propose a novel greedy algorithm to construct both sequential and non-sequential alignments. The quality of SNAP alignments were assessed by comparing against the manually curated reference alignments in the challenging SISY and RIPC datasets. Moreover, when applied to a dataset of 4410 protein pairs selected from the CATH database, SNAP produced longer alignments with lower rmsd than several state-of-the-art alignment methods. Classification of folds using SNAP alignments was both highly sensitive and highly selective. The SNAP software along with the datasets are available online at http://www.cs.rpi.edu/~zaki/software/SNAP.
Electric-field-induced flow-aligning state in a nematic liquid crystal.
Fatriansyah, Jaka Fajar; Orihara, Hiroshi
2015-04-01
The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.
DNA curtains for high-throughput single-molecule optical imaging.
Greene, Eric C; Wind, Shalom; Fazio, Teresa; Gorman, Jason; Visnapuu, Mari-Liis
2010-01-01
Single-molecule approaches provide a valuable tool in the arsenal of the modern biologist, and new discoveries continue to be made possible through the use of these state-of-the-art technologies. However, it can be inherently difficult to obtain statistically relevant data from experimental approaches specifically designed to probe individual reactions. This problem is compounded with more complex biochemical reactions, heterogeneous systems, and/or reactions requiring the use of long DNA substrates. Here we give an overview of a technology developed in our laboratory, which relies upon simple micro- or nanofabricated structures in combination with "bio-friendly" lipid bilayers, to align thousands of long DNA molecules into defined patterns on the surface of a microfluidic sample chamber. We call these "DNA curtains," and we have developed several different versions varying in complexity and DNA substrate configuration, which are designed to meet different experimental needs. This novel approach to single-molecule imaging provides a powerful experimental platform that offers the potential for concurrent observation of hundreds or even thousands of protein-DNA interactions in real time. Copyright 2010 Elsevier Inc. All rights reserved.
Mansell, J P; Shiel, A I; Harwood, C; Stephens, D
2017-07-01
Enhancing the performance and longevity of titanium (Ti) implants continues to be a significant developmental theme in contemporary biomaterials design. Our specific focus pertains to the surface functionalisation of Ti using the bioactive lipid, lysophosphatidic acid (LPA) and certain phosphatase-resistant analogues of LPA. Coating survivorship to a plethora of testing regimens is required to align with due regulatory process before novel biomaterials can enter clinical trials. One of the key acceptance criteria is coating retention to the physical stresses experienced during implantation. In assessing coating stability to insertion into porcine bone we found that a subsequent in vitro assessment to confirm coating persistence was masked by abundant alkaline phosphatase (ALP) contamination adsorbed to the metal surface. Herein we report that ALP can bind to Ti in a matter of minutes by simply immersing Ti samples in aqueous solutions of the enzyme. We strongly discourage the in vitro monitoring of osteoblast and stromal cell ALP expression when assessing bioactive coating survivorship following Ti implant retrieval form native bone tissue. Copyright © 2017 Elsevier B.V. All rights reserved.
Kulkarni, Rishikesh U; Yin, Hang; Pourmandi, Narges; James, Feroz; Adil, Maroof M; Schaffer, David V; Wang, Yi; Miller, Evan W
2017-02-17
Voltage imaging with fluorescent dyes offers promise for interrogating the complex roles of membrane potential in coordinating the activity of neurons in the brain. Yet, low sensitivity often limits the broad applicability of optical voltage indicators. In this paper, we use molecular dynamics (MD) simulations to guide the design of new, ultrasensitive fluorescent voltage indicators that use photoinduced electron transfer (PeT) as a voltage-sensing switch. MD simulations predict an approximately 16% increase in voltage sensitivity resulting purely from improved alignment of dye with the membrane. We confirm this theoretical finding by synthesizing 9 new voltage-sensitive (VoltageFluor, or VF) dyes and establishing that all of them display the expected improvement of approximately 19%. This synergistic outworking of theory and experiment enabled computational and theoretical estimation of VF dye orientation in lipid bilayers and has yielded the most sensitive PeT-based VF dye to date. We use this new voltage indicator to monitor voltage spikes in neurons from rat hippocampus and human pluripotent-stem-cell-derived dopaminergic neurons.
Brežná, Barbara; Šmíd, Jiří; Costa, Joana; Radvanszky, Jan; Mafra, Isabel; Kuchta, Tomáš
2015-04-01
Ten published DNA-based analytical methods aiming at detecting material of almond (Prunus dulcis) were in silico evaluated for potential cross-reactivity with other stone fruits (Prunus spp.), including peach, apricot, plum, cherry, sour cherry and Sargent cherry. For most assays, the analysis of nucleotide databases suggested none or insufficient discrimination of at least some stone fruits. On the other hand, the assay targeting non-specific lipid transfer protein (Röder et al., 2011, Anal Chim Acta 685:74-83) was sufficiently discriminative, judging from nucleotide alignments. Empirical evaluation was performed for three of the published methods, one modification of a commercial kit (SureFood allergen almond) and one attempted novel method targeting thaumatin-like protein gene. Samples of leaves and kernels were used in the experiments. The empirical results were favourable for the method from Röder et al. (2011) and a modification of SureFood allergen almond kit, both showing cross-reactivity <10(-3) compared to the model almond. Copyright © 2014 Elsevier Ltd. All rights reserved.
Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions
NASA Astrophysics Data System (ADS)
Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok
Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.
Zheng, Qi; Grice, Elizabeth A
2016-10-01
Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.
Kort, N P; van Raay, J J A M; Thomassen, B J W
2007-08-01
Use of an intramedullary rod is advised for the alignment of the femoral component of an Oxford phase-III prosthesis. There are users moving toward extramedullary alignment, which is merely an indicator of frustration with accuracy of intramedullary alignment. The results of our study with 10 cadaver femora demonstrate that use of a short and long intramedullary femoral rod may result in excessive flexion alignment error of the femoral component. Understanding of the extramedullary alignment possibility and experience with the visual alignment of the femoral drill guide is essential toward minimizing potential errors in the alignment of the femoral component.
Desktop aligner for fabrication of multilayer microfluidic devices.
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-07-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.
Desktop aligner for fabrication of multilayer microfluidic devices
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-01-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409
Iterative refinement of structure-based sequence alignments by Seed Extension
Kim, Changhoon; Tai, Chin-Hsien; Lee, Byungkook
2009-01-01
Background Accurate sequence alignment is required in many bioinformatics applications but, when sequence similarity is low, it is difficult to obtain accurate alignments based on sequence similarity alone. The accuracy improves when the structures are available, but current structure-based sequence alignment procedures still mis-align substantial numbers of residues. In order to correct such errors, we previously explored the possibility of replacing the residue-based dynamic programming algorithm in structure alignment procedures with the Seed Extension algorithm, which does not use a gap penalty. Here, we describe a new procedure called RSE (Refinement with Seed Extension) that iteratively refines a structure-based sequence alignment. Results RSE uses SE (Seed Extension) in its core, which is an algorithm that we reported recently for obtaining a sequence alignment from two superimposed structures. The RSE procedure was evaluated by comparing the correctly aligned fractions of residues before and after the refinement of the structure-based sequence alignments produced by popular programs. CE, DaliLite, FAST, LOCK2, MATRAS, MATT, TM-align, SHEBA and VAST were included in this analysis and the NCBI's CDD root node set was used as the reference alignments. RSE improved the average accuracy of sequence alignments for all programs tested when no shift error was allowed. The amount of improvement varied depending on the program. The average improvements were small for DaliLite and MATRAS but about 5% for CE and VAST. More substantial improvements have been seen in many individual cases. The additional computation times required for the refinements were negligible compared to the times taken by the structure alignment programs. Conclusion RSE is a computationally inexpensive way of improving the accuracy of a structure-based sequence alignment. It can be used as a standalone procedure following a regular structure-based sequence alignment or to replace the traditional iterative refinement procedures based on residue-level dynamic programming algorithm in many structure alignment programs. PMID:19589133
NASA Astrophysics Data System (ADS)
Blanco, J. M.; Zhukov, A. P.; González, J.
1999-12-01
The magneto-impedance effect icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/ZH = [Z(H)-Z(Hmax)]/Z(Hmax) has been measured in (Fe0.95Co0.05)72.5B15Si12.5 wire under torsion stress, icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> (torsion angle per unit length) with axial magnetic field (H) as parameter. Without stress (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)H(H) dependence has a non-monotonous shape with first an increase of total impedance Z and then a decrease, i.e. shows a maximum at certain axial magnetic field Hm. It was found that the torsion stress dependence of electrical impedance (torsion impedance), (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> = [Z(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>)-Z(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>max)]/Z(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>max), has asymmetric character with a clear maximum at torsion angle, icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> around 7icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/> rad m-1 in as-cast wire, while (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> reaches a maximum around 170%. Thermal treatments under torsion stress (without and with a previous annealing stage) develop a helical anisotropy on the amorphous wire, which drastically modifies the (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> response. Such treatments were carried out by using current annealing which resulted in a drastic increase of the maximum (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> up to 225%, and a change of torsion dependence of icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z with a tendency to a finally symmetric dependence of (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/>(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>). The maximum (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> ratio, (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> m, was obtained under torsion stress of icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> = 20icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/> rad m-1 (in a torsion annealed sample) and
= 11
rad m-1 (with pre-annealing and torsion annealing). Observed dependences were explained taking into account the frozen-in magneto-elastic anisotropy owing to the internal stress distribution during the fabrication process, the helical anisotropies induced by the torsion strain and that developed by thermal treatment under torsion stress (torsion annealing). The differences in the shape and intensity of the maximum (
Z/Z)
m between the torsion annealed and pre-annealed and torsion annealed samples should be ascribed to the visco-elastic character of the helical anisotropy induced by torsion stress.
Dunnican, Ward J; Singh, T Paul; Ata, Ashar; Bendana, Emma E; Conlee, Thomas D; Dolce, Charles J; Ramakrishnan, Rakesh
2010-06-01
Reverse alignment (mirror image) visualization is a disconcerting situation occasionally faced during laparoscopic operations. This occurs when the camera faces back at the surgeon in the opposite direction from which the surgeon's body and instruments are facing. Most surgeons will attempt to optimize trocar and camera placement to avoid this situation. The authors' objective was to determine whether the intentional use of reverse alignment visualization during laparoscopic training would improve performance. A standard box trainer was configured for reverse alignment, and 34 medical students and junior surgical residents were randomized to train with either forward alignment (DIRECT) or reverse alignment (MIRROR) visualization. Enrollees were tested on both modalities before and after a 4-week structured training program specific to their modality. Student's t test was used to determine differences in task performance between the 2 groups. Twenty-one participants completed the study (10 DIRECT, 11 MIRROR). There were no significant differences in performance time between DIRECT or MIRROR participants during forward or reverse alignment initial testing. At final testing, DIRECT participants had improved times only in forward alignment performance; they demonstrated no significant improvement in reverse alignment performance. MIRROR participants had significant time improvement in both forward and reverse alignment performance at final testing. Reverse alignment imaging for laparoscopic training improves task performance for both reverse alignment and forward alignment tasks. This may be translated into improved performance in the operating room when faced with reverse alignment situations. Minimal lab training can account for drastic adaptation to this environment.
Photoresist thin-film effects on alignment process capability
NASA Astrophysics Data System (ADS)
Flores, Gary E.; Flack, Warren W.
1993-08-01
Two photoresists were selected for alignment characterization based on their dissimilar coating properties and observed differences on alignment capability. The materials are Dynachem OFPR-800 and Shipley System 8. Both photoresists were examined on two challenging alignment levels in a submicron CMOS process, a nitride level and a planarized second level metal. An Ultratech Stepper model 1500 which features a darkfield alignment system with a broadband green light for alignment signal detection was used for this project. Initially, statistically designed linear screening experiments were performed to examine six process factors for each photoresist: viscosity, spin acceleration, spin speed, spin time, softbake time, and softbake temperature. Using the results derived from the screening experiments, a more thorough examination of the statistically significant process factors was performed. A full quadratic experimental design was conducted to examine viscosity, spin speed, and spin time coating properties on alignment. This included a characterization of both intra and inter wafer alignment control and alignment process capability. Insight to the different alignment behavior is analyzed in terms of photoresist material properties and the physical nature of the alignment detection system.
A Polar Initial Alignment Algorithm for Unmanned Underwater Vehicles
Yan, Zheping; Wang, Lu; Wang, Tongda; Zhang, Honghan; Zhang, Xun; Liu, Xiangling
2017-01-01
Due to its highly autonomy, the strapdown inertial navigation system (SINS) is widely used in unmanned underwater vehicles (UUV) navigation. Initial alignment is crucial because the initial alignment results will be used as the initial SINS value, which might affect the subsequent SINS results. Due to the rapid convergence of Earth meridians, there is a calculation overflow in conventional initial alignment algorithms, making conventional initial algorithms are invalid for polar UUV navigation. To overcome these problems, a polar initial alignment algorithm for UUV is proposed in this paper, which consists of coarse and fine alignment algorithms. Based on the principle of the conical slow drift of gravity, the coarse alignment algorithm is derived under the grid frame. By choosing the velocity and attitude as the measurement, the fine alignment with the Kalman filter (KF) is derived under the grid frame. Simulation and experiment are realized among polar, conventional and transversal initial alignment algorithms for polar UUV navigation. Results demonstrate that the proposed polar initial alignment algorithm can complete the initial alignment of UUV in the polar region rapidly and accurately. PMID:29168735
NASA Astrophysics Data System (ADS)
Lo, Yi-Chuan; Lee, Chih-Hsiung; Lin, Hsun-Peng; Peng, Chiou-Shian
1998-06-01
Several continuous splits for wafer alignment target topography conditions to improve epitaxy film alignment were applied. The alignment evaluation among former layer pad oxide thickness (250 angstrom - 500 angstrom), drive oxide thickness (6000 angstrom - 10000 angstrom), nitride film thickness (600 angstrom - 1500 angstrom), initial oxide etch (fully wet etch, fully dry etch and dry plus wet etch) will be split to this experiment. Also various epitaxy deposition recipe such as: epitaxy source (SiHCl2 or SiCHCl3) and growth rate (1.3 micrometer/min approximately 2.0 micrometer/min) will be used to optimize the process window for alignment issue. All the reflectance signal and cross section photography of alignment target during NIKON stepper alignment process will be examined. Experimental results show epitaxy recipe plays an important role to wafer alignment. Low growth rate with good performance conformity epitaxy lead to alignment target avoid washout, pattern shift and distortion. All the results (signal monitor and film character) combined with NIKON's stepper standard laser scanning alignment system will be discussed in this paper.
R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures.
Rahrig, Ryan R; Petrov, Anton I; Leontis, Neocles B; Zirbel, Craig L
2013-07-01
The R3D Align web server provides online access to 'RNA 3D Align' (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/.
How genome complexity can explain the difficulty of aligning reads to genomes.
Phan, Vinhthuy; Gao, Shanshan; Tran, Quang; Vo, Nam S
2015-01-01
Although it is frequently observed that aligning short reads to genomes becomes harder if they contain complex repeat patterns, there has not been much effort to quantify the relationship between complexity of genomes and difficulty of short-read alignment. Existing measures of sequence complexity seem unsuitable for the understanding and quantification of this relationship. We investigated several measures of complexity and found that length-sensitive measures of complexity had the highest correlation to accuracy of alignment. In particular, the rate of distinct substrings of length k, where k is similar to the read length, correlated very highly to alignment performance in terms of precision and recall. We showed how to compute this measure efficiently in linear time, making it useful in practice to estimate quickly the difficulty of alignment for new genomes without having to align reads to them first. We showed how the length-sensitive measures could provide additional information for choosing aligners that would align consistently accurately on new genomes. We formally established a connection between genome complexity and the accuracy of short-read aligners. The relationship between genome complexity and alignment accuracy provides additional useful information for selecting suitable aligners for new genomes. Further, this work suggests that the complexity of genomes sometimes should be thought of in terms of specific computational problems, such as the alignment of short reads to genomes.
LipidPedia: a comprehensive lipid knowledgebase.
Kuo, Tien-Chueh; Tseng, Yufeng Jane
2018-04-10
Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.
Aligned Layers of Silver Nano-Fibers.
Golovin, Andrii B; Stromer, Jeremy; Kreminska, Liubov
2012-02-01
We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.
Aligning the unalignable: bacteriophage whole genome alignments.
Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M
2016-01-13
In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).
Zheng, Qi; Grice, Elizabeth A.
2016-01-01
Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost. PMID:27706155
Multiple DNA and protein sequence alignment on a workstation and a supercomputer.
Tajima, K
1988-11-01
This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.
A Novel Partial Sequence Alignment Tool for Finding Large Deletions
Aruk, Taner; Ustek, Duran; Kursun, Olcay
2012-01-01
Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777
Alignment system for SGII-Up laser facility
NASA Astrophysics Data System (ADS)
Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi
2018-03-01
The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.
Fine-tuning structural RNA alignments in the twilight zone.
Bremges, Andreas; Schirmer, Stefanie; Giegerich, Robert
2010-04-30
A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.
Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G
2012-09-01
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Modified alignment CGHs for aspheric surface test
NASA Astrophysics Data System (ADS)
Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo
2009-08-01
Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.
Effects of whole spine alignment patterns on neck responses in rear end impact.
Sato, Fusako; Odani, Mamiko; Miyazaki, Yusuke; Yamazaki, Kunio; Östh, Jonas; Svensson, Mats
2017-02-17
The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model. Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion. The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment. The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear end impact condition.
Neumann, Steffen; Schmitt-Kopplin, Philippe
2017-01-01
Lipid identification is a major bottleneck in high-throughput lipidomics studies. However, tools for the analysis of lipid tandem MS spectra are rather limited. While the comparison against spectra in reference libraries is one of the preferred methods, these libraries are far from being complete. In order to improve identification rates, the in silico fragmentation tool MetFrag was combined with Lipid Maps and lipid-class specific classifiers which calculate probabilities for lipid class assignments. The resulting LipidFrag workflow was trained and evaluated on different commercially available lipid standard materials, measured with data dependent UPLC-Q-ToF-MS/MS acquisition. The automatic analysis was compared against manual MS/MS spectra interpretation. With the lipid class specific models, identification of the true positives was improved especially for cases where candidate lipids from different lipid classes had similar MetFrag scores by removing up to 56% of false positive results. This LipidFrag approach was then applied to MS/MS spectra of lipid extracts of the nematode Caenorhabditis elegans. Fragments explained by LipidFrag match known fragmentation pathways, e.g., neutral losses of lipid headgroups and fatty acid side chain fragments. Based on prediction models trained on standard lipid materials, high probabilities for correct annotations were achieved, which makes LipidFrag a good choice for automated lipid data analysis and reliability testing of lipid identifications. PMID:28278196
Kinematically aligned TKA can align knee joint line to horizontal.
Ji, Hyung-Min; Han, Jun; Jin, Dong San; Seo, Hyunseok; Won, Ye-Yeon
2016-08-01
The joint line of the native knee is horizontal to the floor and perpendicular to the vertical weight-bearing axis of the patient in a bipedal stance. The purposes of this study were as follows: (1) to find out the distribution of the native joint line in a population of normal patients with normal knees; (2) to compare the native joint line orientation between patients receiving conventional mechanically aligned total knee arthroplasty (TKA), navigated mechanically aligned TKA, and kinematically aligned TKA; and (3) to determine which of the three TKA methods aligns the postoperative knee joint perpendicular to the weight-bearing axis of the limb in bipedal stance. To determine the joint line orientation of a native knee, 50 full-length standing hip-to-ankle digital radiographs were obtained in 50 young, healthy individuals. The angle between knee joint line and the line parallel to the floor was measured and defined as joint line orientation angle (JLOA). JLOA was also measured prior to and after conventional mechanically aligned TKA (65 knees), mechanically aligned TKA using imageless navigation (65 knees), and kinematically aligned TKA (65 knees). The proportion of the knees similar to the native joint line was calculated for each group. The mean JLOA in healthy individuals was parallel to the floor (0.2° ± 1.1°). The pre-operative JLOA of all treatment groups slanted down to the lateral side. Postoperative JLOA slanted down to the lateral side in conventional mechanically aligned TKA (-3.3° ± 2.2°) and in navigation mechanically aligned TKA (-2.6° ± 1.8°), while it was horizontal to the floor in kinematically aligned TKA (0.6° ± 1.7°). Only 6.9 % of the conventional mechanically aligned TKA and 16.9 % of the navigation mechanically aligned TKA were within one SD of the mean JLOA of the native knee, while the proportion was significantly higher (50.8 %) in kinematically aligned TKA. The portion was statistically greater in mechanically aligned TKA group than the other two. Postoperative joint line orientation after kinematically aligned TKA was more similar to that of native knees than that of mechanically aligned TKA and horizontal to the floor. Kinematically aligned TKA can restore pre-arthritic knee joint line orientation, while mechanically aligned TKA is inefficient in achieving the purpose even if navigation TKA is employed. III.
NASA Astrophysics Data System (ADS)
Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha
2010-03-01
Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and lipids (solid and liquid) inside the lipid nanoparticle systems are proposed.
Analyzing the Curriculum Alignment of Teachers
ERIC Educational Resources Information Center
Turan-Özpolat, Esen; Bay, Erdal
2017-01-01
The purpose of this research was to analyze the curriculum alignment of teachers in secondary education 5th grade Science course. Alignment levels of teachers in dimensions of acquisition, content, teaching methods and techniques, activity, material and measurement - assessment, and the reasons for their alignment/non-alignment to the curriculum…
Alignment of Standards and Assessments as an Accountability Criterion.
ERIC Educational Resources Information Center
La Marca, Paul M.
2001-01-01
Provides an overview of the concept of alignment and the role it plays in assessment and accountability systems. Discusses some methodological issues affecting the study of alignment and explores the relationship between alignment and test score interpretation. Alignment is not only a methodological requirement but also an ethical requirement.…
Sandia Corporation (Albuquerque, NM)
Diver, Richard B.
2010-02-23
A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.
The post-genomic era of biological network alignment.
Faisal, Fazle E; Meng, Lei; Crawford, Joseph; Milenković, Tijana
2015-12-01
Biological network alignment aims to find regions of topological and functional (dis)similarities between molecular networks of different species. Then, network alignment can guide the transfer of biological knowledge from well-studied model species to less well-studied species between conserved (aligned) network regions, thus complementing valuable insights that have already been provided by genomic sequence alignment. Here, we review computational challenges behind the network alignment problem, existing approaches for solving the problem, ways of evaluating their alignment quality, and the approaches' biomedical applications. We discuss recent innovative efforts of improving the existing view of network alignment. We conclude with open research questions in comparative biological network research that could further our understanding of principles of life, evolution, disease, and therapeutics.
SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments
Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric
2014-01-01
This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831
Implementation of a parallel protein structure alignment service on cloud.
Hung, Che-Lun; Lin, Yaw-Ling
2013-01-01
Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.
Nuclear reactor alignment plate configuration
Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R
2014-01-28
An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.
Implementation of a Parallel Protein Structure Alignment Service on Cloud
Hung, Che-Lun; Lin, Yaw-Ling
2013-01-01
Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842
NASA Astrophysics Data System (ADS)
Asfour, Jean-Michel; Weidner, Frank; Bodendorf, Christof; Bode, Andreas; Poleshchuk, Alexander G.; Nasyrov, Ruslan K.; Grupp, Frank; Bender, Ralf
2017-09-01
We present a method for precise alignment of lens elements using specific Computer Generated Hologram (CGH) with an integrated Fizeau reference flat surface and a Fizeau interferometer. The method is used for aligning the so called Camera Lens Assembly for ESAs Euclid telescope. Each lens has a corresponding annular area on the diffractive optics, which is used to control the position of each lens. The lenses are subsequently positioned using individual annular rings of the CGH. The overall alignment accuracy is below 1 µm, the alignment sensitivity is in the range of 0.1 µm. The achieved alignment accuracy of the lenses relative to each other is mainly depending on the stability in time of the alignment tower. Error budgets when using computer generated holograms and physical limitations are explained. Calibration measurements of the alignment system and the typically reached alignment accuracies will be shown and discussed.
SIM Lite: Ground Alignment of the Instrument
NASA Technical Reports Server (NTRS)
Dekens, Frank G.; Goullioud, Renaud; Nicaise, Fabien; Kuan, Gary; Morales, Mauricio
2010-01-01
We present the start of the ground alignment plan for the SIM Lite Instrument. We outline the integration and alignment of the individual benches on which all the optics are mounted, and then the alignment of the benches to form the Science and Guide interferometers. The Instrument has a guide interferometer with only a 40 arc-seconds field of regard, and 200 arc-seconds of alignment adjustability. This requires each sides of the interferometer to be aligned to a fraction of that, while at the same time be orthogonal to the baseline defined by the External Metrology Truss. The baselines of the Science and Guide interferometers must also be aligned to be parallel. The start of these alignment plans is captured in a SysML Instrument System model, in the form of activity diagrams. These activity diagrams are then related to the hardware design and requirements. We finish with future plans for the alignment and integration activities and requirements.
SIM Lite: ground alignment of the instrument
NASA Astrophysics Data System (ADS)
Dekens, Frank G.; Goullioud, Renaud; Nicaise, Fabien; Kuan, Gary; Morales, Mauricio
2010-07-01
We present the start of the ground alignment plan for the SIM Lite Instrument. We outline the integration and alignment of the individual benches on which all the optics are mounted, and then the alignment of the benches to form the Science and Guide interferometers. The Instrument has a guide interferometer with only a 40 arc-seconds field of regard, and 200 arc-seconds of alignment adjustability. This requires each sides of the interferometer to be aligned to a fraction of that, while at the same time be orthogonal to the baseline defined by the External Metrology Truss. The baselines of the Science and Guide interferometers must also be aligned to be parallel. The start of these alignment plans is captured in a SysML Instrument System model, in the form of activity diagrams. These activity diagrams are then related to the hardware design and requirements. We finish with future plans for the alignment and integration activities and requirements.
Multiple network alignment via multiMAGNA+.
Vijayan, Vipin; Milenkovic, Tijana
2017-08-21
Network alignment (NA) aims to find a node mapping that identifies topologically or functionally similar network regions between molecular networks of different species. Analogous to genomic sequence alignment, NA can be used to transfer biological knowledge from well- to poorly-studied species between aligned network regions. Pairwise NA (PNA) finds similar regions between two networks while multiple NA (MNA) can align more than two networks. We focus on MNA. Existing MNA methods aim to maximize total similarity over all aligned nodes (node conservation). Then, they evaluate alignment quality by measuring the amount of conserved edges, but only after the alignment is constructed. Directly optimizing edge conservation during alignment construction in addition to node conservation may result in superior alignments. Thus, we present a novel MNA method called multiMAGNA++ that can achieve this. Indeed, multiMAGNA++ outperforms or is on par with existing MNA methods, while often completing faster than existing methods. That is, multiMAGNA++ scales well to larger network data and can be parallelized effectively. During method evaluation, we also introduce new MNA quality measures to allow for more fair MNA method comparison compared to the existing alignment quality measures. MultiMAGNA++ code is available on the method's web page at http://nd.edu/~cone/multiMAGNA++/.
Text-image alignment for historical handwritten documents
NASA Astrophysics Data System (ADS)
Zinger, S.; Nerbonne, J.; Schomaker, L.
2009-01-01
We describe our work on text-image alignment in context of building a historical document retrieval system. We aim at aligning images of words in handwritten lines with their text transcriptions. The images of handwritten lines are automatically segmented from the scanned pages of historical documents and then manually transcribed. To train automatic routines to detect words in an image of handwritten text, we need a training set - images of words with their transcriptions. We present our results on aligning words from the images of handwritten lines and their corresponding text transcriptions. Alignment based on the longest spaces between portions of handwriting is a baseline. We then show that relative lengths, i.e. proportions of words in their lines, can be used to improve the alignment results considerably. To take into account the relative word length, we define the expressions for the cost function that has to be minimized for aligning text words with their images. We apply right to left alignment as well as alignment based on exhaustive search. The quality assessment of these alignments shows correct results for 69% of words from 100 lines, or 90% of partially correct and correct alignments combined.
Sun, Meng; Bloom, Alexander B.; Zaman, Muhammad H.
2015-01-01
Metastatic cancers aggressively reorganize collagen in their microenvironment. For example, radially orientated collagen fibers have been observed surrounding tumor cell clusters in vivo. The degree of fiber alignment, as a consequence of this remodeling, has often been difficult to quantify. In this paper, we present an easy to implement algorithm for accurate detection of collagen fiber orientation in a rapid pixel-wise manner. This algorithm quantifies the alignment of both computer generated and actual collagen fiber networks of varying degrees of alignment within 5°°. We also present an alternative easy method to calculate the alignment index directly from the standard deviation of fiber orientation. Using this quantitative method for determining collagen alignment, we demonstrate that the number of collagen fiber intersections has a negative correlation with the degree of fiber alignment. This decrease in intersections of aligned fibers could explain why cells move more rapidly along aligned fibers than unaligned fibers, as previously reported. Overall, our paper provides an easier, more quantitative and quicker way to quantify fiber orientation and alignment, and presents a platform in studying effects of matrix and cellular properties on fiber alignment in complex 3D environments. PMID:26158674
Physician-Hospital Alignment in Orthopedic Surgery.
Bushnell, Brandon D
2015-09-01
The concept of "alignment" between physicians and hospitals is a popular buzzword in the age of health care reform. Despite their often tumultuous histories, physicians and hospitals find themselves under increasing pressures to work together toward common goals. However, effective alignment is more than just simple cooperation between parties. The process of achieving alignment does not have simple, universal steps. Alignment will differ based on individual situational factors and the type of specialty involved. Ultimately, however, there are principles that underlie the concept of alignment and should be a part of any physician-hospital alignment efforts. In orthopedic surgery, alignment involves the clinical, administrative, financial, and even personal aspects of a surgeon's practice. It must be based on the principles of financial interest, clinical authority, administrative participation, transparency, focus on the patient, and mutual necessity. Alignment can take on various forms as well, with popular models consisting of shared governance and comanagement, gainsharing, bundled payments, accountable care organizations, and other methods. As regulatory and financial pressures continue to motivate physicians and hospitals to develop alignment relationships, new and innovative methods of alignment will also appear. Existing models will mature and evolve, with individual variability based on local factors. However, certain trends seem to be appearing as time progresses and alignment relationships deepen, including regional and national collaboration, population management, and changes in the legal system. This article explores the history, principles, and specific methods of physician-hospital alignment and its critical importance for the future of health care delivery. Copyright 2015, SLACK Incorporated.
Simultaneous phylogeny reconstruction and multiple sequence alignment
Yue, Feng; Shi, Jian; Tang, Jijun
2009-01-01
Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110
Structural re-alignment in an immunologic surface region of ricin A chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemla, A T; Zhou, C E
2007-07-24
We compared structure alignments generated by several protein structure comparison programs to determine whether existing methods would satisfactorily align residues at a highly conserved position within an immunogenic loop in ribosome inactivating proteins (RIPs). Using default settings, structure alignments generated by several programs (CE, DaliLite, FATCAT, LGA, MAMMOTH, MATRAS, SHEBA, SSM) failed to align the respective conserved residues, although LGA reported correct residue-residue (R-R) correspondences when the beta-carbon (Cb) position was used as the point of reference in the alignment calculations. Further tests using variable points of reference indicated that points distal from the beta carbon along a vector connectingmore » the alpha and beta carbons yielded rigid structural alignments in which residues known to be highly conserved in RIPs were reported as corresponding residues in structural comparisons between ricin A chain, abrin-A, and other RIPs. Results suggest that approaches to structure alignment employing alternate point representations corresponding to side chain position may yield structure alignments that are more consistent with observed conservation of functional surface residues than do standard alignment programs, which apply uniform criteria for alignment (i.e., alpha carbon (Ca) as point of reference) along the entirety of the peptide chain. We present the results of tests that suggest the utility of allowing user-specified points of reference in generating alternate structural alignments, and we present a web server for automatically generating such alignments.« less
Evolution of physician-hospital alignment models: a case study of comanagement.
Sowers, Kevin W; Newman, Paul R; Langdon, Jeffrey C
2013-06-01
Recently, quality, financial, and regulatory demands have driven physicians to seek alignment opportunities with hospitals. The motivation for alignment on the part of physicians and hospitals is now accelerating because the new paradigm under healthcare reform requires an increased focus on improving quality, cost, and efficiency. We (1) identify the key drivers for physician-hospital alignment models; (2) summarize comanagement as a physician-hospital alignment model; and (3) explore a detailed case study of comanagement as an option to better align physicians with hospital goals on quality, safety, and outcomes. A Medline abstract review was performed that identified 45 references that discuss options for physician-hospital alignment. None of the articles identified provide a detailed example of successful alignment structures. A detailed case study of a successful comanagement alignment program is reviewed. The key drivers for alignment are inpatient growth rates, declining reimbursements, and the opportunity to improve quality, decrease costs, and increase efficiency. Two general strategies of alignment involve noneconomic and/or economic integration. In our example, comanagement with economic integration was chosen as the preferred structure for physician-hospital alignment. The choice of structure will vary depending on the existing relationships and governance of the hospital and the physicians in the targeted area of focus. The measure of success in building physician-hospital alignment is measured in improvements in care for the patient, reduced cost of care delivery, and improved relations between physicians and hospital leadership.
Matt: local flexibility aids protein multiple structure alignment.
Menke, Matthew; Berger, Bonnie; Cowen, Lenore
2008-01-01
Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these "bent" alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of alpha-helices and beta-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root mean squared deviation (RMSD) of Matt alignments is shown to largely separate decoys from homologous protein structures in the SABmark benchmark dataset. We postulate that Matt's strong performance comes from its ability to model proteins in different conformational states and, perhaps even more important, its ability to model backbone distortions in more distantly related proteins.
Method of fabricating lipid bilayer membranes on solid supports
NASA Technical Reports Server (NTRS)
Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Glenn, Jeffrey S. (Inventor); Cheong, Kwang Ho (Inventor)
2012-01-01
The present invention provides a method of producing a planar lipid bilayer on a solid support. With this method, a solution of lipid vesicles is first deposited on the solid support. Next, the lipid vesicles are destabilized by adding an amphipathic peptide solution to the lipid vesicle solution. This destabilization leads to production of a planar lipid bilayer on the solid support. The present invention also provides a supported planar lipid bilayer, where the planar lipid bilayer is made of naturally occurring lipids and the solid support is made of unmodified gold or titanium oxide. Preferably, the supported planar lipid bilayer is continuous. The planar lipid bilayer may be made of any naturally occurring lipid or mixture of lipids, including, but not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinsitol, cardiolipin, cholesterol, and sphingomyelin.
Lipids and lipid binding proteins: a perfect match.
Glatz, Jan F C
2015-02-01
Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S
2011-03-01
Ionizable amino lipids are being pursued as an important class of materials for delivering small interfering RNA (siRNA) therapeutics, and research is being conducted to elucidate the structure-activity relationships (SAR) of these lipids. The pK(a) of cationic lipid headgroups is one of the critical physiochemical properties of interest due to the strong impact of lipid ionization on the assembly and performance of these lipids. This research focused on developing approaches that permit the rapid determination of the relevant pK(a) of the ionizable amino lipids. Two distinct approaches were investigated: (1) potentiometric titration of amino lipids dissolved in neutral surfactant micelles; and (2) pH-dependent partitioning of a fluorescent dye to cationic liposomes formulated from amino lipids. Using the approaches developed here, the pK(a) values of cationic lipids with distinct headgroups were measured and found to be significantly lower than calculated values. It was also found that lipid-lipid interaction has a strong impact on the pK(a) values of lipids. Lysis of model biomembranes by cationic lipids was used to evaluate the impact of lipid pK(a) on the interaction between cationic lipids and cell membranes. It was found that cationic lipid-biomembrane interaction depends strongly on lipid pK(a) and solution pH, and this interaction is much stronger when amino lipids are highly charged. The presence of an optimal pK(a) range of ionizable amino lipids for siRNA delivery was suggested based on these results. The pK(a) methods reported here can be used to support the SAR screen of cationic lipids for siRNA delivery, and the information revealed through studying the impact of pK(a) on the interaction between cationic lipids and cell membranes will contribute significantly to the design of more efficient siRNA delivery vehicles.
Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.
Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae
2015-09-22
In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.
Ryan, Andrew M; Damberg, Cheryl L
2013-06-01
The Medicare program has implemented pay-for-performance (P4P), or Value-Based Purchasing, for inpatient care and for Medicare Advantage plans, and plans to implement a program for physicians in 2015. In this paper, we review evidence on the effectiveness of P4P and identify design criteria deemed to be best practice in P4P. We then assess the extent to which Medicare's existing and planned Value-Based Purchasing programs align with these best practices. Of the seven identified best practices in P4P program design, the Hospital Value-Based Purchasing program is strongly aligned with two of the best practices, moderately aligned with three, weakly aligned with one, and has unclear alignment with one best practice. The Physician Value-Based Purchasing Modifier is strongly aligned with two of the best practices, moderately aligned with one, weakly aligned with three, and has unclear alignment with one of the best practices. The Medicare Advantage Quality Bonus Program is strongly aligned with four of the best practices, moderately aligned with two, and weakly aligned with one of the best practices. We identify enduring gaps in P4P literature as it relates to Medicare's plans for Value-Based Purchasing and discuss important issues in the future of these implementations in Medicare. Copyright © 2013 Elsevier Inc. All rights reserved.
Fine-tuning structural RNA alignments in the twilight zone
2010-01-01
Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index. PMID:20433706
Wang, Jing; Quach, Andy; Brasch, Megan E; Turner, Christopher E; Henderson, James H
2017-09-01
In vitro biomaterial models have enabled advances in understanding the role of extracellular matrix (ECM) architecture in the control of cell motility and polarity. Most models are, however, static and cannot mimic dynamic aspects of in vivo ECM remodeling and function. To address this limitation, we present an electrospun shape memory polymer scaffold that can change fiber alignment on command under cytocompatible conditions. Cellular response was studied using the human fibrosarcoma cell line HT-1080 and the murine mesenchymal stem cell line C3H/10T1/2. The results demonstrate successful on-command on/off switching of cell polarized motility and alignment. Decrease in fiber alignment causes a change from polarized motility along the direction of fiber alignment to non-polarized motility and from aligned to unaligned morphology, while increase in fiber alignment causes a change from non-polarized to polarized motility along the direction of fiber alignment and from unaligned to aligned morphology. In addition, the findings are consistent with the hypothesis that increased fiber alignment causes increased cell velocity, while decreased fiber alignment causes decreased cell velocity. On-command on/off switching of cell polarized motility and alignment is anticipated to enable new study of directed cell motility in tumor metastasis, in cell homing, and in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-Alignment MEMS IMU Method Based on the Rotation Modulation Technique on a Swing Base
Chen, Zhiyong; Yang, Haotian; Wang, Chengbin; Lin, Zhihui; Guo, Meifeng
2018-01-01
The micro-electro-mechanical-system (MEMS) inertial measurement unit (IMU) has been widely used in the field of inertial navigation due to its small size, low cost, and light weight, but aligning MEMS IMUs remains a challenge for researchers. MEMS IMUs have been conventionally aligned on a static base, requiring other sensors, such as magnetometers or satellites, to provide auxiliary information, which limits its application range to some extent. Therefore, improving the alignment accuracy of MEMS IMU as much as possible under swing conditions is of considerable value. This paper proposes an alignment method based on the rotation modulation technique (RMT), which is completely self-aligned, unlike the existing alignment techniques. The effect of the inertial sensor errors is mitigated by rotating the IMU. Then, inertial frame-based alignment using the rotation modulation technique (RMT-IFBA) achieved coarse alignment on the swing base. The strong tracking filter (STF) further improved the alignment accuracy. The performance of the proposed method was validated with a physical experiment, and the results of the alignment showed that the standard deviations of pitch, roll, and heading angle were 0.0140°, 0.0097°, and 0.91°, respectively, which verified the practicality and efficacy of the proposed method for the self-alignment of the MEMS IMU on a swing base. PMID:29649150
Score distributions of gapped multiple sequence alignments down to the low-probability tail
NASA Astrophysics Data System (ADS)
Fieth, Pascal; Hartmann, Alexander K.
2016-08-01
Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.
2017-03-01
possible. The thesis also utilized organizational alignment literature to include organizational alignment principles in the evaluation. Key principles ...thesis also utilized organizational alignment literature to include organizational alignment principles in the evaluation. Key principles include 1...39 A. CORE PRINCIPLES ...............................................................................39 B. RELATIONSHIP OF CORE PRINCIPLES
Alignment of Standards and Assessments as an Accountability Criterion. ERIC Digest.
ERIC Educational Resources Information Center
La Marca, Paul M.
This digest provides an overview of the concept of alignment and the role it plays in assessment and accountability systems. It also discusses methodological issues affecting the study of alignment and explores the relationship between alignment and test score interpretation. Alignment refers to the degree of match between test content and subject…
NASA Astrophysics Data System (ADS)
Carlson, Eric D.; Foley, Lee M.; Guzman, Edward; Korblova, Eva D.; Visvanathan, Rayshan; Ryu, SeongHo; Gim, Min-Jun; Tuchband, Michael R.; Yoon, Dong Ki; Clark, Noel A.; Walba, David M.
2017-08-01
The control of the molecular orientation of liquid crystals (LCs) is important in both understanding phase properties and the continuing development of new LC technologies including displays, organic transistors, and electro-optic devices. Many techniques have been developed for successfully inducing alignment of calamitic LCs, though these techniques typically do not translate to the alignment of bent-core liquid crystals (BCLCs). Some techniques have been utilized to align various phases of BCLCs, but these techniques are often unsuccessful for general alignment of multiple materials and/or multiple phases. Here, we demonstrate that glass cells treated with polydimethylsiloxane (PDMS) thin films induce high quality homeotropic alignment of multiple mesophases of four BCLCs. On cooling to the lowest temperature phase the homeotropic alignment is lost, and spherulitic growth is seen in crystal and crystal-like phases including the dark conglomerate (DC) and helical nanofilament (HNF) phases. Evidence of homeotropic alignment is observed using polarized optical microscopy. We speculate that the methyl groups on the surface of the PDMS films strongly interact with the aliphatic tails of each mesogens, resulting in homeotropic alignment.
Some aspects of SR beamline alignment
NASA Astrophysics Data System (ADS)
Gaponov, Yu. A.; Cerenius, Y.; Nygaard, J.; Ursby, T.; Larsson, K.
2011-09-01
Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.
Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal
2012-01-01
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.
Alignment method for solar collector arrays
Driver, Jr., Richard B
2012-10-23
The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.
NO2 sensing at room temperature using vertically aligned MoS2 flakes network
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh
2018-04-01
To exploit the role of alignment of MoS2 flake in chemical sensing, here, we have synthesized the horizontally and vertically aligned MoS2 flake network using conventional chemical vapor deposition technique. The morphology and number of layers were confirmed by SEM and Raman spectroscopy, respectively. The sensing performance of horizontally aligned and vertically aligned flake network was investigated to NO2 at room temperature. Vertically aligned MoS2 based sensor showed higher sensitivity 51.54 % and 63.2 % compared to horizontally aligned MoS2 sensor' sensitivity of 35.32 % and 45.2 % to 50 ppm and 100 ppm NO2, respectively. This high sensitivity attributed to the high aspect ratio and high adsorption energy on the edge site of vertically aligned MoS2.
Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard
2010-03-31
Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.
Colour stabilities of three types of orthodontic clear aligners exposed to staining agents
Liu, Chen-Lu; Sun, Wen-Tian; Liao, Wen; Lu, Wen-Xin; Li, Qi-Wen; Jeong, Yunho; Liu, Jun; Zhao, Zhi-He
2016-01-01
The aim of this study was to evaluate and compare the colour stabilities of three types of orthodontic clear aligners exposed to staining agents in vitro. Sixty clear orthodontic aligners produced by three manufacturers (Invisalign, Angelalign, and Smartee) were immersed in three staining solutions (coffee, black tea, and red wine) and one control solution (distilled water). After 12-h and 7-day immersions, the aligners were washed in an ultrasonic cleaner and measured with a colourimeter. The colour changes (ΔE*) were calculated on the basis of the Commission Internationale de I'Eclairage L*a*b* colour system (CIE L*a*b*), and the results were then converted into National Bureau of Standards (NBS) units. Fourier transformation infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were conducted to observe the molecular and morphologic alterations to the aligner surfaces, respectively. The three types of aligners exhibited slight colour changes after 12 h of staining, with the exception of the Invisalign aligners stained with coffee. The Invisalign aligners exhibited significantly higher ΔE* values (ranging from 0.30 to 27.81) than those of the Angelalign and Smartee aligners (ΔE* values ranging from 0.33 to 1.89 and 0.32 to 1.61, respectively, P<0.05). FT-IR analysis confirmed that the polymer-based structure of aligners did not exhibit significant chemical differences before and after the immersions. The SEM results revealed different surface alterations to the three types of aligner materials after the 7-day staining. The three types of aesthetic orthodontic appliances exhibited colour stability after the 12-h immersion, with the exception of the Invisalign aligners stained by coffee. The Invisalign aligners were more prone than the Angelalign and Smartee aligners to pigmentation. Aligner materials may be improved by considering aesthetic colour stability properties. PMID:27660048
Hu, Jun; Liu, Zi; Yu, Dong-Jun; Zhang, Yang
2018-02-15
Sequence-order independent structural comparison, also called structural alignment, of small ligand molecules is often needed for computer-aided virtual drug screening. Although many ligand structure alignment programs are proposed, most of them build the alignments based on rigid-body shape comparison which cannot provide atom-specific alignment information nor allow structural variation; both abilities are critical to efficient high-throughput virtual screening. We propose a novel ligand comparison algorithm, LS-align, to generate fast and accurate atom-level structural alignments of ligand molecules, through an iterative heuristic search of the target function that combines inter-atom distance with mass and chemical bond comparisons. LS-align contains two modules of Rigid-LS-align and Flexi-LS-align, designed for rigid-body and flexible alignments, respectively, where a ligand-size independent, statistics-based scoring function is developed to evaluate the similarity of ligand molecules relative to random ligand pairs. Large-scale benchmark tests are performed on prioritizing chemical ligands of 102 protein targets involving 1,415,871 candidate compounds from the DUD-E (Database of Useful Decoys: Enhanced) database, where LS-align achieves an average enrichment factor (EF) of 22.0 at the 1% cutoff and the AUC score of 0.75, which are significantly higher than other state-of-the-art methods. Detailed data analyses show that the advanced performance is mainly attributed to the design of the target function that combines structural and chemical information to enhance the sensitivity of recognizing subtle difference of ligand molecules and the introduces of structural flexibility that help capture the conformational changes induced by the ligand-receptor binding interactions. These data demonstrate a new avenue to improve the virtual screening efficiency through the development of sensitive ligand structural alignments. http://zhanglab.ccmb.med.umich.edu/LS-align/. njyudj@njust.edu.cn or zhng@umich.edu. Supplementary data are available at Bioinformatics online.
Colour stabilities of three types of orthodontic clear aligners exposed to staining agents.
Liu, Chen-Lu; Sun, Wen-Tian; Liao, Wen; Lu, Wen-Xin; Li, Qi-Wen; Jeong, Yunho; Liu, Jun; Zhao, Zhi-He
2016-12-16
The aim of this study was to evaluate and compare the colour stabilities of three types of orthodontic clear aligners exposed to staining agents in vitro. Sixty clear orthodontic aligners produced by three manufacturers (Invisalign, Angelalign, and Smartee) were immersed in three staining solutions (coffee, black tea, and red wine) and one control solution (distilled water). After 12-h and 7-day immersions, the aligners were washed in an ultrasonic cleaner and measured with a colourimeter. The colour changes (ΔE*) were calculated on the basis of the Commission Internationale de I'Eclairage L*a*b* colour system (CIE L*a*b*), and the results were then converted into National Bureau of Standards (NBS) units. Fourier transformation infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were conducted to observe the molecular and morphologic alterations to the aligner surfaces, respectively. The three types of aligners exhibited slight colour changes after 12 h of staining, with the exception of the Invisalign aligners stained with coffee. The Invisalign aligners exhibited significantly higher ΔE* values (ranging from 0.30 to 27.81) than those of the Angelalign and Smartee aligners (ΔE* values ranging from 0.33 to 1.89 and 0.32 to 1.61, respectively, P<0.05). FT-IR analysis confirmed that the polymer-based structure of aligners did not exhibit significant chemical differences before and after the immersions. The SEM results revealed different surface alterations to the three types of aligner materials after the 7-day staining. The three types of aesthetic orthodontic appliances exhibited colour stability after the 12-h immersion, with the exception of the Invisalign aligners stained by coffee. The Invisalign aligners were more prone than the Angelalign and Smartee aligners to pigmentation. Aligner materials may be improved by considering aesthetic colour stability properties.
Bieberich, Erhard
2011-04-26
The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane. Additional lipid protein complexes can be identified using proteomics analysis of lipid binding protein co-purified with the lipid vesicles.
Koelmel, Jeremy P; Kroeger, Nicholas M; Ulmer, Candice Z; Bowden, John A; Patterson, Rainey E; Cochran, Jason A; Beecher, Christopher W W; Garrett, Timothy J; Yost, Richard A
2017-07-10
Lipids are ubiquitous and serve numerous biological functions; thus lipids have been shown to have great potential as candidates for elucidating biomarkers and pathway perturbations associated with disease. Methods expanding coverage of the lipidome increase the likelihood of biomarker discovery and could lead to more comprehensive understanding of disease etiology. We introduce LipidMatch, an R-based tool for lipid identification for liquid chromatography tandem mass spectrometry workflows. LipidMatch currently has over 250,000 lipid species spanning 56 lipid types contained in in silico fragmentation libraries. Unique fragmentation libraries, compared to other open source software, include oxidized lipids, bile acids, sphingosines, and previously uncharacterized adducts, including ammoniated cardiolipins. LipidMatch uses rule-based identification. For each lipid type, the user can select which fragments must be observed for identification. Rule-based identification allows for correct annotation of lipids based on the fragments observed, unlike typical identification based solely on spectral similarity scores, where over-reporting structural details that are not conferred by fragmentation data is common. Another unique feature of LipidMatch is ranking lipid identifications for a given feature by the sum of fragment intensities. For each lipid candidate, the intensities of experimental fragments with exact mass matches to expected in silico fragments are summed. The lipid identifications with the greatest summed intensity using this ranking algorithm were comparable to other lipid identification software annotations, MS-DIAL and Greazy. For example, for features with identifications from all 3 software, 92% of LipidMatch identifications by fatty acyl constituents were corroborated by at least one other software in positive mode and 98% in negative ion mode. LipidMatch allows users to annotate lipids across a wide range of high resolution tandem mass spectrometry experiments, including imaging experiments, direct infusion experiments, and experiments employing liquid chromatography. LipidMatch leverages the most extensive in silico fragmentation libraries of freely available software. When integrated into a larger lipidomics workflow, LipidMatch may increase the probability of finding lipid-based biomarkers and determining etiology of disease by covering a greater portion of the lipidome and using annotation which does not over-report biologically relevant structural details of identified lipid molecules.
StructAlign, a Program for Alignment of Structures of DNA-Protein Complexes.
Popov, Ya V; Galitsyna, A A; Alexeevski, A V; Karyagina, A S; Spirin, S A
2015-11-01
Comparative analysis of structures of complexes of homologous proteins with DNA is important in the analysis of DNA-protein recognition. Alignment is a necessary stage of the analysis. An alignment is a matching of amino acid residues and nucleotides of one complex to residues and nucleotides of the other. Currently, there are no programs available for aligning structures of DNA-protein complexes. We present the program StructAlign, which should fill this gap. The program inputs a pair of complexes of DNA double helix with proteins and outputs an alignment of DNA chains corresponding to the best spatial fit of the protein chains.
An Experimental Model to Study the Impact of Lipid Oxidation on Contact Lens Deposition In Vitro.
Schuett, Burkhardt S; Millar, Thomas J
2017-09-01
This study was to establish a controlled in vitro test system to study the effect of lipid oxidation on lipid deposition on contact lenses. Fatty acids with varying degree of unsaturation were oxidized using the Fenton reaction. The degree of lipid oxidation and the lipid moieties formed during the oxidation were identified and estimated by various lipid staining techniques following separation with thin-layer chromatography, and by measuring thiobarbituric acid reactive substances or peroxides in solution. Two different silicone hydrogel-based contact lenses (Balafilcon A and Senofilcon A) were incubated with fatty acids laced with radioactive tracer oxidized to varying degrees, and the amount of lipid deposition was measured using unoxidized lipid samples as controls. The Fenton reaction together with the analytical methods to analyze the lipid oxidation can be used to control oxidation of lipids to a desired amount. In general, saturated fatty acids are not oxidized, the monounsaturated oleic acid produced peroxides while poly-unsaturated lipids initially produced peroxides and then fragmented into reactive aldehydes. Incubation with mildly oxidized lipids (most likely lipid peroxides) resulted in increased lipid deposition on Balafilcon A lenses compared to unoxidized lipids, but this was not observed for Senofilcon A lenses. Further oxidation of the lipids (carbon chain breakup) on the other hand resulted in diminished lipid deposition for both contact lens types. This study provides a method for inducing and controlling lipid oxidation so that the effect of lipid oxidation on contact lens binding can be compared. It could be shown that the degree of lipid oxidation has different effects on the lipid deposition on different contact lens types.
LipidPioneer: A Comprehensive User-Generated Exact Mass Template for Lipidomics
Ulmer, Candice Z.; Koelmel, Jeremy P.; Ragland, Jared M.; Garrett, Timothy J.
2017-01-01
Lipidomics, the comprehensive measurement of lipid species in a biological system, has promising potential in biomarker discovery and disease etiology elucidation. Advances in chromatographic separation, mass spectrometric techniques, and novel substrate applications continue to expand the number of lipid species observed. The total number and type of lipid species detected in a given sample are generally indicative of the sample matrix examined (e.g. serum, plasma, cells, bacteria, tissue, etc.). Current exact mass lipid libraries are static and represent the most commonly analyzed matrices. It is common practice for users to manually curate their own lists of lipid species and adduct masses; however, this process is time-consuming. LipidPioneer, an interactive template, can be used to generate exact masses and molecular formulas of lipid species that may be encountered in the mass spectrometric analysis of lipid profiles. Over 60 lipid classes are present in the LipidPioneer template, and include several unique lipid species, such as ether-linked lipids and lipid oxidation products. In the template, users can add any fatty acyl constituents without limitation in the number of carbons or degrees of unsaturation. LipidPioneer accepts naming using the lipid class level (sum composition) and the LIPID MAPS notation for fatty acyl structure level. In addition to lipid identification, user generated lipid m/z values can be used to develop inclusion lists for targeted fragmentation experiments. Resulting lipid names and m/z values can be imported into software such as MZmine or Compound Discoverer to automate exact mass searching and isotopic pattern matching across experimental data. PMID:28074328
Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier
2008-12-01
Studying the effect of alkali and alkaline-earth metal cations on Langmuir monolayers is relevant from biophysical and nanotechnological points of view. In this work, the effect of Na(+) and Ca(2+) on a model of an anionic Langmuir lipid monolayer of dimyristoylphosphatidate (DMPA(-)) is studied by molecular dynamics simulations. The influence of the type of cation on lipid structure, lipid-lipid interactions, and lipid ordering is analyzed in terms of electrostatic interactions. It is found that for a lipid monolayer in its solid phase, the effect of the cations on the properties of the lipid monolayer can be neglected. The influence of the cations is enhanced for the lipid monolayer in its gas phase, where sodium ions show a high degree of dehydration compared with calcium ions. This loss of hydration shell is partly compensated by the formation of lipid-ion-lipid bridges. This difference is ascribed to the higher charge-to-radius ratio q/r for Ca(2+), which makes ion dehydration less favorable compared to Na(+). Owing to the different dehydration behavior of sodium and calcium ions, diminished lipid-lipid coordination, lipid-ion coordination, and lipid ordering are observed for Ca(2+) compared to Na(+). Furthermore, for both gas and solid phases of the lipid Langmuir monolayers, lipid conformation and ion dehydration across the lipid/water interface are studied.
SANA NetGO: a combinatorial approach to using Gene Ontology (GO) terms to score network alignments.
Hayes, Wayne B; Mamano, Nil
2018-04-15
Gene Ontology (GO) terms are frequently used to score alignments between protein-protein interaction (PPI) networks. Methods exist to measure GO similarity between proteins in isolation, but proteins in a network alignment are not isolated: each pairing is dependent on every other via the alignment itself. Existing measures fail to take into account the frequency of GO terms across networks, instead imposing arbitrary rules on when to allow GO terms. Here we develop NetGO, a new measure that naturally weighs infrequent, informative GO terms more heavily than frequent, less informative GO terms, without arbitrary cutoffs, instead downweighting GO terms according to their frequency in the networks being aligned. This is a global measure applicable only to alignments, independent of pairwise GO measures, in the same sense that the edge-based EC or S3 scores are global measures of topological similarity independent of pairwise topological similarities. We demonstrate the superiority of NetGO in alignments of predetermined quality and show that NetGO correlates with alignment quality better than any existing GO-based alignment measures. We also demonstrate that NetGO provides a measure of taxonomic similarity between species, consistent with existing taxonomic measuresa feature not shared with existing GObased network alignment measures. Finally, we re-score alignments produced by almost a dozen aligners from a previous study and show that NetGO does a better job at separating good alignments from bad ones. Available as part of SANA. whayes@uci.edu. Supplementary data are available at Bioinformatics online.
Precision alignment and mounting apparatus
NASA Technical Reports Server (NTRS)
Preston, Dennis R. (Inventor)
1993-01-01
An alignment and mounting apparatus for mounting two modules (10,12) includes a first portion having a cylindrical alignment pin (16) projecting normal to a module surface, a second portion having a three-stage alignment guide (18) including a shoehorn flange (34), a Y-slot (42) and a V-block (22) which sequentially guide the alignment pin (16) with successively finer precision and a third portion in the form of a spring-loaded captive fastener (20) for connecting the two modules after alignment is achieved.
Behavior of sphingomyelin and ceramide in a tear film lipid layer model.
Olżyńska, Agnieszka; Cwiklik, Lukasz
2017-03-01
Tear film lipid layer is a complex lipid mixture forming the outermost interface between eye and environment. Its key characteristics, such as surface tension and structural stability, are governed by the presence of polar lipids. The origin of these lipids and exact composition of the mixture are still elusive. We focus on two minor polar lipid components of the tear film lipid later: sphingomyelin and ceramide. By employing coarse grain molecular dynamics in silico simulations accompanied by Langmuir balance experiments we provide molecular-level insight into behavior of these two lipids in a tear film lipid layer model. Sphingomyelin headgroups are significantly exposed at the water-lipids boundary while ceramide molecules are incorporated between other lipids frequently interacting with nonpolar lipids. Even though these two lipids increase surface tension of the film, their molecular-level behavior suggests that they have a stabilizing effect on the tear film lipid layer. Copyright © 2016 Elsevier GmbH. All rights reserved.
Avanti lipid tools: connecting lipids, technology, and cell biology.
Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A
2014-08-01
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.
Mobile and replicated alignment of arrays in data-parallel programs
NASA Technical Reports Server (NTRS)
Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert
1993-01-01
When a data-parallel language like FORTRAN 90 is compiled for a distributed-memory machine, aggregate data objects (such as arrays) are distributed across the processor memories. The mapping determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: first, an alignment that maps all the objects to an abstract template, and then a distribution that maps the template to the processors. We solve two facets of the problem of finding alignments that reduce residual communication: we determine alignments that vary in loops, and objects that should have replicated alignments. We show that loop-dependent mobile alignment is sometimes necessary for optimum performance, and we provide algorithms with which a compiler can determine good mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself (via spread operations) or can be used to improve performance. We propose an algorithm based on network flow that determines which objects to replicate so as to minimize the total amount of broadcast communication in replication. This work on mobile and replicated alignment extends our earlier work on determining static alignment.
Theory of grain alignment in molecular clouds
NASA Technical Reports Server (NTRS)
Roberge, Wayne G.
1993-01-01
Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.
Attenuation-emission alignment in cardiac PET∕CT based on consistency conditions
Alessio, Adam M.; Kinahan, Paul E.; Champley, Kyle M.; Caldwell, James H.
2010-01-01
Purpose: In cardiac PET and PET∕CT imaging, misaligned transmission and emission images are a common problem due to respiratory and cardiac motion. This misalignment leads to erroneous attenuation correction and can cause errors in perfusion mapping and quantification. This study develops and tests a method for automated alignment of attenuation and emission data. Methods: The CT-based attenuation map is iteratively transformed until the attenuation corrected emission data minimize an objective function based on the Radon consistency conditions. The alignment process is derived from previous work by Welch et al. [“Attenuation correction in PET using consistency information,” IEEE Trans. Nucl. Sci. 45, 3134–3141 (1998)] for stand-alone PET imaging. The process was evaluated with the simulated data and measured patient data from multiple cardiac ammonia PET∕CT exams. The alignment procedure was applied to simulations of five different noise levels with three different initial attenuation maps. For the measured patient data, the alignment procedure was applied to eight attenuation-emission combinations with initially acceptable alignment and eight combinations with unacceptable alignment. The initially acceptable alignment studies were forced out of alignment a known amount and quantitatively evaluated for alignment and perfusion accuracy. The initially unacceptable studies were compared to the proposed aligned images in a blinded side-by-side review. Results: The proposed automatic alignment procedure reduced errors in the simulated data and iteratively approaches global minimum solutions with the patient data. In simulations, the alignment procedure reduced the root mean square error to less than 5 mm and reduces the axial translation error to less than 1 mm. In patient studies, the procedure reduced the translation error by >50% and resolved perfusion artifacts after a known misalignment for the eight initially acceptable patient combinations. The side-by-side review of the proposed aligned attenuation-emission maps and initially misaligned attenuation-emission maps revealed that reviewers preferred the proposed aligned maps in all cases, except one inconclusive case. Conclusions: The proposed alignment procedure offers an automatic method to reduce attenuation correction artifacts in cardiac PET∕CT and provides a viable supplement to subjective manual realignment tools. PMID:20384256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, R; Chisela, W; Dorbu, G
2016-06-15
Purpose: To evaluate clinical usefulness of AlignRT (Vision RT Ltd., London, UK) in reducing patient positioning errors in breast irradiation. Methods: 60 patients undergoing whole breast irradiation were selected for this study. Patients were treated to the left or right breast lying on Qfix Access breast board (Qfix, Avondale, PA) in supine position for 28 fractions using tangential fields. 30 patients were aligned using AlignRT by aligning a breast surface region of interest (ROI) to the same area from a reference surface image extracted from planning CT. When the patient’s surface image deviated from the reference by more than 3mmmore » on one or more translational and rotational directions, a new reference was acquired using AlignRT in-room cameras. The other 30 patients were aligned to the skin marks with room lasers. On-Board MV portal images of medial field were taken daily and matched to the DRRs. The magnitude and frequency of positioning errors were determined from measured translational shifts. Kolmogorov-Smirnov test was used to evaluate statistical differences of positional accuracy and precision between AlignRT and non-AlignRT patients. Results: The percentage of port images with no shift required was 46.5% and 27.0% in vertical, 49.8% and 25.8% in longitudinal, 47.6% and 28.5% in lateral for AlignRT and non-AlignRT patients, respectively. The percentage of port images requiring more than 3mm shifts was 18.1% and 35.1% in vertical, 28.6% and 50.8% in longitudinal, 11.3% and 24.2% in lateral for AlignRT and non-AlignRT patients, respectively. Kolmogorov-Smirnov test showed that there were significant differences between the frequency distributions of AlignRT and non-AlignRT in vertical, longitudinal, and lateral shifts. Conclusion: As confirmed by port images, AlignRT-assisted patient positioning can significantly reduce the frequency and magnitude of patient setup errors in breast irradiation compared to the use of lasers and skin marks.« less
Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams
NASA Technical Reports Server (NTRS)
Jennings, Donald
2013-01-01
Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires almost no adjustment.
Guzzi, Pietro Hiram; Milenkovic, Tijana
2018-05-01
Analogous to genomic sequence alignment that allows for across-species transfer of biological knowledge between conserved sequence regions, biological network alignment can be used to guide the knowledge transfer between conserved regions of molecular networks of different species. Hence, biological network alignment can be used to redefine the traditional notion of a sequence-based homology to a new notion of network-based homology. Analogous to genomic sequence alignment, there exist local and global biological network alignments. Here, we survey prominent and recent computational approaches of each network alignment type and discuss their (dis)advantages. Then, as it was recently shown that the two approach types are complementary, in the sense that they capture different slices of cellular functioning, we discuss the need to reconcile the two network alignment types and present a recent first step in this direction. We conclude with some open research problems on this topic and comment on the usefulness of network alignment in other domains besides computational biology.
Four-quadrant gratings moiré fringe alignment measurement in proximity lithography.
Zhu, Jiangping; Hu, Song; Yu, Junsheng; Zhou, Shaolin; Tang, Yan; Zhong, Min; Zhao, Lixin; Chen, Minyong; Li, Lanlan; He, Yu; Jiang, Wei
2013-02-11
This paper aims to deal with a four-quadrant gratings alignment method benefiting from phase demodulation for proximity lithography, which combines the advantages of interferometry with image processing. Both the mask alignment mark and the wafer alignment mark consist of four sets of gratings, which bring the convenience and simplification of realization for coarse alignment and fine alignment. Four sets of moiré fringes created by superposing the mask alignment mark and the wafer alignment mark are highly sensitive to the misalignment between them. And the misalignment can be easily determined through demodulating the phase of moiré fringe without any external reference. Especially, the period and phase distribution of moiré fringes are unaffected by the gap between the mask and the wafer, not excepting the wavelength of alignment illumination. Disturbance from the illumination can also be negligible, which enhances the technological adaptability. The experimental results bear out the feasibility and rationality of our designed approach.
A generalized global alignment algorithm.
Huang, Xiaoqiu; Chao, Kun-Mao
2003-01-22
Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.
Lin, Hui-Chi; Wang, Chih-Hung; Wang, Jyun-Kai; Tsai, Sheng-Feng
2018-05-07
The spontaneous vertical alignment of liquid crystals (LCs) in gelator (12-hydroxystearic acid)-doped LC cells was studied. Gelator-induced alignment can be used in both positive and negative LC cells. The electro-optical characteristics of the gelator-doped negative LC cell were similar to those of an LC cell that contained a vertically aligned (VA) host. The rise time of the gelator-doped LC cell was two orders of magnitude shorter than that of the VA host LC cell. The experimental results indicate that the gelator-induced vertical alignment of LC molecules occurred not only on the surface of the indium tin oxide (ITO) but also on the homogeneous alignment layer. Various LC alignments (planar, hybrid, multistable hybrid, and vertical alignments) were achieved by modulating the doped gelator concentrations. The multistable characteristic of LCs doped with the gelator is also presented. The alignment by doping with a gelator reduces the manufacturing costs and provides a means of fabricating fast-responding, flexible LC displays using a low-temperature process.
Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen
2015-11-01
In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. Copyright © 2015 Elsevier Inc. All rights reserved.
A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law
Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen
2015-01-01
In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556
Malhis, Nawar; Butterfield, Yaron S N; Ester, Martin; Jones, Steven J M
2009-01-01
A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality.
Genome alignment with graph data structures: a comparison
2014-01-01
Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884
Kawata, Masaaki; Sato, Chikara
2007-06-01
In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Using confidence intervals to evaluate the focus alignment of spectrograph detector arrays.
Sawyer, Travis W; Hawkins, Kyle S; Damento, Michael
2017-06-20
High-resolution spectrographs extract detailed spectral information of a sample and are frequently used in astronomy, laser-induced breakdown spectroscopy, and Raman spectroscopy. These instruments employ dispersive elements such as prisms and diffraction gratings to spatially separate different wavelengths of light, which are then detected by a charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) detector array. Precise alignment along the optical axis (focus position) of the detector array is critical to maximize the instrumental resolution; however, traditional approaches of scanning the detector through focus lack a quantitative measure of precision, limiting the repeatability and relying on one's experience. Here we propose a method to evaluate the focus alignment of spectrograph detector arrays by establishing confidence intervals to measure the alignment precision. We show that propagation of uncertainty can be used to estimate the variance in an alignment, thus providing a quantitative and repeatable means to evaluate the precision and confidence of an alignment. We test the approach by aligning the detector array of a prototype miniature echelle spectrograph. The results indicate that the procedure effectively quantifies alignment precision, enabling one to objectively determine when an alignment has reached an acceptable level. This quantitative approach also provides a foundation for further optimization, including automated alignment. Furthermore, the procedure introduced here can be extended to other alignment techniques that rely on numerically fitting data to a model, providing a general framework for evaluating the precision of alignment methods.
Serine Lipids of Porphyromonas gingivalis Are Human and Mouse Toll-Like Receptor 2 Ligands
Clark, Robert B.; Cervantes, Jorge L.; Maciejewski, Mark W.; Farrokhi, Vahid; Nemati, Reza; Yao, Xudong; Anstadt, Emily; Fujiwara, Mai; Wright, Kyle T.; Riddle, Caroline; La Vake, Carson J.; Salazar, Juan C.; Finegold, Sydney
2013-01-01
The total cellular lipids of Porphyromas gingivalis, a known periodontal pathogen, were previously shown to promote dendritic cell activation and inhibition of osteoblasts through engagement of Toll-like receptor 2 (TLR2). The purpose of the present investigation was to fractionate all lipids of P. gingivalis and define which lipid classes account for the TLR2 engagement, based on both in vitro human cell assays and in vivo studies in mice. Specific serine-containing lipids of P. gingivalis, called lipid 654 and lipid 430, were identified in specific high-performance liquid chromatography fractions as the TLR2-activating lipids. The structures of these lipids were defined using tandem mass spectrometry and nuclear magnetic resonance methods. In vitro, both lipid 654 and lipid 430 activated TLR2-expressing HEK cells, and this activation was inhibited by anti-TLR2 antibody. In contrast, TLR4-expressing HEK cells failed to be activated by either lipid 654 or lipid 430. Wild-type (WT) or TLR2-deficient (TLR2−/−) mice were injected with either lipid 654 or lipid 430, and the effects on serum levels of the chemokine CCL2 were measured 4 h later. Administration of either lipid 654 or lipid 430 to WT mice resulted in a significant increase in serum CCL2 levels; in contrast, the administration of lipid 654 or lipid 430 to TLR2−/− mice resulted in no increase in serum CCL2. These results thus identify a new class of TLR2 ligands that are produced by P. gingivalis that likely play a significant role in mediating inflammatory responses both at periodontal sites and, potentially, in other tissues where these lipids might accumulate. PMID:23836823
Kon, Takahide; Nemoto, Naoki; Oshima, Tairo; Yamagishi, Akihiko
2002-01-01
The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-14C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum. PMID:11844769
Inoue, Y; Fukushima, T; Hayakawa, T; Takeuchi, H; Kaminishi, H; Miyazaki, K; Okahata, Y
2003-05-01
The purpose of this study was to investigate the antibacterial activity of newly developed amphiphilic lipids and DNA/lipid complexes against two types of oral bacteria and two types of hospital infection bacteria. Nine amphiphilic lipids were quantitatively prepared from the reaction of n-alkyl alcohol, alpha-amino acids, and p-toluenesulfonic acid. Nine DNA-lipid complexes were prepared by the simple mixing of DNA and amphiphilic lipids. The DNA-lipid complexes were insoluble in water. The antibacterial activity of lipids and DNA-lipid complexes against Porphyromonas gingivalis, Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa were evaluated by the disk-diffusion method. Seven artificial lipids showed antibacterial behavior; in particular, the lipids prepared from n-decyl alcohol and glycine and from n-decyl alcohol and L-alanine showed antibacterial activity against the four bacterial strains used in this study. On the other hand, the lipids of glutamic acid derivatives did not show any antibacterial activity against the four bacteria strains except for the lipid with an n-octyl group. Five DNA-lipid complexes also had an antibacterial effect. The complex prepared from DNA and glycine decyl ester p-toluenesulfonic acid salt exhibited antibacterial activity against the four types of bacteria strains. In this study it was found that lipids and DNA-lipid complexes with a mono-decyl group or a mono-dodecyl group have more favorable antibacterial activity. Copyright 2003 Wiley Periodicals, Inc.
Water insoluble and soluble lipids for gene delivery.
Mahato, Ram I
2005-04-05
Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.
Onorbit IMU alignment error budget
NASA Technical Reports Server (NTRS)
Corson, R. W.
1980-01-01
The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.
GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites.
Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian
2016-06-16
As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.
Grasping Beer Mugs: On the Dynamics of Alignment Effects Induced by Handled Objects
ERIC Educational Resources Information Center
Bub, Daniel N.; Masson, Michael E. J.
2010-01-01
We examined automatic spatial alignment effects evoked by handled objects. Using color as the relevant cue carried by an irrelevant handled object aligned or misaligned with the response hand, responses to color were faster when the handle aligned with the response hand. Alignment effects were observed only when the task was to make a reach and…
NASA Technical Reports Server (NTRS)
Matus, Carlos V.
1989-01-01
Alignment viewed through microscope. Alignment jig positions shadow mask on charge-coupled device (CCD) so metal film deposited on it precisely. Allows CCD package to be inserted and removed without disturbing alignment of mask. Holds CCD packages securely and isolates it electrostatically while providing electrical contact to each of its pins. When alignment jig assembled with CCD, used to move mask under micrometer control.
ERIC Educational Resources Information Center
Kouakou, Claude N.
2013-01-01
The positive contribution of information technology (IT) in an organization is undeniable. Most organizations take advantage of that contributive benefit by aligning their business strategy with their IT strategy. This alignment is known as IT-business strategic alignment. Strategic alignment involves making the best possible use of corporate IT…
Global Network Alignment in the Context of Aging.
Faisal, Fazle Elahi; Zhao, Han; Milenkovic, Tijana
2015-01-01
Analogous to sequence alignment, network alignment (NA) can be used to transfer biological knowledge across species between conserved network regions. NA faces two algorithmic challenges: 1) Which cost function to use to capture "similarities" between nodes in different networks? 2) Which alignment strategy to use to rapidly identify "high-scoring" alignments from all possible alignments? We "break down" existing state-of-the-art methods that use both different cost functions and different alignment strategies to evaluate each combination of their cost functions and alignment strategies. We find that a combination of the cost function of one method and the alignment strategy of another method beats the existing methods. Hence, we propose this combination as a novel superior NA method. Then, since human aging is hard to study experimentally due to long lifespan, we use NA to transfer aging-related knowledge from well annotated model species to poorly annotated human. By doing so, we produce novel human aging-related knowledge, which complements currently available knowledge about aging that has been obtained mainly by sequence alignment. We demonstrate significant similarity between topological and functional properties of our novel predictions and those of known aging-related genes. We are the first to use NA to learn more about aging.
The twilight zone of cis element alignments.
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-02-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.
The twilight zone of cis element alignments
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-01-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451
Lin, Hsien-Cheng
2017-02-01
Nursing information systems can enhance nursing practice and the efficiency and quality of administrative affairs within the nursing department and thus have been widely considered for implementation. Close alignment of human-computer interaction can advance optimal clinical performance with the use of information systems. However, a lack of introduction of the concept of alignment between users' perceptions and technological functionality has caused dissatisfaction, as shown in the existing literature. This study provides insight into the alignment between nurses' perceptions and how technological functionality affects their satisfaction with Nursing Information System use through a reductionist perspective of alignment. This cross-sectional study collected data from 531 registered nurses in Taiwan. The results indicated that "perceived usefulness in system quality alignment," "perceived usefulness in information quality alignment," "perceived ease of use in system quality alignment," "perceived ease of use in information quality alignment," and "perceived ease of use in service quality alignment" have significantly affected nurses' satisfaction with Nursing Information System use. However, "perceived usefulness in service quality alignment" had no significant effect on nurses' satisfaction. This study also provides some meaningful implications for theoretical and practical aspects of design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbur, Jeffrey D.; Gomez, Enrique D.; Ellsworth, Mark W.
A procedure for creating samples that can be repeatedly cycled between weakly aligned and strongly aligned states is described. Poly(styrene-b-isoprene) block copolymer samples were first shear-aligned and then cross-linked using a high energy electron beam. Samples with more than 1.0 cross-links per chain on average showed almost complete recovery of their initial alignment state even after 20 cycles of heating above the order–disorder transition temperature of the un-cross-linked block copolymer. Samples with 1.1 cross-links per chain, which showed over 90% loss of alignment on heating and almost 100% recovery of alignment on cooling, provided the best example of a reversiblemore » aligned-to-unaligned transition. Samples with lower cross-linking densities exhibited irreversible loss of alignment upon heating, while those with higher cross-linking densities exhibited less than 90% loss of alignment upon heating. Alignment was quantified by a technique that we call two color depolarized light scattering (TCDLS), an extension of the traditional depolarized light scattering experiment used to determine the state of order in block copolymers. Qualitative confirmation of our interpretation of TCDLS data was obtained by small-angle X-ray scattering and transmission electron microscopy.« less
Brown, Peter; Pullan, Wayne; Yang, Yuedong; Zhou, Yaoqi
2016-02-01
The three dimensional tertiary structure of a protein at near atomic level resolution provides insight alluding to its function and evolution. As protein structure decides its functionality, similarity in structure usually implies similarity in function. As such, structure alignment techniques are often useful in the classifications of protein function. Given the rapidly growing rate of new, experimentally determined structures being made available from repositories such as the Protein Data Bank, fast and accurate computational structure comparison tools are required. This paper presents SPalignNS, a non-sequential protein structure alignment tool using a novel asymmetrical greedy search technique. The performance of SPalignNS was evaluated against existing sequential and non-sequential structure alignment methods by performing trials with commonly used datasets. These benchmark datasets used to gauge alignment accuracy include (i) 9538 pairwise alignments implied by the HOMSTRAD database of homologous proteins; (ii) a subset of 64 difficult alignments from set (i) that have low structure similarity; (iii) 199 pairwise alignments of proteins with similar structure but different topology; and (iv) a subset of 20 pairwise alignments from the RIPC set. SPalignNS is shown to achieve greater alignment accuracy (lower or comparable root-mean squared distance with increased structure overlap coverage) for all datasets, and the highest agreement with reference alignments from the challenging dataset (iv) above, when compared with both sequentially constrained alignments and other non-sequential alignments. SPalignNS was implemented in C++. The source code, binary executable, and a web server version is freely available at: http://sparks-lab.org yaoqi.zhou@griffith.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A new statistical framework to assess structural alignment quality using information compression
Collier, James H.; Allison, Lloyd; Lesk, Arthur M.; Garcia de la Banda, Maria; Konagurthu, Arun S.
2014-01-01
Motivation: Progress in protein biology depends on the reliability of results from a handful of computational techniques, structural alignments being one. Recent reviews have highlighted substantial inconsistencies and differences between alignment results generated by the ever-growing stock of structural alignment programs. The lack of consensus on how the quality of structural alignments must be assessed has been identified as the main cause for the observed differences. Current methods assess structural alignment quality by constructing a scoring function that attempts to balance conflicting criteria, mainly alignment coverage and fidelity of structures under superposition. This traditional approach to measuring alignment quality, the subject of considerable literature, has failed to solve the problem. Further development along the same lines is unlikely to rectify the current deficiencies in the field. Results: This paper proposes a new statistical framework to assess structural alignment quality and significance based on lossless information compression. This is a radical departure from the traditional approach of formulating scoring functions. It links the structural alignment problem to the general class of statistical inductive inference problems, solved using the information-theoretic criterion of minimum message length. Based on this, we developed an efficient and reliable measure of structural alignment quality, I-value. The performance of I-value is demonstrated in comparison with a number of popular scoring functions, on a large collection of competing alignments. Our analysis shows that I-value provides a rigorous and reliable quantification of structural alignment quality, addressing a major gap in the field. Availability: http://lcb.infotech.monash.edu.au/I-value Contact: arun.konagurthu@monash.edu Supplementary information: Online supplementary data are available at http://lcb.infotech.monash.edu.au/I-value/suppl.html PMID:25161241
Using Quasi-Horizontal Alignment in the absence of the actual alignment.
Banihashemi, Mohamadreza
2016-10-01
Horizontal alignment is a major roadway characteristic used in safety and operational evaluations of many facility types. The Highway Safety Manual (HSM) uses this characteristic in crash prediction models for rural two-lane highways, freeway segments, and freeway ramps/C-D roads. Traffic simulation models use this characteristic in their processes on almost all types of facilities. However, a good portion of roadway databases do not include horizontal alignment data; instead, many contain point coordinate data along the roadways. SHRP 2 Roadway Information Database (RID) is a good example of this type of data. Only about 5% of this geodatabase contains alignment information and for the rest, point data can easily be produced. Even though the point data can be used to extract actual horizontal alignment data but, extracting horizontal alignment is a cumbersome and costly process, especially for a database of miles and miles of highways. This research introduces a so called "Quasi-Horizontal Alignment" that can be produced easily and automatically from point coordinate data and can be used in the safety and operational evaluations of highways. SHRP 2 RID for rural two-lane highways in Washington State is used in this study. This paper presents a process through which Quasi-Horizontal Alignments are produced from point coordinates along highways by using spreadsheet software such as MS EXCEL. It is shown that the safety and operational evaluations of the highways with Quasi-Horizontal Alignments are almost identical to the ones with the actual alignments. In the absence of actual alignment the Quasi-Horizontal Alignment can easily be produced from any type of databases that contain highway coordinates such geodatabases and digital maps. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laser beam alignment apparatus and method
Gruhn, C.R.; Hammond, R.B.
The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.
Laser beam alignment apparatus and method
Gruhn, Charles R.; Hammond, Robert B.
1981-01-01
The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.
Association of lipid metabolism with ovarian cancer.
Tania, M; Khan, M A; Song, Y
2010-10-01
Defects in lipid metabolism have been found to be linked to several diseases, among which atherosclerosis, hypertension, obesity, and diabetes are the most important. Although cancer is chiefly a genetic disease, dietary lipid intake and metabolism are related to some cancer risks, including the risk for ovarian cancer. Higher intake of dietary lipids, systemic lipid metabolism malfunction, and abnormal serum lipid levels are somehow related to ovarian cancer. Overexpression of some lipid metabolic enzymes are also found in ovarian cancer. In this review article, we summarize the relationships between lipid intake, lipid metabolism, and ovarian cancer.
2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Benning
2011-02-04
This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less
ARYANA: Aligning Reads by Yet Another Approach
2014-01-01
Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881
The ties that bind: an integrative framework of physician-hospital alignment
2011-01-01
Background Alignment between physicians and hospitals is of major importance to the health care sector. Two distinct approaches to align the medical staff with the hospital have characterized previous research. The first approach, economic integration, is rooted in the economic literature, in which alignment is realized by financial means. The second approach, noneconomic integration, represents a sociological perspective emphasizing the cooperative nature of their relationship. Discussion Empirical studies and management theory (agency theory and social exchange theory) are used to increase holistic understanding of physician hospital alignment. On the one hand, noneconomic integration is identified as a means to realize a cooperative relationship. On the other hand, economic integration is studied as a way to align financial incentives. The framework is developed around two key antecedent factors which play an important role in aligning the medical staff. First, provider financial risk bearing is identified as a driving force towards closer integration. Second, organizational trust is believed to be important in explaining the causal relation between noneconomic and economic integration. Summary Hospital financial risk bearing creates a greater need for closer cooperation with the medical staff and alignment of financial incentives. Noneconomic integration lies at the very basis of alignment. It contributes directly to alignment through the norm of reciprocity and indirectly by building trust with the medical staff, laying the foundation for alignment of financial incentives. PMID:21324128
The ties that bind: an integrative framework of physician-hospital alignment.
Trybou, Jeroen; Gemmel, Paul; Annemans, Lieven
2011-02-15
Alignment between physicians and hospitals is of major importance to the health care sector. Two distinct approaches to align the medical staff with the hospital have characterized previous research. The first approach, economic integration, is rooted in the economic literature, in which alignment is realized by financial means. The second approach, noneconomic integration, represents a sociological perspective emphasizing the cooperative nature of their relationship. Empirical studies and management theory (agency theory and social exchange theory) are used to increase holistic understanding of physician hospital alignment. On the one hand, noneconomic integration is identified as a means to realize a cooperative relationship. On the other hand, economic integration is studied as a way to align financial incentives. The framework is developed around two key antecedent factors which play an important role in aligning the medical staff. First, provider financial risk bearing is identified as a driving force towards closer integration. Second, organizational trust is believed to be important in explaining the causal relation between noneconomic and economic integration. Hospital financial risk bearing creates a greater need for closer cooperation with the medical staff and alignment of financial incentives. Noneconomic integration lies at the very basis of alignment. It contributes directly to alignment through the norm of reciprocity and indirectly by building trust with the medical staff, laying the foundation for alignment of financial incentives.
A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.
Fostier, Jan; Proost, Sebastian; Dhoedt, Bart; Saeys, Yvan; Demeester, Piet; Van de Peer, Yves; Vandepoele, Klaas
2011-03-15
Many comparative genomics studies rely on the correct identification of homologous genomic regions using accurate alignment tools. In such case, the alphabet of the input sequences consists of complete genes, rather than nucleotides or amino acids. As optimal multiple sequence alignment is computationally impractical, a progressive alignment strategy is often employed. However, such an approach is susceptible to the propagation of alignment errors in early pairwise alignment steps, especially when dealing with strongly diverged genomic regions. In this article, we present a novel accurate and efficient greedy, graph-based algorithm for the alignment of multiple homologous genomic segments, represented as ordered gene lists. Based on provable properties of the graph structure, several heuristics are developed to resolve local alignment conflicts that occur due to gene duplication and/or rearrangement events on the different genomic segments. The performance of the algorithm is assessed by comparing the alignment results of homologous genomic segments in Arabidopsis thaliana to those obtained by using both a progressive alignment method and an earlier graph-based implementation. Especially for datasets that contain strongly diverged segments, the proposed method achieves a substantially higher alignment accuracy, and proves to be sufficiently fast for large datasets including a few dozens of eukaryotic genomes. http://bioinformatics.psb.ugent.be/software. The algorithm is implemented as a part of the i-ADHoRe 3.0 package.
BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC
Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun
2009-01-01
Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598
BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC.
Satija, Rahul; Novák, Adám; Miklós, István; Lyngsø, Rune; Hein, Jotun
2009-08-28
We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the alpha-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from http://www.stats.ox.ac.uk/~satija/BigFoot/
ARYANA: Aligning Reads by Yet Another Approach.
Gholami, Milad; Arbabi, Aryan; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Sadeghi, Mehdi
2014-01-01
Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $10(6) prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. ARYANA with complete source code can be obtained from http://github.com/aryana-aligner.
AlexSys: a knowledge-based expert system for multiple sequence alignment construction and analysis
Aniba, Mohamed Radhouene; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn
2010-01-01
Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of ‘meta-methods’ that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys. PMID:20530533
Design of practical alignment device in KSTAR Thomson diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J. H., E-mail: jhlee@nfri.re.kr; University of Science and Technology; Lee, S. H.
2016-11-15
The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broadmore » wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.« less
Design of practical alignment device in KSTAR Thomson diagnostic.
Lee, J H; Lee, S H; Yamada, I
2016-11-01
The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.
Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders
Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; ...
2016-08-30
We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less
Unaligned instruction relocation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.
In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unalignedmore » ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Liu, Jie; Gleber, Sophie C.
An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respectivemore » zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.« less
ChromA: signal-based retention time alignment for chromatography-mass spectrometry data.
Hoffmann, Nils; Stoye, Jens
2009-08-15
We describe ChromA, a web-based alignment tool for chromatography-mass spectrometry data from the metabolomics and proteomics domains. Users can supply their data in open and standardized file formats for retention time alignment using dynamic time warping with different configurable local distance and similarity functions. Additionally, user-defined anchors can be used to constrain and speedup the alignment. A neighborhood around each anchor can be added to increase the flexibility of the constrained alignment. ChromA offers different visualizations of the alignment for easier qualitative interpretation and comparison of the data. For the multiple alignment of more than two data files, the center-star approximation is applied to select a reference among input files to align to. ChromA is available at http://bibiserv.techfak.uni-bielefeld.de/chroma. Executables and source code under the L-GPL v3 license are provided for download at the same location.
QUASAR--scoring and ranking of sequence-structure alignments.
Birzele, Fabian; Gewehr, Jan E; Zimmer, Ralf
2005-12-15
Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.
Spatio-temporal alignment of multiple sensors
NASA Astrophysics Data System (ADS)
Zhang, Tinghua; Ni, Guoqiang; Fan, Guihua; Sun, Huayan; Yang, Biao
2018-01-01
Aiming to achieve the spatio-temporal alignment of multi sensor on the same platform for space target observation, a joint spatio-temporal alignment method is proposed. To calibrate the parameters and measure the attitude of cameras, an astronomical calibration method is proposed based on star chart simulation and collinear invariant features of quadrilateral diagonal between the observed star chart. In order to satisfy a temporal correspondence and spatial alignment similarity simultaneously, the method based on the astronomical calibration and attitude measurement in this paper formulates the video alignment to fold the spatial and temporal alignment into a joint alignment framework. The advantage of this method is reinforced by exploiting the similarities and prior knowledge of velocity vector field between adjacent frames, which is calculated by the SIFT Flow algorithm. The proposed method provides the highest spatio-temporal alignment accuracy compared to the state-of-the-art methods on sequences recorded from multi sensor at different times.
Unaligned instruction relocation
Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.
2018-01-23
In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unaligned ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.
Projected power iteration for network alignment
NASA Astrophysics Data System (ADS)
Onaran, Efe; Villar, Soledad
2017-08-01
The network alignment problem asks for the best correspondence between two given graphs, so that the largest possible number of edges are matched. This problem appears in many scientific problems (like the study of protein-protein interactions) and it is very closely related to the quadratic assignment problem which has graph isomorphism, traveling salesman and minimum bisection problems as particular cases. The graph matching problem is NP-hard in general. However, under some restrictive models for the graphs, algorithms can approximate the alignment efficiently. In that spirit the recent work by Feizi and collaborators introduce EigenAlign, a fast spectral method with convergence guarantees for Erd-s-Renyí graphs. In this work we propose the algorithm Projected Power Alignment, which is a projected power iteration version of EigenAlign. We numerically show it improves the recovery rates of EigenAlign and we describe the theory that may be used to provide performance guarantees for Projected Power Alignment.
Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders
NASA Astrophysics Data System (ADS)
Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans
2017-01-01
Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.
Validation of Splicing Events in Transcriptome Sequencing Data
Kaisers, Wolfgang; Ptok, Johannes; Schwender, Holger; Schaal, Heiner
2017-01-01
Genomic alignments of sequenced cellular messenger RNA contain gapped alignments which are interpreted as consequence of intron removal. The resulting gap-sites, genomic locations of alignment gaps, are landmarks representing potential splice-sites. As alignment algorithms report gap-sites with a considerable false discovery rate, validations are required. We describe two quality scores, gap quality score (gqs) and weighted gap information score (wgis), developed for validation of putative splicing events: While gqs solely relies on alignment data wgis additionally considers information from the genomic sequence. FASTQ files obtained from 54 human dermal fibroblast samples were aligned against the human genome (GRCh38) using TopHat and STAR aligner. Statistical properties of gap-sites validated by gqs and wgis were evaluated by their sequence similarity to known exon-intron borders. Within the 54 samples, TopHat identifies 1,000,380 and STAR reports 6,487,577 gap-sites. Due to the lack of strand information, however, the percentage of identified GT-AG gap-sites is rather low. While gap-sites from TopHat contain ≈89% GT-AG, gap-sites from STAR only contain ≈42% GT-AG dinucleotide pairs in merged data from 54 fibroblast samples. Validation with gqs yields 156,251 gap-sites from TopHat alignments and 166,294 from STAR alignments. Validation with wgis yields 770,327 gap-sites from TopHat alignments and 1,065,596 from STAR alignments. Both alignment algorithms, TopHat and STAR, report gap-sites with considerable false discovery rate, which can drastically be reduced by validation with gqs and wgis. PMID:28545234
Nuclear reactor internals alignment configuration
Gilmore, Charles B [Greensburg, PA; Singleton, Norman R [Murrysville, PA
2009-11-10
An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.
X-ray verification of an optically aligned off-plane grating module
NASA Astrophysics Data System (ADS)
Donovan, Benjamin D.; McEntaffer, Randall L.; Tutt, James H.; DeRoo, Casey T.; Allured, Ryan; Gaskin, Jessica A.; Kolodziejczak, Jeffery J.
2018-01-01
Off-plane x-ray reflection gratings are theoretically capable of achieving high resolution and high diffraction efficiencies over the soft x-ray bandpass, making them an ideal technology to implement on upcoming x-ray spectroscopy missions. To achieve high effective area, these gratings must be aligned into grating modules. X-ray testing was performed on an aligned grating module to assess the current optical alignment methods. Results indicate that the grating module achieved the desired alignment for an upcoming x-ray spectroscopy suborbital rocket payload with modest effective area and resolving power. These tests have also outlined a pathway towards achieving the stricter alignment tolerances of future x-ray spectrometer payloads, which require improvements in alignment metrology, grating fabrication, and testing techniques.
Association of lipid metabolism with ovarian cancer
Tania, M.; Khan, M.A.; Song, Y.
2010-01-01
Defects in lipid metabolism have been found to be linked to several diseases, among which atherosclerosis, hypertension, obesity, and diabetes are the most important. Although cancer is chiefly a genetic disease, dietary lipid intake and metabolism are related to some cancer risks, including the risk for ovarian cancer. Higher intake of dietary lipids, systemic lipid metabolism malfunction, and abnormal serum lipid levels are somehow related to ovarian cancer. Overexpression of some lipid metabolic enzymes are also found in ovarian cancer. In this review article, we summarize the relationships between lipid intake, lipid metabolism, and ovarian cancer. PMID:20975872
Airanthi, M K Widjaja-Adhi; Sasaki, Naoya; Iwasaki, Sayaka; Baba, Nobuko; Abe, Masayuki; Hosokawa, Masashi; Miyashita, Kazuo
2011-04-27
Brown seaweed lipids from Undaria pinnatifida (Wakame), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) contained several bioactive compounds, namely, fucoxanthin, polyphenols, and omega-3 polyunsaturated fatty acids (PUFA). Fucoxanthin and polyphenol contents of Akamoku and Uganomoku lipids were higher than those of Wakame lipids, while Wakame lipids showed higher total omega-3 PUFA content than Akamoku and Uganomoku lipids. The levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) in liver lipids of KK-A(y) mouse significantly increased by Akamoku and Uganomoku lipid feeding as compared with the control, but not by Wakame lipid feeding. Fucoxanthin has been reported to accelerate the bioconversion of omega-3 PUFA and omega-6 PUFA to DHA and AA, respectively. The higher hepatic DHA and AA level of mice fed Akamoku and Uganomoku lipids would be attributed to the higher content of fucoxanthin of Akamoku and Uganomoku lipids. The lipid hydroperoxide levels of the liver of mice fed brown seaweed lipids were significantly lower than those of control mice, even though total PUFA content was higher in the liver of mice fed brown seaweed lipids. This would be, at least in part, due to the antioxidant activity of fucoxanthin metabolites in the liver.
NASA Astrophysics Data System (ADS)
Lee, Hwankyu; Malmstadt, Noah
2018-04-01
Lipid bilayers composed of saturated and unsaturated lipids, oxidized lipids, and cholesterol at concentrations of 0–18 mol% oxidized lipid were simulated, showing that the presence of oxidized lipid increases bilayer disorder, curvature, and lateral dynamics at low oxidized-lipid concentrations of 18 mol% or less. The aldehyde terminal of a shortened oxidized-lipid tail tends to interact with water and thus bends toward the bilayer-water interface, in agreement with previous experiments and simulations. In particular, water molecules pass through the oxidized bilayer without pore formation, implying passive permeability. A single nanoparticle, which consists of 300 polystyrene (PS) chains with cationic terminals, added to this bilayer simulation induces negative bilayer curvature and inserts to the bilayer, regardless of the oxidized-lipid concentration. Hydrophobic monomers and cationic terminals of the PS particle interact respectively with lipid tails and headgroups, leading to the wrapping of either lipid monolayer or bilayer along the particle surface. These results indicate that lipid oxidation increases membrane curvature and permeability even at such a low concentration of oxidized lipid, which supports the experimental observations regarding the passive permeability of oxidized bilayer, and also that oxidized lipids of low concentration do not significantly influence the insertion of a cationic PS particle to the bilayer.
Optical alignment of the JWST ISIM to the OTE simulator (OSIM): current concept and design studies
NASA Astrophysics Data System (ADS)
Frey, Bradley J.; Davila, Pamela S.; Hagopian, John G.; Marsh, James M.; Ohl, Raymond G.; Wilson, Mark E.; Young, Philip J.
2007-09-01
The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) contains the observatory's four science instruments and their support subsystems. During alignment and test of the integrated ISIM at NASA's Goddard Space Flight Center (GSFC), the Optical telescope element SIMulator (OSIM) will be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to align the OSIM to the ISIM during testing at GSFC. These fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, six degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing. These fixtures will allow us to position the OSIM and detect OSIM-ISIM absolute alignment to better than 180 microns in translation and 540 micro-radians in rotation. We will provide a brief overview of the OSIM system and we will also discuss the relevance of these fixtures in the context of the overall ISIM alignment and test plan.
Node fingerprinting: an efficient heuristic for aligning biological networks.
Radu, Alex; Charleston, Michael
2014-10-01
With the continuing increase in availability of biological data and improvements to biological models, biological network analysis has become a promising area of research. An emerging technique for the analysis of biological networks is through network alignment. Network alignment has been used to calculate genetic distance, similarities between regulatory structures, and the effect of external forces on gene expression, and to depict conditional activity of expression modules in cancer. Network alignment is algorithmically complex, and therefore we must rely on heuristics, ideally as efficient and accurate as possible. The majority of current techniques for network alignment rely on precomputed information, such as with protein sequence alignment, or on tunable network alignment parameters, which may introduce an increased computational overhead. Our presented algorithm, which we call Node Fingerprinting (NF), is appropriate for performing global pairwise network alignment without precomputation or tuning, can be fully parallelized, and is able to quickly compute an accurate alignment between two biological networks. It has performed as well as or better than existing algorithms on biological and simulated data, and with fewer computational resources. The algorithmic validation performed demonstrates the low computational resource requirements of NF.
BatMis: a fast algorithm for k-mismatch mapping.
Tennakoon, Chandana; Purbojati, Rikky W; Sung, Wing-Kin
2012-08-15
Second-generation sequencing (SGS) generates millions of reads that need to be aligned to a reference genome allowing errors. Although current aligners can efficiently map reads allowing a small number of mismatches, they are not well suited for handling a large number of mismatches. The efficiency of aligners can be improved using various heuristics, but the sensitivity and accuracy of the alignments are sacrificed. In this article, we introduce Basic Alignment tool for Mismatches (BatMis)--an efficient method to align short reads to a reference allowing k mismatches. BatMis is a Burrows-Wheeler transformation based aligner that uses a seed and extend approach, and it is an exact method. Benchmark tests show that BatMis performs better than competing aligners in solving the k-mismatch problem. Furthermore, it can compete favorably even when compared with the heuristic modes of the other aligners. BatMis is a useful alternative for applications where fast k-mismatch mappings, unique mappings or multiple mappings of SGS data are required. BatMis is written in C/C++ and is freely available from http://code.google.com/p/batmis/
Efficient and robust model-to-image alignment using 3D scale-invariant features.
Toews, Matthew; Wells, William M
2013-04-01
This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.
Lin, Hui-Chi; Wang, Chih-Hung; Wang, Jyun-Kai; Tsai, Sheng-Feng
2018-01-01
The spontaneous vertical alignment of liquid crystals (LCs) in gelator (12-hydroxystearic acid)-doped LC cells was studied. Gelator-induced alignment can be used in both positive and negative LC cells. The electro-optical characteristics of the gelator-doped negative LC cell were similar to those of an LC cell that contained a vertically aligned (VA) host. The rise time of the gelator-doped LC cell was two orders of magnitude shorter than that of the VA host LC cell. The experimental results indicate that the gelator-induced vertical alignment of LC molecules occurred not only on the surface of the indium tin oxide (ITO) but also on the homogeneous alignment layer. Various LC alignments (planar, hybrid, multistable hybrid, and vertical alignments) were achieved by modulating the doped gelator concentrations. The multistable characteristic of LCs doped with the gelator is also presented. The alignment by doping with a gelator reduces the manufacturing costs and provides a means of fabricating fast-responding, flexible LC displays using a low-temperature process. PMID:29735937
Budavari, Tamas; Langmead, Ben; Wheelan, Sarah J.; Salzberg, Steven L.; Szalay, Alexander S.
2015-01-01
When computing alignments of DNA sequences to a large genome, a key element in achieving high processing throughput is to prioritize locations in the genome where high-scoring mappings might be expected. We formulated this task as a series of list-processing operations that can be efficiently performed on graphics processing unit (GPU) hardware.We followed this approach in implementing a read aligner called Arioc that uses GPU-based parallel sort and reduction techniques to identify high-priority locations where potential alignments may be found. We then carried out a read-by-read comparison of Arioc’s reported alignments with the alignments found by several leading read aligners. With simulated reads, Arioc has comparable or better accuracy than the other read aligners we tested. With human sequencing reads, Arioc demonstrates significantly greater throughput than the other aligners we evaluated across a wide range of sensitivity settings. The Arioc software is available at https://github.com/RWilton/Arioc. It is released under a BSD open-source license. PMID:25780763
Efficient and Robust Model-to-Image Alignment using 3D Scale-Invariant Features
Toews, Matthew; Wells, William M.
2013-01-01
This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a-posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. PMID:23265799
NASA Technical Reports Server (NTRS)
Thomas, N. L.; Chisel, D. M.
1976-01-01
The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.
Tsao, Connie W; Preis, Sarah Rosner; Peloso, Gina M; Hwang, Shih-Jen; Kathiresan, Sekar; Fox, Caroline S; Cupples, L Adrienne; Hoffmann, Udo; O'Donnell, Christopher J
2012-12-11
This study evaluated the association of timing of lipid levels and lipid genetic risk score (GRS) with subclinical atherosclerosis. Atherosclerosis is a slowly progressive disorder influenced by suboptimal lipid levels. Long-term versus contemporary lipid levels may more strongly impact the development of coronary artery calcium (CAC). Framingham Heart Study (FHS) Offspring Cohort participants (n = 1,156, 44% male, 63 ± 9 years) underwent serial fasting lipids (low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein, and triglycerides), Exam 1 (1971 to 1975) to Exam 7 (1998 to 2001). FHS Third Generation Cohort participants (n = 1,954, 55% male, 45 ± 6 years) had fasting lipid profiles assessed, 2002 to 2005. Computed tomography (2002 to 2005) measured CAC. Lipid GRSs were computed from significantly associated single-nucleotide polymorphisms. The association between early, long-term average, and contemporary lipids, and lipid GRS with elevated CAC was assessed using logistic regression. In FHS Offspring, Exam 1 and long-term average as compared with Exam 7 lipid measurements, including untreated lipid levels, were strongly associated with elevated CAC. In the FHS Third Generation, contemporary lipids were associated with CAC. The LDL-C GRS was associated with CAC (age-/sex-adjusted odds ratio: 1.14, 95% confidence interval: 1.00 to 1.29, p = 0.04). However, addition of the GRS to the lipid models did not result in a significant increase in the odds ratio or C-statistic for any lipid measure. Early and long-term average lipid levels, as compared with contemporary measures, are more strongly associated with elevated CAC. Lipid GRS was associated with lipid levels but did not predict elevated CAC. Adult early and long-term average lipid levels provide important information when assessing subclinical atherosclerosis and cardiovascular risk. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
van Smeden, Jeroen; Bouwstra, Joke A
2016-01-01
Human skin acts as a primary barrier between the body and its environment. Crucial for this skin barrier function is the lipid matrix in the outermost layer of the skin, the stratum corneum (SC). Two of its functions are (1) to prevent excessive water loss through the epidermis and (2) to avoid that compounds from the environment permeate into the viable epidermal and dermal layers and thereby provoke an immune response. The composition of the SC lipid matrix is dominated by three lipid classes: cholesterol, free fatty acids and ceramides. These lipids adopt a highly ordered, 3-dimensional structure of stacked densely packed lipid layers (lipid lamellae): the lateral and lamellar lipid organization. The way in which these lipids are ordered depends on the composition of the lipids. One very common skin disease in which the SC lipid barrier is affected is atopic dermatitis (AD). This review addresses the SC lipid composition and organization in healthy skin, and elaborates on how these parameters are changed in lesional and nonlesional skin of AD patients. Concerning the lipid composition, the changes in the three main lipid classes and the importance of the carbon chain lengths of the lipids are discussed. In addition, this review addresses how these changes in lipid composition induce changes in lipid organization and subsequently correlate with an impaired skin barrier function in both lesional and nonlesional skin of these patients. Furthermore, the effect of filaggrin and mutations in the filaggrin gene on the SC lipid composition is critically discussed. Also, the breakdown products of filaggrin, the natural moisturizing factor molecules and its relation to SC-pH is described. Finally, the paper discusses some major changes in epidermal lipid biosynthesis in patients with AD and other related skin diseases, and how inflammation has a deteriorating effect on the SC lipids and SC biosynthesis. The review ends with perspectives on future studies in relation to other skin diseases. © 2016 S. Karger AG, Basel.
Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.
Lu, Stella M; Fairn, Gregory D
2018-04-01
The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.
A statistical and experimental approach for assessing the preservation of plant lipids in soil
NASA Astrophysics Data System (ADS)
Mueller, K. E.; Eissenstat, D. M.; Oleksyn, J.; Freeman, K. H.
2011-12-01
Plant-derived lipids contribute to stable soil organic matter, but further interpretations of their abundance in soils are limited because the factors that control lipid preservation are poorly understood. Using data from a long-term field experiment and simple statistical models, we provide novel constraints on several predictors of the concentration of hydrolyzable lipids in forest mineral soils. Focal lipids included common monomers of cutin, suberin, and plant waxes present in tree leaves and roots. Soil lipid concentrations were most strongly influenced by the concentrations of lipids in leaves and roots of the overlying trees, but were also affected by the type of lipid (e.g. alcohols vs. acids), lipid chain length, and whether lipids originated in leaves or roots. Collectively, these factors explained ~80% of the variation in soil lipid concentrations beneath 11 different tree species. In order to use soil lipid analyses to test and improve conceptual models of soil organic matter stabilization, additional studies that provide experimental and quantitative (i.e. statistical) constraints on plant lipid preservation are needed.
LMSD: LIPID MAPS structure database
Sud, Manish; Fahy, Eoin; Cotter, Dawn; Brown, Alex; Dennis, Edward A.; Glass, Christopher K.; Merrill, Alfred H.; Murphy, Robert C.; Raetz, Christian R. H.; Russell, David W.; Subramaniam, Shankar
2007-01-01
The LIPID MAPS Structure Database (LMSD) is a relational database encompassing structures and annotations of biologically relevant lipids. Structures of lipids in the database come from four sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) computationally generated structures for appropriate lipid classes; (iv) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and other public sources. All the lipid structures in LMSD are drawn in a consistent fashion. In addition to a classification-based retrieval of lipids, users can search LMSD using either text-based or structure-based search options. The text-based search implementation supports data retrieval by any combination of these data fields: LIPID MAPS ID, systematic or common name, mass, formula, category, main class, and subclass data fields. The structure-based search, in conjunction with optional data fields, provides the capability to perform a substructure search or exact match for the structure drawn by the user. Search results, in addition to structure and annotations, also include relevant links to external databases. The LMSD is publicly available at PMID:17098933
Alignment displacements of the solar optical telescope primary mirror
NASA Technical Reports Server (NTRS)
Medenica, W. V.
1978-01-01
Solar optical telescope is a space shuttle payload which is at the present time (1978) being planned. The selected alignment method for the telescope's primary mirror is such that the six inclined legs supporting the mirror are at the same time motorized alignment actuators, changing their own length according to the alignment requirement and command. The alignment displacements were described, including circumvention of some apparent NASTRAN limitations.
Automatic target alignment of the Helios laser system
NASA Astrophysics Data System (ADS)
Liberman, I.; Viswanathan, V. K.; Klein, M.; Seery, B. D.
1980-05-01
An automatic target-alignment technique for the Helios laser facility is reported and verified experimentally. The desired alignment condition is completely described by an autocollimation test. A computer program examines the autocollimated return pattern from the surrogate target and correctly describes any changes required in mirror orientation to yield optimum target alignment with either aberrated or misaligned beams. Automated on-line target alignment is thus shown to be feasible.
Development of a method of alignment between various SOLAR MAXIMUM MISSION experiments
NASA Technical Reports Server (NTRS)
1977-01-01
Results of an engineering study of the methods of alignment between various experiments for the solar maximum mission are described. The configuration studied consists of the instruments, mounts and instrument support platform located within the experiment module. Hardware design, fabrication methods and alignment techniques were studied with regard to optimizing the coalignment between the experiments and the fine sun sensor. The proposed hardware design was reviewed with regard to loads, stress, thermal distortion, alignment error budgets, fabrication techniques, alignment techniques and producibility. Methods of achieving comparable alignment accuracies on previous projects were also reviewed.
Electric-Field-Induced Alignment of Block Copolymer/Nanoparticle Blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liedel, Clemens; Schindler, Kerstin; Pavan, Mariela J.
External electric fi elds readily align birefringent block-copolymer mesophases. In this study the effect of gold nanoparticles on the electric-fi eld-induced alignment of a lamellae-forming polystyrene- block -poly(2-vinylpyridine) copolymer is assessed. Nanoparticles are homogeneously dispersed in the styrenic phase and promote the quantitative alignment of lamellar domains by substantially lowering the critical field strength above which alignment proceeds. The results suggest that the electric-fi eldassisted alignment of nanostructured block copolymer/nanoparticle composites may offer a simple way to greatly mitigate structural and orientational defects of such fi lms under benign experimental conditions.
Hamdy, Samar; Haddadi, Azita; Somayaji, Vishwa; Ruan, David; Samuel, John
2007-08-15
The present study had two main objectives. First, was to compare the immune stimulatory effect of two synthetic lipid A analogues (7-acyl lipid A and pentaerythritol-based lipid A (PET lipid A)) on maturation/stimulation of bone marrow derived dendritic cells (DCs). Our second objective was to develop a liquid chromatography/mass spectrometry (LC-MS) method for the quantitative analysis of lipid A-based vaccine adjuvants. Treatment of immature DCs with 7-acyl lipid A and PET lipid A up regulated the surface expression of CD86 and CD40 molecules, and also induced similar profile of pro-inflammatory cytokine secretion. LC-MS analyses were performed using a Waters Micromass ZQ 4000 spectrometer, coupled to a Waters 2795 separations module with an autosampler. Calibration curves with R(2)>0.999 were constructed over the concentration range of 1.25-20 microg/ml for the solution of 7-acyl lipid A and PET lipid A. The method was tested in a 3 day validation protocol. The accuracy of the assay at different concentrations tested ranged from 89 to 108% and from 92 to 107% for 7-acyl lipid A and PET lipid A, respectively. The limit of quantification for both 7-acyl lipid A and PET lipid A was 1.25 microg/ml (signal/noise (S/N)) ratio >15:1. The sensitivity of the method (the limit of detection) was 0.35 and 0.15 ng for 7-acyl lipid A and PET lipid A, respectively (S/N ratio between 4:1 or 3:1). As a preliminary application, this method has been successfully applied to the determination of 7-acyl lipid A and PET lipid A content in poly (D,L-lactic-co-glycolic acid) nanoparticles (PLGA-NP).
Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence
NASA Astrophysics Data System (ADS)
Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing
2016-07-01
Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.
Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Qianli; Kang, Xi; Wang, Peng
In this paper we use high-resolution cosmological simulations to study halo intrinsic alignment and its dependence on mass, formation time, and large-scale environment. In agreement with previous studies using N -body simulations, it is found that massive halos have stronger alignment. For the first time, we find that for a given halo mass older halos have stronger alignment and halos in cluster regions also have stronger alignment than those in filaments. To model these dependencies, we extend the linear alignment model with inclusion of halo bias and find that the halo alignment with its mass and formation time dependence canmore » be explained by halo bias. However, the model cannot account for the environment dependence, as it is found that halo bias is lower in clusters and higher in filaments. Our results suggest that halo bias and environment are independent factors in determining halo alignment. We also study the halo alignment correlation function and find that halos are strongly clustered along their major axes and less clustered along the minor axes. The correlated halo alignment can extend to scales as large as 100 h {sup −1} Mpc, where its feature is mainly driven by the baryon acoustic oscillation effect.« less
Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo
2016-11-11
Thin films of the iron-based superconductor BaFe 2 (As 1-x P x ) 2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (J c ). The Ba122:P film exhibited higher J c at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe 2 As 2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors.
Effect of alignment perturbations in a trans-tibial prosthesis user: A pilot study.
Courtney, Anna; Orendurff, Michael S; Buis, Arjan
2016-04-01
A recurring complication in trans-tibial prosthetic limb users is "poor socket fit" with painful residuum-socket interfaces, a consequence of excess pressure. This is due to both poor socket fit and poor socket alignment; however, the interaction of these factors has not been quantified. Through evaluation of kinetic data this study aimed to articulate an interaction uniting socket design, alignment and interface pressures. The results will help to refine future studies and will hopefully help determine whether sockets can be designed, fitted and aligned to maximize mobility whilst minimizing injurious forces. Interface pressures were recorded throughout ambulation in one user with "optimal (reference) alignment" followed by 5 malalignments in a patellar tendon-bearing and a hydrocast socket. Marked differences in pressure distribution were discovered when equating the patellar tendon-bearing against the hydrocast socket and when comparing interface pressures from reference with offset alignment. Patellar tendon-bearing sockets were found to be more sensitive to alignment perturbations than hydrocast sockets. A complex interaction was found, with the most prominent finding demonstrating the requisite for attainment of optimal alignment: a translational alignment error of 10 mm can increase maximum peak pressures by 227% (mean 17.5%). Refinements for future trials are described and the necessity for future research into socket design, alignment and interface pressures has been estabilished.
NASA Astrophysics Data System (ADS)
Junqueira Leão, Rodrigo; Raffaelo Baldo, Crhistian; Collucci da Costa Reis, Maria Luisa; Alves Trabanco, Jorge Luiz
2018-03-01
The performance of particle accelerators depends highly on the relative alignment between their components. The position and orientation of the magnetic lenses that form the trajectory of the charged beam is kept to micrometric tolerances in a range of hundreds of meters of the length of the machines. Therefore, the alignment problem is fundamentally of a dimensional metrology nature. There is no common way of expressing these tolerances in terms of terminology and alignment concept. The alignment needs for a certain machine is normally given in terms of deviations between the position of any magnet in the accelerator and the fitted line that relates the actual position of the magnets’ assembly. Root mean square errors and standard deviations are normally used interchangeably and measurement uncertainty is often neglected. Although some solutions have been employed successfully in several accelerators, there is no off-the-shelf solution to perform the alignment. Also, each alignment campaign makes use of different measuring instruments to achieve the desired results, which makes the alignment process a complex measurement chain. This paper explores these issues by reviewing the tolerances specified for the alignment of particle accelerators, and proposes a metric to assess the quality of the alignment. The metric has the advantage of fully integrating the measurement uncertainty in the process.
Ontology Alignment Repair through Modularization and Confidence-Based Heuristics
Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M.
2015-01-01
Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system. PMID:26710335
Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.
Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M
2015-01-01
Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.
Dong, Runze; Pan, Shuo; Peng, Zhenling; Zhang, Yang; Yang, Jianyi
2018-05-21
With the rapid increase of the number of protein structures in the Protein Data Bank, it becomes urgent to develop algorithms for efficient protein structure comparisons. In this article, we present the mTM-align server, which consists of two closely related modules: one for structure database search and the other for multiple structure alignment. The database search is speeded up based on a heuristic algorithm and a hierarchical organization of the structures in the database. The multiple structure alignment is performed using the recently developed algorithm mTM-align. Benchmark tests demonstrate that our algorithms outperform other peering methods for both modules, in terms of speed and accuracy. One of the unique features for the server is the interplay between database search and multiple structure alignment. The server provides service not only for performing fast database search, but also for making accurate multiple structure alignment with the structures found by the search. For the database search, it takes about 2-5 min for a structure of a medium size (∼300 residues). For the multiple structure alignment, it takes a few seconds for ∼10 structures of medium sizes. The server is freely available at: http://yanglab.nankai.edu.cn/mTM-align/.
Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids.
Koyanagi, Takaoki; Leriche, Geoffray; Onofrei, David; Holland, Gregory P; Mayer, Michael; Yang, Jerry
2016-01-26
Extremophile archaeal organisms overcome problems of membrane permeability by producing lipids with structural elements that putatively improve membrane integrity compared to lipids from other life forms. Herein, we describe a series of lipids that mimic some key structural features of archaeal lipids, such as: 1) single tethering of lipid tails to create fully transmembrane tetraether lipids and 2) the incorporation of small rings into these tethered segments. We found that membranes formed from pure tetraether lipids leaked small ions at a rate that was about two orders of magnitude slower than common bilayer-forming lipids. Incorporation of cyclopentane rings into the tetraether lipids did not affect membrane leakage, whereas a cyclohexane ring reduced leakage by an additional 40 %. These results show that mimicking certain structural features of natural archaeal lipids results in improved membrane integrity, which may help overcome limitations of many current lipid-based technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lipid14: The Amber Lipid Force Field
2015-01-01
The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855
Anisotropic piezoresistivity characteristics of aligned carbon nanotube-polymer nanocomposites
NASA Astrophysics Data System (ADS)
Sengezer, Engin C.; Seidel, Gary D.; Bodnar, Robert J.
2017-09-01
Dielectrophoresis under the application of AC electric fields is one of the primary fabrication techniques for obtaining aligned carbon nanotube (CNT)-polymer nanocomposites, and is used here to generate long range alignment of CNTs at the structural level. The degree of alignment of CNTs within this long range architecture is observed via polarized Raman spectroscopy so that its influence on the electrical conductivity and piezoresistive response in both the alignment and transverse to alignment directions can be assessed. Nanocomposite samples consisting of randomly oriented, well dispersed single-wall carbon nanotubes (SWCNTs) and of long range electric field aligned SWCNTs in a photopolymerizable monomer blend (urethane dimethacrylate and 1,6-hexanediol dimethacrylate) are quantitatively and qualitatively evaluated. Piezoresistive sensitivities in form of gauge factors were measured for randomly oriented, well dispersed specimens with 0.03, 0.1 and 0.5 wt% SWCNTs and compared with gauge factors in both the axial and transverse to SWCNT alignment directions for electric field aligned 0.03 wt% specimens under both quasi-static monotonic and cyclic tensile loading. Gauge factors in the axial direction were observed to be on the order of 2, while gauge factors in the transverse direction demonstrated a 5 fold increase with values on the order of 10 for aligned specimens. Based on Raman analysis, it is believed the higher sensitivity of the transverse direction is related to architectural evolution of misaligned bridging structures which connect alignment structures under load due to Poisson’s contraction.
The SwissLipids knowledgebase for lipid biology
Liechti, Robin; Hyka-Nouspikel, Nevila; Niknejad, Anne; Gleizes, Anne; Götz, Lou; Kuznetsov, Dmitry; David, Fabrice P.A.; van der Goot, F. Gisou; Riezman, Howard; Bougueleret, Lydie; Xenarios, Ioannis; Bridge, Alan
2015-01-01
Motivation: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. Results: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology—SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. Availability: SwissLipids is freely available at http://www.swisslipids.org/. Contact: alan.bridge@isb-sib.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25943471
Alignment as a Teacher Variable
ERIC Educational Resources Information Center
Porter, Andrew C.; Smithson, John; Blank, Rolf; Zeidner, Timothy
2007-01-01
With the exception of the procedures developed by Porter and colleagues (Porter, 2002), other methods of defining and measuring alignment are essentially limited to alignment between tests and standards. Porter's procedures have been generalized to investigating the alignment between content standards, tests, textbooks, and even classroom…
Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki
2015-08-01
Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids.
Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak
2015-12-17
The influence of different oxidized lipids on lipid bilayers was investigated with 16 individual 1 μs atomistic molecular dynamics (MD) simulations. Binary mixtures of lipid bilayers of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and its peroxide and aldehyde products were performed at different concentrations. In addition, an asymmetrical short chain lipid, 1-palmitoyl-2-decanoyl-sn-glycero-3-phosphatidylcholine (PDPC), was used to compare the effects of polar/apolar groups in the lipid tail on lipid bilayer. Although water defects occurred with both aldehyde and peroxide lipids, full pore formation was observed only for aldehyde lipids. At medium concentrations the pores were stable. At higher concentrations, however, the pores became unstable and micellation occurred. Data analysis shows that aldehyde lipids' propensity for pore formation is due to their shorter and highly mobile tail. The highly polar peroxide lipids are stabilized by strong hydrogen bonds with interfacial water.
The number of reduced alignments between two DNA sequences
2014-01-01
Background In this study we consider DNA sequences as mathematical strings. Total and reduced alignments between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit representations of some alignments have been already obtained. Results We present exact, explicit and computable formulas for the number of different possible alignments between two DNA sequences and a new formula for a class of reduced alignments. Conclusions A unified approach for a wide class of alignments between two DNA sequences has been provided. The formula is computable and, if complemented by software development, will provide a deeper insight into the theory of sequence alignment and give rise to new comparison methods. AMS Subject Classification Primary 92B05, 33C20, secondary 39A14, 65Q30 PMID:24684679
Beam alignment based on two-dimensional power spectral density of a near-field image.
Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua
2017-10-30
Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.
Functional Alignment of Metabolic Networks.
Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded
2016-05-01
Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.
Lipid-associated Oral Delivery: Mechanisms and Analysis of Oral Absorption Enhancement
Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca L.
2016-01-01
The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. PMID:27520734
Kawai, Y; Moribayashi, A
1982-01-01
The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica. Images PMID:6284719
Kawai, Y; Moribayashi, A
1982-08-01
The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.
Integrative network alignment reveals large regions of global network similarity in yeast and human.
Kuchaiev, Oleksii; Przulj, Natasa
2011-05-15
High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising efficient network alignment heuristics is currently a foremost challenge in computational biology. We introduce a novel network alignment algorithm, called Matching-based Integrative GRAph ALigner (MI-GRAAL), which can integrate any number and type of similarity measures between network nodes (e.g. proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity and structural similarity. Hence, we resolve the ties in similarity measures and find a combination of similarity measures yielding the largest contiguous (i.e. connected) and biologically sound alignments. MI-GRAAL exposes the largest functional, connected regions of protein-protein interaction (PPI) network similarity to date: surprisingly, it reveals that 77.7% of proteins in the baker's yeast high-confidence PPI network participate in such a subnetwork that is fully contained in the human high-confidence PPI network. This is the first demonstration that species as diverse as yeast and human contain so large, continuous regions of global network similarity. We apply MI-GRAAL's alignments to predict functions of un-annotated proteins in yeast, human and bacteria validating our predictions in the literature. Furthermore, using network alignment scores for PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship. This is the first time that phylogeny is exactly reconstructed from purely topological alignments of PPI networks. Supplementary files and MI-GRAAL executables: http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.
Neuwald, Andrew F
2009-08-01
The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. Supplementary data are available at Bioinformatics online.
Kobayashi, Toshiki; Orendurff, Michael S; Zhang, Ming; Boone, David A
2013-04-26
Alignment is important for comfortable and stable gait of lower-limb prosthesis users. The magnitude of socket reaction moments in the multiple planes acting simultaneously upon the residual limb may be related to perception of comfort in individuals using prostheses through socket interface pressures. The aim of this study was to investigate the effect of prosthetic alignment changes on sagittal and coronal socket reaction moment interactions (moment-moment curves) and to characterize the curves in 11 individuals with transtibial amputation using novel moment-moment interaction parameters measured by plotting sagittal socket reaction moments versus coronal ones under various alignment conditions. A custom instrumented prosthesis alignment component was used to measure socket reaction moments during walking. Prosthetic alignment was tuned to a nominally aligned condition by a prosthetist, and from this position, angular (3° and 6° of flexion, extension, abduction or adduction of the socket) and translational (5mm and 10mm of anterior, posterior, medial or lateral translation of the socket) alignment changes were performed in either the sagittal or the coronal plane in a randomized manner. A total of 17 alignment conditions were tested. Coronal angulation and translation alignment changes demonstrated similar consistent changes in the moment-moment curves. Sagittal alignment changes demonstrated more complex changes compared to the coronal alignment changes. Effect of sagittal angulations and translations on the moment-moment curves was different during 2nd rocker (mid-stance) with extension malalignment appearing to cause medio-lateral instability. Presentation of coronal and sagittal socket reaction moment interactions may provide useful visual information for prosthetists to understand the biomechanical effects of malalignment of transtibial prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.
Oliveira, Francisco P M; Tavares, João Manuel R S
2013-03-01
This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p < 0.001) than the one obtained using the best solution proposed in our previous work. When applied to align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p < 0.001). The consequences of the temporal alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.
Solving the problem of Trans-Genomic Query with alignment tables.
Parker, Douglass Stott; Hsiao, Ruey-Lung; Xing, Yi; Resch, Alissa M; Lee, Christopher J
2008-01-01
The trans-genomic query (TGQ) problem--enabling the free query of biological information, even across genomes--is a central challenge facing bioinformatics. Solutions to this problem can alter the nature of the field, moving it beyond the jungle of data integration and expanding the number and scope of questions that can be answered. An alignment table is a binary relationship on locations (sequence segments). An important special case of alignment tables are hit tables ? tables of pairs of highly similar segments produced by alignment tools like BLAST. However, alignment tables also include general binary relationships, and can represent any useful connection between sequence locations. They can be curated, and provide a high-quality queryable backbone of connections between biological information. Alignment tables thus can be a natural foundation for TGQ, as they permit a central part of the TGQ problem to be reduced to purely technical problems involving tables of locations.Key challenges in implementing alignment tables include efficient representation and indexing of sequence locations. We define a location datatype that can be incorporated naturally into common off-the-shelf database systems. We also describe an implementation of alignment tables in BLASTGRES, an extension of the open-source POSTGRESQL database system that provides indexing and operators on locations required for querying alignment tables. This paper also reviews several successful large-scale applications of alignment tables for Trans-Genomic Query. Tables with millions of alignments have been used in queries about alternative splicing, an area of genomic analysis concerning the way in which a single gene can yield multiple transcripts. Comparative genomics is a large potential application area for TGQ and alignment tables.
Burkhart, Timothy A; Herman, Benjamin V; Perry, Kevin; Vandekerckhove, Pieter-Jan; Howard, James; Lanting, Brent
2017-11-01
Total knee arthroplasty is an effective treatment for osteoarthritis. Restoration of physiologic varus alignment may restore the native soft tissue tension and improve outcomes. Six paired fresh-frozen knee specimens were used to perform total knee arthroplastys. The left and right sides of were randomly assigned to have either a physiologic alignment cut or a standard of care neutral alignment bony cut prior to the implantation. Loads of 100 and 200N were applied at 0, 30, 60, and 90° of flexion and the magnitude of the medial and lateral compartment distraction was measured. The loads were applied with the knee specimen intact and post arthroplasty. The physiologic alignment had no difference between medial and lateral gaps at either load. With 100N of load the physiologic alignment had a greater gap at 90° than at full extension while the standard alignment had significantly more gap at 60° of flexion than full extension. The physiologic alignment had a significantly greater gap with the implant compared to the intact condition at both loads. The standard alignment had no significant difference in overall gap between the implant and intact condition with any load. Although performing a physiologic aligned TKA resulted in medial-lateral soft tissue balance, the flexion gap was found to have greater magnitude than the intact knee. Notably, a neutral aligned TKA was found to be balanced, but also was found to recreate the intact knee flexion gaps. These results suggest that coronal plane stability can be achieved with physiologic alignment objectives, but the clinician needs to be aware of the potential to have greater laxity than the intact and neutral alignment surgical objectives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automatic alignment of double optical paths in excimer laser amplifier
NASA Astrophysics Data System (ADS)
Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun
2013-05-01
A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.
Maderbacher, Günther; Matussek, Jan; Keshmiri, Armin; Greimel, Felix; Baier, Clemens; Grifka, Joachim; Maderbacher, Hermann
2018-02-17
Intramedullary rods are widely used to align the distal femoral cut in total knee arthroplasty. We hypothesised that both coronal (varus/valgus) and sagittal (extension/flexion) cutting plane are affected by rotational changes of intramedullary femoral alignment guides. Distal femoral cuts using intramedullary alignment rods were simulated by means of a computer-aided engineering software in 4°, 6°, 8°, 10°, and 12° of valgus in relation to the femoral anatomical axis and 4° extension, neutral, as well as 4°, 8°, and 12° of flexion in relation to the femoral mechanical axis. This reflects the different angles between anatomical and mechanical axis in coronal and sagittal planes. To assess the influence of rotation of the alignment guide on the effective distal femoral cutting plane, all combinations were simulated with the rod gradually aligned from 40° of external to 40° of internal rotation. Rotational changes of the distal femoral alignment guides affect both the coronal and sagittal cutting planes. When alignment rods are intruded neutrally with regards to sagittal alignment, external rotation causes flexion, while internal rotation causes extension of the sagittal cutting plane. Simultaneously the coronal effect (valgus) decreases resulting in an increased varus of the cutting plane. However, when alignment rods are intruded in extension or flexion partly contradictory effects are observed. Generally the effect increases with the degree of valgus preset, rotation and flexion. As incorrect rotation of intramedullary alignment guides for distal femoral cuts causes significant cutting errors, exact rotational alignment is crucial. Coronal cutting errors in the distal femoral plane might result in overall leg malalignment, asymmetric extension gaps and subsequent sagittal cutting errors.
Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.
Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut
2018-05-03
Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.
On the alignment of cellulose microfibrils by cortical microtubules: a review and a model.
Baskin, T I
2001-01-01
The hypothesis that microtubules align microfibrils, termed the alignment hypothesis, states that there is a causal link between the orientation of cortical microtubules and the orientation of nascent microfibrils. I have assessed the generality of this hypothesis by reviewing what is known about the relation between microtubules and microfibrils in a wide group of examples: in algae of the family Characeae, Closterium acerosum, Oocystis solitaria, and certain genera of green coenocytes and in land plant tip-growing cells, xylem, diffusely growing cells, and protoplasts. The salient features about microfibril alignment to emerge are as follows. Cellulose microfibrils can be aligned by cortical microtubules, thus supporting the alignment hypothesis. Alignment of microfibrils can occur independently of microtubules, showing that an alternative to the alignment hypothesis must exist. Microfibril organization is often random, suggesting that self-assembly is insufficient. Microfibril organization differs on different faces of the same cell, suggesting that microfibrils are aligned locally, not with respect to the entire cell. Nascent microfibrils appear to associate tightly with the plasma membrane. To account for these observations, I present a model that posits alignment to be mediated through binding the nascent microfibril. The model, termed templated incorporation, postulates that the nascent microfibril is incorporated into the cell wall by binding to a scaffold that is oriented; further, the scaffold is built and oriented around either already incorporated microfibrils or plasma membrane proteins, or both. The role of cortical microtubules is to bind and orient components of the scaffold at the plasma membrane. In this way, spatial information to align the microfibrils may come from either the cell wall or the cell interior, and microfibril alignment with and without microtubules are subsets of a single mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Thiem; Lazarian, A.
The radiative torque (RAT) alignment of interstellar grains with ordinary paramagnetic susceptibilities has been supported by earlier studies. The alignment of such grains depends on the so-called RAT parameter q {sup max}, which is determined by the grain shape. In this paper, we elaborate on our model of RAT alignment for grains with enhanced magnetic susceptibility due to iron inclusions, such that RAT alignment is magnetically enhanced, which we term the MRAT mechanism. Such grains can be aligned with high angular momentum at the so-called high- J attractor points, achieving a high degree of alignment. Using our analytical model ofmore » RATs, we derive the critical value of the magnetic relaxation parameter δ {sub m} to produce high- J attractor points as functions of q {sup max} and the anisotropic radiation angle relative to the magnetic field ψ . We find that if about 10% of the total iron abundance present in silicate grains is forming iron clusters, this is sufficient to produce high- J attractor points for all reasonable values of q {sup max}. To calculate the degree of grain alignment, we carry out numerical simulations of MRAT alignment by including stochastic excitations from gas collisions and magnetic fluctuations. We show that large grains can achieve perfect alignment when the high- J attractor point is present, regardless of the values of q {sup max}. Our obtained results pave the way for the physical modeling of polarized thermal dust emission as well as magnetic dipole emission. We also find that millimeter-sized grains in accretion disks may be aligned with the magnetic field if they are incorporated with iron nanoparticles.« less
PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction
Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.
2008-01-01
A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945
Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects.
Briones, Rodolfo; Aponte-Santamaría, Camilo; de Groot, Bert L
2017-01-01
Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers separated by a layer of annular lipids.
Sugár, István P; Zhai, Xiuhong; Boldyrev, Ivan A; Molotkovsky, Julian G; Brockman, Howard L; Brown, Rhoderick E
2010-01-01
Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.
Narayanan, Sruthi; Prasad, P.V. Vara; Welti, Ruth
2016-01-01
Identifying lipids that experience coordinated metabolism during heat stress would provide information regarding lipid dynamics under stress conditions and assist in developing heat-tolerant wheat varieties. We hypothesized that co-occurring lipids, which are up-or-down-regulated together through time during heat stress, represent groups that can be explained by coordinated metabolism. Wheat plants (Triticum aestivum L.) were subjected to 12 days of high day and/or night temperature stress, followed by a 4-day recovery period. Leaves were sampled at four time points, and 165 lipids were measured by electrospray ionization-tandem mass spectrometry. Correlation analysis of lipid levels in 160 leaf samples from each of two wheat genotypes revealed 13 groups of lipids. Lipids within each group co-occurred through the high day and night temperature stress treatments. The lipid groups can be broadly classified as groups containing: extraplastidic phospholipids, plastidic glycerolipids, oxidized glycerolipids, triacylglycerols, acylated sterol glycosides, and sterol glycosides. Current knowledge of lipid metabolism suggests that the lipids in each group co-occur because they are regulated by the same enzyme(s). The results suggest that increases in activities of desaturating, oxidizing, glycosylating, and acylating enzymes lead to simultaneous changes in levels of multiple lipid species during high day and night temperature stress in wheat. PMID:26436445
Expanding roles for lipid droplets
Welte, Michael A.
2015-01-01
Summary Lipid droplets are the intracellular sites for neutral lipid storage. They are critical for lipid metabolism and energy homeostasis, and their dysfunction has been linked to many diseases. Accumulating evidence suggests that the roles lipid droplets play in biology are significantly broader than previously anticipated. Lipid droplets are the source of molecules important in the nucleus: they can sequester transcription factors and chromatin components and generate the lipid ligands for certain nuclear receptors. Lipid droplets have also emerged as important nodes for fatty acid trafficking, both inside the cell and between cells. In immunity, new roles for droplets, not directly linked to lipid metabolism, have been uncovered, as assembly platforms for specific viruses and as reservoirs for proteins that fight intracellular pathogens. Until recently, knowledge about droplets in the nervous system has been minimal, but now there are multiple links between lipid droplets and neurodegeneration: Many candidate genes for Hereditary Spastic Paraplegia also have central roles in lipid-droplet formation and maintenance, and mitochondrial dysfunction in neurons can lead to transient accumulating of lipid droplets in neighboring glial cells, an event that may, in turn, contribute to neuronal damage. As the cell biology and biochemistry of lipid droplets are increasingly well understood, the next few years should yield many new mechanistic insights into these novel functions of lipid droplets. PMID:26035793
Sadygov, Rovshan G; Maroto, Fernando Martin; Hühmer, Andreas F R
2006-12-15
We present an algorithmic approach to align three-dimensional chromatographic surfaces of LC-MS data of complex mixture samples. The approach consists of two steps. In the first step, we prealign chromatographic profiles: two-dimensional projections of chromatographic surfaces. This is accomplished by correlation analysis using fast Fourier transforms. In this step, a temporal offset that maximizes the overlap and dot product between two chromatographic profiles is determined. In the second step, the algorithm generates correlation matrix elements between full mass scans of the reference and sample chromatographic surfaces. The temporal offset from the first step indicates a range of the mass scans that are possibly correlated, then the correlation matrix is calculated only for these mass scans. The correlation matrix carries information on highly correlated scans, but it does not itself determine the scan or time alignment. Alignment is determined as a path in the correlation matrix that maximizes the sum of the correlation matrix elements. The computational complexity of the optimal path generation problem is reduced by the use of dynamic programming. The program produces time-aligned surfaces. The use of the temporal offset from the first step in the second step reduces the computation time for generating the correlation matrix and speeds up the process. The algorithm has been implemented in a program, ChromAlign, developed in C++ language for the .NET2 environment in WINDOWS XP. In this work, we demonstrate the applications of ChromAlign to alignment of LC-MS surfaces of several datasets: a mixture of known proteins, samples from digests of surface proteins of T-cells, and samples prepared from digests of cerebrospinal fluid. ChromAlign accurately aligns the LC-MS surfaces we studied. In these examples, we discuss various aspects of the alignment by ChromAlign, such as constant time axis shifts and warping of chromatographic surfaces.
Alternative alignments development and evaluation for the US 220 project in Maryland.
DOT National Transportation Integrated Search
2011-06-01
This project aims to find the preferred alternative alignments for the Maryland section of existing US 220, using the highway : alignment optimization (HAO) model. The model was used to explore alternative alignments within a 4,000 foot-wide buffer o...
Alignment of gold nanorods by angular photothermal depletion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M., E-mail: jchon@swin.edu.au
2014-02-24
In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range ofmore » aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.« less
Galaxy Alignments: Theory, Modelling & Simulations
NASA Astrophysics Data System (ADS)
Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais
2015-11-01
The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.
Comparison of two on-orbit attitude sensor alignment methods
NASA Technical Reports Server (NTRS)
Krack, Kenneth; Lambertson, Michael; Markley, F. Landis
1990-01-01
Compared here are two methods of on-orbit alignment of vector attitude sensors. The first method uses the angular difference between simultaneous measurements from two or more sensors. These angles are compared to the angular differences between the respective reference positions of the sensed objects. The alignments of the sensors are adjusted to minimize the difference between the two sets of angles. In the second method, the sensor alignment is part of a state vector that includes the attitude. The alignments are adjusted along with the attitude to minimize all observation residuals. It is shown that the latter method can result in much less alignment uncertainty when gyroscopes are used for attitude propagation during the alignment estimation. The additional information for this increased accuracy comes from knowledge of relative attitude obtained from the spacecraft gyroscopes. The theoretical calculations of this difference in accuracy are presented. Also presented are numerical estimates of the alignment uncertainties of the fixed-head star trackers on the Extreme Ultraviolet Explorer spacecraft using both methods.
Optimizing Mechanical Alignment With Modular Stems in Revision TKA.
Fleischman, Andrew N; Azboy, Ibrahim; Restrepo, Camilo; Maltenfort, Mitchell G; Parvizi, Javad
2017-09-01
Although mechanical alignment is critical for optimal function and long-term implant durability, the role of modular stems in achieving ideal alignment is unclear. We identified 319 revision total knee arthroplasty from 2003-2013, for which stem length, stem diameter, and stem fixation method were recorded prospectively. Three-dimensional canal-filling ratio, the product of canal-filling ratio at the stem tip in both the anteroposterior and lateral planes, and alignment were measured radiographically. Ideal alignment of the femur was considered to be 95° in the anteroposterior (AP) plane and from 1° of extension to 4° of flexion in the lateral plane, and ideal tibial alignment was considered to be 90° in the AP plane. Even after accounting for difference in stem size and canal-fill, ideal AP alignment was more reliably achieved with press-fit stems. Furthermore, increased engagement of the diaphysis and its anatomical axis with canal-filling stems facilitates accurate alignment. Copyright © 2017 Elsevier Inc. All rights reserved.
Dissipation dynamics of field-free molecular alignment for symmetric-top molecules: Ethane (C2H6)
NASA Astrophysics Data System (ADS)
Zhang, H.; Billard, F.; Yu, X.; Faucher, O.; Lavorel, B.
2018-03-01
The field-free molecular alignment of symmetric-top molecules, ethane, induced by intense non-resonant linearly polarized femtosecond laser pulses is investigated experimentally in the presence of collisional relaxation. The dissipation dynamics of field-free molecular alignment are measured by the balanced detection of ultrafast molecular birefringence of ethane gas samples at high pressures. By separating the molecular alignment into the permanent alignment and the transient alignment, the decay time-constants of both components are quantified at the same pressure. It is observed that the permanent alignment always decays slower compared to the transient alignment within the measured pressure range. This demonstrates that the propensity of molecules to conserve the orientation of angular momentum during collisions, previously observed for linear species, is also applicable to symmetric-top molecules. The results of this work provide valuable information for further theoretical understanding of collisional relaxation within nonlinear polyatomic molecules, which are expected to present interesting and nontrivial features due to an extra rotational degree of freedom.
Concurrent and Accurate Short Read Mapping on Multicore Processors.
Martínez, Héctor; Tárraga, Joaquín; Medina, Ignacio; Barrachina, Sergio; Castillo, Maribel; Dopazo, Joaquín; Quintana-Ortí, Enrique S
2015-01-01
We introduce a parallel aligner with a work-flow organization for fast and accurate mapping of RNA sequences on servers equipped with multicore processors. Our software, HPG Aligner SA (HPG Aligner SA is an open-source application. The software is available at http://www.opencb.org, exploits a suffix array to rapidly map a large fraction of the RNA fragments (reads), as well as leverages the accuracy of the Smith-Waterman algorithm to deal with conflictive reads. The aligner is enhanced with a careful strategy to detect splice junctions based on an adaptive division of RNA reads into small segments (or seeds), which are then mapped onto a number of candidate alignment locations, providing crucial information for the successful alignment of the complete reads. The experimental results on a platform with Intel multicore technology report the parallel performance of HPG Aligner SA, on RNA reads of 100-400 nucleotides, which excels in execution time/sensitivity to state-of-the-art aligners such as TopHat 2+Bowtie 2, MapSplice, and STAR.
2013-01-01
Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524
Implant alignment in total elbow arthroplasty: conventional vs. navigated techniques
NASA Astrophysics Data System (ADS)
McDonald, Colin P.; Johnson, James A.; King, Graham J. W.; Peters, Terry M.
2009-02-01
Incorrect selection of the native flexion-extension axis during implant alignment in elbow replacement surgery is likely a significant contributor to failure of the prosthesis. Computer and image-assisted surgery is emerging as a useful surgical tool in terms of improving the accuracy of orthopaedic procedures. This study evaluated the accuracy of implant alignment using an image-based navigation technique compared against a conventional non-navigated approach. Implant alignment error was 0.8 +/- 0.3 mm in translation and 1.1 +/- 0.4° in rotation for the navigated alignment, compared with 3.1 +/- 1.3 mm and 5.0 +/- 3.8° for the non-navigated alignment. Five (5) of the 11 non-navigated alignments were malaligned greater than 5° while none of the navigated alignments were placed with an error of greater than 2.0°. It is likely that improved implant positioning will lead to reduced implant loading and wear, resulting in fewer implantrelated complications and revision surgeries.
ChromA: signal-based retention time alignment for chromatography–mass spectrometry data
Hoffmann, Nils; Stoye, Jens
2009-01-01
Summary: We describe ChromA, a web-based alignment tool for chromatography–mass spectrometry data from the metabolomics and proteomics domains. Users can supply their data in open and standardized file formats for retention time alignment using dynamic time warping with different configurable local distance and similarity functions. Additionally, user-defined anchors can be used to constrain and speedup the alignment. A neighborhood around each anchor can be added to increase the flexibility of the constrained alignment. ChromA offers different visualizations of the alignment for easier qualitative interpretation and comparison of the data. For the multiple alignment of more than two data files, the center-star approximation is applied to select a reference among input files to align to. Availability: ChromA is available at http://bibiserv.techfak.uni-bielefeld.de/chroma. Executables and source code under the L-GPL v3 license are provided for download at the same location. Contact: stoye@techfak.uni-bielefeld.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19505941
Roca, Alberto I
2014-01-01
The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.
Improving scanner wafer alignment performance by target optimization
NASA Astrophysics Data System (ADS)
Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich
2016-03-01
In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.
Fischer, David J.; Hulvey, Matthew K.; Regel, Anne R.; Lunte, Susan M.
2012-01-01
The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical (EC) detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and limits of detection (LOD) were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared. Using dopamine (DA), norepinephrine (NE), and catechol (CAT) as test analytes, it was found that pyrolyzed photoresist electrodes with end-channel alignment yielded the lowest limit of detection (35 nM for DA). In addition to being easier to implement, end-channel alignment also offered better analytical performance than off-channel alignment for the detection of all three analytes. In-channel electrode alignment resulted in a 3.6-fold reduction in peak skew and reduced peak tailing by a factor of 2.1 for catechol in comparison to end-channel alignment. PMID:19802847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Karisa M.; Wright, Bob W.; Synovec, Robert E.
2007-02-02
First, simulated chromatographic separations with declining retention time precision were used to study the performance of the piecewise retention time alignment algorithm and to demonstrate an unsupervised parameter optimization method. The average correlation coefficient between the first chromatogram and every other chromatogram in the data set was used to optimize the alignment parameters. This correlation method does not require a training set, so it is unsupervised and automated. This frees the user from needing to provide class information and makes the alignment algorithm more generally applicable to classifying completely unknown data sets. For a data set of simulated chromatograms wheremore » the average chromatographic peak was shifted past two neighboring peaks between runs, the average correlation coefficient of the raw data was 0.46 ± 0.25. After automated, optimized piecewise alignment, the average correlation coefficient was 0.93 ± 0.02. Additionally, a relative shift metric and principal component analysis (PCA) were used to independently quantify and categorize the alignment performance, respectively. The relative shift metric was defined as four times the standard deviation of a given peak’s retention time in all of the chromatograms, divided by the peak-width-at-base. The raw simulated data sets that were studied contained peaks with average relative shifts ranging between 0.3 and 3.0. Second, a “real” data set of gasoline separations was gathered using three different GC methods to induce severe retention time shifting. In these gasoline separations, retention time precision improved ~8 fold following alignment. Finally, piecewise alignment and the unsupervised correlation optimization method were applied to severely shifted GC separations of reformate distillation fractions. The effect of piecewise alignment on peak heights and peak areas is also reported. Piecewise alignment either did not change the peak height, or caused it to slightly decrease. The average relative difference in peak height after piecewise alignment was –0.20%. Piecewise alignment caused the peak areas to either stay the same, slightly increase, or slightly decrease. The average absolute relative difference in area after piecewise alignment was 0.15%.« less
Galpert, Deborah; Fernández, Alberto; Herrera, Francisco; Antunes, Agostinho; Molina-Ruiz, Reinaldo; Agüero-Chapin, Guillermin
2018-05-03
The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research.
NASA Astrophysics Data System (ADS)
Zeng, Duan; Mai, Kangsen; Ai, Qinghui; Milley, Joyce E.; Lall, Santosh P.
2010-12-01
This study was conducted to compare lipid and fatty acid composition of cod, haddock and halibut. Three groups of cod (276 g ± 61 g), haddock (538 g ± 83 g) and halibut (3704 g ± 221 g) were maintained with commercial feeds mainly based on fish meal and marine fish oil for 12 weeks prior to sampling. The fatty acid compositions of muscle and liver were determined by GC/FID after derivatization of extracted lipids into fatty acid methyl esters (FAME). Lipids were also fractionated into neutral and polar lipids using Waters silica Sep-Pak?. The phospholipid fraction was further separated by high-performance thin-layer chromatography (HPTLC) and the FAME profile was obtained. Results of the present study showed that cod and haddock were lean fish and their total muscle lipid contents were 0.8% and 0.7%, respectively, with phospholipid constituting 83.6% and 87.5% of the total muscle lipid, respectively. Halibut was a medium-fat fish and its muscle lipid content was 8%, with 84% of the total muscle lipid being neutral lipid. Total liver lipid contents of cod, haddock and halibut were 36.9%, 67.2% and 30.7%, respectively, of which the neutral lipids accounted for the major fraction (88.1%-97.1%). Polyunsaturated fatty acids were the most abundant in cod and haddock muscle neutral lipid. Monounsaturated fatty acid level was the highest in halibut muscle neutral lipid. Fatty acid compositions of phospholipid were relatively constant. In summary, the liver of cod and haddock as lean fish was the main lipid reserve organ, and structural phospholipid is the major lipid form in flesh. However, as a medium-fat fish, halibut stored lipid in both their liver and muscle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang,W.; Yang, L.; Huang, H.
2007-01-01
Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy formore » lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.« less
Mainali, Laxman; Raguz, Marija; O’Brien, William J.; Subczynski, Witold K.
2012-01-01
The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eyes lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes—namely, the domain formed by boundary lipids and the domain formed by trapped lipids—were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region. PMID:22326289
Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig
2016-01-01
Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1. Copyright © 2016 National Lipid Association. All rights reserved.
Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig
2016-01-01
Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1. Copyright © 2016 National Lipid Association. All rights reserved.
2011-01-01
Background Cruciferous vegetable intake is inversely associated with the risk of several cancers. Isothiocyanates (ITC) are hypothesized to be the major bioactive constituents contributing to these cancer-preventive effects. The polymorphic glutathione-S-transferase (GST) gene family encodes several enzymes which catalyze ITC degradation in vivo. Methods We utilized high throughput proteomics methods to examine how human serum peptides (the "peptidome") change in response to cruciferous vegetable feeding in individuals of different GSTM1 genotypes. In two randomized, crossover, controlled feeding studies (EAT and 2EAT) participants consumed a fruit- and vegetable-free basal diet and the basal diet supplemented with cruciferous vegetables. Serum samples collected at the end of the feeding period were fractionated and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry spectra were obtained. Peak identification/alignment computer algorithms and mixed effects models were used to analyze the data. Results After analysis of spectra from EAT participants, 24 distinct peaks showed statistically significant differences associated with cruciferous vegetable intake. Twenty of these peaks were driven by their GSTM1 genotype (i.e., GSTM1+ or GSTM1- null). When data from EAT and 2EAT participants were compared by joint processing of spectra to align a common set, 6 peaks showed consistent changes in both studies in a genotype-dependent manner. The peaks at 6700 m/z and 9565 m/z were identified as an isoform of transthyretin (TTR) and a fragment of zinc α2-glycoprotein (ZAG), respectively. Conclusions Cruciferous vegetable intake in GSTM1+ individuals led to changes in circulating levels of several peptides/proteins, including TTR and a fragment of ZAG. TTR is a known marker of nutritional status and ZAG is an adipokine that plays a role in lipid mobilization. The results of this study present evidence that the GSTM1-genotype modulates the physiological response to cruciferous vegetable intake. PMID:21272319
Holmes, Roger S
2010-03-01
BLAT (BLAST-Like Alignment Tool) analyses of the opossum (Monodelphis domestica) and zebrafish (Danio rerio) genomes were undertaken using amino acid sequences of the acylglycerol acyltransferase (AGAT) superfamily. Evidence is reported for 8 opossum monoacylglycerol acyltransferase-like (MGAT) (E.C. 2.3.1.22) and diacylglycerol acyltransferase-like (DGAT) (E.C. 2.3.1.20) genes and proteins, including DGAT1, DGAT2, DGAT2L6 (DGAT2-like protein 6), AWAT1 (acyl CoA wax alcohol acyltransferase 1), AWAT2, MGAT1, MGAT2 and MGAT3. Three of these genes (AWAT1, AWAT2 and DGAT2L6) are closely localized on the opossum X chromosome. Evidence is also reported for six zebrafish MGAT- and DGAT-like genes, including two DGAT1-like genes, as well as DGAT2-, MGAT1-, MGAT2- and MGAT3-like genes and proteins. Predicted primary, secondary and transmembrane structures for the opossum and zebrafish MGAT-, AWAT- and DGAT-like subunits and the intron-exon boundaries for genes encoding these enzymes showed a high degree of similarity with other members of the AGAT superfamily, which play major roles in triacylglyceride (DGAT), diacylglyceride (MGAT) and wax ester (AWAT) biosynthesis. Alignments of predicted opossum, zebrafish and other vertebrate DGAT1, DGAT2, other DGAT2-like and MGAT-like amino acid sequences with known human and mouse enzymes demonstrated conservation of residues which are likely to play key roles in catalysis, lipid binding or in maintaining structure. Phylogeny studies of the human, mouse, opossum, zebrafish and pufferfish MGAT- and DGAT-like enzymes indicated that the common ancestors for these genes predated the appearance of bony fish during vertebrate evolution whereas the AWAT- and DGAT2L6-like genes may have appeared more recently prior to the appearance of marsupial and eutherian mammals. Copyright 2009 Elsevier Inc. All rights reserved.
Kelly, Christopher V; Leroueil, Pascale R; Orr, Bradford G; Banaszak Holl, Mark M; Andricioaei, Ioan
2008-08-07
The molecular structures and enthalpy release of poly(amidoamine) (PAMAM) dendrimers binding to 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers were explored through atomistic molecular dynamics. Three PAMAM dendrimer terminations were examined: protonated primary amine, neutral acetamide, and deprotonated carboxylic acid. Fluid and gel lipid phases were examined to extract the effects of lipid tail mobility on the binding of generation-3 dendrimers, which are directly relevant to the nanoparticle interactions involving lipid rafts, endocytosis, lipid removal, and/or membrane pores. Upon binding to gel phase lipids, dendrimers remained spherical, had a constant radius of gyration, and approximately one-quarter of the terminal groups were in close proximity to the lipids. In contrast, upon binding to fluid phase bilayers, dendrimers flattened out with a large increase in their asphericity and radii of gyration. Although over twice as many dendrimer-lipid contacts were formed on fluid versus gel phase lipids, the dendrimer-lipid interaction energy was only 20% stronger. The greatest enthalpy release upon binding was between the charged dendrimers and the lipid bilayer. However, the stronger binding to fluid versus gel phase lipids was driven by the hydrophobic interactions between the inner dendrimer and lipid tails.
Lipid Extraction Techniques for Stable Isotope Analysis and Ecological Assays.
Elliott, Kyle H; Roth, James D; Crook, Kevin
2017-01-01
Lipid extraction is an important component of many ecological and ecotoxicological measurements. For instance, percent lipid is often used as a measure of body condition, under the assumption that those individuals with higher lipid reserves are healthier. Likewise, lipids are depleted in 13 C compared with protein, and it is consequently a routine to remove lipids prior to measuring carbon isotopes in ecological studies so that variation in lipid content does not obscure variation in diet. We provide detailed methods for two different protocols for lipid extraction: Soxhlet apparatus and manual distillation. We also provide methods for polar and nonpolar solvents. Neutral (nonpolar) solvents remove some lipids but few non-lipid compounds, whereas polar solvents remove most lipids but also many non-lipid compounds. We discuss each of the methods and provide guidelines for best practices. We recommend that, for stable isotope analysis, researchers test for a relationship between the change in carbon stable isotope ratio and the amount of lipid extracted to see if the degree of extraction has an impact on isotope ratios. Stable isotope analysis is widely used by ecologists, and we provide a detailed methodology that minimizes known biases.
FASMA: a service to format and analyze sequences in multiple alignments.
Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M
2007-12-01
Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.
PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.
Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong; Warnow, Tandy
2015-05-01
We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate--slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory.
Alignment and focus of mirrored facets of a heliosat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B
2013-11-12
Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoreticalmore » image.« less
Business-IT Alignment in Trade Facilitation: A Case Study
NASA Astrophysics Data System (ADS)
Adaba, Godfried; Rusu, Lazar; El-Mekawy, Mohamed
In the information age, no organization can thrive without harnessing the power of IT. The effective deployment of IT to achieve business goals and gain competitive advantage requires the alignment of business and IT strategies of organizations. Using the Strategic Alignment Maturity model, this paper evaluates strategic alignment maturity of Customs Excise Preventive service, a frontline public organization charged with trade facilitation in Ghana. Strategic alignment maturity is at level 3; which implies the existence of an established process to leverage IT for efficiency and effectiveness. Efforts are required to strengthen alignment and fully harness the potential of IT to facilitate trade in Ghana.
Yan, Jing; Liao, Kai; Wang, Tianjiao; Mai, Kangsen; Xu, Wei; Ai, Qinghui
2015-01-01
Ectopic lipid accumulation has been observed in fish fed a high-lipid diet. However, no information is available on the mechanism by which dietary lipid levels comprehensively regulate lipid transport, uptake, synthesis and catabolism in fish. Therefore, the present study aimed to gain further insight into how dietary lipids affect lipid deposition in the liver of large yellow croaker(Larimichthys crocea). Fish (150.00±4.95 g) were fed a diet with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 10 weeks. Growth performance, plasma biochemical indexes, lipid contents and gene expression related to lipid deposition, including lipoprotein assembly and clearance, fatty acid uptake and triacylglycerol synthesis and catabolism, were assessed. Growth performance was not significantly affected. However, the hepato-somatic and viscera-somatic indexes as well as plasma triacylglycerol, non-esterified fatty acids and LDL-cholesterol levels were significantly increased in fish fed the high-lipid diet. In the livers of fish fed the high-lipid diet, the expression of genes related to lipoprotein clearance (LDLR) and fatty acid uptake (FABP11) was significantly up-regulated, whereas the expression of genes involved in lipoprotein assembly (apoB100), triacylglycerol synthesis and catabolism (DGAT2, CPT I) was significantly down-regulated compared with fish fed the control diet, and hepatic lipid deposition increased. In fish fed the low-lipid diet, the expression of genes associated with lipoprotein assembly and clearance (apoB100, LDLR, LRP-1), fatty acid uptake (CD36, FATP1, FABP3) and triacylglycerol synthesis (FAS) was significantly increased, whereas the expression of triacylglycerol catabolism related genes (ATGL, CPT I) was reduced compared with fish fed the control diet. However, hepatic lipid content in fish fed the low-lipid diet decreased mainly due to low dietary lipid intake. In summary, findings of this study provide molecular insight into the role of lipid deposition in the liver in response to different dietary lipid contents.
Yan, Jing; Liao, Kai; Wang, Tianjiao; Mai, Kangsen; Xu, Wei; Ai, Qinghui
2015-01-01
Ectopic lipid accumulation has been observed in fish fed a high-lipid diet. However, no information is available on the mechanism by which dietary lipid levels comprehensively regulate lipid transport, uptake, synthesis and catabolism in fish. Therefore, the present study aimed to gain further insight into how dietary lipids affect lipid deposition in the liver of large yellow croaker(Larimichthys crocea). Fish (150.00±4.95 g) were fed a diet with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 10 weeks. Growth performance, plasma biochemical indexes, lipid contents and gene expression related to lipid deposition, including lipoprotein assembly and clearance, fatty acid uptake and triacylglycerol synthesis and catabolism, were assessed. Growth performance was not significantly affected. However, the hepato-somatic and viscera-somatic indexes as well as plasma triacylglycerol, non-esterified fatty acids and LDL-cholesterol levels were significantly increased in fish fed the high-lipid diet. In the livers of fish fed the high-lipid diet, the expression of genes related to lipoprotein clearance (LDLR) and fatty acid uptake (FABP11) was significantly up-regulated, whereas the expression of genes involved in lipoprotein assembly (apoB100), triacylglycerol synthesis and catabolism (DGAT2, CPT I) was significantly down-regulated compared with fish fed the control diet, and hepatic lipid deposition increased. In fish fed the low-lipid diet, the expression of genes associated with lipoprotein assembly and clearance (apoB100, LDLR, LRP-1), fatty acid uptake (CD36, FATP1, FABP3) and triacylglycerol synthesis (FAS) was significantly increased, whereas the expression of triacylglycerol catabolism related genes (ATGL, CPT I) was reduced compared with fish fed the control diet. However, hepatic lipid content in fish fed the low-lipid diet decreased mainly due to low dietary lipid intake. In summary, findings of this study provide molecular insight into the role of lipid deposition in the liver in response to different dietary lipid contents. PMID:26114429
Initial Alignment for SINS Based on Pseudo-Earth Frame in Polar Regions.
Gao, Yanbin; Liu, Meng; Li, Guangchun; Guang, Xingxing
2017-06-16
An accurate initial alignment must be required for inertial navigation system (INS). The performance of initial alignment directly affects the following navigation accuracy. However, the rapid convergence of meridians and the small horizontalcomponent of rotation of Earth make the traditional alignment methods ineffective in polar regions. In this paper, from the perspective of global inertial navigation, a novel alignment algorithm based on pseudo-Earth frame and backward process is proposed to implement the initial alignment in polar regions. Considering that an accurate coarse alignment of azimuth is difficult to obtain in polar regions, the dynamic error modeling with large azimuth misalignment angle is designed. At the end of alignment phase, the strapdown attitude matrix relative to local geographic frame is obtained without influence of position errors and cumbersome computation. As a result, it would be more convenient to access the following polar navigation system. Then, it is also expected to unify the polar alignment algorithm as much as possible, thereby further unifying the form of external reference information. Finally, semi-physical static simulation and in-motion tests with large azimuth misalignment angle assisted by unscented Kalman filter (UKF) validate the effectiveness of the proposed method.
A method of alignment masking for refining the phylogenetic signal of multiple sequence alignments.
Rajan, Vaibhav
2013-03-01
Inaccurate inference of positional homologies in multiple sequence alignments and systematic errors introduced by alignment heuristics obfuscate phylogenetic inference. Alignment masking, the elimination of phylogenetically uninformative or misleading sites from an alignment before phylogenetic analysis, is a common practice in phylogenetic analysis. Although masking is often done manually, automated methods are necessary to handle the much larger data sets being prepared today. In this study, we introduce the concept of subsplits and demonstrate their use in extracting phylogenetic signal from alignments. We design a clustering approach for alignment masking where each cluster contains similar columns-similarity being defined on the basis of compatible subsplits; our approach then identifies noisy clusters and eliminates them. Trees inferred from the columns in the retained clusters are found to be topologically closer to the reference trees. We test our method on numerous standard benchmarks (both synthetic and biological data sets) and compare its performance with other methods of alignment masking. We find that our method can eliminate sites more accurately than other methods, particularly on divergent data, and can improve the topologies of the inferred trees in likelihood-based analyses. Software available upon request from the author.
YAHA: fast and flexible long-read alignment with optimal breakpoint detection.
Faust, Gregory G; Hall, Ira M
2012-10-01
With improved short-read assembly algorithms and the recent development of long-read sequencers, split mapping will soon be the preferred method for structural variant (SV) detection. Yet, current alignment tools are not well suited for this. We present YAHA, a fast and flexible hash-based aligner. YAHA is as fast and accurate as BWA-SW at finding the single best alignment per query and is dramatically faster and more sensitive than both SSAHA2 and MegaBLAST at finding all possible alignments. Unlike other aligners that report all, or one, alignment per query, or that use simple heuristics to select alignments, YAHA uses a directed acyclic graph to find the optimal set of alignments that cover a query using a biologically relevant breakpoint penalty. YAHA can also report multiple mappings per defined segment of the query. We show that YAHA detects more breakpoints in less time than BWA-SW across all SV classes, and especially excels at complex SVs comprising multiple breakpoints. YAHA is currently supported on 64-bit Linux systems. Binaries and sample data are freely available for download from http://faculty.virginia.edu/irahall/YAHA. imh4y@virginia.edu.
STELLAR: fast and exact local alignments
2011-01-01
Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de. PMID:22151882
Ohoyama, H
2013-12-21
The vector correlation between the alignment of reactant N2 (A (3)Σu(+)) and the alignment of product NO (A (2)Σ(+)) rotation has been studied in the energy transfer reaction of aligned N2 (A (3)Σu(+)) + NO (X (2)Π) → NO (A (2)Σ(+)) + N2 (X (1)Σg(+)) under the crossed beam condition at a collision energy of ~0.07 eV. NO (A (2)Σ(+)) emission in the two linear polarization directions (i.e., parallel and perpendicular with respect to the relative velocity vector v(R)) has been measured as a function of the alignment of N2 (A (3)Σu(+)) along its molecular axis in the collision frame. The degree of polarization of NO (A (2)Σ(+)) emission is found to depend on the alignment angle (θ(v(R))) of N2 (A (3)Σu(+)) in the collision frame. The shape of the steric opacity function at the two polarization conditions turns out to be extremely different from each other: The steric opacity function at the parallel polarization condition is more favorable for the oblique configuration of N2 (A (3)Σu(+)) at an alignment angle of θ(v(R)) ~ 45° as compared with that at the perpendicular polarization condition. The alignment of N2 (A (3)Σu(+)) is found to give a significant effect on the alignment of NO (A (2)Σ(+)) rotation in the collision frame: The N2 (A (3)Σu(+)) configuration at an oblique alignment angle θ(v(R)) ~ 45° leads to a parallel alignment of NO (A (2)Σ(+)) rotation (J-vector) with respect to v(R), while the axial and sideways configurations of N2 (A (3)Σu(+)) lead to a perpendicular alignment of NO (A (2)Σ(+)) rotation with respect to vR. These stereocorrelated alignments of the product rotation have a good correlation with the stereocorrelated reactivity observed in the multi-dimensional steric opacity function [H. Ohoyama and S. Maruyama, J. Chem. Phys. 137, 064311 (2012)].
Lipid content and composition of coffee brews prepared by different methods.
Ratnayake, W M; Hollywood, R; O'Grady, E; Stavric, B
1993-04-01
The lipid content and composition of boiled, filtered, dripped, Turkish and espresso coffees prepared from roasted beans of Coffea arabica and Coffea robusta, and of coffees prepared from different brands of instant coffee were examined. The lipid content varied with the method of preparation. While coffee brews filtered through filter paper contained less than 7 mg lipids, those prepared by boiling without filtering and espresso coffee reached 60-160 mg lipids/150-ml cup. Coffee brew filtered through a metal screener contained 50 mg lipids/150-ml cup. Although the lipid content varied, the method of preparation of the brew and filtration had no important influence on the lipid composition. During paper filtration lipids remained mainly in spent coffee grounds, and the brew and filter paper retained only 0.4 and 9.4%, respectively, of the total lipids recovered. However, the lipids in the brew, filter paper and spent coffee grounds had the same profile, indicating that there was no preferential retention of a particular lipid component in filter paper. Triglycerides and diterpene alcohol esters were the major lipid classes in coffee brewed from ground coffee beans, and ranged from 86.6 to 92.9 and 6.5 to 12.5% of total lipids, respectively. For coffee brews made from instant coffee, the levels of these two lipid classes were 96.4-98.5 and 1.6-3.6%, respectively. The lipid contents of both regular and decaffeinated instant coffees varied slightly from one brand to the other, and ranged from 1.8 to 6.6 mg/150-ml cup.
Molecular driving forces defining lipid positions around aquaporin-0
Aponte-Santamaría, Camilo; Briones, Rodolfo; Schenk, Andreas D.; Walz, Thomas; de Groot, Bert L.
2012-01-01
Lipid–protein interactions play pivotal roles in biological membranes. Electron crystallographic studies of the lens-specific water channel aquaporin-0 (AQP0) revealed atomistic views of such interactions, by providing high-resolution structures of annular lipids surrounding AQP0. It remained unclear, however, whether these lipid structures are representative of the positions of unconstrained lipids surrounding an individual protein, and what molecular determinants define the lipid positions around AQP0. We addressed these questions by using molecular dynamics simulations and crystallographic refinement, and calculated time-averaged densities of dimyristoyl-phosphatidylcholine lipids around AQP0. Our simulations demonstrate that, although the experimentally determined crystallographic lipid positions are constrained by the crystal packing, they appropriately describe the behavior of unconstrained lipids around an individual AQP0 tetramer, and thus likely represent physiologically relevant lipid positions.While the acyl chains were well localized, the lipid head groups were not. Furthermore, in silico mutations showed that electrostatic interactions do not play a major role attracting these phospholipids towards AQP0. Instead, the mobility of the protein crucially modulates the lipid localization and explains the difference in lipid density between extracellular and cytoplasmic leaflets. Moreover, our simulations support a general mechanism in which membrane proteins laterally diffuse accompanied by several layers of localized lipids, with the positions of the annular lipids being influenced the most by the protein surface. We conclude that the acyl chains rather than the head groups define the positions of dimyristoyl-phosphatidylcholine lipids around AQP0. Lipid localization is largely determined by the mobility of the protein surface, whereas hydrogen bonds play an important but secondary role. PMID:22679286
Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.).
Brogden, Graham; Propsting, Marcus; Adamek, Mikolaj; Naim, Hassan Y; Steinhagen, Dieter
2014-03-01
Cell membranes act as an interface between the interior of the cell and the exterior environment and facilitate a range of essential functions including cell signalling, cell structure, nutrient uptake and protection. It is composed of a lipid bilayer with integrated proteins, and the inner leaflet of the lipid bilayer comprises of liquid ordered (Lo) and liquid disordered (Ld) domains. Lo microdomains, also named as lipid rafts are enriched in cholesterol, sphingomyelin and certain types of proteins, which facilitate cell signalling and nutrient uptake. Lipid rafts have been extensively researched in mammals and the presence of functional lipid rafts was recently demonstrated in goldfish, but there is currently very little knowledge about their composition and function in fish. Therefore a protocol was established for the analysis of lipid rafts and membranous lipids in common carp (Cyprinus carpio L.) tissues. Twelve lipids were identified and analysed in the Ld domain of the membrane with the most predominant lipids found in all tissues being; triglycerides, cholesterol, phosphoethanolamine and phosphatidylcholine. Four lipids were identified in lipid rafts in all tissues analysed, triglycerides (33-62%) always found in the highest concentration followed by cholesterol (24-32%), phosphatidylcholine and sphingomyelin. Isolation of lipid rafts was confirmed by identifying the presence of the lipid raft associated protein flotillin, present at higher concentrations in the detergent resistant fraction. The data provided here build a lipid library of important carp tissues as a baseline for further studies into virus entry, protein trafficking or environmental stress analysis. Copyright © 2013 Elsevier Inc. All rights reserved.
Some Alignment Considerations for the Next Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruland, R
Next Linear Collider type accelerators require a new level of alignment quality. The relative alignment of these machines is to be maintained in an error envelope dimensioned in micrometers and for certain parts in nanometers. In the nanometer domain our terra firma cannot be considered monolithic but compares closer to jelly. Since conventional optical alignment methods cannot deal with the dynamics and cannot approach the level of accuracy, special alignment and monitoring techniques must be pursued.
Aligning Plasma-Arc Welding Oscillations
NASA Technical Reports Server (NTRS)
Norris, Jeff; Fairley, Mike
1989-01-01
Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.
21 CFR 862.1470 - Lipid (total) test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lipid (total) test system. 862.1470 Section 862....1470 Lipid (total) test system. (a) Identification. A lipid (total) test system is a device intended to measure total lipids (fats or fat-like substances) in serum and plasma. Lipid (total) measurements are...
21 CFR 862.1470 - Lipid (total) test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lipid (total) test system. 862.1470 Section 862....1470 Lipid (total) test system. (a) Identification. A lipid (total) test system is a device intended to measure total lipids (fats or fat-like substances) in serum and plasma. Lipid (total) measurements are...
21 CFR 862.1470 - Lipid (total) test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lipid (total) test system. 862.1470 Section 862....1470 Lipid (total) test system. (a) Identification. A lipid (total) test system is a device intended to measure total lipids (fats or fat-like substances) in serum and plasma. Lipid (total) measurements are...
Optimal network alignment with graphlet degree vectors.
Milenković, Tijana; Ng, Weng Leong; Hayes, Wayne; Przulj, Natasa
2010-06-30
Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology.
Retention time alignment of LC/MS data by a divide-and-conquer algorithm.
Zhang, Zhongqi
2012-04-01
Liquid chromatography-mass spectrometry (LC/MS) has become the method of choice for characterizing complex mixtures. These analyses often involve quantitative comparison of components in multiple samples. To achieve automated sample comparison, the components of interest must be detected and identified, and their retention times aligned and peak areas calculated. This article describes a simple pairwise iterative retention time alignment algorithm, based on the divide-and-conquer approach, for alignment of ion features detected in LC/MS experiments. In this iterative algorithm, ion features in the sample run are first aligned with features in the reference run by applying a single constant shift of retention time. The sample chromatogram is then divided into two shorter chromatograms, which are aligned to the reference chromatogram the same way. Each shorter chromatogram is further divided into even shorter chromatograms. This process continues until each chromatogram is sufficiently narrow so that ion features within it have a similar retention time shift. In six pairwise LC/MS alignment examples containing a total of 6507 confirmed true corresponding feature pairs with retention time shifts up to five peak widths, the algorithm successfully aligned these features with an error rate of 0.2%. The alignment algorithm is demonstrated to be fast, robust, fully automatic, and superior to other algorithms. After alignment and gap-filling of detected ion features, their abundances can be tabulated for direct comparison between samples.
B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.
Cui, Yingbo; Liao, Xiangke; Zhu, Xiaoqian; Wang, Bingqiang; Peng, Shaoliang
2016-03-01
Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision.
Galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation
NASA Astrophysics Data System (ADS)
Chisari, N. E.; Koukoufilippas, N.; Jindal, A.; Peirani, S.; Beckmann, R. S.; Codis, S.; Devriendt, J.; Miller, L.; Dubois, Y.; Laigle, C.; Slyz, A.; Pichon, C.
2017-11-01
Intrinsic alignments of galaxies are a significant astrophysical systematic affecting cosmological constraints from weak gravitational lensing. Obtaining numerical predictions from hydrodynamical simulations of expected survey volumes is expensive, and a cheaper alternative relies on populating large dark matter-only simulations with accurate models of alignments calibrated on smaller hydrodynamical runs. This requires connecting the shapes and orientations of galaxies to those of dark matter haloes and to the large-scale structure. In this paper, we characterize galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation. We compare the shapes and orientations of galaxies in the redshift range of 0 < z < 3 to those of their embedding dark matter haloes, and to the matching haloes of a twin dark-matter only run with identical initial conditions. We find that galaxy ellipticities, in general, cannot be predicted directly from halo ellipticities. The mean misalignment angle between the minor axis of a galaxy and its embedding halo is a function of halo mass, with residuals arising from the dependence of alignment on galaxy type, but not on environment. Haloes are much more strongly aligned among themselves than galaxies, and they decrease their alignment towards low redshift. Galaxy alignments compete with this effect, as galaxies tend to increase their alignment with haloes towards low redshift. We discuss the implications of these results for current halo models of intrinsic alignments and suggest several avenues for improvement.
Alignment of Irregular Grains by Mechanical Torques
NASA Astrophysics Data System (ADS)
Hoang, Thiem; Cho, Jungyeon; Lazarian, A.
2018-01-01
We study the alignment of irregular dust grains by mechanical torques due to the drift of grains through the ambient gas. We first calculate mechanical alignment torques (MATs) resulting from specular reflection of gas atoms for seven irregular shapes: one shape of mirror symmetry, three highly irregular shapes (HIS), and three weakly irregular shapes (WIS). We find that the grain with mirror symmetry experiences negligible MATs due to its mirror-symmetry geometry. Three HIS can produce strong MATs, which exhibit some generic properties as radiative torques (RATs), while three WIS produce less efficient MATs. We then study grain alignment by MATs for the different angles between the drift velocity and the ambient magnetic field, for paramagnetic and superparamagnetic grains assuming efficient internal relaxation. We find that for HIS grains, MATs can align subsonically drifting grains in the same way as RATs, with low-J and high-J attractors. For supersonic drift, MATs can align grains with low-J and high-J attractors, analogous to RAT alignment by anisotropic radiation. We also show that the joint action of MATs and magnetic torques in grains with iron inclusions can lead to perfect MAT alignment. Our results point out the potential importance of MAT alignment for HIS grains predicted by the analytical model of Lazarian & Hoang, although more theoretical and observational studies are required due to uncertainty in the shape of interstellar grains. We outline astrophysical environments where MAT alignment is potentially important.
Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei
2007-01-01
Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966
Proposal for a common nomenclature for fragment ions in mass spectra of lipids
Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F.; Peng, Bing; Ahrends, Robert
2017-01-01
Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines. PMID:29161304
Proposal for a common nomenclature for fragment ions in mass spectra of lipids.
Pauling, Josch K; Hermansson, Martin; Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F; Peng, Bing; Ahrends, Robert; Ejsing, Christer S
2017-01-01
Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines.
Emerging targets in lipid-based therapy☆
Tucker, Stephanie C.; Honn, Kenneth V.
2013-01-01
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to “biomarkers” does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery. PMID:23261527
Chrast, Roman; Saher, Gesine; Nave, Klaus-Armin; Verheijen, Mark H G
2011-03-01
The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders.
Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models
Chrast, Roman; Saher, Gesine; Nave, Klaus-Armin; Verheijen, Mark H. G.
2011-01-01
The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders. PMID:21062955
Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ
NASA Astrophysics Data System (ADS)
Bolla, Jani Reddy; Sauer, Joshua B.; Wu, Di; Mehmood, Shahid; Allison, Timothy M.; Robinson, Carol V.
2018-03-01
Translocation of lipid II across the cytoplasmic membrane is essential in peptidoglycan biogenesis. Although most steps are understood, identifying the lipid II flippase has yielded conflicting results, and the lipid II binding properties of two candidate flippases—MurJ and FtsW—remain largely unknown. Here we apply native mass spectrometry to both proteins and characterize lipid II binding. We observed lower levels of lipid II binding to FtsW compared to MurJ, consistent with MurJ having a higher affinity. Site-directed mutagenesis of MurJ suggests that mutations at A29 and D269 attenuate lipid II binding to MurJ, whereas chemical modification of A29 eliminates binding. The antibiotic ramoplanin dissociates lipid II from MurJ, whereas vancomycin binds to form a stable complex with MurJ:lipid II. Furthermore, we reveal cardiolipins associate with MurJ but not FtsW, and exogenous cardiolipins reduce lipid II binding to MurJ. These observations provide insights into determinants of lipid II binding to MurJ and suggest roles for endogenous lipids in regulating substrate binding.
Kumar, Vikram; Muthuraj, Muthusivaramapandian; Palabhanvi, Basavaraj; Das, Debasish
2016-01-01
Synchronized growth and neutral lipid accumulation with high lipid productivity under mixotrophic growth of the strain Chlorella sorokiniana FC6 IITG was achieved via manipulation of substrates feeding mode and supplementation of lipid elicitors in the growth medium. Screening and optimization of lipid elicitors resulted in lipid productivity of 110.59mgL(-1)day(-1) under the combined effect of lipid inducers sodium acetate and sodium chloride. Fed-batch cultivation of the strain in bioreactor with intermittent feeding of limiting nutrients and lipid inducer resulted in maximum biomass and lipid productivity of 2.08 and 0.97gL(-1)day(-1) respectively. Further, continuous production of biomass with concomitant lipid accumulation was demonstrated via continuous feeding of BG11 media supplemented with lipid inducers sodium acetate and sodium chloride. The improved biomass and lipid productivity in chemostat was found to be 2.81 and 1.27gL(-1)day(-1) respectively operated at a dilution rate of 0.54day(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Optical Alignment of the JWST ISIM to the OTE Simulator (OSIM): Current Concept and Design Studies
NASA Technical Reports Server (NTRS)
Frey, Bradley J.; Davila, Pamela S.; Marsh, James M.; Ohl, Raymond G.; Sullivan, Joseph
2007-01-01
The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) is the scientific payload of the observatory and contai ns four science instruments. During alignment and test of the integrated ISIM (i.e. ISIM + science instruments) at NASA's Goddard Space Fli ght Center (GSFC), the Optical telescope element SIMulator (OSIM) wil l be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to determine and verify the proper alignment of OSIM to ISIM during testing at GSFC. The se fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, 6 degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing.
Image Alignment for Multiple Camera High Dynamic Range Microscopy.
Eastwood, Brian S; Childs, Elisabeth C
2012-01-09
This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.
Image Alignment for Multiple Camera High Dynamic Range Microscopy
Eastwood, Brian S.; Childs, Elisabeth C.
2012-01-01
This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028
Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.; ...
2015-06-27
Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified Caenorhabditis elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols is rich in fatty acid species obtained from the dietary Escherichia coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type andmore » high-fat daf-2 mutant strains shows a very similar proteome in both strains, except that the most abundant protein in the C. elegans lipid droplet proteome, MDT-28, is relatively less abundant in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans. Finally, we confirmed the localization of one of the newly identified lipid droplet proteins, ACS-4. We found that ACS-4 localizes to the surface of lipid droplets in the C. elegans intestine and skin. This study bolsters C. elegans as a model to study the dynamics and functions of lipid droplets in a multicellular organism.« less
Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement.
Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca
2016-10-28
The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Kobayashi, Toshiki; Arabian, Adam K.; Orendurff, Michael S.; Rosenbaum-Chou, Teri G.; Boone, David A.
2014-01-01
Background Energy storage and return feet are designed for active amputees. However, little is known about the socket reaction moments in transtibial prostheses with energy storage and return feet. The aim of this study was to investigate the effect of alignment changes on the socket reaction moments during gait while using the energy storage and return feet. Methods A Smart Pyramid™ was used to measure the socket reaction moments in 10 subjects with transtibial prostheses while walking under 25 alignment conditions, including a nominal alignment (as defined by conventional clinical methods), as well as angle malalignments of 2°, 4° and 6° (flexion, extension, abduction, and adduction) and translation malalignments of 5mm, 10mm and 15mm (anterior, posterior, lateral, and medial) referenced from the nominal alignment. The socket reaction moments of the nominal alignment were compared with each malalignment. Findings Both coronal and sagittal alignment changes demonstrated systematic effects on the socket reaction moments. In the sagittal plane, angle and translation alignment changes demonstrated significant differences (P<0.05) in the minimum moment, the moment at 45% of stance and the maximum moment for some comparisons. In the coronal plane, angle and translation alignment changes demonstrated significant differences (P<0.05) in the moment at 30% and 75% of stance for all comparisons. Interpretation The alignment may have systematic effects on the socket reaction moments in transtibial prostheses with energy storage and return feet. The socket reaction moments could potentially be a useful biomechanical parameter to evaluate the alignment of the transtibial prostheses. PMID:24315709
Kobayashi, Toshiki; Orendurff, Michael S.; Arabian, Adam K.; Rosenbaum-Chou, Teri G.; Boone, David A.
2014-01-01
The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment–time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid™ in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health. PMID:24612718
Nam, Denis; Vajapey, Sravya; Nunley, Ryan M; Barrack, Robert L
2016-10-01
The optimal coronal alignment after total knee arthroplasty (TKA) has become an area of increased debate. Sources of variability among investigations include the radiographic technique used for both preoperative surgical planning and postoperative alignment assessments. This study's purpose was to assess the impact of the imaging modality used on the measurement of coronal plane alignment after TKA. A consecutive series of patients undergoing TKA using the same cruciate-retaining prosthesis were included for analysis. Postoperatively, all patients received both a rotationally controlled, scout computed tomography scan and a hip-knee-ankle (HKA) image using the EOS Imaging system (EOS Inc., Paris, France). Two, independent observers measured the HKA angle, and femoral and tibial component alignment from each image. After classifying overall and component alignment as neutral, varus, or valgus, 40.6% (65 of 160) of knees had a discordant alignment classification for HKA, 28.1% (45 of 160) for femoral component alignment, and 26.9% (43 of 160) for tibial component alignment between their computed tomography and EOS images. Overall, 24.4% (39 of 160) of patients had a HKA difference of ≥3° between the 2 images, whereas 18.8% (30 of 160) and 20.0% (32 of 160) of patients had a femoral and tibial component alignment difference of ≥2°, respectively. Significant differences are present when comparing 2 measurement techniques of mechanical alignment after TKA. The impact of imaging modality on postoperative assessments must be accounted for and be consistent when comparing the results of different investigations. Copyright © 2016 Elsevier Inc. All rights reserved.
Algorithms for Automatic Alignment of Arrays
NASA Technical Reports Server (NTRS)
Chatterjee, Siddhartha; Gilbert, John R.; Oliker, Leonid; Schreiber, Robert; Sheffler, Thomas J.
1996-01-01
Aggregate data objects (such as arrays) are distributed across the processor memories when compiling a data-parallel language for a distributed-memory machine. The mapping determines the amount of communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: an alignment that maps all the objects to an abstract template, followed by a distribution that maps the template to the processors. This paper describes algorithms for solving the various facets of the alignment problem: axis and stride alignment, static and mobile offset alignment, and replication labeling. We show that optimal axis and stride alignment is NP-complete for general program graphs, and give a heuristic method that can explore the space of possible solutions in a number of ways. We show that some of these strategies can give better solutions than a simple greedy approach proposed earlier. We also show how local graph contractions can reduce the size of the problem significantly without changing the best solution. This allows more complex and effective heuristics to be used. We show how to model the static offset alignment problem using linear programming, and we show that loop-dependent mobile offset alignment is sometimes necessary for optimum performance. We describe an algorithm with for determining mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself or can be used to improve performance. We describe an algorithm based on network flow that replicates objects so as to minimize the total amount of broadcast communication in replication.
Transition of vertically aligned liquid crystal driven by fan-shaped electric field
NASA Astrophysics Data System (ADS)
Tsung, J. W.; Ting, T. L.; Chen, C. Y.; Liang, W. L.; Lai, C. W.; Lin, T. H.; Hsu, W. H.
2017-09-01
Interdigital electrodes are implemented in many commercial and novel liquid crystal devices to align molecules. Although many empirical principles and patents apply to electrode design, only a few numerical simulations of alignment have been conducted. Why and how the molecules align in an ordered manner has never been adequately explained. Hence, this investigation addresses the Fréedericksz transition of vertically aligned liquid crystal that is driven by fishbone electrodes, and thereafter identifies the mechanism of liquid crystal alignment. Theoretical calculations suggest that the periodic deformation that is caused by the fan-shaped fringe field minimizes the free energy in the liquid crystal cell, and the optimal alignment can be obtained when the cell parameters satisfy the relation p /2 d =√{k11/k33 } , where p is the spatial period of the strips of the electrode; d denotes the cell gap; and k11 and k33 are the splay and bend elastic constants of the liquid crystal, respectively. Polymer-stabilized vertical alignment test cells with various p values and spacings between the electrodes were fabricated, and the process of liquid crystal alignment was observed under an optical microscope. The degree of alignment was evaluated by measuring the transmittance of the test cell. The experimental results were consistent with the theoretical predictions. The principle of design, p /2 d =√{k11/k33 } , greatly improves the uniformity and stability of the aligned liquid crystal. The methods that are presented here can be further applied to cholesteric liquid crystal and other self-assembled soft materials.
Extracellular vesicle-mediated export of fungal RNA
Peres da Silva, Roberta; Puccia, Rosana; Rodrigues, Marcio L.; Oliveira, Débora L.; Joffe, Luna S.; César, Gabriele V.; Nimrichter, Leonardo; Goldenberg, Samuel; Alves, Lysangela R.
2015-01-01
Extracellular vesicles (EVs) play an important role in the biology of various organisms, including fungi, in which they are required for the trafficking of molecules across the cell wall. Fungal EVs contain a complex combination of macromolecules, including proteins, lipids and glycans. In this work, we aimed to describe and characterize RNA in EV preparations from the human pathogens Cryptococcus neoformans, Paracoccidiodes brasiliensis and Candida albicans, and from the model yeast Saccharomyces cerevisiae. The EV RNA content consisted mostly of molecules less than 250 nt long and the reads obtained aligned with intergenic and intronic regions or specific positions within the mRNA. We identified 114 ncRNAs, among them, six small nucleolar (snoRNA), two small nuclear (snRNA), two ribosomal (rRNA) and one transfer (tRNA) common to all the species considered, together with 20 sequences with features consistent with miRNAs. We also observed some copurified mRNAs, as suggested by reads covering entire transcripts, including those involved in vesicle-mediated transport and metabolic pathways. We characterized for the first time RNA molecules present in EVs produced by fungi. Our results suggest that RNA-containing vesicles may be determinant for various biological processes, including cell communication and pathogenesis. PMID:25586039
UV-CD12: synchrotron radiation circular dichroism beamline at ANKA
Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S.
2015-01-01
Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts. PMID:25931105
Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi
2015-05-01
We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.
Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters
Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane
2017-01-01
The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85 Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695
An Alignment/Transfer Experiment with Low Socioeconomic Level Students.
ERIC Educational Resources Information Center
Elia, June Isaacs
1994-01-01
This study examined the amount of variance explained by alignment of testing to instruction among low socioeconomic level fourth graders, proposing two instructional alignment hypotheses. Results indicated that alignment had an unusually high effect. Low performing low socioeconomic level students achieved high success levels when conditions of…
Vertically aligned nanostructure scanning probe microscope tips
Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.
2006-12-19
Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.
Temporal Effects of Alignment in Text-Based, Task-Oriented Discourse
ERIC Educational Resources Information Center
Foltz, Anouschka; Gaspers, Judith; Meyer, Carolin; Thiele, Kristina; Cimiano, Philipp; Stenneken, Prisca
2015-01-01
Communicative alignment refers to adaptation to one's communication partner. Temporal aspects of such alignment have been little explored. This article examines temporal aspects of lexical and syntactic alignment (i.e., tendencies to use the interlocutor's lexical items and syntactic structures) in task-oriented discourse. In particular, we…
Opportunities to Align California's PreK-3 Education System
ERIC Educational Resources Information Center
Policy Analysis for California Education, PACE, 2016
2016-01-01
"PreK-3 Alignment in California's Education System: Obstacles and Opportunities" by Rachel Valentino and Deborah J. Stipek reviews the opportunities and challenges that must be addressed to better align PreK-3 education in California. The report describes policies and practices that districts have implemented to strengthen alignment, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.
2015-06-27
Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type andmore » high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.« less
Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes
NASA Astrophysics Data System (ADS)
Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji
2016-09-01
Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.
Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Molina Grima, Emilio
2016-09-01
In order to obtain microalgal saponifiable lipids (SLs) fractions containing different polar lipid (glycolipids and phospholipids) contents, SLs were extracted from wet Nannochloropsis gaditana microalgal biomass using seven extraction systems, and the polar lipid contents of some fractions were reduced by low temperature acetone crystallization. We observed that the polar lipid content in the extracted lipids depended on the polarity of the first solvent used in the extraction system. Lipid fractions with polar lipid contents between 75.1% and 15.3% were obtained. Some of these fractions were transformed into fatty acid methyl esters (FAMEs, biodiesel) by methanolysis, catalyzed by the lipases Novozym 435 and Rhizopus oryzae in tert-butanol medium. We observed that the reaction velocity was higher the lower the polar lipid content, and that the final FAME conversions achieved after using the same lipase batch to catalyze consecutive reactions decreased in relation to an increase in the polar lipid content. Copyright © 2016 Elsevier Ltd. All rights reserved.
Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen
2016-01-01
We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lipid Cell Biology: A Focus on Lipids in Cell Division.
Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S
2018-06-20
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Specificity of Intramembrane Protein–Lipid Interactions
Contreras, Francesc-Xabier; Ernst, Andreas Max; Wieland, Felix; Brügger, Britta
2011-01-01
Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein–lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein–lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein–lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein–lipid interactions as well as roles of lipids as chaperones in protein folding and transport. PMID:21536707
Narayanan, Sruthi; Prasad, P V Vara; Welti, Ruth
2016-03-01
Identifying lipids that experience coordinated metabolism during heat stress would provide information regarding lipid dynamics under stress conditions and assist in developing heat-tolerant wheat varieties. We hypothesized that co-occurring lipids, which are up-regulated or down-regulated together through time during heat stress, represent groups that can be explained by coordinated metabolism. Wheat plants (Triticum aestivum L.) were subjected to 12 days of high day and/or night temperature stress, followed by a 4-day recovery period. Leaves were sampled at four time points, and 165 lipids were measured by electrospray ionization-tandem mass spectrometry. Correlation analysis of lipid levels in 160 leaf samples from each of two wheat genotypes revealed 13 groups of lipids. Lipids within each group co-occurred through the high day and night temperature stress treatments. The lipid groups can be broadly classified as groups containing extraplastidic phospholipids, plastidic glycerolipids, oxidized glycerolipids, triacylglycerols, acylated sterol glycosides and sterol glycosides. Current knowledge of lipid metabolism suggests that the lipids in each group co-occur because they are regulated by the same enzyme(s). The results suggest that increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes lead to simultaneous changes in levels of multiple lipid species during high day and night temperature stress in wheat. © 2015 John Wiley & Sons Ltd.
Analyzing and Understanding Lipids of Yeast: A Challenging Endeavor.
Kohlwein, Sepp D
2017-05-01
Lipids are essential biomolecules with diverse biological functions, ranging from building blocks for all biological membranes to energy substrates, signaling molecules, and protein modifiers. Despite advances in lipid analytics by mass spectrometry, the extraction and quantitative analysis of the diverse classes of lipids are still an experimental challenge. Yeast is a model organism that provides several advantages for studying lipid metabolism, because most biosynthetic pathways are well described and a great deal of information is available on the regulatory mechanisms that control lipid homeostasis. In addition, the composition of yeast lipids is much less complex than that of mammalian lipids, making yeast an excellent reference system for studying lipid-associated cell functions. © 2017 Cold Spring Harbor Laboratory Press.
Irregular bilayer structure in vesicles prepared from Halobacterium cutirubrum lipids
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1974-01-01
Fluorescent probes were used to study the structure of the cell envelope of Halobacterium cutirubrum, and, in particular, to explore the effect of the heterogeneity of the lipids in this organism on the structure of the bilayers. The fluorescence polarization of perylene was followed in vesicles of unfractionated lipids and polar lipids as a function of temperature in 3.4 M solutions of NaCl, NaNO3, and KSCN, and it was found that vesicles of unfractionated lipids were more perturbed by chaotropic agents than polar lipids. The dependence of the relaxation times of perylene on temperature was studied in cell envelopes and in vesicles prepared from polar lipids, unfractionated lipids, and mixtures of polar and neutral lipids.
Alignment of Iron Nanoparticles in a Magnetic Field Due to Shape Anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Balasubramaniam; Nicholson, Don M; Eisenbach, Markus
2015-07-09
During high magnetic field processing there is evidence for alignment of non-spherical metallic particles above the Curie temperature in alloys with negligible magneto-crystalline anisotropy. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with size scaling to show the conditions under which alignment is possible.
Permanent bending and alignment of ZnO nanowires.
Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten
2011-05-06
Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.
Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells.
Zeng, Juan; Zhang, Heying; Tan, Yonggang; Sun, Cheng; Liang, Yusi; Yu, Jinyang; Zou, Huawei
2018-05-30
Activation of c-Met, a receptor tyrosine kinase, induces radiation therapy resistance in non-small cell lung cancer (NSCLC). The activated residual of c-Met is located in lipid rafts (Duhon et al. Mol Carcinog 49:739-49, 2010). Therefore, we hypothesized that disturbing the integrity of lipid rafts would restrain the activation of the c-Met protein and reverse radiation resistance in NSCLC. In this study, a series of experiments was performed to test this hypothesis. NSCLC A549 and H1993 cells were incubated with methyl-β-cyclodextrin (MβCD), a lipid raft inhibitor, at different concentrations for 1 h before the cells were X-ray irradiated. The following methods were used: clonogenic (colony-forming) survival assays, flow cytometry (for cell cycle and apoptosis analyses), immunofluorescence microscopy (to show the distribution of proteins in lipid rafts), Western blotting, and biochemical lipid raft isolation (purifying lipid rafts to show the distribution of proteins in lipid rafts). Our results showed that X-ray irradiation induced the aggregation of lipid rafts in A549 cells, activated c-Met and c-Src, and induced c-Met and c-Src clustering to lipid rafts. More importantly, MβCD suppressed the proliferation of A549 and H1993 cells, and the combination of MβCD and radiation resulted in additive increases in A549 and H1993 cell apoptosis. Destroying the integrity of lipid rafts inhibited the aggregation of c-Met and c-Src to lipid rafts and reduced the expression of phosphorylated c-Met and phosphorylated c-Src in lipid rafts. X-ray irradiation induced the aggregation of lipid rafts and the clustering of c-Met and c-Src to lipid rafts through both lipid raft-dependent and lipid raft-independent mechanisms. The lipid raft-dependent activation of c-Met and its downstream pathways played an important role in the development of radiation resistance in NSCLC cells mediated by c-Met. Further studies are still required to explore the molecular mechanisms of the activation of c-Met and c-Src in lipid rafts induced by radiation.
Konuma, Takahiro; Tsukamoto, Yusuke; Nagasawa, Hiromichi; Nagata, Shinji
2016-01-01
Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH) is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi)-mediated knockdown of the AKH receptor (AKHR) reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp)-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III) because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids) was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets.
Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.
Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K
2014-03-01
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lipid-Protein Interactions in Plasma Membranes of Fiber Cells Isolated from the Human Eye Lens
Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.
2014-01-01
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali,L., Raguz, M., O’Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. PMID:24486794
Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25).
Tran, Nhi; Kurian, Justin; Bhatt, Avni; McKenna, Robert; Long, Joanna R
2017-10-05
The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B 1-25 ) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B 1-25 -induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B 1-25 using 2 H and 31 P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31 P T 2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.
Adsorption of human tear lipocalin to human meibomian lipid films.
Millar, Thomas J; Mudgil, Poonam; Butovich, Igor A; Palaniappan, Chendur K
2009-01-01
Tear lipocalin (Tlc) is a major lipid binding protein in tears and is thought to have an important role in stabilizing the Meibomian lipid layer by transferring lipids to it from the aqueous layer or ocular surface, or by adsorbing to it directly. These possible roles have been investigated in vitro using human Tlc. Tlc was purified from human tears by size exclusion chromatography followed by ion exchange chromatography. Three additional samples of the Tlc were prepared by lipidation, delipidation, and relipidation. The lipids extracted from the purified Tlc were analyzed by HPLC-MS followed by fragmentation. Adsorption of these different forms of Tlc to a human Meibomian lipid film spread on the surface of an artificial tear buffer in a Langmuir trough were observed by recording changes in the pressure with time (Pi-T profile) and monitoring the appearance of the film microscopically. These results were compared with similar experiments using a bovine Meibomian lipid film. The results indicated that Tlc binds slowly to a human Meibomian lipid film compared with lysozyme or lactoferrin, even at 37 degrees C. The adsorption of Tlc to a human Meibomian lipid film was very different from its adsorption to a bovine Meibomian lipid film, indicating the nature of the lipids in the film is critical to the adsorption process. Similarly, the different forms of Tlc had quite distinct adsorption patterns, as indicated both by changes in Pi-T profiles and the microscopic appearance of the films. It was concluded that human Tlc was capable of adsorbing to and penetrating into a Meibomian lipid layer, but this process is very complex and depends on both the types of lipids bound to Tlc and the lipid complement comprising the Meibomian lipid film.
Adsorption of Human Tear Lipocalin to Human Meibomian Lipid Films
Millar, Thomas J.; Mudgil, Poonam; Butovich, Igor A.; Palaniappan, Chendur K.
2009-01-01
Purpose Tear lipocalin (Tlc) is a major lipid binding protein in tears and is thought to have an important role in stabilizing the Meibomian lipid layer by transferring lipids to it from the aqueous layer or ocular surface, or by adsorbing to it directly. These possible roles have been investigated in vitro using human Tlc. Methods Tlc was purified from human tears by size exclusion chromatography followed by ion exchange chromatography. Three additional samples of the Tlc were prepared by lipidation, delipidation, and relipidation. The lipids extracted from the purified Tlc were analyzed by HPLC-MS followed by fragmentation. Adsorption of these different forms of Tlc to a human Meibomian lipid film spread on the surface of an artificial tear buffer in a Langmuir trough were observed by recording changes in the pressure with time (∏-T profile) and monitoring the appearance of the film microscopically. These results were compared with similar experiments using a bovine Meibomian lipid film. Results The results indicated that Tlc binds slowly to a human Meibomian lipid film compared with lysozyme or lactoferrin, even at 37°C. The adsorption of Tlc to a human Meibomian lipid film was very different from its adsorption to a bovine Meibomian lipid film, indicating the nature of the lipids in the film is critical to the adsorption process. Similarly, the different forms of Tlc had quite distinct adsorption patterns, as indicated both by changes in ∏-T profiles and the microscopic appearance of the films. Conclusions It was concluded that human Tlc was capable of adsorbing to and penetrating into a Meibomian lipid layer, but this process is very complex and depends on both the types of lipids bound to Tlc and the lipid complement comprising the Meibomian lipid film. PMID:18757516
Konuma, Takahiro; Tsukamoto, Yusuke; Nagasawa, Hiromichi; Nagata, Shinji
2016-01-01
Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH) is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi)-mediated knockdown of the AKH receptor (AKHR) reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp)-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III) because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids) was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets. PMID:27144650
Johnson, Ronald B; Kroeger, Eric L; Reichert, William L; Carter, Cameron S; Rust, Michael B
2017-06-01
Female coho salmon, Oncorhynchus kisutch, were fed one of two experimental feeds containing lipids with markedly different stable 13 C isotope signatures during the late cortical alveolus, lipid droplet, and vitellogenesis stages of secondary oocyte growth. Ovarian and muscle lipids fatty acid concentrations were significantly affected by treatment during all three stages of development. Stable 13 C isotope analyses confirmed that dietary lipids were incorporated into both ovarian and muscle lipids during all three stages and revealed that ovarian lipids were more affected than muscle lipids during vitellogenesis. Arachidonic acid (ARA) was incorporated into ovarian lipids at the highest rate of all fatty acids examined with the greatest uptake observed during the cortical alveolus and lipid droplet stages of development. Docosahexaenoic acid (DHA) was incorporated into ovarian lipids at the next highest rate with the greatest uptake observed during the lipid droplet stage of development. The presence of an ovary specific, fatty acid transfer mechanism is proposed. Results from this study demonstrate the ability to greatly alter the fatty acid composition of ovarian lipids through a dietary change during secondary oocyte growth and may be of great interest to producers of farmed salmon and salmon broodstock programs. Published by Elsevier Inc.
Jaeger, Daniel; Pilger, Christian; Hachmeister, Henning; Oberländer, Elina; Wördenweber, Robin; Wichmann, Julian; Mussgnug, Jan H; Huser, Thomas; Kruse, Olaf
2016-10-21
Oleaginous photosynthetic microalgae hold great promise as non-food feedstocks for the sustainable production of bio-commodities. The algal lipid quality can be analysed by Raman micro-spectroscopy, and the lipid content can be imaged in vivo in a label-free and non-destructive manner by coherent anti-Stokes Raman scattering (CARS) microscopy. In this study, both techniques were applied to the oleaginous microalga Monoraphidium neglectum, a biotechnologically promising microalga resistant to commonly applied lipid staining techniques. The lipid-specific CARS signal was successfully separated from the interfering two-photon excited fluorescence of chlorophyll and for the first time, lipid droplet formation during nitrogen starvation could directly be analysed. We found that the neutral lipid content deduced from CARS image analysis strongly correlated with the neutral lipid content measured gravimetrically and furthermore, that the relative degree of unsaturation of fatty acids stored in lipid droplets remained similar. Interestingly, the lipid profile during cellular adaption to nitrogen starvation showed a two-phase characteristic with initially fatty acid recycling and subsequent de novo lipid synthesis. This works demonstrates the potential of quantitative CARS microscopy as a label-free lipid analysis technique for any microalgal species, which is highly relevant for future biotechnological applications and to elucidate the process of microalgal lipid accumulation.
Myasoedova, Elena
2017-05-01
To highlight recently published studies addressing lipid changes with disease-modifying antirheumatic drug use and outline implications on cardiovascular outcomes in rheumatoid arthritis (RA). Growing evidence suggests lower lipid levels are present in patients with active RA vs. general population, and significant modifications of lipid profile with inflammation suppression. Increase in lipid levels in patients with RA on synthetic and biological disease-modifying antirheumatic drugs may be accompanied by antiatherogenic changes in lipid composition and function. The impact of lipid changes on cardiovascular outcomes in RA is a subject of active research. The role of lipids in cardiovascular risk in RA may be overpowered by the benefits of inflammation suppression with antirheumatic medication use. Recommendations on lipid management in RA are evolving but uncertainty exists regarding frequency of lipid testing and goals of treatment. Knowledge about quantitative and qualitative lipid changes in RA is expanding. The relative role of lipids in cardiovascular risk in the context of systemic inflammation and antirheumatic therapy remains uncertain, delaying development of effective strategies for cardiovascular risk management in RA. Studies are underway to address these knowledge gaps and may be expected to inform cardiovascular risk management in RA and the general population.
NASA Astrophysics Data System (ADS)
Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming
2013-09-01
Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias
2014-01-01
RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width)more » setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 um. Conclusions: A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry.« less
Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias; Van Berkel, Gary J
2014-08-15
Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) set up to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V™ ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. The estimated capture efficiency of laser-ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~2.8 mm(2) ) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution not only of particulates, but also of gaseous products of the laser ablation. The use of DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 µm was demonstrated for stamped ink on DIRECTOR(®) slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 µm. A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Quantification of brain lipids by FTIR spectroscopy and partial least squares regression
NASA Astrophysics Data System (ADS)
Dreissig, Isabell; Machill, Susanne; Salzer, Reiner; Krafft, Christoph
2009-01-01
Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.
NASA Astrophysics Data System (ADS)
Acevedo-Robles, Noelia
Diclofenac sodium is a nonsteroidal anti-inflammatory drugs (NSAID) used to treat sign or symptoms of osteoarthritis and rheumatoid arthritis. However, its clinical usage is limited to some extent due to its toxicity and systemic side effects, including gastrointestinal lesions. The development of lipid nanostructured hydrogel for topical application will solve the problems of first pass metabolism minimize systemic side effect of the anti-inflammatory drugs. Two types of nanotechnologies were used: Lipid Nanostructured Lipid carrier (NLC) and Solid Lipid Nanoparticles (SLN). The difference between both nanotechnologies is that NLC carrier contain liquid and solid lipid, however, the SLN contains solid lipid. Both nanostructured lipid carrier is prepared by high pressure micro-fluidizer technology avoiding solvents use. The use of liquid lipid with solid lipid leads us to imperfection in the matrix which can provide more space for the accommodation of the drug, therefore NLC is the more efficient formulation in drug entrapment.
Ultrasonication aided in-situ transesterification of microbial lipids to biodiesel.
Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y; Valéro, Jose R
2014-10-01
In-situ transesterification of microbial lipid to biodiesel has been paid substantial attention due to the fact that the lipid extraction and transesterification can be conducted in one-stage process. To improve the feasibility of in-situ transesterification, ultrasonication was employed to reduce methanol requirement and reaction time. The results showed that the use of ultrasonication could achieve high conversion of lipid to FAMEs (92.1% w lipid conversion/w total lipids) with methanol to lipid molar ratio 60:1 and NaOH addition 1% w/w lipid in 20 min, while methanol to lipid molar ratio 360:1, NaOH addition 1% w/w lipid, and reaction time 12h was required to obtain similar yield in in-situ transesterification without ultrasonication. The compositions of FAMEs obtained in case of ultrasonication aided in-situ transesterification were similar as that of two-stage extraction followed by transesterification processes. Copyright © 2014. Published by Elsevier Ltd.
A facile method to align carbon nanotubes on polymeric membrane substrate
Zhao, Haiyang; Zhou, Zhijun; Dong, Hang; Zhang, Lin; Chen, Huanlin; Hou, Lian
2013-01-01
The alignment of carbon nanotubes (CNT) is the fundamental requirement to ensure their excellent functions but seems to be desolated in recent years. A facile method, hot-press combined with peel-off (HPPO), is introduced here, through which CNT can be successfully vertically aligned on the polymeric membrane substrate. Shear force and mechanical stretch are proposed to be the main forces to align the tubes perpendicular to the substrate surface during the peel-off process. The alignment of CNT keeps its orientation in a thin hybrid membrane by dip-coating cellulose acetate dope solution. It is expected that the stable alignment of CNT by HPPO would contribute to the realization of its potential applications. PMID:24326297
Chromaligner: a web server for chromatogram alignment.
Wang, San-Yuan; Ho, Tsung-Jung; Kuo, Ching-Hua; Tseng, Yufeng J
2010-09-15
Chromaligner is a tool for chromatogram alignment to align retention time for chromatographic methods coupled to spectrophotometers such as high performance liquid chromatography and capillary electrophoresis for metabolomics works. Chromaligner resolves peak shifts by a constrained chromatogram alignment. For a collection of chromatograms and a set of defined peaks, Chromaligner aligns the chromatograms on defined peaks using correlation warping (COW). Chromaligner is faster than the original COW algorithm by k(2) times, where k is the number of defined peaks in a chromatogram. It also provides alignments based on known component peaks to reach the best results for further chemometric analysis. Chromaligner is freely accessible at http://cmdd.csie.ntu.edu.tw/~chromaligner.