Science.gov

Sample records for aligned nanocomposite van

  1. Block Copolymer Nanocomposites in Electric Fields: Kinetics of Alignment

    SciTech Connect

    Liedel, Clemens; Pester, Christian; Ruppel, Markus A; Lewin, Christian; Pavan, Mariela J.; Urban, Volker S; Shenhar, Roy; Bosecke, Peter; Boker, Alexander

    2013-01-01

    We investigate the kinetics of block copolymer/nanoparticle composite alignment in an electric field using in situ transmission small-angle X-ray scattering. As a model system, we employ a lamellae forming polystyrene-block-poly(2-vinyl pyridine) block copolymer with different contents of gold nanoparticles in thick films under solvent vapor annealing. While the alignment improves with increasing nanoparticle fraction, the kinetics slows down. This is explained by changes in the degree of phase separation and viscosity. Our findings provide extended insights into the basics of nanocomposite alignment.

  2. Improved energy density of nanocomposites with aligned PZT nanowires

    NASA Astrophysics Data System (ADS)

    Tang, Haixiong; Lin, Yirong; Sodano, Henry A.

    2011-04-01

    The use of piezoelectric materials has become more popular for a wide range of applications, including structural health monitoring, power harvesting, vibration sensing and actuation. However, piezoceramic materials are often prone to breakage and are difficult to apply to curved surfaces when in their monolithic form. One approach to alleviate these issues is to embed the fragile piezoceramic inclusion into a polymer matrix. The flexible nature of the polymer matrix protects the ceramic from breaking under mechanical loading and makes the resulting compoistes easier to apply onto curved structure. However, most developed active ceramic composites have relatively low electroelastic coupling compared to bulk piezoceramics. There are two main methods to improve the eletroelastic properties of piezoceramic composites, namely using higher aspect ratio active inclusions and alignment of inclusions in the electric field direction. In this paper, the dielectric and energy storage property of nanowire composites is significantly enhanced by aligning the nanowires in the direction of the applied electrical field. PZT nanowires are hydrothermally synthesized and solutioncast into a polymer matrix, and then aligned using a shear flow based stretching method. The alignment was evaluated by scanning electron microscopy images and it is shown that the nanowires can be successfully aligned in the PVDF. The dielectric constant and energy density of the nanocomposites were tested using Agilent E4980A LCR meter and Sawyer-Tower circuit. This testing result shows that the dielectric constant and energy density of the composites can be increased by as much as 35.7% and 49.3% by aligning the nanowires in the electric field direction. Piezoceramic composites with enhanced energy storage property could lead to broader applications when using this type of materials for polymer based capacitive energy storage.

  3. Dielectric tunability of vertically aligned ferroelectric-metal oxide nanocomposite films controlled by out-of-plane misfit strain

    NASA Astrophysics Data System (ADS)

    Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong

    2016-04-01

    A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.

  4. Nonadiabatic alignment of van der Waals--force-bound argon dimers by femtosecond laser pulses

    SciTech Connect

    Wu, J.; Vredenborg, A.; Ulrich, B.; Schmidt, L. Ph. H.; Meckel, M.; Voss, S.; Sann, H.; Kim, H.; Jahnke, T.; Doerner, R.

    2011-06-15

    We demonstrated that the weak van der Waals-force-bound argon dimer can be nonadiabatically aligned by nonresonant femtosecond laser pulses, showing periodic alignment and anti-alignment revivals after the extinction of the laser pulse. Based on the measured nonadiabatic alignment trace, the rotational constant of the argon dimer ground state is determined to be B{sub 0}= 0.05756 {+-} 0.00004 cm{sup -1}. Noticeable alignment dependence of frustrated tunneling ionization and bond-softening induced dissociation of the argon dimer are observed.

  5. Effect of filler alignment on percolation in polymer nanocomposites using tunneling-percolation model

    NASA Astrophysics Data System (ADS)

    Kale, Sohan; Sabet, Fereshteh A.; Jasiuk, Iwona; Ostoja-Starzewski, Martin

    2016-07-01

    In this study, we examine the effect of filler alignment on percolation behavior of polymer nanocomposites using Monte Carlo simulations of monodisperse prolate and oblate hard-core soft-shell ellipsoids representing carbon nanotubes and graphene nanoplatelets, respectively. The percolation threshold is observed to increase with increasing extent of alignment as expected. For a highly aligned system of rod-like fillers, the simulation results are shown to be in good agreement with the second virial approximation based predictions. However, for a highly aligned system of disk-like fillers, the second virial approximation based results are observed to significantly deviate from the simulations, even for higher aspect ratios. The effect of filler alignment on anisotropy in percolation behavior is also studied by predicting the percolation threshold along different directions. The anisotropy in percolation threshold is found to vanish even for highly aligned systems of fillers with increasing system size.

  6. Analysis of alignment effect on carbon nanotube layer in nanocomposites

    NASA Astrophysics Data System (ADS)

    Joshi, Preeti; Upadhyay, S. H.

    2015-02-01

    In this work, effect of various alignments of double walled carbon nanotubes (DWCNTs) in composite is evaluated for axial, lateral and through plane properties. Layers of DWCNTs are incorporated in the matrix. Four models with different layer combinations are analysed using 3D representative volume element. The highest value of axial modulus is observed for composite in which DWCNTs are aligned in direction of loading. Enhancement in lateral stiffness is observed for the models in which layers are aligned in plane perpendicular direction. Through plane stiffness is improved in vertically aligned DWCNT composite. It is observed that both axial and lateral moduli of composite behave non-linearly with respect to DWCNT volume fraction. This is because of the effect of agglomeration, due to the higher content of DWCNT in the composite. The proposed simulation is based on the experimentally adopted alignment of carbon nanotubes. DWCNT based composites with specific properties along various directions can be designed by controlling the volume fractions and alignment of the DWCNT sheets.

  7. Full elastic constitutive relation of non-isotropic aligned-CNT/PDMS flexible nanocomposites

    NASA Astrophysics Data System (ADS)

    Sepúlveda, A. T.; Guzman de Villoria, R.; Viana, J. C.; Pontes, A. J.; Wardle, B. L.; Rocha, L. A.

    2013-05-01

    The elastic response of vertically aligned-carbon nanotube/polydimethylsiloxane (A-CNT/PDMS) nanocomposites is presented in this study and related to the underlying aligned-CNT morphology. Multiwalled carbon nanotubes (MWCNTs) at 1% Vf are embedded in a flexible substrate of PDMS to create a flexible polymer nanocomposite (PNC). The PNC properties are evaluated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and tensile mechanical tests, and the full linearly elastic constitutive relation is established for such a PNC. The results suggest that the CNTs retain the alignment after wetting and curing of PDMS. PDMS is significantly modified by the reinforcing aligned-CNT fibers, demonstrating non-isotropic (as opposed to the isotropic neat PDMS) elastic properties all different from PDMS (Young's modulus of 0.8 MPa), including an anisotropy ratio of 4.8 and increases in the modulus of A-CNT/PDMS over PDMS by more than 900% and 100%, in the CNT longitudinal and transverse directions, respectively. This study reports the first full constitutive relation that may be useful in modeling PNCs as composites or as elements of hierarchical nanoengineered composites, particularly PDMS-CNT PNCs are envisioned as elements in biomedical devices such as pressure transducers and energy harvesters.

  8. Encapsulation of segmented Pd-Co nanocomposites into vertically aligned carbon nanotubes by plasma-hydrogen-induced demixing

    SciTech Connect

    Fujita, Takeshi; Hayashi, Yasuhiko; Tokunaga, Tomoharu; Butler, T.; Rupesinghe, N. L.; Teo, K. B. K.; Amaratunga, G. A. J.

    2007-03-26

    Vertically aligned carbon nanotubes (VA-CNTs) filled with Pd-Co nanocomposites on an Si substrate have been synthesized by microwave plasma-enhanced chemical vapor deposition. It was confirmed that adjacent Pd-Co nanocomposites in the VA-CNTs were compositionally separated. Most CNTs contained Co pillars on top; however, Pd pillars were rarely present. The strong magnetic induction from an individual Co pillar was revealed by electron holography. The simultaneous phenomenon of the demixing by plasma hydrogen irradiation and the preferential encapsulation into CNTs realized the unique Pd-Co nanocomposites.

  9. Enhanced electrical properties of vertically aligned carbon nanotube-epoxy nanocomposites with high packing density.

    PubMed

    Souier, Tewfik; Santos, Sergio; Al Ghaferi, Amal; Stefancich, Marco; Chiesa, Matteo

    2012-01-01

    During their synthesis, multi-walled carbon nanotubes can be aligned and impregnated in a polymer matrix to form an electrically conductive and flexible nanocomposite with high backing density. The material exhibits the highest reported electrical conductivity of CNT-epoxy composites (350 S/m). Here, we show how conductive atomic force microscopy can be used to study the electrical transport mechanism in order to explain the enhanced electrical properties of the composite. The high spatial resolution and versatility of the technique allows us to further decouple the two main contributions to the electrical transport: (1) the intrinsic resistance of the tube and (2) the tunneling resistance due to nanoscale gaps occurring between the epoxy-coated tubes along the composite. The results show that the material behaves as a conductive polymer, and the electrical transport is governed by electron tunneling at interconnecting CNT-polymer junctions. We also point out the theoretical formulation of the nanoscale electrical transport between the AFM tip and the sample in order to derive both the composite conductivity and the CNT intrinsic properties. The enhanced electrical properties of the composite are attributed to high degree of alignment, the CNT purity, and the large tube diameter which lead to low junction resistance. By controlling the tube diameter and using other polymers, the nanocomposite electrical conductivity can be improved. PMID:23158381

  10. Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration.

    PubMed

    Zhu, Wei; Masood, Fahed; O'Brien, Joseph; Zhang, Lijie Grace

    2015-04-01

    Neural tissue engineering offers a promising avenue for repairing neural injuries. Advancement in nanotechnology and neural scaffold manufacturing strategies has shed light on this field into a new era. In this study, a novel tissue engineered scaffold, which possesses highly aligned poly-ε-caprolactone microfibrous framework and adjustable bioactive factor embedded poly (d, l-lactide-co-glycolide) core-shell nanospheres, was fabricated by combining electrospinning and electrospraying techniques. The fabricated nanocomposite scaffold has cell favorable nanostructured feature and improved hydrophilic surface property. More importantly, by incorporating core-shell nanospheres into microfibrous scaffold, a sustained bioactive factor release was achieved. Results show rat pheochromocytoma (PC-12) cell proliferation was significantly promoted on the nanocomposite scaffold. In addition, confocal microscope images illustrated that the highly aligned scaffold increased length of neurites and directed neurites extension along the fibers in both PC-12 and astrocyte cell lines, which indicates that the scaffold is promising for guiding neural tissue growth and regeneration. From the clinical editor: In an attempt to direct neural cell growth, biomimetic neural scaffold was produced by electrospinning integrated with co-axial electrospraying techniques. In-vitro data provided a framework for future designs for neuronal regeneration.

  11. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering.

    PubMed

    He, Xu; Xiao, Qiang; Lu, Canhui; Wang, Yaru; Zhang, Xiaofang; Zhao, Jiangqi; Zhang, Wei; Zhang, Ximu; Deng, Yulin

    2014-02-10

    Uniaxially aligned cellulose nanofibers with well oriented cellulose nanocrystals (CNCs) embedded were fabricated via electrospinning using a rotating drum as the collector. Scanning electron microscope (SEM) images indicated that most cellulose nanofibers were uniaxially aligned. The incorporation of CNCs into the spinning dope resulted in more uniform morphology of the electrospun cellulose/CNCs nanocomposite nanofibers (ECCNN). Polarized light microscope (PLM) and transmission electron microscope (TEM) showed that CNCs dispersed well in ECCNN nonwovens and achieved considerable orientation along the long axis direction. This unique hierarchical microstructure of ECCNN nonwovens gave rise to remarkable enhancement of their physical properties. By incorporating 20% loading (in weight) of CNCs, the tensile strength and elastic modulus of ECCNN along the fiber alignment direction were increased by 101.7 and 171.6%, respectively. Their thermal stability was significantly improved as well. In addition, the ECCNN nonwovens were assessed as potential scaffold materials for tissue engineering. It was elucidated from MTT tests that the ECCNN were essentially nontoxic to human cells. Cell culture experiments demonstrated that cells could proliferate rapidly not only on the surface but also deep inside the ECCNN. More importantly, the aligned nanofibers of ECCNN exhibited a strong effect on directing cellular organization. This feature made the scaffold particularly useful for various artificial tissues or organs, such as blood vessel, tendon, nerve, and so on, in which cell orientation was crucial for their performance.

  12. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.

    PubMed

    Pierucci, Debora; Henck, Hugo; Avila, Jose; Balan, Adrian; Naylor, Carl H; Patriarche, Gilles; Dappe, Yannick J; Silly, Mathieu G; Sirotti, Fausto; Johnson, A T Charlie; Asensio, Maria C; Ouerghi, Abdelkarim

    2016-07-13

    Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential. PMID:27281693

  13. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.

    PubMed

    Pierucci, Debora; Henck, Hugo; Avila, Jose; Balan, Adrian; Naylor, Carl H; Patriarche, Gilles; Dappe, Yannick J; Silly, Mathieu G; Sirotti, Fausto; Johnson, A T Charlie; Asensio, Maria C; Ouerghi, Abdelkarim

    2016-07-13

    Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential.

  14. Self-Assembled Epitaxial Au-Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials.

    PubMed

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; Hogan, Nicki L; Lu, Ping; Khatkhatay, Fauzia; Zhang, Wenrui; Jian, Jie; Huang, Jijie; Su, Qing; Fan, Meng; Jacob, Clement; Li, Jin; Zhang, Xinghang; Jia, Quanxi; Sheldon, Matthew; Alù, Andrea; Li, Xiaoqin; Wang, Haiyan

    2016-06-01

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal-oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (∼20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. Our studies suggest that these self-assembled metal-oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.

  15. Self-Assembled Epitaxial Au-Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials.

    PubMed

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; Hogan, Nicki L; Lu, Ping; Khatkhatay, Fauzia; Zhang, Wenrui; Jian, Jie; Huang, Jijie; Su, Qing; Fan, Meng; Jacob, Clement; Li, Jin; Zhang, Xinghang; Jia, Quanxi; Sheldon, Matthew; Alù, Andrea; Li, Xiaoqin; Wang, Haiyan

    2016-06-01

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal-oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (∼20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. Our studies suggest that these self-assembled metal-oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales. PMID:27186652

  16. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites.

    PubMed

    Pullawan, Tanittha; Wilkinson, Arthur N; Eichhorn, Stephen J

    2012-08-13

    Orientation of cellulose nanowhiskers (CNWs) derived from tunicates, in an all-cellulose nanocomposite, is achieved through the application of a magnetic field. CNWs are incorporated into a dissolved cellulose matrix system and during solvent casting of the nanocomposite a magnetic field is applied to induce their alignment. Unoriented CNW samples, without the presence of a magnetic field, are also produced. The CNWs are found to orient under the action of the magnetic field, leading to enhanced stiffness and strength of the composites, but not to the level that is theoretically predicted for a fully aligned system. Lowering the volume fraction of the CNWs is shown to allow them to orient more readily in the magnetic field, leading to larger relative increases in the mechanical properties. It is shown, using polarized light microscopy, that the all-cellulose composites have a domain structure, with some domains showing pronounced orientation of CNWs and others where no preferred orientation occurs. Raman spectroscopy is used to both follow the position of bands located at ~1095 and ~895 cm(-1) with deformation and also their intensity as a function rotation angle of the specimens. It is shown that these approaches give valuable independent information on the respective molecular deformation and orientation of the CNWs, and the molecules in the matrix phase, in oriented and nonoriented domains of all-cellulose composites. These data are then related to an increase in the level of molecular deformation in the axial direction, as revealed by the Raman technique. Little orientation of the matrix phase is observed under the action of the magnetic field indicating the dominance of the stiff CNWs in governing mechanical properties.

  17. Mechanics of aligned carbon nanotube polymer matrix nanocomposites simulated via stochastic three-dimensional morphology.

    PubMed

    Stein, Itai Y; Wardle, Brian L

    2016-01-22

    The promise of enhanced and tailored properties motivates the study of one-dimensional nanomaterials, especially aligned carbon nanotubes (A-CNTs), for the reinforcement of polymeric materials. While CNTs have remarkable theoretical properties, previous work on aligned CNT polymer matrix nanocomposites (A-PNCs) reported mechanical properties that are orders of magnitude lower than those predicted by rule of mixtures. This large difference primarily originates from the morphology of the CNTs, because the CNTs that comprise the A-PNCs have significant local curvature commonly referred to as waviness. Here we present a simulation framework capable of analyzing 10(5) wavy CNTs with realistic three-dimensional morphologies to quantify the impact of waviness on the effective elastic modulus contribution of wavy CNTs. The simulation results show that due to the low shear modulus of the reinforcing CNT 'fibers', and large ([Formula: see text]) compliance contribution of the shear deformation mode, waviness reduces the effective stiffness contribution of the A-CNTs by two to three orders of magnitude. Also, the mechanical property predictions resulting from the simulation framework outperform those previously reported using finite element analysis since representative descriptions of the morphology are required to accurately predict properties of the A-PNCs. Further work to quantify the morphology of A-PNCs in three-dimensions, simulate their full non-isotropic constitutive relations, and predict their failure mechanisms is planned. PMID:26636342

  18. Mechanics of aligned carbon nanotube polymer matrix nanocomposites simulated via stochastic three-dimensional morphology

    NASA Astrophysics Data System (ADS)

    Stein, Itai Y.; Wardle, Brian L.

    2016-01-01

    The promise of enhanced and tailored properties motivates the study of one-dimensional nanomaterials, especially aligned carbon nanotubes (A-CNTs), for the reinforcement of polymeric materials. While CNTs have remarkable theoretical properties, previous work on aligned CNT polymer matrix nanocomposites (A-PNCs) reported mechanical properties that are orders of magnitude lower than those predicted by rule of mixtures. This large difference primarily originates from the morphology of the CNTs, because the CNTs that comprise the A-PNCs have significant local curvature commonly referred to as waviness. Here we present a simulation framework capable of analyzing 105 wavy CNTs with realistic three-dimensional morphologies to quantify the impact of waviness on the effective elastic modulus contribution of wavy CNTs. The simulation results show that due to the low shear modulus of the reinforcing CNT ‘fibers’, and large (\\gt 50%) compliance contribution of the shear deformation mode, waviness reduces the effective stiffness contribution of the A-CNTs by two to three orders of magnitude. Also, the mechanical property predictions resulting from the simulation framework outperform those previously reported using finite element analysis since representative descriptions of the morphology are required to accurately predict properties of the A-PNCs. Further work to quantify the morphology of A-PNCs in three-dimensions, simulate their full non-isotropic constitutive relations, and predict their failure mechanisms is planned.

  19. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-01

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  20. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-01

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials. PMID:26226296

  1. Bis-GMA/TEGDMA Dental Composites Reinforced with Electrospun Nylon 6 Nanocomposite Nanofibers Containing Highly Aligned Fibrillar Silicate Single Crystals.

    PubMed

    Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Xu, Riwei; Hedin, Nyle E; Fong, Hao

    2007-04-24

    The objective of this research was to study the reinforcement of electrospun nylon 6/fibrillar silicate nanocomposite nanofibers on Bis-GMA/TEGDMA dental composites. The hypothesis was that the uniform distribution of nano-scaled and highly aligned fibrillar silicate single crystals into electrospun nylon 6 nanofibers would improve the mechanical properties of the resulting nanocomposite nanofibers, and would lead to the effective reinforcement of dental composites. The nylon 6/fibrillar silicate nanocomposite nanofibers were crystalline, structurally oriented and had an average diameter of approximately 250 nm. To relatively well distribute nanofibers in dental composites, the nanofiber containing composite powders with a particle structure similar to that in interpenetration networks were prepared first, and then used to make the dental composites. The results indicated that small mass fractions (1 % and 2 %) of nanofiber impregnation improved the mechanical properties substantially, while larger mass factions (4 % and 8 %) of nanofiber impregnation resulted in less desired mechanical properties.

  2. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects.

    PubMed

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-19

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ∼10(-8) Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon. PMID:27383767

  3. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects

    NASA Astrophysics Data System (ADS)

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-01

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ˜10-8 Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  4. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects

    NASA Astrophysics Data System (ADS)

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-01

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ∼10‑8 Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  5. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects.

    PubMed

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-19

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ∼10(-8) Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  6. Complementary characterization data in support of uniaxially aligned electrospun nanocomposites based on a model PVOH-epoxy system

    PubMed Central

    Karimi, Samaneh; Staiger, Mark P.; Buunk, Neil; Fessard, Alison; Tucker, Nick

    2016-01-01

    This paper presents complementary data corresponding to characterization tests done for our research article entitled “Uniaxially aligned electrospun fibers for advanced nanocomposites based on a model PVOH-epoxy system” (Karimi et al., 2016) [1]. Poly(vinyl alcohol) and epoxy resin were selected as a model system and the effect of electrospun fiber loading on polymer properties was examined in conjunction with two manufacturing methods. A novel electrospinning technology for production of uniaxially aligned nanofiber arrays was used. A conventional wet lay-up fabrication method is compared against a novel, hybrid electrospinning–electrospraying approach. The structure and thermomechanical properties of resulting composite materials were examined using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile testing. For discussion of obtained results please refer to the research paper (Karimi et al., 2016) [1]. PMID:26977430

  7. Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO{sub 3}:CoFe{sub 2}O{sub 4} vertically aligned nanocomposite thin films

    SciTech Connect

    Zhang, Wenrui; Jiao, Liang; Li, Leigang; Jian, Jie; Khatkhatay, Fauzia; Chu, Frank; Chen, Aiping; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2014-02-10

    Self-assembled BiFeO{sub 3}:CoFe{sub 2}O{sub 4} (BFO:CFO) vertically aligned nanocomposite thin films have been fabricated on SrTiO{sub 3} (001) substrates using pulsed laser deposition. The strain relaxation mechanism between BFO and CFO with a large lattice mismatch has been studied by X-ray diffraction and transmission electron microscopy. The as-prepared nanocomposite films exhibit enhanced perpendicular magnetic anisotropy as the BFO composition increases. Different anisotropy sources have been investigated, suggesting that spin-flop coupling between antiferromagnetic BFO and ferrimagnetic CFO plays a dominant role in enhancing the uniaxial magnetic anisotropy.

  8. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit.

    PubMed

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D; Taggart-Scarff, Joshua K; Qing, Bo; Van Vliet, Krystyn J; Li, Richard; Wardle, Brian L; Strano, Michael S

    2016-07-22

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.

  9. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit.

    PubMed

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D; Taggart-Scarff, Joshua K; Qing, Bo; Van Vliet, Krystyn J; Li, Richard; Wardle, Brian L; Strano, Michael S

    2016-07-22

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction. PMID:27463667

  10. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit

    NASA Astrophysics Data System (ADS)

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D.; Taggart-Scarff, Joshua K.; Qing, Bo; Van Vliet, Krystyn J.; Li, Richard; Wardle, Brian L.; Strano, Michael S.

    2016-07-01

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.

  11. Effect of Nb-doped TiO2 on nanocomposited aligned ZnO nanorod/TiO2:Nb for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Saurdi, I.; Shafura, A. K.; Azhar, N. E. A.; Ishak, A.; Malek, M. F.; Alrokayan, A. H. Salman; Khan, Haseeb A.; Mamat, M. H.; Rusop, M.

    2016-07-01

    The Nb-doped TiO2 films were deposited on glass substrate at different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively and their electrical and structural properties were investigated. Subsequently, the Nb-doped TiO2 films were deposited on top of aligned ZnO Nanorod on ITO glass substrates using spin coating technique. The nanocomposited aligned ZnO nanorod/Nb-doped TiO2 (TiO2:Nb) were coated with different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively. The Dye-sensitized solar cells were fabricated from the nanocomposited aligned ZnO nanorod/TiO2:Nb photoanodes and their effects on the performance of the DSSCs were investigated. From the solar simulator measurement of DSSC the solar energy conversion efficiency (η) of 5.376% under AM 1.5 was obtained for the ZnO nanorod/TiO2:Nb-5at.%.

  12. Field-Aligned Electron Events Observed in the Radiation Belts by the HOPE Instruments aboard the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Lejosne, S.; Agapitov, O. V.; Mozer, F.

    2015-12-01

    Field-aligned electron events (FAEs) are defined as events having the ratio of field-aligned to perpendicular flux greater than three. Time Domain Structures (TDS) are known to produce FAEs. Whistler and ECH waves are other possible candidates. Our objective is to derive the general features of the FAEs, to identify their driving mechanisms and to evaluate the importance of the different mechanisms. More than two years of measurements by the Helium Oxygen Proton Electron mass spectrometer and the Electric Field and Waves experiment are analyzed to identify low-energy (100eV-50keV) FAEs and to quantify the concurrent electric and magnetic wave components. We also peek at the observable waveforms with bursts of high-time resolution measurements. From statistical analysis and case studies, we suggest in particular that TDS cause field-alignment of ~300eV electrons in the pre-midnight sector while chorus waves cause field-alignment of electrons of ~10keV in the morning sector of the outer belt.

  13. Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:LaFeO3 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Fan, Meng; Zhang, Wenrui; Jian, Jie; Huang, Jijie; Wang, Haiyan

    2016-07-01

    Strong exchange bias (EB) in perpendicular direction has been demonstrated in vertically aligned nanocomposite (VAN) (La0.7Sr0.3MnO3)1-x : (LaFeO3)x (LSMO:LFO, x = 0.33, 0.5, 0.67) thin films deposited by pulsed laser deposition. Under a moderate magnetic field cooling, an EB field as high as ˜800 Oe is achieved in the VAN film with x = 0.33, suggesting a great potential for its applications in high density memory devices. Such enhanced EB effects in perpendicular direction can be attributed to the high quality epitaxial co-growth of vertically aligned ferromagnetic LSMO and antiferromagnetic LFO phases, and the vertical interface coupling associated with a disordered spin-glass state. The VAN design paves a powerful way for integrating perpendicular EB effect within thin films and provides a new dimension for advanced spintronic devices.

  14. Magnetotransport properties of quasi-one-dimensionally channeled vertically aligned heteroepitaxial nanomazes

    SciTech Connect

    Chen, Aiping; Zhang, Wenrui; Khatkhatay, Fauzia; Su, Qing; Tsai, Chen-Fong; Chen, Li; Wang, H.; Jia, Q. X.; MacManus-Driscoll, Judith L.

    2013-03-04

    A unique quasi-one-dimensionally channeled nanomaze structure has been self-assembled in the (La{sub 0.7}Sr{sub 0.3}MnO{sub 3}){sub 1−x}:(ZnO){sub x} vertically aligned nanocomposites (VANs). Significantly enhanced magnetotransport properties have been achieved by tuning the ZnO composition x. The heteroepitaxial VAN thin films, free of large angle grain boundaries, exhibit a maximum low-field magnetoresistance (LFMR) of 75% (20 K and 1 T). The enhanced LFMR close to the percolation threshold is attributed to the spin-polarized tunneling through the ferromagnetic/insulating/ferromagnetic vertical sandwiches in the nanomazes. This study suggests that the phase boundary in the nanomaze structure is an alternative approach to produce decoupled ferromagnetic domains and thus to achieve enhanced magnetoresistance.

  15. Synthesis and Applications of Inorganic/Organic-Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Goyal, Anubha

    (vinylidene fluoride-hexafluoropropylene (PVDF-HFP) polymer electrolyte with the three-dimensional (3D), nanostructured electrode composed of aligned carbon nanotube (CNT)-copper oxide hybrid. This hybrid electrode was fabricated by a combination of chemical vapor deposition and electrodeposition techniques. Embedding it in PVDF polymer results in a flexible system and also renders an external separator redundant. This new design shows an improvement in electrochemical performance over pure CNTs as both CNTs and Cu2O contribute towards electrochemical activity. Efforts have also been undertaken towards synthesizing synthetic adhesives by mimicking the design principles found in nature. Aligned patterned CNTs have been used to replicate the fibrillar structure found in geckos' toes which generates adhesion through van der Waals forces. The adhesive forces in CNTs were found to be higher than in geckos and the key to this phenomenon lies in the extensive side-wall contact obtained on compressing CNTs against a surface.

  16. Perpendicular Exchange-Biased Magnetotransport at the Vertical Heterointerfaces in La(0.7)Sr(0.3)MnO3:NiO Nanocomposites.

    PubMed

    Zhang, Wenrui; Li, Leigang; Lu, Ping; Fan, Meng; Su, Qing; Khatkhatay, Fauzia; Chen, Aiping; Jia, Quanxi; Zhang, Xinghang; MacManus-Driscoll, Judith L; Wang, Haiyan

    2015-10-01

    Heterointerfaces in manganite-based heterostructures in either layered or vertical geometry control their magnetotransport properties. Instead of using spin-polarized tunneling across the interface, a unique approach based on the magnetic exchange coupling along the vertical interface to control the magnetotransport properties has been demonstrated. By coupling ferromagnetic La0.7Sr0.3MnO3 and antiferromagnetic NiO in an epitaxial vertically aligned nanocomposite (VAN) architecture, a dynamic and reversible switch of the resistivity between two distinct exchange biased states has been achieved. This study explores the use of vertical interfacial exchange coupling to tailor magnetotransport properties, and demonstrates their viability for spintronic applications.

  17. Polyolefin nanocomposites

    DOEpatents

    Chaiko, David J.

    2007-01-02

    The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.

  18. Porous alumina based ordered nanocomposite coating for wear resistance

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Muthukumar, M.; Bobji, M. S.

    2016-08-01

    Uniformly dispersed nanocomposite coating of aligned metallic nanowires in a matrix of amorphous alumina is fabricated by pulsed electrodeposition of copper into the pores of porous anodic alumina. Uniform deposition is obtained by controlling the geometry of the dendritic structure at the bottom of pores through stepwise voltage reduction followed by mild etching. The tribological behaviour of this nanocomposite coating is evaluated using a ball on flat reciprocating tribometer under the dry contact conditions. The nanocomposite coating has higher wear resistance compared to corresponding porous alumina coating. Wear resistant nanocomposite coating has wide applications especially in protecting the internal surfaces of aluminium internal combustion engines.

  19. Strong perpendicular exchange bias in epitaxial La(0.7)Sr(0.3)MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling.

    PubMed

    Zhang, Wenrui; Chen, Aiping; Jian, Jie; Zhu, Yuanyuan; Chen, Li; Lu, Ping; Jia, Quanxi; MacManus-Driscoll, Judith L; Zhang, Xinghang; Wang, Haiyan

    2015-09-01

    An exchange bias effect with perpendicular anisotropy is of great interest owing to potential applications such as read heads in magnetic storage devices with high thermal stability and reduced dimensions. Here we report a novel approach for achieving perpendicular exchange bias by orienting the ferromagnetic/antiferromagnetic coupling in the vertical geometry through a unique vertically aligned nanocomposite (VAN) design. Our results demonstrate robust perpendicular exchange bias phenomena in micrometer-thick films employing a prototype material system of antiferromagnetic BiFeO3 and ferromagnetic La0.7Sr0.3MnO3. The unique response of exchange bias to a perpendicular magnetic field reveals the existence of exchange coupling along their vertical heterointerfaces, which exhibits a strong dependence on their strain states. This VAN approach enables a large selection of material systems for achieving perpendicular exchange bias, which could lead to advanced spintronic devices.

  20. Mapping Van

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A NASA Center for the Commercial Development of Space (CCDS) - developed system for satellite mapping has been commercialized for the first time. Global Visions, Inc. maps an area while driving along a road in a sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. Data is fed into a computerized geographic information system (GIS). The resulting amps can be used for tax assessment purposes, emergency dispatch vehicles and fleet delivery companies as well as other applications.

  1. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  2. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  3. Curriculum Alignment.

    ERIC Educational Resources Information Center

    Crowell, Ronald; Tissot, Paula

    Curriculum alignment (CA) refers to the congruence of all the elements of a school's curriculum: curriculum goals; instructional program--what is taught and the materials used; and tests used to judge outcomes. CA can be a very powerful can be a very powerful factor in improving schools. Although further research is needed on CA, there is…

  4. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  5. Perpendicular Exchange-Biased Magnetotransport at the Vertical Heterointerfaces in La(0.7)Sr(0.3)MnO3:NiO Nanocomposites.

    PubMed

    Zhang, Wenrui; Li, Leigang; Lu, Ping; Fan, Meng; Su, Qing; Khatkhatay, Fauzia; Chen, Aiping; Jia, Quanxi; Zhang, Xinghang; MacManus-Driscoll, Judith L; Wang, Haiyan

    2015-10-01

    Heterointerfaces in manganite-based heterostructures in either layered or vertical geometry control their magnetotransport properties. Instead of using spin-polarized tunneling across the interface, a unique approach based on the magnetic exchange coupling along the vertical interface to control the magnetotransport properties has been demonstrated. By coupling ferromagnetic La0.7Sr0.3MnO3 and antiferromagnetic NiO in an epitaxial vertically aligned nanocomposite (VAN) architecture, a dynamic and reversible switch of the resistivity between two distinct exchange biased states has been achieved. This study explores the use of vertical interfacial exchange coupling to tailor magnetotransport properties, and demonstrates their viability for spintronic applications. PMID:26394548

  6. Image alignment

    SciTech Connect

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  7. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  8. Global alignment: Finding rearrangements during alignment

    SciTech Connect

    Brudno, Michael; Malde, Sanket; Poliakov, Alexander; Do, Chuong B.; Couronne, Olivier; Dubchak, Inna; Batzoglou, Serafim

    2003-01-06

    Motivation: To compare entire genomes from different species, biologists increasingly need alignment methods that are efficient enough to handle long sequences, and accurate enough to correctly align the conserved biological features between distant species. The two main classes of pairwise alignments are global alignment, where one string is transformed into the other, and local alignment, where all locations of similarity between the two strings are returned. Global alignments are less prone to demonstrating false homology as each letter of one sequence is constrained to being aligned to only one letter of the other. Local alignments, on the other hand, can cope with rearrangements between non-syntenic, orthologous sequences by identifying similar regions in sequences; this, however, comes at the expense of a higher false positive rate due to the inability of local aligners to take into account overall conservation maps.

  9. Polarizing properties of silver/glass nanocomposites

    NASA Astrophysics Data System (ADS)

    Bloemer, Mark J.; Haus, Joseph W.

    1997-10-01

    The absorption of visible light by metal colloids provides beautiful colored glass for aesthetic as well as practical purposes. Since the metal particles dispersed in the colloid have diameters much smaller than the wavelength of light, on the order of 10nm, the elastic scattering cross section is negligible. In typical colloidal solutions the metal particles are approximately spherical and therefore the optical constants are isotropic. Some metal/glass nanocomposites such as RG6 Schott glass contain nonspherical metal particles but the orientation of the particles in the host is random. In order to obtain a polarizing nanocomposite, the nonspherical metal particles must be aligned along a common axis. A fabrication technique based on ultrathin metal deposition has been found to provides the necessary size, shape, and orientation of the metal particles for highly anisotropic optical constants in the visible and near-IR. The measured absorption spectra of the films are analyzed by Maxwell-Garnett theory. The nanocomposite films have extinction coefficients that vary by 2 orders of magnitude depending on the polarization of the incident light. These metal nanocomposite films are useful for micro-optic and waveguide polarizers.

  10. Polymer-Layered Silicate Nanocomposites for Cryotank Applications

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Meador, Michael A.

    2007-01-01

    Previous composite cryotank designs have relied on the use of conventional composite materials to reduce microcracking and permeability. However, revolutionary advances in nanotechnology derived materials may enable the production of ultra-lightweight cryotanks with significantly enhanced durability and damage tolerance, as well as reduced propellant permeability. Layered silicate nanocomposites are especially attractive in cryogenic storage tanks based on results that have been reported for epoxy nanocomposite systems. These materials often exhibit an order of magnitude reduction in gas permeability when compared to the base resin. In addition, polymer-silicate nanocomposites have been shown to yield improved dimensional stability, strength, and toughness. The enhancement in material performance of these systems occurs without property trade-offs which are often observed in conventionally filled polymer composites. Research efforts at NASA Glenn Research Center have led to the development of epoxy-clay nanocomposites with 70% lower hydrogen permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. The pronounced reduction observed with the tank may be due to flow induced alignment of the clay layers during processing. Additionally, the nanocomposites showed CTE reductions of up to 30%, as well as a 100% increase in toughness.

  11. VAN method lacks validity

    NASA Astrophysics Data System (ADS)

    Jackson, David D.; Kagan, Yan Y.

    Varotsos and colleagues (the VAN group) claim to have successfully predicted many earthquakes in Greece. Several authors have refuted these claims, as reported in the May 27,1996, special issue of Geophysical Research Letters and a recent book, A Critical Review of VAN [Lighthill 1996]. Nevertheless, the myth persists. Here we summarize why the VAN group's claims lack validity.The VAN group observes electrical potential differences that they call “seismic electric signals” (SES) weeks before and hundreds of kilometers away from some earthquakes, claiming that SES are somehow premonitory. This would require that increases in stress or decreases in strength cause the electrical variations, or that some regional process first causes the electrical signals and then helps trigger the earthquakes. Here we adopt their notation SES to refer to the electrical variations, without accepting any link to the quakes.

  12. Van Gogh Sun

    NASA Video Gallery

    Nicholeen Viall, a solar scientist at NASA's Goddard Space Flight Center creates images of the sun reminiscent of Van Gogh, but it's science, not art. The color of each pixel contains a wealth of i...

  13. Interfacial stress transfer in graphene oxide nanocomposites.

    PubMed

    Li, Zheling; Young, Robert J; Kinloch, Ian A

    2013-01-23

    Raman spectroscopy has been used for the first time to monitor interfacial stress transfer in poly(vinyl alcohol) nanocomposites reinforced with graphene oxide (GO). The graphene oxide nanocomposites were prepared by a simple mixing method and casting from aqueous solution. They were characterized using scanning electron microscopy, X-ray diffraction, and polarized Raman spectroscopy and their mechanical properties determined by tensile testing and dynamic mechanical thermal analysis. It was found that GO was fully exfoliated during the nanocomposite preparation process and that the GO nanoplatelets tended align in the plane of the films. The stiffness and yield stress of the nanocomposites were found to increase with GO loading but the extension to failure decreased. It was shown that the Raman D band at ~1335 cm(-1) downshifted as the nanocomposites were strained as a result of the interfacial stress transfer between the polymer matrix and GO reinforcement. From knowledge of the Grüneisen parameter for graphene, it was possible to estimate the effective Young's modulus of the GO from the Raman D band shift rate per unit strain to be of the order of 120 GPa. A similar value of effective modulus was found from the tensile mechanical data using the "rule of mixtures" that decreased with GO loading. The accepted value of Young's modulus for GO is in excess of 200 GPa and it is suggested that the lower effective Young's modulus values determined may be due to a combination of finite flake dimensions, waviness and wrinkles, aggregation, and misalignment of the GO flakes.

  14. van der Waals Heterostructures Grown by MBE

    NASA Astrophysics Data System (ADS)

    Hinkle, Christopher

    In this work, we demonstrate the high-quality MBE heterostructure growth of various layered 2D materials by van der Waals epitaxy (VDWE). The coupling of different types of van der Waals materials including transition metal dichalcogenide thin films (e.g., WSe2, WTe2, HfSe2) , insulating hexagonal boron nitride (h-BN), and topological insulators (e.g., Bi2Se3) allows for the fabrication of novel electronic devices that take advantage of unique quantum confinement and spin-based characteristics. The relaxed lattice-matching criteria of van der Waals epitaxy has allowed for high-quality heterostructure growth with atomically abrupt interfaces, allowing us to couple these materials based primarily on their band alignment and electronic properties. We will discuss the impact of sample preparation, surface reactivity, and lattice mismatch of various substrates (sapphire, graphene, TMDs, Bi2Se3) on the growth mode and quality of the films and will discuss our studies of substrate temperature and flux rates on the resultant growth and grain size. Structural and chemical characterization was conducted via reflection high energy electron diffraction (RHEED, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning tunneling microscopy/spectroscopy (STM/S), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Experimentally determined band alignments have been determined and compared with first-principles calculations allowing the design of novel low-power logic and magnetic memory devices. Initial results from the electrical characterization of these grown thin films and some simple devices will also be presented. These VDWE grown layered 2D materials show significant potential for fabricating novel heterostructures with tunable band alignments and magnetic properties for a variety of nanoelectronic and optoelectronic applications.

  15. Magnetic Alignment of Cellulose Nanowhiskers in an All-Cellulose Composite

    SciTech Connect

    Li, Dongsheng; Liu, Zuyan; Al-Haik, Marwan; Tehrani, Mehran; Murray, Frank; Tennenbaum, Rina; Garmestani, Hamid

    2010-08-01

    Unidirectional reinforced nanocomposite paper was fabricated from cellulose nanowhiskers and wood pulp under an externally-applied magnetic field. A 1.2 Tesla magnetic field was applied in order to align the nanowhiskers in the pulp as it was being formed into a sheet of paper. The magnetic alignment was driven by the characteristic negative diamagnetic anisotropy of the cellulose nanowhiskers. ESEM micrographs demonstrated unidirectional alignment of the nanowhiskers in the all-cellulose composite paper. Comparing with control paper sheets made from wood pulp only, the storage modulus in the all-cellulose nanocomposites increased dramatically. The storage modulus along the direction perpendicular to the magnetic field was much stronger than that parallel to the magnetic field. This new nanocomposite, which contains preferentially-oriented microstructures and has improved mechanical properties, demonstrates the possibility of expanding the functionality of paper products and constitutes a promising alternative to hydrocarbon based materials and fibers.

  16. Van der Waals interaction in uniaxial anisotropic media

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.

    2013-01-01

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.

  17. Van der Waals interaction in uniaxial anisotropic media.

    PubMed

    Kornilovitch, Pavel E

    2013-01-23

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts. PMID:23234868

  18. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  19. MAVID multiple alignment server.

    PubMed

    Bray, Nicolas; Pachter, Lior

    2003-07-01

    MAVID is a multiple alignment program suitable for many large genomic regions. The MAVID web server allows biomedical researchers to quickly obtain multiple alignments for genomic sequences and to subsequently analyse the alignments for conserved regions. MAVID has been successfully used for the alignment of closely related species such as primates and also for the alignment of more distant organisms such as human and fugu. The server is fast, capable of aligning hundreds of kilobases in less than a minute. The multiple alignment is used to build a phylogenetic tree for the sequences, which is subsequently used as a basis for identifying conserved regions in the alignment. The server can be accessed at http://baboon.math.berkeley.edu/mavid/.

  20. Nearest Alignment Space Termination

    2006-07-13

    Near Alignment Space Termination (NAST) is the Greengenes algorithm that matches up submitted sequences with the Greengenes database to look for similarities and align the submitted sequences based on those similarities.

  1. Nanocomposite thermite ink

    DOEpatents

    Tappan, Alexander S.; Cesarano, III, Joseph; Stuecker, John N.

    2011-11-01

    A nanocomposite thermite ink for use in inkjet, screen, and gravure printing. Embodiments of this invention do not require separation of the fuel and oxidizer constituents prior to application of the ink to the printed substrate.

  2. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  3. Multifunctional nanocomposite materials

    SciTech Connect

    Roy, R.; Komarneni, S.

    1991-11-01

    Objective is to examine the low temperature nanocomposite route in the synthesis of multifunctional materials using two-dimensional clays as hosts. After about 8 months, a significant advance was made in the design and synthesis of novel nanocomposite materials, which are nanometal intercalated clays prepared by a low temperature route. A layered V[sub 2]O[sub 5] gel has been made hydrothermally and its cation exchange properties measured. Several pillared clays have also been synthesized and characterized.

  4. Electrical, Thermal, and Machining Behaviour of Injection Moulded Polymeric CNT Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mahmoodi, Mehdi

    Carbon nanotubes (CNTs) are promising additives for thermoplastics, resulting from their superior electrical, thermal and mechanical properties. Due to the desirable properties of CNT/polymer composites and their wide application in technological devices, these materials have attracted a great deal of attention from both academia and industry. A considerable amount of research has been devoted to the processing of CNT-filled nanocomposites, but only a few investigations have focussed on the injection moulding of these nanocomposites. This research was aimed at the study of the flow-induced alignment of CNT/polymer nanocomposites through the injection moulding process. We focussed on the understanding of the alignment of multi-walled carbon nanotubes (MWCNTs) in a thermoplastic matrix and the investigation of the alignment's effect on the electrical, thermal and machining characteristics of the injection moulded nanocomposites. The nanocomposites were first prepared with a melt mixing technique (i.e. twin screw extrusion), and they were then injection moulded under various processing conditions and mould geometries. High aspect ratio nanotubes could be partially aligned in the parallel-to-flow direction, resulting from the in-plane shear flow exerted on the polymeric melt in the injection cavity. It can be concluded that the volume resistivity of the moulded samples could be varied up to 7 orders of magnitude by changing the processing conditions and gate type in the injection moulding process. The electromagnetic interference shielding effectiveness (EMI SE) of the moulded composites was studied by considering the alignment of the MWCNTs. The EMI SE decreased with an increase in the alignment of the injection moulded MWCNTs in the polymer matrix. Anisotropic thermal conductivity was observed for the injection moulded nanocomposites. It was shown that thermal conductivity can be enhanced by aligning the nanotubes in the parallel-to-flow direction. The post

  5. Remembering Van Gogh.

    ERIC Educational Resources Information Center

    Freifeld, Susan

    1999-01-01

    Describes an activity in which fourth grade students created a three-dimensional representation of Vincent Van Gogh's room in Arles (France). Expounds that the students had to invent their own strategies for three-dimensional construction and two-dimensional embellishment. Provides directions for creating the room and bed. (CMK)

  6. Segments of van Gogh.

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2002-01-01

    Describes an art project that was used with first grade students in which they learn about Vincent van Gogh's style of painting. Explains that the children learn to create circles and straight lines and how to fill in with color. (CMK)

  7. Pythagoras Meets Van Hiele.

    ERIC Educational Resources Information Center

    Flores, Alfinio

    1993-01-01

    Develops the Pythagorean Theorem in the context of the Van Hiele levels by presenting activities appropriate for each level. Activities point to preparatory development (level 0), give 3 different versions of Euclid's proof (levels 1, 2, and 3), give some generalizations of the theorem (level 3), and explore the Pythagorean relationship in other…

  8. Van Gogh's Sunflowers

    ERIC Educational Resources Information Center

    Daddino, Michelle

    2010-01-01

    In this article, the author describes an art project wherein kindergarten students painted sunflowers. These beautiful and colorful sunflowers were inspired by the book "Camille and the Sunflowers" by Laurence Anholt, which does an amazing job of introducing young children to the art and life of Vincent van Gogh.

  9. Van der Waals Forces

    NASA Astrophysics Data System (ADS)

    Parsegian, V. Adrian

    2006-03-01

    This should prove to be the definitive work explaining van der Waals forces, how to calculate them and take account of their impact under any circumstances and conditions. These weak intermolecular forces are of truly pervasive impact, and biologists, chemists, physicists and engineers will profit greatly from the thorough grounding in these fundamental forces that this book offers. Parsegian has organized his book at three successive levels of mathematical sophistication, to satisfy the needs and interests of readers at all levels of preparation. The Prelude and Level 1 are intended to give everyone an overview in words and pictures of the modern theory of van der Waals forces. Level 2 gives the formulae and a wide range of algorithms to let readers compute the van der Waals forces under virtually any physical or physiological conditions. Level 3 offers a rigorous basic formulation of the theory. Author is among the most highly respected biophysicists Van der Waals forces are significant for a wide range of questions and problems in the life sciences, chemistry, physics, and engineering, ranging up to the macro level No other book that develops the subject vigorously, and this book also makes the subject intuitively accessible to students who had not previously been mathematically sophisticated enough to calculate them

  10. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  11. Interstellar Dust Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Lazarian, A.; Vaillancourt, John E.

    2015-08-01

    Interstellar polarization at optical-to-infrared wavelengths is known to arise from asymmetric dust grains aligned with the magnetic field. This effect provides a potentially powerful probe of magnetic field structure and strength if the details of the grain alignment can be reliably understood. Theory and observations have recently converged on a quantitative, predictive description of interstellar grain alignment based on radiative processes. The development of a general, analytical model for this radiative alignment torque (RAT) theory has allowed specific, testable predictions for realistic interstellar conditions. We outline the theoretical and observational arguments in favor of RAT alignment, as well as reasons the "classical" paramagnetic alignment mechanism is unlikely to work, except possibly for the very smallest grains. With further detailed characterization of the RAT mechanism, grain alignment and polarimetry promise to not only better constrain the interstellar magnetic field but also provide new information on the dust characteristics.

  12. Surface free energy of polyimide aligning layers

    NASA Astrophysics Data System (ADS)

    Borycki, Jerzy; Okulska-Bozek, Malgorzata

    2000-05-01

    Polyimides from four selected dianhydrides and seven diamines were synthesized by two-step polycondensation method. During the first step 10% solutions of poly(amic acid)s in N,N-dimethylformamide and 1-methyl-2-pyrrolidinone were obtained. The thin polyimide layers on soda glass were prepared by thermal cyclodehydration. Contact angles of series of standard liquids for tested polyimide films were measured. The values of surface free energy and its components were calculated accordingly to Zisman, Owens et al. and van Oss equations. Some correlation between the surface properties and the chemical structure of polyimide aligning layers were presented.

  13. Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling

    NASA Astrophysics Data System (ADS)

    Peng, Zhang; Jing, Wang; Xiang-Mei, Duan

    2016-03-01

    We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure. Projected supported by the National Natural Science Foundation of China (Grant No. 11574167), the New Century 151 Talents Project of Zhejiang Province,China, and the K. C. Wong Magna Foundation in Ningbo University, China.

  14. Enhanced tunable magnetoresistance properties over a wide temperature range in epitaxial (La{sub 0.7}Sr{sub 0.3}MnO{sub 3}){sub 1−x}:(CeO{sub 2}){sub x} nanocomposites

    SciTech Connect

    Fan, Meng; Khatkhatay, Fauzia; Zhang, Wenrui; Li, Leigang; Wang, Haiyan

    2015-08-14

    Vertically aligned nanocomposite (VAN) (La{sub 0.7}Sr{sub 0.3}MnO{sub 3}){sub 1−x}:(CeO{sub 2}){sub x} (LSMO:CeO{sub 2}) thin films have been grown on SrTiO{sub 3} (001) substrates by pulsed laser deposition. Tunable magnetoresistance properties as well as microstructures are demonstrated in these VAN films by modulating the film composition (x = 0, 0.3, 0.4, 0.45, 0.5, and 0.55). The sample of x = 0.3 shows a large low-field magnetoresistance (LFMR) in a high temperature range, i.e., over 10% at the range of 280 K to 320 K under 1 T and with a peak value of ∼13.5% at 310 K. In addition, a vast enhancement of LFMR in a low temperature range of 20–150 K with peak of ≈34.3% at 45 K for 1 T could be achieved with x = 0.5. The enhanced LFMR properties can be attributed to both the phase boundary induced spin fluctuation and the magnetic tunneling effect through vertical ferromagnetic/insulator/ferromagnetic structures. The observed enhanced LFMR performance, especially at high temperatures, as well as its simple growth method, offers a great potential for LSMO:CeO{sub 2}nanocomposites to be used in spintronic devices in a large temperature range.

  15. Interaction stresses in carbon nanotube-polymer nanocomposites.

    PubMed

    Rahmat, Meysam; Das, Kaushik; Hubert, Pascal

    2011-09-01

    A new technique of atomic force microscopy interaction measurement is used to obtain the three-dimensional stress field in nanocomposites made of single-walled carbon nanotubes (SWNT) and poly(methyl methacrylate) (PMMA) matrix. This original approach expands the current capability of AFM from imaging and force mapping to three-dimensional stress field measurements. Latest developments in the field have been limited to three-dimensional imaging at the surface only, and one value (adhesion) force mapping. The current work provides the interaction stress results for a PMMA-SWNT nanocomposite and shows a maximum estimated load transfer of less than 7 MPa (the maximum attraction stress estimated). This value is obtained for an unfunctionalized nanocomposite and hence the interaction stress is mainly based on van der Waals interactions. This means that for this system, carbon nanotubes behave similar to an elastic-fully plastic material with a yield stress of less than 7 MPa. This phenomenon illustrates why carbon nanotubes may not show their strong mechanical properties (yield strength of above 10 GPa) in polymeric nanocomposites.

  16. High-performance polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Heidecker, Matthew J.

    resultant nanocomposites' mechanical properties on the preferential alignment of the montmorillonite nano-platelet was also evaluated. Highly aligned filler platelets did not result in an additional enhancement in mechanical properties. PC/PET blends and their respective PC/PET/montmorillonite nanocomposites were synthesized and compared. The dispersion of the organically modified nano-fillers in the PC/PET blends was controlled via thermodynamic considerations, realized through proper surfactant choice: Nanocomposites in which the layered silicate was preferentially sequestered in the PET phase were designed and synthesized. This preferential dispersion of the nano-filler in the PET phase of the PC/PET blend was insensitive to processing conditions, including approaches employing a master-batch (filler concentrate); regardless of the master-batch matrix, both PC and PET were employed, thermodynamics drove the layered silicate to preferentially migrate to the PET phase of the PC/PET blend. In a second approach, the development of a nanocomposite with controlled PC/PET compatibilization near the montmorillonite platelets, in absence of appreciable transesterification reactions, led to the formation of very high performance nanocomposites. These latter systems, point to an exciting new avenue of future considerations for nanocomposite blends with selective nano-filler dispersions, where performance can be tailored via the controlled preferential dispersion of nano-fillers in one phase, or by filler-induced polymer compatibilization.

  17. Hierarchical multifunctional nanocomposites

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2014-03-01

    Nanocomposites; including nano-materials such as nano-particles, nanoclays, nanofibers, nanotubes, and nanosheets; are of significant importance in the rapidly developing field of nanotechnology. Due to the nanometer size of these inclusions, their physicochemical characteristics differ significantly from those of micron size and bulk materials. The field of nanocomposites involves the study of multiphase materials where at least one of the constituent phases has one dimension less than 100 nm. This is the range where the phenomena associated with the atomic and molecular interaction strongly influence the macroscopic properties of materials. Since the building blocks of nanocomposites are at nanoscale, they have an enormous surface area with numerous interfaces between the two intermix phases. The special properties of the nano-composite arise from the interaction of its phases at the interface and/or interphase regions. By contrast, in a conventional composite based on micrometer sized filler such as carbon fibers, the interfaces between the filler and matrix constitutes have a much smaller surface-to-volume fraction of the bulk materials, and hence influence the properties of the host structure to a much smaller extent. The optimum amount of nanomaterials in the nanocomposites depends on the filler size, shape, homogeneity of particles distribution, and the interfacial bonding properties between the fillers and matrix. The promise of nanocomposites lies in their multifunctionality, i.e., the possibility of realizing unique combination of properties unachievable with traditional materials. The challenges in reaching this promise are tremendous. They include control over the distribution in size and dispersion of the nanosize constituents, and tailoring and understanding the role of interfaces between structurally or chemically dissimilar phases on bulk properties. While the properties of the matrix can be improved by the inclusions of nanomaterials, the

  18. Hierarchical Nanocomposites for Device Applications

    NASA Astrophysics Data System (ADS)

    Watkins, James

    We have outlined templating strategies for electronic and optical device fabrication that include self-assembly of well-ordered polymer/nanoparticle hybrids and nanoimprint lithography using novel materials sets. Using additive-driven self-assembly, for example, we demonstrate the formation of periodic nanocomposites with tunable magnetic and optical characteristics containing up to 70 wt. % of metal, metal oxide and/or semiconducting nanoparticles through phase specific interactions of the particles with either linear block copolymer or brush block copolymer (BBCP) templates. The BBCP templates provide direct access to large domain spacings for optical applications and spontaneous alignment within large volume elements. We have further developed highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index and a new imprinting process that allows direct printing of patterned 2-D and 3-D crystalline metal oxide films and composites with feature sizes of less than 100 nm. Applications in flexible electronics, light and energy management, and sensors and will be discussed.

  19. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  20. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies.

  1. Orthodontics and Aligners

    MedlinePlus

    ... Repairing Chipped Teeth Teeth Whitening Tooth-Colored Fillings Orthodontics and Aligners Straighten teeth for a healthier smile. Orthodontics When consumers think about orthodontics, braces are the ...

  2. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  3. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  4. Moment tensor inversion of recent local moderate sized Van Earthquakes: seismicity and active tectonics of the Van region : Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Suvarikli, M.; Ogutcu, Z.; Kekovali, K.; Ocal, M. F.; Gunes, Y.; Pinar, A.

    2013-12-01

    The study area of the present research, the Van Region is located at the norththern end of the collision zone between the Anatolia and Arabian plates. Therefore, the southeast border of the Anatolian plate collides with the Arabian plate along the Bitlis Suture Zone. This zone is formed by collision of Arabian and in large scale Eurasian plates at mid-Miocen age. This type of thrust generation as a result of compressional regime extends east-west. The largest recorded earthquakes have all taken place along Southern Turkey (e.g. Lice, 1971; Varto, 1966; Caldiran, 1976). On the 23th of October 2011, an earthquake shook the Van Lake, Eastern Turkey, following a seismic sequence of more than three months in an unprecedented episode for this region characterized by null or low seismicity. The October 23, 2011 Van-Ercis Earthquake (Mw=7.1) was the most devastating resulting in loss of life and destruction. In order to study the aftershocks' activity of this main event, we installed and kept a seismic network of 10 broad-band (BB) stations in the area for an interval of nearly fifteen months. We characterized the seismogenic structure of the zone by calculating a minimum 1-D local velocity model and obtaining precise hypocentre locations. We also calculated fault plane solutions for more than 200 moderate sized earthquakes based on first motion polarities and commonly Moment Tensor Inversion Methods. The seismogenic zone would be localized at aproximately 10 km depth. Generally, the distribution of the important moderate earthquakes and the aftershock distribution shows that the E-W and NE-SW oriented fault segments cause the earthquake activities. Aftershock events are located along the eastern border of Lake Van and mainly between 5 and 10 km depth and disposed in two alignments: a ~E-W-trending alignment that matches with the trace of the Van Trust fault Zone and a NE-trending which could correspond to an structure not previously seen. Selected focal mechanisms show a

  5. Fire retardant polyetherimide nanocomposites

    SciTech Connect

    Lee, J.; Takekoshi, T.; Giannelis, E.P.

    1997-09-01

    Polyetherimide-layered silicates nanocomposites with increased char yield and fire retardancy are described. The use of nanocomposites is a new, environmentally-benign approach to improve fire resistance of polymers. An increase in the aromaticity yields high char residues that normally correlate with higher oxygen index and lower flammability. The often high cost of these materials and the specialized processing techniques required, however, have limited the use of these polymers to certain specialized applications. The effectiveness of fire retardant fillers is also limited since the large amounts required make processing difficult and might inadvertently affect mechanical properties.

  6. Polymer-carbon nanotube composites: electrospinning, alignment and interactions

    NASA Astrophysics Data System (ADS)

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel A.; Campo, Eva M.

    2014-09-01

    The possibility of novel nanocomposite materials with dramatically improved properties requires fundamental studies of interactions. Full elucidation of these concepts will allow the tailoring of such systems for particular applications. Using near-edge X-ray absorption fine structure spectroscopy, we investigated interactions in electrospun poly(dimethylsiloxane)-poly(methyl methacrylate)-multiwall carbon nanotube composites. This paper describes these interactions through a building-block model, addresses their dependence upon filler size, and discusses electrospinning as an alignment solution. Though alignment of filler and polymeric chains was not observed spectrally, SEM imaging confirmed uniaxial carbon nanotube alignment in composite fibres. Spectra acquired at different incidence angles revealed differences in energy and intensity of resonances, suggesting conformational configurations. These differences were more significant in composites with larger nanofiller. This supported proposed models of CH-π interactions and hydrogen bonding as adhesion mechanisms.

  7. Hole-Aligning Tool

    NASA Technical Reports Server (NTRS)

    Collins, Frank A.; Saude, Frank; Sep, Martin J.

    1996-01-01

    Tool designed for use in aligning holes in plates or other structural members to be joined by bolt through holes. Holes aligned without exerting forces perpendicular to planes of holes. Tool features screw-driven-wedge design similar to (but simpler than) that of some automotive exhaust-pipe-expanding tools.

  8. Polyimide/carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2003-01-01

    The goal of this product is to design and characterize well-defined conductive nanocomposite materials. The materials will be composed of a polymer matrix composed of rigid-backbone polyimides, and will be filled with modified or unmodified multi-walled carbon nanotubes (MWNTs). The ultimate design of this project is to create composite materials with optical clarity and a high conductivity.

  9. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  10. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites.

    PubMed

    Gardea, Frank; Glaz, Bryan; Riddick, Jaret; Lagoudas, Dimitris C; Naraghi, Mohammad

    2016-03-11

    In this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas. PMID:26866611

  11. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites

    NASA Astrophysics Data System (ADS)

    Gardea, Frank; Glaz, Bryan; Riddick, Jaret; Lagoudas, Dimitris C.; Naraghi, Mohammad

    2016-03-01

    In this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas.

  12. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  13. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  14. Galaxy Alignments: An Overview

    NASA Astrophysics Data System (ADS)

    Joachimi, Benjamin; Cacciato, Marcello; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Hoekstra, Henk; Kiessling, Alina; Kirk, Donnacha; Rassat, Anais

    2015-11-01

    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.

  15. Radiative Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B. G.

    2015-12-01

    Polarization due to aligned dust grains was discovered in the interstellar medium more than 60 years ago. A quantitative, observationally well tested theory of the phenomenon has finally emerged in the last decade, promising not only an improved understanding of interstellar magnetic fields, but new tools for studying the dust environments and grain characteristics. This Radiative Alignment Torque (RAT) theory also has many potential applications in solar system physics, including for comet dust characteristics. I will review the main aspects of the theory and the observational tests performed to date, as well as some of the new possibilities for using polarization as a tool to study dust and its environment, with RAT alignment.

  16. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  17. Multiwall carbon nanotubes reinforced epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    The emergence of carbon nanotubes (CNTs) has led to myriad possibilities for structural polymer composites with superior specific modulus, strength, and toughness. While the research activities in carbon nanotube reinforced polymer composites (NRPs) have made enormous progress towards fabricating next-generation advanced structural materials with added thermal, optical, and electrical advantages, questions concerning the filler dispersion, interface, and CNT alignment in these composites remain partially addressed. In this dissertation, the key technical challenges related to the synthesis, processing, and reinforcing mechanics governing the effective mechanical properties of NRPs were introduced and reviewed in the first two chapters. Subsequently, issues on the dispersion, interface control, hierarchical structure, and multi-functionality of NRPs were addressed based on functionalized multi-walled carbon nanotube reinforced DGEBA epoxy systems (NREs). In chapter 3, NREs with enhanced flexural properties were discussed in the context of improved dispersion and in-situ formation of covalent bonds at the interface. In chapter 4, NREs with controlled interface and tailored thermomechanical properties were demonstrated through the judicious choice of surface functionality and resin chemistry. In chapter 5, processing-condition-induced CNT organization in hierarchical epoxy nanocomposites was analyzed. In Chapter 6, possibilities were explored for multi-functional NREs for underwater acoustic structural applications. Finally, the findings of this dissertation were concluded and future research was proposed for ordered carbon nanotube array reinforced nanocomposites in the last chapter. Four journal publications resulted from this work are listed in Appendix.

  18. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  19. Pairwise Sequence Alignment Library

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprintmore » that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  20. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2015-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  1. [Multifunctional nanocomposite materials

    SciTech Connect

    Not Available

    1993-01-01

    These novel nanocomposites are microporous nanometal intercalated clays which have been prepared by a polyol process at 200C and a novel microwave-hydrothermal process using ethylene glycol. These novel nanocomposites have been found to be useful in the conversion of coal to asphaltenes. A crystalline tin (IV) arsenate hydroxide hydrate has been made and its lithium selective ion exchange properties have been measured. This exchanger has shown high lithium selectivity. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure have also been studied. Several pillared clays have also been synthesized and their Mg[sup 2+], Li[sup +] and UO[sub 2][sup 2+] selectivity has been measured. The pillared clays appear to show some Li selectivity.

  2. Multifunctional reactive nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Stamatis, Demitrios

    Many multifunctional nanocomposite materials have been developed for use in propellants, explosives, pyrotechnics, and reactive structures. These materials exhibit high reaction rates due to their developed reaction interfacial area. Two applications addressed in this work include nanocomposite powders prepared by arrested reactive milling (ARM) for burn rate modifiers and reactive structures. In burn rate modifiers, addition of reactive nanocomposite powders to aluminized propellants increases the burn rate of aluminum and thus the overall reaction rate of an energetic formulation. Replacing only a small fraction of aluminum by 8Al·MoO3 and 2B·Ti nanocomposite powders enhances the reaction rate with little change to the thermodynamic performance of the formulation; both the rate of pressure rise and maximum pressure measured in the constant volume explosion test increase. For reactive structures, nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by ARM and consolidated using a uniaxial die. Consolidated samples had densities greater than 90% of theoretical maximum density while maintaining their high reactivity. Pellets prepared using 8Al·MoO3 powders were ignited by a CO2 laser. Ignition delays increased at lower laser powers and greater pellet densities. A simplified numerical model describing heating and thermal initiation of the reactive pellets predicted adequately the observed effects of both laser power and pellet density on the measured ignition delays. To investigate the reaction mechanisms in nanocomposite thermites, two types of nanocomposite reactive materials with the same bulk compositions 8Al·MoO3 were prepared by different methods. One of the materials was manufactured by ARM and the other, so called metastable interstitial composite (MIC), by mixing of nano-scaled individual powders. Clear differences in the low-temperature redox reactions, welldetectable by differential scanning calorimetry

  3. Three-dimensional visualization of carbon networks in nanocomposites

    NASA Astrophysics Data System (ADS)

    Liu, Yin

    2015-11-01

    The exceptional mechanical and physical properties of carbon nanotubes have triggered the development of nanotube-based composite materials, but critical challenges exist to understanding the effect of the dispersion and alignment of nanotubes on the overall mechanical and electrical behavior of the composite. Addressing these fundamental questions requires a proper characterization tool that enables characterization of complex three-dimensional nanotube structures on the nanometer and micrometer scale. Mahdavi et al (2015 Nanotechnology 26 385704) develop a novel approach to visualize complex nanotube structures on a multiscale using data from neutron scattering. Thorough structural information generated by the approach lays the foundation to access structure-property relationships in nanotube nanocomposites and opens up new possibilities in numerical prediction of various properties of nanocomposites.

  4. Microstructural Characterization and Mechanical Properties of PA11 Nanocomposite Fibers

    NASA Astrophysics Data System (ADS)

    Latko, Paulina; Kolbuk, Dorota; Kozera, Rafal; Boczkowska, Anna

    2016-01-01

    Polyamide 11/multi-walled carbon nanotubes nanocomposite fibers with weight fraction 2, 4, and 6 wt.% and diameter 80 μm were prepared with a twin screw mini-extruder. The morphology and degree of dispersion of the multi-walled carbon nanotubes in the fibers was investigated by using scanning and transmission electron microscopy. In turn, the molecular structure was indicated by using wide-angle x-ray scattering and correlated with thermal analysis. It was found that carbon nanotubes lead to the formation of α phase in the fibers and they show medial level of alignment within the length of the fiber. Mechanical analysis of the fibers shows that apart from the crystallinity content, the tensile strength is strongly dependent on the macroscopic defects of the surface of the fibers. Nanocomposite fibers based on polyamide 11 with carbon nanotubes can be used as a precursor for non-woven or woven fabrics manufacturing process.

  5. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  6. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  7. Ellis van Creveld syndome.

    PubMed

    Ghanekar, Jaishree; Sangrampurkar, Sujata; Hulinaykar, Raman; Ahmer, Tariq

    2009-07-01

    Ellis-van Creveld syndrome (EVC) or chondroectodermal dysplasia is a rare autosomal recessive disorder. It is a tetrad of chondrodysplasia, ectodermal dysplasia, polydactyly, and congenital heart disease. In several case reports, dysplasia involving other organs has also been identified. The exact prevalence is unknown, but the syndrome seems more common among the Amish community. Many Indian cases have also been reported. This report describes a classical case of EVC syndrome in a 22 year old woman of Indian origin born of a consanginous marriage. The patient had chondrodysplasia of tubular bones resulting in disproportionate dwarfism, postaxial polydactyly, severely dystrophic nails, partially absent teeth, pectus excavatum with narrow chest, knock knees and AV canal defect. PMID:20329417

  8. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  9. Multilayer graphene rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  10. Metal-Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nicolais, Luigi; Carotenuto, Gianfranco

    2004-09-01

    A unique guide to an essential area of nanoscience Interest in nano-sized metals has increased greatly due to their special characteristics and suitability for a number of advanced applications. As technology becomes more refined-including the ability to effectively manipulate and stabilize metals at the nanoscale-these materials present ever-more workable solutions to a growing range of problems. Metal-Polymer Nanocomposites provides the first guide solely devoted to the unique properties and applications of this essential area of nanoscience. It offers a truly multidisciplinary approach, making the text accessible to readers in physical, chemical, and materials science as well as areas such as engineering and topology. The thorough coverage includes: * The chemical and physical properties of nano-sized metals * Different approaches to the synthesis of metal-polymer nanocomposites (MPN) * Advanced characterization techniques and methods for study of MPN * Real-world applications, including color filters, polarizers, optical sensors, nonlinear optical devices, and more * An extensive list of references on the topics covered A unique, cutting-edge resource for a vital area of nanoscience development, Metal-Polymer Nanocomposites is an invaluable text for students and practitioners of materials science, engineering, polymer science, chemical engineering, electrical engineering, and optics.

  11. Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.

    PubMed

    Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G; Verduzco, Rafael

    2016-01-01

    LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs - polysiloxane-based and epoxy-based - are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus. PMID:26889665

  12. Functional Carbon Nanocomposite, Optoelectronic, and Catalytic Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Yu Teng

    coatings have been demonstrated. In particular, co-deposited platinum, silicon, and carbon nanomaterial films were fashioned into electronic hydrogen gas sensors, cost efficient dye sensitized solar cell electrodes, and high capacity lithium ion battery anodes. Furthermore, concentrated graphene inks were coated to form aligned graphene-polymer nanocomposites and outstanding carbon nanotube-graphene hybrid semitransparent electrical conductors. Nanocomposite graphene-titanium dioxide catalysts produced from these cellulosic inks have low covalent defect densities and were shown to be approximately two and seven times more active than those based on reduced graphene oxide in photo-oxidation and photo-reduction reactions, respectively. Using a broad range of material characterization techniques, mechanistic insight was obtained using composite photocatalysts fabricated from well defined nanomaterials. For instance, optical spectroscopy and electronic measurements revealed a direct correlation between graphene charge transport performance and composite photochemical activity. Moreover, investigations into multidimensional composites based on 1D carbon nanotubes, 2D graphene, and 2D titanium dioxide nanosheets generated additional mechanistic insight for extending photocatalytic spectral response and increasing reaction specificity. Together, these results demonstrate the versatility of vacuum co-deposition and cellulosic nanomaterial inks for fabricating carbon nanocomposite optoelectronic and energy conversion coatings.

  13. [Theo van Gogh's medical record].

    PubMed

    Voskuil, P H

    1992-09-01

    In the final months of his life Theo van Gogh was admitted to the 'Geneeskundig Gesticht voor Krankzinnigen te Utrecht'. In November 1990 from the archives of the Willem Arntsz Huis, psychiatric centre in Utrecht, the medical files from this period were made available and a transcription was made by Han van Crimpen and Sjraar van Heugten, scientific collaborators of the Van Gogh Museum. From these data it is acceptable to conclude that Theo van Gogh had dementia paralytica and suffered a fast deterioration of his situation in these last few months. It is, however, probable that at least as early as 1886 Theo showed the first symptoms of this disease when he was in Paris, and that he was treated for this reason by dr. Rivet and dr. Gruby. There are insufficient indications that in Vincent van Gogh's case the same diagnosis can be put forward. It is most probable that during Vincent's visit to Theo in Paris in July 1890 in Theo's case symptoms of his medical deterioration were to be seen and this may have influenced the considerations finally leading to Vincent van Gogh's suicide.

  14. Thermoset-Based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Bhembe, Pele

    2002-03-01

    The field of polymer-Clay nanocomposites has attracted considerable attention as a method of enhancing polymer properties and extending their utility, by using molecular or nanoscale reinforcements rather than conventional particulate field microcomposites. Layered silicates dispersed as a reinforcing phase in a polymer matrix are one of the most important forms of such inorganic-organic nanocomposites, making them the subject of intense research. While a significant amount of work has been published on thermoplastic based nanocomposites, however, comparatively few studies of thermoset-based systems have been published. Thus, our research is centered on elucidating the structure-property relationships of thermoset-based nanocomposites. We have developed a series of layered silicate/thermoset nanocomposites using several thermoset polymers (epoxies(di and tetrafunctional), cyanate esters and PMR-15 polyimide). Wide angle X-ray diffraction suggests that intercalated morphologies were obtained for the cases studied. The glass transition temperature has been found to vary as the organic modifier and its amount is varied. For difunctional epoxy samples dispersed with Cloisite 30B, a commercially available nanoclay, the Tg increased by twenty degrees upon addition of as little as 2viscoelastic behavior of these materials has also been investigated using dynamic mechanical analysis. A modest increase in the glassy storage modulus was obtained as the amount of nanoclay increased, with a significant increase in the plateau modulus. Additionally, master curves have been generated using time-temperature superposition, allowing further analysis of the effect of the nanoclay on the relaxation behavior. Activation energies calculated from Arrhenius plots increase as the clay contents increase. These effects will be discussed in the presentation. The fracture toughness increased upon addition of nanoclays while the CTE decreased. Interestingly, the onset of decomposition

  15. Tuning and switching the hypersonic phononic properties of elastic impedance contrast nanocomposites.

    PubMed

    Sato, Akihiro; Pennec, Yan; Shingne, Nitin; Thurn-Albrecht, Thomas; Knoll, Wolfgang; Steinhart, Martin; Djafari-Rouhani, Bahram; Fytas, George

    2010-06-22

    Anodic aluminum oxide (AAO) containing arrays of aligned cylindrical nanopores infiltrated with polymers is a well-defined model system for the study of hypersound propagation in polymer nanocomposites. Hypersonic phononic properties of AAO/polymer nanocomposites such as phonon localization and anisotropic sound propagation can be tailored by adjusting elastic contrast and density contrast between the components. Changes in density and elastic properties of the component located in the nanopores induced by phase transitions allow reversible modification of the phononic band structure and mode switching. As example in case, the crystallization and melting of poly(vinylidene difluoride) inside AAO was investigated.

  16. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  17. Observation of enhanced field emission properties of Au/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Patil, Girish P.; Bagal, Vivekanand S.; Suryawanshi, Sachin R.; Late, Dattatray J.; More, Mahendra A.; Chavan, Padmakar G.

    2016-05-01

    Simple and low-cost method of thermal annealing was used to decorate Gold (Au) nanoparticles on aligned TiO2 nanotubes. The aligned TiO2 nanotubes were decorated by Au nanoparticles with an average diameter of 9, 18 and 28 nm (aligned TiO2 nanotubes referred as specimen A and TiO2 nanotubes decorated by Au nanoparticles with average diameter of 9, 18 and 28 nm are referred as specimen B, C and D, respectively). The detailed characterization such as structural, morphological and elemental analysis of TiO2 and Au/TiO2 nanocomposite have been carried out using X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, the meticulous comparative field emission characteristics of the aligned TiO2 nanotubes and Au/TiO2 nanocomposite have been performed. The turn-on field defined for the current density of 10 μA/cm2 has been found to be 3.9, 2.8, 3.2 and 3.7 V/μm for specimen A, B, C and D, respectively. The observed low turn-on field of specimen B has been found to be superior than the other semiconducting nanocomposites reported in the literature. The emission current stability over a period of 3 h is found to be better for all the specimens. To the best of our knowledge, a systematic field emission study of Au/TiO2 nanocomposite has not been explored. The observed superior field emission study of Au/TiO2 nanocomposite indicates their possible use in micro/nanoelectronic devices.

  18. Hierarchical manufacture and characterization of multifunctional nanocomposite structures

    NASA Astrophysics Data System (ADS)

    Veedu, Vinod P. V.

    The objective of this work is to develop multifunctional 3-D nanocomposite structures in an attempt to solve the shortcomings of the traditional composite materials. To achieve this goal, at first a detailed analysis of the properties of the basic nano reinforcement, carbon nanotube, was performed in terms of mechanical behavior, thermoelastic responses and thermal conductivity using an analytical technique, namely, asymptotic homogenization method. In our initial experimental works, different polymer resins were reinforced with nanotubes as well as nanoparticles and their mechanical performances were investigated. These experiments reveal that at higher weight percentage loading of the nanoparticles and nanotubes there are dominant issues such as alignment and dispersion, which would weaken the material. This led us to seek a novel approach to nanocomposites. In this report, two multifunctional nanocomposite structures are introduced: nanotube based brushes and hierarchical 3-D nanocomposite. The nanotube brushes were fabricated using chemical vapor deposition. Functions performed by these brushes such as mechanical and chemical cleaning, painting and electrical contacts will be discussed. Also, we unveil a novel approach to the 3-D composite challenge, without altering the existing 2-D stack design, based on the concept of interlaminar carbon nanotube forests that would provide enhanced multifunctional properties in the thickness direction. The nanotube coated fabric cloths serve as building blocks for the multi-layered 3-D composites with the nanotubes forests providing much needed interlaminar strength and toughness under various loading conditions. For the fabricated 3-D composites with nanotube forests, we demonstrate remarkable improvements in the interlaminar fracture toughness, delamination resistance, in-plane mechanical properties, damping, thermoelastic behavior, and thermal and electrical conductivities providing truly three-dimensional multifunctional

  19. [Van-der-Woude Syndrome].

    PubMed

    Del Frari, B; Amort, M; Janecke, A R; Schutte, B C; Piza-Katzer, H

    2008-01-01

    We report on two families with different expression of a Van-der-Woude-Syndrome (VWS) and with proven mutation of the IRF6- gene. The Van-der-Woude syndrome is a rare disease, typically consisting of congenital pits of the lower lip in combination with cleft lip or cleft palate or both. The Van-der-Woude syndrome is an autosomal dominant syndrome with variable expression. The penetrance is between 0,89 and 0,99. It is important to establish the correct diagnosis by careful investigation of patients with cleft lip or cleft palate and their parents. Genetic counselling is recommended in such cases. PMID:18095255

  20. Optics Alignment Panel

    NASA Technical Reports Server (NTRS)

    Schroeder, Daniel J.

    1992-01-01

    The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.

  1. Barrel alignment fixture

    NASA Astrophysics Data System (ADS)

    Sheeley, J. D.

    1981-04-01

    Fabrication of slapper type detonator cables requires bonding of a thin barrel over a bridge. Location of the barrel hole with respect to the bridge is critical: the barrel hole must be centered over the bridge uniform spacing on each side. An alignment fixture which permits rapid adjustment of the barrel position with respect to the bridge is described. The barrel is manipulated by pincer-type fingers which are mounted on a small x-y table equipped with micrometer adjustments. Barrel positioning, performed under a binocular microscopy, is rapid and accurate. After alignment, the microscope is moved out of position and an infrared (IR) heat source is aimed at the barrel. A 5-second pulse of infrared heat flows the adhesive under the barrel and bonds it to the cable. Sapphire and Fotoform glass barrels were bonded successfully with the alignment fixture.

  2. Magnetically aligned supramolecular hydrogels.

    PubMed

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-12-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2 , it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  3. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  4. Segment alignment control system

    NASA Technical Reports Server (NTRS)

    Aubrun, JEAN-N.; Lorell, Ken R.

    1988-01-01

    The segmented primary mirror for the LDR will require a special segment alignment control system to precisely control the orientation of each of the segments so that the resulting composite reflector behaves like a monolith. The W.M. Keck Ten Meter Telescope will utilize a primary mirror made up of 36 actively controlled segments. Thus the primary mirror and its segment alignment control system are directly analogous to the LDR. The problems of controlling the segments in the face of disturbances and control/structures interaction, as analyzed for the TMT, are virtually identical to those for the LDR. The two systems are briefly compared.

  5. PILOT optical alignment

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  6. Ellis-van Creveld syndrome

    MedlinePlus

    Chondroectodermal dysplasia; EVC ... 1 of 2 Ellis-van Creveld syndrome genes ( EVC and EVC2 ). These genes are positioned next to ... performed for mutations in 1 of the 2 EVC genes Skeletal x-ray Ultrasound Urinalysis

  7. Stirling Powered Van Progam overview

    NASA Technical Reports Server (NTRS)

    Shaltens, R. K.

    1986-01-01

    The Stirling Powered Van Program (SPVP) is a multiyear, multiphase program to evaluate the automotive Stirling engine (ASE) in Air Force vans under realistic conditions. The objective of the SPVP is to transfer to manufacturer and end user(s) (i.e., on the path to commercialization) the second-generation Mod 2 ASE upon completion of the Automotive Stirling Engine Program in 1987. In order to meet this objective, the SPVP must establish Stirling performance, integrity, reliability, durability and maintainability. The ASE program background leading to the van program is reviewed and plans for evaluating the kinematic Stirling engine in Air Force vans examined. Also discussed are the NASA technology transfers to industry that have been accomplished and those which are currently being developed.

  8. SLAM in a van

    NASA Astrophysics Data System (ADS)

    Binns, Lewis A.; Valachis, Dimitris; Anderson, Sean; Gough, David W.; Nicholson, David; Greenway, Phil

    2002-07-01

    We have developed techniques for Simultaneous Localization and Map Building based on the augmented state Kalman filter, and demonstrated this in real time using laboratory robots. Here we report the results of experiments conducted out doors in an unstructured, unknown, representative environment, using a van equipped with a laser range finder for sensing the external environment, and GPS to provide an estimate of ground truth. The goal is simultaneously to build a map of an unknown environment and to use that map to navigate a vehicle that otherwise would have no way of knowing its location. In this paper we describe the system architecture, the nature of the experimental set up, and the results obtained. These are compared with the estimated ground truth. We show that SLAM is both feasible and useful in real environments. In particular, we explore its repeatability and accuracy, and discuss some practical implementation issues. Finally, we look at the way forward for a real implementation on ground and air vehicles operating in very demanding, harsh environments.

  9. An introduction to polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Armstrong, Gordon

    2015-11-01

    This review presents an overview of the formulation, characterization and range of applications for polymer nanocomposites. After explaining how material properties at the nanometre scale can vary compared to those observed at longer length scales, typical methods used to formulate and characterize nanocomposites at laboratory and industrial scale will be described. The range of mechanical, electrical and thermal properties obtainable from nanocomposite materials, with examples of current commercial applications, will be outlined. Formulation and characterization of nanoparticle, nanotube and graphene composites will be discussed by reference to nanoclay-based composites, as the latter are presently of most technological relevance. Three brief case studies are presented to demonstrate how structure/property relationships may be controlled in a variety of polymer nanocomposite systems to achieve required performance in a given application. The review will conclude by discussing potential obstacles to commercial uptake of polymer nanocomposites, such as inconsistent protocols to characterize nanocomposites, cost/performance balances, raw material availability, and emerging legislation, and will conclude by discussing the outlook for future development and commercial uptake of polymer nanocomposites.

  10. Curriculum Alignment: Establishing Coherence

    ERIC Educational Resources Information Center

    Gagné, Philippe; Dumont, Laurence; Brunet, Sabine; Boucher, Geneviève

    2013-01-01

    In this paper, we present a step-by-step guide to implement a curricular alignment project, directed at professional development and student support, and developed in a higher education French as a second language department. We outline best practices and preliminary results from our experience and provide ways to adapt our experience to other…

  11. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  12. Aligning brains and minds

    PubMed Central

    Tong, Frank

    2012-01-01

    In this issue of Neuron, Haxby and colleagues describe a new method for aligning functional brain activity patterns across participants. Their study demonstrates that objects are similarly represented across different brains, allowing for reliable classification of one person’s brain activity based on another’s. PMID:22017984

  13. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  14. Polyolefin cubic silsesquioxane nanocomposites

    NASA Astrophysics Data System (ADS)

    Zheng, Lei

    This thesis focuses on the synthesis and characterization of polyolefin nanocomposites containing polyhedral oligomeric silsesquioxane (POSS) units. Two copolymerization methods were developed utilizing either ring-opening metathesis polymerization or metallocene-catalyzed reactions to incorporate cubic silsesquioxane into polyolefins. Ring-opening metathesis copolymerizations of cyclooctene and the POSS-norbornylene macromonomer have been performed using Grubbs' catalyst RuCl2(=CHPh)(PCy3)2. Random copolymers have been prepared and characterized with POSS loadings as high as 55 wt%. Diimide reduction of these copolymers affords polyethylene-POSS random copolymers. Polyethylene (PE) and isotactic polypropylene (PP) copolymers incorporating POSS have also been prepared using a metallocene/methylaluminoxane (MAO) cocatalyst system. A wide range of POSS concentrations was obtained in these polyolefin POSS copolymers under mild conditions; up to 56 wt% for PE-POSS copolymers and 73 wt% for PP-POSS copolymers were prepared. Copolymerizations of styrene and the POSS-styryl macromonomer have been performed using CpTiCl 3 in conjunction with MAO. Random copolymers of syndiotactic polystyrene and POSS copolymers have been formed and characterized. Novel nanocomposites of PE-POSS have been characterized using Wide Angle X-ray Scattering (WAXS). From both line broadening of the diffraction maxima and also the oriented diffraction in a drawn sample, we conclude that POSS forms anisotropically shaped crystallites. On the basis of this result, a novel approach to obtain nanocomposites containing inorganic nanolayers is proposed. Cubic silsesquioxane (POSS) nanoparticles are used to achieve the nanolayered "clay-like" structure through controlled self-assembly. The organic polymer, covalently connected to POSS, is intended to regulate the POSS crystallization into a two-dimensional lattice. The concept is demonstrated by random copolymers of polybutadiene and POSS. The data from

  15. Polyamide 6/Layered Silicate Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dębowska, M.; Rudzińska-Girulska, J.; Pigłowski, J.; Dołęga, J.

    2008-05-01

    Polyamide 6 (PA6) and its two exfoliated nanocomposites (PA6/Nf919 and PA6/BZ-COCO), with bentonite (2.5 wt.%) organophilically treated with different cations, were studied. Improved mechanical properties, changes in crystallinity and morphology as well as higher glass transition temperature values were observed for the nanocomposites in comparison to the neat PA6. For the nanocomposite PA6/BZ-COCO, of better surface modification of platelets and better interaction between the polymeric matrix and the organobentonite, higher values of Young's modulus and yielding point together with higher contribution of larger free volume holes to free volume distributions occurred.

  16. Some novel polymeric nanocomposites.

    PubMed

    Mark, James E

    2006-12-01

    The nanocomposites described here all involve polymers and were chosen because they are already of commercial importance, show some promise of becoming so, or simply seem interesting. The field is so broad that some topics are mentioned only very briefly, and there is considerable emphasis on the polysiloxane nanocomposites studied by the author's research group. Some are typically prepared using techniques very similar to those used in the new sol-gel approach to ceramics, with either the polymer or the ceramic being the continuous phase. Other dispersed phases include particles responsive to an applied magnetic field, intercalated or exfoliated platelets obtained from clays, mica, or graphite, silsesquioxane nanocages, nanotubes, dual fillers, porous particles, spherical and ellipsoidal polymeric particles, and nanocatalysts. Also described are some typical studies involving theory or simulations on such particle reinforcement. Experiments on ceramics modified by dispersed polymers are equally interesting, but there is less relevant theory. Many of the fields mentioned have become so vast that the approach taken here is simply to describe general approaches and characteristics of the composites, list some specific examples, and provide leading references (with some emphasis on studies that are relatively recent or in the nature of reviews).

  17. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  18. Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys

    SciTech Connect

    Skomski, R; Manchanda, P; Takeuchi, I; Cui, J

    2014-05-31

    The geometrical optimization of aligned hard-soft permanent-magnet nanocomposites is investigated by model calculations. Considered criteria are the shapes of the soft and c-axis-aligned hard phases, the packing fraction of the soft phase, and magnetostatic interactions. Taking into account that the energy product is enhanced via the volume fraction of the soft phase, subject to maintaining coercivity, we find that the best structures are soft-magnetic cubes as well as long rods with a square cross section. Comparing embedded soft cubes with embedded soft spheres of the same size, our nucleation-field analysis shows that the volume fraction of the soft phase is enhanced by 91%, with a coercivity reduction of only 25%. Magnetostatic interactions often but not always deteriorate the permanent-magnet performance, as exemplified by the example of MnBi:FeCo bilayers and multilayers.

  19. Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys

    SciTech Connect

    Skomski, Ralph; Manchanda, Priyanka; Takeuchi, Ichiro; Cui, Jun

    2014-06-11

    The geometrical optimization of aligned hard-soft permanent-magnet nanocomposites is investigated by model calculations. Considered criteria are the shapes of the soft and c-axis-aligned hard phases, the packing fraction of the soft phase, and magnetostatic interactions. Taking into account that the energy product is enhanced via the volume fraction of the soft phase, subject to maintaining coercivity, we find that the best structures are soft-magnetic cubes as well as long rods with a square cross section. Comparing embedded soft cubes with embedded soft spheres of the same size, our nucleation-field analysis shows that the volume fraction of the soft phase is enhanced by 91%, with a coercivity reduction of only 25%. Magnetostatic interactions often but not always deteriorate the permanent-magnet performance, as exemplified by the example of MnBi:FeCo bilayers and multilayers.

  20. Recent advances in biodegradable nanocomposites.

    PubMed

    Pandey, Jitendra K; Kumar, A Pratheep; Misra, Manjusri; Mohanty, Amar K; Drzal, Lawrence T; Singh, Raj Pal

    2005-04-01

    There is growing interest in developing bio-based products and innovative process technologies that can reduce the dependence on fossil fuel and move to a sustainable materials basis. Biodegradable bio-based nanocomposites are the next generation of materials for the future. Renewable resource-based biodegradable polymers including cellulosic plastic (plastic made from wood), corn-derived plastics, and polyhydroxyalkanoates (plastics made from bacterial sources) are some of the potential biopolymers which, in combination with nanoclay reinforcement, can produce nanocomposites for a variety of applications. Nanocomposites of this category are expected to possess improved strength and stiffness with little sacrifice of toughness, reduced gas/water vapor permeability, a lower coefficient of thermal expansion, and an increased heat deflection temperature, opening an opportunity for the use of new, high performance, lightweight green nanocomposite materials to replace conventional petroleum-based composites. The present review addresses this green material, including its technical difficulties and their solutions.

  1. Inflation by alignment

    SciTech Connect

    Burgess, C.P.; Roest, Diederik

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  2. Spray-Coated Halloysite-Epoxy Composites: A Means To Create Mechanically Robust, Vertically Aligned Nanotube Composites.

    PubMed

    Song, Kenan; Polak, Roberta; Chen, Dayong; Rubner, Michael F; Cohen, Robert E; Askar, Khalid A

    2016-08-10

    Halloysite nanotube-filled epoxy composites were fabricated using spray-coating methods. The halloysite nanotubes (HNTs) were aligned by the hydrodynamic flow conditions at the spray nozzle, and the polymer viscosity helped to preserve this preferential orientation in the final coatings on the target substrates. Electron microscopy demonstrated a consistent trend of higher orientation degree in the nanocomposite coatings as viscosity increased. The nanoindentation mechanical performances of these coatings were studied using a Hysitron TriboIndenter device. Composites showed improvements up to ∼50% in modulus and ∼100% in hardness as compared to pure epoxy, and the largest improvements in mechanical performance correlated with higher alignment of HNTs along the plane-normal direction. Achieving this nanotube alignment using a simple spray-coating method suggests potential for large-scale production of multifunctional anisotropic nanocomposite coatings on a variety of rigid and deformable substrates. PMID:27428814

  3. Orbit IMU alignment: Error analysis

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  4. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  5. Development of nanocomposites for energy storage devices

    NASA Astrophysics Data System (ADS)

    Khan, Md. Ashiqur Rahaman

    With the ever-increasing need in improving the performance and operation life of future mobile devices, developing higher power density energy storage devices has been receiving more attention. Lithium ion battery (LIB) and capacitor are two of the most widely used energy storage devices and have attracted increasing interest from both industrial and academic fields. Batteries have higher power density than capacitor but significantly longer charge/discharge rates. In order to further improve the performance of these energy storage devices, one of the approaches is to use high specific surface area nano-materials. Among all the nano-materials developed so far, one-dimensional nanowires are of special interests because of their high surface-to-volume ratio and aligned pathway for electron diffusion and conduction. Therefore, in this thesis work, zinc oxide nanowires are implemented as an anode along with carbon fiber/graphene to increase the performance of LIB while lead titanate nanowires are used to improve the energy density of capacitors. For batteries, zinc oxide nanowires are grown on carbon cloth by low temperature hydrothermal method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to analyze morphology and crystal structures of samples. The performances of LIB using zinc oxide nanowire coated carbon cloth and bare carbon cloth are compared to show the improvement induced by zinc oxide nanowires. For capacitors, lead titanate (PTO) nanowires are used with Polyvinylidene fluoride (PVDF) to make nanocomposites of high dielectric constants. Lead titanate nanowires are synthesized by low temperature hydrothermal method. XRD and SEM are used to analyze as synthesized nanowires. Different volume fraction of PTO nanowires is used with PVDF to make dielectric for capacitor. Dielectric constant and breakdown voltage at variable frequency are determined to calculate energy density and specific energy density. The influence of temperature on

  6. Alignment reference device

    DOEpatents

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  7. Multifunctional nanocomposite materials. Progress report

    SciTech Connect

    Roy, R.; Komarneni, S.

    1991-11-01

    Objective is to examine the low temperature nanocomposite route in the synthesis of multifunctional materials using two-dimensional clays as hosts. After about 8 months, a significant advance was made in the design and synthesis of novel nanocomposite materials, which are nanometal intercalated clays prepared by a low temperature route. A layered V{sub 2}O{sub 5} gel has been made hydrothermally and its cation exchange properties measured. Several pillared clays have also been synthesized and characterized.

  8. Dynamic Alignment at SLS

    SciTech Connect

    Ruland, Robert E.

    2003-04-23

    The relative alignment of components in the storage ring of the Swiss Light Source (SLS) is guaranteed by mechanical means. The magnets are rigidly fixed to 48 girders by means of alignment rails with tolerances of less than {+-}15 {micro}m. The bending magnets, supported by 3 point ball bearings, overlap adjacent girders and thus establish virtual train links between the girders, located near the bending magnet centres. Keeping the distortion of the storage ring geometry within a tolerance of {+-}100 {micro}m in order to guarantee sufficient dynamic apertures, requires continuous monitoring and correction of the girder locations. Two monitoring systems for the horizontal and the vertical direction will be installed to measure displacements of the train link between girders, which are due to ground settings and temperature effects: The hydrostatic levelling system (HLS) gives an absolute vertical reference, while the horizontal positioning system (HPS), which employs low cost linear encoders with sub-micron resolution, measures relative horizontal movements. The girder mover system based on five DC motors per girder allows a dynamic realignment of the storage ring within a working window of more than {+-}1 mm for girder translations and {+-}1 mrad for rotations. We will describe both monitoring systems (HLS and HPS) as well as the applied correction scheme based on the girder movers. We also show simulations indicating that beam based girder alignment takes care of most of the static closed orbit correction.

  9. Multiscale model to investigate the effect of graphene on the fracture characteristics of graphene/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Parashar, Avinash; Mertiny, Pierre

    2012-10-01

    In this theoretical research work, the fracture characteristics of graphene-modified polymer nanocomposites were studied. A three-dimensional representative volume element-based multiscale model was developed in a finite element environment. Graphene sheets were modeled in an atomistic state, whereas the polymer matrix was modeled as a continuum. Van der Waals interactions between the matrix and graphene sheets were simulated employing truss elements. Fracture characteristics of graphene/polymer nanocomposites were investigated in conjunction with the virtual crack closure technique. The results demonstrate that fracture characteristics in terms of the strain energy release rate were affected for a crack lying in a polymer reinforced with graphene. A shielding effect from the crack driving forces is considered to be the reason for enhanced fracture resistance in graphene-modified polymer nanocomposites.

  10. Alignment and alignment transition of bent core nematics

    NASA Astrophysics Data System (ADS)

    Elamain, Omaima; Hegde, Gurumurthy; Komitov, Lachezar

    2013-07-01

    We report on the alignment of nematics consisting of bimesogen bent core molecules of chlorine substituent of benzene derivative and their binary mixture with rod like nematics. It was found that the alignment layer made from polyimide material, which is usually used for promoting vertical (homeotropic) alignment of rod like nematics, promotes instead a planar alignment of the bent core nematic and its nematic mixtures. At higher concentration of the rod like nematic component in these mixtures, a temperature driven transition from vertical to planar alignment was found near the transition to isotropic phase.

  11. Polar cap arcs: Sun-aligned or cusp-aligned?

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Zhang, Qinghe; Xing, Zanyang

    2016-08-01

    Polar cap arcs are often called sun-aligned arcs. Satellite observations reveal that polar cap arcs join together at the cusp and are actually cusp aligned. Strong ionospheric plasma velocity shears, thus field aligned currents, were associated with polar arcs and they were likely caused by Kelvin-Helmholtz waves around the low-latitude magnetopause under a northward IMF Bz. The magnetic field lines around the magnetopause join together in the cusp region so are the field aligned currents and particle precipitation. This explains why polar arcs are cusp aligned.

  12. Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications

    NASA Astrophysics Data System (ADS)

    Timalsina, Yukta P.

    In this dissertation, a process of vertically-aligned (silica) nanosprings (VANS) based biosensor development is presented. Alternating current (AC) impedance spectroscopy has been used to analyze sensor response as a function of saline phosphate (SP) buffer and biological solutions. The sensor is a parallel plate capacitor consisting of two glass substrates coated with indium tin oxide (ITO), where the VANS [or randomly-aligned nanosprings (RANS)] grown on one substrate serve as the dielectric spacer layer. The response of a VANS device as a function of ionic concentration in SP buffer was examined and an equivalent circuit model was developed. The results demonstrated that VANS sensors exhibited greater sensitivity to the changes in SP concentration relative to the ITO sensors, which serve as controls. The biofunctionalized VANS surface via physisorption and the cross-linker method demonstrates the repeatability, specificity, and selectivity of the binding. The physisorption of biotinylated immunoglobulin G (B-IgG) onto the VANS surface simplifies the whole sensing procedure for the detection of glucose oxidase, since the avidin-conjugated glucose oxidase (Av-GOx) can directly be immobilized on the B-IgG. The cross linker method involves the covalent attachment of antibodies onto the functionalized VANS surface via imine bond. The experiments revealed that the VANS sensor response is solely the result of the interaction of target molecule i.e. mouse IgG with the probe layer, i.e. goat antimouse IgG (GalphaM IgG). It was determined that VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls above 100 Hz, which indicates that the addition of biomolecules inhibits the diffusion of ions and changes the effective dielectric response of the VANS via biomolecular polarization. The study of ionic transport in nanosprings suggested that conductance follows a scaling law. It was demonstrated that a VANS-based device

  13. Novel continuous carbon and ceramic nanofibers and nanocomposites

    NASA Astrophysics Data System (ADS)

    Wen, Yongkui

    2004-12-01

    Manufacturing of carbon nanofibers from PAN precursor is described in Chapter 2 of the dissertation. The electrospun nanofibers were continuous, uniform in diameter, and the samples didn't contain impurities, unlike carbon nanotubes or vapor grown carbon fibers. Systematic studies on the electrospinning parameters showed that nanofiber diameter could be varied in a range of 80 to 1800 nm. XRD studies on the carbon nanofibers fired at different temperatures showed that higher temperature resulted in better nanostructure. Fracture-free random carbon nanofiber sheets were produced by stretch-stabilization and carbonization for the first time. Toughening effects of random as-spun PAN, stabilized PAN, and carbon nanofibers on Mode I and Mode II interlaminar fracture of advanced carbon-epoxy composites were examined by DCB and ENF tests respectively in Chapter 3. The results showed that the interlaminar fracture toughness increased the most with carbon nanofiber reinforcement. 200% improvement in Mode I fracture toughness and 60% in Mode II fracture toughness were achieved with a minimum increase of weight. SEM fractographic analysis showed nanofiber pullout and crack bridging as the main nanomechanisms of toughening. Chapter 4 describes manufacturing of aligned carbon nanofibers and nanocomposites by a modified electrospinning technique. Constant-load stretch-stabilization was applied on carbon nanofibers for the first time. Analysis showed that mechanical properties of nanofibers and nanocomposites improved with stretch-stabilization and alignment of carbon nanofibers. Nanofabrication of ceramic 3Al2O3-2SiO2, SiO2-TiO2 nanofibers by a novel combination of sol-gel and electrospinning techniques invented recently at UNL is described in Chapters 5. The 3Al2O3-2SiO2, SiO2-TiO 2 nanofibers were continuous, non circular in cross section and had crystalline structure after high temperature calcination. Effects of the process parameters on their geometry and structure were

  14. Micro-buckling in the nanocomposite structure of biological materials

    NASA Astrophysics Data System (ADS)

    Su, Yewang; Ji, Baohua; Hwang, Keh-Chih; Huang, Yonggang

    2012-10-01

    Nanocomposite structure, consisting of hard mineral and soft protein, is the elementary building block of biological materials, where the mineral crystals are arranged in a staggered manner in protein matrix. This special alignment of mineral is supposed to be crucial to the structural stability of the biological materials under compressive load, but the underlying mechanism is not yet clear. In this study, we performed analytical analysis on the buckling strength of the nanocomposite structure by explicitly considering the staggered alignment of the mineral crystals, as well as the coordination among the minerals during the buckling deformation. Two local buckling modes of the nanostructure were identified, i.e., the symmetric mode and anti-symmetric mode. We showed that the symmetric mode often happens at large aspect ratio and large volume fraction of mineral, while the anti-symmetric happens at small aspect ratio and small volume fraction. In addition, we showed that because of the coordination of minerals with the help of their staggered alignment, the buckling strength of these two modes approached to that of the ideally continuous fiber reinforced composites at large aspect ratio given by Rosen's model, insensitive to the existing "gap"-like flaws between mineral tips. Furthermore, we identified a mechanism of buckling mode transition from local to global buckling with increase of aspect ratio, which was attributed to the biphasic dependence of the buckling strength on the aspect ratio. That is, for small aspect ratio, the local buckling strength is smaller than that of global buckling so that it dominates the buckling behavior of the nanocomposite; for comparatively larger aspect ratio, the local buckling strength is higher than that of global buckling so that the global buckling dominates the buckling behavior. We also found that the hierarchical structure can effectively enhance the buckling strength, particularly, this structural design enables

  15. Twisted Van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Gani, Satrio; Rossi, Enrico

    Van der Waals systems formed by two-dimensional (2D) crystals and nanostructures possess electronic properties that make them extremely interesting for basic science and for possible technological applications. By tuning the relative angle (the twist angle) between the layers, or nanostructures, forming the Van der Waals systems experimentalists have been able to control the stacking configuration of such systems. We study the dependence on the twist angle of the electronic properties of two classes of Van der Waals systems: double layers formed by two, one-atom thick, layers of a metal dichalcogenide such as molybdenum disulfide (MoS2), and graphene nanoribbons on a hexagonal boron nitride substrate. We present results that show how, for both classes of systems, the electronic properties can be strongly tuned via the twist angle. Work supported by ACS-PRF-53581-DNI5 and NSF-DMR-1455233.

  16. Improving ASM stepper alignment accuracy by alignment signal intensity simulation

    NASA Astrophysics Data System (ADS)

    Li, Gerald; Pushpala, Sagar M.; Bradford, Bradley; Peng, Zezhong; Gottipati, Mohan

    1993-08-01

    As photolithography technology advances into submicron regime, the requirement for alignment accuracy also becomes much tighter. The alignment accuracy is a function of the strength of the alignment signal. Therefore, a detailed alignment signal intensity simulation for 0.8 micrometers EPROM poly-1 layer on ASM stepper was done based on the process of record in the fab to reduce misalignment and improve die yield. Oxide thickness variation did not have significant impact on the alignment signal intensity. However, poly-1 thickness was the most important parameter to affect optical alignments. The real alignment intensity data versus resist thickness on production wafers was collected and it showed good agreement with the simulated results. Similar results were obtained for ONO dielectric layer at a different fab.

  17. Magnetoelectric polymer nanocomposite for flexible electronics

    SciTech Connect

    Alnassar, M. Alfadhel, A.; Ivanov, Yu. P.; Kosel, J.

    2015-05-07

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  18. Effect of Nanofiller Characteristics on Nanocomposite Properties

    NASA Technical Reports Server (NTRS)

    Working, Dennis C.; Lillehei, Peter T.; Lowther, Sharon E.; Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Wise, Kristopher E.; Park, Cheol

    2016-01-01

    This report surveys the effect of nanofiller characteristics on nanocomposites fabricated with two polyimide matrices. Mechanical and electrical properties were determined. Microscopy results showed that matrix chemistry, nanofiller characteristics and processing conditions had significant impact on nanocomposite quality.

  19. How Nano Are Nanocomposites

    SciTech Connect

    Schaefer, Dale W.; Justice, Ryan S.

    2010-10-22

    Composite materials loaded with nanometer-sized reinforcing fillers are widely believed to have the potential to push polymer mechanical properties to extreme values. Realization of anticipated properties, however, has proven elusive. The analysis presented here traces this shortfall to the large-scale morphology of the filler as determined by small-angle X-ray scattering, light scattering, and electron imaging. We examine elastomeric, thermoplastic, and thermoset composites loaded with a variety of nanoscale reinforcing fillers such as precipitated silica, carbon nanotubes (single and multiwalled), and layered silicates. The conclusion is that large-scale disorder is ubiquitous in nanocomposites regardless of the level of dispersion, leading to substantial reduction of mechanical properties (modulus) compared to predictions based on idealized filler morphology.

  20. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  1. Mid infrared observations of Van Maanen 2: no substellar companion.

    SciTech Connect

    Farihi, J; Becklin, E; Macintosh, B

    2004-11-03

    The results of a comprehensive infrared imaging search for the putative 0.06 M{sub {circle_dot}} astrometric companion to the 4.4 pc white dwarf van Mannen 2 are reported. Adaptive optics images acquired at 3.8 {micro}m reveal a diffraction limited core of 0.09 inch and no direct evidence of a secondary. Models predict that at 5 Gyr, a 50 M{sub J} brown dwarf would be only 1 magnitude fainter than van Maanen 2 at this wavelength and the astrometric analysis suggested a separation of 0.2 inch. In the case of a chance alignment along the line of sight, a 0.4 mag excess should be measured. An independent photometric observation at the same wavelength reveals no excess. In addition, there exist published ISO observations of van Maanen 2 at 6.8 {micro}m and 15.0 {micro}m which are consistent with photospheric flux of a 6750 K white dwarf. If recent brown dwarf models are correct, there is no substellar companion with T{sub eff} {approx}> 500 K.

  2. The Dramatic Methods of Hans van Dam.

    ERIC Educational Resources Information Center

    van de Water, Manon

    1994-01-01

    Interprets for the American reader the untranslated dramatic methods of Hans van Dam, a leading drama theorist in the Netherlands. Discusses the functions of drama as a method, closed dramatic methods, open dramatic methods, and applying van Dam's methods. (SR)

  3. AVID: A global alignment program.

    PubMed

    Bray, Nick; Dubchak, Inna; Pachter, Lior

    2003-01-01

    In this paper we describe a new global alignment method called AVID. The method is designed to be fast, memory efficient, and practical for sequence alignments of large genomic regions up to megabases long. We present numerous applications of the method, ranging from the comparison of assemblies to alignment of large syntenic genomic regions and whole genome human/mouse alignments. We have also performed a quantitative comparison of AVID with other popular alignment tools. To this end, we have established a format for the representation of alignments and methods for their comparison. These formats and methods should be useful for future studies. The tools we have developed for the alignment comparisons, as well as the AVID program, are publicly available. See Web Site References section for AVID Web address and Web addresses for other programs discussed in this paper. PMID:12529311

  4. Engineering cell alignment in vitro.

    PubMed

    Li, Yuhui; Huang, Guoyou; Zhang, Xiaohui; Wang, Lin; Du, Yanan; Lu, Tian Jian; Xu, Feng

    2014-01-01

    Cell alignment plays a critical role in various cell behaviors including cytoskeleton reorganization, membrane protein relocation, nucleus gene expression, and ECM remodeling. Cell alignment is also known to exert significant effects on tissue regeneration (e.g., neuron) and modulate mechanical properties of tissues including skeleton, cardiac muscle and tendon. Therefore, it is essential to engineer cell alignment in vitro for biomechanics, cell biology, tissue engineering and regenerative medicine applications. With advances in nano- and micro-scale technologies, a variety of approaches have been developed to engineer cell alignment in vitro, including mechanical loading, topographical patterning, and surface chemical treatment. In this review, we first present alignments of various cell types and their functionality in different tissues in vivo including muscle and nerve tissues. Then, we provide an overview of recent approaches for engineering cell alignment in vitro. Finally, concluding remarks and perspectives are addressed for future improvement of engineering cell alignment.

  5. AVID: A global alignment program.

    PubMed

    Bray, Nick; Dubchak, Inna; Pachter, Lior

    2003-01-01

    In this paper we describe a new global alignment method called AVID. The method is designed to be fast, memory efficient, and practical for sequence alignments of large genomic regions up to megabases long. We present numerous applications of the method, ranging from the comparison of assemblies to alignment of large syntenic genomic regions and whole genome human/mouse alignments. We have also performed a quantitative comparison of AVID with other popular alignment tools. To this end, we have established a format for the representation of alignments and methods for their comparison. These formats and methods should be useful for future studies. The tools we have developed for the alignment comparisons, as well as the AVID program, are publicly available. See Web Site References section for AVID Web address and Web addresses for other programs discussed in this paper.

  6. TSGC and JSC Alignment

    NASA Technical Reports Server (NTRS)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  7. CELT optics Alignment Procedure

    NASA Astrophysics Data System (ADS)

    Mast, Terry S.; Nelson, Jerry E.; Chanan, Gary A.; Noethe, Lothar

    2003-01-01

    The California Extremely Large Telescope (CELT) is a project to build a 30-meter diameter telescope for research in astronomy at visible and infrared wavelengths. The current optical design calls for a primary, secondary, and tertiary mirror with Ritchey-Chretién foci at two Nasmyth platforms. The primary mirror is a mosaic of 1080 actively-stabilized hexagonal segments. This paper summarizes a CELT report that describes a step-by-step procedure for aligning the many degrees of freedom of the CELT optics.

  8. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  9. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary. PMID:24245312

  10. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.

    PubMed

    You, Baiqing; Wang, Xiaocha; Zheng, Zhida; Mi, Wenbo

    2016-03-14

    The electronic structure of black phosphorene (BP)/monolayer 1H-XT2 (X = Mo, W; T = S, Se, Te) two dimensional (2D) van der Waals heterostructures have been calculated by the first-principles method. It is found that the electronic band structures of both BP and XT2 are preserved in the combined van der Waals heterostructures. The WSe2/BP van der Waals heterostructure demonstrates a type-I band alignment, but the MoS2/BP, MoSe2/BP, MoTe2/BP, WS2/BP and WTe2/BP van der Waals heterostructures demonstrate a type-II band alignment. In particular, the n-type XT2/p-type BP van der Waals heterostructures can be applied in p-n diode and logical devices. Strong spin splitting appears in all of the heterostructures when considering the spin orbital coupling. Our results play a significant role in the prediction of novel 2D van der Waals heterostructures that have potential applications in spin-filter devices, spin field effect transistors, optoelectronic devices, etc. PMID:26899350

  11. Dynamic finite element analysis of the crack-inclusion interaction in aligned CNF composites under impact loading conditions

    NASA Astrophysics Data System (ADS)

    Ting, Huat Tung

    The interaction between a crack and an inclusion of microfiber in an aligned carbon nanofiber (CNF) toughened composite under impact loading conditions was studied by using dynamic finite element analysis (FEA). The nanocomposite material used in this study was T300/Epon 862 enhanced with aligned carbon nanofibers (CNFs). The dynamic stress intensity factors (DSIFs) were evaluated to describe the dynamic fracture behavior of the fracture model. In this study, a numerical homogenization model using FEA was first employed to determine the effective material properties of the equivalent matrix material of Epon 862 and aligned CNFs. The effects of T300 microfiber inclusion eccentricity and CNF alignment angle on the DSIFs were examined in this study. The displacement extrapolation method for monoclinic materials was utilized to calculate the DSIFs. The numerical results demonstrated a mechanism known as "crack-tip shielding" and demonstrated that the CNF alignment angle has an impact on the DSIFs.

  12. Growth of horizontally aligned dense carbon nanotubes from trench sidewalls.

    PubMed

    Lu, Jingyu; Miao, Jianmin; Xu, Ting; Yan, Bin; Yu, Ting; Shen, Zexiang

    2011-07-01

    Horizontally aligned, dense carbon nanotubes (HADCNTs) in the form of CNT cantilevers/bridges were grown from selected trench sidewalls in silicon substrate by chemical vapor deposition (CVD). The as-grown CNT cantilevers/bridges are packed with multiwalled carbon nanotubes (MWCNTs) with a linear density of about 10 CNTs µm(-1). The excellent horizontal alignment of these CNTs is mainly ascribed to the van der Waals interactions within the dense CNT bundles. What is more, the Raman intensity ratio I(G)/I(D) shows a gradual increase from the CNT roots to tips, indicating a defect gradient along CNTs generated during their growth. These results will inspire further efforts to explore the fundamentals and applications of HADCNTs. PMID:21586807

  13. Overcoming low-alignment signal contrast induced alignment failure by alignment signal enhancement

    NASA Astrophysics Data System (ADS)

    Lee, Byeong Soo; Kim, Young Ha; Hwang, Hyunwoo; Lee, Jeongjin; Kong, Jeong Heung; Kang, Young Seog; Paarhuis, Bart; Kok, Haico; de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; Mason, Christopher; Aarts, Igor; de Boeij, Wim P.

    2016-03-01

    Overlay is one of the key factors which enables optical lithography extension to 1X node DRAM manufacturing. It is natural that accurate wafer alignment is a prerequisite for good device overlay. However, alignment failures or misalignments are commonly observed in a fab. There are many factors which could induce alignment problems. Low alignment signal contrast is one of the main issues. Alignment signal contrast can be degraded by opaque stack materials or by alignment mark degradation due to processes like CMP. This issue can be compounded by mark sub-segmentation from design rules in combination with double or quadruple spacer process. Alignment signal contrast can be improved by applying new material or process optimization, which sometimes lead to the addition of another process-step with higher costs. If we can amplify the signal components containing the position information and reduce other unwanted signal and background contributions then we can improve alignment performance without process change. In this paper we use ASML's new alignment sensor (as was introduced and released on the NXT:1980Di) and sample wafers with special stacks which can induce poor alignment signal to demonstrate alignment and overlay improvement.

  14. Pareto optimal pairwise sequence alignment.

    PubMed

    DeRonne, Kevin W; Karypis, George

    2013-01-01

    Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.

  15. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT–PZT–PC and Cu–PZT–PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu–PZT–PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT–PZT–PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu–PZT–PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT–PZT–PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  16. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT-PZT-PC and Cu-PZT-PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu-PZT-PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT-PZT-PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu-PZT-PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT-PZT-PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  17. Nova laser alignment control system

    SciTech Connect

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-03-29

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system.

  18. Dust alignment in astrophysical environments

    NASA Astrophysics Data System (ADS)

    Lazarian, Alex; Thiem Hoang, Chi

    Dust is known to be aligned in interstellar medium and the arising polarization is extensively used to trace magnetic fields. What process aligns dust grains was one of the most long-standing problems of astrophysics in spite of the persistent efforts to solve it. For years the Davis-Greenstein paramagnetic alignment was the primary candidate for explaining grain alignment. However, the situation is different now and the most promising mechanism is associated with radiative torques (RATs) acting on irregular grains. I shall present the analytical theory of RAT alignment, discuss the observational tests that support this theory. I shall also discuss in what situations we expect to see the dominance of paramagnetic alignment.

  19. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B.; Singleton, Norman R.

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  20. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  1. [Alignment of malpositioned canines].

    PubMed

    Wagner, L

    1991-03-01

    This article presents a system for aligning impacted canines. The base of this system is the lingual arch, a rigid reaction unit of four teeth, molars and premolars. From this base unit an impacted canine can be extruded, moved distally, jumped over the occlusion and derotated by segment arches, coil springs and elastic ligatures. The efficiency of this appliance is due to the elimination of undesired reactive forces, the safe moving of teeth, the possibility of an exact force application and the simple manipulation; also the esthetic inconvenience is minimal. All this results in a better prognosis and an essentially shorter treatment time. This appliance can be used in the upper and the lower jaw. Schematic drawings and clinical examples demonstrate this method.

  2. Lunar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  3. Light-Driven Reversible Alignment Switching of Liquid Crystals Enabled by Azo Thiol Grafted Gold Nanoparticles.

    PubMed

    Xue, Chenming; Xiang, Jie; Nemati, Hossein; Bisoyi, Hari Krishna; Gutierrez-Cuevas, Karla; Wang, Ling; Gao, Min; Zhou, Shuang; Yang, Deng-ke; Lavrentovich, Oleg D; Urbas, Augustine; Li, Quan

    2015-06-22

    Stimuli-directed alignment control of liquid crystals (LCs) with desired molecular orientation is currently in the limelight for the development of smart functional materials and devices. Here, photoresponsive azo thiol (AzoSH) was grafted onto gold nanoparticles (GNPs). The resulting hybrid GNPs were able to homogeneously mix with a commercially available nematic LC host, as evidenced by Cryo-TEM. Interestingly, the LC nanocomposites were found to undergo reversible alignment transition upon light irradiation as a consequence of the trans-cis photoisomerization of the azo groups on the GNP surface. LC molecules in either planar or bare glass cells were able to change their alignment to vertical upon UV irradiation, while the vertically aligned LC molecules returned to the planar or random orientation under visible irradiation. Neither the azo thiol molecules nor the unfunctionalized GNPs alone promoted the alignment of the LC molecules in the system upon light irradiation. The photoinduced vertical alignment without applied electric or magnetic field was very stable over time and with respect to temperature. Furthermore, an optically switchable device based on the photostimulated reversible alignment control of LCs was demonstrated. PMID:26097118

  4. Photocatalytical nanocomposites: a review.

    PubMed

    Matejka, Vlastimil; Tokarský, Jonás

    2014-02-01

    This review focuses on photocatalytically active nanocomposites that are based on the photoactive nanoparticles, or nanostructured particles captured on the surface of the different powderized carriers. Nanosized and nanostructured oxides and sulfides with selected metal cations (Ti, Zn, Cd, Fe, etc.) are intensively studied as the photocatalysts for different purposes. The nanodimension of these particles brings several disadvantages, among them being the negative impact on human health, which is a widely discussed topic nowadays. The nanoparticles can permeate through living tissue and enter living cells and thus a strong effort focused on diminishing this problem is the subject of research activities by many groups. One possible way to achieve control of the nanoparticles' mobility is capturing them on the surface of suitable particulate carriers with dimensions on the order of tenths and hundredths of microns whereas this approach leads to formation of new composite material. Clay minerals, silicates, carbonaceous materials, and other particulate matter are intensively studied for these purposes and proper selection of the substrate can bring additional functionality to the final composite. Very often the photoactivity, antibacterial properties, electrical conductivity, and other properties are significantly enhanced in the case of this kind of composite materials. Strong adhesion between the nanoparticles and the surface of the selected substrate is essential for the stability of the final composites. Characterization of the adhesion energies using laboratory experiments is quite difficult and molecular modeling can bring valuable information about the character of interactions at the interface of nanoparticles and substrate. PMID:24749444

  5. Aerogel nanocomposite materials

    SciTech Connect

    Hunt, A.J.; Ayers, M.; Cao, W.

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  6. Stretchable piezoelectric nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  7. Based Adaptive Nanocomposite Coatings

    NASA Astrophysics Data System (ADS)

    Ramazani, M.; Ashrafizadeh, F.; Mozaffarinia, R.

    2014-08-01

    A promising Ni(Al)-Cr2O3-Ag-CNT-WS2 self-lubricating wear-resistant coating was deposited via atmospheric plasma spray of Ni(Al), nano Cr2O3, nano silver and nano WS2 powders, and CNTs. Feedstock powders with various compositions prepared by spray drying were plasma sprayed onto carbon steel substrates. The tribological properties of coatings were tested by a high temperature tribometer in a dry environment from room temperature to 400 °C, and in a natural humid environment at room temperature. It was found that all nanocomposite coatings have better frictional behavior compared with pure Ni(Al) and Ni(Al)-Cr2O3 coatings; the specimen containing aproximately 7 vol.% Ag, CNT, and WS2 had the best frictional performance. The average room temperature friction coefficient of this coating was 0.36 in humid atmosphere, 0.32 in dry atmosphere, and about 0.3 at high temperature.

  8. Biobased and biodegradable polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  9. Polariton dispersion in nanocomposite materials

    SciTech Connect

    Wilson, K. S. Joseph Revathy, V.

    2015-06-24

    The several optical properties of crystals are modified due to nonlinearity associated with high intensity of the incident radiation. In the present work, the linear and nonlinear optical characterization of the nanocomposite materials are also discussed in detail. We explore the possibilities of nonlinear effects in the optical parameters in nanocomposite materials. New modes on the polaritonic gap where the propagation of electromagnetic wave is forbidden, are obtained due to nonlinearity. The presence of gap mode shows the propagation of electromagnetic radiation which may be exploited in optical communications.

  10. Van Gogh's vision. Digitalis intoxication?

    PubMed

    Lee, T C

    1981-02-20

    Vincent van Gogh, the Dutch postimpressionist painter, died in 1890. He was an uncommon man. Automutilation, depression, insanity, and suicide are part of his medical history. During the last few years of his life, his paintings were characterized by halos and the color yellow. Critics have ascribed these aberrations to innumerable causes, including chronic solar injury, glaucoma, and cataracts. Van Gogh may have been under the influence of digitalis intoxication and its side effects: xanthopsia and coronas. This hypothesis is based on his twice having painted his physician holding a foxglove plant; that this medicine was used in the latter part of the 19th century in the treatment of epilepsy; and that the toxic effects of digitalis may have, in part, dictated the artist's technique.

  11. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; Liu, Yulin; Zhao, Xiaomeng; Song, Hongzan

    2016-01-01

    We report a novel class of liquid crystalline (LC) nanohybrid ionogels fabricated via self-assembly of natural halloysite nanotubes (HNTs) in ionic liquids (ILs). The obtained ionogels are very stable and nonvolatile and show LC phases over a wide temperature range. Remarkably, the nanocomposite ionogels exhibit high anisotropic ionic conductivity after shear, and their room temperature ionic conductivity can reach 3.8 × 10-3 S cm-1 for aligned nanotubes perpendicular to the electrode even when the HNTs content increases to 40 wt%, which is 380 times higher than that obtained for aligned nanotubes parallel to the electrode, which is 1.0 × 10-5 S cm-1. Crucially, the obtained LC nanocomposite ionogels have very high thermal stability, which can sustain 400 °C thermal treatment. The findings will promote the development of novel nanocomposite ionogel electrolytes with faster ion transport and larger anisotropic conductivity.We report a novel class of liquid crystalline (LC) nanohybrid ionogels fabricated via self-assembly of natural halloysite nanotubes (HNTs) in ionic liquids (ILs). The obtained ionogels are very stable and nonvolatile and show LC phases over a wide temperature range. Remarkably, the nanocomposite ionogels exhibit high anisotropic ionic conductivity after shear, and their room temperature ionic conductivity can reach 3.8 × 10-3 S cm-1 for aligned nanotubes perpendicular to the electrode even when the HNTs content increases to 40 wt%, which is 380 times higher than that obtained for aligned nanotubes parallel to the electrode, which is 1.0 × 10-5 S cm-1. Crucially, the obtained LC nanocomposite ionogels have very high thermal stability, which can sustain 400 °C thermal treatment. The findings will promote the development of novel nanocomposite ionogel electrolytes with faster ion transport and larger anisotropic conductivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06888f

  12. Lexical alignment in triadic communication.

    PubMed

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one's interlocutor's lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants' lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment.

  13. Drive alignment pays maintenance dividends

    SciTech Connect

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  14. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  15. Transformation and Alignment in Similarity

    ERIC Educational Resources Information Center

    Hodgetts, Carl J.; Hahn, Ulrike; Chater, Nick

    2009-01-01

    This paper contrasts two structural accounts of psychological similarity: structural alignment (SA) and Representational Distortion (RD). SA proposes that similarity is determined by how readily the structures of two objects can be brought into alignment; RD measures similarity by the complexity of the transformation that "distorts" one…

  16. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  17. CATO: The Clone Alignment Tool

    PubMed Central

    Henstock, Peter V.; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  18. Lexical alignment in triadic communication

    PubMed Central

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one’s interlocutor’s lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants’ lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment. PMID:25762955

  19. Curriculum Alignment: Theory to Practice.

    ERIC Educational Resources Information Center

    Leitzel, Thomas C.; Vogler, Daniel E.

    Curriculum alignment is the conscious congruence of three educational elements: curriculum, instruction, and assessment. Alignment is rooted in the belief that instructional plans are established through outcomes-based content goals and the goal of assuring that delivery and assessment are congruent. Platform unity, based on the Principles of…

  20. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  1. High performance thermoelectric nanocomposite device

    DOEpatents

    Yang, Jihui; Snyder, Dexter D.

    2011-10-25

    A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

  2. Concepts for smart nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Pammi, SriLaxmi; Brown, Courtney; Datta, Saurabh; Kirikera, Goutham R.; Schulz, Mark J.

    2003-10-01

    This paper explores concepts for new smart materials that have extraordinary properties based on nanotechnology. Carbon and boron nitride nanotubes in theory can be used to manufacture fibers that have piezoelectric, pyroelectric, piezoresistive, and electrochemical field properties. Smart nanocomposites designed using these fibers will sense and respond to elastic, thermal, and chemical fields in a positive human-like way to improve the performance of structures, devices, and possibly humans. Remarkable strength, morphing, cooling, energy harvesting, strain and temperature sensing, chemical sensing and filtering, and high natural frequencies and damping will be the properties of these new materials. Synthesis of these unique atomically precise nanotubes, fibers, and nanocomposites is at present challenging and expensive, however, there is the possibility that we can synthesize the strongest and lightest actuators and most efficient sensors man has ever made. A particular advantage of nanotube transducers is their very high load bearing capability. Carbon nanotube electrochemical actuators have a predicted energy density at low frequencies that is thirty times greater than typical piezoceramic materials while boron nitride nanotubes are insulators and can operate at high temperatures, but they have a predicted piezoelectric induced stress constant that is about twenty times smaller than piezoceramic materials. Carbon nanotube fibers and composites exhibit a change in electrical conductivity due to strain that can be used for sensing. Some concepts for nanocomposite material sensors are presented and initial efforts to fabricate carbon nanocomposite load sensors are discussed.

  3. Percolation Threshold in Polycarbonate Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2014-03-01

    Nanocomposites have unique mechanical, electrical, magnetic, optical and thermal properties. Many methods could be applied to prepare polymer-inorganic nanocomposites, such as sol-gel processing, in-situ polymerization, particle in-situ formation, blending, and radiation synthesis. The analytical composite models that have been put forth include Voigt and Reuss bounds, Polymer nanocomposites offer the possibility of substantial improvements in material properties such as shear and bulk modulus, yield strength, toughness, film scratch resistance, optical properties, electrical conductivity, gas and solvent transport, with only very small amounts of nanoparticles Experimental results are compared against composite models of Hashin and Shtrikman bounds, Halpin-Tsai model, Cox model, and various Mori and Tanaka models. Examples of numerical modeling are molecular dynamics modeling and finite element modeling of reduced modulus and hardness that takes into account the modulus of the components and the effect of the interface between the hard filler and relatively soft polymer, polycarbonate. Higher nanoparticle concentration results in poor dispersion and adhesion to polymer matrix which results in lower modulus and hardness and departure from the existing composite models. As the level of silica increases beyond a threshold level, aggregates form which results in weakening of the structure. Polymer silica interface is found to be weak as silica is non-interacting promoting interfacial slip at silica-matrix junctions. Our experimental results compare favorably with those of nanocomposites of polyesters where the effect of nanoclay on composite hardness and modulus depended on dispersion of nanoclay in polyester.

  4. Botulinum alignment for congenital esotropia.

    PubMed Central

    Ing, M R

    1992-01-01

    This is the first report of a group of patients with congenital esotropia examined for motor and sensory evidence of binocularity a minimum of 3 years after alignment by botulinum. Evidence for binocularity was clearly present in approximately one half of the patients. Lag time to satisfactory alignment was at least 1 month (average, 5 months) following the initial botulinum injection. The results must be considered preliminary. However, when these results are compared with those of patients with congenital esotropia aligned by incisional surgery by age 2 years and examined with the same testing devices by this same investigator, botulinum alignment appears to be less effective than surgical alignment in establishing evidence for binocularity (P < 0.005). PMID:1494828

  5. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  6. Magnetic alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  7. Alignment technology for backside integration

    NASA Astrophysics Data System (ADS)

    Bauer, J.; Kulse, P.; Haak, U.; Old, G.; Scheuring, G.; Döbereiner, St.; Hillmann, F.; Brück, H.-J.; Kaynak, M.; Ehwald, K.-E.; Marschmeyer, St.; Birkholz, M.; Schulz, K.

    2011-03-01

    This paper presents a backside-to-frontside alignment technique for the backside processing of Si wafers. Integrated MEMS components like BiCMOS-embedded RF-MEMS switches require accurate (1-2μm) alignment. We demonstrate an alignment technique providing overlay values of less than 500 nm by using a backside alignment layer. The approach is enabled by a new non-contact wafer pre-alignment system of the Nikon Scanner S207D allowing precise loading (<5μm) of the wafer onto the exposure stage. Before starting the back-side MEMS process, the misalignment between frontside devices and backside alignment layer has to be measured. The alignment errors are applied as lithography overlay corrections to the backside MEMS process. For the specific application of deep Si etching (Bosch process), moreover, one has to consider the etch profile angle deviation across the wafer (tilting), which turned out in our experiments to amount up to 8 μm. During initial experiments with a Nikon i-line stepper NSR-2205 i- 11D the overlay has been corrected by the stepper offset parameters. These parameters have been obtained by summing up both the wafer and intra-field scaling errors caused by deep Si etching and backside-to-frontside alignment errors. Misalignments and tilting errors were all measured with a MueTec MT 3000 IR optical metrology system using overlay marks. The developed alignment technique is applied to BiCMOS-embedded MEMS devices, i.e. mm-wave RF switches and a viscosity sensor chip based on the IHP's high-speed SiGe technology. It turned out to be very promising for backside processed MEMS components with critical alignment requirements.

  8. 15 CFR 30.26 - Reporting of vessels, aircraft, cargo vans, and other carriers and containers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... vehicles, trailers, pallets, cargo vans, lift vans, or similar shipping containers are not considered..., aircraft, rail cars, trucks, other vehicles, trailers, pallets, cargo vans, lift vans, or similar...

  9. Testing the tidal alignment model of galaxy intrinsic alignment

    SciTech Connect

    Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu

    2011-05-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.

  10. [The psychiatric disease of Vincent van Gogh].

    PubMed

    Lemke, S; Lemke, C

    1993-09-01

    From more than 650 letters of van Gogh psychopathologically striking phrases were collected. Their occurrence in the last 18 years of van Gogh's life was observed. The very different interpretations of his symptoms were compiled in a schedule. Finally the case of van Gogh's is used to discuss the borderline between psychosis and epilepsy, a topic which has long been neglected in German psychiatric teaching.

  11. Self-Assembled Heteroepitaxial Oxide Nanocomposite for Photoelectrochemical Solar Water Oxidation

    PubMed Central

    2016-01-01

    We report on spontaneously phase ordered heteroepitaxial SrTiO3 (STO):ZnFe2O4 (ZFO) nanocomposite films that give rise to strongly enhanced photoelectrochemical solar water oxidation, consistent with enhanced photoinduced charge separation. The STO:ZFO nanocomposite yielded an enhanced photocurrent density of 0.188 mA/cm2 at 1.23 V vs a reversible hydrogen electrode, which was 7.9- and 2.6-fold higher than that of the plain STO film and ZFO film cases under 1-sun illumination, respectively. The photoelectrode also produced stable photocurrent and Faradaic efficiencies of H2 and O2 formation that were more than 90%. Incident-photon-to-current-conversion efficiency measurements, Tauc plots, Mott–Schottky plots, and electrochemical impedance spectroscopy measurements proved that the strongly enhanced photogenerated charge separation resulted from vertically aligned pseudosingle crystalline components, epitaxial heterojunctions, and a staggered band alignment of the components of the nanocomposite films. This study presents a completely new avenue for efficient solar energy conversion applications. PMID:27212792

  12. CMP-compatible alignment strategy

    NASA Astrophysics Data System (ADS)

    Rouchouze, Eric; Darracq, Jean-Michel; Gemen, Jack

    1997-07-01

    As semiconductor technology continues its way towards smaller geometries, CMP has gained acceptance as the planarization technique for interconnect layers. Its benefits are well known, especially in terms of imaging. However, one of its major drawbacks is to make difficult the alignment of interconnect layers, since a planarized alignment mark is less visible for the stepper's alignment system. Usual workarounds include the clearing of process layers from the alignment mark before exposing the product layer. Although these workarounds provide a temporary solution, they are too costly to be viable in a mass production environment. In this experiment, a non-zero alignment strategy using new mark designs has been tested on the backend layers of a 0.35 micrometers CMOS process. New mark designs have been evaluated, where the space part of the gratings has been filled with 'segments' of various width, the purpose being to minimize the planarization effect of the metallization process. For the selection of the best mark design, several criteria have been taken into account: the stepper's built-in alignment diagnostic software provides information on the quality of the alignment signal. The most important criterion is the product overlay measurement and its repeatability. Marks cross sections using a FIB/SEM tool give indications on the mark profile after metal deposition.

  13. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  14. Advanced Mask Aligner Lithography (AMALITH)

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna

    2015-03-01

    Mask aligner lithography is very attractive for less-critical lithography layers and is widely used for LED, display, CMOS image sensor, micro-fluidics and MEMS manufacturing. Mask aligner lithography is also a preferred choice the semiconductor back-end for 3D-IC, TSV interconnects, advanced packaging (AdP) and wafer-level-packaging (WLP). Mask aligner lithography is a mature technique based on shadow printing and has not much changed since the 1980s. In shadow printing lithography a geometric pattern is transferred by free-space propagation from a photomask to a photosensitive layer on a wafer. The inherent simplicity of the pattern transfer offers ease of operation, low maintenance, moderate capital expenditure, high wafers-per-hour (WPH) throughput, and attractive cost-of-ownership (COO). Advanced mask aligner lithography (AMALITH) comprises different measures to improve shadow printing lithography beyond current limits. The key enabling technology for AMALITH is a novel light integrator systems, referred to as MO Exposure Optics® (MOEO). MOEO allows to fully control and shape the properties of the illumination light in a mask aligner. Full control is the base for accurate simulation and optimization of the shadow printing process (computational lithography). Now photolithography enhancement techniques like customized illumination, optical proximity correction (OPC), phase masks (AAPSM), half-tone lithography and Talbot lithography could be used in mask aligner lithography. We summarize the recent progress in advanced mask aligner lithography (AMALITH) and discuss possible measures to further improve shadow printing lithography.

  15. Polymer-phyllosilicate nanocomposites and their preparation

    DOEpatents

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  16. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Min Huang, Wei

    2013-06-01

    The present work studies the synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotube (CNT) and carbon fiber on the electrical property and electro-activated recovery behavior of shape memory polymer (SMP) nanocomposites. The combination of CNT and carbon fiber results in improved electrical conductivity in the SMP nanocomposites. Carboxylic acid-functionalized CNTs are grafted onto the carbon fibers and then self-assembled by deposition to significantly enhance the reliability of the bonding between carbon fiber and SMP via van der Waals and covalent crosslink. Furthermore, the self-assembled carboxylic acid-functionalized CNTs and carbon fibers enable the SMP nanocomposites for Joule heating triggered shape recovery.

  17. Aligning for Innovation - Alignment Strategy to Drive Innovation

    NASA Technical Reports Server (NTRS)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  18. Solution phase van der Waals epitaxy of ZnO wire arrays

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Zhou, Yong; Bakti Utama, Muhammad Iqbal; Mata, María De La; Zhao, Yanyuan; Zhang, Qing; Peng, Bo; Magen, Cesar; Arbiol, Jordi; Xiong, Qihua

    2013-07-01

    As an incommensurate epitaxy, van der Waals epitaxy allows defect-free crystals to grow on substrates even with a large lattice mismatch. Furthermore, van der Waals epitaxy is proposed as a universal platform where heteroepitaxy can be achieved irrespective of the nature of the overlayer material and the method of crystallization. Here we demonstrate van der Waals epitaxy in solution phase synthesis for seedless and catalyst-free growth of ZnO wire arrays on phlogopite mica at low temperature. A unique incommensurate interface is observed even with the incomplete initial wetting of ZnO onto the substrate. Interestingly, the imperfect contacting layer does not affect the crystalline and optical properties of other parts of the wires. In addition, we present patterned growth of a well-ordered array with hexagonal facets and in-plane alignment. We expect our seedless and catalyst-free solution phase van der Waals epitaxy synthesis to be widely applicable in other materials and structures.As an incommensurate epitaxy, van der Waals epitaxy allows defect-free crystals to grow on substrates even with a large lattice mismatch. Furthermore, van der Waals epitaxy is proposed as a universal platform where heteroepitaxy can be achieved irrespective of the nature of the overlayer material and the method of crystallization. Here we demonstrate van der Waals epitaxy in solution phase synthesis for seedless and catalyst-free growth of ZnO wire arrays on phlogopite mica at low temperature. A unique incommensurate interface is observed even with the incomplete initial wetting of ZnO onto the substrate. Interestingly, the imperfect contacting layer does not affect the crystalline and optical properties of other parts of the wires. In addition, we present patterned growth of a well-ordered array with hexagonal facets and in-plane alignment. We expect our seedless and catalyst-free solution phase van der Waals epitaxy synthesis to be widely applicable in other materials and structures

  19. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  20. Multiple sequence alignment with DIALIGN.

    PubMed

    Morgenstern, Burkhard

    2014-01-01

    DIALIGN is a software tool for multiple sequence alignment by combining global and local alignment features. It composes multiple alignments from local pairwise sequence similarities. This approach is particularly useful to discover conserved functional regions in sequences that share only local homologies but are otherwise unrelated. An anchoring option allows to use external information and expert knowledge in addition to primary-sequence similarity alone. The latest version of DIALIGN optionally uses matches to the PFAM database to detect weak homologies. Various versions of the program are available through Göttingen Bioinformatics Compute Server (GOBICS) at http://www.gobics.de/department/software.

  1. Indoor Radon Measurement in Van

    NASA Astrophysics Data System (ADS)

    Kam, E.; Osmanlioglu, A. E.; Dogan, I.; Celebi, N.

    2007-04-01

    In this study, indoor radon concentrations obtained from the radon surveys conducted in the Van. Radon monitoring was performed by applying a passive, time-integrating measuring technique. For this purpose, CR-39 nuclear track detectors were installed in dwellings for 2 months. After the monitoring period, detectors were collected. In order to make the alpha tracks visible, chemical etching was applied to the exposed detectors. Nuclear track numbers and the corresponding indoor radon concentrations were determined. Annual effective dose equivalents and the risk probabilities caused by indoor radon inhalation were calculated, and the found results compared with the indoor radon concentrations' data measured in different provinces of Turkey.

  2. Indoor Radon Measurement in Van

    SciTech Connect

    Kam, E.; Osmanlioglu, A. E.; Celebi, N.; Dogan, I.

    2007-04-23

    In this study, indoor radon concentrations obtained from the radon surveys conducted in the Van. Radon monitoring was performed by applying a passive, time-integrating measuring technique. For this purpose, CR-39 nuclear track detectors were installed in dwellings for 2 months. After the monitoring period, detectors were collected. In order to make the alpha tracks visible, chemical etching was applied to the exposed detectors. Nuclear track numbers and the corresponding indoor radon concentrations were determined. Annual effective dose equivalents and the risk probabilities caused by indoor radon inhalation were calculated, and the found results compared with the indoor radon concentrations' data measured in different provinces of Turkey.

  3. Time resolved strain dependent morphological study of electrically conducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Mitchell, Geoffrey; Mateus, Artur; Kamma-Lorger, Christina S.

    2015-10-01

    An efficient and reliable method is introduced to understand the network behaviour of nano-fillers in a polymeric matrix under uniaxial strain coupled with small angle x-ray scattering measurements. The nanoparticles (carbon nanotubes) are conductive and the particles form a percolating network that becomes apparent source of electrical conduction and consequently the samples behave as a bulk conductor. Polyurethane based nanocomposites containing 2% w/w multiwall carbon nanotubes are studied. The electrical conductivity of the nanocomposite was (3.28×10-5s/m).The sample was able to be extended to an extension ratio of 1.7 before fracture. A slight variation in the electrical conductivity is observed under uniaxial strain which we attribute to the disturbance of conductive pathways. Further, this work is coupled with in- situ time resolved small angle x-ray scattering measurements using a synchrotron beam line to enable its measurements to be made during the deformation cycle. We use a multiscale structure to model the small angle x-ray data. The results of the analysis are interpreted as the presence of aggregates which would also go some way towards understanding why there is no alignment of the carbon nanotubes.

  4. Nonlinear analysis of piezoelectric nanocomposite energy harvesting plates

    NASA Astrophysics Data System (ADS)

    Rafiee, M.; He, X. Q.; Liew, K. M.

    2014-06-01

    This paper investigates the nonlinear analysis of energy harvesting from piezoelectric functionally graded carbon nanotube reinforced composite plates under combined thermal and mechanical loadings. The excitation, which derives from harmonically varying mechanical in-plane loading, results in parametric excitation. The governing equations of the piezoelectric functionally graded carbon nanotube reinforced composite plates are derived based on classical plate theory and von Kármán geometric nonlinearity. The material properties of the nanocomposite plate are assumed to be graded in the thickness direction. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned, straight and have a uniform layout. The linear buckling and vibration behavior of the nanocomposite plates is obtained in the first step. Then, Galerkin’s method is employed to derive the nonlinear governing equations of the problem with cubic nonlinearities associated with mid-plane stretching. Periodic solutions are determined by using the Poincaré-Lindstedt perturbation scheme with movable simply supported boundary conditions. The effects of temperature change, the volume fraction and the distribution pattern of the SWCNTs on the parametric resonance, in particular the amplitude of vibration and the average harvested power of the smart functionally graded carbon nanotube reinforced composite plates, are investigated through a detailed parametric study.

  5. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  6. Magnetic axis alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  7. Visual attitude orientation and alignment system

    NASA Technical Reports Server (NTRS)

    Beam, R. A.; Morris, D. B.

    1967-01-01

    Active vehicle optical alignment aid and a passive vehicle three-dimensional alignment target ensure proper orientation and alignment plus control of the closure range and rate between two bodies, one in controlled motion and one at rest.

  8. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  9. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  10. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  11. Protein structure alignment beyond spatial proximity.

    PubMed

    Wang, Sheng; Ma, Jianzhu; Peng, Jian; Xu, Jinbo

    2013-01-01

    Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures.

  12. Fixture for aligning motor assembly

    DOEpatents

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  13. Vertically Aligned Nanoplate Particles Directed by Block Copolymer Domains for Anisotropic Properties

    NASA Astrophysics Data System (ADS)

    Krook, Nadia; Meth, Jeffrey; Murray, Christopher; Riggleman, Robert; Composto, Russell

    During common processing methods, anisotropic fillers in polymer nanocomposites align in the direction of flow, parallel to the surfaces, thus enhancing properties in the plane of the substrate. This research aims to create thin film nanocomposites with perpendicularly aligned anisotropic particles to improve properties in the out-of-plane direction. The demonstrated work explores vertical orientation of rare-earth fluoride nanoplates in lamellar-forming poly(styrene- b-methyl methacrylate) to establish a platform that controls the alignment of any planar particle. Currently, gadolinium fluoride (GdF3) rhombus nanoplates with the longest and shortest diagonal dimensions of ~30 nm and ~25 nm, respectively, have been specially synthesized with the potential to intercalate the block copolymer (BCP) domains. By employing a ternary brush blend layer to neutralize silicon substrates to both BCP domains, vertical lamellae orientation has been enabled with an optimum film thickness of ~110 nm. The GdF3 surfaces are chemically modified to drive the plates to a specific BCP domain. After surface modification, the dispersion of GdF3 in homopolymer will first be shown followed by morphology results from integrating GdF3 into the BCP using scanning and transmission electron microscopy.

  14. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  15. BinAligner: a heuristic method to align biological networks

    PubMed Central

    2013-01-01

    The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and

  16. [Multifunctional nanocomposite materials]. Progress report

    SciTech Connect

    Not Available

    1993-04-01

    These novel nanocomposites are microporous nanometal intercalated clays which have been prepared by a polyol process at 200C and a novel microwave-hydrothermal process using ethylene glycol. These novel nanocomposites have been found to be useful in the conversion of coal to asphaltenes. A crystalline tin (IV) arsenate hydroxide hydrate has been made and its lithium selective ion exchange properties have been measured. This exchanger has shown high lithium selectivity. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure have also been studied. Several pillared clays have also been synthesized and their Mg{sup 2+}, Li{sup +} and UO{sub 2}{sup 2+} selectivity has been measured. The pillared clays appear to show some Li selectivity.

  17. Review: nanocomposites in food packaging.

    PubMed

    Arora, Amit; Padua, G W

    2010-01-01

    The development of nanocomposites is a new strategy to improve physical properties of polymers, including mechanical strength, thermal stability, and gas barrier properties. The most promising nanoscale size fillers are montmorillonite and kaolinite clays. Graphite nanoplates are currently under study. In food packaging, a major emphasis is on the development of high barrier properties against the migration of oxygen, carbon dioxide, flavor compounds, and water vapor. Decreasing water vapor permeability is a critical issue in the development of biopolymers as sustainable packaging materials. The nanoscale plate morphology of clays and other fillers promotes the development of gas barrier properties. Several examples are cited. Challenges remain in increasing the compatibility between clays and polymers and reaching complete dispersion of nanoplates. Nanocomposites may advance the utilization of biopolymers in food packaging. PMID:20492194

  18. Multiscale modeling of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sheidaei, Azadeh

    In recent years, polymer nano-composites (PNCs) have increasingly gained more attention due to their improved mechanical, barrier, thermal, optical, electrical and biodegradable properties in comparison with the conventional micro-composites or pristine polymer. With a modest addition of nanoparticles (usually less than 5wt. %), PNCs offer a wide range of improvements in moduli, strength, heat resistance, biodegradability, as well as decrease in gas permeability and flammability. Although PNCs offer enormous opportunities to design novel material systems, development of an effective numerical modeling approach to predict their properties based on their complex multi-phase and multiscale structure is still at an early stage. Developing a computational framework to predict the mechanical properties of PNC is the focus of this dissertation. A computational framework has been developed to predict mechanical properties of polymer nano-composites. In chapter 1, a microstructure inspired material model has been developed based on statistical technique and this technique has been used to reconstruct the microstructure of Halloysite nanotube (HNT) polypropylene composite. This technique also has been used to reconstruct exfoliated Graphene nanoplatelet (xGnP) polymer composite. The model was able to successfully predict the material behavior obtained from experiment. Chapter 2 is the summary of the experimental work to support the numerical work. First, different processing techniques to make the polymer nanocomposites have been reviewed. Among them, melt extrusion followed by injection molding was used to manufacture high density polyethylene (HDPE)---xGnP nanocomposties. Scanning electron microscopy (SEM) also was performed to determine particle size and distribution and to examine fracture surfaces. Particle size was measured from these images and has been used for calculating the probability density function for GNPs in chapter 1. A series of nanoindentation tests have

  19. Vincent van Gogh: The Postman Roulin.

    ERIC Educational Resources Information Center

    Miller, Stacy

    1989-01-01

    Provides a lesson plan for teaching K-three students to analyze and empathize with a portrait by post-impressionist painter Vincent van Gogh. Describes background of the artist and the painting "The Postman Roulin." Suggests instructional strategies, activities, and evaluation methods. Lists bibliographical material relative to van Gogh's life.…

  20. Van Go: A Labor of Love

    ERIC Educational Resources Information Center

    Williams, Jennifer

    2012-01-01

    Like a tapestry woven with one outstanding thread from beginning to end, the author's forty-year tenure as an art educator has its golden thread in her Van Go art outreach project. Quite literally, she takes students in a "van" and they "go," mostly on dirt roads, taking art to rural schools in Idaho, some of which have no more than three students…

  1. Probabilistic Simulation for Nanocomposite Characterization

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    A unique probabilistic theory is described to predict the properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths properties of a mononanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions.

  2. Inorganic nanofluorides and related nanocomposites

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Sergei V.; Osiko, Vyacheslav V.; Tkatchenko, E. A.; Fedorov, Pavel P.

    2006-12-01

    The properties and prospects of application of fluoride nanoparticles are discussed. Pyrohydrolysis is considered as the key process determining the chemistry and technology of fluorides; its role increases on going to the nanosize region. The physical and chemical methods for the synthesis of fluoride nanoparticles, one- and two-dimensional nanoobjects as well as approaches to the preparation of nanocomposites (glass ceramics, heterovalent solid solutions with defect clusters, eutectoid composites, etc.) are analysed. Nanotechnology techniques used to produce heterogeneous nanoobjects are outlined.

  3. Silicone nanocomposite coatings for fabrics

    NASA Technical Reports Server (NTRS)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  4. Preparation and Properties of Nanocomposites from Pristine and Modified SWCNTs of Comparable Average Aspect Ratios

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Delozier, Donavon M.; Watson, Kent A.; Connell, John W.; Bekyarova, E.; Haddon, R.; Yu, A.

    2008-01-01

    Low color, flexible, space-durable polyimide films with inherent and robust electrical conductivity to dissipate electrostatic charge (ESC) have been under investigation as part of a materials development activity for future NASA space missions. The use of single-walled carbon nanotubes (SWCNTs) is one means to achieving this goal. Even though the concentration of SWCNTs needed to achieve ESC dissipation is typically low, it is dependent upon purity, size, dispersion, and functionalization. In this study, SWCNTs prepared by the electric arc discharge method were used to synthesize nanocomposites using the LaRC(TradeMark) CP2 backbone as the matrix. Pristine and functionalized SWCNTs were mixed with an alkoxysilane terminated amide acid of LaRC(TradeMark) CP2 and the soluble imide form of the polymer and the resultant nanocomposites evaluated for mechanical, thermal, and electrical properties. Due to the preparative conditions for the pristine and functionalized SWCNTs, the average aspect ratio for both was comparable. This permitted the assessment of SWCNT functionalization with respect to various interactions (e.g. van der Waals, hydrogen bonding, covalent bond formation, etc.) with the matrix and the macroscopic effects upon nanocomposite properties. The results of this study are described herein.

  5. Hybrid polymer-inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.

    2000-01-01

    Approaches to the preparation of organic-inorganic nanocomposites are considered from a unified viewpoint for the first time. The major problems in the development of this new line of research in materials technology, which has arisen on the border of the science of polymers, colloid chemistry and physical chemistry of the ultradisperse state, are discussed. The main methods for the formation of composite materials and polymer-inorganic cross-linked hybrids with interpenetrating networks are analysed. Primary attention is given to sol-gel procedures for their preparation, including template processes, which occur under conditions of strict stereochemical orientation of reactants, intercalation of monomers and polymers into porous and layered matrices and their intracrystalline and post-intercalation transformations. Methods for the synthesis and properties of metallopolymeric polymolecular Langmuir-Blodgett films, which are peculiar supramolecular ensembles incorporating nanosized metal-containing particles, are discussed. The generality of the processes of formation of organic-inorganic nanocomposites in living and nonliving natural objects is demonstrated and the major fields of application of nanocomposites are considered. The bibliography includes 566 references.

  6. Magnetic Alignment and Charge Transport Improvement in Functional Soft Materials

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.

    The realization of nanostructured functional materials by self-assembly in polymers and polymer nanocomposites is adversely affected by persisting structural defects which greatly diminish the performance of the material. The use of magnetic fields to impose long-range order is investigated in three distinct systems - ion-conducting block copolymers, semiconducting nanowire-polymer composites and lyotropic surfactant mesophases. The alignment process is quantitatively studied with X-ray scattering and microscopic methods. Time and temperature resolved data collected in situ during the magnetic experiments provide an insight into the thermodynamic and kinetic aspects of the process. These data together with simultaneous electrical conductivity measurements allow relating fundamental structural properties (e.g., morphology and long-range order) to transport properties (i.e., conductivity). In particular, it is demonstrated that magnetic fields offer a viable route for improvement of electric conductivity in these systems. More than an order of magnitude increase in conductivity is recorded in magnetically-annealed materials. The resulting aligned nanostructured systems are attractive for ordered solid polymer electrolyte membranes, heterojunction photovoltaic devices and generally help to understand charge transport mechanisms in anisotropic heterogeneous systems.

  7. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  8. "Green" composites and nanocomposites from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we report preparation of epoxidized soybean oil (ESO) based "green" composites and nanocomposites. The high strength and stiffness composites and nanocomposites are formed through flax fiber and organoclay reinforcement. The epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl...

  9. Polymer nanocomposites: structure, interaction, and functionality.

    PubMed

    Keledi, Gergely; Hári, József; Pukánszky, Béla

    2012-03-21

    This feature article discusses the main factors determining the properties of polymer nanocomposites with special attention paid to structure and interactions. Usually more complicated structure develops in nanocomposites than in traditional particulate filled polymers, and that is especially valid for composites prepared from plate-like nanofillers. Besides the usually assumed exfoliated/intercalated morphology, i.e. individual platelets and tactoids, such nanocomposites often contain large particles, and a network structure developing at large extent of exfoliation. Aggregation and orientation are the most important structural phenomena in nanotube or nanofiber reinforced composites, and ag-gregation is a major problem also in composites prepared with spherical particles. The surface characteristics of nanofillers and interactions are rarely determined or known; the related problems are discussed in the paper in detail. The surface of these reinforcements is modified practically always. The goal of the modification is to improve dispersion and/or adhesion in nanotube and spherical particle reinforced composites, and to help exfoliation in nanocomposites containing platelets. However, modification decreases surface energy often leading to decreased interaction with the matrix. Very limited information exists about interphase formation and the properties of the interphase in nanocomposites, although they must influence properties considerably. The properties of nanocomposites are usually far from the expectations, the main reason being insufficient homogeneity, undefined structure and improper adhesion. In spite of considerable difficulties nanocomposites have great potentials especially in functional applications. Several nanocomposite products are already used in industrial practice demonstrated by a few examples in the article. PMID:22349033

  10. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  11. Graphene-based artificial nacre nanocomposites.

    PubMed

    Zhang, Yuanyuan; Gong, Shanshan; Zhang, Qi; Ming, Peng; Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-05-01

    With its extraordinary properties as the strongest and stiffest material ever measured and the best-known electrical conductor, graphene could have promising applications in many fields, especially in the area of nanocomposites. However, processing graphene-based nanocomposites is very difficult. So far, graphene-based nanocomposites exhibit rather poor properties. Nacre, the gold standard for biomimicry, provides an excellent example and guidelines for assembling two-dimensional nanosheets into high performance nanocomposites. The inspiration from nacre overcomes the bottleneck of traditional approaches for constructing nanocomposites, such as poor dispersion, low loading, and weak interface interactions. This tutorial review summarizes recent research on graphene-based artificial nacre nanocomposites and focuses on the design of interface interactions and synergistic effects for constructing high performance nanocomposites. This tutorial review also focuses on a perspective of the dynamic area of graphene-based nanocomposites, commenting on whether the concept is viable and practical, on what has been achieved to date, and most importantly, what is likely to be achieved in the future.

  12. Graphene-based artificial nacre nanocomposites.

    PubMed

    Zhang, Yuanyuan; Gong, Shanshan; Zhang, Qi; Ming, Peng; Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-05-01

    With its extraordinary properties as the strongest and stiffest material ever measured and the best-known electrical conductor, graphene could have promising applications in many fields, especially in the area of nanocomposites. However, processing graphene-based nanocomposites is very difficult. So far, graphene-based nanocomposites exhibit rather poor properties. Nacre, the gold standard for biomimicry, provides an excellent example and guidelines for assembling two-dimensional nanosheets into high performance nanocomposites. The inspiration from nacre overcomes the bottleneck of traditional approaches for constructing nanocomposites, such as poor dispersion, low loading, and weak interface interactions. This tutorial review summarizes recent research on graphene-based artificial nacre nanocomposites and focuses on the design of interface interactions and synergistic effects for constructing high performance nanocomposites. This tutorial review also focuses on a perspective of the dynamic area of graphene-based nanocomposites, commenting on whether the concept is viable and practical, on what has been achieved to date, and most importantly, what is likely to be achieved in the future. PMID:27039951

  13. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  14. Nanocrystal-polymer nanocomposite electrochromic device

    SciTech Connect

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  15. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  16. Detection of both vanA & vanB genes in vanA phenotypes of Enterococci by Taq Man RT-PCR

    PubMed Central

    Mirzaei, Bahman; Babaei, Ryhane; Asiabar, Akbar Pour Dadash; Bameri, Zakaria

    2015-01-01

    Twenty seven isolates of vancomycin resistant Enterococci based on the disk diffusion and E- test have been screened; being found eight (0.3%) clinical isolates of vanA & vanB through Taq Man Real Time PCR assay. This study shows the presence of both vanA & vanB genotypes in vanA phenotypes clinical isolates in the three hospitals in Iran. PMID:26221103

  17. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links.

    PubMed

    Podsiadlo, Paul; Kaushik, Amit K; Shim, Bong Sup; Agarwal, Ashish; Tang, Zhiyong; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A

    2008-11-20

    The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa. PMID:18590319

  18. Dynamic Strength Ceramic Nanocomposites Under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.; Skripnyak, Vladimir A.

    2015-06-01

    Multi-scale computer simulation approach has been applied to research of strength of nanocomposites under dynamic loading. The influence of mesoscopic substructures on the dynamic strength of ceramic and hybrid nanocomposites, which can be formed using additive manufacturing were numerically investigated. At weak shock wave loadings the shear strength and the spall strength of ceramic and hybrid nanocomposites depends not only phase concentration and porosity, but size parameters of skeleton substructures. The influence of skeleton parameter on the shear strength and the spall strength of ceramic nanocomposites with the same concentration of phases decreases with increasing amplitude of the shock pulse of microsecond duration above the double amplitude of the Hugoniot elastic limit of nanocomposites. This research carried out in 2014 -2015 was supported by grant from The Tomsk State University Academic D.I. Mendeleev Fund Program and also Ministry of Sciences and Education of Russian Federation (State task 2014/223, project 1943, Agreement 14.132.

  19. Advances in rubber/halloysite nanotubes nanocomposites.

    PubMed

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  20. Advances in rubber/halloysite nanotubes nanocomposites.

    PubMed

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties. PMID:24749454

  1. Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure.

    PubMed

    Kim, Jae-Woo; Sauti, Godfrey; Siochi, Emilie J; Smith, Joseph G; Wincheski, Russell A; Cano, Roberto J; Connell, John W; Wise, Kristopher E

    2014-11-12

    Thermoset/carbon nanotube (CNT) sheet nanocomposites were successfully fabricated by resistive heating assisted infiltration and cure (RHAIC) of the polymer matrix resin. Resistive heating takes advantage of the electrical and thermal conductivity of CNTs to rapidly and uniformly introduce heat into the CNT sheet. Heating the CNT sheet reduces the viscosity of the polymer resin due to localized temperature rise in close proximity to the resin, which enhances resin flow, penetration, and wetting of the CNT reinforcement. Once the resin infusion process is complete, the applied power is increased to raise the temperature of the CNT sheet, which rapidly cures the polymer matrix. Tensile tests were used to evaluate the mechanical properties of the processed thermoset/CNT sheet nanocomposites. The improved wetting and adhesion of the polymer resin to the CNT reinforcement yield significant improvement of thermoset/CNT nanocomposite mechanical properties. The highest specific tensile strength of bismaleimide(BMI)/CNT sheet nanocomposites was obtained to date was 684 MPa/(g/cm(3)), using 4 V (2 A) for resin infiltration, followed by precure at 10 V (6 A) for 10 min and post curing at 240 °C for 6 h in an oven. The highest specific Young's modulus of BMI/CNT sheet nanocomposite was 71 GPa/(g/cm(3)) using resistive heating infiltration at 8.3 V (4.7 A) for 3 min followed by resistive heating cure at 12.5 V (7 A) for 30 min. In both cases, the CNT sheets were stretched and held in tension to prevent relaxation of the aligned CNTs during the course of RHAIC.

  2. Ellis-van Creveld syndrome

    PubMed Central

    Sasalawad, Shilpa S; Hugar, Shivayogi M; Poonacha, K S; Mallikarjuna, Rachappa

    2013-01-01

    Ellis-van Creveld (EvC) syndrome or chondroectodermal dysplasia is an autosomal recessive disorder with characteristic clinical manifestations. The four principal characteristics are chondrodysplasia, polydactyly, ectodermal dysplasia and congenital heart defects. Its incidence in the general population is low. The oral manifestations of EvC syndrome include both soft tissues and teeth, but the dental literature on the subject is scarce. The present case describes the constant and variable oral findings in these patients, which can be diagnosed at any age, even during pregnancy. The presence of a variety of oral manifestations, such as fusion of upper lip to the gingival margin, presence of multiple frenula, abnormally shaped and microdontic teeth and congenitally missing teeth requires multidisciplinary dental treatment, with consideration for the high incidence of cardiac defects in these patients. PMID:23843404

  3. Nonsingular van der Waals potentials

    NASA Astrophysics Data System (ADS)

    Lu, J. X.; Marlow, W. H.

    1995-09-01

    Universal, spherical, nonsingular van der Waals interactions including retardation effect are developed for atoms and small molecules through a semiclassical field approach. Consideration of the finite molecular size effect removes the short-distance singular behavior inherent in the widely used potentials obtained from the point-molecule approximation. Physical arguments lead to the molecular size parameter a (in atomic units) as 1/a=1.25(I/IH)1/2, except for a system that involves at least an atom or a molecule with very different first and second ionization potentials, and for such a system the above numerical factor 1.25 is replaced by unity. Here I and IH are the first ionization potentials for the atom or molecule considered and for a hydrogen atom, respectively. The nonsingular potentials have been tested for the following representative systems: H2 (3Σ+u), He2, Ar2, NaK (3Σ+), LiHg (2Σ+), He-HF, Ne-HF, HF-HF, and Ar-HCl. Very good agreement has been found for each of the systems. Based on the above systems studied, an empirical relation has been obtained between the parameter b in the Born-Mayer repulsive potential Ae-bR and the molecular size parameters (a1 and a2). Applying this relation to dozens of systems with known b from either self-consistent-field calculations or experiments, surprisingly good agreements have been obtained. By the same token, another empirical formula is obtained that relates the van der Waals minimum well parameter Rm to the molecular size parameters (a1 and a2) and the first ionization potentials (Ix and Iy) of interacting species. Again, very good agreements have been achieved in comparison with dozens of systems with known experimental Rm's.

  4. DIDA: Distributed Indexing Dispatched Alignment

    PubMed Central

    Mohamadi, Hamid; Vandervalk, Benjamin P; Raymond, Anthony; Jackman, Shaun D; Chu, Justin; Breshears, Clay P; Birol, Inanc

    2015-01-01

    One essential application in bioinformatics that is affected by the high-throughput sequencing data deluge is the sequence alignment problem, where nucleotide or amino acid sequences are queried against targets to find regions of close similarity. When queries are too many and/or targets are too large, the alignment process becomes computationally challenging. This is usually addressed by preprocessing techniques, where the queries and/or targets are indexed for easy access while searching for matches. When the target is static, such as in an established reference genome, the cost of indexing is amortized by reusing the generated index. However, when the targets are non-static, such as contigs in the intermediate steps of a de novo assembly process, a new index must be computed for each run. To address such scalability problems, we present DIDA, a novel framework that distributes the indexing and alignment tasks into smaller subtasks over a cluster of compute nodes. It provides a workflow beyond the common practice of embarrassingly parallel implementations. DIDA is a cost-effective, scalable and modular framework for the sequence alignment problem in terms of memory usage and runtime. It can be employed in large-scale alignments to draft genomes and intermediate stages of de novo assembly runs. The DIDA source code, sample files and user manual are available through http://www.bcgsc.ca/platform/bioinfo/software/dida. The software is released under the British Columbia Cancer Agency License (BCCA), and is free for academic use. PMID:25923767

  5. Global Alignment System for Large Genomic Sequencing

    2002-03-01

    AVID is a global alignment system tailored for the alignment of large genomic sequences up to megabases in length. Features include the possibility of one sequence being in draft form, fast alignment, robustness and accuracy. The method is an anchor based alignment using maximal matches derived from suffix trees.

  6. Photosensitive Polymers for Liquid Crystal Alignment

    NASA Astrophysics Data System (ADS)

    Mahilny, U. V.; Stankevich, A. I.; Trofimova, A. V.; Muravsky, A. A.; Murauski, A. A.

    The peculiarities of alignment of liquid crystal (LC) materials by the layers of photocrosslinkable polymers with side benzaldehyde groups are considered. The investigation of mechanism of photostimulated alignment by rubbed benzaldehyde layer is performed. The methods of creation of multidomain aligning layers on the basis of photostimulated rubbing alignment are described.

  7. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    NASA Astrophysics Data System (ADS)

    Cho, Sung Beom; Chung, Yong-Chae

    2016-06-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer.

  8. Alignment method for parabolic trough solar concentrators

    DOEpatents

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  9. Combining Multiple Pairwise Structure-based Alignments

    SciTech Connect

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a new tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.

  10. Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure

    NASA Astrophysics Data System (ADS)

    Feng, Zhihong; Chen, Buyun; Qian, Shuangbei; Xu, Linyan; Feng, Liefeng; Yu, Yuanyuan; Zhang, Rui; Chen, Jiancui; Li, Qianqian; Li, Quanning; Sun, Chongling; Zhang, Hao; Liu, Jing; Pang, Wei; Zhang, Daihua

    2016-09-01

    We report on a new chemical sensor based on black phosphorus/molybdenum diselenide van der Waals hetero-junctions. Due to the atomically thin nature of two-dimensional (2D) materials, surface adsorption of gas molecules can effectively modulate the band alignment at the junction interface, making the device a highly sensitive detector for chemical adsorptions. Compared to sensors made of homogeneous nanomaterials, the hetero-junction demonstrates considerably lower detection limit and higher sensitivity toward nitrogen dioxide. Kelvin probe force microscopy and finite element simulations have provided experimental and theoretical explanations for the enhanced performance, proving that chemical adsorption can induce significant changes in band alignment and carrier transport behaviors. The study demonstrates the potential of van der Waals hetero-junction as a new platform for sensing applications, and provides more insights into the interaction between gaseous molecules and 2D hetero-structures.

  11. A New Method for Preparation of Metal Matrix Nanocomposites

    NASA Astrophysics Data System (ADS)

    Padhi, Payodhar; Panigrahi, S. C.; Ghosh, Sudipto

    2008-10-01

    Particulate metal matrix composites (MMCs) can involve ceramic particulates ranging in size from few nanometers to 500 μm. Particulates are added to the metal matrix for strengthening. In particular, addition of nanoparticles, even in quantities as small as 2 weight percent can enhance the hardness or yield strength by a factor as high as 2. There are several methods for the production of metal matrix nanocomposites including mechanical alloying , vertex process and spray deposition. However, the above processes are expensive. Solidification processing is a relatively cheaper route. However, during solidification processing nanoparticulates tend to agglomerate as a result of van der Waals forces and thus proper dispersion of the nano-particulate in metal matrix is a challenge. Yang et al dispersed nanoparticles in metal matrix by ultrasonic casting. However their technique has several drawbacks such as the oscillating probe, which is in direct contact with liquid metal, may dissolve in the liquid metal and contaminate it. Moreover, the extent of dispersion is not uniform. It is maximum near the probe and gradually decreases as one move away from the probe. Lastly in the method developed by Yang et al, the oscillating probe is removed from the liquid metal before cooling and solidification begin. This may lead to partial reagglomeration of nanoparticles. To overcome these difficulties a non-contact method, where the ultrasonic probe is not in direct contact with the liquid metal, was attempted to disperse nano-sized Al2O3 particulates in aluminum matrix. In this method the mold was subjected to ultrasonic vibration. Hardness measurements and microstructural studies using HRTEM were carried out on samples taken from different locations of the nanocomposite ingot cast by the non-contact method. Commercially pure liquid aluminum was used as matrix of the composite. The Al2O3 nano-powder was prepared by ball milling for 22 hr. The nanopowders were characterized using

  12. Synthesis of silver/montmorillonite nanocomposites using γ-irradiation

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Gharayebi, Yadollah; Sedaghat, Sajjad

    2010-01-01

    Silver nanoparticles (Ag-NPs) were synthesized into the interlamellar space of montmorillonite (MMT) by using the γ-irradiation technique in the absence of any reducing agent or heat treatment. Silver nitrate and γ-irradiation were used as the silver precursor and physical reducing agent in MMT as a solid support. The MMT was suspended in the aqueous AgNO3 solution, and after the absorption of silver ions, Ag+ was reduced using the γ-irradiation technique. The properties of Ag/MMT nanocomposites and the diameters of Ag-NPs were studied as a function of γ-irradiation doses. The interlamellar space limited particle growth (d-spacing [ds] = 1.24–1.42 nm); powder X-ray diffraction and transmission electron microscopy (TEM) measurements showed the production of face-centered cubic Ag-NPs with a mean diameter of about 21.57–30.63 nm. Scanning electron microscopy images indicated that there were structure changes between the initial MMT and Ag/MMT nanocomposites under the increased doses of γ-irradiation. Furthermore, energy dispersive X-ray fluorescence spectra for the MMT and Ag/ MMT nanocomposites confirmed the presence of elemental compounds in MMT and Ag-NPs. The results from ultraviolet-visible spectroscopy and TEM demonstrated that increasing the γ-irradiation dose enhanced the concentration of Ag-NPs. In addition, the particle size of the Ag-NPs gradually increased from 1 to 20 kGy. When the γ-irradiation dose increased from 20 to 40 kGy, the particle diameters decreased suddenly as a result of the induced fragmentation of Ag-NPs. Thus, Fourier transform infrared spectroscopy suggested that the interactions between Ag-NPs with the surface of MMT were weak due to the presence of van der Waals interactions. The synthesized Ag/MMT suspension was found to be stable over a long period of time (ie, more than 3 months) without any sign of precipitation. PMID:21170354

  13. Grain Alignment in Starless Cores

    NASA Astrophysics Data System (ADS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to {{A}V}˜ 48. We find that {{P}K}/{{τ }K} continues to decline with increasing AV with a power law slope of roughly -0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by {{A}V}≳ 20 the slope for P versus τ becomes ˜-1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than {{A}V}˜ 20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  14. Transformation and alignment in similarity.

    PubMed

    Hodgetts, Carl J; Hahn, Ulrike; Chater, Nick

    2009-10-01

    This paper contrasts two structural accounts of psychological similarity: structural alignment (SA) and Representational Distortion (RD). SA proposes that similarity is determined by how readily the structures of two objects can be brought into alignment; RD measures similarity by the complexity of the transformation that "distorts" one representation into the other. We assess RD by defining a simple coding scheme of psychological transformations for the experimental materials. In two experiments, this "concrete" version of RD provides compelling fits of the data and compares favourably with SA. Finally, stepping back from particular models, we argue that perceptual theory suggests that transformations and alignment processes should generally be viewed as complementary, in contrast to the current distinction in the literature. PMID:19720370

  15. Shape-induced separation of nanospheres and aligned nanorods.

    PubMed

    Ahmad, I; Zandvliet, H J W; Kooij, E S

    2014-07-15

    We studied the phase separation and spatial arrangement of gold nanorods and nanospheres after evaporative self-assembly from aqueous suspension. Depending on the position relative to the contact line of the drying droplet, spheres and rods separate into various liquid-crystalline phases. Nanorods exhibit a strong preference for side-by-side alignment, giving rise to smectic phases; spheres in solution are forced out of these regions and form close-packed arrays. We discuss this self-separation into nanorod- and sphere-rich phases in terms of various interactions, including electrostatic, van der Waals, and deplection interactions forces. The experimental results are compared to quantitative calculations of the colloidal interaction energies. We also describe and discuss the role of the surfactant on the different crystal facets of the nanorods on the assembly process.

  16. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.

    PubMed

    Anastasopol, Anca; Pfeiffer, Tobias V; Middelkoop, Joost; Lafont, Ugo; Canales-Perez, Roger J; Schmidt-Ott, Andreas; Mulder, Fokko M; Eijt, Stephan W H

    2013-05-29

    Spark discharge generation was used to synthesize Mg-Ti nanocomposites consisting primarily of a metastable body-centered-cubic (bcc) alloy of Mg and Ti. The bcc Mg-Ti alloy transformed upon hydrogenation into the face-centered-cubic fluorite Mg1-yTiyHx phase with favorable hydrogen storage properties. Both metal and metal hydride nanocomposites showed a fractal-like porous morphology, with a primary particle size of 10-20 nm. The metal content of 70 atom % (at %) Mg and 30 at % Ti, consistently determined by XRD, TEM-EDS, and ICP-OES, was distributed uniformly across the as-prepared sample. Pressure-composition isotherms for the Mg-Ti-H nanocomposites revealed large differences in the thermodynamics relative to bulk MgH2, with a much less negative enthalpy of formation of the hydride as small as -45 ± 3 kJ/molH2 as deduced from van't Hoff plots. The plateau pressures of hydrogenation were substantially higher than those for bulk MgH2 in the low temperature range from 150 to 250 °C. The reaction entropy was simultaneously reduced to values down to 84 ± 5 J/K mol H2, following a linear relationship between the enthalpy and entropy. Plausible mechanisms for the modified thermodynamics are discussed, including the effect of lattice strains, the presence of interfaces and hydrogen vacancies, and the formation of excess free volume due to local deformations. These mechanisms all rely on the finely interdispersed nanocomposite character of the samples which is maintained by grain refinement.

  17. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  18. Alignment Tool For Inertia Welding

    NASA Technical Reports Server (NTRS)

    Snyder, Gary L.

    1991-01-01

    Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.

  19. XUV ionization of aligned molecules

    NASA Astrophysics Data System (ADS)

    Kelkensberg, F.; Rouzée, A.; Siu, W.; Gademann, G.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.; Vrakking, M. J. J.

    2011-11-01

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO2 molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  20. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  1. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment-distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  2. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  3. Prosthodontic Rehabilitation for a Patient with Ellis-Van Creveld Syndrome: A Case Report.

    PubMed

    Siddiqui, Muhammad Musaab; Taylor, Philip D

    2016-03-01

    Patients suffering from Ellis-Van-Creveld syndrome are a challenge for dental management. Aesthetics are a major concern with limited manual dexterity, making choice of treatment critical. A 38 year old female diagnosed with Ellis-Van-Creveld syndrome presented with stained teeth and un-aesthetic smile and related that to her low self-esteem and depression. Intra-oral examination revealed mal-aligned megadont central incisors in the maxillary arch, fused mandibular canines with laterals and missing central incisors with space discrepancy and pronounced reverse over jet and overbite. Treatment involved non-surgical periodontal management, fabrication of veneers and dentine bonded crowns for maxillary anteriors and fixed-fixed resin retained bridge for mandibular arch. PMID:27039477

  4. MAGNETIC IMAGING OF NANOCOMPOSITE MAGNETS

    SciTech Connect

    VOLKOV,V.V.ZHU,Y.

    2003-08-03

    Understanding the structure and magnetic behavior is crucial for optimization of nanocomposite magnets with high magnetic energy products. Many contributing factors such as phase composition, grain size distribution and specific domain configurations reflect a fine balance of magnetic energies at nanometer scale. For instance, magnetocrystalline anisotropy of grains and their orientations, degree of exchange coupling of magnetically soft and hard phases and specific energy of domain walls in a material. Modern microscopy, including Lorentz microscopy, is powerful tool for visualization and microstructure studies of nanocomposite magnets. However, direct interpretation of magnetically sensitive Fresnel/Foucault images for nanomagnets is usually problematic, if not impossible, because of the complex image contrast due to small grain size and sophisticated domain structure. Recently we developed an imaging technique based on Lorentz phase microscopy [l-4], which allows bypassing many of these problems and get quantitative information through magnetic flux mapping at nanometer scale resolution with a magnetically calibrated TEM [5]. This is our first report on application of this technique to nanocomposite magnets. In the present study we examine a nanocomposite magnet of nominal composition Nd{sub 2}Fe{sub 14+{delta}}B{sub 1.45} (14+{delta}=23.3, i.e. ''hard'' Nd{sub 2}Fe{sub 14}B-phase and 47.8 wt% of ''soft'' {alpha}-Fe phase ({delta}=9.3)), produced by Magnequench International, Inc. Conventional TEM/HREM study (Fig. 1-2) suggests that material has a bimodal grain-size distribution with maximum at d{sub max}=25 nm for Nd{sub 2}Fe{sub 14}B phase and d{sub max} = 15 nm for {alpha}-Fe phase (Fig.1c, Fig.2) in agreement with synchrotron X-ray studies (d{sub max}=23.5 nm for Nd{sub 2}Fe{sub 14}B [6]). Lattice parameters for Nd{sub 2}Fe{sub 14}B phase are a=8.80 and c=12.2 {angstrom}, as derived from SAED ring patterns (Fig.1a), again in good agreement with X-ray data

  5. Efficient Z-scheme charge separation in novel vertically aligned ZnO/CdSSe nanotrees

    NASA Astrophysics Data System (ADS)

    Li, Zhengxin; Nieto-Pescador, Jesus; Carson, Alexander J.; Blake, Jolie C.; Gundlach, Lars

    2016-04-01

    A new tree-like ZnO/CdSSe nanocomposite with CdSSe branches grown on ZnO nanowires prepared via a two-step chemical vapor deposition is presented. The nanotrees (NTs) are vertically aligned on a substrate. The CdSSe branches result in strong visible light absorption and form a type-II heterojunction with the ZnO stem that facilitates efficient electron transfer. A combination of photoluminescence spectroscopy and lifetime measurements indicates that the NTs are promising materials for applications that benefit from a Z-scheme charge transfer mechanism. Vertically aligned branched ZnO nanowires can provide direct electron transport pathways to substrates and allow for efficient charge separation. These advantages of nanoscale hierarchical heterostructures make ZnO/CdSSe NTs a promising semiconductor material for solar cells, and other opto-electronic devices.

  6. Probabilistic Simulation for Nanocomposite Fracture

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A unique probabilistic theory is described to predict the uniaxial strengths and fracture properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths and fracture of a nanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions from low probability to high.

  7. Extruded superparamagnetic saloplastic polyelectrolyte nanocomposites.

    PubMed

    Fu, Jingcheng; Wang, Qifeng; Schlenoff, Joseph B

    2015-01-14

    Iron oxide nanoparticles of diameter ca. 12 nm were dispersed into polyelectrolyte complexes made from poly(styrenesulfonate) and poly(diallyldimethylammonium). These nanocomposites were plasticized with salt water and extruded into dense, tough fibers. Magnetometry of these composites showed they retained the superparamagnetic properties of their constituent nanoparticles with saturation magnetization that scaled with the loading of nanoparticles. Their superparamagnetic response allowed the composites to be heated remotely by radiofrequency fields. While the modulus of fibers was unaffected by the presence of nanoparticles the toughness and tensile strength increased significantly. PMID:25525833

  8. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  9. Genetics Home Reference: van der Woude syndrome

    MedlinePlus

    ... people with this disorder are born with a cleft lip , a cleft palate (an opening in the roof ... People with van der Woude syndrome who have cleft lip and/or palate, like other individuals with these ...

  10. Aligning Assessments for COSMA Accreditation

    ERIC Educational Resources Information Center

    Laird, Curt; Johnson, Dennis A.; Alderman, Heather

    2015-01-01

    Many higher education sport management programs are currently in the process of seeking accreditation from the Commission on Sport Management Accreditation (COSMA). This article provides a best-practice method for aligning student learning outcomes with a sport management program's mission and goals. Formative and summative assessment procedures…

  11. Aligned natural inflation with modulations

    NASA Astrophysics Data System (ADS)

    Choi, Kiwoon; Kim, Hyungjin

    2016-08-01

    The weak gravity conjecture applied for the aligned natural inflation indicates that generically there can be a modulation of the inflaton potential, with a period determined by sub-Planckian axion scale. We study the oscillations in the primordial power spectrum induced by such modulation, and discuss the resulting observational constraints on the model.

  12. Laser-Beam-Alignment Controller

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1995-01-01

    In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.

  13. Tonal Alignment in Irish Dialects

    ERIC Educational Resources Information Center

    Dalton, Martha; Ni Chasaide, Ailbhe

    2005-01-01

    A comparison of the contour alignment of nuclear and initial prenuclear accents was carried out for the Irish dialects of Gaoth Dobhair in Ulster (GD-U) and Cois Fharraige in Connaught (CF-C). This was done across conditions where the number of unstressed syllables following the nuclear and preceding the initial prenuclear accents was varied from…

  14. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.

    PubMed

    Gopinathan, Janarthanan; Quigley, Anita F; Bhattacharyya, Amitava; Padhye, Rajiv; Kapsa, Robert M I; Nayak, Rajkishore; Shanks, Robert A; Houshyar, Shadi

    2016-04-01

    In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties.

  15. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.

    PubMed

    Gopinathan, Janarthanan; Quigley, Anita F; Bhattacharyya, Amitava; Padhye, Rajiv; Kapsa, Robert M I; Nayak, Rajkishore; Shanks, Robert A; Houshyar, Shadi

    2016-04-01

    In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties. PMID:26646762

  16. Nodal Statistics for the Van Vleck Polynomials

    NASA Astrophysics Data System (ADS)

    Bourget, Alain

    The Van Vleck polynomials naturally arise from the generalized Lamé equation as the polynomials of degree for which Eq. (1) has a polynomial solution of some degree k. In this paper, we compute the limiting distribution, as well as the limiting mean level spacings distribution of the zeros of any Van Vleck polynomial as N --> ∞.

  17. Methods to temporally align gait cycle data.

    PubMed

    Helwig, Nathaniel E; Hong, Sungjin; Hsiao-Wecksler, Elizabeth T; Polk, John D

    2011-02-01

    The need for the temporal alignment of gait cycle data is well known; however, there is little consensus concerning which alignment method to use. In this paper, we discuss the pros and cons of some methods commonly applied to temporally align gait cycle data (normalization to percent gait cycle, dynamic time warping, derivative dynamic time warping, and piecewise alignment methods). In addition, we empirically evaluate these different methods' abilities to produce successful temporal alignment when mapping a test gait cycle trajectory to a target trajectory. We demonstrate that piecewise temporal alignment techniques outperform other commonly used alignment methods (normalization to percent gait cycle, dynamic time warping, and derivative dynamic time warping) in typical biomechanical and clinical alignment tasks. Lastly, we present an example of how these piecewise alignment techniques make it possible to separately examine intensity and temporal differences between gait cycle data throughout the entire gait cycle, which can provide greater insight into the complexities of movement patterns.

  18. Van Allen Discovery Most Important

    NASA Technical Reports Server (NTRS)

    Jastrow, R.

    1959-01-01

    The first step toward the exploration of space occurred approximately 22 months ago as a part of the International Geophysical Year. In the short interval since October, 1957, the new tools of research, the satellite and the space rocket, have produced two unexpected results of fundamental scientific importance. First, instruments placed in the Explorer satellites by James A. Van Allen have revealed the existence of layers of energetic particles in the outer atmosphere. This discovery constitutes the most significant research achievement of the IGY satellite program. The layers may provide the explanation for the aurora and other geophysical phenomena, and they will also influence the design of vehicles for manned space flight, whose occupants must be shielded against their harmful biological effects. Second, the shape of the earth has been determined very accurately with the aid of data from the first Vanguard. As a result of this investigation, we have found that our planet tends toward the shape of a pear, with its stem at the North Pole. This discovery may produce major changes in our ideas on the interior structure of the earth.

  19. Competition between VanUG Repressor and VanRG Activator Leads to Rheostatic Control of vanG Vancomycin Resistance Operon Expression

    PubMed Central

    Depardieu, Florence; Mejean, Vincent; Courvalin, Patrice

    2015-01-01

    Enterococcus faecalis BM4518 is resistant to vancomycin by synthesis of peptidoglycan precursors ending in D-alanyl-D-serine. In the chromosomal vanG locus, transcription of the resistance genes from the PYG resistance promoter is inducible and, upstream from these genes, there is an unusual three-component regulatory system encoded by the vanURSG operon from the PUG regulatory promoter. In contrast to the other van operons in enterococci, the vanG operon possesses the additional vanUG gene which encodes a transcriptional regulator whose role remains unknown. We show by DNase I footprinting, RT-qPCR, and reporter proteins activities that VanUG, but not VanRG, binds to PUG and negatively autoregulates the vanURSG operon and that it also represses PYG where it overlaps with VanRG for binding. In clinical isolate BM4518, the transcription level of the resistance genes was dependent on vancomycin concentration whereas, in a ΔvanUG mutant, resistance was expressed at a maximum level even at low concentrations of the inducer. The binding competition between VanUG and VanRG on the PYG resistance promoter allowed rheostatic activation of the resistance operon depending likely on the level of VanRG phosphorylation by the VanSG sensor. In addition, there was cross-talk between VanSG and VanR'G, a VanRG homolog, encoded elsewhere in the chromosome indicating a sophisticated and subtle regulation of vancomycin resistance expression by a complex two-component system. PMID:25898178

  20. Effects of crystal orientation on cellulose nanocrystals-cellulose acetate nanocomposite fibers prepared by dry spinning.

    PubMed

    Chen, Si; Schueneman, Greg; Pipes, R Byron; Youngblood, Jeffrey; Moon, Robert J

    2014-10-13

    This work presents the development of dry spun cellulose acetate (CA) fibers using cellulose nanocrystals (CNCs) as reinforcements. Increasing amounts of CNCs were dispersed into CA fibers in efforts to improve the tensile strength and elastic modulus of the fiber. A systematic characterization of dispersion of CNCs in the polymer fiber and their effect on the nanocomposites' mechanical properties is described. The birefringence, thermal properties, and degree of CNC orientation of the fibers are discussed. 2D X-ray diffraction was used to quantify the degree of CNC alignment within the fibers. It is shown that the CNC alignment directly correlates to the mechanical properties of the composite. Maximum improvements of 137% in tensile strength and 637% in elastic modulus were achieved. Empirical micromechanical models Halpin-Tsai equation and an orientation modified Cox model were used to predict the fiber performance and compared with experimental results.

  1. Effects of crystal orientation on cellulose nanocrystals-cellulose acetate nanocomposite fibers prepared by dry spinning.

    PubMed

    Chen, Si; Schueneman, Greg; Pipes, R Byron; Youngblood, Jeffrey; Moon, Robert J

    2014-10-13

    This work presents the development of dry spun cellulose acetate (CA) fibers using cellulose nanocrystals (CNCs) as reinforcements. Increasing amounts of CNCs were dispersed into CA fibers in efforts to improve the tensile strength and elastic modulus of the fiber. A systematic characterization of dispersion of CNCs in the polymer fiber and their effect on the nanocomposites' mechanical properties is described. The birefringence, thermal properties, and degree of CNC orientation of the fibers are discussed. 2D X-ray diffraction was used to quantify the degree of CNC alignment within the fibers. It is shown that the CNC alignment directly correlates to the mechanical properties of the composite. Maximum improvements of 137% in tensile strength and 637% in elastic modulus were achieved. Empirical micromechanical models Halpin-Tsai equation and an orientation modified Cox model were used to predict the fiber performance and compared with experimental results. PMID:25226382

  2. Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ji, Xiang-Ying; Cao, Yan-Ping; Feng, Xi-Qiao

    2010-06-01

    We investigate the stiffening effect of graphene sheets dispersed in polymer nanocomposites using the Mori-Tanaka micromechanics method. The effective elastic moduli of graphene sheet-reinforced composites are first predicted by assuming that all the graphene sheets are either aligned or randomly oriented in the polymer matrix while maintaining their platelet-like shape. It is shown that a very low content of graphene sheets can considerably enhance the effective stiffness of the composite. The superiority of graphene sheets as a kind of reinforcement is further verified by a comparison with carbon nanotubes, another promising nanofiller in polymer composites. In addition, we analyze several critical physical mechanisms that may affect the reinforcing effects, including the agglomeration, stacking-up and rolling-up of graphene sheets. The results reveal the extent to which these factors will negatively influence the elastic moduli of graphene sheet-reinforced nanocomposites. This theoretical study may help to understand the relevant experimental results and facilitate the mechanical characterization and optimal synthesis of these kinds of novel and highly promising nanocomposites.

  3. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    PubMed

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-01

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption.

  4. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  5. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  6. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    PubMed

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-01

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. PMID:26076611

  7. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  8. Graphene oxide nanocomposites and their electrorheology

    SciTech Connect

    Zhang, Wen Ling; Liu, Ying Dan; Choi, Hyoung Jin

    2013-12-15

    Graphical abstract: - Highlights: • GO-based PANI, NCOPA and PS nanocomposites are prepared. • The nanocomposites are adopted as novel electrorheological (ER) candidates. • Their critical ER characteristics and dielectric performance are analyzed. • Typical ER behavior widens applications of GO-based nanocomposites. - Abstract: Graphene oxide (GO), a novel one-atom carbon system, has become one of the most interesting materials recently due to its unique physical and chemical properties in addition to graphene. This article briefly reviews a recent progress of the fabrication of GO-based polyaniline, ionic N-substituted copolyaniline and polystyrene nanocomposites. The critical electrorheological characteristics such as flow response and yield stress from rheological measurement, relaxation time and achievable polarizability from dielectric analysis are also analyzed.

  9. Novel organic-inorganic hybrid mesoporous materials and nanocomposites

    NASA Astrophysics Data System (ADS)

    Feng, Qiuwei

    Organic-inorganic hybrid mesoporous materials have been prepared successfully via the nonsurfactant templated sol-gel pathway using dibenzoyl-L-tartaric acid (DBTA) as the templating compound. Styrene and methyl methacrylate polymers have been incorporated into the mesoporous silica matrix on the molecular level. The synthetic conditions have been systematically studied and optimized. Titania based mesoporous materials have also been made using nonionic polyethylene glycol surfactant as the pore forming or structure-directing agent. In all of the above mesoporous materials, pore structures have been studied in detail by Transmission Electron Microscopy (TEM), X-ray diffraction and Brunauer-Emmett-Teller (BET) characterizations. The relationship between the template concentration and the pore parameters has been established. This nonsurfactant templated pathway possesses many advantages over the known surfactant approaches such as low cost, environment friendly and biocompatability. To overcome the drawback of nonsurfactant templated mesoporous materials that lack a well ordered pore structure, a flow induced synthesis has been attempted to orientate the sol-gel solution in order to obtain aligned pore structures. The versatility of this nonsurfactant templated pathway can even be extended to the making of organic-inorganic hybrid nanocomposite materials. On the basis of this approach, polymer-silica nanocomposite materials have been prepared using a polymerizable template. It is shown that the organic monomer such as hydroxyethyl methacrylate can act as a template in making nanoporous silica materials and then be further polymerized through a post synthesis technique. The properties and morphology of this new material have been studied by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Infrared Absorption Spectroscopy (FTIR). Electroactive organic-inorganic hybrid materials have also been synthesized via the sol-gel process. A

  10. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  11. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  12. Ellis-van Creveld syndrome.

    PubMed

    Baujat, Geneviève; Le Merrer, Martine

    2007-06-04

    Ellis-van Creveld syndrome (EVC) is a chondral and ectodermal dysplasia characterized by short ribs, polydactyly, growth retardation, and ectodermal and heart defects. It is a rare disease with approximately 150 cases reported worldwide. The exact prevalence is unknown, but the syndrome seems more common among the Amish community. Prenatal abnormalities (that may be detected by ultrasound examination) include narrow thorax, shortening of long bones, hexadactyly and cardiac defects. After birth, cardinal features are short stature, short ribs, polydactyly, and dysplastic fingernails and teeth. Heart defects, especially abnormalities of atrial septation, occur in about 60% of cases. Cognitive and motor development is normal. This rare condition is inherited as an autosomal recessive trait with variable expression. Mutations of the EVC1 and EVC2 genes, located in a head to head configuration on chromosome 4p16, have been identified as causative. EVC belongs to the short rib-polydactyly group (SRP) and these SRPs, especially type III (Verma-Naumoff syndrome), are discussed in the prenatal differential diagnosis. Postnatally, the essential differential diagnoses include Jeune dystrophy, McKusick-Kaufman syndrome and Weyers syndrome. The management of EVC is multidisciplinary. Management during the neonatal period is mostly symptomatic, involving treatment of the respiratory distress due to narrow chest and heart failure. Orthopedic follow-up is required to manage the bones deformities. Professional dental care should be considered for management of the oral manifestations. Prognosis is linked to the respiratory difficulties in the first months of life due to thoracic narrowness and possible heart defects. Prognosis of the final body height is difficult to predict.

  13. The filler-rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties.

    PubMed

    Tadiello, L; D'Arienzo, M; Di Credico, B; Hanel, T; Matejka, L; Mauri, M; Morazzoni, F; Simonutti, R; Spirkova, M; Scotti, R

    2015-05-28

    Silica-styrene butadiene rubber (SBR) nanocomposites were prepared by using shape-controlled spherical and rod-like silica nanoparticles (NPs) with different aspect ratios (AR = 1-5), obtained by a sol-gel route assisted by a structure directing agent. The nanocomposites were used as models to study the influence of the particle shape on the formation of nanoscale immobilized rubber at the silica-rubber interface and its effect on the dynamic-mechanical behavior. TEM and AFM tapping mode analyses of nanocomposites demonstrated that the silica particles are surrounded by a rubber layer immobilized at the particle surface. The spherical filler showed small contact zones between neighboring particles in contact with thin rubber layers, while anisotropic particles (AR > 2) formed domains of rods preferentially aligned along the main axis. A detailed analysis of the polymer chain mobility by different time domain nuclear magnetic resonance (TD-NMR) techniques evidenced a population of rigid rubber chains surrounding particles, whose amount increases with the particle anisotropy, even in the absence of significant differences in terms of chemical crosslinking. Dynamic measurements demonstrate that rod-like particles induce stronger reinforcement of rubber, increasing with the AR. This was related to the self-alignment of the anisotropic silica particles in domains able to immobilize rubber. PMID:25899456

  14. Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites.

    PubMed

    Kirmayer, Saar; Aharon, Eyal; Dovgolevsky, Ekaterina; Kalina, Michael; Frey, Gitti L

    2007-06-15

    Lamellar nanocomposites based on semiconducting polymers incorporated into layered inorganic matrices are prepared by the co-assembly of organic and inorganic precursors. Semiconducting polymer-incorporated silica is prepared by introducing the semiconducting polymers into a tetrahydrofuran (THF)/water homogeneous sol solution containing silica precursor species and a surface-active agent. Semiconducting polymer-incorporated MoS(2) and SnS(2) are prepared by Li intercalation into the inorganic compound, exfoliation and restack in the presence of the semiconducting polymer. All lamellar nanocomposite films are organized in domains aligned parallel to the substrate surface plane. The incorporated polymers maintain their semiconducting properties, as evident from their optical absorption and photoluminescence spectra. The optoelectronic properties of the nanocomposites depend on the properties of both the inorganic host and the incorporated guest polymer as demonstrated by integrating the nanocomposite films into light-emitting diodes. Devices based on polymer-incorporated silica and polymer-incorporated MoS(2) show no diode behaviour and no light emission due to the insulating and metallic properties of the silica and MoS(2) hosts. In contrast, diode performance and electroluminescence are obtained from devices based on semiconducting polymer-incorporated semiconducting SnS(2), demonstrating that judicious selection of the composite components in combination with the optimization of material synthesis conditions allows new hierarchical structures to be tailored for electronic and optoelectronic applications.

  15. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    PubMed

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  16. Implementation of Linus Programme Based on the Model of Van Meter and Van Horn

    ERIC Educational Resources Information Center

    Sani, Nazariyah bt; Idris, Abdul Rahman

    2013-01-01

    The purpose of this study is to identify the understanding of school leaders on the implementation of LINUS programme that based on the features contained in the Implementation Model of Van Meter and Van Horn (1975). The study was carried out in the form of qualitative method and particularly, the multiple case studies that were conducted in four…

  17. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  18. Aligned mesoporous architectures and devices.

    SciTech Connect

    Brinker, C. Jeffrey; Lu, Yunfeng

    2011-03-01

    This is the final report for the Presidential Early Career Award for Science and Engineering - PECASE (LDRD projects 93369 and 118841) awarded to Professor Yunfeng Lu (Tulane University and University of California-Los Angeles). During the last decade, mesoporous materials with tunable periodic pores have been synthesized using surfactant liquid crystalline as templates, opening a new avenue for a wide spectrum of applications. However, the applications are somewhat limited by the unfavorabe pore orientation of these materials. Although substantial effort has been devoted to align the pore channels, fabrication of mesoporous materials with perpendicular pore channels remains challenging. This project focused on fabrication of mesoporous materials with perpendicularly aligned pore channels. We demonstrated structures for use in water purification, separation, sensors, templated synthesis, microelectronics, optics, controlled release, and highly selective catalysts.

  19. Shuttle onboard IMU alignment methods

    NASA Technical Reports Server (NTRS)

    Henderson, D. M.

    1976-01-01

    The current approach to the shuttle IMU alignment is based solely on the Apollo Deterministic Method. This method is simple, fast, reliable and provides an accurate estimate for the present cluster to mean of 1,950 transformation matrix. If four or more star sightings are available, the application of least squares analysis can be utilized. The least squares method offers the next level of sophistication to the IMU alignment solution. The least squares method studied shows that a more accurate estimate for the misalignment angles is computed, and the IMU drift rates are a free by-product of the analysis. Core storage requirements are considerably more; estimated 20 to 30 times the core required for the Apollo Deterministic Method. The least squares method offers an intermediate solution utilizing as much data that is available without a complete statistical analysis as in Kalman filtering.

  20. SIM Lite: Ground Alignment of the Instrument

    NASA Technical Reports Server (NTRS)

    Dekens, Frank G.; Goullioud, Renaud; Nicaise, Fabien; Kuan, Gary; Morales, Mauricio

    2010-01-01

    We present the start of the ground alignment plan for the SIM Lite Instrument. We outline the integration and alignment of the individual benches on which all the optics are mounted, and then the alignment of the benches to form the Science and Guide interferometers. The Instrument has a guide interferometer with only a 40 arc-seconds field of regard, and 200 arc-seconds of alignment adjustability. This requires each sides of the interferometer to be aligned to a fraction of that, while at the same time be orthogonal to the baseline defined by the External Metrology Truss. The baselines of the Science and Guide interferometers must also be aligned to be parallel. The start of these alignment plans is captured in a SysML Instrument System model, in the form of activity diagrams. These activity diagrams are then related to the hardware design and requirements. We finish with future plans for the alignment and integration activities and requirements.

  1. Threaded pilot insures cutting tool alignment

    NASA Technical Reports Server (NTRS)

    Goldman, R.; Schneider, W. E.

    1966-01-01

    Threaded pilot allows machining of a port component, or boss, after the reciprocating hole has been threaded. It is used to align cutting surfaces with the boss threads, thus insuring precision alignment.

  2. Synthetic approach to designing optical alignment systems.

    PubMed

    Whang, A J; Gallagher, N C

    1988-08-15

    The objective of this study is twofold: to design reticle patterns with desirable alignment properties; to build an automatic alignment system using these patterns. We design such reticle patterns via a synthetic approach; the resultant patterns, so-called pseudonoise arrays, are binary and their autocorrelation functions are bilevel. Both properties are desirable in optical alignment. Besides, these arrays have attractive signal-to-noise ratio performance when employed in alignment. We implement the pseudonoise array as a 2-D cross-grating structure of which the grating period is much less than the wavelength of impinging light used for alignment. The short grating period feature, together with the use of polarized light, enables us to perform essentially 2-D optical alignment in one dimension. This alignment separability allows us to build a system that performs alignment automatically according to a simple 1-D algorithm. PMID:20539412

  3. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, S.H.; Warren, M.E.; Snipes, M.B. Jr.; Armendariz, M.G.; Word, J.C. V

    1997-08-19

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring. 8 figs.

  4. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, Stanley H.; Warren, Mial Evans; Snipes, Jr., Morris Burton; Armendariz, Marcelino Guadalupe; Word, V., James Cole

    1997-01-01

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.

  5. Alignment Tool For Welding Sensor

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Steffins, Alfred P.

    1992-01-01

    Alignment tool enables accurate positioning of optoelectronic sensor measuring weld penetration. Designed for use on tungsten/inert-gas welding apparatus, used to adjust position of sensor so photodiode puts out maximum signal. Tangs of slotted cap bent slightly inward to provide spring force holding cap snugly on sensor mount. Tool installed and removed without aid of other tools. Length of pointer adjusted with set-screws. Used with variety of gas cup and electrode lengths.

  6. Experience in Aligning Anatomical Ontologies.

    PubMed

    Zhang, Songmao; Bodenreider, Olivier

    2007-01-01

    An ontology is a formal representation of a domain modeling the entities in the domain and their relations. When a domain is represented by multiple ontologies, there is need for creating mappings among these ontologies in order to facilitate the integration of data annotated with these ontologies and reasoning across ontologies. The objective of this paper is to recapitulate our experience in aligning large anatomical ontologies and to reflect on some of the issues and challenges encountered along the way. The four anatomical ontologies under investigation are the Foundational Model of Anatomy, GALEN, the Adult Mouse Anatomical Dictionary and the NCI Thesaurus. Their underlying representation formalisms are all different. Our approach to aligning concepts (directly) is automatic, rule-based, and operates at the schema level, generating mostly point-to-point mappings. It uses a combination of domain-specific lexical techniques and structural and semantic techniques (to validate the mappings suggested lexically). It also takes advantage of domain-specific knowledge (lexical knowledge from external resources such as the Unified Medical Language System, as well as knowledge augmentation and inference techniques). In addition to point-to-point mapping of concepts, we present the alignment of relationships and the mapping of concepts group-to-group. We have also successfully tested an indirect alignment through a domain-specific reference ontology. We present an evaluation of our techniques, both against a gold standard established manually and against a generic schema matching system. The advantages and limitations of our approach are analyzed and discussed throughout the paper.

  7. Random lasing in a nanocomposite medium

    SciTech Connect

    Smetanin, Sergei N; Basiev, Tasoltan T

    2013-01-31

    The characteristics of a random laser based on a nanocomposite medium consisting of a transparent dielectric and scattering doped nanocrystals are calculated. It is proposed to use ytterbium laser media with a high concentration of active ions as nanocrystals and to use gases, liquids, or solid dielectrics with a refractive index lower than that of nanocrystals as dielectric matrices for nanocrystals. Based on the concept of nonresonant distributed feedback due to the Rayleigh scattering, an expression is obtained for the minimum length of a nanocomposite laser medium at which the random lasing threshold is overcome. Expressions are found for the critical (maximum) and the optimal size of nanocrystals, as well as for the optimal relative refractive index of nanocomposites that corresponds not only to the maximum gain but also to the minimum of the medium threshold length at the optimal size of nanocrystals. It is shown that the optimal relative refractive index of a nanocomposite increases with increasing pump level, but is independent of the other nanocomposite parameters. (nanocomposites)

  8. Grain alignment in starless cores

    SciTech Connect

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  9. Structural analysis of aligned RNAs.

    PubMed

    Voss, Björn

    2006-01-01

    The knowledge about classes of non-coding RNAs (ncRNAs) is growing very fast and it is mainly the structure which is the common characteristic property shared by members of the same class. For correct characterization of such classes it is therefore of great importance to analyse the structural features in great detail. In this manuscript I present RNAlishapes which combines various secondary structure analysis methods, such as suboptimal folding and shape abstraction, with a comparative approach known as RNA alignment folding. RNAlishapes makes use of an extended thermodynamic model and covariance scoring, which allows to reward covariation of paired bases. Applying the algorithm to a set of bacterial trp-operon leaders using shape abstraction it was able to identify the two alternating conformations of this attenuator. Besides providing in-depth analysis methods for aligned RNAs, the tool also shows a fairly well prediction accuracy. Therefore, RNAlishapes provides the community with a powerful tool for structural analysis of classes of RNAs and is also a reasonable method for consensus structure prediction based on sequence alignments. RNAlishapes is available for online use and download at http://rna.cyanolab.de. PMID:17020924

  10. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin.

    PubMed

    Jiang, Lin; Ding, Yaping; Jiang, Feng; Li, Li; Mo, Fan

    2014-06-23

    A nitrogen-doped graphene/carbon nanotubes (NGR-NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR-NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR-NCNTs (ENGR-NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR-NCNTs/GCE exhibited a wide linearity of 0.06-50 μM for CAF and 0.01-10 μM for VAN with detection limits of 0.02 μM and 3.3×10(-3) μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR-NCNTs nanocomposite has promising potential in electrocatalytic biosensor application.

  11. Aligning Plasma-Arc Welding Oscillations

    NASA Technical Reports Server (NTRS)

    Norris, Jeff; Fairley, Mike

    1989-01-01

    Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.

  12. Uniaxial alignment of nanoconfined columnar mesophases.

    PubMed

    Mouthuy, Pierre-Olivier; Melinte, Sorin; Geerts, Yves H; Jonas, Alain M

    2007-09-01

    By confining discotic phthalocyanines in a network of crisscrossed nanogrooves, we obtain a uniaxial alignment of the columnar mesophase. The alignment process is based on the anisotropy of interface tension between the mesophase and the nanogrooves' walls. Preferential mesophase alignment results from this nonhomogeneity combined with the anisotropy of the network cell dimensions. A simple model is proposed to explain the experimental observations.

  13. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  14. Ultrafast electron diffraction from aligned molecules

    SciTech Connect

    Centurion, Martin

    2015-08-17

    The aim of this project was to record time-resolved electron diffraction patterns of aligned molecules and to reconstruct the 3D molecular structure. The molecules are aligned non-adiabatically using a femtosecond laser pulse. A femtosecond electron pulse then records a diffraction pattern while the molecules are aligned. The diffraction patterns are then be processed to obtain the molecular structure.

  15. Aligning Performance: Improving People, Systems, and Organizations.

    ERIC Educational Resources Information Center

    Langdon, Danny

    Performance is the actual work that is done to assure that an organization achieves its mission, and aligning that performance assures that the path to the mission is harmonious. Alignment exists when all people involved understand the dimensions of the work and want to achieve and improve alignment. This book presents the "Language of Work" model…

  16. Physician-Hospital Alignment in Orthopedic Surgery.

    PubMed

    Bushnell, Brandon D

    2015-09-01

    The concept of "alignment" between physicians and hospitals is a popular buzzword in the age of health care reform. Despite their often tumultuous histories, physicians and hospitals find themselves under increasing pressures to work together toward common goals. However, effective alignment is more than just simple cooperation between parties. The process of achieving alignment does not have simple, universal steps. Alignment will differ based on individual situational factors and the type of specialty involved. Ultimately, however, there are principles that underlie the concept of alignment and should be a part of any physician-hospital alignment efforts. In orthopedic surgery, alignment involves the clinical, administrative, financial, and even personal aspects of a surgeon's practice. It must be based on the principles of financial interest, clinical authority, administrative participation, transparency, focus on the patient, and mutual necessity. Alignment can take on various forms as well, with popular models consisting of shared governance and comanagement, gainsharing, bundled payments, accountable care organizations, and other methods. As regulatory and financial pressures continue to motivate physicians and hospitals to develop alignment relationships, new and innovative methods of alignment will also appear. Existing models will mature and evolve, with individual variability based on local factors. However, certain trends seem to be appearing as time progresses and alignment relationships deepen, including regional and national collaboration, population management, and changes in the legal system. This article explores the history, principles, and specific methods of physician-hospital alignment and its critical importance for the future of health care delivery.

  17. Alignment of lower-limb prostheses.

    PubMed

    Zahedi, M S; Spence, W D; Solomonidis, S E; Paul, J P

    1986-04-01

    Alignment of a prosthesis is defined as the position of the socket relative to the other prosthetic components of the limb. During dynamic alignment the prosthetist, using subjective judgment and feedback from the patient, aims to achieve the most suitable limb geometry for best function and comfort. Until recently it was generally believed that a patient could only be satisfied with a unique "optimum alignment." The purpose of this systematic study of lower-limb alignment parameters was to gain an understanding of the factors that make a limb configuration or optimum alignment, acceptable to the patient, and to obtain a measure of the variation of this alignment that would be acceptable to the amputee. In this paper, the acceptable range of alignments for 10 below- and 10 above-knee amputees are established. Three prosthetists were involved in the majority of the 183 below-knee and 100 above-knee fittings, although several other prosthetists were also involved. The effects of each different prosthetist on the established range of alignment for each patient are reported to be significant. It is now established that an amputee can tolerate several alignments ranging in some parameters by as much as 148 mm in shifts and 17 degrees in tilts. This paper describes the method of defining and measuring the alignment of lower-limb prostheses. It presents quantitatively established values for bench alignment position and the range of adjustment required for incorporation into the design of new alignment units.

  18. The illness of Vincent van Gogh.

    PubMed

    Blumer, Dietrich

    2002-04-01

    Vincent van Gogh (1853-1890) had an eccentric personality and unstable moods, suffered from recurrent psychotic episodes during the last 2 years of his extraordinary life, and committed suicide at the age of 37. Despite limited evidence, well over 150 physicians have ventured a perplexing variety of diagnoses of his illness. Henri Gastaut, in a study of the artist's life and medical history published in 1956, identified van Gogh's major illness during the last 2 years of his life as temporal lobe epilepsy precipitated by the use of absinthe in the presence of an early limbic lesion. In essence, Gastaut confirmed the diagnosis originally made by the French physicians who had treated van Gogh. However, van Gogh had earlier suffered two distinct episodes of reactive depression, and there are clearly bipolar aspects to his history. Both episodes of depression were followed by sustained periods of increasingly high energy and enthusiasm, first as an evangelist and then as an artist. The highlights of van Gogh's life and letters are reviewed and discussed in an effort toward better understanding of the complexity of his illness.

  19. Integrable extended van der Waals model

    NASA Astrophysics Data System (ADS)

    Giglio, Francesco; Landolfi, Giulio; Moro, Antonio

    2016-10-01

    Inspired by the recent developments in the study of the thermodynamics of van der Waals fluids via the theory of nonlinear conservation laws and the description of phase transitions in terms of classical (dissipative) shock waves, we propose a novel approach to the construction of multi-parameter generalisations of the van der Waals model. The theory of integrable nonlinear conservation laws still represents the inspiring framework. Starting from a macroscopic approach, a four parameter family of integrable extended van der Waals models is indeed constructed in such a way that the equation of state is a solution to an integrable nonlinear conservation law linearisable by a Cole-Hopf transformation. This family is further specified by the request that, in regime of high temperature, far from the critical region, the extended model reproduces asymptotically the standard van der Waals equation of state. We provide a detailed comparison of our extended model with two notable empirical models such as Peng-Robinson and Soave's modification of the Redlich-Kwong equations of state. We show that our extended van der Waals equation of state is compatible with both empirical models for a suitable choice of the free parameters and can be viewed as a master interpolating equation. The present approach also suggests that further generalisations can be obtained by including the class of dispersive and viscous-dispersive nonlinear conservation laws and could lead to a new type of thermodynamic phase transitions associated to nonclassical and dispersive shock waves.

  20. Shape-Morphing Nanocomposite Origami

    PubMed Central

    2015-01-01

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications. PMID:24689908

  1. MULTISCALE MODELING OF POLYMER NANOCOMPOSITES

    SciTech Connect

    Maiti, A

    2007-07-16

    Polymer Nanocomposites are an important class of nanomaterials with potential applications including but not limited to structural and cushion materials, electromagnetic and heat shields, conducting plastics, sensors, and catalysts for various chemical and bio processes. Success in most such applications hinges on molecular-level control of structure and assembly, and a deep understanding of how the overall morphology of various components and the interfaces between them affect the composite properties at the macroscale. The length and time-scales associated with such assemblies are prohibitively large for a full atomistic modeling. Instead we adopt a multiscale methodology in which atomic-level interactions between different components of a composite are incorporated into a coarse-grained simulation of the mesoscale morphology, which is then represented on a numerical grid and the macroscopic properties computed using a finite-elements method.

  2. Green nanocomposites: synthesis and characterization.

    PubMed

    Laza, A L; Jaber, M; Miehé-Brendlé, J; Demais, H; Le Deit, H; Delmotte, L; Vidal, L

    2007-09-01

    A series of intercalated and exfoliated nanocomposites montmorillonite-ulvan was prepared. Ulvan, extracted from the green algae, is a water-soluble polysaccharide biopolymer. Depending on the drying process, air or freeze drying, ulvan were inserted in the interlayer space or adsorbed on the both sides of inorganic layers. The crystallization of water molecules bounded to the ulvan induced the delamination of the layers during the lyophilization. Thermogravimetric experiments show a high percentage (approximately 51%) of organic matter for the freeze dried samples and a lowest one (approximately 17%) for the air dried solids. X-Ray Diffraction patterns exhibit a d(001) varying with the content of organic matter. When the delamination occurs, the (001) reflection disappears. Transmission electron microscopy micrographs show individual layers for the highest amount of ulvan.

  3. Graphite nanoreinforcements in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  4. Synthesis, structure and properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zeng, Changchun

    Over the last decade, the concept of utilizing nanoparticles to enhance polymer performance has drawn a great deal of research interest. Significant property enhancement can be achieved with a small amount of addition of nanoparticles. Spherical, platelet or tube/fiber like particles have all been used in the fabrication of nanocomposites. In this study, we chose platelet like clay particles to study the particle dispersion and properties of polymer nanocomposites and polymer nanocomposite foams. Free radical polymerization of methylmethacrylate (MMA) and styrene (St) in the presence of clay nanoparticles were studied in detail. The effect of interactions between the monomer, the initiator and clay surface modification was studied. By careful surface modification of clay surface and choice of initiator, clay particles can be dispersed uniformly at the nanometer scale (exfoliation). Exfoliation was achieved for PS nanocomposites with a clay concentration as high as 20 wt%. For PMMA, although fully exfoliated nanocomposite was only observed for clay concentration of 5 wt%, substantial exfoliation was observed in the 20 wt% nanocomposite. Nanocomposites were also prepared by extrusion compounding, with or without the aid of CO2. The effect of processing conditions on the degree of clay dispersion was studied. The relationships between clay dispersion, surfactant thermal stability and the resulting thermal properties, e.g., thermal stability, dimension stability, fire resistance were investigated. Novel polymer clay nanocomposite foams were prepared using carbon dioxide as the foaming agent. The role of clay on the foaming process was thoroughly investigated. It was found that clay serves as an efficient nucleation agent. Nucleation efficiency increases as the degree of clay dispersion improves. The exfoliated clay provides the highest nucleation efficiency. Nucleation efficiency can be further improved by tuning the interaction between polymer, CO2 and the surface

  5. Thermoset polymer-layered silicic acid nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions

  6. Accelerator and transport line survey and alignment

    SciTech Connect

    Ruland, R.E.

    1991-10-01

    This paper summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are introduced and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations. Various approaches to smoothing used at major laboratories are discussed. 47 refs., 19 figs., 1 tab.

  7. The illness of Vincent van Gogh.

    PubMed

    Arnold, Wilfred Niels

    2004-03-01

    Vincent van Gogh (1853-1890) was a wonderfully accomplished artist whose work is now widely appreciated. He created a great number of masterpiece paintings and drawings in just one decade devoted to art. His productivity is even more remarkable when considered in the context of his debilitating illness. He suffered from medical crises that were devastating, but in the intervening periods he was both lucid and creative. He left a profound, soul-searching description of his jagged life in his correspondence, which provides the basis for the present analysis. An inherited metabolic disease, acute intermittent porphyria, accounts for all of the signs and symptoms of van Gogh's underlying illness. On this 150th anniversary of the birth of Vincent van Gogh it is appropriate to revisit the subject and to analyze the lack of organized skepticism in the popular media about other diagnoses.

  8. Ellis-van Creveld syndrome: its history.

    PubMed

    Muensterer, Oliver J; Berdon, Walter; McManus, Chris; Oestreich, Alan; Lachman, Ralph S; Cohen, M Michael; Done, Stephen

    2013-08-01

    The story of Ellis-van Creveld syndrome is one of serendipity. By chance, Simon van Creveld and Richard Ellis purportedly met on a train and combined their independently encountered patients with short stature, dental anomalies and polydactyly into one landmark publication in 1940. They included a patient used in work published previously by Rustin McIntosh without naming McIntosh as a coauthor. This patient was followed radiologically by Caffey for nearly two decades. In 1964, Victor McKusick felt compelled to investigate a brief report in an obscure pharmaceutical journal on an unusual geographic cluster of short-statured Amish patients in Pennsylvania. This review highlights the lives of the individuals involved in the discovery of Ellis-van Creveld syndrome in their historic context. PMID:23754541

  9. Preparation and characterization of magnetic thermoplastic-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Thu, T. V.; Takamura, T.; Tsetserukou, D.; Sandhu, A.

    2014-02-01

    We developed a facile method for the preparation of magnetic nanocomposites based on the popular thermoplastic, acrylonitrile butadiene styrene (ABS). The nanocomposites were produced by liquid blending of ABS and Ni nanorods (NRs), followed by solvent evaporation. The characterizations showed that the nanocomposites were magnetic and Ni NRs were uniformly distributed in polymer matrix.

  10. HRTEM observation of bonding interface between Ce-TZP/Al2O3 nanocomposite and porcelain.

    PubMed

    Ban, Seiji; Nawa, Masahiro; Sugata, Fumio; Tsuruki, Jiro; Kono, Hiroshi; Kawai, Tatsushi

    2014-01-01

    The surface of a ceria-stabilized tetragonal zirconia polycrystal (Ce-TZP/Al2O3) nanocomposite was sandblasted by alumina particles and veneered with feldspathic porcelain via a conventional condensation method. The part of each specimen containing the interface layer was sliced to ultrathin sections with an argon ion slicer, and these sliced sections were observed using high-resolution transmission electron microscopy (HRTEM). For both interfaces, Ce-TZP/porcelain and Al2O3/porcelain, no transition layers due to abrupt changes in atomic distributions were observed. Besides, the porcelain layers of both interfaces consisted of homogeneous amorphous phases. These results suggested that both Ce-TZP and Al2O3 could be directly bonded to porcelain by Van der Waals forces arising from the close contact between them.

  11. Geologic environment of the Van Norman Reservoirs area

    USGS Publications Warehouse

    Yerkes, R.F.; Bonilla, M.G.; Youd, T.L.; Sims, J.D.

    1974-01-01

    and lower Van Norman dams, rupturing of the ground surface by faulting along parts of the zone of old faults that extends easterly through the reservoir area and across the northern part of the valley, folding or arching of the ground surface, and differential horizontal displacement of the terrane north and south of the fault zone. Although a zone of old faults extends through the reservoir area, the 1971 surface ruptures apparently did not; however, arching and horizontal displacements caused small relative displacements of the abutment areas of each of the three damsites. The 1971 arching coincided with preexisting topographic highs, and the surface ruptures coincided with eroded fault scarps and a buried ground-water impediment formed by pre-1971 faulting in young valley fill. This coincidence with evidence of past deformation indicates that the 1971 deformations were the result of a continuing geologic process that is expected to produce similar deformations during future events. The 1971 San Fernando earthquake probably was not the largest that has occurred in this area during the last approximately 200 years, as indicated by a buried fault like scarp about 200 years old that is higher than, and aligned with, 1971 fault scarps. In addition, the San Fernando zone of 1971 ruptures is part of a regional tectonic system that includes the San Andreas and associated faults; one of these, the White Wolf fault north of the San Andreas, is symmetrical in structural attitude with the San Fernando zone and ruptured the ground surface during the 1952 Kern County earthquake (M 7.7). Other large earthquakes associated with surface rupturing on faults of this system include the 1857 Fort Tejon earthquake (M 8+) and possibly the 1852 Big Pine earthquake. Several other historic earthquakes in this general area are not known to be associated with surface ruptures, but were large enough to cause damage in the northern San Fernando Valley. The Van Norman rese

  12. Viscoelasticity of Epoxy nano-composites

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2013-03-01

    Nanocomposites have been modeled in a multiscale covering from molecular scale (e.g., molecular dynamics, Monte Carlo), microscale (e.g., Brownian dynamics, dissipative particle dynamics, lattice Boltzmann, time-dependent Ginzburg-Landau method, dynamic density functional theory method) to mesoscale and macroscale (e.g., micromechanics, equivalent-continuum and self-similar approaches, finite element method) The presence of layered silicates in nonaqueous polymers changes the viscoelastic behavior of the unfilled matrix from liquid-like to solid-like because of the formation of a three-dimensional percolating network of exfoliated or intercalated stacks. This gel-like behavior is a direct consequence of the highly anisotropic nature of the nanoclays which prevents their free rotation and the dissipation of stress. Particle to particle interactions is the dominant mechanism in fumed silica nanocomposites whereas particle to polymer interaction is the dominant one in colloidal silica nanocomposites at identical filler concentrations. These interactions are balanced in each nanocomposite systems by the silica surface treatments (chain grafting, silane modification) and the molecular weight of the matrix. Two different types of nanocomposite structures exist namely, intercalated nanocomposites where the polymer chains are sandwiched between silicate layers and exfoliated nanocomposites where the layers can be considered individually but remain more or less dispersed in the polymer matrix. Yield stress from Carreau-Yasuda model has been correlated to exfoliation. Also, equilibrium modulus and zero shear rate viscosity has been used to analyze percolation threshold and sol-gel transition. Nano clays organically functionalized were mixed with Epoxy in a high shear mixer.

  13. Simultaneous Alignment and Folding of Protein Sequences

    PubMed Central

    Waldispühl, Jérôme; O'Donnell, Charles W.; Will, Sebastian; Devadas, Srinivas; Backofen, Rolf

    2014-01-01

    Abstract Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple sequence alignment tools in the most difficult low-sequence homology case. It also improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families (partiFold-Align is available at http://partifold.csail.mit.edu/). PMID:24766258

  14. Alignment method for solar collector arrays

    DOEpatents

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  15. Target alignment in the National Ignition Facility

    SciTech Connect

    Vann, C.S.; Bliss, E.S.; Murray, J.E.

    1994-06-06

    Accurate placement of hundreds of focused laser beams on target is necessary to achieve success in the National Ignition Facility (NIF). The current system requirement is {le}7 {mu}rad error in output pointing and {le}1 mm error in focusing. To accommodate several system shots per day, a target alignment system must be able to align the target to chamber center, inject an alignment beam to represent each shot beam, and point and focus the alignment beams onto the target in about one hour. At Lawrence Livermore National Laboratory, we have developed a target alignment concept and built a prototype to validate the approach. The concept comprises three systems: the chamber center reference, target alignment sensor, and target alignment beams.

  16. Antares beam-alignment-system performance

    SciTech Connect

    Appert, Q.D.; Bender, S.C.

    1983-01-01

    The beam alignment system for the 24-beam-sector Antares CO/sub 2/ fusion laser automatically aligns more than 200 optical elements. A visible-wavelength alignment technique is employed which uses a telescope/TV system to view point-light sources appropriately located down the beamline. The centroids of the light spots are determined by a video tracker, which generates error signals used by the computer control system to move appropriate mirrors in a closed-loop system. Final touch-up alignment is accomplished by projecting a CO/sub 2/ alignment laser beam through the system and sensing its position at the target location. The techniques and control algorithms employed have resulted in alignment accuracies exceeding design requirements. By employing video processing to determine the centroids of diffraction images and by averaging over multiple TV frames, we achieve alignment accuracies better than 0.1 times system diffraction limits in the presence of air turbulence.

  17. Combining Multiple Pairwise Structure-based Alignments

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a newmore » tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.« less

  18. Assembly of uniaxially aligned rare-earth-free nanomagnets

    SciTech Connect

    Balamurugan, B; Das, B; Shah, VR; Skomski, R; Li, XZ; Sellmyer, DJ

    2012-09-17

    We report HfCo7 nanoparticles with appreciable permanent-magnet properties (magnetocrystalline anisotropy K-1 approximate to 10 Mergs/cm(3), coercivity H-c approximate to 4.4 kOe, and magnetic polarization J(s) approximate to 10.9 kG at 300 K) deposited by a single-step cluster-deposition method. The direct crystalline-ordering of nanoparticles during the gas-aggregation process, without the requirement of a high-temperature thermal annealing, provides an unique opportunity to align their easy axes uniaxially by applying a magnetic field of about 5 kOe prior to deposition, and subsequently to fabricate exchange-coupled nanocomposites having J(s) as high as 16.6 kG by co-depositing soft magnetic Fe-Co. This study suggests HfCo7 as a promising rare-earth-free permanent-magnet alloy, which is important for mitigating the critical-materials aspects of rare-earth elements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4753950

  19. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    PubMed

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-01

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries. PMID:26284489

  20. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    PubMed

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-01

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  1. Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.

    2010-01-01

    A technique was created to measure the pupil alignment of instruments in situ by measuring calibrated pupil alignment references (PARs) in instruments. The PAR can also be measured using an alignment telescope or an imaging system. PAR allows the verification of the science instrument (SI) pupil alignment at the integrated science instrument module (ISIM) level of assembly at ambient and cryogenic operating temperature. This will allow verification of the ISIM+SI alignment, and provide feedback to realign the SI if necessary.

  2. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  3. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  4. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  5. Ridge effect and alignment phenomenon

    SciTech Connect

    Lokhtin, I. P. Managadze, A. K. Snigirev, A. M.

    2013-05-15

    It is assumed that the ridge effect observed by the CMS Collaboration in proton-proton collisions at the LHC and the phenomenon observed by the Pamir Collaboration in emulsion experiments with cosmic rays and characterized by the alignment of spots on a film is a manifestation of the same as-yet-unknown mechanism of the emergence of a coplanar structure of events. A large coplanar effect at the LHC in the region of forward rapidities is predicted on the basis of this hypothesis and an analysis of experimental data.

  6. Method for protein structure alignment

    DOEpatents

    Blankenbecler, Richard; Ohlsson, Mattias; Peterson, Carsten; Ringner, Markus

    2005-02-22

    This invention provides a method for protein structure alignment. More particularly, the present invention provides a method for identification, classification and prediction of protein structures. The present invention involves two key ingredients. First, an energy or cost function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. Second, a minimization of the energy or cost function by an iterative method, where in each iteration (1) a mean field method is employed for the assignment variables and (2) exact rotation and/or translation of atomic coordinates is performed, weighted with the corresponding assignment variables.

  7. Strategies for active alignment of lenses

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Wilde, Chrisitan; Hahne, Felix; Lüerß, Bernd

    2015-10-01

    Today's optical systems require up-to-date assembly and joining technology. The trend of keeping dimensions as small as possible while maintaining or increasing optical imaging performance leaves little to no room for mechanical lens adjustment equipment that may remain in the final product. In this context active alignment of optical elements opens up possibilities for the fast and cost-economic manufacturing of lenses and lens assemblies with highest optical performance. Active alignment for lens manufacturing is the precise alignment of the optical axis of a lens with respect to an optical or mechanical reference axis (e.g. housing) including subsequent fixation by glue. In this contribution we will describe different approaches for active alignment and outline strengths and limitations of the different methods. Using the SmartAlign principle, highest quality cemented lenses can be manufactured without the need for high precision prealignment, while the reduction to a single alignment step greatly reduces the cycle time. The same strategies can also be applied to bonding processes. Lenses and lens groups can be aligned to both mechanical and optical axes to maximize the optical performance of a given assembly. In hybrid assemblies using both mechanical tolerances and active alignment, SmartAlign can be used to align critical lens elements anywhere inside the system for optimized total performance. Since all geometrical parameters are re-measured before each alignment, this process is especially suited for complex and time-consuming production processes where the stability of the reference axis would otherwise be critical. For highest performance, lenses can be actively aligned using up to five degrees of freedom. In this way, SmartAlign enables the production of ultra-precise mounted lenses with an alignment precision below 1 μm.

  8. Polymer-organoclay nanocomposites by melt processing

    NASA Astrophysics Data System (ADS)

    Cui, Lili

    2009-12-01

    Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefin-organoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the

  9. Systematic comparison of model polymer nanocomposite mechanics.

    PubMed

    Xiao, Senbo; Peter, Christine; Kremer, Kurt

    2016-01-01

    Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior and reinforcement, especially for higher nanoparticle content as relevant for bio-inorganic composites, are still not fully understood. Although polymer nanocomposites exhibit diverse morphologies, qualitatively their mechanical properties are believed to be governed by a few parameters, namely their internal polymer network topology, nanoparticle volume fraction, particle surface properties and so on. Relating material mechanics to such elementary parameters is the purpose of this work. By taking a coarse-grained molecular modeling approach, we study an range of different polymer nanocomposites. We vary polymer nanoparticle connectivity, surface geometry and volume fraction to systematically study rheological/mechanical properties. Our models cover different materials, and reproduce key characteristics of real nanocomposites, such as phase separation, mechanical reinforcement. The results shed light on establishing elementary structure, property and function relationship of polymer nanocomposites. PMID:27623170

  10. Fire retardant effects of polymer nanocomposites.

    PubMed

    Hull, T Richard; Stec, Anna A; Nazare, Shonali

    2009-07-01

    Among the many and varied applications of nanotechnology, the dispersion of nanoscopic fillers to form polymer nanocomposites with improved fire behaviour illustrates the potential and diversity of nanoscience. Different polymers decompose in different ways and fire retardants act to inhibit the decomposition or flaming combustion processes. Polymer nanocomposites form barriers between the fuel and air, reducing the rate of burning, but beyond that there is little consistency in their effects. It is shown that the decomposition products of polypropylene are changed by the presence of nanoclay, although there is only a small influence on the mass loss rate. The rheological properties of molten polymer nanocomposites are radically different from those of virgin polymers, and these will profoundly affect the heat transfer through the material, resulting in a shorter time to ignition and lower peak in the heat release rate, typical of polymer nanocomposites. The dispersion of nanofillers within polymers is generally measured in the cold polymer, but since this does not reflect the condition at the time of ignition, it is proposed that temperature ramped rheological measurements are more appropriate indicators of dispersion. The influence of polymer nanocomposite formation on the yields of toxic products from fire is studied using the ISO 19700 steady state tube furnace, and it is found that under early stages of burning more carbon monoxide and organoirritants are formed, but under the more toxic under-ventilated conditions, less toxic products are formed.

  11. Properties of polypropylene nanocomposites containing silver nanoparticles.

    PubMed

    Jang, Myung Wook; Kim, Ju-Young; Ihn, Kyo Jin

    2007-11-01

    Silver/polypropylene (PP) nanocomposites containing silver nanoparticles smaller than 10 nm were prepared using a new synthetic method. AgNO3 crystals were dissolved into hydrophilic domain of polyoxyethylene maleate-based surfactant (PEOM), which gives self-assembly nano-structures. The AgNO3 in the nano-domains of PEOM was reduced by NaBH4 to form nanoparticles. The colloidal solutions with silver nanoparticles were diluted with ethanol and were mixed with PP pellets. Silver nanocomposites were prepared by extrusion compounding process after drying the pellets. Contents of silver nanoparticles dispersed within PP resin were changed from 100 to 1000 ppm. Formation of silver nanoparticles within PP was confirmed by UV-Vis spectroscopy and TEM. Size and distribution of dispersed silver nanoparticles were also measured by TEM. Silver/PP nanocomposites films showed not only improved thermal stability but also increased mechanical properties compared to neat PP film. Tensile properties of PP nanocomposites were largely improved compared with neat PP resin, and elongation increased also by 175% for the nanocomposites containing 1000 ppm silver nanoparticles.

  12. Mesostructure Control of Polymer-Inorganic Nanocomposites

    NASA Astrophysics Data System (ADS)

    Vaia, R.

    2002-03-01

    Critical to forwarding polymer nanocomposite technology is the development of a detailed understanding of the spatial distribution of the various constituents (inorganic, polymeric and additives), the associated influence on thermodynamic and kinetic (rheological) aspects of the system and techniques to control nano (1-100nm) and meso (100-1000nm) scale morphology. With regard to these issues, in-situ small angle x-ray scattering, associated scattering models, coarse grain simulations, and rheology have been used to examine the phase behavior of organically modified layered silicates (OLS) suspended in pure and binary solvent mixtures. These serve as model systems for examining aspects of morphology development and phase behavior in thermoset and thermoplastic nanocomposites. The phase structure of solvent - OLS system is qualitatively described by Onsager arguments modified to include a crystal-solvate (intercalated phase) and a gelation point. Ternary behavior (binary solvent mixtures) provides evidence for preferential segregation of the polar component to the inorganic surface. The chemical structure of the organic surfactant modifier has a negligible influence on the structure of the intercalated phase, but has a marked effect on the extent and concentration of the dispersed phase. These studies provide insight into the use of polar activators for organosilicate rheolgical control agents and additives to enhance nanocomposite formation (e.g. H20 addition for optimal exfoliated PDMS nanocomposites and incorporation of malic anhydride to produce polypropylene nanocomposites).

  13. Molecular mechanisms of failure in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Gersappe, Dilip

    2003-03-01

    With the emergence of synthetic methods that can produce nanometer sized fillers, resulting in an enormous increase of surface area, polymers reinforced with nanoscale particles should offer the possibility of vastly improved properties. However, experimental evidence suggests that the paradigms that have been used for conventional filled composites cannot account for the behavior of nanocomposites. We examine the role that spherical nanofillers play on the rheology and the strength of the nanocomposite by using Molecular Dynamics simulations. We find that the enhancement of properties in nanocomposites is a result of the equivalence of time scales for motion for the polymer and the filler. We show that the mobility of the nanofiller, rather than its surface area, is key to the performance of the nanocomposite and that this mobility is a complex function of the size of the filler, the attraction between the polymer and the filler, and the thermodynamic state of the matrix. Our results show similarities between the toughening mechanisms in polymer nanocomposites and those postulated for naturally occurring biological materials which also contain nanoscaled assemblies, such as spider silk and abalone adhesive.

  14. Polylactide nanocomposites for packaging materials: A review

    NASA Astrophysics Data System (ADS)

    Widiastuti, Indah

    2016-02-01

    This review aims at highlighting on an attempt for improving the properties of polylactide (PLA) as packaging material by application of nanocomposite technology. PLA is attracting considerable interest because of more eco-friendliness from its origin as contrast to the petrochemical-based polymers and its biodegradability. Despite possessing good mechanical and optical properties, deterioration of the material properties in PLA materials during their service time could occur after prolonged exposure to humidity and high temperature condition. Limited gas barrier is another drawback of PLA material that should be overcome to satisfy the requirement for packaging application. To further extend the range of mechanical and thermal properties achievable, several attempts have been made in modifying the material such as blending with other polymers, use of plasticizing material and development of PLA nanocomposites. Nanocomposite is a fairly new type of composite that has emerged in which the reinforcing filler has nanometer scale dimensions (at least one dimension of the filler is less than 100 nm). In this review, the critical properties of PLA as packaging materials and its degradation mechanism are presented. This paper discusses the current effort and key research challenges in the development of nanocomposites based on biodegradable polymer matrices and nano-fillers. The PLA layered silicate nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modification, frequently exhibits remarkable improvements of mechanical strength, gas barrier and thermal stability.

  15. Measuring alignment of loading fixture

    DOEpatents

    Scavone, Donald W.

    1989-01-01

    An apparatus and method for measuring the alignment of a clevis and pin type loading fixture for compact tension specimens include a pair of substantially identical flat loading ligaments. Each loading ligament has two apertures for the reception of a respective pin of the loading fixture and a thickness less than one-half of a width of the clevis opening. The pair of loading ligaments are mounted in the clevis openings at respective sides thereof. The loading ligaments are then loaded by the pins of the loading fixture and the strain in each loading ligament is measured. By comparing the relative strain of each loading ligament, the alignment of the loading fixture is determined. Preferably, a suitable strain gage device is located at each longitudinal edge of a respective loading ligament equidistant from the two apertures in order to determine the strain thereat and hence the strain of each ligament. The loading ligaments are made substantially identical by jig grinding the loading ligaments as a matched set. Each loading ligament can also be individually calibrated prior to the measurement.

  16. Mussel inspired preparation of functional silica nanocomposites for environmental adsorption applications

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Liu, Meiying; Chen, Junyu; Wang, Ke; Xu, Dazhuang; Deng, Fengjie; Huang, Hongye; Zhang, Xiaoyong; Wei, Yen

    2016-11-01

    Surface modification of nanomaterials with polymers is an effective route to render new functions and improve the performance of the final nanocomposites. Here, a facile method was developed to fabricate polyacrylic acid (PAA)-grafted monodisperse SiO2 nanoparticles (SiO2-PDA-PAA) through a combination of mussel inspired chemistry and Michael addition reaction. To obtain the products, the SiO2 nanoparticles were first coated with polydopamine (PDA) through self-polymerization of dopamine under rather mild conditions. The PDA thin films can then be further conjugated with amino-terminated PAA, which was synthesized by chain transfer free radical polymerization using cysteamine hydrochloride as a chain transfer agent and acrylic acid as a monomer. The SiO2-PDA-PAA nanocomposites were characterized via transmission electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The effects of contact time, solution pH, temperature and methylene blue (MB) concentration on the removal of MB were investigated. The results demonstrated that SiO2-PDA-PAA showed significant improvement in adsorption efficiency towards MB. The kinetics and isotherm studies showed that pseudo-second-order and Langmuir isotherm models were well fitted the experimental data. The values of thermodynamics parameters such as entropy change (ΔS0), enthalpy change (ΔH0) and Gibbs free energy (ΔG0) were calculated based on the Van't Hoff equation. The negative values of thermodynamic parameters indicated that the adsorption of MB was a feasible, spontaneous and exothermic process. In summary, we developed a facile method to fabricate SiO2-based polymer nanocomposites, which showed obviously enhanced adsorption capability towards MB.

  17. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    SciTech Connect

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani

    2015-09-25

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  18. Galaxy alignment on large and small scales

    NASA Astrophysics Data System (ADS)

    Kang, X.; Lin, W. P.; Dong, X.; Wang, Y. O.; Dutton, A.; Macciò, A.

    2016-10-01

    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.

  19. The Selection of a Van Lift or a Scooter.

    ERIC Educational Resources Information Center

    Stevens, John H.

    1990-01-01

    This newsletter issue describes 3-wheeled scooters and van lifts that can assist a person with a disability to drive independently or have access to transportation. The section on van lifts compares hydraulic lifts and electric lifts, lists manufacturers, and offers an "assessment quiz" outlining factors to consider in selecting a van lift. In the…

  20. Painting with Clay Van Gogh Style.

    ERIC Educational Resources Information Center

    Skophammer, Karen

    1999-01-01

    Discusses Vincent Van Gogh's painting "Starry Night" and describes a lesson where fifth- and sixth-grade students created their own version of the artwork. Explains that the students utilized four colors of Permoplast clay, using their hands and fingers as brushes and blending tools and the clay as paint. (CMK)

  1. Ben van der Veken Honor Issue

    NASA Astrophysics Data System (ADS)

    Durig, James

    2015-02-01

    In acclamation of Ben van der Veken, a former editor of Spectrochimica Acta, many co-authors and friends have submitted papers in his honor. He has collaborated with many scientists from the United States, Russia, England, Scotland as well as some in other countries. His research is known throughout the world.

  2. Bernard van Leer Foundation Newsletter, 1996.

    ERIC Educational Resources Information Center

    Bernard van Leer Foundation, Newsletter, 1996

    1996-01-01

    This document consists of the four issues of the Bernard van Leer Foundation's "Newsletter" published during 1996. The newsletter covers topics related to, or about efforts to foster, the education and welfare of children around the world, and includes descriptions of programs around the world, lists of resources and publications, and early…

  3. Bernard van Leer Foundation Annual Report 1996.

    ERIC Educational Resources Information Center

    Bernard Van Leer Foundation, The Hague (Netherlands).

    This document provides an annual report and financial review for 1996 of the Bernard van Leer Foundation, a private institution created in 1949 for broad humanitarian purposes. Following a summary by the executive director of the Foundation, the report includes a description of the foundation and its grants. It then lists, by country, the major…

  4. Research and the Bernard van Leer Foundation.

    ERIC Educational Resources Information Center

    Wall, W. D.

    1978-01-01

    Outlines Bernard van Leer Foundation sponsorship of action programs and research studies of child development in 25 countries. The problems and possibilities of such work are discussed from the viewpoint of evaluation and the contribution which can be made to the behavioral sciences--notably to comparative child development. (Author/RH)

  5. Bernard van Leer Foundation Annual Report, 2001.

    ERIC Educational Resources Information Center

    Bernard Van Leer Foundation, The Hague (Netherlands).

    This annual report for 2001 describes the year's activities, achievements, and financial status of the Bernard van Leer Foundation, a private foundation based in The Netherlands operating internationally to improve opportunities for young children from birth to age 7 living in circumstances of social and economic disadvantage. Following the…

  6. Bernard van Leer Foundation Annual Report, 1999.

    ERIC Educational Resources Information Center

    Bernard Van Leer Foundation, The Hague (Netherlands).

    This annual report details the activities and financial status for 1999 of the Bernard van Leer Foundation, a private institution created in 1949 for broad humanitarian purposes. Following the introduction by the chairman of the Foundation's board of trustees, the report of the executive director details activities during the Foundation's fiftieth…

  7. Bernard van Leer Foundation Annual Report 1998.

    ERIC Educational Resources Information Center

    Bernard Van Leer Foundation, The Hague (Netherlands).

    This document provides an annual report and financial review for 1998 of the Bernard van Leer Foundation, a private institution created in 1949 for broad humanitarian purposes. Following an introduction by chairman of the Foundation's board of trustees, a report of the executive director details the second year of implementation of the…

  8. Bernard van Leer Foundation. Annual Report 1997.

    ERIC Educational Resources Information Center

    Bernard Van Leer Foundation, The Hague (Netherlands).

    This document provides an annual report and financial review of the Bernard van Leer Foundation, a private institution created in 1949 for broad humanitarian purposes. Following an introduction by the chairman of the Foundation's board of trustees, a report of the executive director details the first full-year of implementation of the Foundation's…

  9. Bernard van Leer Foundation Annual Report, 2000.

    ERIC Educational Resources Information Center

    Bernard Van Leer Foundation, The Hague (Netherlands).

    This annual report for 2000 describes the year's activities, achievements, and financial status of the Bernard van Leer Foundation, a private foundation based in The Netherlands that operates internationally to improve opportunities for young children from birth to age 7 living in circumstances of social and economic disadvantage. Following an…

  10. Bernard van Leer Foundation Annual Report, 2002.

    ERIC Educational Resources Information Center

    Bernard Van Leer Foundation, The Hague (Netherlands).

    This annual report for 2002 describes the year's activities, achievements, and financial status of the Bernard van Leer Foundation, a private foundation based in The Netherlands operating internationally to improve opportunities for young children from birth to age 7 living in circumstances of social and economic disadvantage. Following the…

  11. Note on a van der Waals Gas.

    ERIC Educational Resources Information Center

    Bauman, Robert P.; Harrison, Joseph G.

    1996-01-01

    Discusses the difficulties with the standard model for introduction of attractive forces into the van der Waals equation. Presents an analysis in terms of force and time delays and an alternative analysis for more advanced students in terms of energy. (JRH)

  12. The Forced van der Pol Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2009-01-01

    We report on a study of the forced van der Pol equation x + [epsilon](x[superscript 2] - 1)x + x = F cos[omega]t, by solving numerically the differential equation for a variety of values of the parameters [epsilon], F and [omega]. In doing so, many striking and interesting trajectories can be discovered and phenomena such as frequency entrainment,…

  13. Q & A with Carmella Van Vleet

    ERIC Educational Resources Information Center

    Curriculum Review, 2008

    2008-01-01

    This article presents an interview with Carmella Van Vleet, a former teacher and educational speaker. She has written family humor and parenting articles, and is also the author of "How to Handle School Snafus," "Great Ancient Egypt Projects You Can Build Yourself" and "Amazing Ben Franklin Inventions You Can Build Yourself." In this interview,…

  14. Obituary for Jan van der Pers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After a short but valiant struggle against cancer, Jan van der Pers died on 29 April, 2006 in the hospital in Hilversum, The Netherlands, close to his home. Our conversations with Jan during the last months of his life showed the remarkable strength and positive attitude typical of him. Discussions...

  15. Cosmic string in the van Stockum cylinder

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.

    2003-05-01

    The low density van Stockum dust solution is extended by including an angular deficit factor. The resulting model describes a rotating Gott-Hiscock string surrounded by an annular dust atmosphere. The interior spacetime can be joined to a vacuum Levi-Civita solution with angular deficit.

  16. Tangible nanocomposites with diverse properties for heart valve application

    NASA Astrophysics Data System (ADS)

    Vignesh Vellayappan, Muthu; Balaji, Arunpandian; Priyadarshini Subramanian, Aruna; Aruna John, Agnes; Jaganathan, Saravana Kumar; Murugesan, Selvakumar; Mohandas, Hemanth; Supriyanto, Eko; Yusof, Mustafa

    2015-06-01

    Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases.

  17. Absence of VanA- and VanB-containing enterococci in poultry raised on nonintensive production farms in Brazil.

    PubMed

    Batista Xavier, Diego; Moreno Bernal, Francisco Ernesto; Titze-de-Almeida, Ricardo

    2006-04-01

    We examined cloacal samples from poultry raised on nonintensive production farms in Brazil for the presence of vancomycin-resistant enterococci. No VanA- or VanB-containing enterococci were identified in a total of 200 cloacal swabs. The most prevalent species were Enterococcus gallinarum (vanC1; 13.0%) and E. casseliflavus (vanC2/3; 5.5%).

  18. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.

    PubMed

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I; Wise, Kristopher E; Lowther, Sharon E; Fay, Catharine C; Thibeault, Sheila A; Bryant, Robert G

    2015-12-22

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.

  19. Structure of Oriented PLA/Graphene Nanocomposite Fibers

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Pyda, Marek; Mao, Bin; Simona Cozza, Erika; Monticelli, Orietta; Cebe, Peggy

    2012-02-01

    Highly-aligned polylactic acid (PLA)/graphene nanocomposite fibers were successfully electrospun. Through a combination of thermal analysis and X-ray scattering, the phase structure, molecular orientation, and fiber shrinkage of the oriented PLA fibers were investigated to evaluate the molecular chain confinement. Calorimetric studies were performed to identify the molecular origin of the post-Tg exothermic peak. We found that the shrinkage of the oriented amorphous polymer serves as a precursor for the cold crystallization revealed by the post-Tg exotherm. Using real-time 2-D wide angle X-ray scattering and molecular retraction tests, we further quantified the orientation level and the oriented amorphous fraction in the as-spun amorphous fibers, and investigated the subsequent formation of oriented crystals during heating under ``frozen-in'' tension. The preferentially oriented amorphous region that possesses a degree of medium-range order has high similarity with the concept of the rigid amorphous phase that has been widely studied in thermal analysis area, and a new phase structure model was established. Graphene filler has a significant influence on molecular orientation, crystallization behavior, and electrical conductivity of PLA fibers.

  20. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  1. Thermo-active polymer nanocomposites: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Winter, A. Douglas; Larios, Eduardo; Jaye, Cherno; Fischer, Daniel A.; Omastová, Mária; Campo, Eva M.

    2014-09-01

    Photo- and thermo-mechanical actuation behaviour in specific polymer-carbon nanotube composites has been observed in recent years and studied at the macroscale. These systems may prove to be suitable components for a wide range of applications, from MOEMs and nanotechnology to neuroscience and tissue engineering. Absence of a unified model for actuation behaviour at a molecular level is hindering development of such smart materials. We observed thermomechanical actuation of ethylene-vinyl acetate | carbon nanotube composites through in situ near-edge X-ray absorption fine structure spectroscopy to correlate spectral trends with macroscopic observations. This paper presents spectra of composites and constituents at room temperature to identify resonances in a building block model, followed by spectra acquired during thermo-actuation. Effects of strain-induced filler alignment are also addressed. Spectral resonances associated with C=C and C=O groups underwent synchronised intensity variations during excitation, and were used to propose a conformational model of actuation based on carbon nanotube torsion. Future actuation studies on other active polymer nanocomposites will verify the universality of the proposed model.

  2. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.

    PubMed

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I; Wise, Kristopher E; Lowther, Sharon E; Fay, Catharine C; Thibeault, Sheila A; Bryant, Robert G

    2015-12-22

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. PMID:26529472

  3. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  4. Nanocomposites with High Thermoelectric Figures of Merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  5. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Ren, Zhifeng (Inventor); Dresselhaus, Mildred (Inventor)

    2008-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  6. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2012-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  7. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    SciTech Connect

    Lu, Hong; Burke, Peter G.; Gossard, Arthur C.; Zeng, Gehong; Ramu, Ashok T.; Bahk, Je-Hyeong; Bowers, John E.

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nano­structures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μm thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  8. Automated interferometric alignment system for paraboloidal mirrors

    DOEpatents

    Maxey, L.C.

    1993-09-28

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.

  9. Droplet Vorticity Alignment in Model Polymer Blends

    NASA Astrophysics Data System (ADS)

    Migler, Kalman

    2000-03-01

    The shear induced deformation of polymeric droplets in an immiscible polymeric matrix is studied using a transparent rotating plate-plate device. We consider the case where the viscosity ratio of the two phases is near unity, but the elasticity ratio of the droplet to the matrix is of order 10^2. This is achieved by using a matrix of PDMS and a droplet of a PIB based Boger fluid. In the limit of weak shear and small droplets, the droplet alignment is along the shear direction, whereas for strong shear and large droplets, the alignment is along the vorticity direction. There is a range of conditions for which alignment can be along either axis. For droplets aligned along the vorticity axis, the distribution of aspect ratios is broad. The transformation from flow alignment to vorticity alignment upon commencement of shear flow has been observed and correlates with the time scale for development of normal forces in the Boger fluid.

  10. Multiple alignment using hidden Markov models

    SciTech Connect

    Eddy, S.R.

    1995-12-31

    A simulated annealing method is described for training hidden Markov models and producing multiple sequence alignments from initially unaligned protein or DNA sequences. Simulated annealing in turn uses a dynamic programming algorithm for correctly sampling suboptimal multiple alignments according to their probability and a Boltzmann temperature factor. The quality of simulated annealing alignments is evaluated on structural alignments of ten different protein families, and compared to the performance of other HMM training methods and the ClustalW program. Simulated annealing is better able to find near-global optima in the multiple alignment probability landscape than the other tested HMM training methods. Neither ClustalW nor simulated annealing produce consistently better alignments compared to each other. Examination of the specific cases in which ClustalW outperforms simulated annealing, and vice versa, provides insight into the strengths and weaknesses of current hidden Maxkov model approaches.

  11. Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites.

    PubMed

    Zou, Yuanwen; Qin, Jiabang; Huang, Zhongbing; Yin, Guangfu; Pu, Ximing; He, Da

    2016-05-25

    Electrically conductive biomaterial scaffolds have great potential in neural tissue regeneration. In this work, an aligned conductive fibrous scaffold was prepared by electrospinning PLLA on rotating collector and chemical oxidation polymerization of pyrrole (PPy) codoped with poly(glutamic acid)/dodecyl benzenesulfonic acid sodium. The characterization results of composition, structure and mechanics of fiber films show that the existence of weak polar van der Waals' force between PPy coating and PLLA fibers. The resistivity of aligned rough PPy-PLLA fiber film (about 800 nm of fiber diameter) at the perpendicular and parallel directions is 0.971 and 0.874 Ω m, respectively. Aligned rough PPy-PLLA fiber film could guide the extension of 68% PC12 neurites along the direction of fiber axis. Under electrostimulation (ES) of 100, 200, and 400 mV/cm, median neurite lengths of differentiated PC12 on aligned fiber-films are 128, 149, and 141 μm, respectively. Furthermore, under ES of 100, 200, and 400 mV/cm, the alignment rate of neurite along the electropotential direction (angle between neurite and electropotential direction ≤10°) on random fibers film are 17, 23, and 28%, respectively, and the alignment rate of neurites along the fiber axis (angle between neurite and fiber axis ≤10°) on aligned fibers film reach to 76, 83, and 79%, respectively, indicating that the combination of ES and rough conducting aligned structure could adjust the alignment of cellular neurites along the direction of the fiber axis or electropotential. PMID:27172537

  12. Engineering Flame Retardant Biodegradable Nanocomposites

    NASA Astrophysics Data System (ADS)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  13. Internal charge behaviour of nanocomposites

    NASA Astrophysics Data System (ADS)

    Nelson, J. Keith; Fothergill, John C.

    2004-05-01

    The incorporation of 23 nm titanium dioxide nanoparticles into an epoxy matrix to form a nanocomposite structure is described. It is shown that the use of nanometric particles results in a substantial change in the behaviour of the composite, which can be traced to the mitigation of internal charge when a comparison is made with conventional TiO2 fillers. A variety of diagnostic techniques (including dielectric spectroscopy, electroluminescence, thermally stimulated current and photoluminescence) have been used to augment pulsed electro-acoustic space charge measurement to provide a basis for understanding the underlying physics of the phenomenon. It would appear that, when the size of the inclusions becomes small enough, they act cooperatively with the host structure and cease to exhibit interfacial properties, leading to Maxwell-Wagner polarization. It is postulated that the particles are surrounded by high charge concentrations in the Gouy-Chapman-Stern layer. Since nanoparticles have very high specific areas, these regions allow limited charge percolation through nano-filled dielectrics. The practical consequences of this have also been explored in terms of the electric strength exhibited. It would appear that there was a window in which real advantages accrue from the nano-formulated material. An optimum loading of about 10% (by weight) is indicated.

  14. IAIMFAST: Alignment Implementation for Manufacturing

    2013-08-29

    AIMFAST is a software code used to align facets on a dish concentrator to a specific aimpoint strategy to minimize peak fluxes and maximize system optical performance. AIM FAST uses a large monitor to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject dish mirrors. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. Thismore » fitted comparison is then used to develop a single vector representing the orientation of the facets relative to the design orientation, and provide near-real-time adjustment information to a communicating computer. The communicating computer can display adjustments or directly interface with adjustment tools.« less

  15. AIMFAST: Alignment Implementation for Manufacturing

    2012-09-13

    AIMFAST is a software code used to align facets on a dish concentrator to a specific aimpoint strategy to minimize peak fluxes and maximize system optical performance. AIMFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject dish mirrors. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirrormore » shapes. This fitted comparison is then used to develop a single vector representing the orientation of the facets relative to the design orientation, and provide near-real-time adjustment information to a communicating computer. The communicating computer can display adjustments or directly interface with adjustment tools. The software for the communicating computer is specific to the implementation and is not a part of AIMFAST.« less

  16. IAIMFAST: Alignment Implementation for Manufacturing

    SciTech Connect

    Andraka, Charles E.

    2013-08-29

    AIMFAST is a software code used to align facets on a dish concentrator to a specific aimpoint strategy to minimize peak fluxes and maximize system optical performance. AIM FAST uses a large monitor to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject dish mirrors. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. This fitted comparison is then used to develop a single vector representing the orientation of the facets relative to the design orientation, and provide near-real-time adjustment information to a communicating computer. The communicating computer can display adjustments or directly interface with adjustment tools.

  17. AIMFAST: Alignment Implementation for Manufacturing

    SciTech Connect

    2012-09-13

    AIMFAST is a software code used to align facets on a dish concentrator to a specific aimpoint strategy to minimize peak fluxes and maximize system optical performance. AIMFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject dish mirrors. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. This fitted comparison is then used to develop a single vector representing the orientation of the facets relative to the design orientation, and provide near-real-time adjustment information to a communicating computer. The communicating computer can display adjustments or directly interface with adjustment tools. The software for the communicating computer is specific to the implementation and is not a part of AIMFAST.

  18. The Alignment of Galaxy Structures

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Panko, E.; Bajan, K.; Godłowski, W.; Flin, P.

    2015-11-01

    We analyzed the orientation of the sample of ACO galaxy clusters. We examined the alignment in a subsample of 1056 galaxy structures taken from the Panko-Flin (2006) Catalog with known BM morphological types. We were looking for a correlation between the orientation of the cluster and the positions of neighboring clusters. The Binggeli effect (the excess of small values of the Δθ angles between the direction toward neighboring clusters and the cluster position angle) is observed, having a range up to about 45 h-1 Mpc. The strongest effect was found for elongated BM type I clusters. This is probably connected with the origins of the supergiant galaxy and with cluster formation along a long filament or plane in a supercluster.

  19. Alignment performance monitoring for ASML systems

    NASA Astrophysics Data System (ADS)

    Chung, Woong-Jae; Temchenko, Vlad; Hauck, Tarja; Schmidt, Sebastian

    2006-03-01

    In today's semiconductor industry downscaling of the IC design puts a stringent requirement on pattern overlay control. Tighter overlay requirements lead to exceedingly higher rework rates, meaning additional costs to manufacturing. Better alignment control became a target of engineering efforts to decrease rework rate for high-end technologies. Overlay performance is influenced by known parameters such as "Shift, Scaling, Rotation, etc", and unknown parameters defined as "Process Induced Variation", which are difficult to control by means of a process automation system. In reality, this process-induced variation leads to a strong wafer to wafer, or lot to lot variation, which are not easy to detect in the mass-production environment which uses sampling overlay measurements for only several wafers in a lot. An engineering task of finding and correcting a root cause for Process Induced Variations of overlay performance will be greatly simplified if the unknown parameters could be tracked for each wafer. This paper introduces an alignment performance monitoring method based on analysis of automatically generated "AWE" files for ASML scanner systems. Because "AWE" files include alignment results for each aligned wafer, it is possible to use them for monitoring, controlling and correcting the causes of "process induced" overlay performance without requiring extra measurement time. Since "AWE" files include alignment information for different alignment marks, it is also possible to select and optimize the best alignment recipe for each alignment strategy. Several case studies provided in our paper will demonstrate how AWE file analysis can be used to assist engineer in interpreting pattern alignment data. Since implementing our alignment data monitoring method, we were able to achieve significant improvement of alignment and overlay performance without additional overlay measurement time. We also noticed that the rework rate coming from alignment went down and

  20. Thermoelectric Properties of Polyacrylonitrile-Based Nanocomposite

    NASA Astrophysics Data System (ADS)

    Yusupov, K.; Khovaylo, V.; Muratov, D.; Kozhitov, L.; Arkhipov, D.; Pryadun, V.; Vasiliev, A.

    2016-07-01

    A polyacrylonitrile (PAN)-based nanocomposite with 20 wt.% Fe-Co/C has been prepared by infrared pyrolysis. Morphological and structural studies revealed that the composite consists of polyacrylonitrile as a plastifier, Fe-Co as a filler alloy, and carbon, which was formed during combustion of the polymer. Electrical resistivity and thermal conductivity of the composite are rather low at ambient temperatures and do not exceed 1 Ohm m and 0.5 W/m K, respectively. However, due to a very low Seebeck coefficient, the calculated figure of merit ZT of the nanocomposite does not exceed 2.1 × 10-8.

  1. Long term property prediction of polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Shaito, Ali Al-Abed

    The amorphous fraction of semicrystalline polymers has long been thought to be a significant contributor to creep deformation. In polyethylene (PE) nanocomposites, the semicrystalline nature of the maleated PE compatibilizer leads to a limited ability to separate the role of the PE in the nanocomposite properties. This dissertation investigates blown films of linear low-density polyethylene (LLDPE) and its nanocomposites with montmorillonite-layered silicate (MLS). Addition of an amorphous ethylene propylene copolymer grafted maleic anhydride (amEP) was utilized to enhance the interaction between the PE and the MLS. The amorphous nature of the compatibilizer was used to differentiate the effect of the different components of the nanocomposites; namely the matrix, the filler, and the compatibilizer on the overall properties. Tensile test results of the nanocomposites indicate that the addition of amEP and MLS separately and together produces a synergistic effect on the mechanical properties of the neat PE. Thermal transitions were analyzed using differential scanning calorimetry (DSC) to determine if the observed improvement in mechanical properties is related to changes in crystallinity. The effect of dispersion of the MLS in the matrix was investigated by using a combination of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical measurements were correlated to the dispersion of the layered silicate particles in the matrix. The nonlinear time dependent creep of the material was analyzed by examining creep and recovery of the films with a Burger model and the Kohlrausch-Williams-Watts (KWW) relation. The effect of stress on the nonlinear behavior of the nanocomposites was investigated by analyzing creep-recovery at different stress levels. Stress-related creep constants and shift factors were determined for the material by using the Schapery nonlinear viscoelastic equation at room temperature. The effect of temperature on the tensile and creep

  2. COS to FGS Alignment {NUV}

    NASA Astrophysics Data System (ADS)

    Hartig, George

    2009-07-01

    DESCRIPTION: In order to determine the location of the COS reference frame with respect to the FGS reference frames, NUV MIRRORA images will be obtained of an astrometric target and field. Astrometric guide stars and targets must be employed for this activity in order to facilitate the alignment wth the FGS. Images will be obtained at the initial pointing and at positions offset in V2 and in V3. Starting with the original blind pointing, obtain MIRRORA image exposures in a 5x5 POS-TARG grid centered on initial pointing; repeat the image sequence at two bracketing focus positions in same visit. Following completion of third pattern, return to nominal focus and perform 5x5 ACQ/SEARCH target acquisition and obtain one TIME-TAG MIRRORA image and one ACCUM verification exposure. Next perform an ACQ/IMAGE target acquisition followed by an ACCUM verification exposure. Also obtain ACCUM verification exposure for each of the two alternate focus positions used previously. Using MIRRORB obtain ACCUM confirmation image at nominal focus and ACCUM images at alternate focus positions and then perform an ACQ/IMAGE and confirming image at nominal focus. Analyze imagery, uplink pointing offset as offset 11469A and adjust nominal focus via patchable constant uplinked with subsequent visit of this program; update aperture locations via modified SIAF file uplinked with subsequent SMS. Use updated focus and offset pointing as input for COS 09 {program 11469 - NUV Optics Alignment and Focus} {note the SIAF update is not a prerequisite for COS 09 to proceed, but the pointing offset and focus update are}.

  3. VIRUS spectrograph assembly and alignment procedures

    NASA Astrophysics Data System (ADS)

    Prochaska, Travis; Allen, Richard D.; Boster, Emily; DePoy, D. L.; Herbig, Benjamin; Hill, Gary J.; Lee, Hanshin; Marshall, Jennifer L.; Martin, Emily C.; Meador, William; Rheault, Jean-Philippe; Tuttle, Sarah E.; Vattiat, Brian L.

    2012-09-01

    We describe the mechanical assembly and optical alignment processes used to construct the Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument. VIRUS is a set of 150+ optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). To meet the instrument's manufacturing constraints, a production line will be set up to build subassemblies in parallel. To aid in the instrument's assembly and alignment, specialized fixtures and adjustment apparatuses have been developed. We describe the design and operations of the various optics alignment apparatuses, as well as the mirrors' alignment and bonding fixtures.

  4. Advancements of vertically aligned liquid crystal displays.

    PubMed

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects.

  5. The twilight zone of cis element alignments.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-02-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.

  6. DNAAlignEditor: DNA alignment editor tool

    PubMed Central

    Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D

    2008-01-01

    Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684

  7. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2011-09-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  8. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2012-03-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  9. Anisotropic light emission from aligned luminophores

    NASA Astrophysics Data System (ADS)

    Verbunt, Paul P. C.; de Jong, Ties M.; de Boer, Dick K. G.; Broer, Dirk J.; Debije, Michael G.

    2014-07-01

    The emission of aligned dichroic dyes in a luminescent solar concentrator (LSC) illuminated from one side with collimated light results in a non-isotropic light distribution. We develop a model to describe emission profiles for dichroic dyes aligned at a general tilt angle with respect to a lightguide surface (including planar and homeotropic alignments) for various order parameters. We compare calculations with experimental results, demonstrating the dichroic nature of the dyes can have significant impact on the surface loss of luminescent solar concentrators. Including this dichroic nature is essential in correctly simulating the preferred edge emissions demonstrated experimentally in dyes aligned planarly on the surface of a lightguide.

  10. Optimal Network Alignment with Graphlet Degree Vectors

    PubMed Central

    Milenković, Tijana; Ng, Weng Leong; Hayes, Wayne; Pržulj, Nataša

    2010-01-01

    Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology. PMID:20628593

  11. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    SciTech Connect

    Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.; Grama, Ananth

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  12. Complex light with optical singularities induced by nanocomposites

    NASA Astrophysics Data System (ADS)

    Ponevchinsky, Vlad V.; Goncharuk, Andrei I.; Naydenov, Sergei V.; Lisetski, Longin N.; Lebovka, Nikolai I.; Soskin, Marat S.

    2011-03-01

    The nanocomposites on the base of long (5-10μm, o-MWCNTs) and short (~ 2μm, m-MWCNTs) multi-walled carbon nanotubes (MWCNTs) hosted by nematic 5CB were investigated in details by means of polarizing microscopy, studies of electrical conductivity and electro-optical behaviour. The spontaneous self-organization of MWCNTs was observed and investigated both theoretically and experimentally. The efficiency of MWCNT aggregation in these composites is controlled by strong, long ranged and highly anisotropic van der Waals interactions and Brownian motion of individual nanotubes and their aggregates. The simple Smoluchowski approach was used for estimation of the half-time of aggregation. It was shown that aggregation process includes two different stages: fast, resulting in formation of loose aggregates (L-aggregates) and slow, resulting in formation of compacted aggregates (C-aggregates). Both L- and C- aggregates possess extremely ramified fractal borders. Formation of the percolation structures was observed for o-MWCNTs at C=Cp~0.025-0.05 % wt and for m-MWCNTs at C=Cp~0.1- 0.25 % wt. A physical model describing formation of C-aggregates with captured 5CB molecules inside was proposed. It shows good agreement with experimentally measured characteristics. It was shown that MWCNTs strongly affect the structural organization of LC molecules captured inside the MWCNT skeleton and of interfacial LC layers in the vicinity of aggregate borders. Moreover, the structure of the interfacial layer, as well as its birefringence, drastically changed when the applied electric voltage exceeded the Freedericksz threshold. Finally, formation of the inversion walls between branches of the neighbouring MWCNT aggregates was observed and discussed for the first time.

  13. Interfacial and bulk nanostructure of liquid polymer nanocomposites.

    PubMed

    McDonald, Samila; Wood, Jared A; FitzGerald, Paul A; Craig, Vincent S J; Warr, Gregory G; Atkin, Rob

    2015-03-31

    Liquid polymer nanocomposites (l-PNCs) have been prepared using silica nanoparticles with diameters of 15 nm (l-PNC-15) and 24 nm (l-PNC-24), and Jeffamine M-2070, an amine-terminated ethylene oxide/propylene oxide (PEO/PPO, ratio 31/10) copolymer. Jeffamine M-2070 was used as the host liquid in which the particles were suspended and was also grafted onto the particle surface to prevent aggregation. The grafting density of Jeffamine M-2070 on the particle surfaces was ∼0.75 chains nm(-2). When the total polymer content (surface layer + host) was greater than ∼30 wt %, the PNC was a liquid, while at lower polymer volume fractions the PNC was solid. In this work, the bulk and surface structures of l-PNCs with ∼70 wt % polymer and 30% silica are characterized and compared. Small-angle neutron scattering (SANS) was used to probe the bulk structure of the l-PNCs and revealed that the particles are well-dispersed with minor clustering in l-PNC-15 and substantial clustering in l-PNC-24. This is attributed to stronger van der Waals attractions between particles due to the larger particle size in l-PNC-24. Corresponding effects were revealed using tapping mode atomic force microscopy (TM-AFM) at the l-PNC-air interface; clustering was minimal on the surface of l-PNC-15 but significant for l-PNC-24 droplets. In regions of the l-PNC where the particles were well-dispersed, the spacing between particles is consistent with their volume fractions. This is the first time that the distribution of polymer and particles within l-PNCs has been imaged in situ.

  14. GramAlign: fast alignment driven by grammar-based phylogeny.

    PubMed

    Russell, David J

    2014-01-01

    Multiple sequence alignment involves identifying related subsequences among biological sequences. When matches are found, the associated pieces are shifted so that when sequences are presented as successive rows-one sequence per row-homologous residues line-up in columns. Exact alignment of more than a few sequences is known to be computationally prohibitive. Thus many heuristic algorithms have been developed to produce good alignments in an efficient amount of time by determining an order by which pairs of sequences are progressively aligned and merged. GRAMALIGN is such a progressive alignment algorithm that uses a grammar-based relative complexity distance metric to determine the alignment order. This technique allows for a computationally efficient and scalable program useful for aligning both large numbers of sequences and sets of long sequences quickly. The GRAMALIGN software is available at http://bioinfo.unl.edu/gramalign.php for both source code download and a web-based alignment server.

  15. GASSST: global alignment short sequence search tool

    PubMed Central

    Rizk, Guillaume; Lavenier, Dominique

    2010-01-01

    Motivation: The rapid development of next-generation sequencing technologies able to produce huge amounts of sequence data is leading to a wide range of new applications. This triggers the need for fast and accurate alignment software. Common techniques often restrict indels in the alignment to improve speed, whereas more flexible aligners are too slow for large-scale applications. Moreover, many current aligners are becoming inefficient as generated reads grow ever larger. Our goal with our new aligner GASSST (Global Alignment Short Sequence Search Tool) is thus 2-fold—achieving high performance with no restrictions on the number of indels with a design that is still effective on long reads. Results: We propose a new efficient filtering step that discards most alignments coming from the seed phase before they are checked by the costly dynamic programming algorithm. We use a carefully designed series of filters of increasing complexity and efficiency to quickly eliminate most candidate alignments in a wide range of configurations. The main filter uses a precomputed table containing the alignment score of short four base words aligned against each other. This table is reused several times by a new algorithm designed to approximate the score of the full dynamic programming algorithm. We compare the performance of GASSST against BWA, BFAST, SSAHA2 and PASS. We found that GASSST achieves high sensitivity in a wide range of configurations and faster overall execution time than other state-of-the-art aligners. Availability: GASSST is distributed under the CeCILL software license at http://www.irisa.fr/symbiose/projects/gassst/ Contact: guillaume.rizk@irisa.fr; dominique.lavenier@irisa.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20739310

  16. Alignments between galaxies, satellite systems and haloes

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Gao, Liang; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-08-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the discs of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of 33° in both cases. While the centrals are better aligned with the inner 10 kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central-satellite alignment is weak (median misalignment angle of 52°) and we find that around 20 per cent of systems have a misalignment angle larger than 78°, which is the value for the Milky Way. The central-satellite alignment is a consequence of the tendency of both components to align with the dark matter halo. As a consequence, when the central is parallel to the satellite system, it also tends to be parallel to the halo. In contrast, if the central is perpendicular to the satellite system, as in the case of the Milky Way and Andromeda, then the central-halo alignment is much weaker. Dispersion-dominated (spheroidal) centrals have a stronger alignment with both their halo and their satellites than rotation-dominated (disc) centrals. We also found that the halo, the central galaxy and the satellite system tend to be aligned with the surrounding large-scale distribution of matter, with the halo being the better aligned of the three.

  17. Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy

    PubMed Central

    Liu, Lei; Siegel, David A.; Chen, Wei; Liu, Peizhi; Guo, Junjie; Duscher, Gerd; Zhao, Chong; Wang, Hao; Wang, Wenlong; Bai, Xuedong; McCarty, Kevin F.; Zhang, Zhenyu; Gu, Gong

    2014-01-01

    Using selected-area low-energy electron diffraction analysis, we showed strict orientational alignment of monolayer hexagonal boron nitride (h-BN) crystallites with Cu(100) surface lattices of Cu foil substrates during atmospheric pressure chemical vapor deposition. In sharp contrast, the graphene–Cu(100) system is well-known to assume a wide range of rotations despite graphene’s crystallographic similarity to h-BN. Our density functional theory calculations uncovered the origin of this surprising difference: The crystallite orientation is determined during nucleation by interactions between the cluster’s edges and the substrate. Unlike the weaker B– and N–Cu interactions, strong C–Cu interactions rearrange surface Cu atoms, resulting in the aligned geometry not being a distinct minimum in total energy. The discovery made in this specific case runs counter to the conventional wisdom that strong epilayer–substrate interactions enhance orientational alignment in epitaxy and sheds light on the factors that determine orientational relation in van der Waals epitaxy of 2D materials. PMID:25385622

  18. Van Gogh and the life chart.

    PubMed

    Rahe, R H

    1992-01-01

    Adolf Meyer originally devised the life chart in order to chronologically document a person's major life events and significant illness experiences over his or her life span. It is the purpose of this report to update Meyer's life chart through the presentation of the life events and illnesses of the famous artist Vincent Van Gogh. Van Gogh's life illustrates significant early (predisposing) life stresses, as well as clusterings of stressful (precipitating) life events occurring proximal to the occurrence of his several illnesses. Through the use of a life chart an understanding of why an individual becomes ill at a particular time in their life is enlarged. In addition, a systematic basis for formulating prognosis becomes available.

  19. [Psychiatric case history of Vincent van Gogh].

    PubMed

    van Meekeren, E

    2000-12-23

    Much has been written about Vincent van Gogh's pathological condition. Most authors base their various diagnoses on the symptoms he exhibited in the last years of his life. However, Van Gogh during a much longer part of his life displayed symptoms best consistent with a borderline (personality) disorder: impulsivity, variable moods, self-destructive behaviour, fear of abandonment, an unbalanced self-image, authority conflicts and other complicated relationships. The precipitating element disturbing Vincent's psychic balance--delicate in any case due to a positive family history, malnutrition, intoxication and exhaustion and the borderline disorder--may have been his being deserted by his friend Gauguin. He (also) developed an organic psychosyndrome with psychotic and epileptic elements. The stress (due to social isolation, by his being a psychiatric patient, and by poor prospects), the intoxication going on outside the hospitals and especially also the problems relating to his brother Theo caused a downward spiral culminating in suicide.

  20. Vincent van Gogh and the thujone connection.

    PubMed

    Arnold, W N

    1988-11-25

    During his last two years Vincent van Gogh experienced fits with hallucinations that have been attributed to a congenital psychosis. But the artist admitted to episodes of heavy drinking that were amply confirmed by colleagues and there is good evidence to indicate that addiction to absinthe exacerbated his illness. Absinthe was distilled from an alcoholic steep of herbs. Wormwood (Artemisia absinthium) was the most significant constituent because it contributed thujone. This terpene can cause excitation, convulsions that mimic epilepsy, and even permanent brain damage. Statements in van Gogh's letters and from his friends indicate that he had an affinity for substances with a chemical connection to thujone; the documented examples are camphor and pinene. Perhaps he developed an abnormal craving for terpenes, a sort of pica, that would explain his attempts to eat paints and so on, which were previously regarded as unrelated absurdities.

  1. Durable Nanocomposites for Superhydrophobicity and Superoleophobicity

    NASA Astrophysics Data System (ADS)

    Steele, Adam

    Anti-wetting surfaces and materials have the potential for dramatic performance improvements such as drag reduction on marine vehicles and fluid power systems as well as anti-fouling on aircraft and wind turbines. Although a wide variety of synthetic superhydrophobic surfaces have been developed and investigated, several critical obstacles remain before industrial application can be realized, including: (1) large surface area application, (2) multi-liquid anti-wetting, (3) environmentally friendly compositions, (4) mechanical durability and adhesion, and (5) long-term performance. In this dissertation, nanocomposite coatings have been investigated to generate high performance anti-wetting surfaces that address these obstacles which may enable application on wind turbine blades. Solution processable materials were used which self-assemble to create anti-wetting nanocomposite surfaces upon spray coating and curing. As a result, the first superoleophobic nanocomposite, the first environmentally friendly superhydrophobic compositions, and the first highly durable superhydrophobic nanocomposite coatings were created. Furthermore, the mechanisms leading to this improved performance were studied.

  2. Co-continuous Metal-Ceramic Nanocomposites

    SciTech Connect

    Zhang, Xiao Feng; Harley, Gabriel; De Jonghe, Lutgard C.

    2005-01-31

    A room temperature technique was developed to produce continuous metal nanowires embedded in random nanoporous ceramic skeletons. The synthesis involves preparation of uniform, nanoporous ceramic preforms, and subsequent electrochemical metal infiltration at room temperature, so to avoid materials incompatibilities frequently encountered in traditional high temperature liquid metal infiltration. Structure and preliminary evaluations of mechanical and electronic properties of copper/alumina nanocomposites are reported.

  3. Memory-effects of magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Razzaq, Muhammad Yasar; Behl, Marc; Lendlein, Andreas

    2012-09-01

    The thermally induced shape memory effect (SME) is the capability of a material to fix a temporary (deformed) shape and recover a `memorized' permanent shape in response to heat. SMEs in polymers have enabled a variety of applications including deployable space structures, biomedical devices, adaptive optical devices, smart dry adhesives and fasteners. By the incorporation of magnetic nanoparticles (mNP) into shape-memory polymer (SMP), a magnetically controlled SME has been realized. Magnetic actuation of nanocomposites enables remotely controlled devices based on SMP, which might be useful in medical technology, e.g. remotely controlled catheters or drug delivery systems. Here, an overview of the recent advances in the field of magnetic actuation of SMP is presented. Special emphasis is given on the magnetically controlled recovery of SMP with one switching temperature Tsw (dual-shape effect) or with two Tsws (triple-shape effect). The use of magnetic field to change the apparent switching temperature (Tsw,app) of the dual or triple-shape nanocomposites is described. Finally, the capability of magnetic nanocomposites to remember the magnetic field strength (H) initially used to deform the sample (magnetic-memory effect) is addressed. The distinguished advantages of magnetic heating over conventional heating methods make these multifunctional nanocomposites attractive candidates for in vivo applications.

  4. Polymer nanocomposites for lithium battery applications

    DOEpatents

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  5. Thermal transport in Si/Ge nanocomposites

    NASA Astrophysics Data System (ADS)

    Huang, Xiaopeng; Huai, Xiulan; Liang, Shiqiang; Wang, Xinwei

    2009-05-01

    In this paper, a systematic study is carried out to investigate the thermal transport in Si/Ge nanocomposites by using molecular dynamics simulation. Emphasis is placed on the effect of nanowire size, heat flux, Si/Ge interface, atomic ratio and defects (voids). The results show that the thermal conductivity of nanowire composites is much lower than that of alloy, which accounts mainly for ZT enhancement and owes a great deal to the effect of interface thermal resistance. A 'reflecting effect' in temperature distribution is observed at the Si/Ge interface, which is largely due to the lack of right quantum temperature correction in the region adjacent to the interface. The thermal conductivity of the nanocomposite is found to have weak dependence on the bulk temperature (200-900 K) and the heat flux in the range (0.5-3.5) × 1010 W m-2. Simulation results reveal that for a constant Si wire dimension, the thermal conductivity of the Si1-xGex nanocomposites increases with x. Our study on the influence of the defects (voids) has the same order of relative thermal conductivity reduction with increasing void density in comparison with the experimental data. Due to the small size (10 nm) of Si nanowires in our nanocomposites, the voids show less effect on thermal conductivity reduction in comparison with the experimental data with 100 nm Si wires.

  6. Nanocomposites in food packaging – A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nanocomposite is a multiphase material derived from the combination of two or more components, including a matrix (continuous phase) and a discontinuous nano-dimensional phase with at least one nano-sized dimension (i.e. less than 100 nm). The main types of nanostructures are presented in this ch...

  7. Versatile nanocomposites in phosphoproteomics: a review.

    PubMed

    Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Hussain, Dilshad; Saeed, Adeela; Musharraf, Syed Ghulam; Huck, Christian W; Bonn, Günther K

    2012-10-17

    Protein phosphorylation is one of the most important post-translational modifications. Phosphorylated peptides are present in low abundance in blood serum but play a vital role in regulatory mechanisms and may serve as casual factors in diseases. The enrichment and analysis of phosphorylated peptides directly from human serum and mapping the phosphorylation sites is a challenging task. Versatile nanocomposites of different materials have been synthesized using simple but efficient methodologies for their enrichment. The nanocomposites include magnetic, coated, embedded as well as chemically derivatized materials. Different base materials such as polymers, carbon based and metal oxides are used. The comparison of nanocomposites with respective nanoparticles provides sufficient facts about their efficiency in terms of loading capacity and capture efficiency. The cost for preparing them is low and they hold great promise to be used as chromatographic materials for phosphopeptide enrichment. This review gives an overview of different nanocomposites in phosphoproteomics, discussing the improved efficiency than the individual counterparts and highlighting their significance in phosphopeptide enrichment. PMID:22986130

  8. Memory-effects of magnetic nanocomposites.

    PubMed

    Razzaq, Muhammad Yasar; Behl, Marc; Lendlein, Andreas

    2012-10-21

    The thermally induced shape memory effect (SME) is the capability of a material to fix a temporary (deformed) shape and recover a 'memorized' permanent shape in response to heat. SMEs in polymers have enabled a variety of applications including deployable space structures, biomedical devices, adaptive optical devices, smart dry adhesives and fasteners. By the incorporation of magnetic nanoparticles (mNP) into shape-memory polymer (SMP), a magnetically controlled SME has been realized. Magnetic actuation of nanocomposites enables remotely controlled devices based on SMP, which might be useful in medical technology, e.g. remotely controlled catheters or drug delivery systems. Here, an overview of the recent advances in the field of magnetic actuation of SMP is presented. Special emphasis is given on the magnetically controlled recovery of SMP with one switching temperature T(sw) (dual-shape effect) or with two T(sw)s (triple-shape effect). The use of magnetic field to change the apparent switching temperature (T(sw,app)) of the dual or triple-shape nanocomposites is described. Finally, the capability of magnetic nanocomposites to remember the magnetic field strength (H) initially used to deform the sample (magnetic-memory effect) is addressed. The distinguished advantages of magnetic heating over conventional heating methods make these multifunctional nanocomposites attractive candidates for in vivo applications.

  9. Exchange coupled ferrite nanocomposites through chemical synthesis.

    PubMed

    Dai, Qilin; Patel, Ketan; Ren, Shenqiang

    2016-08-16

    Exchange coupling between magnetically hard and soft phases has the potential to yield a large gain in the energy product. In this work, we present a scalable chemical synthetic route to produce magnetic iron oxide based nanocomposites, consisting of cobalt ferrite (CoFe2O4) and strontium ferrite (SrFe12O19) components. PMID:27476744

  10. Wear Resistant Amorphous and Nanocomposite Steel Coatings

    SciTech Connect

    Branagan, Daniel James; Swank, William David; Haggard, Delon C; Fincke, James Russell; Sordelet, D.

    2001-10-01

    In this article, amorphous and nanocomposite thermally deposited steel coatings have been formed by using both plasma and high-velocity oxy-fuel (HVOF) spraying techniques. This was accomplished by developing a specialized iron-based composition with a low critical cooling rate (?104 K/s) for metallic glass formation, processing the alloy by inert gas atomization to form micron-sized amorphous spherical powders, and then spraying the classified powder to form coatings. A primarily amorphous structure was formed in the as-sprayed coatings, independent of coating thickness. After a heat treatment above the crystallization temperature (568°C), the structure of the coatings self-assembled (i.e., devitrified) into a multiphase nanocomposite microstructure with 75 to 125 nm grains containing a distribution of 20 nm second-phase grain-boundary precipitates. Vickers microhardness testing revealed that the amorphous coatings were very hard (10.2 to 10.7 GPa), with further increases in hardness after devitrification (11.4 to 12.8 GPa). The wear characteristics of the amorphous and nanocomposite coatings were determined using both two-body pin-on-disk and three-body rubber wheel wet-slurry sand tests. The results indicate that the amorphous and nanocomposite steel coatings are candidates for a wide variety of wear-resistant applications.

  11. Instructional Alignment under No Child Left Behind

    ERIC Educational Resources Information Center

    Polikoff, Morgan S.

    2012-01-01

    The alignment of instruction with the content of standards and assessments is the key mediating variable separating the policy of standards-based reform (SBR) from the outcome of improved student achievement. Few studies have investigated SBR's effects on instructional alignment, and most have serious methodological limitations. This research uses…

  12. X-ray determination of parts alignment

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1985-01-01

    A method for determining the alignment of adjoining metal objects is provided. The method comprises producing an X-ray image of adjoining surfaces of the two metal objects. The X-ray beam is tangential to the point the surfaces are joined. The method is particularly applicable where the alignment of the two metal objects is not readily susceptible to visual inspection.

  13. Phylogenetic Inference From Conserved sites Alignments

    SciTech Connect

    grundy, W.N.; Naylor, G.J.P.

    1999-08-15

    Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements.

  14. Evaluating Alignment between Curriculum, Assessment, and Instruction

    ERIC Educational Resources Information Center

    Martone, Andrea; Sireci, Stephen G.

    2009-01-01

    The authors (a) discuss the importance of alignment for facilitating proper assessment and instruction, (b) describe the three most common methods for evaluating the alignment between state content standards and assessments, (c) discuss the relative strengths and limitations of these methods, and (d) discuss examples of applications of each…

  15. Alignment Nashville. Complementary Learning in Action

    ERIC Educational Resources Information Center

    Bouffard, Suzanne; Malone, Helen

    2007-01-01

    This profile illustrates how Alignment Nashville brings together diverse community members and organizations to leverage existing resources in support of Nashville's youth and the Metro Nashville Public Schools. In addition to a diversified funding structure, Alignment leaders point to three factors that have helped them get the effort off the…

  16. Precision aligned split V-block

    DOEpatents

    George, Irwin S.

    1984-01-01

    A precision aligned split V-block for holding a workpiece during a milling operation having an expandable frame for allowing various sized workpieces to be accommodated, is easily secured directly to the mill table and having key lugs in one base of the split V-block that assures constant alignment.

  17. Achieving Organisational Change through Values Alignment

    ERIC Educational Resources Information Center

    Branson, Christopher M.

    2008-01-01

    Purpose: The purpose of this paper is to, first, establish the interdependency between the successful achievement of organisational change and the attainment of values alignment within an organisation's culture and then, second, to describe an effective means for attaining such values alignment. Design/methodology/approach: Literature from the…

  18. Partial Automated Alignment and Integration System

    NASA Technical Reports Server (NTRS)

    Kelley, Gary Wayne (Inventor)

    2014-01-01

    The present invention is a Partial Automated Alignment and Integration System (PAAIS) used to automate the alignment and integration of space vehicle components. A PAAIS includes ground support apparatuses, a track assembly with a plurality of energy-emitting components and an energy-receiving component containing a plurality of energy-receiving surfaces. Communication components and processors allow communication and feedback through PAAIS.

  19. CARNA--alignment of RNA structure ensembles.

    PubMed

    Sorescu, Dragos Alexandru; Möhl, Mathias; Mann, Martin; Backofen, Rolf; Will, Sebastian

    2012-07-01

    Due to recent algorithmic progress, tools for the gold standard of comparative RNA analysis, namely Sankoff-style simultaneous alignment and folding, are now readily applicable. Such approaches, however, compare RNAs with respect to a simultaneously predicted, single, nested consensus structure. To make multiple alignment of RNAs available in cases, where this limitation of the standard approach is critical, we introduce a web server that provides a complete and convenient interface to the RNA structure alignment tool 'CARNA'. This tool uniquely supports RNAs with multiple conserved structures per RNA and aligns pseudoknots intrinsically; these features are highly desirable for aligning riboswitches, RNAs with conserved folding pathways, or pseudoknots. We represent structural input and output information as base pair probability dot plots; this provides large flexibility in the input, ranging from fixed structures to structure ensembles, and enables immediate visual analysis of the results. In contrast to conventional Sankoff-style approaches, 'CARNA' optimizes all structural similarities in the input simultaneously, for example across an entire RNA structure ensemble. Even compared with already costly Sankoff-style alignment, 'CARNA' solves an intrinsically much harder problem by applying advanced, constraint-based, algorithmic techniques. Although 'CARNA' is specialized to the alignment of RNAs with several conserved structures, its performance on RNAs in general is on par with state-of-the-art general-purpose RNA alignment tools, as we show in a Bralibase 2.1 benchmark. The web server is freely available at http://rna.informatik.uni-freiburg.de/CARNA. PMID:22689637

  20. On comparing two structured RNA multiple alignments.

    PubMed

    Patel, Vandanaben; Wang, Jason T L; Setia, Shefali; Verma, Anurag; Warden, Charles D; Zhang, Kaizhong

    2010-12-01

    We present a method, called BlockMatch, for aligning two blocks, where a block is an RNA multiple sequence alignment with the consensus secondary structure of the alignment in Stockholm format. The method employs a quadratic-time dynamic programming algorithm for aligning columns and column pairs of the multiple alignments in the blocks. Unlike many other tools that can perform pairwise alignment of either single sequences or structures only, BlockMatch takes into account the characteristics of all the sequences in the blocks along with their consensus structures during the alignment process, thus being able to achieve a high-quality alignment result. We apply BlockMatch to phylogeny reconstruction on a set of 5S rRNA sequences taken from fifteen bacteria species. Experimental results showed that the phylogenetic tree generated by our method is more accurate than the tree constructed based on the widely used ClustalW tool. The BlockMatch algorithm is implemented into a web server, accessible at http://bioinformatics.njit.edu/blockmatch. A jar file of the program is also available for download from the web server. PMID:21121021

  1. Nonvisual Cues for Aligning to Cross Streets

    ERIC Educational Resources Information Center

    Scott, Alan C.; Barlow, Janet M.; Guth, David A.; Bentzen, Billie Louise; Cunningham, Christopher M.; Long, Richard

    2011-01-01

    Accurately aligning to a crosswalk is an important component of safe street crossing for pedestrians who are blind. Six alignment cues were evaluated in a simulated crosswalk environment in which the angle of the crosswalk was not always in line with the slope of the ramp. The effectiveness of each cue is reported and implications are discussed.…

  2. Evaluating Content Alignment in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Wise, Steven L.; Kingsbury, G. Gage; Webb, Norman L.

    2015-01-01

    The alignment between a test and the content domain it measures represents key evidence for the validation of test score inferences. Although procedures have been developed for evaluating the content alignment of linear tests, these procedures are not readily applicable to computerized adaptive tests (CATs), which require large item pools and do…

  3. Compositions for directed alignment of conjugated polymers

    DOEpatents

    Kim, Jinsang; Kim, Bong-Gi; Jeong, Eun Jeong

    2016-04-19

    Conjugated polymers (CPs) achieve directed alignment along an applied flow field and a dichroic ratio of as high as 16.67 in emission from well-aligned thin films and fully realized anisotropic optoelectronic properties of CPs in field-effect transistor (FET).

  4. Probabilistic sequence alignment of stratigraphic records

    NASA Astrophysics Data System (ADS)

    Lin, Luan; Khider, Deborah; Lisiecki, Lorraine E.; Lawrence, Charles E.

    2014-10-01

    The assessment of age uncertainty in stratigraphically aligned records is a pressing need in paleoceanographic research. The alignment of ocean sediment cores is used to develop mutually consistent age models for climate proxies and is often based on the δ18O of calcite from benthic foraminifera, which records a global ice volume and deep water temperature signal. To date, δ18O alignment has been performed by manual, qualitative comparison or by deterministic algorithms. Here we present a hidden Markov model (HMM) probabilistic algorithm to find 95% confidence bands for δ18O alignment. This model considers the probability of every possible alignment based on its fit to the δ18O data and transition probabilities for sedimentation rate changes obtained from radiocarbon-based estimates for 37 cores. Uncertainty is assessed using a stochastic back trace recursion to sample alignments in exact proportion to their probability. We applied the algorithm to align 35 late Pleistocene records to a global benthic δ18O stack and found that the mean width of 95% confidence intervals varies between 3 and 23 kyr depending on the resolution and noisiness of the record's δ18O signal. Confidence bands within individual cores also vary greatly, ranging from ~0 to >40 kyr. These alignment uncertainty estimates will allow researchers to examine the robustness of their conclusions, including the statistical evaluation of lead-lag relationships between events observed in different cores.

  5. On comparing two structured RNA multiple alignments.

    PubMed

    Patel, Vandanaben; Wang, Jason T L; Setia, Shefali; Verma, Anurag; Warden, Charles D; Zhang, Kaizhong

    2010-12-01

    We present a method, called BlockMatch, for aligning two blocks, where a block is an RNA multiple sequence alignment with the consensus secondary structure of the alignment in Stockholm format. The method employs a quadratic-time dynamic programming algorithm for aligning columns and column pairs of the multiple alignments in the blocks. Unlike many other tools that can perform pairwise alignment of either single sequences or structures only, BlockMatch takes into account the characteristics of all the sequences in the blocks along with their consensus structures during the alignment process, thus being able to achieve a high-quality alignment result. We apply BlockMatch to phylogeny reconstruction on a set of 5S rRNA sequences taken from fifteen bacteria species. Experimental results showed that the phylogenetic tree generated by our method is more accurate than the tree constructed based on the widely used ClustalW tool. The BlockMatch algorithm is implemented into a web server, accessible at http://bioinformatics.njit.edu/blockmatch. A jar file of the program is also available for download from the web server.

  6. Graphene based nanocomposite hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  7. Automated interferometric alignment system for paraboloidal mirrors

    DOEpatents

    Maxey, L. Curtis

    1993-01-01

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aigning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront.

  8. Relaxation of Liquid Crystal Alignment Layers

    NASA Astrophysics Data System (ADS)

    Rich, David C.; Sichel, Enid K.; Cebe, Peggy

    1997-03-01

    A new method for investigating thermophysical transitions in liquid crystal alignment layers is discussed. The technique involves curing a set of alignment films at an array of temperatures after the films have been brushed with a cloth, but before liquid crystal cells are constructed from the films. When a thermal transition in the polymer is initiated by a post-brush cure, the aligning ability of the brushed films is destroyed. The technique is demonstrated using polyamide- imide, PMDA-APB polyimide, poly(phenylene ether sulfide) and PVA poly(vinyl alcohol) alignment films. The technique is advantageous for examining brush-aligned surfaces which, due to surface roughness, can not be examined using conventional ellipsometry .

  9. Vane segment support and alignment device

    DOEpatents

    McLaurin, L.D.; Sizemore, J.D.

    1999-07-13

    A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position. 5 figs.

  10. Vane segment support and alignment device

    DOEpatents

    McLaurin, Leroy Dixon; Sizemore, John Derek

    1999-01-01

    A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position.

  11. Alignment algorithm for homology modeling and threading.

    PubMed Central

    Alexandrov, N. N.; Luethy, R.

    1998-01-01

    A DNA/protein sequence comparison is a popular computational tool for molecular biologists. Finding a good alignment implies an evolutionary and/or functional relationship between proteins or genomic loci. Sequential similarity between two proteins indicates their structural resemblance, providing a practical approach for structural modeling, when structure of one of these proteins is known. The first step in the homology modeling is a construction of an accurate sequence alignment. The commonly used alignment algorithms do not provide an adequate treatment of the structurally mismatched residues in locally dissimilar regions. We propose a simple modification of the existing alignment algorithm which treats these regions properly and demonstrate how this modification improves sequence alignments in real proteins. PMID:9521100

  12. Aligning Greek-English parallel texts

    NASA Astrophysics Data System (ADS)

    Galiotou, Eleni; Koronakis, George; Lazari, Vassiliki

    2015-02-01

    In this paper, we discuss issues concerning the alignment of parallel texts written in languages with different alphabets based on an experiment of aligning texts from the proceedings of the European Parliament in Greek and English. First, we describe our implementation of the k-vec algorithm and its application to the bilingual corpus. Then the output of the algorithm is used as a starting point for an alignment procedure at a sentence level which also takes into account mark-ups of meta-information. The results of the implementation are compared to those of the application of the Church and Gale alignment algorithm on the Europarl corpus. The conclusions of this comparison can give useful insights as for the efficiency of alignment algorithms when applied to the particular bilingual corpus.

  13. An algorithm for linear metabolic pathway alignment.

    PubMed

    Chen, Ming; Hofestaedt, Ralf

    2005-01-01

    Metabolic pathway alignment represents one of the most powerful tools for comparative analysis of metabolism. It involves recognition of metabolites common to a set of functionally-related metabolic pathways, interpretation of biological evolution processes and determination of alternative metabolic pathways. Moreover, it is of assistance in function prediction and metabolism modeling. Although research on genomic sequence alignment is extensive, the problem of aligning metabolic pathways has received less attention. We are motivated to develop an algorithm of metabolic pathway alignment to reveal the similarities between metabolic pathways. A new definition of the metabolic pathway is introduced. The algorithm has been implemented into the PathAligner system; its web-based interface is available at http://bibiserv.techfak.uni-bielefeld.de/pathaligner/.

  14. Modelling clustering of vertically aligned carbon nanotube arrays

    PubMed Central

    Schaber, Clemens F.; Filippov, Alexander E.; Heinlein, Thorsten; Schneider, Jörg J.; Gorb, Stanislav N.

    2015-01-01

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications. PMID:26464787

  15. Modelling clustering of vertically aligned carbon nanotube arrays.

    PubMed

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-01

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications. PMID:26464787

  16. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications

    PubMed Central

    2016-01-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933

  17. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    PubMed

    Ou, Canlin; Sanchez-Jimenez, Pedro E; Datta, Anuja; Boughey, Francesca L; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-06-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix.

  18. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    PubMed

    Ou, Canlin; Sanchez-Jimenez, Pedro E; Datta, Anuja; Boughey, Francesca L; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-06-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933

  19. Optimization of MnO 2/vertically aligned carbon nanotube composite for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Amade, Roger; Jover, Eric; Caglar, Burak; Mutlu, Toygan; Bertran, Enric

    The optimization strategy for producing manganese oxide supercapacitors based on vertically aligned carbon nanotubes (VACNTs) deposited on large area electrodes is presented. A single sequential process of sputtering, annealing and plasma enhanced chemical vapour deposition (PECVD) is applied to produce dense and uniform VACNTs electrodes. As dielectric layer of the supercapacitor, manganese oxide is electrodeposited lining the surface of the VACNTs electrodes. The control of the growing parameters such as catalyst thickness layer, temperature and deposition time for tuning the density, length and diameter of the VACNTs and their structure are found to be key points for the optimization of the MnO 2 electrodeposition process in view to improve the efficiency of the supercapacitor devices. The electrochemical properties of the obtained electrodes are characterized using cyclic voltammetry and galvanostatic charge-discharge techniques. A specific capacitance of 642 Fg -1 is obtained for MnO 2/VACNTs nanocomposite electrode at a scan rate of 10 mV s -1.

  20. Structural Alignment Sensor Feasibility Demonstration

    NASA Technical Reports Server (NTRS)

    Anderson, R. H.; Huang, C. C.; Hodor, J. R.

    1978-01-01

    A structural alignment sensor (SAS) was developed for use with large deployable antenna systems for contour measurement and/or active control. The SAS is a laser ranging system using frequency modulation and accurate phase measurement to determine distance. Work was done with a CO2 and HeNe laser. The capability of the SAS to measure antenna rib contours was studied over ranges of 50 meters to a resolution of 100 microns. Initial resolution data was taken with the CO2 system. This data shows that it will indeed meet the SAS requirements. The development of the HeNe system was initiated because it offers substantial improvement in size, weight, and power over the CO2 system. The final demonstration was made with the HeNe system and it too showed that the SAS requirements could be met with this alternate approach. The projection of these results to a conceptual design for a flight system and its application are described.

  1. Grain alignment by ferromagnetic impurities

    NASA Technical Reports Server (NTRS)

    Mathis, J. S.

    1986-01-01

    The observed wavelength dependence of linear polarization, and its variation from region to region can be explained by the following assumptions. Interstellar grains resemble interplanetary grains, in that they are composed of collections of small particles coagulated together into elongated masses. A fraction of the small particles are ferromagnetic. Presumably these are either metallic Fe or magnetite, Fe3O4. If and only if a large grain contains one or more magnetic particles is the grain aligned in the galactic magnetic field. The magnetic particles stick only to silicate grains because of chemical similarities, or (equivalently) any pure carbon grains in the diffuse interstellar medium (ISM) are too spherical to produce polarization. Grains in dense regions, such as the outer parts of molecular clouds, are larger than those in the diffuse ISM because of coagulation of the grains rather than accretion of icy mantles. These regions are known to have larger than normal values of lambda (max), the wavelength of the maximum of linear polarization. The above assumptions are sufficient to allow the calculation of the wavelength dependence of the polarization.

  2. R3D Align: global pairwise alignment of RNA 3D structures using local superpositions

    PubMed Central

    Rahrig, Ryan R.; Leontis, Neocles B.; Zirbel, Craig L.

    2010-01-01

    Motivation: Comparing 3D structures of homologous RNA molecules yields information about sequence and structural variability. To compare large RNA 3D structures, accurate automatic comparison tools are needed. In this article, we introduce a new algorithm and web server to align large homologous RNA structures nucleotide by nucleotide using local superpositions that accommodate the flexibility of RNA molecules. Local alignments are merged to form a global alignment by employing a maximum clique algorithm on a specially defined graph that we call the ‘local alignment’ graph. Results: The algorithm is implemented in a program suite and web server called ‘R3D Align’. The R3D Align alignment of homologous 3D structures of 5S, 16S and 23S rRNA was compared to a high-quality hand alignment. A full comparison of the 16S alignment with the other state-of-the-art methods is also provided. The R3D Align program suite includes new diagnostic tools for the structural evaluation of RNA alignments. The R3D Align alignments were compared to those produced by other programs and were found to be the most accurate, in comparison with a high quality hand-crafted alignment and in conjunction with a series of other diagnostics presented. The number of aligned base pairs as well as measures of geometric similarity are used to evaluate the accuracy of the alignments. Availability: R3D Align is freely available through a web server http://rna.bgsu.edu/R3DAlign. The MATLAB source code of the program suite is also freely available for download at that location. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: r-rahrig@onu.edu PMID:20929913

  3. Algorithms for Automatic Alignment of Arrays

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Oliker, Leonid; Schreiber, Robert; Sheffler, Thomas J.

    1996-01-01

    Aggregate data objects (such as arrays) are distributed across the processor memories when compiling a data-parallel language for a distributed-memory machine. The mapping determines the amount of communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: an alignment that maps all the objects to an abstract template, followed by a distribution that maps the template to the processors. This paper describes algorithms for solving the various facets of the alignment problem: axis and stride alignment, static and mobile offset alignment, and replication labeling. We show that optimal axis and stride alignment is NP-complete for general program graphs, and give a heuristic method that can explore the space of possible solutions in a number of ways. We show that some of these strategies can give better solutions than a simple greedy approach proposed earlier. We also show how local graph contractions can reduce the size of the problem significantly without changing the best solution. This allows more complex and effective heuristics to be used. We show how to model the static offset alignment problem using linear programming, and we show that loop-dependent mobile offset alignment is sometimes necessary for optimum performance. We describe an algorithm with for determining mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself or can be used to improve performance. We describe an algorithm based on network flow that replicates objects so as to minimize the total amount of broadcast communication in replication.

  4. A statistical algorithm for assessing cellular alignment.

    PubMed

    Nectow, Alexander R; Gil, Eun Seok; Kaplan, David L; Kilmer, Misha E

    2013-03-01

    Current statistical techniques for analyzing cellular alignment data in the fields of biomaterials and tissue engineering are limited because of heuristic and less quantitative approaches. For example, generally a cutoff degree limit (commonly 20 degrees) is arbitrarily defined within which cells are considered "aligned." The effectiveness of a patterned biomaterial in guiding the alignment of cells, such as neurons, is often critical to predict relationships between the biomaterial design and biological outcomes, both in vitro and in vivo. This becomes particularly important in the case of peripheral neurons, which require precise axon guidance to obtain successful regenerative outcomes. To address this issue, we have developed a protocol for processing cellular alignment data sets, which implicitly determines an "angle of alignment." This was accomplished as follows: cells "aligning" with an underlying, anisotropic scaffold display uniformly distributed angles up to a cutoff point determined by how effective the biomaterial is in aligning cells. Therefore, this fact was then used to determine where an alignment angle data set diverges from a uniform distribution. This was accomplished by measuring the spacing between the collected, increasingly ordered angles and analyzing their underlying distributions using a normalized cumulative periodogram criterion. The proposed protocol offers a novel way to implicitly define cellular alignment, with respect to various anisotropic biomaterials. This method may also offer an alternative to assess cellular alignment, which could offer improved predictive measures related to biological outcomes. Furthermore, the approach described can be used for a broad range of cell types grown on 2D surfaces, but would not be applicable to 3D scaffold systems in the present format.

  5. Electronic structure of CeRhIn5: de Haas-van Alphen and energy band calculations

    NASA Astrophysics Data System (ADS)

    Hall, Donavan; Palm, E. C.; Murphy, T. P.; Tozer, S. W.; Petrovic, C.; Miller-Ricci, Eliza; Peabody, Lydia; Li, Charis Quay Huei; Alver, U.; Goodrich, R. G.; Sarrao, J. L.; Pagliuso, P. G.; Wills, J. M.; Fisk, Z.

    2001-08-01

    The de Haas-van Alphen effect and energy-band calculations are used to study angular-dependent extremal areas and effective masses of the Fermi surface of the highly correlated antiferromagnetic material CeRhIn5. The agreement between experiment and theory is reasonable for the areas measured with the field applied along the (100) axis of the tetragonal structure, but there is disagreement in size for the areas observed with the field applied along the (001) axis where the antiferromagnetic spin alignment is occurring. Detailed comparisons between experiment and theory are given.

  6. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  7. Faster response of NO₂ sensing in graphene-WO₃ nanocomposites.

    PubMed

    Srivastava, Shubhda; Jain, Kiran; Singh, V N; Singh, Sukhvir; Vijayan, N; Dilawar, Nita; Gupta, Govind; Senguttuvan, T D

    2012-05-25

    Graphene-based nanocomposites have proven to be very promising materials for gas sensing applications. In this paper, we present a general approach for the preparation of graphene-WO(3) nanocomposites. Graphene-WO(3) nanocomposite thin-layer sensors were prepared by drop coating the dispersed solution onto the alumina substrate. These nanocomposites were used for the detection of NO(2) for the first time. TEM micrographs revealed that WO(3) nanoparticles were well distributed on graphene nanosheets. Three different compositions (0.2, 0.5 and 0.1 wt%) of graphene with WO(3) were used for the gas sensing measurements. It was observed that the sensor response to NO(2) increased nearly three times in the case of graphene-WO(3) nanocomposite layer as compared to a pure WO(3) layer at room temperature. The best response of the graphene-WO(3) nanocomposite was obtained at 250 °C. PMID:22543228

  8. A recent example of continent-continent collision : October 23, 2011 Van Earthquake (Mw=7.2) : Southeastern Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Suvarikli, M.; Ogutcu, Z.; Kekovali, K.; Yilmazer, M.; Ocal, M. F.; Gunes, Y.

    2012-12-01

    secondary faults led aftershocks lasting longer time period than usual. The results of strain analysis show that the general alignment of the largest strain axis (P-compressional) has N-S (NNW/SSE) and tensional axis (T-dilatation axis) has E-W (ENE-WSW) direction. The distribution of the important earthquakes and the aftershock distribution shows that the E-W and NE-SW oriented fault segments cause the earthquake activities. The b-value analysis is done for the earthquakes occurred in the region, to find out if there is a relationship between the relationship between the faulting type and faulting type and dominant tectonic regime. b-value associated with the current continuing compression regime that has been tested and found a lower b-value. Van earthquake and over 20 important aftershocks fault mechanism solutions show that the region is under compression and reverse faulting is a result of this regime which is effective on the active tectonics of the region. Van earthquake is a good example of the dominant compressional tectonic regime in Southeast Anatolia which caused blind reverse faulting as a result. This study showed that upper crust is seismogenic in the Southeastern Anatolia that causes seismic activity. This work was supported by Bogazici University Research Fund within the scope of project BAP/SRP 6671.

  9. An Improved Inertial Frame Alignment Algorithm Based on Horizontal Alignment Information for Marine SINS.

    PubMed

    Che, Yanting; Wang, Qiuying; Gao, Wei; Yu, Fei

    2015-01-01

    In this paper, an improved inertial frame alignment algorithm for a marine SINS under mooring conditions is proposed, which significantly improves accuracy. Since the horizontal alignment is easy to complete, and a characteristic of gravity is that its component in the horizontal plane is zero, we use a clever method to improve the conventional inertial alignment algorithm. Firstly, a large misalignment angle model and a dimensionality reduction Gauss-Hermite filter are employed to establish the fine horizontal reference frame. Based on this, the projection of the gravity in the body inertial coordinate frame can be calculated easily. Then, the initial alignment algorithm is accomplished through an inertial frame alignment algorithm. The simulation and experiment results show that the improved initial alignment algorithm performs better than the conventional inertial alignment algorithm, and meets the accuracy requirements of a medium-accuracy marine SINS.

  10. Pin-Align: A New Dynamic Programming Approach to Align Protein-Protein Interaction Networks

    PubMed Central

    2014-01-01

    To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein interaction networks from IntAct, DIP, and the Stanford Network Database and the results are compared with other well-known algorithms. It is shown that Pin-Align has higher sensitivity and specificity in terms of KEGG Ortholog groups. PMID:25435900

  11. An Improved Inertial Frame Alignment Algorithm Based on Horizontal Alignment Information for Marine SINS

    PubMed Central

    Che, Yanting; Wang, Qiuying; Gao, Wei; Yu, Fei

    2015-01-01

    In this paper, an improved inertial frame alignment algorithm for a marine SINS under mooring conditions is proposed, which significantly improves accuracy. Since the horizontal alignment is easy to complete, and a characteristic of gravity is that its component in the horizontal plane is zero, we use a clever method to improve the conventional inertial alignment algorithm. Firstly, a large misalignment angle model and a dimensionality reduction Gauss-Hermite filter are employed to establish the fine horizontal reference frame. Based on this, the projection of the gravity in the body inertial coordinate frame can be calculated easily. Then, the initial alignment algorithm is accomplished through an inertial frame alignment algorithm. The simulation and experiment results show that the improved initial alignment algorithm performs better than the conventional inertial alignment algorithm, and meets the accuracy requirements of a medium-accuracy marine SINS. PMID:26445048

  12. Semi empirical hardness predictive model for AZ91 nanocomposite

    NASA Astrophysics Data System (ADS)

    Zaidi, N. H. A.; Jamaludin, S. B.; Zaidi, A. M. A.; Ahmad, K. R.

    2016-07-01

    AZ91 nanocomposite was exposed to several heat treatment processes and the effect of precipitation hardening on hardness was studied as a function of time and temperature. The investigation shows the significant of time and temperature are the main role in the precipitation hardening process of the nanocomposite. Kinetics study show a deceptive activation energy of 21 kJ/mol of the AZ91 nanocomposite. A relationship was derived to predict the maximum hardness at given time and temperature.

  13. A unique Austin Chalk reservoir, Van field, Van Zandt County, Texas

    SciTech Connect

    Lowe, J.T. )

    1990-09-01

    Significant shallow oil production from the Austin Chalk was established in the Van field, Van Zandt County, in East Texas in the late 1980s. The Van field structure is a complexly faulted domal anticline created by salt intrusion. The Woodbine sands, which underlie the Austin Chalk, have been and continue to be the predominant reservoir rocks in the field. Evidence indicates that faults provided vertical conduits for migration of Woodbine oil into the Austin Chalk where it was trapped along the structural crest. The most prolific Austin Chalk production is on the upthrown side of the main field fault, as is the Woodbine. The Austin Chalk is a soft, white to light gray limestone composed mostly of coccoliths with some pelecypods. Unlike the Austin Chalk in the Giddings and Pearsall fields, the chalk at Van was not as deeply buried and therefore did not become brittle and susceptible to tensional or cryptic fracturing. The shallow burial in the Van field was also important in that it allowed the chalk to retain primary microporosity. The production comes entirely from this primary porosity. In addition to the structural position and underlying oil source from the Woodbine, the depositional environment and associated lithofacies are also keys to the reservoir quality in the Van field as demonstrated by cores from the upthrown and downthrown (less productive) sides of the main field fault. It appears that at the time of Austin Chalk deposition, the main field fault was active and caused the upthrown side to be a structural high and a more agreeable environment for benthonic organisms such as pelecypods and worms. The resulting bioturbation enhanced the reservoir's permeability enough to allow migration and entrapment of the oil. Future success in exploration for analogous Austin Chalk reservoirs will require the combination of a favorable environment of deposition, a nearby Woodbine oil source, and a faulted trap that will provide the conduit for migration.

  14. Face Alignment via Regressing Local Binary Features.

    PubMed

    Ren, Shaoqing; Cao, Xudong; Wei, Yichen; Sun, Jian

    2016-03-01

    This paper presents a highly efficient and accurate regression approach for face alignment. Our approach has two novel components: 1) a set of local binary features and 2) a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. This approach achieves the state-of-the-art results when tested on the most challenging benchmarks to date. Furthermore, because extracting and regressing local binary features are computationally very cheap, our system is much faster than previous methods. It achieves over 3000 frames per second (FPS) on a desktop or 300 FPS on a mobile phone for locating a few dozens of landmarks. We also study a key issue that is important but has received little attention in the previous research, which is the face detector used to initialize alignment. We investigate several face detectors and perform quantitative evaluation on how they affect alignment accuracy. We find that an alignment friendly detector can further greatly boost the accuracy of our alignment method, reducing the error up to 16% relatively. To facilitate practical usage of face detection/alignment methods, we also propose a convenient metric to measure how good a detector is for alignment initialization.

  15. Sparse alignment for robust tensor learning.

    PubMed

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods. PMID:25291733

  16. Polystyrene/MoS{sub 2}@oleylamine nanocomposites

    SciTech Connect

    Altavilla, Claudia; Ciambelli, Paolo; Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore

    2014-05-15

    The effects of adding different concentrations of MoS{sub 2}@oleylamine nano particles on the thermal and mechanical properties of polystyrene (PS) nanocomposites have been investigated. X-ray diffraction and optical microscopy were used to characterize the morphology of the resulting nanocomposites. The thermal stability of the nanocomposites has been characterized by thermogravimetric analysis. It has been found that the MoS{sub 2}@oleylamine nanoparticles have a good compatibility with the PS matrix forming homogeneous dispersion even at high concentrations. The PS/MoS{sub 2}@oleylamine nanocomposites showed enhanced thermal stability in comparison with neat polystyrene.

  17. Silver-enhanced fluorescence emission of single quantum dot nanocomposites.

    PubMed

    Fu, Yi; Zhang, Jian; Lakowicz, Joseph R

    2009-01-21

    A novel plasmon-coupled quantum dot (QD) nanocomposite via covalently interfacing the QD surfaces with silver nanoparticles was developed with greatly reduced blinking and enhanced emission fluorescence.

  18. Effect of random/aligned nylon-6/MWCNT fibers on dental resin composite reinforcement.

    PubMed

    Borges, Alexandre L S; Münchow, Eliseu A; de Oliveira Souza, Ana Carolina; Yoshida, Takamitsu; Vallittu, Pekka K; Bottino, Marco C

    2015-08-01

    The aims of this study were (1) to synthesize and characterize random and aligned nanocomposite fibers of multi-walled carbon nanotubes (MWCNT)/nylon-6 and (2) to determine their reinforcing effects on the flexural strength of a dental resin composite. Nylon-6 was dissolved in hexafluoropropanol (10 wt%), followed by the addition of MWCNT (hereafter referred to as nanotubes) at two distinct concentrations (i.e., 0.5 or 1.5 wt%). Neat nylon-6 fibers (without nanotubes) were also prepared. The solutions were electrospun using parameters under low- (120 rpm) or high-speed (6000 rpm) mandrel rotation to collect random and aligned fibers, respectively. The processed fiber mats were characterized by scanning (SEM) and transmission (TEM) electron microscopies, as well as by uni-axial tensile testing. To determine the reinforcing effects on the flexural strength of a dental resin composite, bar-shaped (20×2×2 mm(3)) resin composite specimens were prepared by first placing one increment of the composite, followed by one strip of the mat, and one last increment of composite. Non-reinforced composite specimens were used as the control. The specimens were then evaluated using flexural strength testing. SEM was done on the fractured surfaces. The data were analyzed using ANOVA and the Tukey׳s test (α=5%). Nanotubes were successfully incorporated into the nylon-6 fibers. Aligned and random fibers were obtained using high- and low-speed electrospinning, respectively, where the former were significantly (p<0.001) stronger than the latter, regardless of the nanotubes׳ presence. Indeed, the dental resin composite tested was significantly reinforced when combined with nylon-6 fibrous mats composed of aligned fibers (with or without nanotubes) or random fibers incorporated with nanotubes at 0.5 wt%.

  19. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.

    PubMed

    Spanos, P; Elsbernd, P; Ward, B; Koenck, T

    2013-06-28

    This paper reviews and enhances numerical models for determining thermal, elastic and electrical properties of carbon nanotube-reinforced polymer composites. For the determination of the effective stress-strain curve and thermal conductivity of the composite material, finite-element analysis (FEA), in conjunction with the embedded fibre method (EFM), is used. Variable nanotube geometry, alignment and waviness are taken into account. First, a random morphology of a user-defined volume fraction of nanotubes is generated, and their properties are incorporated into the polymer matrix using the EFM. Next, incremental and iterative FEA approaches are used for the determination of the nonlinear properties of the nanocomposite. For the determination of the electrical properties, a spanning network identification algorithm is used. First, a realistic nanotube morphology is generated from input parameters defined by the user. The spanning network algorithm then determines the connectivity between nanotubes in a representative volume element. Then, interconnected nanotube networks are converted to equivalent resistor circuits. Finally, Kirchhoff's current law is used in conjunction with FEA to solve for the voltages and currents in the system and thus calculate the effective electrical conductivity of the nanocomposite. The model accounts for electrical transport mechanisms such as electron hopping and simultaneously calculates percolation probability, identifies the backbone and determines the effective conductivity. Monte Carlo analysis of 500 random microstructures is performed to capture the stochastic nature of the fibre generation and to derive statistically reliable results. The models are validated by comparison with various experimental datasets reported in the recent literature. PMID:23690646

  20. Alignment Cube with One Diffractive Face

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Sampler, Henry P.; Strojny, Carl R.; Hagopian, John G.; McMann, Joseph C.

    2006-01-01

    An enhanced alignment cube has been invented for use in a confined setting (e.g., a cryogenic chamber) in which optical access may be limited to a single line of sight. Whereas traditional alignment-cube practice entails the use of two theodolites aimed along two lines of sight, the enhanced alignment cube yields complete alignment information through use of a single theodolite aimed along a single line of sight. Typically, an alignment cube is placed in contact with a datum surface or other reference feature on a scientific instrument during assembly or testing of the instrument. The alignment cube is then used in measuring a small angular deviation of the feature from a precise required orientation. Commonly, the deviation is expressed in terms of rotations (Rx,Ry,Rz) of the cube about the corresponding Cartesian axes (x,y,z). In traditional practice, in order to measure all three rotations, it is necessary to use two theodolites aimed at two orthogonal faces of the alignment cube, as shown in the upper part of the figure. To be able to perform such a measurement, one needs optical access to these two faces. In the case of an alignment cube inside a cryogenic chamber or other enclosed space, the optical-access requirement translates to a requirement for two windows located along the corresponding two orthogonal lines of sight into the chamber. In a typical application, it is difficult or impossible to provide two windows. The present enhanced version of the alignment cube makes it possible to measure all three rotations by use of a single line of sight, thereby obviating a second window.